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Preface

Mathematics, with its origin in problems of land measurement and the
keeping of accounts, has grown in complexity and power as the needs of
society have required ever more sophisticated reasoning and techniques.
Over a period of 2000 years mathematics developed, in some periods slowly,
in others rapidly, until in the seventeenth century there was a dramatic
advance - the invention of calculus - to match and facilitate equally
dramatic achievements in science and, somewhat later, in technology.

Indeed, calculus proved essential for the handling of difficult problems in
astronomy, physics, and engineering, as well as in other branches of
mathematics itself, such as the determination of tangent lines to curves and
the computation of volumes bounded by closed surfaces. In the eighteenth
and nineteenth centuries, the demands of the physical sciences and technol-
ogy stimulated rapid and far-reaching developments of the branch of
mathematics called analysis, growing out of calculus; and, reciprocally, the
mathematical developments contributed to the further growth of those
sciences.

Comparable progress was not made in the applications of mathematics,
including calculus, to the social and life sciences, largely because problems
in these areas proved difficult to formulate in mathematical terms. With
what precision - or even meaning - can one assign a number to the degree
of a person's conviction on a controversial subject, such as the investment of
more money to reduce the size of classes in public schools?

In the last 50 years, however, much of the mathematics that has proved so
useful in the physical sciences has been applied successfully in the social and
life sciences. The examples and problems presented in this book recognize
this fact. We shall often find that the major difficulty is the proper
formulation or modeling of the problem: Starting with a complicated and
perhaps vaguely defined situation, how do we sharpen the definition of the
problem, removing inessential features and adding data as required, so as to
make it feasible to apply mathematical methods? Providing practice in the
formulation of problems, as well as in their solution, is one of our goals in
this book.



Preface Thus far, we have mentioned mathematics solely in the context of its
applications to various fields. But mathematics has also been created and
studied for its own sake, as a system of thought with great appeal because of
its logical and aesthetic qualities. In this sense, mathematics is an art, in
addition to being a tool of the sciences. In its dual roles, mathematics holds
a central position in our cultural heritage, and an appreciation of mathe-
matics should contribute significantly to our intellectual development, in
the same way that an appreciation of literature, music, and philosophy, for
example, contribute to that development. We hope that study of this book
will prove rewarding through an increased appreciation of the power and
the beauty of mathematics.
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How this book is
organized, and how it
can be used

The spirit of the development of calculus in this book is intuitive, with
"real-world" problems and concrete examples to provide motivation and to
clarify concepts. We have chosen data to minimize arithmetic and algebraic
complexities while you are absorbing new ideas, and we use plausibility
arguments rather than formal proofs to justify most of the conclusions.
However, we have tried to make careful statements, so that you will never
have to unlearn anything later.

Chapter 0 provides a review of algebra, graphing, and related topics for
those who need it. The core material of Chapters 1 through 7 is appropriate
for a one-semester, three-hour course for an average class. Students with a
strong background in mathematics may work the starred problems and
study the starred sections, which go more deeply than the core material into
some of the topics. (There are some proofs in starred sections.) Omission of
the starred sections, however, does not interrupt the basic development of
the subject.

Students with a more limited background can skip some sections as well:
Sections 3.4, 3.9, and 4.14 involving applications to economics;
Section 3.10 on approximate solution of equations; and
Sections 4.3, 4.8, 4.11, and 6.6 on extreme rates of change, related rates,

and relative rates.
These can all be omitted without giving you trouble with subsequent

material.
Chapter 8, Chapter 9, and the core of Chapter 10 can be studied, in any

order, after Chapter 7 has been completed. Moreover, at the end of Chapter
7 we have made suggestions for independent projects that you may find of
interest. On the assumption that you have developed some mathematical
maturity in working through the first seven chapters, we have somewhat
condensed the exposition in the later chapters. In those chapters, too, you
will find considerable emphasis on numerical methods.

In addition to problem sets at the end of sections, there are exercises
embedded in the expository material itself. Be sure to do them, for they are
designed to help you understand the material that follows. Other exercises

Significance of •

Significance of o

xiii



How this book is organized, are marked with a small open circle o; you should do all these exercises and
and how it can be used save your solutions, because results later in the book depend upon them.

At the end of each chapter, in addition to review problems, there is a set
of questions constituting a "sample test," which should help you to check
whether you have mastered the material. Answers to selected problems, and
to virtually all the "sample test" questions, appear at the end of the book.

Significance of C For problems marked with the letter C a modern calculator will be useful.
This is not to say that you should avoid using a calculator on other
problems, but rather that some of the numerical experimentation suggested
by the C problems can be extremely time-consuming if done by "hand."

The use of calculators in the study of calculus has both advantages and
drawbacks. Among the advantages are these: (1) many concepts can be well
illustrated and simply explained through calculation, and (2) the practical
applications of calculus often call for delicate numerical work. Among the
drawbacks, we note that the intricacies of calculators can become a study in
itself and a distraction from learning basic concepts.

This book seeks a middle ground. Its primary thrust is calculus, and the
material is presented so that you can acquire all the essential content
without the use of a calculator. At the same time, there is additional content

- and opportunity for additional insights - for those who choose to use
calculators.

Even the simplest calculator, with nothing more than a square-root key,
will come in handy in saving you time and in providing you with significant
insights. More useful is a calculator with the usual features of scientific-
engineering models: logarithmic, exponential, and trigonometric functions,
and floating point representation. Better yet is a programmable calculator,
preferably with branching ability. Best of all is a computer - and a little
knowledge of how to use it.
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Some study hints

Your secondary-school course in geometry has given you some experience
with the careful statement, the attention to detail, and the concern for
logical argument that are typical of mathematics. You may or may not have
approached algebra in a similar spirit. In calculus we must be precise in
language, alert to the niceties of seemingly "minor" points, and prepared to
follow a rigorous argument, because the material involves subtleties that
must be appreciated if you are to learn to handle novel situations (as
contrasted with merely solving routine problems) and to realize the aesthetic
satisfactions and intellectual rewards that can come from a critical study of
calculus and related topics.

In order to learn as much as possible from the text, you should form the
habit of reading it slowly, while seated at a desk, with paper and pencil at
hand. It is probably worthwhile to "skim" the assigned reading once, to
obtain a general idea of the subject matter. Then study the material, reading
each sentence slowly, and doing your best to fill in any details that we have
left to you. Next, review the material, analyzing its relation to what you
have previously learned and trying to put the main results into your own
words. Finally, do problems and exercises.

Throughout your study you should maintain a critical attitude. Con-
stantly ask questions: Why is it done this way? Could it not have been
accomplished more easily as follows? Is this hypothesis really needed?
Doesn't the following example contradict the statement in the text? Is this a
significant or a trivial point, and what relation does it have to the entire
structure that I'm trying to understand? And so forth. By cultivating an
active involvement in the course you will greatly increase the satisfaction
obtained from it.

Here is still another suggestion: When you finish working a problem,
spend a few minutes thinking through what you have done. As soon as you
have come out with a neat r = 5; h = 10, there is a temptation to think
That's done; what's next in my assignment? But there is great value in
reviewing a completed problem in terms like these:

XV



Some study hints What was asked for in this problem? Have I answered the question(s)? Does
my answer sound right - does it make sense?

How do this problem and its answer compare with other problems I have
solved and with situations I know apart from my math course?

Are there any general conclusions that I can draw from my work on this
problem?

Now that I have solved the problem, do I see some easier way that it could
have been done?
In short, what have I learned from this problem?
Such an analytical, reflective approach will pay big dividends in under-

standing and enjoyment.
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Prerequisites

This chapter begins with a rapid review of elementary arithmetic and
algebra, emphasizing only those techniques essential to an understanding of
the calculus. No attempt is made to provide a complete logical development
of the subject.

0.1 Fundamental operations; parentheses

We begin with a brief statement of familiar properties of the numbers of
arithmetic.

It makes no difference in what order we add numbers: 3 + 4 = 7 and
44-3 = 7, and, in general, for a and b any numbers,

a + b = b + a. (1)

Likewise, the way in which numbers are grouped for addition does not
affect the result: 3 + (4 + 5) = 3 + 9 = 12, and (3 + 4)+5 = 7 + 5 =12. In gen-
eral,

a + (Z> + c) = (tf + fo) + c. (2)

Multiplication of natural (i.e., counting) numbers may be thought of as
repeated addition. Instead of 4 + 4 + 4, we write 3-4, and for 3 + 3 + 3 + 3,
we write 4-3. But both are equal to 12, and, in general,

a-b = b-a. (3)

As with addition, the way in which numbers are grouped for multiplica-
tion does not matter: 3-(4-5) = 3-20 = 60, and (3-4)-5 =12-5 = 60. In
general,

a-{b'c) = {a-b)'C. (4)

Adding two numbers and multiplying the result by a third number gives
the same result as multiplying each of the first two by the third and then
adding. For example, 3-(4 + 5) = 3-9 = 27, and 3-4 + 3-5 = 12 + 15 = 27. In
general,

a-(& + c) = (tf-Z>)+(tf-c). (5)



0 Experience with sets of objects makes properties (1) through (5) intui-
Prerequisites tively clear for the natural numbers. As the number system is extended to

include fractions, negative numbers, and so forth, definitions are so chosen
that these properties hold for them also. Remember that the letters in
algebra stand for numbers; hence, these properties are basic to all the
manipulations of algebra.

Parentheses, and other grouping symbols such as brackets, [ ], and
braces, { }, are essentially punctuation marks. Indicated operations inside
parentheses are to be thought of as performed first. In equations (2) and (4)
they are used to indicate special ways of looking at the expression. If we
care only about the result, not how it is obtained, equation (2) says that we
can omit the parentheses and write a + b + c without ambiguity. Similarly,
in (4), a-b-c represents the same number whichever way of associating
factors is chosen. In (5), the situation is different. Writing a-b + c gives no
indication, without some further agreement, whether this means a-(b + c)
or (a-b)+c. But these are different: 3-(4 + 5) = 3-9 = 27, and (3-4)+5
= 12 + 5 = 17. The universal convention is to choose the second. That is:

Unless there is notation to the contrary, multiplications (and
divisions) are performed before additions (and subtractions).

The convention permits removal of parentheses on the right side of (5):
a-(b + c) = a-b + a-c.

So far we have used the dot to indicate multiplication. When there is no
ambiguity, we can omit the dot. Obviously, 24 and 2-4 have different
meanings, but 2-x can be written as 2x and a-b as ab. Equation (4) can be
written

(4')

and (5) as

a(b + c) = ab + ac. (5')

Property (5) can be used to "expand" (a + b)(p + q) as follows:

(a + b)( p + q) = a( p + q) + b( p + q) = ap + aq + bp + bq. (6)

If the two factors are alike, we use the shorter notation (a + b)2 for
(a + b)(a + b\ and likewise (a + b)3 for (a + b)(a + b)(a + b\ and so
forth. Then, as a special case of (6), we have

The difference a — b is defined as the number d such that a = b + d, and
the quotient a -s- Z>, also written a/b, as the number q such that a = bq.
Properties such as the following can be understood intuitively for the
natural numbers by dealing with sets of objects and can be proved formally



on the basis of these definitions and properties (l)-(5): 0.2
fl_(fe + c) = a _ f c _ C ) Zero and negatives

a — (b — c) = a — b + c,

a(b — c) = ab — ac,

Calculators are designed to make it easy and natural to follow conven-
tional arithmetic and algebraic usage. However, there are variations in the
way different calculators work, and the beginner on any calculator must
study its characteristics carefully. With practice, one soon learns to observe
the standard conventions just as instinctively as in hand calculation.

PROBLEMS

1. Evaluate each of the following expressions:

(a) 5 + 3-5 ( b ) 2 + y (c) | ± J (d) 3-96 + 3-4 (e) 10-2-5

(0 (10-2)-5 (g) (6-2)^3 (h) 6^(2-3) (i) 12-(4 + 2)
(j) (9 + 4)- (7-3) (k)2-[7 + 3-(2-4)] (1) (4 + 6-4)^7

2. Simplify each of the following expressions:
(a)(a + p)(p + q)-p2-pq (b) (c + 2d)2-4cd
(c) (a + b)2 - 2(a2 + ab) (d) x2 - xy + y2 - JC(JC - y)

o 3. Expand each of the following expressions, and keep your results for
future reference:
(a) (x + h)3 (b) (x + h)4 (c) (x + h)5

4. Evaluate the expressions in each of the following pairs.
(a) 5-10-8, 5(10-8)
(b) 17-6 + 5, 17-(6 + 5)
(c) 8 + 4^2, (8 + 4)^2
(d)2 + 32, (2 + 3)2

(e) x-x + y, x(x-\- y)
(f) sr — rr + s, s[r — r(r + s)]

0.2 Zero and negatives

The number 0 is defined by the property a +0 = a for all numbers a. We
have, from this definition and (5),

a-0 = 0 for all a. (7)

An important consequence follows:

If ab = 0, then a = 0 or b = 0. (8)

Division by 0 is impossible. For suppose that 2 -H 0 = #. Then, by the
definition of division, #-0 = 2. But, by (7), there is no such number q. The



0 same argument applies for a -r- 0, a being any number other than 0. Now
Prerequisites suppose 0^-0 = ^. Again, by the definition of division, 0-# = 0. Here q

could be anything: \, 0, 1, 100, and 9999 all satisfy this condition; there is
no way of picking out one number as the "answer."

Dividing 0 by any number different from 0 gives no trouble: Suppose that
0-^ a = q9 with a # 0. Then aq = 0 and q = 0, by (8).

The negative of a number a is the number x such that a + x = 0, and it is
denoted by —a. The negatives of the positive numbers are the negative
numbers, and the negatives of the negative numbers are the positive
numbers. Positive numbers are greater than 0, negative numbers less than 0.
Note that 0 is neither positive nor negative and that the negative of 0 is 0.
The natural numbers, their negatives, and 0 compose the set of integers. The
following familiar results follow from this definition and the properties
(l)-(5) in Section 0.1.

For all /?, q, p + ( — q) = p — q. (Note that the minus sign plays two roles -
as a label for the negative of a number and as the symbol for subtraction.
This equation means that p — q can be thought of either as indicating the
subtraction of q from p or as indicating the addition of p and - q.)
Similarly, for all /?,#,/%

(-p)-q=-{pq\

P =~P = ( P)
~q q \qr

-P = P
-q q

PROBLEMS

1. Evaluate, if possible, for x = 0, x =1, and x = 3:
X

v x + 3 x - 3 x - 3 V /
X 2 _ 4 X + ^

2. Evaluate each of the following expressions:
(a) 5 + (-8) (b) 5 - ( - 8 ) (c) 4-106-4-6

iz



16-10 -16-10 1-3-5 0.3
U ) 4-1 ( ) 1-14 () 5-(-2) Fractionsand

56-8(7 + 5) rational numbers
( m ) 2(1-6)

3. Simplify each of the following expressions:
(a) (a + b)(p + q)-(a + b)p (b) x(u + v)-2xu
(c) (x- y)2+2xy (d) (c-d)-(a_-d)-(c-a)

(e) ab -{cd-(ef- ab)] (f) °C bc

a — (a + c)
o 4. Simplify each of the following expressions:

(a) (x - y)(x + y) (b) (x - y)(x2 + xy + y2)
(c) (x - y)(x3 + x2>> + xy2 + j>3)

5. Expand each of the following expressions:
(a)(x-/02 (b)(x-h)3 (c)(x-h)4 (d)(x-h)5

0.3 Fractions and rational numbers

A rational number is one that can be expressed as the quotient of two
integers; that is, as a fraction with numerator and denominator integers.
Every integer satisfies this definition because it can be expressed (in many
ways) as such a quotient; for example, 3 = 3H-1 = 6 ^ - 2 = 1 5 ^ - 5 , and so on.
The way we read a common fraction like two-thirds indicates that we are
thinking of it as 2-(y). But 3(2)(y) = 2(3)(^) = 2-1 = 2; hence, it satisfies the
definition of the quotient 2-^3. We can choose whichever interpretation of f
suits us.

Common sense assures us that 2-(y) = 4-(£) - twice as many parts, each
half as big. That is, | = frf = f. In general, for k i= 0,

^ = ^ (9)
b kb ' V ;

(In this and the formulas that follow, assume that the denominators of the
given fractions are not 0.) We can use this property to reduce a fraction to
"lower terms" - i 5 = F f = f - o r t o change to "higher terms" - £ =
25-4 ~~ 100 ~~ U - 1 Z -

If a decimal terminates, it can be written as a fraction whose denominator
is a power of 10 (e.g., 0.12 = ^ ) , and hence it is rational. The converse is
not true; for example, \ — 0.333..., continued indefinitely.

Multiplying simple fractions like \-\ = \<> and f • j = (5 • \)(J • \) =
(5 * 7)(i • i ) = -^, leads to the general rule

- • - = — (10)
b d bd' K ]

The rule for dividing fractions can be obtained by applying (9) to

a/b = (a/b)-(d/c) = ad/be = ad
c/d~ (c/d)'(d/c)~ 1 "be' 5



0 In other words:
Prerequisites

To divide by a fraction, invert the divisor and multiply.

To see how to add fractions, we look again at cases in which it is easy to
see what the answer must be: ^ + § = f = 1; i + f = (4 + 3)-j = j . Clearly, if
the fractions have the same denominator, the numerator of the sum is the
sum of the numerators, and the denominator is that common denominator.
But by the use of (9) we can always express each of the fractions so that
they do have a common denominator: For example, i + ̂ ^ i + F i ^
i + f = ^ . In general,

a c ^a-d b-c = ad + be , .
b d~ b-d b-d~ bd ' [ }

Whereas (11) always gives the correct result, that result can sometimes be
obtained more easily: For example, 6 + 4 = n + n=zn> whereas (11) would
have us say ^ + f̂ = |§, which reduces to yf, the same result, of course. The
work will be simplest if we use as the denominator the least number that
contains both denominators as factors; to see what this is in a less obvious
case, we write the denominators in factored form.

Example 1

60 72 2
2-3-5 23-32'

The least common denominator is 23-32-5. We have then

7-2-3 5-5 = 42 ^ 25 67
22-3-5-2-3 23-32-5 360 360 360'

which is in lowest terms. Rule (11) would give ^ + ̂  = -$%, which reduces

Obviously the arithmetic needed involves larger numbers than the first
method. We could replace (11) by the following rule, but it is awkward to
write it as a formula:

To add fractions (with minimum labor), change each
fraction to one whose denominator is the least common , .
denominator for all the fractions; then add the numerators
and set that result over the common denominator.

Example 2

_J 1 = 1-3 l-(3+/Q = 3-(3+/Q
3+A 3 (3+/0-3 3(3+*) 3(3+*)

3 - 3 - * _ - *
~ 3(3+*) ~ 3(3+*)'



Example 3 0.3
Fractions and

rational numbers
2x(x + h) 2x2'

The least common denominator is 2x2(x + h).

1 = 1-x l-(x + h) = x-x-h
2x(x + h) 2x2 2x(x + h)-x 2x2(x + h) 2x2{x + h)

-h
" 2x2(x + h)'

In the preceding examples there is no point in multiplying out in the
denominators (except possibly in the last step for some purposes, especially
in numerical examples); on the other hand, it is necessary to multiply out in
the numerators in order to combine like terms.

In the rational numbers we have a set closed under the operations of
addition, subtraction, multiplication, and division (i.e., combining any two
numbers of the set by any of these operations gives again a member of the
set), with the single exception of division by 0. Although we have by no
means done so, it can be shown that properties (1) through (5) hold for the
rational numbers.

PROBLEMS

1. Reduce each of the following fractions to a simpler form, if possible:
, , 6 _ 100 , . 504 23-32-7 ^ 90 , 1 2
( ) ( b ) ( > (d) ( )15 v ' 24 w 108 22-33 675 w 3/4

(h)

2. Perform the indicated additions and subtractions:

( d ) _2 ( e ) ^ + f (f)a +
x + y x + z 5 2x c

° 3. Simplify each of the following expressions:

f



0 0.4 Integral exponents
Prerequisites

We have assumed familiarity with the definition

xm = x-x- ...-X (m factors), m a, positive integer.

This definition leads immediately to the following results, where m and n are
positive integers:

(xy)m = xmym (12)

(xm)n = xmn (14)

— = xm~n, if m>n (read m greater than «), and;c#0. (15)

We define xm for zero and negative m in such a way that (12)-(15) hold. If
we ignore the restriction m > n in (15), we have, for example, x4/x1 =

x4-7 = x~3
9 JC#O. On the other hand, x4/x7 = l/x1~4 =l/x\ x*0. In

general, we define

x~~m = ——, x ¥= 0, m a positive integer. (16)

Similarly, if m = n, xm/xm = xm~m = x°, x # 0. But xm/xm = 1, x * 0, and
0m/0m = 0/0 is a meaningless symbol. Hence, we define

x° = l, x*0. (17)

Note that 0° is undefined.

PROBLEMS

Simplify the following expressions, writing each of them without negative
exponents.

Y2 — 1
1 JC + JC"1 2 (.X + JC-1)2 3 - -

2x~l

10
' • ( 1 + l ) °

9.

- - 27 12- k(r + kY
2b~2

3 2 \4

' g ~3)213. ^ f- 14. (rsyxr-xs-5x 15. (w~z + w~3)

8 16. (w"2 + w- 3)-2



0.5 Radicals, fractional exponents, and real numbers

Recall now the familiar notation using radicals to denote roots of numbers.
By definition,

(\/jt~ ) q = *, where q is a positive integer.

For example, (1/5 )2 = 5, (\/9 )2 = 9. Now, both 32 = 9 and ( -3) 2 = 9. It is
agreed that v̂9 =3, the positive root only; then - 3 = -][9. (There is a
discrepancy here, which may be confusing, between the way we read ]fx and
the precise definition of the symbol; strictly speaking, we should say "the
positive square root of x " instead of simply " the square root of x," as we
usually do.) Likewise, y/5 stands for the positive root only. For q any even

number and x > 0, we have a similar situation; for example, /l6^ = 2, not
- 2 . For q even and x < 0, there is no real root; nevertheless, we shall later
find meanings for such expressions. For q odd, there is exactly one real root,

and so we need no such convention; for example, V^ = 2, }/ — 8 = — 2.
It is easily shown that

(18)and ! / f -f^
This gives a means of simplifying radical expressions, or changing them to

more convenient forms (e.g., without radicals in denominators). Examples:

^54 = •fe-
41

46
2

}/5a2+l0ab b2)

if x — y > 0.

We return now to exponents. If we apply (14), disregarding the restriction
that m be an integer, we have (x1/q)q = xq/q = JC, and so we define

n

xl/q = ]/x , q a positive integer. (19)

This means that everything we have said about radical expressions can be
stated in terms of fractional exponents. For example, (18) becomes

0.5
Radicals, fractional

exponents, real numbers

a n d ( f



0 Now, using (14) and neglecting the restriction that m be an integer, we have
Prerequisites xp/q = (xl/q)p,p and q integers, q > 0. For example, 82/3 = (81/3)2 = 22 = 4.

If x > 0, then also xp/q = (x^)1^; if x < 0 and if /?/# is not in lowest terms,
this may lead to error. For example, ( -8) 2 / 6 = (-8)1 / 3 = - 2 , but
[(-8)2]1 / 6 = (64)1/6 = 2, not - 2 . We therefore take as the definition of
xp/q,

XP/Q = (xl/q)p, p and # integers without a common factor, # > 0. (20)

With definitions (16), (17), (19), and (20) it can be shown that properties
(12) through (15) hold for m and n any rational numbers. The only
restrictions that are retained are that x # 0 in (15) and that 0° remains
undefined. 3

In the preceding discussion we mentioned some symbols (e.g., y[3 ,y[5 ,y[l)
that have no meaning in the rational number system. That is, it can be
proved that there is no rational number whose square is 3, and so forth. The
set of real numbers can be defined as the set of all decimal representations,
terminating and nonterminating. The rationals compose the subset with
decimal representation, either terminating or periodic from some point on.
(This is not hard to show.) All other real numbers are irrational. For
example, the following numbers are all rational:

f =12.75,

= 1.66... (the dots mean "continued indefinitely"),

= 0.04545... (the dots above 45 indicate the period),

22
7 •>

3.1416.

It can be shown that y/l, y/9 , and the number 7r are irrational.
The real numbers can be put into one-to-one correspondence with the

points of a line, once a zero point, a unit point, and a positive direction have
been chosen, so that numbers on the number line increase in the positive
direction and decrease in the opposite (negative) direction.

Even in the set of real numbers, we have no number whose square is a
negative number. Later we shall make one more extension of our number
system which will remedy that lack.

PROBLEMS

1. Simplify:
4 3rr-

(a) v/48 (b) y - (c) ]/a3 -2a2b + ab2

(d) y/Sa3-Sb3 (e)

1 0



2. Simplify each of the following expressions, writing them without negative 0.7
exponents. Equalities

p / 4 ^3

x2

3. (a) Is (ab)2 always equal to a2b2r! If not, is it ever equal to ...?
(b) Is (p2)1/2 always equal to/?? If not, is it ever equal to ...?
(c) Is (a 4- b)2 always equal to a2 4- Z?2? If not, is it ever equal to ...?
(d) Is (/?2 4- q2)l/2 always equal to/? 4- ql If not, is it ever equal to ...?
(e) Is (/?2 — q2)1/2 always equal to /? — qi If not, is it ever equal to ...?
(f) Is (xy)1/3 always equal to xl/3-yl/3l If not, is it ever equal to ...?
(g) Is (/? 4- q)~l always equal to/?"1 4- q~ll If not, is it ever equal to ...?
(h) Is (x~l 4- j " 1 ) " 1 always equal to x 4- yl If not, is it ever equal to ...?

i r i o
4. (a) Simplify 2 = - | - 7 ^ 7 - - y ^

JC2+25

(b) Simplify P = i / ^ — ^ j • g, where Q is as in part (a).

5. (a) Simplify R = -

(b) Simplify S= \l 7 R, where R is as in part (a).

0.6 Notation for implication

We say that the hypothesis x = 1 implies the conclusion x 4- 3 = 10, or, in
abbreviated notation, x = 7 => x + 3 = 10. In general, if P and Q are state-
ments, P => 0 is read "P implies 0," or "if P, then 0."

Likewise, x+3=10=>x = 7; that is, the implication goes both ways. We
can combine the two statements in the form x = 7 <=> * + 3 = 10. In general,
P <=> g is read "P implies (? anc* conversely," or "P implies and is implied
by Q" or "P if and only if (?," or "P and (? are logically equivalent."

We have also x = 7 => x2 = 49. However, if x2 = 49, then x = 7 or x = — 7;
so we cannot say x2 = 49 => x = 7. In symbols, x2 = 49 =*> x = 7.

0.7 Equalities

So far, the equalities we have used have been statements that hold for all
numbers of the set under consideration. We shall have occasion now to deal
with "conditional equalities," that is, to solve equations, or, in the language



Prerequisites
of "new math," to "find solution sets of open sentences." In this we rely
heavily on the following properties of equality:

r = s**r + a = s + a, or, more generally,

if 0 = 6, thenr = s*>r + a = s + b9 (21)

that is, equals added to (or subtracted from) equals give equal results; and,

iffc^O, r = s**kr = ks9 (22)

that is, multiplying (or dividing) both sides of an equality by the same
number gives a valid equality.

Property (8) in Section 0.2, which we repeat in the notation for implica-
tion, will also be useful:

pq = 0 <=> p = 0 or q = 0, (23)

i.e., a product is 0 if and only if one of its factors is 0.

Example 1

Example 2

3 x - 2 = 1 0 ^ 3 * = 12 by (21)

<=> x = 4 by (22).

c**ax = c — b by (21)

c-b
<=>JC = by (22), provided a # 0.

12

Example 3

Example 4

Example 5

27

x 3

4JC-4

by(22)

by (21)

by (22).

27
x r = 0 <=» JC3 - 2 7 = 0 (multiplying each side by x2) by (22)

x2

= 27



Example 6 0.8
x2 -5x+6 = 0~(;c-2X;t-3) = 0 Inequalities

~ J C - 2 = 0 or J C - 3 = 0 by (23)

<=> x = 2 or x = 3.

PROBLEMS

Find all real numbers satisfying each of the following equations:

x 3r r + 2 5 7 10
•A- I ^ ±*^X «y »/ Z<^\. I X *J^

7. J C 2 - 3 X - 4 = 0 8. W2-3M = 10 9 . ^
x - 3

10. 8j> + 90 = 2 >>2 11. y2 + — = 0 12. x3 = 16*

3 x 3 2 J - 2 2 J > - 4

0.8 Inequalities

In equation (15) in Section 0.4 we used the symbol m > n for "m is greater
than n." Clearly this is equivalent to "w is less than w," written n < m. For
example, we can write 2 > — 3 or — 3 < 2. (Remember positions on the
number line.) For the statement "JC is less than or equal to 7," we write
x < 7, or, equivalently, 7 > x for "7 is greater than or equal to x "; for " w is
positive and less than 10," 0 < u <10; for "0 is greater than —5 and less
than or equal to - 2," - 5 < v < — 2.

There are properties of inequalities analogous to those for equalities:

r <s<*r + a<s + a, or, more generally,

if a < b, then r < s <=> r + a <s + b. (24)

Also,

r<s and k>Q=>kr<ks, (25a)

r<s and k<0=*kr> ks. (25b)

In words: If both sides of an inequality are multiplied by the same positive
number, the sense of the inequality is preserved; if multiplied by a negative
number, the sense is reversed. We have

rs > 0 <̂  r > 0 and s > 0 or r < 0 and s < 0, (26a)

rs < 0 ~ r > 0 and J < 0 or r < 0 and 5 > 0, (26b)

that is, the product of two numbers is positive if and only if both numbers -I o



Prerequisites
are positive or both are negative; the product of two numbers is negative if
and only if one of the numbers is positive and the other is negative.

Example 1

Example 2

3x + 2 < 14<=* 3x < 12 by (24)

«=> x<4 by(25a).

2 - 3 X > 1 4 ~ - 3 J C > 1 2 by (24)

~ x<-4 by (25b).

Example 3

x 2 + 6 > 5 x « J C 2 - 5 X + 6 > 0 by (24)

«* (x - 2)(x - 3) > 0 (factoring)

<=>x-2>0 and x - 3 > 0

or x - 2 < 0 and x - 3 < 0 by (26a)

<=> x > 2 and x > 3

or x<2 and x<3 by(24).

Now, if x > 2 and x > 3, it must be that JC> 3. Likewise, if JC < 2 and x < 3,
it must be that x < 2. Hence, our conclusion is that

Example 4

x2+6>5x<*x> 3 or x < 2.

; t 2 < 2 ; c + 8 ~ * 2 - 2 x - 8 < 0 by (24)

<=> (x 4- 2)(x - 4) < 0 (factoring)

<=>JC + 2 > 0 and x - 4 < 0

or x + 2 < 0 and x - 4 > 0 by (26b)

<=>JC> — 2 and x < 4

or * < - 2 and x > 4 by (24).

Now, there is no number x such that x < — 2 and x > 4. Hence, the only
possibility is that x > - 2 and x < 4, or - 2 < x < 4. Thus, our conclusion is



that 0.8
Inequalities

x2<2x + 8**-2<x<4.

* Example 5

x-3 2
7^2>3

We must multiply both sides by 3(x— 2) in order to "clear of fractions."
But we must distinguish the case in which this multiplier is positive from
that in which it is negative.

Case 1. x > 2. Then

3(JC-3)>2(JC-2)

x> 5.

If x> 2 and x> 5, then x > 5.
2. JC < 2. Then

<=> JC < 5 .

If A: < 2 and x < 5, then x < 2. Hence, the given inequality holds for x > 5 or
x<2.

PROBLEMS

Find all real numbers satisfying each of the following inequalities:

1. * 2 > 2 J C + 3 2. 3JC+10>JC 2 3. - 2 x 2

4. x2>-x 5. _ >-^— 6. 7JC-12JC-JC2>0

* 8. ( X - 1 ) ( J C - 2 ) ( J C - 3 ) > 0

9 . J C 2 > 9 10. - 6 J C + 3 > 9

* 19 3 < 2 £ + l
15



Prerequisites

Table 0-1

X

- 1

0

1

2

3

4

5

6

y

- 1 5

- 1 2

- 9

- 6

- 3

0

3

6

4

3

2
1

i |

-2 -1

_2

- 3

/

; /

/

/

/
i i i 1 i i

2 3 / 5 6

/

\

- - 1 5

Fig. 0-1

16

0.9 Linear equations

A. Linear equations in one unknown
A linear equation in one unknown, x, is one that, by the use of (21) and
(22), can be written in the form ax + b = 0, with a and b constants (i.e., free
of x\ and a¥^0. Then x = -(b/a) is the one and only solution (see
Examples 1 and 2, 0.7).

If we set y = ax + b and draw the graph, we shall understand the reason
for the term "linear." Remember that in the ordinary graphical system there
is a one-to-one correspondence between the points of the plane and the
ordered pairs of real numbers; for example, (1,2) and (2,1) represent
different points. (By convention, the x-value appears first.)

Example 1 (See Example 1, 0.7.)

3 X - 2 = 1 0 ~ 3 J C - 1 2 = 0.

Let y = 3x —12. We see in Table 0-1 that for an increase of one unit in x
there is an increase of three units in y, and if we look at the formula we see
that this is true for any increase of one unit in x. This means that the graph
is a straight line, of "slope" 3, as in Figure 0-1. The line crosses the x axis at
(4,0); that is, x = 4 is the solution of 3x -12 = 0.

In general, the graph of y = ax + b is a straight line of "slope" a, crossing
the x axis where x = — (b/a). The graph of an equation consists of those
points and only those points whose coordinates satisfy the equation.

B. Simultaneous linear equations in two unknowns
A linear equation in two unknowns can be written in the form ax + by = c,
in which a, b, and c are constants, with at least one of a, b not 0. A
simultaneous solution of two such equations is a pair of values, one for JC
and one for >>, that satisfies both equations. Such a solution, if there is one,
can be found by using (21) and (22) so as to eliminate one variable.

Example 2

2x-3y =
3x+4y = by (22)

=>17x = 34 by (21)

~ x = 2 by (22).

Now,

i 1A O3x + Ay = 2



The solution is x = 2, y = -l. (Check by substitution in the original
equations.)

0.9
Linear equations

Example 3

4x-6y=\4
~~ 3'

No pair of values for x and y can make 0 = 23. There is no solution.
A graphical interpretation of these examples may be illuminating (Figure

0-2). We know that each equation has a straight-line graph; so we plot only
a few points.

2x-3y 3x+4y = 4x-6y=-9

X

- 1

0
i

y

- 3
- 7
3

0

X

- 1

0
2
3

i
2

0

- 1

0
- 9
4

6
3
2

0

The solution x = 2, y = — 1 of the equations in Example 2 corresponds to
the point of intersection of their graphs. The equations of Example 3, which
have no solution, have graphs that are parallel lines; that is, they have no
point of intersection.

Fig. 0-2

PROBLEMS

Find all real numbers satisfying each of the following equations:

J _ = l 2 1-1 = 1
5 .

1.
J C - 2 3 3 x x

Find both algebraically and graphically all solutions of the following pairs
of simultaneous equations:

/ x+2y = i3.

5.
'

4x-3y=l2

%x- y = 5
Solve algebraically the following pairs of simultaneous equations:

7.

* 10.

3x-6y =
y-3x=-2 9x=l3+y

3x1-]/y =11 17



Prerequisites

Table 0-2

X

1

0
2

5/2

3

4

5

6

y

12

6
0

-1/4

0

2

6
12

(a)
-12

•10

8

6

- 4

" 2

0.10 Quadratic equations

A quadratic (second-degree) equation in one unknown is one that can be
put into the form

ax1 + bx + c = 0, where a, 6, and c are constants, and a # 0. (27)

If the left side can be factored, the equation can be solved by (23). (See
Example 6 in Section 0.7 and Problems 7-10 following Section 0.7.)

Every quadratic equation can be solved by "completing the square," a
method that was known to the ancient Babylonians.

Example 1

2 J C 2 + 2 J C - 1 = 0

-\=0 by (22)

by (21)

by (21)

(Adding the square of half the coefficient of x makes the left side a perfect
square; hence the name.)

or

or x =

i = - / y (taking square roots of both sides)

- 1 - / 3
by (21).

Applying this method to (27) yields the familiar formula

-b±Jb2-4ac
X = 2a '

which can then be used to find the roots without going through the steps of
completing the square. Factoring, when it works, remains the easiest method.

If the expression b2 —4ac < 0, the roots involve square roots of negative
numbers, which do not belong to the set of "real" numbers. We extend the
number system once more. The set of complex numbers is the set m + ni9 m
and n real, where i = y/— 1 , with addition and multiplication defined as if
these were any algebraic expressions. Then it can be shown that properties
(l)-(5) hold and that the set is closed under each of the fundamental
operations, with the exception of division by 0. The subset for which n = 0 is
the set of real numbers; all others are, unfortunately, called imaginary.
(Because all numbers are abstract mental concepts, the term imaginary is
not more appropriate for these than for any other numbers.) The set of



complex numbers is sufficient for the purposes of ordinary algebra and
analysis.

Every quadratic equation has two roots, which may be real or imaginary.
We turn again to graphical methods.

0.10
Quadratic equations

Example 2
We use the quadratic x2 — 5x 4-6 of Example 3 in Section 0.8. If we write
y = x2-5x+6 and make a table of values, we obtain Table 0-2. A plot of
the points corresponding to the pairs of values in the table is shown in
Figure 0-3(a), and a smooth curve through these points is shown in Figure
0-3(b). We see that y = x2 - 5x + 6 is 0 for x = 2 and x = 3 (as found in
Example 6 of Section 0.7), is negative for 2 < x < 3, and is positive for x > 3
or x < 2, as we have already found in Example 3, 0.8.

Example 3
Let y = 2x2 +2x — 1, the quadratic in Example 1. (The last three values of
Table 0-3 were added after plotting the others because it was hard to see
how to draw a smooth curve with only the first four.) Here we can read off
only approximately the values of x where the curve crosses the x-axis: Say
x = —1.4 and x = 0.4. In Example 1, we found algebraically the roots to be
the irrational numbers ( - 1 + V^)/2 and ( - 1 - \/3 )/2. Now, ( - 1 +i/3 )/2
« 0.366, and (— 1 — v^)/2 « —1.366 ( « means approximately equal). These
values are rational approximations to the irrational values, but closer than
can be read from a graph (Figure 0-4). The graph of y = ax2 + bx + c, where
a, b, and c are real numbers, and a > 0, is always a curve with a shape of
this one, called a parabola, symmetric with respect to an axis parallel to the
y axis, extending indefinitely upward more and more steeply. Remember
that the graph consists of those points with real coordinates satisfying the
equation. If the curve does not cut or touch the x axis, the equation
ax2 + bx + c = 0 has no real roots; hence, its two roots are imaginary.

PROBLEMS

Solve algebraically; draw and interpret appropriate graphs:
1. 2 J C 2 - 7 X + 3 =
4. J C 2 - 4 . x - 5 = 0
7. J C 2 - 4 X + 4 = 0

10. 3JC 2 +12 =
13. 8*2 -24.x+8 = 0

* 14. By "completing the square," show that

2. x2-5x + 2t = 0
5. JC 2 -4JC = 0

8. J t 2 - 4 . x + 5 = 0
11. 6 2

3. JC2-5JC + 8 = O
6. .x2-4.x+ 1 = 0
9. J C 2 - 7 X + 2 = 4

1? 4 2 _ 4 _ 8

ax2 -b±]/b2-4ac

Table 0-3

X

-2
- 1

0
1

-1/2
-3/2

1/2

y

3
- l
- l

3
-3/2

1/2
1/2

Fig. 0-4

2a
if a = 19



0 0.11 Higher-degree equations
Prerequisites

A polynomial is an expression of the form

anxn + an_xx
n~l + • • • + axx + a0,

in which the a's are constants, an # 0, and n is a positive integer. We use a's
with subscripts for the coefficients instead of different letters because it is
easier to remember which goes with which power of x. In this notation, the
linear polynomial will be axx + a0; the quadratic will be a2x

2 + axx + a0.
The degree of the polynomial is n. An algebraic (or polynomial) equation of
degree n is such an expression set equal to 0.

There are formulas analogous to the quadratic formula for the roots of
the general cubic (third-degree) and the quartic (fourth-degree) equations
(discovered by the sixteenth-century Italian mathematicians Cardan,
Tartaglia, and Ferrari), but they are extremely awkward to use and will not
be dealt with here. There is no such formula for the general algebraic
equation of degree 5 or more. This was proved in 1824 by the Norwegian
mathematician Abel, who was 22 years old at the time. In 1829 the French
mathematician Galois characterized those equations that can be solved
algebraically; shortly thereafter he was killed in a duel, before his 21st
birthday.

In relatively few cases can we find the exact values of the roots of
equations of degree greater than 2; however, we can find approximate values
of the real roots by graphical and numerical methods. We shall state a few
theorems that are helpful. We shall deal only with polynomials with real
coefficients.

A. Every equation of degree n has n roots (which may be real or
imaginary). (This was proved by the German mathematician Gauss in 1799,
when he was 22 years old.)

B. Imaginary roots occur in pairs.
From A and B follows C:

C. Every equation of odd degree has at least one real root. Another very
useful result is more easily expressed if we use the notation P(x) (read "P of
x ") for the general polynomial given earlier and P(k) for its value when k is
substituted for x. For example,

P(2) = 48-116-2 + 84 =14.

Dividing P(x) by (x - k) means finding a quotient Q(x), which is a
polynomial of degree n — 1, and a constant remainder R such that

P(x) = (x-k)Q(x)+R.

Then

20



That is: 0.11
D. The remainder in the division of P(x) by (JC — k) is the value of P(x) Higher-degree equations

when x = k\ if R = 0, k is a root of P(x) = 0, and x - k is a factor of P(x).

Example 1
Let P(x) = 6x3 -29JC 2 - x + 84. Divide by (JC - 2 ) :

6x2-llx -35 (quotient)

6 J C 3 - 2 9 J C 2 - J C

6JC 3 -12JC 2

- 1 7 J C 2 - JC

- 1 7 J C 2 + 3 4 J C

JC — 2 (divisor)

- 35JC + 84

- 3 5 J C + 7 0

14

The remainder, 14, is the value we found earlier when we substituted 2 for JC
in the polynomial.

There is much unnecessary writing in the foregoing division. In the first
place, we need not write any JC'S if we write the coefficients in order of
descending powers of JC (being sure to put in the 0 coefficient of any missing
term). The first terms in the second, fourth, and sixth lines are necessarily
the same as the terms above them, so they need not be rewritten; likewise,
the second terms in the third and fifth lines are copied from the first line,
where we can read them just as well. The terms of the quotient are the first
terms in the first, third, and fifth lines. We can remember that the first term
in the divisor is JC, without writing it. We are left with this skeleton:

6 - 2 9 - 1 +84 ) -

- 1 2

- 1 7
+ 34

-35
+ 70

14

This can be written on three lines:

6 - 2 9 - 1 +84 )-2

- 1 2 +34 +70

- 1 7 - 3 5 +14

The —12 is obtained by multiplying 6 by —2, the —17 is obtained by 21



Prerequisites

Table 0-4

X

-2

- 1

0

1

2

3

4

5

y

- 7 8

50

84

60

14

- 1 8

0

104

40

30

20

10
i i i I

-3-2-1
- 1 0

- 2 0

- 3 0

- 4 0

-

-
1 1 1 X 1
1 2 3 4 5

-

•

-

-

Fig. 0-5a

22

subtracting this result from — 29, and successive terms in the third line are
obtained by multiplying by — 2 and subtracting from successive numbers in
the first line. We can get exactly the same results by multiplying each time
by positive 2 and adding. Finally, then, we write positive 2 in the position of
the divisor, bring down the first coefficient, 6, to the bottom line, multiply
by 2 and add to the next term, -29, in the first line, multiply the result,
-17, by 2 and add, and so on, getting

6 -29 - 1 +84 }2
+ 12 -34 -70

6 -17 -35 +14

The last term in the bottom line, 14, is the remainder, and the first three
terms are the coefficients of the quotient, 6x2 — Ylx — 35.

This process is called synthetic division or synthetic substitution. This
method is usually quicker than direct substitution, and it has other ad-
vantages as well. Suppose that we wish to solve

6*3 - 29.x2-x +84 = 0.
Let

and make Table 0-4. We have incidentally found one solution: x = 4.
Because y is negative for x = — 2 and positive for x = — 1, we expect that
there is a root between - 2 and - 1 . Likewise, we expect that there is a root
between 2 and 3. If we plot the pairs of numbers in our table, we obtain the
dots in Figure 0-5(a).

Let us look at the synthetic division that gives y for x = 4:

6 -29 - 1 +84 }4
24 -20 -84

6 - 5 -21 +0

We see that 4 is a root of P(x) = 0, and x — 4 is a factor of P(x)\ that is,

P(x) = (x -4) (6JC 2 -5X -21) ,

so that the other two roots of the cubic are the roots of the quadratic
equation

6x2 - 5 x - 2 1 = 0.

This quadratic expression happens to factor:

6x2 -5x - 21 = (2x +3)(3JC - 7 ) ,

so x = — I and x = % are roots. Thus, we are able to find all three roots
exactly, so the graph in Figure 0-5(b) was not really needed.

Synthetic substitution is helpful in deciding "how far we have to go" in
testing for the roots of a polynomial equation. The method can be il-



lustrated by the example we used earlier: 6.x3 -29.x2 - x + 84. If we apply
synthetic substitution to find the value of this expression for x = 5, we have
the following:

6 -29 - 1
+ 30 +5

+ 84
+ 20

6 +1 +4 +104

Because all the numbers in the last row of this schema are nonnegative, we
realize that substituting a number larger than 5 would increase each of the
numbers in the last row, and therefore we could not end with 0, which is
what we need for a root.

Similarly, let us substitute - 2 for x:

6 -29 - 1 +84 ^ -
-12 +82 -162

6 -41 +81 -78

Because the numbers in the last row alternate in sign, we realize that
substituting a number smaller than - 2 (such as — 3 or — 4) would result in
alternation with greater amplitudes, so again we could not end with 0. We
state the general result as follows:

In testing for the roots of an equation, we have gone far enough
in the positive direction when all the numbers in the last row in
synthetic substitution are nonnegative, and far enough in the
negative direction when the numbers in the last row alternate in
sign.

0.11
Higher-degree equations
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PROBLEMS

Use a graph to find approximate values of the roots of each of the following
equations. When possible, find exact values of the roots as well.
1. 6.x3-3bc2-10*+75 = 0 2. 6x3 -32.x2 -5x + 75 = 0
3. 6JC 3 -31JC 2 -10JC+74 = 0 4. 6x3 - l l x 2 - JC - 2 = 0

Find all roots of each of the following equations by synthetic substitution:
5. J C 3 + 2 J C 2 - 1 1 J C - 1 2 = 0 6. x3 + 4x2 - I I J C -30 = 0

7. 2JC3+8.x2-38.x+28 = 0 8. x3 +3JC2 - 3 1 * + 12 = 0
9. 2.x3+15*2+17x-6 = 0 10. x3 - 14* - 8 = 0

• 11. x4 + 2x3 -8x 2 -26* -12 = 0
* 12. Note that the polynomial 6x3 - 29.x2 - x + 84 from the example worked

out in this section can be written as { [(6JC — 29) x — l] x + 84}, or more
simply, without danger of misinterpretation, as

(((6JC-29)JC-1)JC 23



0 If x = 2, the expression 6x — 29, in the innermost parentheses, equals
Prerequisites —17; the next is —35; and the outermost is 14. These are exactly the

numbers (except for the 6) of the third line of our first synthetic
division, which is repeated here:

6 -29 - 1 +84 ]2
12 -34 -70

6 -17 -35 +14

Explain why these numbers are the same, and why synthetic division
works in general.

C* 13. Synthetic division, or the equivalent "nested-parentheses" process of
Problem 12, lends itself well to evaluation of polynomials on calculators
or computers. With a little practice you will not have to rewrite P(x)
each time you wish to calculate P(k) for a new k. Use a calculator to
evaluate the following:
(a) 4 J C 4 - 1 3 X 3 + 2 X 2 - 1 9 X + 12 at x = 0,-2,2,3
(b)27x7-0.1x5+34x4+17A:3+2jc + 7r at x= -1 , -7 ,100

0.12 Progressions

A. An arithmetic progression is a sequence of numbers such that the
difference, d, between any term and its predecessor is the same; that is,

a,a + d,a + 2d,...J — d, /,

where the nth term, /, is given by / = a + (n — \)d. A formula for the sum,
An, of the first n terms of such a progression can be obtained as follows:

Also

An = l + (l-d) + (l-2d)+ ••• + ( a + 2 J ) + ( a + d) + a.

Adding,

2An = (a + / ) + (* + / ) + (a + / ) + ••• + ( a + / ) + (* + l) + (a + / )

so

4, = §(* + /). (28)

Example 1
Find the sum of the first 20 odd integers. The 20th odd integer is 1 +19 • 2 =
39, so

2 4 ^20 = f ( l + 39) =10-40 = 400.



Example 2 g ^2
Find the sum of the first 10 terms of an arithmetic progression of which the Proaressions
first two terms are y and \. Here,

n — I rf—l—l—l / — 1 _ L Q . 1 —I_i_I —iia ~ 3) a ~ 2 3 ~ 6> l — 3 + ^ 6~ 3 + 2 ~ 6 •

Hence,
J _ ion . 11 \ _ c.12 _ 65

^10 ~ 2 \3 T 6 / ~ J 6 ~ 6 •

B. A geometric progression is a sequence of numbers such that the ratio, r,
of any term to its predecessor is the same; that is,

a,ar, ar2,...,/ = arn~l.

A formula for the sum, Gn, of the first n terms of such a progression can be
obtained as follows:

Gn = a + ar + ar2 + • • • + ar""2 + ar""1,

rGn = ar + ar2 4- ar3 + • • • + ar""1 + ar".

Subtracting gives
Gn-rGn = a - a r " .

Thus, (1 - r)Gn = a(l - r"), and

0. = ^ . (29)

Example 3
Find the fifth term and the sum of the first five terms of the geometric
progression whose first two terms are 3 and 6. Here r = 2. Hence, the fifth
term is 3 • 24 = 48, and the sum is

C 5 331-93.

Example 4
Rework Example 3 if the first two terms are 6 and — 3. Here r = — \. The
fifth term is 6 ( - \)A = 6- £ = f.

r L x *> j _ 6(1 +A) 33 2 = 33
5 l-(-i) § ' 3 2 ' 3 8"

If r is numerically greater than 1 (i.e., if r > 1 or r < — 1), the terms
increase in numerical value as n increases, as in Example 3. If r is
numerically less than 1 (i.e., if — 1 < r < 1), the terms decrease in numerical
value, as in Example 4, and the expression rn can be made as close to 0 (but
never equal to 0) as we choose. The formula for Gn then approaches
a / ( I — r) as n increases without limit. We then write

(read " sum to infinity").
^ 3



0 Example 5
Prerequisites For the progression

1 = 1
! 2

Example 6
0.333... means 0.3 + 0.03 + 0.003+ • • •, a geometric progression with r =
0.1. So

0.3 ^ 0 . 3 1
00 1-0.1 0.9 3*

This means that as we take more 3's in the decimal we get closer and closer
to the rational number \ (but never reach it with a finite number of terms).
Similar treatment of any periodic decimal yields a rational number in
fractional form.

The expression "increasing geometrically" means increasing like the
terms in a geometric progression. Geometric progressions are basic to
handling problems in investments at compound interest and in many
scientific and practical problems.

PROBLEMS

1. The first two terms in a progression are 2 and 4. Find the sixth term and
the sum of the first six terms (a) if the progression is arithmetic and (b) if
the progression is geometric; also find G^, if it exists.

2. Rework Problem 1 if the first two terms are 4 and 2.
3. Rework Problem 1 if the first two terms are 2 and —4.
4. Rework Problem 1 if the first two terms are 4 and — 2.
5. Rework Problem 1 if the first two terms are 1 and 3.
6. Rework Problem 1 if the first two terms are 3 and 1.
7. Find the fraction represented by the repeating decimal 0.18i8
8. A method basically equivalent to that described in Example 6 for finding

the fraction represented by the repeating decimal 0.18i8... is to set

Then 100A^ = 18.18i8....

So 1007V- 7V = 18.18i8.. .-0.18i8.. . =18.

Complete the process by solving this equation for N. Compare with your
answer to Problem 7.

9. Use the method outlined in Problem 8 to find the fraction represented by
the following repeating decimals:

2 6 (a) 0.3636... (b) 0.77... (c) 0.189i89... (d) 0.7474...



0.13 Logarithms 0.13
Logarithms

If M = bx, b > 0, then x is called the logarithm (log for short) of M to the
base b, written logbM = x. For example,

because 8 = 23, Iog28 = 3;

because yflO = 101/2, log10i/l0 =\.

Because logs are really exponents, their rules of operation are just
restatements of those of exponents: Let M = bx, N = by; then logbM = x,
logbN=y; MN = bx-by = bx+y\ that is,

\o%b MN = x + y = logfe M + log,, N. (30)

Similarly,

l o g 6 ^ = log6M-logfeiV, (31)

and
log,M" = >2log,M. (32)

Logs to base 10, called common logs, are helpful in calculations because
our numerals are also based on 10. In the remainder of this section we shall
use only logs to base 10 and shall not write the base; that is, by log M we
shall mean log10M. We get the common logs of integral powers of 10 by
translating from the exponential form:

0.01

0.1

1

10

100

1000

etc.

= 10"2

-It)"1

= 10°

= 101

= 102

= 103

log 0.01

log 0.1

logl

log 10

log 100

log 1000

= - 2

= - 1

= 0

= 1

= 2

= 3

Every number can be written as a number between 1 and 10 multiplied by
an integral power of 10 (the standard scientific notation); for example,

0.0124 = 1.24X0.01 =1.24X1O~2,

12.4 =1.24X10 =1.24X1O\

12,400 = 1.24 X 10,000 = 1.24 X104.

Then, by (30),

log 0.0124= log 1.24-2,

log 12.4 = log 1.24 + 1,

log 12,400 = log 1.24 + 4. 2 7



0 In every case the log of a number is the log of a number between 1 and 10
Prerequisites plus an integer (called the characteristic) that is exactly the exponent of 10

in the scientific notation. Tables give approximate values of the logs of
numbers between 1 and 10. The tabular entries are numbers between 0 and
1 (a decimal point is understood before each entry). To find log 1.24 from
the table at the back of this book or in any four-place common log table,
find 12 under N, then in this row find the entry under 4 at the top. There
you find the entry 0934. This means that

log 1.24 = 0.0934, approximately.
Then

Iogl2,400 = 4.0934 and log 12.4 =1.0934.
Similarly,

Iog0.0124 = 0.0934-2,

which is usually more convenient to use in the form logO.0124 = 8.0934-10.
The decimal part of the logarithm is called the mantissa, and it is

desirable to keep the positive mantissa in evidence, rather than to carry out
the indicated subtraction.

Example 1
Find N = 758x0.416 if each factor is a three-significant-figure approxima-
tion.

Iog758= 2.8797

+ log0.416 = 9.6191-10

log N= 12.4988 - 1 0 = 2.4988.

Find the entry in the table closest to the mantissa 0.4988. It is 4983, which is
the log of 3.15. Hence, to three figures,

JV=3.15xl02 = 315.

Example 2
Find (0.814)5.

Iog0.814= 9.9106-10;

51og0.814 = 49.5530-50 = 9.5530-10 = Iog0.357

Hence, (0.814)5 = 0.357.

Example 3

Find \/l00 to three significant figures.

log 100 = 2.0000;

= 0.6667.

28 Hence, VTOO = 4.64.



All computations with log tables are approximate, because the entries are 0.14
themselves approximate. We should, therefore, really have used " « " rather Keeping track of units
than " = " throughout these computations. Remember also that products,
quotients, and powers should be given to no more significant figures than
the least accurate of the given numbers. If the numbers involved in a
computation are given to four figures, then with four-place log tables we can
interpolate to get a fourth digit in the result. Interpolation will be explained
in Chapter 1.

PROBLEMS

Compute, using the table of logs at the back of this book, assuming that all
numbers are given to three significant figures:

1.0.0791X8.17 2. ! ^ 3 .^39^ 4. (1.06)12

5. Give the values of the following without use of tables:
(a)log232 (b) log7 ^ (c)log381 (d) Iog42
(e) log.a4 (f) logaba

3 + log.,b3 (g) Iog464• Iog644
• (h)logqp-logpq

6. Solve each of the following equations for x without use of tables:
(a)log10x = - 3 (b)log5x = 2 ( c ) l o g ^ = - 3 (d)log2x = 0
(e) log. 1 = x (f) log,8 = - 3 (g) log. a2 = x

7. Simplify each of the following expressions:
(a) Iog10(x

2 -4)+21og10x -[Iog10(* -2)+log10.x;2]

(b) 3 ^ 2 + ^ 9 -

Iog612-log63
( ) Iog68

0.14 Keeping track of units

Operations in arithmetic and algebra are performed on numbers or on
letters that stand for numbers. If we drive 50 miles per hour for 3 hours, the
number of miles we travel is

50-3 = 150;
or if we drive v miles per hour for t hours, the number of miles we travel is

s = v-t.

Clearly, 50, 3, and 150 are numbers; also, v9 t, and s represent numbers.
It is often helpful in solving a problem to keep track of the units

associated with the numbers. We can do this by writing a schematic
"equation" in the units and then putting in the appropriate numbers. For
example, if we write miles per hour as miles/hours, we have

miles
•: X hours = miles o q
hours ^ ̂



Prerequisites

(b)

(c)

Fig. 0-7

Fig. 0-8

30

to indicate the correct units. Then 50x3 = 150, the number of miles
traveled.

Similarly, if we travel 150 miles at a uniform speed of 50 miles per hour,
then to find the time for the trip, we write first the "equation" in the units:

miles
= hours; then -^r- = 3,

miles/hours 50

the number of hours.
Here is still another example. Suppose that in a certain period, heat from

the sun provides 75 calories per square inch on a field. What is the
total number of calories per acre? The schematic "equation" in the units
involved is

calories in.2 ft2 _ calories
in.2 ft2 a c r e a c r e

Then the result is

75-144-43,560 = 470,448,000,

the number of calories per acre.

PROBLEMS

1. (a) If the temperature in a room increases from 61° to 73° between 2
and 5 p.m., at what average rate does the temperature change during this
period? (b) If the average rate of increase of the temperature in a room is
2° per hour, by how much does the temperature change in 4 hr? (c) If the
average rate of increase of the temperature in a room is 3° per hour, how
long does it take the temperature to increase by 24°?

2. If there are 640 acres in a square mile, and 5280 ft in a mile, how many
square feet in an acre? How many square yards in an acre? If there are 5^
yards in a rod, how many square rods per acre?

3. If a cubic foot of water weighs 62.4 lb, how many cubic yards of water
weigh 1 ton (2000 lb)?

4. If a deck of cards is approximately \ in. thick, approximately how many
miles high would a stack of a billion cards be? (Assume, for the
approximation, that there are 50 cards in a deck, 10 in. in a foot, and
5000 ft in a mile.)

0.15 Mensuration formulas

Because all circles are similar to each other (have the same shape), the ratio
of the circumference of a circle to its diameter is the same for all circles;
that is, Cx/dx = C2/d2 in Figure 0-6. This constant ratio is designated by IT,
and its value is approximately 3.14159. Note that because TT is defined as the



ratio of two lengths, it is a "pure number" - it has no units associated with
it. Thus, C/d = 7r, or C = ird, or

C = 2flT,
where the radius, r, is half the diameter. In this equation, the right side
represents a length, and the left side does too.

The area (A units of length, squared) of a rectangle is given by

A = xy9

where x units of length and y units of length are the dimensions of the
rectangle (Figure 0-7a). The same formula applies to a parallelogram, with x
representing the base and y the altitude of the figure (Figure 0-7b). For a
triangle, the formula is

0.15
Mensuration formulas

where x represents the base and y the altitude. This can be seen from the
fact that two congruent triangles can be put together to form a parallelo-
gram (Figure 0-7c). In each of these three cases, the right side of the
equation is the product of two lengths (units of length, squared), and the left
side has the same units.

A trapezoid with bases xx and x2 and altitude y can be divided into two
triangles (Figure 0-8), one having area \xYy and the other having area \x2y.
Hence, the area, A, of the trapezoid is given by

A = %(xl + x2)y.

The areas of other polygons can be found by dividing the figures into
triangles (Figure 0-9).

Fig. 0-9 Fig. 0-10

The area of a circle (Figure 0-10) is given by

A = irr2.
Note that the units of each side of this equation are (length)2.

A prism (Figure 0-lla) and a cylinder (Figure 0-llb) have the same
formula for volume (Vunits of length, cubed):

V= (area of base) Xheight.

It makes no difference how many sides there are in the polygons forming the
lower and upper bases of the prism, and the cylinder can be thought of as a
prism whose bases are polygons with an infinite number of sides. Note that
the units of both sides of the equation for the volume are (length)3.

Fig. 0-11

31



Prerequisites

(a) A

(b)

Fig. 0-12

Fig. 0-13

Important special cases of this volume formula are illustrated in Figure
0-12, where part (a) shows a rectangular box, whose volume is given by

Vbox = (area of base)-z = xyz\

Figure 0-12(b) shows a right circular cylinder (bases are circles, and genera-
tors are perpendicular to the bases). The volume is given by V = (area of
base)-/*, or

y cylinder irr2h.

The formula for the surface area of the rectangular box is clearly

surface area of rectangular box = 2xy + 2xz + 2yz.

The formula for the lateral surface area of the right circular cylinder
(Figure 0-13) can be derived by visualizing the cylinder as formed from
paper, cutting it along a generator, and unrolling the paper to form a
rectangle of dimensions 2T7T and h. Hence,

lateral surface area of cylinder = lirrh.

The total surface area (including the top and bottom of the cylinder) is
given by

total surface area of cylinder = Inrrh -\-2irr2.

Note that the units in both these area formulas are (length)2.
A pyramid (Figure 0-14a) and a cone (Figure 0-14b) have the same

formula for volume:

V = \ (area of base) X height,

= \ volume of corresponding prism or cylinder.

Fig. 0-14

For the special case of a right circular cone (Figure 0-14c),

vco^ = W2h.

Again, the units in these volume formulas are (length)3.
Finally, for a sphere (Figure 0-15), the surface area is

and the volume is
^sphere

^ s p h e r e " 3



Functional
relationships

1.1 Introduction

Mathematics has traditionally been divided into three branches: algebra,
geometry, and analysis. The first two of these are somewhat familiar to you
from earlier courses; analysis may be briefly described as the branch of
mathematics dealing with limiting processes. The term calculus is applied to
the beginning portions of analysis.

You will recognize immediately that the three branches overlap. Your
experience with graphs, for example, involved a certain blending of geomet-
rical and algebraic ideas. The definition of the circumference of a circle, in
terms of the perimeters of polygons with ever-increasing numbers of sides
(Figure 1-1), exemplifies the necessary application of notions from analysis
to topics in geometry. Similarly, the algebraic-appearing expression S =
1+2 + 4 + 8 + 1^+ *•* (where "• • • " means "continue indefinitely") de- Fig. l-l
pends for its very meaning on the concept of limit, as does the equation
i = 0.3333

This course will deal, to some extent, with all three branches, but
principal emphasis will be placed on calculus.

Problem 1
What do you think is an appropriate value of SI Here is an argument
justifying the answer: What is the sum of the first two terms on the right?
The first three terms? The first four terms? In each case, what is the
difference between 2 and the sum? Can you continue the argument?

1.2 An example

We can obtain some indication of the subject matter and the type of
problems to be studied by considering the following example. A colony of a
certain bacterial strain is observed in a petri dish over a number of hours. In
particular, the size of the colony - measured as the area (in square 3 3



1
Functional relationships

Table

t

0

1

2
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4
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A

4.4

6.8

10.2

14.4

19.2

24.2

28.6

32.2

34.8

36.7

38.0

millimeters) that it occupies on the surface of the nutrient medium - is
recorded at the end of each hour after the start of the experiment. At the
beginning, the size of the colony is 4.4 mm2, and for various values of t
(hours after the start), the area A (mm2) is shown in Table 1-1.

Problem 1
Before reading further, answer these questions: (a) What interesting or
useful information can be obtained from this table? (b) What further
information about the size of the colony would be significant?

There are several basic questions that are suggested by Table 1-1.
I. How does A vary with /? That is, what values of A correspond to values

of t that do not appear in the table? What happens to A after t = 10?
II. How fast does A change with tl That is, what is the average rate of

increase of A in various time intervals? What is the rate of increase of A at
various instants?

III. Is there a maximum value of A! Or, if A does not attain a maximum
value, is there a value that A does not exceed? (Such a value is called an
upper bound of A.) Is there a minimum] A lower bound!.

These questions have both mathematical and scientific importance. It is
often necessary to interpolate between known values to determine how a
quantity behaves. In this instance it is particularly desirable to be able also
to extrapolate beyond tabulated values to predict how the bacterial colony
will behave in the future. In this connection, the rate of increase of A is
significant: In the first hour the area increases by 2.4 mm2; in the fifth hour
it increases by 5.0 mm2; in the tenth hour it increases by 1.3 mm2. In other
words, after a period during which the rate of change of A grows to be quite
large, we see that the rate of change " tapers off," leading us to predict that
A probably will never exceed 40 or so. (In some situations of population
growth, this tapering off in rate of increase might result from exhaustion of
the food supply; in this case, it is probably a consequence of the inhibiting
effect of the accumulation of metabolites, the chemical products of the
growth activity.)

We shall devote the remainder of this chapter to the foregoing question I
and its mathematical ramifications. The remaining questions will be treated
in subsequent chapters.

34

1.3 Variation of one quantity with another;
graphical interpolation

Graphing is an appealing means of displaying the relationship between two
quantities, because we can literally see what is going on. As in Figure 1-2,
we choose an appropriate scale on each of two perpendicular lines and



proceed to plot the pairs of numbers in Table 1-1, finally assuming that the
variation of A with / is represented by a smooth curve through these points.

Some practical hints on sketching: Turn the paper, if necessary, to keep
your hand on the concave side of the curve; sketch relatively short arcs at
first, with light pencil strokes; then "fair in" the entire curve to obtain a
smooth curve. For increased accuracy, draw as large a graph as practicable.

We can now interpolate from the graph, obtaining such results as the
following: If t =1.7, A is approximately 9.0; if / = 4.7, A is approximately
22.8; if A = 29.5, t is approximately 6.3. We can also extrapolate beyond the
points in the table (see the dotted portion of the graph) to estimate that if
t =10.3, A is approximately 38.3; if / =11.0, A is approximately 38.8.

Problem 1
What is your feeling about the accuracy, in general, of such extrapolation as
compared with interpolation? Can you give reasons for that feeling?

The assumption " that the variation of A with t is represented by a smooth
curve" through the points obtained from the table has far-reaching theoreti-
cal and practical importance. After all, the only explicit information we have
is contained in the pairs of numbers in Table 1-1. Anything more comes
from knowledge of or guesses about the behavior of A. Is there a value of A
corresponding to every / between 0 and 10? Suppose that we select any real
number, R, between the smallest and largest values of A in the table (4.4
and 38.0). Is there some time at which the value of A equals Rl We are
answering yes to both these questions when we draw a smooth curve.

Problem 2
Suppose that a table gives the number of undergraduates enrolled in your
school at various times. Would it make sense to draw a smooth curve
through the points plotted from the table? Discuss.

Problem 3
For data like those of Table 1-1, some people tend to join pairs of adjacent
points by straight-line segments rather than by a smooth curve. What would
this imply about the variation?

You should realize that there is no single smooth curve through a finite set
of points - indeed, there are always infinitely many such curves - so we
cannot expect a unique result. We may make serious mistakes if we have
insufficient data. For example, plotting y, the number of counts per minute
of protons and electrons, against x, the number of thousands of kilo-
meters from the earth at which the radiation is measured, gives rise to Fig-
ure l-3(a), which might be extended to the smooth graph shown in Figure
l-3(b). Further data, however, show the situation actually to be as in Figure

1.3
Variation of one

quantity with another

.40

6
f (hr)

10

Fig. 1-2
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l-3(c). The existence of a peak between 3000 and 4000 km from the earth
(the Van Allen belt) is unsuspected from the five points plotted in Figure

Table 1-2

0
1

2

3
4

5
6

Table

t

0
1

2
3
4

5

6

y

48

120

160
168

144

88
0

1-3

V

60
38.2
16.4

-5 .5

-27.3
-49.1
-70.9
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PROBLEMS

o 4. A toy rocket at the edge of a flat roof 48 ft above the ground is propelled
vertically upward by a compressed spring that gives it an initial velocity
of 60 mph. The rocket will reach a height of y ft in t seconds, as shown in
Table 1-2 and will hit the ground (provided it just misses the roof on the
way down) when t = 6. Choose a scale on each of two perpendicular
lines, plot the points of Table 1-2, sketch a smooth curve through them,
and estimate
(a) y, corresponding to t =1.4;
(b) y, corresponding to t = 3.3;
(c) t, corresponding to y = 144 (just one answer?);
(d) the number t for which the rocket is highest, and what the maximum

height is.
Explain why a smooth graph of the data in Table 1-2 is justified.
Table 1-3 shows the velocity (v mph) of the rocket at time t (sec).

Negative values mean that the rocket is moving downward.
(e) Plot the points corresponding to this table and sketch a smooth curve

through them.
(f) From your graph, estimate the number t corresponding to v = 0.
(g) Relate your answers to (d) and (f), and note the relationship of zero

velocity to maximum height.



o 5. The temperature (T° Celsius) of a pan of water varies with the time (/
min) after it has been put on the stove, as in Table 1-4.
(a) Plot a graph to show how T varies with t.
(b) What T corresponds to t = 8? To t = 11?
(c) What t9s correspond to 7 = 100? (Try to represent all of them.)
(d) If the table had stopped with the pair (15,94), what value of T would

you have extrapolated for t = 20?
(e) What physical principles are involved in the variation exhibited in

Table 1-4? How did you apply them in drawing the graph in the
interval f =15 to / = 20?

* 6. Try to represent the variation in Problem 5 by means of one or more
formulas.

1.4 More on graphing, interpolation, and extrapolation

In some instances there may be no significance to values intermediate to
those listed in a table. Consider, for example, the number (N) of rooms at
various prices (p dollars) in a city hotel. The values in a table might be
plotted to give the points shown in Figure 1-4, but there would be no
significance to a smooth curve drawn through these points. In such cases we
sometimes join the points by straight-line segments to carry the eye from
point to point. Indeed, it is likely that the information about numbers of
rooms at various prices might be pictured in a different way, such as in a bar
graph (Figure 1-4').

It is obvious that drawing a figure and reading distances from it can give
only approximate results. But beyond that, if we are dealing with physical
measurements, there are inaccuracies inherent in the data, because any
measuring instrument can indicate only that a value lies within a certain
interval. For this reason, plotting the tabulated values is unlikely to give
points all lying neatly on a smooth curve (as in Figure 1-2), but more likely
clustering near such a curve. What curve to draw, then, is a matter of
judgment, and of knowledge of the quantity being studied. In particular, if
the points seem to be reasonably close to a straight line, and especially if we
have a theoretical reason for expecting one, we probably will draw a straight
line with some points on each side of it, not necessarily through any.

Data based on counting or arithmetic processes (as for Figure 1-4) are not
subject to the same kind of experimental error, but of course mistakes can
be made. In any case, if one pair of values deviates markedly from the
pattern suggested by the others, we can suspect a gross error. For example,
if in Table 1-1 the pair t = 59A = 27.2 had occurred, we probably would
have discarded it. However, the pair might be correct, indicating some
unexpected phenomenon. Here the insight (and luck!) of the investigator
plays a role. Remember Figure 1-3.

1.4
More on graphing

Table 1-4

t

0
5
10
15
20
25
30

T

49
64

79
94
100
100
100

80

60

40

20 \

28 32 36 40 44 48 52

Fig. 1-4

20
28

62 54

28 32 36 40 44 48 52

Fig. 1-4'
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1
Functional relationships

Table 1-5

t N

0 2.5
5 4.0

10 6.5
15 10.4
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A principal concern of human beings in general, and of business people
in particular, is to attempt to predict the future. Hence, extrapolation from
sets of data is of great interest, but often unreliable, on account of
unforeseen factors that keep things from going on as they did in the past.
This is illustrated by the following problem.

Problem 1
The number of overseas telephone calls originating in the United States (N
million per year) varied with the time (t years after 1950) as in Table 1-5.
Plot these data and extrapolate from the graph to get N for 1970 and for
1975. Also interpolate from the graph to find when N equaled 8.

The results of your interpolation are doubtless in good agreement with
the historical situation, but the predictions are far from the mark. From the
graph, you probably read N as about 16.6 in 1970 and about 26.6 in 1975.
But in 1970, N was actually 21, and by 1972, N was already 45 (New York
Times, June 9, 1974, p. 6E).

Problem 2
Can you suggest an explanation for this large discrepancy between predic-
tion and actuality?

The following amusing example may be instructive.
Rate of industrialization. Buckminster Fuller, in World magazine of July 3,

1973, made the observations shown in Table 1-6. On the basis of the table,
he predicted in 1947 that China (4) would industrialize in 25 years - which,
he says, happened. When he wrote the magazine article, he predicted that
India, Africa, and South America (5) would be industrialized by 1985 (i.e.,
in 12^ years). His argument was that each geographical area builds on the
know-how of predecessors, so as to lead to ever shorter time intervals for
industrialization.

Roderick L. Hall, in a letter to World magazine, published in the issue of
August 28, 1973, with tongue somewhat in cheek, made the observations
shown in Figure 1-5. Observing that these points lie nearly on a straight
line, he extrapolated to conclude that "by waiting until the year 2000,
nations will be developing overnight - literally." In other words, he sug-
gested that the date of beginning of industrialization is of prime importance,
whereas Fuller put his main focus on the number of areas that have already
been industrialized. Clearly, there are many other factors that also play
roles.

Note, by the way, the plot of Fuller's data in Figure 1-6. This "die-away"
curve never reaches the horizontal axis, although, if there were enough new
geographical areas to "develop," the time interval for the later ones would
become very short, if not literally "overnight." In this case, there is no



Table 1-6

/: Interval from beginning of
significant industrialization

A: Geographical area to achievement of "full" industrialization

(1) Europe 200 years
(2) United States 100 years
(3) Russia 50 years

1.4
More on graphing

/(yr)
200--

100"

Europe

Russia * China

1600 1700 1800 1900 2000 D (yr)

Fig. 1-5

200-
years

100 -

Fig. 1-6

( l ) c (2) (3) . (4) (5). ..
Europe U.S. Russia China India

Table 1-7

A: Geographical
area

D: Date of
beginning of
significant industry

(1) Europe
(2) U.S.
(3) Russia
(4) China

1670
1835
1917
1947

200 (i.e., full industrialization by 1870)
100 (i.e., full industrialization by 1935)
50 (i.e., full industrialization by 1967)
25 (i.e., full industrialization by 1972)
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1
Functional relationships
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time (yr)

Fig. 1-7 Predictions made for the sub-
sidence at Long Beach, California,
associated with oil field pumping in
the Wilmington oil fields.
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Fig. 1-8

Table

0
1
2
3
4
5
6
7

1-8

L

0.5
2.5
4.3
5.9
7.3
8.5
9.5

10.3
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significance to values of A other than 1,2,3,4,...; there is no area " between"
Europe and the United States.

We have here a highly questionable use of mathematics. Building a table
of pairs of numbers in a meaningful way is the first step in applying
mathematics to a particular problem. One may ask if either Fuller's serious
approach or Hall's facetious treatment does this.

Here are two dramatic examples of the difficulties associated with im-
portant problems of prediction. Figure 1-7, from an article entitled "Subsi-
dence of Venice: Predictive Difficulties" {Science, September 27, 1974, p.
1185), shows the large differences between various predictions of subsidence
at Long Beach, Calif, (several dotted curves) and the much greater actual
subsidence there (solid curve).

Figure 1-8, from an article entitled "Stratospheric Ozone Destruction by
Man-Made Chlorofluormethanes" {Science, September 27, 1974, p. 1165),
shows the enormous differences in the predictions given by three different
models of the destruction of the protective ozone layer because of widespread
use of aerosol propellants.

PROBLEMS

o 3. During the spring runoff, the levels (L ft) of the Connecticut River above
a certain stage at various times {t hr) after midnight Sunday were
recorded, as in Table 1-8. Plot the points given in this table, draw a
smooth graph through the points, and estimate when the river will crest
and what the maximum L will be.

4. The following tabulation shows the world's record for the mile run at
various dates. Plot these data and discuss reasonable and not-so-reason-
able extrapolations from them.

Date 1913 1923 1933 1943 1954 1962 1967 1975
Time 4:14.4 4:10.4 4:07.6 4:02.6 3:58.0 3:54.4 3:51.1 3:49.4

(See "With Mile Mark Below 3:50, Prospect of a 3:40 Is Raised," by
James O. Dunaway, on p. 6 of the Sports Section of the New York Times,
August 17, 1975. See also "The First 4-Minute Mile, 25 Years Later," on
p. 1 of the Sports Section of the same paper, May 6, 1979.)

5. The pressure {p lb/in.2) in a pump cylinder was read from a gauge at
hourly intervals, giving Table 1-9. One of the values for p seems to be in
error. Find it by drawing a graph, and correct the error.

6. The rate of flow {v cm/sec) in a blood vessel was found to vary with the
distance {x mm) from the center of the vessel, as in Table 1-10. Plot the
points corresponding to this table, draw the most reasonable smooth
graph through these points, and use the graph to estimate the value of x
at which v = 2.2.



* 7. Find a formula for v in terms of x corresponding to the graph you drew
in Problem 6.

o 8. A sausage manufacturer has facilities for producing a limited quantity of
specialty smoked sausage. There is a fixed daily cost of the operation of
$128, whether or not any sausage is made. Beyond that, the costs rise
with the output, mainly because of raw material, energy, and labor costs.
By carefully calculating and averaging costs over a number of days of
operations at a given output level, the manufacturer determines that the
total daily operating expense E (in dollars) corresponding to an output x
(in pounds) is as given in Table 1-11. Draw a graph of these data and a
smooth curve indicating the value of E for each x between 0 and 100.
Extend this curve in order to estimate E corresponding to JC =120 and
x =140. Would you believe, on the basis either of Table 1-11 or of the
nature of the manufacturing process, that there is an upper bound to the
value of El

* 9. Assume that the numbers of overseas calls (N million per year) varied
with the time (t years after 1950) as in Table 1-12. Obtain a reasonable
formula for this variation.

1.5 Linear interpolation

A straight line is characterized by the fact that it rises (or falls) at the same
rate everywhere; in other words, corresponding changes in the two quanti-
ties represented are proportional. This is shown geometrically in Figure 1-9.
If P, r, and R are three points on a straight line, if PQ is parallel to the x
axis, and if ST and QR are parallel to the y axis, then triangles PST and
PQR are similar. Hence, corresponding sides are proportional, so PS/PQ =
ST/QR.

Suppose that P and R are obtained from tabulated values as indicated

X

3 'il
5

y

*}ST
6

2

and that we want to find>> for x = 3. We have PS = 3 - 2 = 1, PQ = 5 - 2 = 3,
QR = 6-4 = 2. Then \ = ST/2, whence 3 S T = 2 , and ST = f. Hence,
VT=VS + ST=4+\ = 1£. Clearly the computation for this interpolation
could have been done without drawing the line at all.

For a nonlinear relation, in an interval where the graph is nearly straight,
linear interpolation (i.e., interpolating as if the graph were really straight)
may give a satisfactory approximation. For example, in Table 1-1, to find A

1.5
Linear interpolation

Table 1-9

Table 1-11

Table 1-10

0
1
2

3
4
5

6
7
8

60.1
29.8
19.9
15.1
12.9
10.1

8.6
7.5
6.7

0
0.2
0.4

0.6
0.8
1.0
1.2
1.4
1.6

4.01
3.61
3.18
2.82
2.40
2.01
1.58
1.19
0.81

Table 1-12

/ N

0
20
40

60

80
100

128
180
225

260
290
310

0
5
10

15

20

4
6
9

13.5
20.25

1 2 3

Fig. 1-9
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Functional relationships
for t =1.7, we proceed as follows: The relevant portion of Table 1-1 reads

and we write

We argue that

t

1
2

A

6.8
10.2

10.2

0.7 A-6.S
1 ~ 3.4

3.4

This leads to A = 9.18, which we round to 9.2, because the tabulated values
are themselves measurements rounded to the nearest tenth.

12

10.2

9

6.8

6

3

-

jjtyj.
/

/

S Q

0 1

Fig. MO

1.7 2

Problem 1
Do the algebra and arithmetic that result in this value of A.

Problem 2
In this case, the interpolated value, 9.2, is greater than 9.0, the result
obtained by graphical interpolation in Section 1.3. Explain by reference to
the graph (Figure 1-10) why this should be expected.

Similarly, but working the other way, we estimate the value of t corre-
sponding to A = 29.5 as follows: The relevant portion of Table 1-1 reads

t

6
1

A

28.6
32.2

and we write

t

1 '~ 6 { /
7

A

3.6

so

t-6
1 3.6 4

42 Hence, t = 6.25, which we round to 6.3.



Problem 3
Once again, do the algebra and the arithmetic.

1.5
Linear interpolation

Problem 4
Figure 1-11 shows a portion of Figure 1-2, the graph corresponding to Table
ITI. IS the result we have found by linear interpolation (t = 6.3) larger or
smaller than the value for t we would find from the smooth graph?

It is difficult to know how accurate the results of linear interpolation are.
One needs to keep in mind that the approximation to the true value will be
good only if the graph is "nearly straight" in the interval used. Surely this is
more likely to be true in small intervals than in large. The method is
particularly useful in tables of roots, logarithms, trigonometric functions,
and the like, where values are given at small intervals, and where computa-
tion of the " true" value is not feasible.

PROBLEMS

5. Use linear interpolation with Table 1-1, 1.2 to estimate the value of
(a) A, corresponding to / = 8.3,
(b) r, corresponding to A =18.

6. Use linear interpolation with Table 1-2, 1.3, to estimate the value of
(a) y, corresponding to / =1.4,
(b) y, corresponding to / = 3.3 (keep your plus and minus signs straight!),
(c) /, corresponding to y = 144 (just one answer?).
Compare with your graphical results in Problem 4, 1.3. Which do you
think are more reliable?

7. Use linear interpolation with these data (taken from a table of cube
roots) to estimate

(a)

(b)

(c) x, if /x = 2.17.

X

10.2

10.3

10.4

2.1687

2.1758

2.1828

Use linear interpolation with these data (taken from a table of common
logarithms) to estimate

log*

(a)
(b)
(c)

Iog25.59,
Iog25.64,
JC, if log x = 1.407.

25.5
25.6
25.7

1.40654
1.40824
1.40993

(>hr)

Fig. 1-11
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Functional relationships

Table
t

1
2
3
4

1-13
D

186
372
558
744

9. The distance (D thousand miles) of a light signal from its source after t
sec is given in Table 1-13. What value of D corresponds to t = 2.8? Do
you have any hesitancy about using linear interpolation in this case?

10. Make a sketch similar to Figure 1-10 of the "top" portion of Figure 1-2
with P the point for t = 9,R the point for t = 10, and T the point on PR
produced for which f=10.3. With this sketch as a guide, use linear
extrapolation to obtain an estimate of the value of A corresponding to
f =10.3. Compare this estimate with the estimate from graphical ex-
trapolation in Section 1.3.

11. As in Problem 10, use linear extrapolation with Table 1-8, 1.4, to obtain
an estimate of the value of L corresponding to t = 9.7. Compare this
estimate with your answer to Problem 3, 1.4.

1.6 Relations expressed by formulas

A formula that expresses the variation of one quantity with another gives
theoretically complete information about that variation. If the formula is
not too complicated, we can dispense with graphs, methods of approximate
interpolation, and so forth, and work only with the formula. On the other
hand, if we want to make the relationship "graphic," we can get as extensive
a table as we want by use of the formula. It may be difficult to find a
formula to fit given data, especially in the social and life sciences, but it is
usually worthwhile to try.

Example 1
Variation expressed by a polynomial formula

In the case of the rocket in Problem 4, 1.3, physical principles (which we
shall discuss later) lead to the equation

(1)

Problem 1
Check that this formula does indeed yield Table 1-2, 1.3.

Now interpolation is straightforward:

at f = 1.4, >>=-16(1.4)2 + 88(1.4)4-48 =139.84.

44

Problem 2
Compare this value with those obtained in Problem 4(a), 1.3, and Problem
6(a), 1.5, and explain any differences.

Equation (1) suggests the possibility of considering all positive and
negative numbers, and zero, as values of /. But in our problem, t was



restricted: The rocket began its flight at / = 0, and it hit the ground at / = 6.
Thus, the complete formula is

y = - 1 6 / 2 + 8 8 / + 4 8 , 0 < / < 6 . (2)

This can be put, "y is given by the equation y = -16 / 2 +88/ +48, with /
taking on all values between 0 and 6, both 0 and 6 included."

The right side of equation (1) is called a quadratic polynomial in /. The
general quadratic (i.e., second-degree) polynomial in x can be written

y = ax2 + bx + c, with a # 0.

The general linear (first-degree) polynomial is

ax + b, withtf#0;

the general cubic (third-degree) polynomial is

ax3 + bx2 + cx + d, with 0=^0, etc.
The general polynomial of the nth degree is

where an, an_v- • -,al9 a0 are constants, and an =£ 0.
Variation that can be expressed through a polynomial formula can be

thoroughly analyzed, as we shall see later.

Example 2
Variation given by different formulas in different regions of the independent
variable

In Problem 5, 1.3, the graph of Table 1-4 perhaps looks like Figure 1-12
("perhaps," because the table gives no information about the crucial period
between /=15 and / = 20). If the graph is correct, it is clear that its
horizontal section can be represented by T = 100. For the sloping portion of
the graph, we note that T increases by 15 for each increase of 5 in /. Because
we are assuming a uniform rate of increase for T, this implies that T
increases by 3 for each increase of 1 in /. Putting this result together with the
observation that T=49 at / = 0, we conclude that 7 = 3 / + 4 9 for the
sloping portion of the graph.

To find the value of / corresponding to the point where the sloping and
horizontal segments join, we set 3/ +49 =100, giving / =17. Thus, we have
the following formula for the graph:

(3)r = / 3 / + 4 9 , 0 < / <
\1OO, 17</<30.

It makes no essential difference whether the value 17 is assigned to / with
the first equation or the second, because both expressions yield the value
100 for/=17.

In either case, we use two formulas to describe how T varies with /. It
might be possible to find a single formula to do the job, but it probably

1.6
Relations expressed

by formulas
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1 would be more cumbersome and might not exhibit the variation as clearly.
Functional relationships It is not uncommon to use more than one equation to express variation.

Example 3
Exponential variation

An important type of variation is illustrated by the growth of overseas
telephone calls with time, as set out in Problem 1 and its accompanying
Table 1-5, 1.4. We observe that at t = 0, N = 2.5; at the end of one 5-year
period, N = 4.0 = (2.5)(1.6); at the end of two 5-year periods, N = 6.5 =
(approx.)(4.0)(1.6)=(2.5)(1.6)2; and at the end of three 5-year periods,
N = 10.4 = 6.5(1.6) = (4.0)(1.6)2 = (2.5)(1.6)3. If we let x equal the number
of 5-year periods elapsed since 1950, we then have

TV=(2.5)(1.6)*, for JC =1,2,3.

Indeed, because a0 =1 for all a # 0 (if this seems unfamiliar, see Chapter
0), the formula gives, for / = 0, N = (2.5)(1.6)° = 2.5, which, of course, is
also in agreement with the table.

If the variation continued in this fashion, we would have by the end of
the twentieth century (f = 50, or JC=10), N = (2.5)(1.6)10, which is ap-
proximately 275. As was remarked after Problem 1,1.4, TV grows much more
rapidly than this prediction (because of the price reduction permitted by the
introduction of communications satellites in 1965), and it is estimated that
by 1985 (long before the end of the twentieth century) TV will be approxi-
mately 2000; that is, about 2 billion overseas telephone calls will originate in
the United States in that year. But even the more modest prediction of our
formula gives, for the end of the twenty-first century (t =150, or x = 30),
7V=(2.5)(1.6)30, which is approximately 3,500,000. This means 3.5 trillion
overseas telephone calls that year!

Such extraordinary growth is typical of exponential functions - those
given by formulas like

I y = c-bx.

Whether or not the formula N = (2.5)(1.6)* is a good predictor, it has a
clear mathematical meaning for all nonnegative integral (whole-number)
values of x. We can indicate this symbolically by writing

The formula is also meaningful for many other values of x. For example, for

(By use of a calculator, or by logarithms, we find this number to be
approximately 3.02, which, incidentally, is probably a good estimate of the
number of millions of overseas telephone calls in 1952 - compare this with

4 6 your answer to Problem 1, 1.4.)



An interpretation similar to that just given for x = f is possible for any
rational x, but if x is an irrational number, like v^ or TT, the definition of
(1.6)* requires the concept of limit, which comes later.

Example 4
Straight lines and linear equations

The relationship between a temperature on the Celsius scale (C degrees)
and the same temperature on the Fahrenheit scale (F degrees) is shown in
Table 1-14. If we plot these data, the points appear to lie on a straight line
(Figure 1-13). Assuming that they do, what is the formula expressing F in
terms of C?

We shall solve the problem in two ways. First, we follow the method used
in finding the equation corresponding to the sloping line in the example of
the heated pan of water (Example 2 in this section): We observe that, for
every increase of 10 in C there is an increase of 18 in F, or, because the rate
of increase is uniform, an increase of y§ = § in F for each increase of 1 in C.
Moreover, at C = 0, F= 32. Putting these statements together gives F = § C
+ 32.

The second method consists in noting that, for straight-line variation (a
uniform rate of change), the formula must be of the type F= aC+ b, and
our problem is to determine the constants a and b. This can be done by
substituting any two pairs of values of C and F from the table into this
equation, say

50 =10^ + 6, and

Problem 3
Solve this pair of equations to obtain a = | , b = 32, thus obtaining the same
result as by the first method. Choose two other pairs from the table and
verify that they lead to the same values for a and b.

Example 5
The power law

If the relationship between two quantities, x and y9 is such that y is
proportional to x, then an equation expressing the relationship is y = kx, for
some constant k. If the value of y corresponding to some value of x is
known, we can determine k. Another phrase for this variation is "y varies as
x." Note that " varies as" implies a specific kind of variation, whereas the
phrase "j> varies with x" means simply that there is some relationship
(unspecified) between y and x.

Similarly, to say that y is proportional tox2
9ory varies as x2, is equivalent

to y = ex2, for some constant c. Likewise for any positive power of x. The
power of x does not have to be a whole number. For example, one of

1.6
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Table 1-14

c
-20
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F
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1 Kepler's laws states that the periods of revolution (T years) of our planets
Functional relationships are proportional to the § power of the semimajor axes (JC miles) of their

orbits (i.e., T=kx3/2).
Uy varies as the inverse (or reciprocal) of JC, the formula is y = k{\/x) =

k/x, and we say that y is inversely proportional to x. If y = A:/JC3, y is
inversely proportional to x3. Formulas of the type y = k/x2 (the "inverse
square law") describe variations that occur in many different contexts (e.g.,
in Newton's law of universal gravitation). By way of contrast with inverse
proportionality, and for the sake of emphasis, the formula y = ex2 is
sometimes phrased "y is directly proportional to JC2," or "y varies directly as
J C 2 . "

All the foregoing can be subsumed under the one formula

y = kxn

for some constants k and «, in which n can be any real number, positive or
negative (or even zero, but that doesn't give very interesting variation!). This
general formula, called the power law, appears in a host of applications.

For example, suppose that we know that the force of attraction (F dynes)
between any two particles with unlike electric charges varies inversely as the
square (second power) of the distance (JC cm) between them. This means that
F= k/x2 = k-x~2, for some k. If we know that, for two specific particles,
the force of attraction between them is 150 dynes when the particles are 2
cm apart, we can write 150 = A:/4, so k = 600, and the formula in this case
is F= 600/JC2. Thus, if these particles are placed 10 cm apart, F= 600/100
= 6 - the force of attraction is 6 dynes.

It should be noted that a formula is not always helpful in determining
values of one of two related quantities. In the problem of Section 1.5, for

example, we had delightfully compact equations: y=]fx, z = logx. These
equations are useful, but it is not simple to determine from them what
values of y or z correspond to certain values of JC. Hence, we often have to
resort to tables or other computational devices.

PROBLEMS

4. Use formula (2), 1.6, to determine the value (or values) of
(a) y corresponding to t = 2.8,
(b) y corresponding to / = 3.3,
(c) t corresponding to y = 144,
(d) t corresponding to y = 0,
(e) t corresponding to y = 169.
Compare your answers to (b), (c), and (e) with your graphical results in
Problem 4, 1.3. Also compare your answers to (b) and (c) with the

4g results of linear interpolation in Problem 6, 1.5.



5. (a) Would any of your answers in Problem 4 be changed if equation (1),
1.6, were used, with no restriction on values of /?
(b) Suggest a modification of the rocket flight experiment (Problem 4,
1.3) to make sense of a value of t less than 0 or greater than 6.

6. Find an equation of the straight line
(a) passing through (-1,4) and (3,12),
(b) passing through (5,1) and (13,-5),
(c) passing through (-6,7) and (0,7),
(d) passing through (0,0) and (1, c) for some constant c,
(e) passing through (— 2, — 3) and rising uniformly 2 units for every

increase of 1 unit horizontally,
(f) passing through (1,-1) and falling uniformly 3 units for every

increase of 4 units horizontally,
(g) passing through (-2,0) and (0,2),
(h) passing through (0,0) and rising uniformly f unit for every increase

of 1 unit horizontally,
(i) passing through (1,0) and rising uniformly a units for every increase

of b units horizontally, for some constants a and b with b ̂  0.
7. To help fix in mind the distinction between the power law and exponen-

tial functions, fill in Table 1-15. Use the entries of your table to sketch
smooth graphs of y = x2 and >> = 2X on the same set of axes.

8. Ralph Wreckless, European sportsman, drives so that his speedometer
always reads 10 kilometers per hour above the posted speed limit. He
does this on the basis of two assumptions: (/) His speedometer reads
high by 10% of the speedometer reading (e.g., when the speedometer
reads 70, he is actually traveling at 63 kph). (I'I) The police will not mind
if he travels a bit over the limit. Complete Table 1-16 using assumption
(0.
(a) Write a formula for E (kph), the excess of actual speed over the

posted limit, in terms of P, the posted limit, for all P from 0 to 200
inclusive.

(b) Draw a graph showing the relation of E to P.
(c) For what values of P is Wreckless law-abiding?

1.6
Relations expressed

by formulas

Table 1-15

0
1
2
2.5
3
4
5
6

10
- 1
- 2
- 3

Table 1-16

Posted speed limit

40

60

80

100

P

Speedometer
reading Actual speed

Excess of actual speed
over posted limit

49



T

42
48
53
60
67
72
79

n

1

33
50
82

105
128
158

1 (d) For what value of P from 0 to 200 inclusive is E a maximum?
Functional relationships (e) For what value of P from 0 to 200 inclusive is E a minimum?

9. Crickets chirp more often in warm weather than in cold. At each of
Table 1-17 various temperatures (T degrees Fahrenheit) the numbers of chirps are

counted for five separate 1-min periods and averaged to get the values n
in Table 1-17.
(a) Plot the points corresponding to this table and draw the graph

suggested by these points, with the understanding that there may be
slight inaccuracies in the counts.

(b) Find a formula that fits your graph.
(c) For what values of T do you think this formula may be valid?
(d) Solve the formula for T in terms of n. You now have a cricket

thermometer.
o 10. If a sum of P dollars is invested at 10% interest, it will increase to an

amount P + 0.10P =1.LP after 1 year.
(a) On the assumption that the whole amount is left to draw interest,

find the amount, A, after 2 years, after 3 years, and after 4 years.
(b) Find a formula for the amount A after n years, that is, for the

amount accrued by investing P dollars for n years at 10% interest
compounded annually.

(c) Draw a graph of the variation of A with «, on the assumption that if
you withdraw your money at any time during a year, you will
receive no interest for the period since the start of that year.

11. (a) Use Table 1-14 to derive a formula expressing any temperature (C)
on the Celsius scale in terms of the same temperature (F) on the
Fahrenheit scale,

(b) Verify your answer to part (a) by solving for C in the formula
F = fC + 32.

* 12. Because the form of the graph in Problem 3, 1.4, is similar to that of
Problem 4, 1.3, for which the formula is given in Example 1 of this
section, assume that the formula for L in terms of / is of the same type;
that is,

L = at2 + bt + c.

Use three pairs of values from Table 1-8 to determine a, b, and c. Verify
that this formula gives agreement with the other pairs of the table.

13. The cost ($C) per hour of operating a motorboat varies as the cube
(third power) of the speed (v knots), and C = 40 when v =12. Find the
formula.

14. At constant temperature, the volume (V cc) of gas in a cylinder is
inversely proportional to the pressure applied (p dynes/cm2). If V= 50
when p = 20, find the formula for V in terms of p.

15. The distance traveled (s m) by a stone dropped from some height above
the ground varies as the square of the time (t sec) since release. If



s = 1000 when t = 10, find a formula for s in terms of t. Make a table of
values for / = 0, 2, 4, 6, 8, and 10, and sketch a reasonable graph
showing the variation of s with t for all / between 0 and 10 inclusive.
Interpolate in your table to approximate the value of s for t = 4.5. By
reference to your graph, explain whether you think the result of this
interpolation is less than or greater than the "true" value of s. (Of
course, in this case, you could use your formula to obtain the value of s
corresponding to / = 4.5.)

16. Temperatures close to a heat lamp are high, and they fall off with
increasing distance from the lamp: The heat intensity (H calories per
second) at a point varies inversely as the square of the distance (JC cm)
of the point from the lamp. If for a certain heat lamp H = 45 at x = 4,
find a formula for H in terms of x. At what distance from this lamp
does H =20?

17. For an observer h ft above the surface of the sea, the distance to the
horizon (d miles) varies as the square root of /*, and d = 24.6 for
h = 400. Find a formula for d in terms of h.

* 18. Use geometry to demonstrate the validity of the first sentence in
Problem 17. (The statement is only approximately valid.)

19. The demand for a certain style of tennis shoe (D pairs) varies inversely
as the square root of the price ($p per pair), and D = 6000 at p =16.
Find a formula for D in terms of p. What, then, is the demand at/? = 9?
At p = 25? For what price would the demand be 10,000?

20. The demand for a certain type of lawn chair (D chairs) varies inversely
as the | power of the price ($ p per chair), and D = 6000 at p = 16. Find
a formula for D in terms of/?. What, then, is the demand atp = 9? At
p = 25? For what price would the demand be 48,000?

* 21. (a) Suppose that a quantity z varies with two others JC and y in such
fashion that for any fixed x, z is proportional to yn, and for any
fixed y, z is proportional to xm. Show that z = kxmyn, for some
constant k.

(b) The strength of a beam with rectangular cross section (Figure 1-14)
and fixed length is proportional to the product of its width (x) and
the square of its depth (y). How many times as strong is a beam
2x10 in. of a certain length if placed as in (i) rather than as in (ii)?
How many times as strong is the beam of (i) as a beam 4 X 4 in. of
the same length?

22. Average decreases in body functions with age. If various body functions
are calibrated as 100% at age 35, then on the average they decrease t
years later in accordance with Table 1-18. On the same axes, plot graphs
of the relationships of v, /?, and c to t, and find formulas for each of
these three body functions in terms of t.

23. In the United States, the amount of fertilizer used (JC kg per hectare of
arable land) and the average yield for all cereals (y tons per hectare)

1.6
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2 y

10

(i)

Fig. 1-14

10
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Table 1-18

Function

Velocity of nerve signal

transmission, v

Pumping efficiency of heart, p

Maximum breathing capacity, c

0

100

100

100

5

98.9

95.6

93.2

25

94.5

78

66

45

90

60

39

Table 1-19

1950

x 22

y 1.63

1963

50

2.70

Year

1966

60

2.96

1969

68

3.38

1974

86

3.87

Table 1-20

Mean

parental

income

Below 350

16,800

350-399

21,300

SAT average

400-449 450-549

23,200 25,900

550-599

27,400

600-649

28,900

650 +

31,100

Table 1-21

X

225

375

425

475

525

575

625

725

y

16,800

21,300

23,200

24,600

25,900

27,400

28,900

31,100
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were as shown in Table 1-19 ("The Natural History of Crop Yields,"
American Scientist, 68:390, 1980). Plot a graph of the relationship
between x and y, draw the straight line that seems a reasonable fit to
these points, and find the formula for y in terms of x for the straight
line.

24. In 1978 the average scores on SAT exams and the mean incomes of the
parents of the students who took the exams were as shown in Table
1-20. Let us take the midpoints of the ranges of the SAT scores as the
independent variable, JC, choosing the average of 100 and 350 as the
smallest value, and the average of 650 and 800 as the largest value. Let
us denote by y the mean parental income, so that the data are as shown
in Table 1-21. Plot a graph of the relationship between x and y, draw
the straight line that seems a reasonable fit to these points, and find the
formula for y in terms of x for this straight line.

C 25. Newton's law of universal gravitation states that the force of attraction
between any two particles is proportional to the product of their masses
and inversely proportional to the square of the distance between them.



The law also applies to spheres (such as the earth and the moon) if we
use the distance between their centers. The mass of the earth is 5.97 X1024

kg, the mass of the moon is 7.35 X1022 kg, and the average distance
between their centers is 384,403 km. The force of attraction between
these two bodies, when at average distance apart, is 1.98 XlO17 km-
kg/sec2. Use this information to find the constant of proportionality
(often called the "gravitational constant," G) in Newton's law.

1.7
Formulas {continued)

* 1.7 Formulas {continued)

A formula for our initial example - the variation with time of the area
covered by a colony of bacteria - is more difficult to obtain than those for
the examples of the preceding section.

We look at the kinds of formulas we have already met. Formulas of the
type A = at + b correspond to straight lines, but the graph in Figure 1-2 is
by no means straight, so this does not look hopeful. Exponential formulas,
like A = c • b\ grow more and more rapidly (or else decrease more and more
slowly), unlike the curve in Figure 1-2. Quadratic formulas, like A = at2 + bt
+ c, correspond to graphs (called parabolas) of the general shape indicated
in Figure 1-15, opening upward if a is positive, downward if a is negative.

Again, neither of these fits Figure 1-2, but to the left of about t = 4,
Figure 1-2 looks roughly like part of Figure l-15(i), and to the right, like
part of Figure l-15(ii). What we can do, then, is to approximate Figure 1-2
by joining parts of two parabolas in much the way we joined two line
segments in Figure 1-12.

Because our curve changes from "opening upward" to "opening down-
ward" when t is about 4, we choose to join the parabolas at that point. It
takes three equations to determine the three coefficients in a quadratic, so
we choose the pairs (0,4.4), (2,10.2), and (4,19.2) from Table 1-1 to
determine the first, and the pairs (4,19.2), (6,28.6), and (8,34.8) to de-
termine the second. Substituting in turn the first three pairs in

A = at1 + bt + c

gives three equations in the unknowns a, b, and c:

-li-
g. 1-2

(i)

(ii)

Fig. 1-15

Problem 1
Solve these equations to obtain a = 0.4, b = 2.1, and c = 4.4, so that the first
polynomial is 0.4/2 +2.1/ +4.4. 53
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Table

t

0
1
2

3
4
5
6
7
8
9
10

1-1'

4.4

6.8
10.2
14.4

19.2
24.2
28.6
32.2

34.8
36.7
38.0

A

4.4
6.9

10.2

14.3
19.2
24.3
28.6
32.1

34.8
36.7
37.8

Table

X

0
20
40
60
80
100

1-11

E

128
180
225
260
290
310
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Problem 2
In the same way, using the three pairs (4,19.2), (6,28.6), and (8,34.8),
determine the second polynomial to be -0.4/2 +8.7/ -9.2.

It is not to be expected that combination of the two polynomials will give
us A exactly, except for the five values of t for which we forced agreement.
To respect this distinction, let us call the new quantity A. Then our formula
reads

^ (0.4/2+2.1f+4.4, 0 < / < 4 ,
\ -0.4f2+8.7/-9.2, 4 < / < 1 0 .

Table 1-1', an enlargement of Table 1-1, indicates the success of our effort.
In only one case - that for / = 10 - does ^"differ from A by more than 0.1,
and then the difference is only 0.2, but one can guess that the curve for ^Tis
" topping out." We shall later learn a method that will show that breaches a
maximum value at t =10.875, and thereafter the values of A decrease. Thus,
our formula is not much good for extrapolation; but, for interpolation, it
does rather well.

You are likely to conclude, on the basis of the foregoing discussion, that
"curve fitting" is more art than science. There is, however, extensive
literature on the subject, making the process less a matter of trial than the
example in this section suggests, and providing a means of considerable
importance in making practical problems amenable to mathematical treat-
ment.

PROBLEMS

3. Calculate the values of A corresponding to / =1.7 and t = 4.7. How do
your results compare with the values of A we obtained by graphical
interpolation in Section 1.3?

4. Draw a graph showing the relationship of A to t.
5. Information additional to that provided by a table of data can simplify

the curve-fitting process. The sausage manufacturer in Problem 8, 1.4,
estimates a cost of $2.80 per pound of sausage, at least at low output
levels, in addition to the fixed cost of $128. A first approximation to the
daily operating expense would then be given by the formula

£ =128 + 2.8*.

(a) Calculate the values of E and of the errors, E — E, for each of the
values of x in Table 1-11, which is repeated here.

(b) Observe that E — E is given approximately by an expression of the
form kx2. Find k. (Keep your signs straight!)

(c) For the value of k found in part (b), calculate the values of
E = E + kx2 for each of the values of x in Table 1-11 and also for
x=120, 140, and 160.



(d) Draw a smooth curve showing the relation of E to x for 0 < x < 160.
(e) Discuss the appropriateness of £ as a substitute for E. Note

especially what starts to happen to E at / = 140. Is this realistic?

1.8
Relationships between

science and mathematics

1.8 Relationships between science and mathematics

Equation (2), 1.6, gives only an approximation to the actual physical
situation of the toy rocket. In the derivation of equation (2), the effects of
air friction were ignored; moreover, the coefficient of t2 ( —16) is related to
the acceleration due to the earth's gravitational attraction, and this varies
from place to place on the earth's surface and with the distance of an object
from the earth's center. We choose to "idealize" the experiment, describing
a situation that is admittedly not entirely realistic. To incorporate some of
the many minor factors into our mathematical formulation would make the
mathematics dreadfully complicated, and our simple approximation is suffi-
ciently precise for many practical purposes.

Likewise, careful observation of the heating of a pan of water (Example 2,
1.6), involving the recording of temperatures at many more times, especially
between t =15 and / = 20, might lead to Figure 1-12' as a modification of
Figure 1-12, because of a change in pressure above the surface of the water,
and so forth. But the graph of Figure 1-12 and the associated equations (3)
give reasonably good approximations.

The situation was described succinctly by Warren Weaver in the 1958
annual report of the Rockefeller Foundation:

Speaking roughly, one may say that the seventeenth, eighteenth, and
nineteenth centuries formed the period in which physical science
learned how to analyze two-variable problems. During that three
hundred years, science developed the experimental and analytical
techniques for handling problems in which one quantity - say, a gas
pressure - depends primarily upon a second quantity - say, the
volume of the gas. The essential character of these problems rests in
the fact that, at least under a significant range of circumstances, the
first quantity depends wholly upon the second quantity, and not upon
a large number of other factors. Or in any event, and to be somewhat
more precise, the behavior of the first quantity can be described with a
useful degree of accuracy by taking into account only its dependence
upon the second quantity, and by neglecting the minor influence of
other factors.

Much of the mathematics we shall study in this course had its origin in
situations in the physical, biological, and social sciences that could ade-
quately be treated as "two-variable problems." Often the mathematics
progressed to a life of its own, independent of the scientific problems for
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which it was developed. Some of the most attractive parts of our subject are
those that stemmed from general intellectual curiosity and then were found
to be useful in solving scientific problems. The constant interplay between
the practical needs of science and technology and the aesthetic satisfactions
of free inquiry gives mathematics a unique appeal.

Table

/

0
1

2
3
4
5
6

1-2

y

48
120
160
168
144
88
0

Table

t

0
5
10
15
20
25
30

1-4

T

49
64

79
94
100
100
100

56

1.9 Functions

Scientific " two-variable problems" usually begin, as in the preceding sec-
tions, with some statement of how one variable changes with another (see
question I, 1.2). The mathematical concept, function, is very useful in the
study of this topic. We shall complete this introduction to the question of
exhibiting variation by a discussion of this and related ideas.

In everyday language we make statements like these: "The area covered
by the bacterial colony is a function of the time." "The size of the wheat
crop is a function of the amount of rainfall." "The demand for a product is
a function of its selling price." There may be an intuitive feeling that
causation is involved in the last two statements, but surely not in the first.
Rather, what we have in mind in this case might be put as follows: "For
each number designating a time (in hours) after the beginning of the
experiment there corresponds just one number designating the area (in square
millimeters) covered by the bacterial colony."

In each of the examples in this chapter showing variation there is a set of
ordered pairs of numbers (obtainable from a table or a formula). Each pair
gives the value (only one) of a quantity (the dependent variable) correspond-
ing to a chosen value of another quantity (the independent variable). By
convention, in each ordered pair the value of the independent variable is
written first. Such a correspondence is called a function. The set of values of
the independent variable is called the domain of the function; the set of
values of the dependent variable is its range. The notion of correspondence
from the members of one set to those of another set is the central feature of
the mathematical definition of function.

A function is a correspondence from the members of one set
(the domain) to those of a second set (the range) in which with
each member of the domain is paired just one member of the
range.

For the toy rocket, the correspondence given by Table 1-2, repeated here,
specifies a function (call i t / ) in which the domain, Df, is {0,1,2,3,4,5,6}
and the range, Rf, is {48,120,160,168,144,88,0}, or, what is the same thing,
{0,48,88,120,144,160,168}. We say thaty is a "function of" t.

For the heating water in the pan, Table 1-4, repeated here, specifies a
function (call it w) with a domain Dw = {0,5,10,15,20,25,30} and range
RW = {49,64,79,94,100}. We say that T is a "function of" t.



Note that distinct members of the domain (e.g., 20, 25, and 30 in Dw) may
have the same correspondent in the range (e.g., 100). Note also that 100
need be listed only once as a member of Rw.

Interpolation and extrapolation are means of extending a function. Add-
ing one or more pairs to the table that defines a function Ĵ " defines a new
function that includes all the pairs of ̂ "and at least one new pair. Earlier we
extended Tables 1-2 and 1-4 by means of formulas. Here are those exam-
ples, set out in our new language:

As we saw in Example 1, 1.6, the values in Table 1-2 (the pairs of the
function/) satisfy

>>=-16*2+88/+48, 0 < f < 6 , (2)
which defines another function (call it F). The domain of F is the set of all
real numbers 0 to 6, both 0 and 6 included. It can be shown, by methods
that we shall learn later, that the maximum value of y is 169. (See Problem
4e, 1.6, for a hint of this.) Hence, the range of F is given by 0 < y < 169. We
have, then, a function, F, with a domain that includes that of f (DF D Df).
Moreover, for the members of Df9 both F and/determine the same pairings.
In such a case we say that F is an extension of/and that/is the restriction of
F to Df. The graph of F is seen as the curve in Figure 1-16, whereas the
graph of/consists of only the seven dots.

Similarly, for the heating pan of water, we saw in Example 2, 1.6, that
Table 1-4 (the pairs of the function w) satisfies the formulas

(3)

1.9
Functions

r = / 3 / + 4 9 , 0<
1100, 17<f<30.

These define another function (call it W). The domain, Dw, is 0 < t < 30,
the set of all real numbers between 0 and 30, both end points included. The
range, Rw, is 49 < T < 100, the set of all real numbers between 49 and 100,
both end points included. The function W is an extension of w, and w is the
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restriction of W to Dw. The graph of W consists of the two line segments in
Figure 1-12, whereas the graph of w is the set of seven dots.

If the relationship between two quantities is shown on a graph, it is easy
to decide whether a function is defined. For example, the correspondence
from — 2 < x < 2 to 0 < y <4 shown in Figure l-17(a) does define a func-
tion: Any vertical line (like the dotted lines of the sketch) meets the graph at
no more than one point - "with each member of the domain is paired just
one member of the range." On the other hand, the correspondence from
0 <x < 4 to —2<y<2 shown in Figure l-17(b) does not define a function:
Some vertical lines (like the dotted lines of the sketch) meet the graph at
more than one point.

PROBLEMS

1. If a function G is an extension of a function g, then DG contains Dg as a
proper part - all the members of Dg are found in DG, and DG has at least
one member not in Dg. What can you say about the relation between RG

and Rg - are all members of Rg necessarily in RG1 Are there necessarily
any other members of RG1 Give examples.

2. A table of ordered pairs of real numbers (x, y\ in which no x value
corresponds to two or more different y values, determines y as a function
of x. If we plot these pairs as points and then draw a curve through the
points, we are drawing a graph of an extension of the function. It is
unlikely that two people will draw exactly the same graph. Plot points for
each of the parts of Table 1-22. Sketch what seems to you an appropriate
curve through these points, and compare your results with those of a
classmate.

Table

X

0
0.50
1.0
1.5
2.0

1-22

(a)

y

0

0.50
0.25
0.75
0.50

X

0
1

2
3
4
5

(b)

y

0
0.84
0.91
0.14

-0.76
-0.96

(c)

X

0.6
1.2
1.8
2.4
3.0
3.6

y

4
8
8
12
12
16

X

10
20
30
40
50

(d)

y

1100
1200
1300
50
5
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3. In each of the following cases, consider the set of all ordered pairs (w, v)
in which u and v are related as indicated. Which cases determine y a s a
function of w? In those cases that are functions, describe the range.
(a) 3 « + 4 i ; = l , - 2 < w < 3 ,
(b) w2 + u2 = 25, - 5 < M < 5 ,



(C) 110=1, 1<W<1O, 1.10
(d) uv = - 1 , - 2 < u < - 0.01 or 0.01 < u < 2, Notation and
(e) uv - v = 3, 0 < u < 2, natural domains
(0 w3 = u, - 1 < W < 1 ,

(g) v = w2, 0 < M < 5,
(h) i; = ww, 0 < u < 2 (consider separately n = 1,2,3,...).

4. (a)-(h) For each of the parts of Problem 3, sketch two graphs of the
points (w, v) determined by the given equation and inequalities, the first
with the u axis horizontal and the v axis vertical, the second with the v
axis horizontal and the u axis vertical.

* 5. (a) If Q =15-(7 — 2JC)2, what is the maximum value of Q, and for what
x is the maximum Q attained? Is there a minimum value of Ql If so,
find it; if not, explain.

(b) If P = 20 + (x + 3)2, what is the minimum value of P, and for what x
is the minimum P attained? Is there a maximum value of P? If so,
find it; if not, explain.

(c) Use the ideas of parts (a) and (b) and the process of "completing the
square" to find the value of x corresponding to an extreme (maxi-
mum or minimum) value of R, if R equals
(i) J C 2 - 2 J C - 3 , (ii) - 4 x 2 + 4 . x - 5 ,

(iii) 48 + 88JC - 16x2, (iv) 3JC2 - 19.2x + 30.72.
(d) For each case in part (c) in which R = 0 for certain values of x, what

is the relationship of the value of x corresponding to an extreme
value of R and the values of x corresponding to R = 01 Show the
reasonableness of this result in terms of the graphs of the equations
for/?.

(e) Using the methods suggested in the foregoing numerical examples,
discuss the extreme value (or values) of Q = ax2 + bx + c. (Hint: It
will be convenient to consider separately the cases a > 0, a = 0, and
a<0.)

1.10 Further discussion of functions: notation and
natural domains

The correspondence defining a function is often given by one or more
equations. If / i s the function defined by the equation y = x2, this might be
written

f:y = x\

Another notation, perhaps more precise, is

/ : x -> JC2,

which could be read " the function / defined by the correspondence from a 5 9



1 number to its square." In both cases, of course, the domain and range of /
Functional relationships should be specified, if they are not obvious from the context. It would be

natural to specify the domain here as all real numbers, in which case the
range would be the set of all nonnegative real numbers.

Another notation, particularly useful for the calculus, is

which is read "/ of x equals JC2." Actually, f(x) is the member of Rf

corresponding to x as a member of Df. It is common to speak of the
"function, / (*) ," and although this is not really correct - / i s the function,
and/(x) is a member of its range - no confusion results. The notation/(2),
for example, means " the value of the function / for x = 2."

Here is some practice with the notation for this function: /(3) = 32 = 9;
(3+ hf = 9 + 6/* + h\ f(a-h)

In some cases, the expression or expressions used to define a function
automatically restrict the possible domain. Suppose, for example, that
f(x) = ]/l5 — x2. If we consider only real numbers (as we shall always do
unless otherwise stated), then x must belong to the interval — 5 < x < 5 .
Thus, — 5 < x < 5 is the largest possible domain for the function / ; we call
this the natural domain of the function. If no domain is specified, the natural
domain will be understood.

Sometimes the natural domain of a function is the set of all real numbers.
For instance, in the problem of the toy rocket, where y = —16/2 + 88/ + 48,
there is no bound for / so far as mathematics is concerned - / can assume
any real value. The restriction, 0 < / < 6, comes from the physical applica-
tion.

Functions can be built as combinations of other functions. For example,
if/(;c) = . x 2 - l andg(x) = l / x , then

= * 2 - l + - , =r(x) , say ,

~* i x / * > ~~" \ / ̂  say,

= 2(x2 — 1) , = t(x), say,

/(*) = £ i z i = ix2 _1)je = u{x) say etc

Another important combination is represented by the symbol f(g(x)),
which is read "/ of g(x)" and is the result of replacing the x in f(x) by
g(x). Thus, for the/and g of this example,

_ i = __ i = l -x 2

60



For the / and g of this example, 1.10
Notation and

"g of/(*)" = g(f(x)) = - f - = — — . natural domains
J\x) xl-\

Note that the natural domain of this/(g(x)) is the set of all real numbers
except 0, and the natural domain of this g(f(x)) is the set of all real
numbers except ±1.

There are some convenient notations we shall often use: The set of all real
numbers from a to b9 a and b included, is represented by [a, b]. Other
similar notations are as follows:
[a, b) is the set a < x < b;
(a, b] is the set a < x < b;
(a, b) is the set a < x < b; note that (a, b) is also used for number pair, but

which interpretation is meant should be clear from the context;
[a, oo) is the set a < x (i.e., the set of all real numbers greater than or equal

to a);
( - oo, b] is the set x < b (i.e., the set of all real numbers less than or equal to

*);
( - oo, oo) is the set of all real numbers.

PROBLEMS

1. Uf(x) = x3+2x2-4x + l, compute/(0),/(I),/(-I), and f(a) for any
number a; compute/(I + h) for any number h.

2. If g(x)=\x\ compute g(5)-g(4), [g(4.5)- g(4)]/0.5, [g(4.1)-
g(4)]/0.1, [g(4.01)-g(4)]/0.01, and [g(4+ h)-g(4)]/h for any number

3.
(a) find the values of /?(0),/?(3), and/?(4)-/?(3);
(b) use a calculator to find approximate values of [p(3.1)~ /?(3)]/0.1 and

(c) write a reasonably simple expression for [p(3+ h)- p(3)]/h for any
number h =£ 0.

4. If F(x) = }/x and G(x) = x2, what are the values of G(F(9)) and
F(G(JC))? Remember that our convention is that yfx stands for the
nonnegative square root of x. What is the value of F(G(-9))? Is
G(F(-9)) a real number? Explain.

5. If f(x) = 1 — x, g(x) = 1/JC, Sindp(x) = x/(x — 1), find reasonably simple
expressions for
(a)/( /(*)) (b)g(g(x)) (c)p(p(x))

(e)g(/(x)) (f)p(g(x)) 61
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6. Find the natural domain for each of the following functions:

1

9-x2

(b) G(x)> x-- (c) H(x) =
x-3

Table

C

-10
-5
0

5

10
15
20

l-23(a)

F

14

23
32

41

50
59
68

Table

F

14

23
32
41

50
59
68

l-23(b)

C

-10
-5
0
5
10
15
20

60

- 1 2

Fig. 1-18

60

48

36

I

16- x2

7. (a)-(b) Determine the ranges for the functions in Problem 6 (a) and (b).
C 8. If f(x) = 2x3 - 15JC2 + 21x -10, compute the values of f{x) for integral

(whole-number) values of x from 0 to 6, and use your results to sketch the
graph of y = /(x).

C 9. Rework Problem 8 for f(x) = x3 + 3x2 - x - 3, for integral x from - 4
to 2.

1.11 Inverse functions

Which of two related quantities we wish to consider the "independent
variable" sometimes depends on the use we have in mind for the relation-
ship. The expression y = f( x) indicates a correspondence from the set of
numbers x to the set of numbers y. We can also think of the reverse
correspondence from the set of numbers y to the set of numbers x. The
reverse correspondence is called the inverse of the original correspondence.
As we shall see, this inverse may or may not be a function.

For example, if we want to determine the Fahrenheit readings corre-
sponding to various Celsius readings for the same temperatures, we can use
Table l-23(a), plot C horizontally and F vertically to get the solid line in
Figure 1-18, and use the formula F = §C + 32. On the other hand, if we want
the Celsius readings corresponding to Fahrenheit readings, we can use Table
l-23(b), plot F horizontally and C vertically to get the dotted line in Figure
1-18, and use the formula C = f F - ±f.

From the point of view of mathematics, we have two functions here: The
line segment of Figure 1-19 is the graph of a function,/, say, determined by
the equation y = § x + 32, with Df given by —10 < x < 20 and Rf given by
14 < y < 68; whereas the line segment of Figure 1-20 is the graph of a
function, g, say, determined by the equation y = \ x — ^ with Dg given by
14 < x < 68 and Rg given by -10 < y < 20.

Each of the functions/ and g is the inverse of the other. If we "reflect"
the graph of/in the line j> = x, we obtain the graph of g, as in Figure 1-21.
Likewise, the reflection of the graph of g in the line y = x is the graph of / -
the graphs are "mirror images" of each other, with the line y = x as the

- 1 2 0 12 24

Fig. 1-19

62

'mirror." Rg and Rf = A,.
The algebraic equivalent of the geometric transformation just described is

the interchange of x and y in the equations defining the functions: If we
interchange x andy iny = f x + 32, the equation determining the function/,
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graph off: y = - x + 32

Fig.l-20

1.11
Inverse functions

Fig. 1

we obtain x = §y + 32, which, when solved for j>, yields y = %x - i |Q, the
equation determining g, the inverse of/.

We can proceed to find the inverse of any function by the algebraic
process just described, but the result is not necessarily a function. For
example, suppose F is the function given by

F: y = x2

over its natural domain, which is the set of all real numbers: DF = (— oo, oo).
Note that RF is the set of all nonnegative real numbers, [0, oo). Then G, the
inverse of F, has an equation obtained by interchanging x and y in the
equation of F and solving for y:

x = y2, or

G:y=±yfx~.

But G is not a function, because to each positive x correspond two values of
y - the graph of G (Figure 1-22) fails "the vertical-line test," as we noted at
the end of Section 1.9.

We can, however, choose a restriction of F such that its inverse is a
function. Suppose we consider

p:y = x2, with Dp=[0,ao).

Note that in this case Rp is also [0, oo). Then q, the inverse of/?, is given by
q: y=]/x, with Dq = [0, oo) and Rq = [0, oo). The graph of q (Figure 1-23)
passes the vertical-line test, so it is a function.

graph of F

graph of G

Fig. 1-22

Fig. 1-23

PROBLEMS

1. (a) Sketch a graph of the function g determined by

(b) What is the range of g? 63



1 (c) Determine the inverse of g by interchanging x and y in the equation
Functional relationships of g and solving for y to obtain

Sketch the graph of this inverse of g.
(d) Is the inverse of g a function? Explain.
(e) Describe a restriction of g whose inverse is a function. Describe

another restriction of g whose inverse is also a function.
2. (a) Sketch a graph of the function F determined by y = l/(x -1) over its

natural domain.
(b) What is the natural domain of i7? The corresponding range?
(c) Determine the equation of the inverse of F by interchanging x and y

in the equation of F and solving for y. What is the domain of this
inverse? Its range? Sketch the graph of this inverse of F.

(d) Is the inverse of F a function? Explain.
3. (a) Sketch a graph of the function / determined by

y=10x-x2, 0 < * < 1 0 .

(b) What do you think to be the range of/?
(c) Interchange x and >> in the equation determining/, and solve for y to

obtain

y = 5 ± \/25 - x , 0 < x < 2 5 .

Sketch the graph corresponding to this equation.
(d) Is the inverse of / a function? Explain.
(e) Describe a restriction of / whose inverse is a function. Describe

another restriction of / whose inverse is also a function.
4. In Problem 3, 1.9, you were asked to decide which of the given equations

determined v as a function of u. For those that are functions, which have
inverses that are functions?

5. Does the linear function f(x) = ax + b always have an inverse that is a
function? Discuss fully.

o 6. What can you say about the graph of y = f(x) if the inverse of/is to be a
function?

7. A merchandiser finds that the number of plastic wastebaskets, N, he sells
per week is a function of the price he charges. For price ($/?) between 1
and 6, inclusive, he finds that N = 18,000/p2.
(a) What are the domain and range of this function? Sketch its graph.
(b) The merchandiser wants to know the price at which he can just

dispose of a certain number of wastebaskets in a week. Solve his
problem by finding a formula for p as a function of N. What are the
domain and range of this function? Sketch its graph. (In economics,
either of the graphs - in (a) or (b) - is called a "demand curve.")

(c) Now consider the function given by y=lS,000/x2. What is its
64 natural domain? What is the corresponding range? Sketch its graph.



(d) Find an expression for the inverse of the function in (c). Sketch a
graph of this inverse. Is this inverse a function? If not, describe a
restriction of the function in (c) whose inverse is a function.

1.13
Summary

* 1.12 Absolute values

A notation of considerable usefulness is that of absolute value: \a\ (read "the
absolute value of a ") is defined by

, , / a, i f a>0 ,

The absolute value of a number a is the same as the numerical value of a.
Thus, |7| = 7; | - 3 | = 3; |-1.56| =1.56; |0| = 0, and so on. This means that
- 5 < x < 5 can be written as |*| < 5. The graph of y = |JC| is shown in Figure
1-24. Fig. 1-24

PROBLEMS

1. Write each of the following expressions without use of the absolute-value
symbol:
(a) |*| < 5 ( b ) 0 < | * | < 5 (c) 3 < | x | < 5

2. Sketch the graph of each of the following equations:

3. Sketch the graph of each of the following equations:
(a) \y\ = x (b) |*|+Lv|=l (c) | j | = * 2 + 4
(d)|.y| = x 2 - 4 (e)|j>| = | * 2 - 4 | {T) \y\={x

4. If x and y are any real numbers, find a relation between |*| and \y\ and

(a) \xy\ (b)

(Hint: Experiment with numbers to guess the relations.)
5. Use the inequalities -\a\<a<\a\, first with a = x and second with

a = j>, to show that |* + y\ < \x\+ \y\ for all real numbers x and y.

1.13 Summary

Variation can be exhibited by means of tables, graphs, and formulas.
Functions can be extended by linear interpolation in tables and by graphical
interpolation. In many cases, formulas are the most convenient form for the
analysis of functions. Among the formulas that we have encountered are the
following:

(a) The linear function: f(x) = ax + b. The graph of the equation y = ax
+ b is a straight line passing through the point (0, b) - the "j> intercept" of 65
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X

Fig.

= - 4

t t

- 4

1-25

i i

0

x = 7

i i i i I i

7

the line is b. For each increase of 1 in x, y changes by a. Conversely, any
nonvertical straight line has an equation of the form y = ax + b. A vertical
straight line 7 units to the right of the y axis has the equation x = 7, and 4
units to the left of the j> axis it has the equation x = - 4 (Figure 1-25). On a
vertical straight line there are indefinitely many y 's corresponding to the
same x, so a function is not defined.

(b) Other polynomial functions, particularly the quadratic: f(x) = ax2 +
bx + c. The graph of a quadratic function is a parabola with a vertical axis
of symmetry. If a > 0, the parabola opens upward; if a < 0, the parabola
opens downward.

(c) The exponential function: f(x) = c-bx.
(d) The power function: f(x) = kx".
An important concept is that of the inverse of a function. We shall

develop all these ideas in subsequent chapters.

66

PROBLEMS

1. An experiment has shown that, within a certain range, y (the number of
discharges per hour of an electric knife fish, Gymnotus car ape) varies
with x (the number of milligrams of the tranquilizer chlorpromazine per
20 liters of water in the aquarium) as follows:

>> = 300 + 2 0 * - x 2 .

Sketch a graph of this equation, and discuss the function given by the
equation as fully as possible, in relation both to mathematics and to the
biological experiment {Medical Research Engineering, Vol. 6, No. 3,
1967).

2. At the Pizza Hut, the prices of anchovy pizzas are as follows: 10 in.,
$2.15; 13 in., $3.25; 15 in., $4.35. Make reasonable assumptions to
construct a mathematical model of the "real-world" situation:
(a) Discuss the appropriateness of the price structure. Is it better to buy

two 10-in. pizzas or one 15-in. pizza?
(b) If the middle-size pizza is actually \2\ in., find a formula for the

price that fits the (altered) data. By your formula, what would be the
price of a very small pizza?

(c) Find a quadratic formula for the price that fits the data as initially
given; with this formula, what would be the price of a 6-in. pizza?
Of a 3-in. pizza?

(d) Find a formula consisting of the sum of two terms, one a constant
(representing fixed costs) and the other proportional to the area of
the pizza, that gives values as close as feasible to the quoted prices.

3. Extrapolation. An aphorism attributed to Niels Bohr goes as follows:
"Prediction is difficult, especially about the future."



Some amusing predictions about the "ultimate of human effort"
appear in Chapter 4, "The Sport of Track and Field: Flights of Fancy,"
in The Worlds of Brutus Hamilton, edited by L. J. Baack (Tafnews Press,
1975).

Extremely important examples of extrapolation pervade Barry Com-
moner's The Poverty of Power: Energy and the Economic Crisis (Knopf,
1976), in which, among other things, he compares the expected costs of
making electricity by coal and by nuclear power in the next 10 to 20
years.

Annual U.S. electricity consumption (C billions of kwh) at various
dates is shown in Table 1-24 {New York Times, April 18, 1976, News of
the Week in Review, p. 4).
(a) From these data, what prediction would you make about C in 1970?

In 1975? In 1980?
(b) Using only the values of C in 1955 and 1960, what prediction would

you make about C in 1970? In 1975? In 1980?
(c) The actual value of C was 1.4 in 1970 and 1.69 in 1975. Using only

these values, what prediction would you make about C in 1980?
Predictions about demand for energy are changing rapidly. From

Science, June 20, 1980, "Energy Forecasts: Sinking to New Lows":

Although some astute energy watchers predicted early in the
1970's that demand would soon level off, the big institutional
forecasters have only begun to consider this a real possibility in
the last couple of years ... even the most cautious energy forecast-
ers are making revisions today

A graphic illustration of this behavior has been put together
by Amory Lovins, British representative for Friends of the Earth
and bete noire of the utility industry. He is one of many who argue
that enormous efficiency improvements can and will be made in
technology in the next two decades, and that these will reduce
energy demand far below the present level of 78 quadrillion British
thermal units (quads) per year.

Lovins points out that, no matter what the bias of the
forecaster, all energy predictions for the year 2000 have been
dropping at about the same speed since the oil embargo [see Table
1-25].

See also the New York Times, October 11, 1981, Section 3, p. 1,
"Winning the War on Energy: All the Old Predictions Were Wrong."

4. Curve fitting. In the summary to his article "Public Support for Ameri-
can Presidents: A Cyclical Model" {Public Opinion Quarterly, Vol. 40,
Spring 1976), James A. Stimson wrote

The approval accorded to Presidents by the American public is

1.13
Summary

Table 1-24

Date

1955

1956
1957
1958
1959
1960
1961
1962

1963
1964

1965

C

0.54

0.53
0.55
0.58
0.63
0.68
0.73
0.78
0.84
0.90
0.96

67
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Table 1-25

Year of
forecast

1972

1974

1976

1977-8

Beyond
the pale

125
(Lovins)
100
(Ford zeg)
75
(Lovins)
33
(Steinhart)

Heresy

140
(Sierra)
124
(Ford tf)
89-95
(Von Hippel)
67-77
(NAS I, II)

Conventional
wisdom

160
(AEC)
140
(ERDA)
124
(ERDA)
96-101
(NAS III, AW)

Superstition

190
(FPC)
160
(EEI)
140
(EEI)
124
(Lapp)

Abbreviations: Sierra, Sierra Club; AEC, Atomic Energy Commission; FPC,
Federal Power Commission; Ford zeg, Ford Foundation zero energy growth
scenario; Ford tf, Ford Foundation technical fix scenario; Von Hippel, Frank
Von Hippel and Robert Williams of the Princeton Center for Environmental
Studies; ERDA, the Energy Research and Development Administration; EEI,
Edison Electric Institute; Steinhart, 2050 forecast by John Steinhart of the
University of Wisconsin; NAS I, II, III, the spread of the National Academy
of Sciences Committee on Nuclear and Alternative Energy Systems
(CONAES); AW, Alvin Weinberg study done at the Institute for Energy
Analysis, Oak Ridge; Lapp, energy consultant Ralph Lapp.
Source: Amory Lovins put together this table showing the downward drift in
forecasts. Figures represent the total U.S. energy demand in year 2000 or
2010.
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found to follow a cyclical pattern over time. All Presidents begin
their terms with great popularity, experience parabolic declines,
steadily lose popular support for about three years, and then
recover some at the ends of their terms. These distinctive cycles, it
is argued, reflect regular expectation/disillusionment cycles among
the less well-informed segments of the public and are tied to the
four-year election calendar. The extraordinary fit of parabolic
curves to actual presidential approval leads to the suspicion that
presidential approval may be almost wholly independent of the
President's behavior in office, a function largely of inevitable
forces associated with time.

Using "relative approval" to designate the percentage of people queried
who express approval of the president, he found that the following
equation gave close agreement with the data from public-opinion polls
for President Truman's first term:



relative approval = 53.37 + 8.85(2.25- tf,

where / is the number of years since the beginning of the term.
(a) What was the relative approval at the start of the term? At its end?
(b) What was the minimum relative approval, and when did it occur?
(c) Write the equation in the form

relative approval = at2 + bt + c,

for appropriate a, b, and c.
5. Samples from the Quinnipiac River at Wallingford gave the relation-

ships between specific conductance (JC micromhos at 25 °C) and dis-
solved-solids concentration (y mg/liter) shown in Table 1-26. Plot these
data and, by eye, draw the straight line that seems to you the best fit.
Then find the equation of this line. (Data from Wesleyan University
M.A. thesis of Elinor Handman.)

6. Find the sum of the first 10 terms of the geometric series, and also G^,
the sum to infinity, as defined in Section 0.12.
(a) i + i + tL + i L + . . . ( b ) i _ i + 1 L _ i + . . .

7. The harmonic series i s l + ^ + ^ + i + ^ + - - - .
(a) Calculate

Hn=\ + \ + \ + \+ ••• + -
n 2 3 4 n

for n =1,2,3,. . . ,12.
(b) Do you think that the Hn will ultimately behave like geometric series

with — 1 < r < 1 , that is, that Hn will get closer and closer to some
limiting value as n increases?

(c) With a programmable calculator or computer, find 7750, HlO09 and
H200. Also find how large n must be to make Hn > 4, Hn > 6, and
Hn>8. Do these results reinforce or change your guess about the
answer to (b)?

(d) You should have found in (a) that Hl0 is a little more than 2.9. Note
that each of the terms IT, n , n , . . . , w exceeds y^, so IT + n + TJ +
' ' * + Too > (TOO)90 = 0.9. Hence, Hl00 > 2.9 + 0.9 = 3.8. (Actually,
Hl00 ~ 5.4.) Similarly, the sum of the next 900 terms is greater than
0.9, so Hl000 > 3.8 + 0.9 = 4.7; and the sum of the next 9000 terms is
greater than 0.9, so i/10000 > 4.7 + 0.9 = 5.6. Use this argument to
make a definite statement about Hn as n increases without bound.

8. (a) Let x be the length of a side of a regular polygon inscribed in a
circle of radius 1, and let y be the length of a side of a regular
polygon with twice the number of sides, inscribed in the same circle.
Use geometry and algebra to show that

1.13
Summary

Table

X

166
170
172
174

180
182

186

188
192
194
196
200
208
210
214

216
220
222
228
232
238
246
254
255
256
257

1-26

y

103
107
108
110

113

118
114

117
118
124
126
122
130
133
136
132
138
141

140
146
146
161
150
153
174
162

(b) What is the perimeter of a regular hexagon (6 sides) inscribed in a
circle of radius 1? 69
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(c) Hence, what is the perimeter of a regular dodecagon (12 sides)
inscribed in a circle of radius 1?

(d) Find the perimeters of regular polygons of 24, 48, and 96 sides
inscribed in a circle of radius 1.

(e) Knowing that the circumference of a circle of radius r equals 2T7T,

use your last result of part (d) to find an approximation to TT.
9. Proof systems. Discuss the relationships among the scales shown in

Table 1-27.

Table 1-27

Britain
and Canada

75.25 overproof
50 overproof
30 overproof
Proof
12.5 underproof
30 underproof
50 underproof
100 underproof

Sykes
scale

175
150
130
100
87.5
70
50
0

American

200 proof
172 proof
149 proof
114.2 proof
100 proof
80 proof
57 proof
0 proof

Alcohol
(by volume)

100%
86%
74.5%
57.1%
50%
40%
28.5%
0%

10. The accompanying graph (Figure 1-26) shows the 10-year cumulative
increases in college costs, 1972-3 to 1981-2. Examine the graph and

120

110

100

90

80

70

60

50

40

3 0

10

•"private 4-year institutions: total costs
• private 4-year institutions: tuition and fees
. public 4-year institutions: total costs
. public 4-year institutions: tuition and fees
• consumer price index

VA

70
1972-73 73-74 74-75 75-76 76-77 77-78 78-79 79-80 80-81 81-82

Fig. 1-26



state what interesting and significant information it provides for you. 1.13
(Graph from The College Board News, Fall 1981.) Summary

SAMPLE TEST

In a certain type of mechanism, the pressure (y lb/in.2) in a cylinder is
related to the diameter (JC in.) of a piston as follows: y varies inversely as x2,
and, when x = 2, y = 900.
1. Find a formula for y in terms of x.
2. Make a table of values of y corresponding to x = 2, 4, 6, 8, 10, and 12,

and sketch the graph showing how y is related to x.
3. Use linear interpolation in your table from Problem 2 to approximate

the value of y corresponding to x =11.
4. Explain by reference to your graph whether you expect your answer to

Problem 3 to be larger or smaller than the true value.
5. Find an equation for the straight line joining the points on your graph

where x = 6 and x = 10.
6. Let the function given by your formula in Problem 1, with no reference

to physical considerations, be called F. What is the natural domain of
Fl

7. Suppose that, in an actual mechanism, x cannot be less than 1 nor
greater than 20. Let the function given by your formula in Problem 1, as
restricted in the preceding sentence, be called G. What is the range
of G?

8. Sketch a rough graph of the function F. Is the inverse of F a function? If
so, write a formula for the inverse function, with x as independent
variable and y as dependent variable, and state its domain.

9. Is the inverse of G a function? If so, write a formula for the inverse
function, with x as independent variable and y as dependent variable,
and state its domain.

* 10. Draw the graph corresponding to the equation |JC| — \y\ =1.
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Rate of change

We begin now an investigation of the second question raised in Chapter 1:
How fast does >> vary with /? We shall return to the first question {How does
y vary with tl) from time to time as we encounter more kinds of functional
relationships.

The development of this chapter follows this sequence of topics:
1. Average speed as a familiar example of rate of change - of how fast

distance traveled varies with time
2. Average velocity as rate of change of displacement with respect to time
3. The intuitive idea of instantaneous velocity leading to the concept of limit
4. Computations of instantaneous velocity
5. Statements of theorems on limits, to simplify evaluations of limits
6. Proofs of some results on limits
7. Geometrical examples: slope of a line, average slope of a curve in an

interval, slope of a curve at a point
8. Tangent to a curve defined in terms of slope
9. Unifying concept: the derivative as a rate of change, showing how fast

one quantity varies with another
10. A specific formula for the derivative, and several general formulas
As you proceed through the chapter, you may find it helpful to refer back to
this outline.

2.1 Average speed and average velocity

Probably the most familiar example of a rate is found in the concept of
average speed. If you drive 150 miles between 2 o'clock and 5 o'clock, your
average speed is 50 miles per hour (i.e., the distance traveled divided by the
time it takes). More formally:

Definition 1
If an object travels a distance s > 0 from time / = a to t = b, then its average

72 speed in this interval is s/{b -a).



In the case of our much-traveled rocket, with the height above the ground
given by

y=- I6t2 + 88/+ 48, 0 < / < 6,

we have, at / = 0, y = 48, and at / = 2, y = 160. Thus, the rocket travels 112
ft in the 2-sec interval. We say, then, that the average speed of the rocket
from / = 0 to / = 2 is 56 ft/sec.

Problem 1
The average speed in some other 2-sec interval will usually be different.
Check that the average speed from / = \ to / = 2\ is 40 ft/sec.

Problem 2
Likewise, check that the average speed from / = 0 to / = 1 is 72 ft/sec and
that the average speed from / = 1 to / = 2 is 40 ft/sec. What is the average
of these two averages?

2.1
Average speed;

average velocity

Most dictionaries give velocity as a synonym for speed, but there is a
clear mathematical distinction between them: "velocity" takes direction
into account; "speed" does not. To account for direction, we use a "directed
line," with positive and negative coordinates.

In Figure 2-l(a), the displacement of P from the origin is 3, and the
displacement of Q is — 4. In Figure 2-l(b), the displacement of R from the
origin is 2, and the displacement of S is — 2.

We define average velocity here only for motion in a straight line:

Definition 2
If an object moving on a straight line has displacement c from a fixed point
on the line at time t = a9 and displacement d at time t = b, then the average
velocity in the interval is (d — c)/(b — a).

For the interval [0,2] in the rocket problem, we get the same value for
average velocity as for average speed, but for the interval [3,4] the average
velocity is 14$z\6S = — 24 ft/sec, while the average speed is 24 ft/sec. The
negative value indicates that the motion in that interval is downward.

Clearly, the average velocity in an interval can be positive, negative, or
zero, whereas the average speed is always positive if the object is moving at
all. It is the average speed one needs to know in order to find the distance
traveled in an interval. By way of contrast, note that if a particle moving on
a straight line starts at a certain point and later returns to that point, the
average velocity during the interval under consideration is zero, no matter
how far and fast the particle has traveled.

(a)

Q
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2 PROBLEMS
Rate of change

3. The height (y ft) of an object above the ground / sec after it started is
given by y = 64/ —16/2.
(a) Make a table of values showing y at various values of /, from the start

(/ = 0) until the object hits the ground.
(b) On the basis of this table (or from an accompanying graph), estimate

what / corresponds to the maximum height.
(c) Find the maximum height.
(d) Find the average speed and the average velocity of the object for the

following intervals: [1,2], [2,3], [0,3], and the whole time interval of
its motion.

* 4. In Problem 2, you probably observed that
\ (avg. speed in [0,l] + avg. speed in [1,2]) = avg. speed in [0,2].

Is this true in general, that is, for any time intervals? For any type of
variation? Formulate a general result that you think to be true, and prove
it if you can. Answer the same question if "speed" is replaced by
"velocity."

o 5. (a) For the rocket problem, with the height above the ground (y ft)
varying with elapsed time (/ sec) as follows,

y = - 16/2 + 88/ + 48, 0 < / < 6,

calculate the average velocity from / = 1 to f =1.1. From / = 1 to
/ =1.01. From / =1 to / =1.001.

(b) Formulate a possible definition of what might be meant by the phrase
"the velocity of a particle at t =1."

(c) In the light of your definition in (b), what do you think is the value of
the velocity of the rocket at / = 1?

6. In Problems 1 and 2, you probably observed that the average speed in
[1,2] equals the average speed in [\, §]. Is there a general principle here?
Formulate a general result that you think to be true, and prove it if you
can. Can "speed" be replaced by "velocity" in your statement?

* 7. (a) For the rocket problem, tell how to find the average speed from / = 1
to / = 4. (Be careful!) Actually find this average speed. [Problem
5(c)(iii) of Section 1.9 may be helpful.]

(b) Likewise, find the average speed from / = 0 to / = x- From / = x to
/ = 6. From / = 0 to / = 6.

(c) Find the average velocity in each interval mentioned in (a) and (b).

2.2 Instantaneous velocity and limits

Problem 5(a) in the preceding section may be effectively attacked as follows:
For the rocket we can designate y by / ( / ) , so that / ( / ) = - 1 6 / 2 + 88/ + 48.

74 The subsequent manipulations will turn out to proceed a bit more smoothly



if we change the order of terms and write / ( / ) = 48 4- 88f — 16t2. Hence, at 2.2
/ = 1, the displacement of the rocket from ground level = /(I) = 48 + 88-16 Instantaneous velocity; limits
= 120. At t =1 + ft, for any ft, the displacement of the rocket from ground
level = / (I + ft) = 48 + 88(1 + ft)-16(1 + ft)2.

Problem 1
Show that / ( I + ft) simplifies to 120 + 56ft - 16h2.

Then, by the definition of average velocity (Definition 2, 2.1), with a = 1 and
b =1 + ft, the average velocity of the rocket in this interval is

(120 +56ft-16ft2)-120^ 56h-16h2

(l + ft)-l h ft

= 56-16/*, forft#0.

Thus, for the rocket, the average velocity

from t =1 to t =1.1 is 56-16(0.1) = 54.4 (ft/sec),

from / =1 to / = 1.01 is 56-16(0.01) = 55.84 (ft/sec),

from t = 1 to / = 1.001 is 56 -16(0.001) = 55.984 (ft/sec),

and from / = 1 to t = 1.0001 is 56 -16(0.0001) = 55.9984 (ft/sec).

It seems clear that the closer ft is to zero, the closer the average velocity is
to 56 ft/sec. It is meaningless to speak of the average velocity or speed
when ft equals zero, for these terms are defined only over an interval - the
phrase "average velocity (or speed) at a, certain instant" has no sense. Put
otherwise, we note that the expression we had earlier for average velocity,
namely,

ft
has no meaning when ft = 0. But intuitively it does make sense to ask "How
fast am I going right now?" or "What was the velocity of the rocket one
second after it started - that is, at the instant when t = 1?" And it seems
reasonable in the light of our computations to give 56 ft/sec as the answer
to the latter question, for it is apparent that we can get an average velocity
as close to 56 as we like by taking a sufficiently short interval beginning at
t =1. We say in this case that "56 is the limit of the average velocity in the
interval [1,14- ft] as ft approaches zero." We define the velocity at the instant
r = l as the limit of the average velocity in the interval [1,1+ft] as ft
approaches zero, and the speed at an instant similarly. The crucial word here
is "limit," as yet undefined, and we turn our attention now to a discussion
of that concept.

The notion of limit is an extremely important one. Later we shall devote
considerable attention to the theory of limits, but for the time being we shall
get along with a definition in verbal terms. We lead up to such a definition
now. In the case treated earlier, 56 —16ft will be closer to 56 the closer ft is 7 5



Rate of change
to zero. But more than this: We shall show later that 56 — 16h can be made
arbitrarily close to 56 by choosing h sufficiently close to zero. It is not merely
that we can come close to 56 - the important aspect is that we can come as
close as we like to 56 by choosing h appropriately close to zero.

The symbolism that we use in this case is as follows:

Urn (56-16/*) = 56,
/? — o

which is read "the limit of 56 —16/*, as h approaches zero, is 56."

Definition 3 (in verbal terms)
The limit of G(u) as u approaches a is L means that the number G(w) is
arbitrarily close to L for all u in the domain of G sufficiently close to a,
except perhaps for u = a.

Notation If the limit of G(u) as u approaches a is L, we write
limM^aG(u) = L. Thus, if G(h) = [/(1 + h)-f(l)]/h = (56/* -16h2)/h,
then it can be shown that limh_+0G(h) = 56. This example illustrates the
significance of the last phrase in the definition of limit, "except perhaps for
u = a." As we noted before, [/(14- h)-f(l)]/h is not defined for h = 0;
hence, we cannot speak of the value G(0). In studying the limit of G(h) as h
approaches zero, we deal with G(h) for h close to, but not equal to, zero.

The distinctions we are drawing here are easily made in terms of the
language of functions. Consider the equations

56h-l6h2 . n
(1)

(2)
(3)
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r = 56-16/*, A#0,
f = 56-16/*.

Equations (1) and (2) are alternative ways of defining a function, G, whose
natural domain consists of all real numbers except h = 0. Equation (3)
defines another function, F, say, whose domain is the set of all real
numbers. F is an extension of G. G(0) does not exist, but lim^ _>0G(h) does
exist, and equals 56. Moreover, ^(0) = 56, and ]imh_+0F(h) also equals 56.

You may wonder why we "make things hard for ourselves" by bothering
with functions like G - why not consider simply the function F and its value
at h = 0? The reason is that it is G, rather than F, that expresses the
quantity in which we were initially interested - the average velocity of the
rocket. Lack of a clear distinction between G and F, and between G(0) and
limh _+0G(h), led to a lack of precision in Newton's exposition of the basic
concepts of the calculus, and to Bishop Berkeley's biting criticism of how
Newton and other mathematicians explained their methods. It took over a
hundred years to resolve the matter satisfactorily, through the clear-cut
definition of limit by the French mathematician Cauchy early in the
nineteenth century.



In the definition of limit, note the phrase "for all u in the domain of the 2.2
function sufficiently close to a." This means that we should consider values Instantaneous velocity; limits
of u somewhat less than a, as well as values of u somewhat greater than a,
provided that the domain of G extends to both sides of a. Consider, for
example, F(h) = 5 6 - 16/z, with the natural domain suggested by this equa-
tion. If we are to show that \imh^0F(h) = 56, we must establish that the
value of F(h) is arbitrarily close to 56 for all h sufficiently close to zero (i.e.,
for small positive h and also for small negative h). Notice that although we
have used only positive values of h in our computations, there is nowhere
any assumption that h > 0, and the derivation of the formula,

average velocity = 56 — 16/z,

holds for negative, as well as positive, numbers h.

Problem 2
For the rocket, withy = f{t) = 48 + 88/ - 16f2, compute the average velocity
for each of the following intervals: (a) [0.9,1], (b) [0.99,1], (c) [1 - h9l], for
any h > 0.

Thus, whether we consider an interval beginning at t = 1 or an interval
ending at f = 1 , we obtain the same expression for the average velocity, and
applying the definition of limit involves consideration of intervals beginning
at t = 1 and also of intervals ending at t = 1. Indeed, this is exactly what we
need to define instantaneous velocity:

Definition 4
The instantaneous velocity of a particle at t = a is the limit of the average
velocity of the particle in an interval of length h, with a as one end point of
the interval, as h approaches zero.

For the present we shall merely use our intuition about the values of
limits and shall not verify that the definition of limit is indeed fulfilled. Here
is a typical argument: If x is close to 3, then Ix - 5 is close to 16; the closer
x is to 3, the closer Ix — 5 will be to 16. It looks as though we can make the
value of Ix — 5 as close to 16 as we like by choosing x sufficiently close to 3;
hence, it seems apparent that limJC_3(7;c — 5) = 16. Similarly, it looks as
though

lim /10+Jt = 4 ;

x-2 2

lim (3x2 +2xh + h2) = 3x2, for each real x;
/0

lim does not exist; etc.
^ - 2 w + 2 77



2 Example 1
Rate of change Suppose that for a particle moving in a straight line, the distance (s ft)

covered in the first / sec is given by

s=16/2, for all/ >0 .
Let us think of this as the function s(t).

Problem 3
"Speed" and "velocity" will be the same for this function. Why?

We can find the instantaneous velocity at / =1 as follows:

At / = 1 , J ( 1 ) =16.

A t / = 1 + A,s(l + A)=16(l + A)2=16 + 32A+16A2.

For the interval [1,1 + A], A > 0, the average velocity of the particle is

n n

The same result would be obtained for the average velocity in the interval
[1 + A,1] for A<0. It seems as though limA_^0(32 + 16/i) = 32. Hence, the
instantaneous velocity at / = 1 is 32 ft/sec.

Problem 4
Use a similar argument to show that the instantaneous velocity at / = 2 is 64
ft/sec and that the instantaneous velocity at t = 3 is 96 ft/sec.

We can deal with all these cases at once by finding a formula for the
instantaneous velocity for any t > 0:

For any/, s(t) =\6t2.

At / + A, s(t + A) = 16(/ + A)2 = 16/2 + 32th + 16h2. For the interval
[t, t + A], the average velocity of the particle is

The same result would be obtained for the average velocity in the interval
[/ + h, t] for h < 0, provided that t + h lies in the domain of this function
(i.e., provided that t + h > 0).

For each /, it seems as though lim^_0(32r + 16A) = 32/. Hence, for each
/ > 0, the instantaneous velocity of the particle is 32/ ft/sec. Thus, for / = 0,
1, 2, and 3, the instantaneous velocities are 0, 32, 64, and 96 ft/sec,
respectively.

Note that the situation at / = 0 is slightly different from that for any other
/. Because the domain of our function is [0,00), when we come to analyze
average velocities we consider intervals that begin at zero (i.e., [0,0+ A],

7 8 A > 0), but we cannot consider intervals that end at zero (i.e., [0+ A,0] for



h < 0). But this is perfectly consistent with Definition 3 - remember the 2.2
phrase "for all u in the domain of G sufficiently close to a." Instantaneous velocity; limits

PROBLEMS

5. State the value of /(0) and what you think to be the value of limM _> 0/(u)
if f(u) equals

(a) u2 + 4 (b) ^ £ y (c) (II + 1X2M - 3)
(d) - u for all u < 0, and 0 for all u > 0. (A sketch of the graph of this

function may be of help.)
6. In each of the following cases, state the natural domain of F(x) and the

value of ^(3), if it exists. Also state what you think to be the value of
limJC_>3i

r(jc), or state that it does not exist.

(a) F(x) = 2x +4 (b) F(x) = | ^ | (c) F(x) = ^ j

(d)F(x) = ̂ j (e) F(JC) = ( J C + 2 X * - 2 )

(0 F(x) = l*' for x ~ 3
y ' \x, forx>3

8 X \ 2 J C + 4 , for;c>3

(i) F(x)=l 'I] f ^ x = 3 0)
I - 2 , forx>3

7. For the function / determined by f(x) = 3 — 2x + x2, — oo < JC < oo,
state what you think to be the value of each of the following indicated
limits or why you think that the limit does not exist.

(a) lim/(jc) (b) lim [/(4+*)-/(4)] (c) lim

(d) lim [f{x + h)-f(x)] (e) Urn
JC-0 /!->0

(f) lim [/(JC + h)-f(x)], for each JC

(g) Urn / ( * + * ) " / ( * ) ^ f o r e a c h x
h —* 0 "

8. For the function / determined by

1100, 17</<30,

state what you think to be the value of the indicated limit or why you
think that the limit does not exist.

m
-* 0

/(5+*W(s)

(a) lim/(0 (b) lim/(0 (c) lim/(O (d) lim /(/)
f — 5 r —17 t-* 0 f->30

(e) lim[/(5+A)-/(5)] (f) Urn

(g) Iim[/(15+A)-/(15)] (h)
/o 79



Leo,change <» *" (/<"+»>-/<n)l «> ' ^
(k) lim / ( * + /0 / ( * ) ? for e a c h x i n [0

9. A certain savings certificate provides interest of 20% per year, com-
pounded semiannually, but no interest is added until a half year has
passed. Thus, if you deposit $1000 on January 1, that sum (and only
that sum) is available to you until July. On July 1, you get interest of
20% per year (or 10% per half year) on the $1000, so your interest is
$100, and your account stands at $1000 + $100 = $1100. It remains at
$1100 through December 31, and on the next day, interest of 10% of
$1100, or $110, is added to your account, making the total $1210.
Continue the computation for another half-year period.

Letting the amount in the account be represented by A (dollars) and
time (t years) be measured from the date of initial deposit, we have the
following expression for a function with domain 0 < t < 2:

1000, 0<t<\,

1100, \<t<\,

1210, l < f < f ,

1331, \<t<2.

Sketch a graph with t on the horizontal axis and A on the vertical axis,
showing by heavy dots on your graph the values of A at t = 0, \, 1, and §.
Because of the appearance of the graph, we have here what is called a
"step function."

State what you think to be the value of each of the following limits or
why you think that the limit does not exist,
(a) lim ,4 (b) lim ,4 (c) lim ,4 (d) lim ,4

10. For the function / given by

(20, 0 < w < l ,
/ = 37, K w < 2 ,

154, 2 < w < 3 ,

sketch a graph with w on the horizontal axis and /(w) on the vertical
axis. What real-life situation corresponds to this function? (This was
written in 1982.) State what you think to be the value of each of the
following indicated limits or why you think that the limit does not exist.

(a) lim/(w) (b) lim/(w) (c) lim/(w) (d) lim/(w)

(e) Iim2[/(f + /*)-/(!)] (0 Um [/(2+ h)-f(2)]
h —* 0

(I)
80



11. A particle moves on a straight line, with the formulas for the distance (s 2.3
ft) traveled in the first t sec as follows: Theorems on limits

-18 + 12*-*2, 3 < / < 6 .

Sketch a graph showing this variation. State what you think to be the
instantaneous velocity of the particle at

(f) any / in [0,3) (g) any / in [0,3] (h) any tin [3,6]
C 12. Calculate the (approximate) values of each of the following expressions

for h = 0.1, 0.01, 0.001, and 0.0001, and thus guess the value of the limit
of each expression, as h -> 0:

* 1(1 + /*) / I (2+ hf 4

13. State what you think to be the value of each of the following limits by
doing some computing of values. (A table of square roots or a calculator
will be helpful.)

/4T7T-2 _ t. \/4+/i2 - 2
(b) hm r

14. (a) Try, by algebraic manipulations, to rewrite the expression in Prob-
lem 13(a) so as to "see" the value of the limit without computation.
(Hint: multiply numerator and denominator of the given fraction by
y/4+h +2.)

(b) Same as (a) for 13(b).
(c) Same as (a) for 13(c).

15. A motorist enters a thruway at 2 p.m. and picks up a toll ticket on
which the time is stamped. He leaves the thruway at a point 200 miles
away at 5 p.m., where a state policeman examines his toll ticket and
arrests him. Why? Explain clearly.

2.3 Theorems on limits

We have been obtaining answers to problems about instantaneous velocity
by guessing various limits. To be confident of our answers, we need some
theorems on limits. In this section we shall state the principal theorems on
limits, all of which should seem entirely reasonable to you. In Section 2.4 we
shall indicate something of how the theorems are proved. Even if you do not
master the proofs, you should use the theorems as needed. 81



2 We begin with two simple results of great importance:
Rate of change

Theorem on the Limit of a Constant Function
If f(u) = k, a constant, then limM_a/(w) = k, for any number a in the
domain of/.

Theorem on the Limit of the Function g(u) = u
If g(u) = u, then limM_flg(w) = a, for any number a in the domain of g.

You should draw a graph of each of these functions, with u as the
independent variable, and convince yourself that the conclusions of the
theorems are just what you would expect.

As introduction to the next result, we refer to some guesses that we made
earlier. We said that if f(x) = 7x — 5, then "it seems apparent that"
limJc^3/(jc) = limJC_+3(7A:-5) = 16. Likewise, if g(;c) = 2.x+4, then "it
seems apparent that" limx _ 3g(x) = lim^ _ 3(2x + 4) = 10.

What can we say about the behavior of the sum of these functions:
F(x) = f(x)+g(x) = (lx-5)+(2x+4) = 9x-11 Because f(x) is arbi-
trarily close to 16 for x sufficiently close to 3, and g(x) is arbitrarily close to
10 for x sufficiently close to 3, then F(x) = f(x)+ g(x) should surely be
close to 16 + 10 = 26 for x close to 3. In other words, we guess that
limx^3F(x) = hmx_+3f(x)+iimx^3g(x). This is a general result for the
sum of any two functions:

Theorem on the Limit of the Sum of Two Functions
If limtt_fl/(w) = p and limu^ag(u) = q, then

"The limit of a sum equals the sum of the limits."

A similar result is true for products:

Theorem on the Limit of the Product of Two Functions
If limM^a/(w) = p and limtt^ag(w) = q, then

Urn [f(u)-g(u)]=p-q.
u —> a

"The limit of a product equals the product of the limits."

The result for quotients requires the additional hypothesis that the limit
of the denominator is not zero:

Theorem on the Limit of the Quotient of Two Functions
If limM^fl/(w) = p and \imu^ag(u) = q*0, then

82



"The limit of a quotient equals the quotient of the limits provided that the 2-3
limit of the denominator is not zero." Theorems on limits

If the limit of the denominator is zero, then "anything can happen." For
example, because limM_ 5(w — 3) = 2 and limM_>5(u — 5)2 = 0, it seems clear
that (M — 3 ) / ( M — 5)2 increases without bound as w->5. Similarly, (u —
3)/(« — 5) is a very large positive number if u is a bit larger than 5 and is a
very large negative number if u is a bit smaller than 5. Thus, neither
l im M ^ 5 [ (w-3) / (w-5) 2 ] nor limtt_^5[(M-3)/(w -5 ) ] exists. Likewise, be-
cause (u — 5)/(u — 5)2 = l / ( u — 5) for u # 5, and because limu _> 5 l / ( u — 5)
does not exist, limM_>5[(w — 5)/(w — 5)2] does not exist either.

On the other hand, because (u — 5)2/(w — 5) = (u — 5) for w # 5 , and
because limM_ 5(u - 5) = 0, we conclude that limM_ 5[(u - 5)2 /(u - 5)] = 0.
And because 3( w — 5 ) / ( M — 5) = 3 for all u # 5, we know that limw _̂  5[3(M —
5 ) / ( M —5)] = 3. (Remember, from the foregoing illustrations, that what
happens at u = 5 is irrelevant to the existence or the value of the limit as u
approaches 5.)

In colloquial terms, we can say that if the numerator and denominator
both approach zero, then what happens to the fraction depends on "how
fast" each approaches zero. We can summarize the foregoing results in the
following statement.

Supplement to the Theorem on the Limit of the Quotient of Two
Functions
If l imM_a/(w) = /? andlimM^ag(i /) = 0, then,
(i) if p =£ 0, limM_a[f(u)/g(u)] does not exist, and

(ii) if p = 0, then further investigation is required to determine
limM^ J / (« ) /g (w) ] , or whether it exists.

The situation in part (ii) of the foregoing supplement has already been
met in every problem on instantaneous velocity, for example,

t. 56h-16h2

lim ,

and will be met again in all problems on other instantaneous rates of
change.

The theorem on the limit of a constant function and the theorem on the
limit of a product give the following result: If limM _ aF(u) = L, and if A: is a
constant, then \imu^akF(u) = (limM_H(flA:)[limM_+fli

r(w)] = k-L.
The theorem on the limit of the function g(u) = u and the theorem on the

limit of a product give the following results: limu_au
2 = limM^a(w-w) =

(limM_flw)(limM_aw) = a2; limM_aw
3 = a3; and, in general, for any positive

integer n9 \imu_au
n = an. 83
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Rate of change

The

and so

foregoing results

lim
u -+ a

lim {ku3

u-+ a

forth.

imply
lim

u -* c

(ku2-

that
(ku

\-lu-\

mu

+ /) = *« +

- m) = ka2

+ n) = ka3

I,

+ fa-

+ la2

Thus, for any polynomial P(u) and any real number a, we know
that \\tr\ u_^aP(u) = P(a). In words, the limit of a polynomial func-
tion, as the variable approaches some number a, equals the
value of the polynomial at a.

PROBLEMS

1. In Section 2.2 we had the following formula for the average velocity of a
particle in an interval of length h: average velocity = 56 —16h, for h =£ 0.
Use the theorems of this section to demonstrate that the limit of the
average velocity, as h -> 0, equals 56.

2. What is wrong with each of the following statements?
(a) lim (2x + 4) -> 10. (b) As x - 3, (2JC + 4) = 10.

3. (a)-(c). Use the theorems of this section to obtain the limits that you
guessed in Problem 5(a)-(c) in Section 2.2.

4. (a)-(f). Use the theorems of this section to obtain the limits that you
guessed in Problem 6(a)-(f) in Section 2.2.

5. (a)-(f). Show how the result on the limit of a polynomial, as presented at
the end of this section, enables you to state with confidence the answers
to each of the parts of Problem 7 in Section 2.2.

o 6. State the values of each of the following indicated limits, or that they do
not exist:
, x r 50h+0.lh2 _ r 50h+0.lh2

(a) hm T (b) hm —
/i-o n /,->o h

3h1/2 - h
(c) lim ——- (d) Urn ——

h^o hl/2 h^o 2h1/2

(e) lim -=!• (f) lim *

* 7. Discuss limj^^w" if n is a negative integer.

* 2.4 Proofs of some results on limits

To prove the theorems on limits, or to establish results about limits without
04 appeal to those theorems, we must refer to the definition of limit (Definition



3, 2.2), repeated here using some symbolism: 2.4
Proofs of some

Definition 3 results on limits
limM _ aG(u) = L means that the number G(u) is arbitrarily close to L for all
u in the domain of G sufficiently close to a, except perhaps for u = a.

We shall illustrate how to use this definition in establishing a result that
we guessed earlier: limx^3(lx - 5 ) = 16. Can we ensure that (7x-5) lies
within a distance of 0.01, say, of 16? That is, can we make (Ix - 5) lie
between (16-0.01) and (16 + 0.01)?

If 16-0.01 <lx - 5 < 16 + 0.01, (4)

then 16-0.01 + 5 <7x<16 + 0.01 + 5, (5)

or 21-0.01 <7JC< 21 + 0.01, (6)

, 0.01 . 0.01 in.
or 3 - - ^ - < x < 3 + ^ - . (7)

Conversely, if (7) is true, then (6) is true, and then, in turn, (5) and (4) are
true.

In other words, if x is within a distance of f̂1 of 3, then (7x — 5) is within
a distance of 0.01 of 16.

Suppose, now, that we want (Ix — 5) to be closer still to 16 - within a
distance of 0.0001, say, of 16.

Problem 1
Follow the model of the preceding argument to show that if x is within a
distance of ^^ of 3, then (Ix - 5) is within a distance of 0.0001 of 16.

Specific numbers, even small ones like 0.01 and 0.0001, don't logically fill
the bill of being "as close as we like" to 16. For that we should use a letter,
like e, to represent an arbitrary positive number. Following the model of the
preceding argument enables us to prove that limx_+3(lx - 5 ) = 16: Let € be
an arbitrary positive number.

If 1 6 - € < 7 x - 5 < 1 6 + € , (8)

then 1 6 - c + 5 < 7 x < 1 6 + € + 5, (9)

or 2 1 - € < 7 J C < 2 1 + C, (10)

or 3-y<x<3+y. (11)

If we use " =>" to signify "implies," we have just shown that (8) => (9) =>
(10) => (11). But each of the steps is reversible, so we can conclude that
(11) =* (10) => (9) => (8), or (11) implies (8), or if 3 - c/7 < x < 3 + c/7, then
16- c < Ix — 5 <16+ c; or, if x is within a distance of c/7 of 3, then
(Ix -5 ) is within a distance of c of 16; or, (Ix — 5) is within an arbitrary oc



2 distance, e, of 16 provided that x is within the distance c/7 of 3. This is just
Rate of change what is required to demonstrate that limJC_>3(7x -5 ) = 16, on the basis of

Definition 3.
Note that in the foregoing illustration we first guessed the value of the

limit and then demonstrated the correctness of the guess by showing that
the criteria of the definition of limit are fulfilled. This is a common
procedure.

Problem 2
Follow this procedure by guessing the value of limJC_>3(2jt+4) and then
showing that your guess is correct.

We now know the limits of two functions, given by (7x — 5) and (2x + 4),
as x -> 3. What can be said about the limit of their sum, as x -> 3; that is,
what is the value of limx _ 3[(7x — 5)+(2.x + 4)]? In Section 2.3 we intuitively
argued that if (7x — 5) is close to 16 and (2x +4) is close to 10, then their
sum is close to 26. It would be easy to demonstrate that 26 is the limit of the
sum of these functions by noting that (7x — 5)+(2.x + 4) = 9x — 1 and work-
ing with these expressions as we did in the illustration or as you did in
Problem 2. It will be more instructive to proceed in a different way:

We wish to ensure that (Ix — 5)+(2x + 4) is within a distance of 0.01, say,
of 26. Let us assign half of 0.01 to the function (Ix — 5), so to speak, and the
other half of 0.01 to the function {Ix 4-4). From the illustration we know
that

16- i(0.01) < Ix -5 <16 + i(0.01), (12)

provided that x is within a distance of ^(0.01)/7 of 3. Similarly, from
Problem 2 we know that

10-±(0.01)<2x+4<10+£(0.01), (13)

provided that x is within a distance of \(0S)\)/2 of 3.
Now, K0.01)/7 < i(0.01)/2. Hence, if x is within a distance of J(0.01)/7

of 3, it surely is within a distance of ^(0.01)/2 of 3. Thus, if x is within a
distance of ^(0.01)/7 of 3, both the extended inequalities (12) and (13) are
valid. By adding (12) and (13) we obtain

26-0.01 < ( 7 J C - 5 ) + (2JC +4) < 26 + 0.01.

This argument could be used equally well if 0.01 were replaced by 0.0001, or
by an arbitrary positive number c, thus showing that

Urn [(7JC-5) + (2JC+4) ]=26 ,
x -* 3

as predicted.
The very same argument can be used for any functions, / and g, to prove

the Theorem on the Limit of the Sum of Two Functions (2.3). It is
g g somewhat more complicated, but not different in principle, to establish the



Theorem on the Limit of the Product of Two Functions and the Theorem 2.5
on the Limit of the Quotient of Two Functions. Slope

A proof of the Theorem on the Limit of a Constant Function is confusing
because it is so easy: If f(u) = k9 a constant, we wish to show that
limM_a/(w) = /c, by using the definition of limit. We say that

if k-e<f(u)<k + e, (14)

then A:-c<A:<A; + e, (15)

so - e < 0 < e . (16)

But, indeed, zero does lie between - c and c for any positive number c, and
because the steps in the foregoing sequence are reversible, we know that
(16) => (15) => (14). Thus, f(u) lies arbitrarily close to k, not only for values
of u close to a, but for all a\

A proof of the Theorem on the Limit of the Function g(u) = u is also
"too easy": If g(w) = w, we wish to show that limM_>ag(w) = a, by using the
definition of limit. We say that

if a-e<g(u)<a + e, (17)

then a-e<u<a + e. (18)

The foregoing step being reversible, we know that (18) => (17). That is, if u
lies within distance c of a, then g(w) lies within distance c of a. This
completes the argument.

PROBLEMS

3. By direct use of the definition of limit, prove that if limM^aF(u) = L,
and if A: is a constant, then lim u^akF(u) = kL.

4. Using the definition of limit, prove the Theorem on the Limit of the Sum
of Two Functions:

if lim f(u)=p and limg(w) = #,
u -* a

then lim [/(w) + g(w)] = p + q-

Here is a start on the argument: We wish to show that (p + q)-t<f(u)
+ g(u) < (P + #)+ c> provided that u is sufficiently close to a. From the
definition of limit, we know that the hypothesis limM_a/(w) = p means
that p - e/2< f(u)< p + c/2, provided that u is sufficiently close to a,
that is, provided that a — dl<u<a + dl for some positive number dv

Similarly, limM _> ag(u) = q means....

2.5 Average slope in an interval and slope at a point

In connection with linear interpolation, we have made use of the character-
istic property of a straight line - that it rises (or falls) at the same rate



Rate of change

Fig. 2-2

Fig. 2-3

Fig. 2-4
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everywhere. That means, in Figure 2-2, that if Pl9 Qv P2, and Q2 are any
four points on the line and if RXQX and R2Q2 are parallel to the vertical axis
and PXRX and P2R2 are parallel to the horizontal axis, then

RiQi _ R2Q2
PXRX P2R2 •

(Note that these are directed line segments. If the line is falling to the right,
RiQx and R2Q2 are negative.) This ratio is called the slope of the line. It may
be helpful to remember the definition of slope in colloquial language:

rise
slope = .

run

Subscripts furnish a convenient notation for fixed values of a variable: xx

will denote a particular value of JC, x2 another value, and so on. If P has
coordinates (xl9 yx) and Q has coordinates (x2, y2)9 then the slope of the
line through P and Q equals (y2 - yl)/(x2 - xx)9 as seen in Figure 2-3.

A geometric interpretation of the material in Section 2.2 on average and
instantaneous velocities leads to results of great importance. In that section
we dealt with the relation y = 48 + 88/ - 16f2, where y was the height of a
rocket and t was the time. Figure 2-4 shows a graph of y = 48 + 88x - 16JC2.

The height of P above the x axis is 120; the height of Q above the x axis is
160; hence, the line segment RQ has length RiQ= 40. And, of course, the
line segment PR has length ~PR = 1.

The number that previously we have thought of as measuring the average
velocity in the interval t = 1 to t = 2 appears in the figure as the ratio
~RQ/T>R = 40. This is also the slope of the line through P and Q. We call this
the average slope of the curve between P and Q. In general, we have the
following:

Definition 5
If P has coordinates (xl9 yx) and Q has coordinates (JC2, y2\ with x2 # xl9

then, for any curve passing through P and Q9 the average slope of the curve
between P and Q equals (y2 - yl)/{x2 - xx). Alternatively, we call this the
average slope of the curve in the interval [JCX, x2].

The average slope may be positive or zero or negative.

Problem 1
For the curve that we have been considering, verify that between the points
(4,144) and (6,0) the average slope is -72. This corresponds to the fact that
for the rocket, the average velocity is - 72 ft/sec (or 72 ft/sec downward)
for the interval [4,6].

As in the development of the concept of instantaneous velocity, we
consider average slopes in smaller and smaller intervals to arrive at the



notion of "instantaneous" slope, or slope at a point: 2.5
Slope

Definition 6
The slope of a curve at x = a is the limit of the average slope of the curve in
an interval of length /*, with a as one end point of the interval, as h
approaches zero.

It may be that the limit of the average slope does not exist, in which case
we say that the slope of the curve at the point in question does not exist.

Example 1
For the curve whose equation is j> = 3 — 2x + x2, then

when;t = 4, >> = 3

*, y = 3-2(4+ /*) + (4 + hf

For h > 0, the average slope of the curve in the interval [4,4+ h] is

11 + 6/*+ /*2-11 6/* + h2
 c .

h = - ^ = 6 + A '

For h < 0, the average slope of the curve in the interval [4+ /*,4] is

again. As we know from the discussion in Section 2.3, lim/l^0(6+ h) = 6.
Thus, we conclude that the slope of this curve at x = 4 is 6.

For practice, let us use the same method to find the slope of this curve at

at* = - 3 ,

= 3 + 6-2/*+9-6/*+ /*2 =18-8/*+ /*2.

For h > 0, the average slope in the interval [ — 3, — 3 + h] is

18-8/* + /*2-18 -8/* + /*2
 o ,

h " h - - 8 + / * '

For h < 0, the average slope in the interval [ — 3+ h, -3] is also — 8+ h.
Because limA _0( — 8 +/*)=— 8, we conclude that the slope of the curve at
x = - 3 is - 8.

Let us find the slope of this curve at an arbitrary point:

If x = xx, then j> = 3 — 2x1-\-x
2.

If x = x1 + /*, then y = 3-2(x1 + h) + (xx + hf

= 3-2x1-2h + x2 + 2xxh + h2. g g



2 Thus, the average slope in an interval of length h, beginning or ending at xl9

Rate of change is

xh + h2)-(3-2xl + xf)

-2h
h

As we know from the discussion in Section 2.3, Umh^0( — 2 + 2xl + h) =
— 2 + 2^^ Thus, we conclude that the slope of this curve at x = xx is
- 2 + 2xv Note that if xx = 4, we obtain 6 as the slope, and if xx = - 3, we
obtain — 8 as the slope. Both results are in agreement with what we had
earlier.

Problem 2
Note also that if JCX = 1, the slope of the curve equals zero. Sketch the curve
and give an interpretation of this result.

Example 2
For the curve whose equation is y = x1/3, we have y = 0 at x = 0; and
y = h1/3 at .x = 0+A. Thus, the average slope in an interval of length h
beginning or ending at x = 0 is (h1/3 — 0)/h = l/h2/3. As we know from the
discussion in Section 2.3, limA_0(l//i2 /3) does not exist. Thus, we conclude
that the slope of the curve does not exist at x = 0.

Problem 3
Sketch the curve and give an interpretation of this result.

PROBLEMS

o 4. (a) For the curve with equation^ = x2, find the slope at x = 2; at x = 0;
at x = - 2 ; at x = xv Also find the average slope in the interval
[-2,2].

(b) Same as part (a) for the curve with equation y = JC3.
(c) Same as part (a) for the curve with equation y = x4.

o 5. For the curve with equation^ = f x2, find the slope at x = 2; at x = 0; at
x = - 2 ; at x = xv Compare with the results of Problem 4(a). Also find
the average slope in the interval [0,2].

o 6. For the curve with equation^ = x2 + 5, find the slope at x = 2; at x = 0;
at x = — 2; at x = jq. Compare with the results of Problem 4(a).

o 7. For the curve with equation y = x2 + JC3, find the slope at x = 2; at
x = 0; at x = — 2; at^: = x1. Compare with the results of Problems 4(a)
and (b).

o 8. (a) For the curve with equation y=l/x, find the slope at x = 2; at
9 0 x = 1; at x = — 1; at x = JCX. Any restriction on xx?



(b) Same as part (a) for the curve with equation y = l/x2. 2.6
(c) Same as part (a) for the curve with equation y = l/x3. Tangent to a curve

9. For the curve with equation y = 2 + 6x — JC2, find the slope at JC = 0; at
x = 2; at JC = 3; at x = 4; at x = xv Also find the average slope in the
interval [2,3].

10. For the curve with equationy = - 3 + 8JC + 2JC2, find the slope at x = - 3;
at x = - 2; at x = 0; at x = xv Also find the average slope in the interval
[-3,0].

11. For the curve with equation y = 2 + 3x, find the slope at x = xv

12. For the curve with equation y = 2 — 3x, find the slope at JC = xv

* 13. For the curve with equations

/ 3 J C + 4 9 , 0 < J C < 1 7 ,
y \ 100, 17 < JC < 30,

find the slope at JC = 1; at x = 0; at x = 20; at x = 17.
* 14. For the curve with equation y=Jx, find the slope at x = 4; at x = 0; at

JC = xv [Hint: See Problem 13(a), 2.2.]
* 15. For the curve with equations

- 1 8 + 12JC-JC2, J C > 3 ,

find the slope at JC = JCX.
* 16. For the curve with equations

lx2, x < 3 ,
y= 5, x = 3,

I - 1 8 + 12JC-JC2, J C > 3 ,

find the slope at JC = xx.
* 17. For the curve with equation^ = x1/3, find the slope at JC = xx ± 0. [Hint:

See Problem 13(c), 2.2.]
18. Try to express what might be meant by "the line tangent to a curve at a

point." Would it be satisfactory to say "a line that meets the curve at
only one point" or "a line that touches but doesn't cross the curve at the
point" or " the line perpendicular to the radius"?

* 19. For the curve with equation y = |x|, find the slope at x = 2; at x = 3; at
JC = - 1 ; at JC = xx # 0. What about the slope at JC = 0?

2.6 Tangent to a curve

The discussion of the preceding section leads to a satisfactory definition of a
tangent line. In Figure 2-5, the secant PQ2 seems to be a better approxima-
tion than the secant PQX to what we intuitively think of as the tangent at P,
and the secant PQ3 is a still better approximation. We might attempt
something like this: The tangent at P is the limiting position of secants PQ 91
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as Q approaches P along the curve. Whereas such a statement seems to
incorporate the salient feature with which we are concerned, it is not
satisfactory as a definition because of the vagueness of the phrase "limiting
position." We have defined limits for the values of functions - real numbers
- not for "positions." We can make the shift from the vagueness of our
attempted formulation to a satisfactory definition of tangent line by using
the concept of slope, as follows:

Definition 7
The tangent to a curve at a point of the curve is the straight line through
that point whose slope equals the slope of the curve at the point. If the slope
does not exist because the average slope increases without bound as the
length of the interval approaches zero, then the tangent is the vertical line
through the point in question; likewise if the slope does not exist because
the average slope decreases without bound. If the slope does not exist for
any other reason, then the tangent does not exist.

Example 1
Let us investigate the tangent to the curve with equation y = x2 at the point
(3,9).

Problem 1
Verify that at the point (3,9) the slope of this curve is 6.

Thus, the tangent at the point is the line through (3,9) with slope 6, as seen
in Figure 2-6. We know that the equation of a nonvertical line can be
written in the form y = ax + b, where a is the slope. Therefore, the equation
of this tangent has the form y = 6x + b. Because the equation must be
satisfied by x = 3, y = 9, we conclude that 9 = 6 • 3 + b, or b = — 9. Thus, the
equation of the tangent line at (3,9) is y = 6x — 9.

Problem 2
Verify that the slope of this curve at any point (jcl5 x

2) is 2xv Thus, the
tangent at this point is the line through (xl9 x2) with slope 2xv

Problem 3
Follow the same steps as before to find that the required tangent has
equation y = 2xYx — x2. In particular, if xx = 0, the tangent has equation
y = 0. Sketch the curve and interpret this result.

Example 2
As was found in Problem 14, 2.5, at the point (4,2) the slope of the curve
with equation y=Jx is \.



Problem 4 2.7
Use the same steps as in the preceding Example 1 to obtain the following The derivative
equation for the tangent to this curve at (4,2): y = \x +1.

PROBLEMS

In Problems 4-10, 2.5, you were asked to find the slopes of certain curves at
certain points on those curves. As Problems 5-11 for this section, find
equations of the corresponding tangent lines.

In Problems 14 and 17, 2.5, you were asked to find the slopes of certain
curves at certain points on those curves. As Problems 12 and 13 for this
section, find equations of the corresponding tangent lines.

2.7 The derivative

We have been nibbling away at a problem that concerned many of the best
mathematicians of the seventeenth century: Just how do we determine the
tangent to a given curve at a given point of the curve? For a circle, the
problem is simple: We merely draw the perpendicular to the radius at
the given point. Likewise, for certain other curves, ad hoc methods suffice.
But Newton, building on the work of Descartes, Fermat, and others, took a
great step forward in this "problem of tangents" by developing a method of
great generality. This is the core of the differential calculus.

If the equation of a curve is y = f(x), then, as we have seen several times
already, the slope of the curve at x = xx is

For each xx of a certain domain, the foregoing limit has a definite value.
Thus, if there is at least one real number xx for which it exists, the limit
determines a function, called the derivative of / .

Definition 8
Let/be a function. Then the derivative of / i s a function,/', given by

- lim
h-*0

provided this limit exists.

The domain of / ' is not larger than the domain of / . Sometimes / ' is
called the first derived function of/. The phrases "derivative of/" and "first
derived function of/ " have the connotation of a function obtained from/ -
but obtained in a very definite way. The process by which we obtain/' from
/ is called differentiation. 9 3



2 In Problem 4, 2.5, you should have obtained the following results:
Rate of change

For the curve with The slope at the point
equation y = where x = xx is

x~2 2xx

x 3 3x2

X QX-t

Problem 1
On the basis of these data, what is your guess as to the slope of the curve
y = xn at x = xv for any positive integer AZ?

In order to find the derivatives as given in the foregoing table, we used the
expansions of (x + h)2, (x + h)3, and (x + h)A. In the general case, with
f(x) = xn, we write/(A: + h) = (x + h)n. We do not actually need the details
of the binomial theorem; it is sufficient to know that

(x + h)n = xn + n-xn~l-h + terms involving A2, /*3,...,/*\

Then

f(x + h)-f(x) = (x + h)"-xn

= n-xn~l-h + terms involvingh2, h3,...,hn.

For h * 0,

involving/*,

On the right side of this equation, as h -> 0, every term after the first
approaches zero. Hence, if n is a positive integer,

as you doubtless had guessed. Thus:

If f is given by f(x) = xn, with n being a positive integer, then V is
given by f(x) = nxn~1.

Problem 2
What result does this formula give for n = 1? Is this what you expected from

94 other considerations?



Now let us see what happens if the exponent is a negative integer. In 2.7
Problem 8, 2.5, you should have obtained the following results: The derivative

For the curve The slope at the point
with equation y = where x = xx =t 0 is

x

1

1 3

— = x 3

Note that these are the same values we would obtain if we used the formula
for the derivative that we established with n SL positive integer. It looks as
though that formula applies if n is a negative integer, as well.

If we try to follow the preceding proof exactly, we run into a snag,
because the expansion of(jc + A ) " does not come to an end - it results in
what is known as an "infinite series." We get around the difficulty in the
following way: Suppose f(x) = xn, where n is a negative integer. Let us set
n = — m, where m is a positive integer. Then

j ^ and * + *) .
{x + h)

(If x # 0, h can be taken so small that x + h # 0, so that x + h lies in the
domain of/.) Then

f(x) ^ u ^ m ^ , xm m

(x + h) x (x + h) -xm

_xm - [xm + mxm~1h + terms involving h2
9 h3,...,hm~l]

~ (x + h)mxm '

Problem 3
Finish the argument by simplifying the numerator of this last fraction,
dividing by A, and using the limit theorems, to obtain

= lim

Because - m = «, this is equivalent t o / r ( ^ ) = ^ " ~ \ as predicted.

Problem 4
Show that the same formula applies if the exponent is zero, and interpret
the result geometrically. 9 5



2 We can combine these results into a single formal statement.
Rate of change

Theorem 1
If f(x) = xn, n any integer (positive, negative, or zero), then/'(*) = nxn~l.

Indeed, the method of Problem 14, 2.5, shows that if f(x) = ]fx = xl/2,
then f'(x) = jx~l/2, and the method of Problem 17, 2.5, shows that if
/(*) = JC1/3, then/'(*) = T*~2/3. Thus, the formula of Theorem 1 for the
derivative of a function also is valid for n = \ and \. We shall later establish
that the same result is true for any rational number «, as we shall
demonstrate in Chapter 4 when we have more tools. Indeed, the same
formula applies for any real number «, but we shall not attempt a proof.

We now know that if / ( X ) = JC2 and g(x) = x3, then f'{x) = 2x and
g'(x) = 3x2. What can we say about the derivative of F(x) = / (*)+ g(x) =
x2 + x3l If we work it out from first principles, that is, investigate
limA_0{[F(jc + h)-F(x)]/h}9 we shall find that

F'(JC) = 2x +3x2 = / ' ( * ) +g ' (* ) .

This is a general result:

Theorem 2
If F is the function / + g, where / has derivative / ' and g has derivative g',
then Fhas a derivative, F\ and F' = f' + g'. ("The derivative of the sum of
two functions is the sum of their derivatives.")

The proof of this comes quickly from our result in Section 2.3 that "the
limit of the sum equals the sum of the limits." The theorem immediately
extends to the sum of three or four or any finite number of functions.

Another important question arises: If we know the derivative of a
function/, what can we say about the derivative of the function kf, where k
is a constant? For example, if f(x) = x2, then we know/'(*) = 2x; what
about the derivative of 5x2? If we work out the derivative of 5x2 from first
principles, we shall quickly see that it is 5 times the derivative of x2. This,
too, is a general result:

Theorem 3
If G is the function k-f, where A: is a constant, and the derivative o f / i s / ' ,
then G has a derivative, G\ and G' = k-f. ("The derivative of a constant
times a function equals the constant times the derivative of the function.")

The proof of Theorem 3 is an easy consequence of the result of Section
2.3 that " the limit of a constant times a function equals the constant times
the limit of the function."

Because any constant function, f(x) = A:, can be written as f(x) = k-x°,
9 6 we know that/ '(*) = 0. ("The derivative of a constant is zero.") We can see



this geometrically: The graph of y = k is a horizontal straight line, the slope 2.7
of which is zero everywhere. The derivative

The (specific) formulas embodied in Theorem 1 and the (general) for-
mulas embodied in Theorems 2 and 3 enable us to find the derivative of any
polynomial function

a0 + aYx + a2x
2 4- ••• +anx

n,

where the a's are constants and n is a positive integer. For example, if

f(x) = 3 + 2x - 4x2 + x3/2 - x4 + f x5, then

In fact, because Theorem 1 also applies in case the power of x is negative,
we can differentiate not only polynomials but also some other functions. We
can, for example, differentiate

to obtain

and

/'(x) = 6x + l+^r-4>
x2 x3

, v 1+X 1 1

*(*) = —— = — + —
x4 x4 xJ

to obtain
-28 3g'(x)
x5 x4

Warning! The theorems on limits and the elegant results on derivatives
may tempt you to draw some unwarranted conclusions. For example,
although " the limit of a product is equal to the product of the limits," the
derivative of a product is not equal to the product of the derivatives.
Consider the function given by f(x) = r(x)-s(x), where r(x) = x3 and
s(x) = JC2. Then f(x) = x5, of course. Now, f\x) = 5JC4, r\x) = 3x2, s\x)
= 2x. But 5x4 is not equal to 2>x2-2x. The correct formula for the derivative
of a product is obtained in Chapter 4; until then, if we need the derivative
of a product, we must multiply out (if possible) and apply Theorems 1, 2,
and 3. Similarly, the derivative of a quotient is not equal to the quotient of
the derivatives - just try f(x) = x3/x2.

Still another possible mistake occurs in finding the derivative of a
function like G(x) = (x2 +1)2. It is tempting - but incorrect! - to write
2(JC2 +1) for G\x). Actually, G(x) = x4 + 2.x2 +1, by the Binomial Theo-
rem, so G\x) = 4x3

 +4JC, which is not equal to 2(JC2 +1). For now, the only
method we have for finding G\x) is that of first "multiplying out" (as
described earlier); in Chapter 4 we shall find an alternative method. 9 7



Rate of change
To recapitulate: The derivative of a function/(x), if it exists, is defined

for any x as

Table 1-1

t

0
1

2

3
4

5
6
7

8
9

10

A

4.4

6.8
10.2

14.4

19.2
24.2

28.6
32.2

34.8
36.7

38.0

4 6
f (hr)

10

Fig. 1-2
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This is a concept of great generality and many interpretations, of which we
have considered two:

(a) If y = f(x) is the equation of a curve, / ' (*i) is the slope of the curve
( = the slope of the tangent to the curve) at the point where x = xv

(b) If the displacement, y, from a fixed point at time x of a particle
moving on a straight line is given by y = f(x), then the (instantaneous)
velocity at time xx is/ '(*i).

Both foregoing examples are special cases of the general concept of rate of
change: If x andy are any related quantities, withj> a function of JC, then the
average rate of change of y with respect to x in the interval [xl9 xx + h] is
defined as the change in y divided by the change in x9 and the instantaneous
rate of change of y with respect to x at xx is defined as the limit of the
average rate of change in an interval of length h, with xx as one end point,
as h approaches zero.

For example, in the case of the problem of the bacterial population in
Section 1.2 (Table 1-1), we have at t=l, ,4 = 6.8, and at f = 3, A =14.4.
Hence, the average rate of change of A with respect to /, in the interval [1,3],
is ^fE^ = "-f = 3.8 (mm2/hr).

Problem 5
Check from Table 1-1 that the average rate of change in the interval [0,4] is
3.7 (mm2/hr).

Assuming the validity of the formulas in Section 1.7 for expressing the
variation of A with /, namely,

= /0 .4/ 2+2.1f+4.4 , 0 < f < 4 ,
\ -0.4*2+8.7f-9.2, 4<f<10 ,

we obtain, for the instantaneous rate of change at any time t such that
0 < t < 4, f\t) = 0.8* + 2.1. Hence, at t = 2, / ' ( / ) = 3.7 (mm2/hr). This can
be interpreted as the slope of the tangent to the graph shown in Figure 1-2
at t = 2 (Figure 2-7).

Problem 6
Obtain the formula/'(0 = -0.8* + 8.7 valid for any / such that 4 < t <10.
What, then, is the value of f'(5)7

Problem 7
At / = 4, f'(t) does not exist. Why? The graph, then, is not smooth at t = 4.



The question "How fast does one quantity change with another?" is
interpreted to mean "What is the rate of change of the first quantity with
respect to the second?" and is answered by calculating the derivative. Our
Theorems 1, 2, and 3 enable us to do this now for quite a broad class of
functions, and we shall learn later how to find the derivatives for some
others. But before doing that we shall investigate other uses of the deriva-
tive.

A closing observation: Keep clearly in mind the distinction between the
value of a function and the value of the rate of change of that function. It is
possible for f(xx) to be large and/'(*i) to be small, foTf(xx) to be positive
and/'(*i) to be negative, and so forth. Clearly, if fix) has large positive
values over the interval [xl9 x2] , then/(x2) will be much larger than/(x1),
but there is no correlation between the value of f(x) at x = xx and the value
of f\x) there (Figure 2-8).

PROBLEMS

8. Make rough sketches of small pieces of graphs that exhibit each of the
following at x = xx:
(a) /(xx) a small positive number, f\xx) a large positive number
(b) f(xx) a large negative number, f\xx) a small positive number
(c) f(xx) zero, f'(xi) a large negative number
(d) f(xx) a large positive number, f\xx) zero
(e) /(*!> a small negative number, f\xx) a large negative number

9. Find/ ' in each of the following cases:

fix) = \ W/(*>--£
(e)

(i)

(k) f(t) = a + bt + ct2, where
a, b, and c are constants

(f) /(/)=-18 + 2/-i

(h)f(x) = (x-±)2

(3*)

(1)

10. For each of the curves given by the following equations, find an
equation of the tangent line at the point on the curve that has the given
value of JC:

(a) y = x2 + 3x — 1, at x = — 1 (b) y = —, at x = 2

2.7
The derivative

15

10

slope of tangent = 3.7

1 2 3 4

Fig. 2-7

(c) y = -x3 +5, - 3

Fig. 2-8 "I didn't say the prices were
tapering off. I said the increases were
tapering off." (Drawing by Modell; ©
1974, The New Yorker Magazine, Inc.)



2 ° 11. For the curve given by the equation

Rate of change y = f(x) = \x'

(a) calculate the height and the slope of the curve at the points where
J C = - 1 , 0, 1,2, 3, and 4,

(b) sketch the curve, using the same scale on the vertical axis as on the
horizontal axis,

(c) write the equation of the tangent line to the curve at the point where
x = 0, where x = 2, where x = 3.

12. A particle moves on a straight line so that its displacement (s ft) from a
point on the line varies with the time (/ sec) as follows:

(a) Find a formula for the velocity of the particle at any time.
(b) When is the particle stationary? That is, when is the velocity equal

to zero?
* 13. F ind/ ' in each of the following cases:

(0, x = 0
(c)/(x)= 2L x # 0 (d)/(x) = |*2 + *"2|

I \x\*
14. For the example of the flooding river (Problem 3, 1.4), the formula for

the level (L ft) in terms of time (/ hr) is as follows:

L = 0.5 + 2.1/ -0.lt2.

(a) What is the rate of change of L with respect to / at t = 1? At t = 3?
At / = 6?

(b) When is the rate of change of L with respect to t equal to zero?
What is the significance of your answer?

* 15. What is the value of each of the following?

t. (3+/01 0 1-31 0 1 ,. (3+/01 0 1-31 0 1 ,. (3+/01 0 1-31 0 1

hm , hm — , hm —
A — o n h^o }/h h^o h

* 16. Find the value of

^1/(2+^-1/32

17. Find a formula for the derivative (including its domain) in each of the
following cases, and draw graphs of the functions:

-5 + %x-x2, 2 < x < 5

100



18. A function/is defined as follows: 2.8
Guessing limits

( 5 , 0 < x < l , with a calculator
/ (* )= 10, 1<*<2,

115, 2 < * < 3 .

(a) Draw a graph of y = f(x).

(c) limJ c^3 / 2/(x)= ; Iim;c_>2/(x) =
(d) The average slope of the graph from x — \ to x = f is
(e) The average slope of the graph from x = 1 to x = f is
(f) The slope of the graph at JC = f is
(g) The slope of the graph at x = 2 is

* 2.8 Guessing limits with a calculator

Often, in establishing that ftmx^af(x) = L, we must begin by guessing L.
Sometimes it is easy to guess this number; but, when it is not, it is usually
helpful to do some calculations - to calculate the values of f(x) for x's
closer and closer to a, in an effort to discover some "pattern." A calculator
or computer can save us a lot of labor. But there are limitations, and it is the
purpose of this section to make you a little cautious in using what is, most
of the time, an excellent tool.

Generally, the limitations lie in the finiteness of the calculator, which
must truncate and round nonterminating decimals. The most common
problem is loss of accuracy through cancellation of significant digits by
subtraction.

For example, if we return to the definition to find / ' ( I ) for f(x) = x2, we
need

hm

Of course,

/ Q 2 - ! _ 1 + 2A + h2-!

and we recognize that the limit is 2.
If we ask the calculator for the value of A = [(1 + h)2 - l]/h for some

(small) h9 it should give us 2 + h for that h. The results for one calculator are
given in Table 2-1. 1 01



Table 2-1

Rate of change
h

10-4

-10~ 4

lO"5

8-HT10

5-HT10

(l + hf-l
A h

2.0001
1.9999

2.00001
2.0000000008
2.0000000005

Calculator's approximation

2.0001
1.9999

2.0
2.5 (!)

4.0(!)

Table 2-2

n

(number of
sides of
the polygon)

6
12

384
768

1536
3072
6144

X

(length of the
side of a polygon
of n sides)

1

0.51764

0.01636
0.00818
0.00409
0.00205
0.00102

P

(perimeter

of a polygon
of n sides)

6

6.21166

6.28311
6.28316
6.28316
6.28297
6.28372

7T

(approximately
equal to P/2)

3

3.10583

3.14156
3.14158
3.14158
3.14149

3.14186

y
(length of the
side of a polygon
of In sides)

0.51764

0,26105

0.00818
0.00409
0.00205
0.00102
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Much the same thing can happen in sequential calculations, such as those
of Problem 8, 1.13, in which we found approximations to TT by inscribing
regular polygons of increasing numbers of sides in a circle of radius 1. We
used the fact that if x is the length of the side of a regular polygon of a
certain number of sides, then y9 the length of the side of a regular polygon
of twice the number of sides, is given by y2 = 2 — ]/4— x2 . The use of a
calculator gives rise to Table 2-2.

Actually, TT « 3.14159, so that the inscribed polygon of 768 sides gives
us the closest result, and later the approximations become worse - not
because of the approximating method, but because cancellation in y2 =
2 — ^4— x2 as x gets small means that the calculator approximations do not
get better beyond a certain point. Different calculators will produce slightly



different numbers in this example because of variations in the numbers of 2.9
digits used and in their rounding procedures. But all of them will, at some Review
point or another, show the same kind of worsening in their approximations
to IT.

Archimedes used essentially our method, with circumscribed as well as
inscribed polygons, to obtain 3% < IT < 3^; 3̂ ? « 3.141, and 3j « 3.143, so
he achieved accuracy of about 0.002.

To find approximations to w correct to many decimal places, we need
other methods not so sensitive to calculator round-off error.

PROBLEMS

C 1. (a) In Problem 13(a), 2.2, you were asked to guess the value of
lim/l_0[(v/4+ h —2)/h]. Use a calculator to make a table of ap-
proximations to (\/4 + h — 2)/h for small h, using finer gradations
when the estimates seem to be deteriorating. (One good calculator
gives 0.4 for h = 2.5x 10"9; another gives 37.5 for h = 8 X10"10.)

(b) Problem 14(a), 2.2, suggests rewriting the expression (/4+ h — 2)/h
by "rationalizing the numerator" to obtain l / ( /4 + h + 2). The limit,
then, equals what?

C 2. Use a calculator with a yx key to guess limx_ojcx (x must be positive).
C 3. (a) Perform the following sequence of calculations, and guess what limit

is being approached:
(i) take the square root of 6;
(ii) add 6 to the result of (i);

(iii) take the square root of the result of (ii);
(iv) add 6 to the result of (iii);
(v) take the square root of the result of (iv);

(b) Same as (a), starting with the square root of 20.
(c) Same as (a), starting with the square root of 30.
(d) Demonstrate that if the limits in (a), (b), and (c) exist, they must be

the numbers you guessed.

2.9 Review

In reviewing the material in this chapter, the 10 topics mentioned at the
start should be helpful to you. You should begin to appreciate the power of
differentiation in providing the answer to how fast one quantity changes
with another. 1 0 3



2 PROBLEMS
Rate of change S a m p | e ^ ( P r o b | e m s U7)

1. Find/ ' in each of the following cases:

3x3

(c)f(x) (x )
2. For the curve given by y = / ( * ) = JC3 - 3JC2 + 4, calculate the height and

the slope of the curve at the points where x = 0, 1, and 2. Write an
equation of the tangent line to the curve at the point where x = 1; where
x = 2.

3. A particle moves on a straight line so that its displacement (s ft) from a
point on the line varies thus with the time (t sec): s = 20t — t2.
(a) Find a formula for the velocity of the particle at any time.
(b) When is the particle stationary? That is, when is its velocity equal to

zero? At that time, what is the displacement of the particle?
(c) When does the particle return to its starting point?
(d) How far does the particle travel before it returns to its starting

point?
(e) What speed does the particle have when it returns to its starting

point?
4. How close does x have to be to 3 in order to ensure that 5x + 2 differs

from 17 by no more than 0.01? By no more than c? Explain clearly how
you know your answers to be correct.

5. Find the coordinates of a point on the graph of y = x2 + 1 where the
tangent line has the same slope as that of the line joining the points on
the graph with x = 1 and x = 5.

6. Sketch a graph of a function / , given by y = f(x), 3 < x < 9, such that
/(3) = 2, /(7) = 10, /(9) = 5, and / ' (7) = 0, and
(a) / ' (3) = 4 and the values o f / ' decrease as x increases from 3 to 7;
(b) / ' (3) = i and the values of / ' increase as x increases from 3 to 5 and

decrease as x increases from 5 to 7.
7. Let g be the function given by

(a) What is the domain of g'?
(b) Express g' by a formula or formulas over its domain.

8. Let / be the function from x to y given by y =100/ (x — 2)2 over the
natural domain. What is Dfl Rfl Is the inverse o f / a function? Explain.

9. Find F' in each of the following:
3.x2 1

5 +2 2x2

104 0>) F(O = ?(/-1)2 (c) F(i



10. An ant crawls up the trunk of a tree and then slips back down, its height 2.9
above the ground (s in.) varying with the elapsed time (t min) as Review
follows: s = 9t2 -1\
(a) Find a formula for the velocity of the ant.
(b) When is the ant stationary (i.e., velocity = 0)?
(c) When does the ant return to ground level?
(d) What is the speed of the ant when it returns to ground level?
(e) How high does the ant get before starting to slip back?
(f) What is the ant's average speed from the start until returning to

ground level?
11. For the curve with equation j> = (x2 — 3x +28)/x, find the coordinates

of a point P on the curve between the points where x = 1 and x = 4 such
that the tangent line at P has the same slope as the line joining the
points on the curve where x = 1 and x = 4. Find the equation of this
tangent line.

* 12. How close does x have to be to 2 to ensure that 5^ — 3 differs from 7 by
no more than 0.05? By no more than €? Explain clearly how you know
your answers to be correct.

13. Draw a neat sketch of a function/, given by y = f(x), — 2 < x < 4, such
that / ( - 2 ) = 0, /(0) = 2, /(2) = 0, /(3)= - 1 , / ' ( - l ) = 0, / ' (0)= " i ,
/ '(*)>0for3<;c<4.

* 14. Consider the function defined by

JC2, 3 < J C < 5 .«*)-{£
(a) Does ]imx^3F'(x) exist? Explain.
(b) Does F'(3) exist? Explain.

15. Consider the function given by the equation y = 20/(x +1) for — 3 < x
<4.
(a) For what value or values of x in this interval is y undefined?
(b) Plot the graph of this function, using the same scale vertically and

horizontally.
(c) Find the average rate of change of y with respect to x from x = 0 to

x = 3.
(d) Find the average rate of change of y with respect to x from x = 1 to

JC=1 + /I.

(e) Hence, find the instantaneous rate of change of y with respect to x
a t x = l .

(f) Exhibit your answer to (c) by showing the slope of a certain chord
of your graph, and exhibit your answer to (e) by showing the slope
of a certain tangent to your graph. What can you say about this pair
of lines?

16. A car is traveling north on High Street (Figure 2-9). (a) What is the
definition of its average speed between a point P in front of Fisk Hall 1 0 5



2 and a point Q in front of Downey House? (b) What is the definition of
Rate of change its instantaneous speed at PI

17. If/(jc) = x2, what is the value of/(3)? Of/(3 + /i)? O f / ( 3 + / J ) - / ( 3 ) ?
Of [/(3 + *)-/(3)]/A? Of

18. Find g' in each of the following cases:

(a) f ' J L

60
X

Downey
House

Fisk Hall

2 3x3

(b)

(c)

(d)g(0=
2

19. Obtain the answer to Problem 18(b) by use of the definition of the
derivative.

20. The height (s ft) above the ground of a vertically fired projectile varies
with the time (t sec) after firing as follows: s = 4 + 96t - 16t2.
(a) From what height was the projectile fired?

I (b) When was the projectile stationary? (That is, when did its velocity
equal zero?) What was its height at that time?

(c) When was the projectile at the 84-ft level, rising? Falling? What was
the speed of the projectile at each of these times?

(d) How far did the projectile travel before hitting the ground?
* 21. How close does x have to be to 4 to ensure that 6.x —2 differs from 22

by no more than 0.05? By no more than €? Explain clearly how you
know your answers to be correct.

22. (a) Find the coordinates of all points on the curve y = 2x3 where the
tangent line to the curve has the same slope as the line joining the
point on the curve where x = 1 to the point on the curve where

* (b) Find the coordinates of all points on the curve y = ex3 (c constant)
where the tangent line to the curve has the same slope as the line
joining the point on the curve where x = xx to the point on the curve
where x = x2.

23. Find the equation of the tangent line to the curve y = 6x - x2 at the
point on the curve where x = 2. Where x = 3.

24. F ind / ' in each of the following cases:

25. Obtain the formula for / ' in Problem 24(a) by using the definition of
derivative.

26. For the curve given by y = 2x3 —3x2— Ylx + 1 , calculate the height and
slope of the curve at the points where x = — 1, 0, and 1. Write the
equation of the tangent line to the curve at the point where x = — 1.

106 Where x =1.



27. The height above the ground (y ft) of a vertically fired rocket varies 2.9
with the time (t sec) after firing as follows: y = 80 + 64/ -16/2 . Review
(a) From what height above the ground was the rocket fired?
(b) Find a formula for the velocity of the rocket at time /.
(c) When was the rocket stationary? That is, when was its velocity equal

to zero?
(d) When did the rocket hit the ground?
(e) What was the total distance traveled by the rocket?
(f) With what speed did the rocket hit the ground?

28. (a) Find the coordinates of all points on the curve y = 24/x where the
tangent line to the curve has the same slope as the line joining the
point on the curve where x = 2 to the point on the curve where
x = 8.

* (b) Find the coordinates of all points on the curves = a/x (a constant)
where the tangent line to the curve is parallel to the line joining the
point on the curve where x = xx to the point on the curve where
x = JC2.

29. Sketch a graph of a function F given by y = F(x), 0 < x < 10, such that
F(0) = 3, F(2) = 1, F(7) = 5, F(10) = 1, F'(0) = - 2, F\2) = 0, F\l) = 0,
F ' ( 1 0 ) = - i , F' increases throughout 0 < x < 4, F' decreases
throughout 4 < x < 8, and F' increases throughout 8 < x < 10.

C 30. For the geometric series l + r + r2 + r 3 + • • •, find the approximate
value of the sum of 5 terms, of 10 terms, and of 15 terms for the
following values of r:
(a) i (b) 1 (c) i (d) i (e) £ (f) f
(g) f (h) A (i) A (0 - *
In each case, guess the value of the limit of the sum as the number of
terms increases indefinitely. Check your guess using the formula for the
"sum to infinity" of a geometric progression (see Section 0.12 if you do
not know this).

C 31. For the series that begins 4— y + f — 7 + 9 — ir> find the approximate
value of the sum of the first 20 terms and of the first 30 terms, and try to
guess the value of the limit of the sum as the number of terms increases
indefinitely. (Use a programmable calculator. The trouble here is not
cancellation, but slow convergence. It takes close to 200 terms to get
accuracy to two decimal places.)

C32. For the series that begins l + 2x + 3;c2 +4x3
 +5JC4, find the approxi-

mate value of the sum of the first 10 terms and of the first 20 terms for
these values of x:
(a) \ (b) \ (c) \
In each case, try to guess the value of the limit of the sum as the number
of terms increases indefinitely.

33. Let F be the function from x to y given by y = \̂ 8 + x3 over the natural
domain. What is DF? RF1 Is the inverse of F a function? Explain. 1 0 7



2 34. Draw a neat sketch of a function / given by y = f(x\ 0 < x < 6, such
Rate of change that /(0) = l; the tangent to the curve at the point where x=\ has

equation y = 1 + x\ /(2) = 5; /'(4) = 0; f\x) < 0 for 4 < x < 6; /(6) = 0.
* 35. Sketch a graph of the function given by y = |x2 -7x +10|, 0 < JC < 7,

and find formulas for y\ showing clearly the domain of each formula.
36. Find/ ' in each of the following cases:

37. For the curve given by f(x) = x3 — 4x2 + 4x, calculate the height and
the slope of the curve at the points where x = 0, 1, and 2. Write an
equation of the tangent line to the curve at the point where x = 1; where
x = 2.

38. Let F be the function from x toy given by y = ^36 — x2 over the natural
domain. What is DF1 RF1 Is the inverse of F a function? Explain.

39. Find/ ' in each of the following cases:

(<2

40. A rock climber is making a difficult ascent, up a vertical chimney, with
the height (s ft) above the bottom varying with the time (t min) as
follows: s = 4t3 - t4.
(a) Find a formula for the velocity of the climber.
(b) For what t 's was the velocity positive?
(c) When had the climber slid back to the bottom of the chimney?
(d) What is the greatest height attained by the climber?
(e) What is the speed with which the climber hits the bottom of the

chimney?
(f) What is the average speed of the climber from the start until hitting

the bottom of the chimney?
41. For the curve with equation^ = x3 — 3x — 2, calculate the height and the

slope of the curve at the points where x = — 1, 0, and 1. Write the
equation of the tangent line to the curve at the point on the curve where
x = 0; where x =1.

42. Draw a neat sketch of a function / , given by y = / (*) , 1 < x < 7, such
that the tangent to the curve at the point where x = 1 has equation

43. Find/ ' in each of the following cases:

44. A particle moves on a horizontal straight line so that its displacement (x
cm) from a certain point A on the line varies thus with elapsed time (t
sec): x = 6t2 — t3. Directions to the right of A are positive; to the left of

1 0 8 A, negative.



(a) Find a formula for the velocity of the particle at any time. 2.9
(b) When is the particle stationary (i.e., velocity = 0)? How far has it Review

then traveled?
(c) Where is the particle at the start, when / = 0?
(d) Locate, relative to point A, the point B at which the particle has

velocity = — 63.
(e) What is the average speed of the particle in traveling from A (at the

start) to Bl
45. Consider the curve given by the equation y = x2—3x+5.

(a) What values of y correspond to x = 2 and x = 6?
(b) What is the equation of the line joining the points on the curve

where x = 2 and x = 6?
(c) Find the coordinates of the point on the curve where the tangent

line is parallel to the line of (b).
(d) Find the equation of the tangent line of (c).

* 46. If Q = 10JC - 3 , what is your guess as to the value of limx^2Ql Using
the definition of limit, demonstrate that your guess is correct.

47. Let G be the function from x to y given by y = \64—x2 over the
natural domain. What is DG? RG1 Is the inverse of G a function?
Explain.

48. Draw a neat sketch of a function/, given by y = /(JC), - 1 < x < 5, such

= - 1 .
* 49. By using the definition of derivative, find a formula for / ' (* ) if

+1)2.
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Applications of
the derivative

In this chapter we shall apply the derivative to the solution of five important
types of problems:
1. Determination of regions in which functions increase, or decrease
2. Finding approximations to the changes (increments) in functions corre-

sponding to small changes in the independent variable
3. Study of "marginality," especially marginal cost, in economics
4. Locating the extremes - maxima and minima - of functions
5. Approximate solution of equations

We shall devote most attention to type 4, because although the mathe-
matical ideas are simple, it takes practice to translate the words of a
practical problem into the equations to which we can apply the techniques
of differentiation.

(a)

25

10

-

;

5M i
1 3

/

/F{x) = x2

i i

5

Fig. 3-l(a)
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3.1 The Mean-Value Theorem

We begin with a discussion of the Mean-Value Theorem, which will be
applied in the next section to deal with the first of the kinds of problems in
this chapter - the determination of regions in which functions increase, or
decrease. This theorem is a central result of the calculus, and we shall
encounter it again in Chapter 5.

The Mean-Value Theorem is related to a type of problem you met in
Chapter 2, in which you found points on a curve where the tangent line was
parallel to a chord joining two points of the curve. You will gain a feeling
for the theorem by working through the following problems of the same
type:

Problem 1
On the graph of y = x2, let P be the point with abscissa 1 and Q the point
with abscissa 5. Sketch the graph, and on the curve between P and Q find
any points where the tangent line is parallel to the chord PQ.



Problem 2
Same as Problem 1, for y ••
abscissa 2.

••x3, with P having abscissa — 2 and Q having
3.1

The Mean-Value Theorem

Problem 3 <b)

Same as Problem 1, for y = x2/3, with P having abscissa — 1 and Q having

abscissa 1.

You should have found that, for the graph of F(x) = x2, there is one point

(with abscissa 3) between P and Q where the tangent line is parallel to the

chord PQ, as seen in Figure 3-l(a); for the graph of F(x) = x3, there are

two points (with abscissas ± 2 / ^ 3 ~ « ±1.15) between P and Q where the

tangent line is parallel to the chord PQ, as seen in Figure 3-l(b); and for the

graph of F(x) = x2/3, there is no point between P and Q where the tangent

line is parallel to the chord PQ, because the slope of PQ equals zero, and

F'(x) = 2/3x1/3, and there is no number x for which 2 / 3 x 1 / 3 = 0; the

situation is pictured in Figure 3-l(c). The feature that distinguishes the last

case from the other two is that the graph of F(x) = x2/3 is not smooth - the

derivative, F\x), does not exist at x = 0. Thus, a conjecture might be the

following:

If F(x) has a derivative for all numbers in the interval [a, b], then there is

at least one point on the graph of F(x) between P (a, f(a)) and Q (b, f(b))

where the tangent line is parallel to the line PQ.

This conjecture is true, but we shall not prove it. In fact, the hypotheses

can be weakened a bit: It turns out to suffice to assume that F(x) is

continuous in [a, b] - meaning that its graph is unbroken from a to b, both

ends included - and has a derivative for all numbers in the open interval

(a,b).
The valid result just quoted is called the Mean-Value Theorem, pictured in

Figure 3-2. Its analytic formulation goes as follows:

Mean-Value Theorem
If F(x) is continuous for all x in [a, b] and \iF'(x) exists for all x in {a, b),
then there is at least one number, z, in (a, b) such that

Note that the conclusion can equally well be written F(b)— F(a) =

F'(z)-(b- a). It is often convenient to use this form of the conclusion of

the Mean-Value Theorem.

This statement is an example of what is called an existence theorem: It

asserts the existence of z, but it does not tell us how to find it. In the simple

cases we have investigated, we have been able to find the value (or values) of

z, but in a complicated case this is unlikely to be possible. We shall discover

it to be useful to know that z exists, even if we do not know the value.

Fig. 3-l(b-c)

F(x)

\>F(b)-F(a)

Fig. 3-2 Geometric depiction of the
Mean-Value Theorem.
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Applications of the derivative
The proof of the Mean-Value Theorem depends on deep properties of the

real number system, which we have not investigated, and this is the reason
we omit the proof.

PROBLEMS

4. Same as Problem 1 for y =\/JC , with P having abscissa 0 and Q having
abscissa 4. What is the natural domain of this function? What is the
domain of its derivative? Are the hypotheses of the Mean-Value Theorem
satisfied?

* 5. Same as Problem 1 for y = JC2/3, with P having abscissa — 1 and Q having
abscissa 27. Are the hypotheses of the Mean-Value Theorem satisfied?
(Note that the conclusion of a theorem may sometimes hold even if the
hypotheses fail.)

* 6. Same as Problem 1 for y = x3 + x2 - 5x + 7, with P having abscissa - 2
and Q having abscissa 3. Does the Mean-Value Theorem apply?

fix)

Fig. 3-3

3.2 Increasing and decreasing functions

In the graph shown in Figure 3-3, f(x) increases as x increases - the curve
gets higher as we move to the right. Formally, we have these definitions:

(i) A function, / (*) , is increasing over an interval [a,b] if, for any two
numbers xl9 x2 in [a, b], with x2 > xl9 it is the case that f(x2) > /(jq).

(ii) If f(x2) > /(*i), we say that/(x) is strictly increasing.
The definitions of decreasing and strictly decreasing are analogous. Thus,

in Figure 3-4, we can say that g(x) is strictly increasing over [a, p], g(x) is
strictly decreasing over [/?, q]9 and g(x) is strictly increasing over [q, b].

Similarly, in Figure 3-5, we can say that F(x) is strictly increasing over
[a, d\ despite the horizontal tangent at x = c\ and F(x) is increasing over
[a, b]9 despite the fact that F(x) is constant over [d, b]. Indeed, our
definition makes us use language that is slightly peculiar: We are saying that
F(x) is an increasing function over [d, b]\

F(x)
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If a function has a derivative at each point of an interval [/?, q], then it
looks as though the function will be increasing over the interval if its
derivative is nonnegative (> 0) over the interval, and strictly increasing if its
derivative is positive (> 0). We can prove this statement by use of the
Mean-Value Theorem:

Theorem
If / ' (*) exists over [p,q], and (i) if / ' (* ) ^ 0 over (/?, q\ then/is increasing
over [p, q]9 and (ii) if f'{x) > 0 over (/?, q), then/is strictly increasing over

3.2
Increasing and

decreasing functions

Proof of (i) Let xx and x2 be any two numbers in [p9 q], with x2 > xv

Then we know from the Mean-Value Theorem that there is at least one
number, z, in (JC15JC2) such that f(x2)-f(xx) = f'(z)-(x2 - JCX). Now, by
our hypothesis,/' > 0 over (/?, q). Hence, surely f'{z) > 0. Because x2 > xl9

we know that (x2 - xx) > 0. Therefore, / ' (Z)-(JC2 - xx) > 0. That is,/(jc2)-
f{xx) > 0, or/(x2) > f(xx). But this is just what is needed to show that/(x)
is increasing.

Problem 1
Prove part (ii) of the theorem.

Problem 2
State an analogous theorem about derivatives and decreasing functions.

Example 1
For the curve of Problem 11, 2.6,

we have/'(

y = /(JC) = ^x3 - 2JC2 + 3JC +

= x2 -4x + 3 = (JC - 1)(JC - 3). Now,

if x < 1, (x -1) is negative and (x - 3) is negative, so f\x) > 0;
if JC =1, (JC — 1) is zero, so/ ' (*) = 0;
if 1 < JC < 3, (JC -1) is positive and (JC — 3) is negative, so f\x) < 0;
if JC = 3, (JC - 3) is zero, so /r(jc) = 0;
if JC> 3, (x — 1) is positive and (x — 3) is positive, so f\x) > 0.

We conclude that / is strictly increasing over (— 00,1] and over [3,00); / is
strictly decreasing over [1,3].

At x=l, with/'(I) = 0, we can say that "instantaneously / is neither
increasing nor decreasing." We call / stationary at x =1, and also at JC = 3.
The situation is shown in Figure 3-6. The function is strictly increasing to
the left of point A (1, ]) and to the right of point B (3,1) - in those regions
the slope of the tangent is positive. The function is strictly decreasing
between points A and B - in that interval the slope of the tangent is

3

2

1

-

A

/

x

i 2
1
3

Fig. 3-6
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3 negative. The function is stationary at points A and B - the tangents are
Applications of the derivative horizontal (slope zero) at these points.

PROBLEMS

3. For each of the following functions, considered over its natural domain,
determine where the function is stationary, where it is (strictly) increas-
ing, and where it is (strictly) decreasing:

(c) fix) = x3 -6x2 +12JC +6 (d) f(x) = 2x3 -9x2 + 10

(e) f(x) = x3 + 9x2 + 27x - 20 (f) fix) = 3x4 - 16x3 + 8
* (g) / ( * ) = 3JC4 - 16x3 + 30JC2 - 24x + 9

* 4. Consider the converse of part (ii) of the theorem presented earlier in this
section: "If/ is strictly increasing over [/?, q], thenf'ix) > 0 over (/?, q)"
Is this converse statement valid? Discuss.

5. Let

Show that / is strictly increasing over [ — 1,1]. Comment on this result
relative to the theorem in this section.

6. Consider fix) = 2x3 + 9x2 - 30* + 6.
(a) Find where f'ix) = 0.

C (b) Evaluate fix) where / \x) = 0.
C (c) Graph j>

3.3 Approximate increments

If we wish to determine the change in a functiony = fix) as x changes from
JCX to x2, we can do it directly by reading a graph or substituting in a
formula to find the values yx and y2 corresponding to xx and x2 and
subtracting to get j>2 ~ Ji? the required increment. If the difference, x2 — xl9

is small, there is a method to find y2 — yx approximately, which has some
advantages over the straightforward method. We shall describe the ap-
proximate method first in a graphical context and then show how it applies
to a formula.

But, first of all, why not use the straightforward graphical method? Here
is the reason: Suppose that we can read the height of a graph to the nearest
tenth of a unit, leading to the following results from a hypothetical graph:

at xx = 4, we read ̂  = 15.3 + 0.1;

a; v2 = 7, wereadj>2
 = 22.7 ±0.1.

A standard notation convenient here is Ax = x2 — xl9 hy = y2 — yx (read



"delta x" and "deltas") for the differences in x and j> (Ax and Ay are to be
treated as single letters; previously we used h for what we are now calling
Ax).

In terms of the new notation, we can say that for Ax = 7 - 4 = 3,
Aj> = 22.7 -15.3 = 7.4.

But yx might be as small as 15.2 and y2 as large as 22.8, so Ay might be as
large as 7.6. Likewise,^ might be as large as 15.4 andy2 as small as 22.6, so
Ay might be as small as 7.2. Hence, we really should say that for Ax = 3,
Ay = 7.4 + 0.2. No problem so far.

Suppose, now, that we read from our hypothetical graph:

atxx = 4 , ^=15.310.1 (asbefore);

atx2 = 4.2, y2 =15.8 + 0.1.

Then we would conclude that for Ax = 0.2, Ay = 0.5 + 0.2.
The possible error of 0.2 is such a large fraction of A y that we can't be

happy with the result, so an alternative approach is desirable.
What we can do in the case of a small interval [x1? x2] is to draw our best

estimate of the tangent line to the graph at x = xx and argue that the
average slope of the curve in the interval [xl9 x2] is approximately equal to
the slope of the tangent line at x = xx - remember the definition of the
tangent line (Figure 3-7). Hence, A^/Ax = (y2 — y\)/{x2 — xx) « slope of
tangent line at xx (" « " means "approximately equal").

Indeed, in a small interval the slope of the tangent does not change much,
so we can write

-7^- « slope of tangent line at any point of [ xx, x2 ] or

Ay « (slope of tangent line at any point of [xl9 x2])-Ax.

3.3
Approximate increments

[height of curve at x2

Fig. 3-7

Problem 1
On as large a scale as practicable, draw a graph of y = \x2 over the interval
[0,3].

(a) From your graph, estimate the values of y corresponding to xx = 2 and
x2 = 2.1, and thus compute Ay.

(b) Draw your best estimate of the tangent line at any point of the
interval [2,2.1], measure its slope, and thus compute Ay.

(c) Compute the actual values of y corresponding to xx = 2 and x2 = 2.1,
and thus compute Ay.

Most people who do this find that their answer to (b) is closer to the true
value of (c) than is their answer to (a).

If we have a formula for the function j> = /(x), as we indeed have in
Problem 1, we do not need to face the inaccuracies inherent in graphical
measurement. The method we have been describing to approximate Ay can 115



Applications of the derivative
be applied with the formula to avoid some labor in computing the two
values of y. We repeat:

For small intervals, the average rate of change of y with respect to x is
approximately equal to the instantaneous rate of change of y with respect to x
at any point of the interval; that is,

or
ky~f'(x)Ax, for any* in

50

14

Fig. 3-8

0.02

0.02

Fig. 3-9

Example 1
What is the approximate change in the square of a number if the number
changes from 7 to 7.02?

Here y = f(x) = x2
9 and we wish to determine Aj> corresponding to

xx = 7 and Ax = 0.02. We note that / ' (* ) = 2x, so that /'(7) = 14. Hence,
Ay « (14)(0.02) = 0.28. This is shown graphically in Figure 3-8. It is also
instructive to look at the example with the help of Figure 3-9. Here,
yx = /(7) = 72 is seen as the area of a square of side 7, and y2 = yx + ky =
/(7.02) = (7.02)2 is seen as the area of a square of side 7.02; Aj>, the
difference between these areas, is the area of two rectangles, each of length 7
and width 0.02, plus the area of a square of side 0.02. The approximation we
are using is equivalent to the area of these two rectangles and ignores the
area of the tiny square of area (0.02)2 = 0.0004. Doing the same thing
algebraically, we have y2 = yl + A>> = (7.02)2 = (74-0.02)2 = 72 +2(7X0.02)
+(0.02)2. Hence, Aj> = 2(7)(0.02)+(0.02)2. Our approximation is just the
first term on the right side of this equation.

Example 2
What is the approximate change in the square of a number if the number
changes from 4.99 to 5.02?

We are again dealing with y = f(x) = x2, and we wish to determine Ay
corresponding to xx = 4.99 and Ax = 0.03.

Problem 2
Use these numbers in the approximation to obtain Aj> ~ 0.2994.

Because the derivative is nearly constant throughout this small interval, we
may as well calculate the derivative at a point of the interval that will
simplify the arithmetic.

116
Problem 3
Calculate the derivative at x = 5 to obtain A>> « 0.3.



Problem 4 3.3

Verify that the exact value of Ay is 0.3003. Approximate increments

So we see that, in this case, the second approximation is better than the first.

Problem 5

Draw a large graph of y = x2, and, with the help of two tangent lines, show
geometrically the two approximations found in this example.
Example 3
A circular plate has a radius of about 5 in. Approximately how accurately
must the radius be measured if the error in the calculated area of the plate
shall not be more than 1 in.2?

The formula for the area of a circle is A = f(r) = 77T2. In this case, then,
f'(r) = 2irr9 and f'(5) = lO<rr. Hence, A^«107r-Ar. If we give AA its
maximum permitted value, we see that Ar «1 /10T7 ~ 0.032 in.

The method of approximation explained in this section is so important,
both practically and theoretically, that it is worthwhile to summarize and
extend slightly what we have presented. As we have seen, replacement of a
small piece of a curve by a segment of the tangent line at some point on the
piece of the curve leads to

Ay ~f'(x)'Ax, for any x in [xl9 x2],

or

y2 — yx » f'{x)-Ax, for any x in [x1,x2] ,

or

f(xi)~ f(xi) ~ / ' (*) 'A*, f°r anY x in [JC1? JC2],

or

fixi) ~ f(xi) + f'(x)'&x> f°r any JC in [x1 ,x2] .

Writing x2 = xx + Ax, this last equation becomes

I f(xx + Ax) « /(JC1) + / / (X)-A;C, for any x in [xl9 xx + Ax].

The process used here is called "linearization" of the problem - treating a
(perhaps complicated) function as though it were a simple linear function
over a short interval. Unfortunately, at this stage we cannot answer a couple
of important questions: About how accurate is this approximation? How
short an interval must be used to ensure that the approximation has a
specified accuracy? Such estimates come later in the calculus.

In linear interpolation, we encountered another example of linearization.
In that case, the curve over an interval was replaced by the line segment
joining the two points on the curve at the ends of the interval. There, also,
we could say little about the accuracy of the approximation. 1 1 7



3 The idea of linearization of problems is extensively used in mathematics
Applications of the derivative and science to cope with situations that could not otherwise be handled, or

to simplify the work when an approximate answer is sufficient. The use of
differentiation, as in this section, is of great help in such linearization.

It may have occurred to you that each of the approximate increments
discussed in this section could be replaced simply by calculating the exact
increment on a calculator. This observation, however, does not diminish the
importance of the approximate-increment technique even in practical appli-
cations. There are many practical functions that, unlike the simple examples
we use here for illustration, are beyond a calculator's (or a computer's)
ability to handle easily.

PROBLEMS

6. If x is a number, 1/x is called the reciprocal of x. Find an approximate
value of the reciprocal of 10.03.

7. (a) Approximately how much greater is (5.02)3 than 53? Hence, what is
an approximate value of (5.02)3?

(b) Use a three-dimensional sketch analogous to Figure 3-9, or a model
from cardboard, plastic, or wood, to display the geometrical signifi-
cance of the approximation in part (a), showing the terms ignored in
that approximation.

(c) Use the binomial theorem, as in the last part of Example 1, to
display the algebraic significance of the approximation in part (a),
showing the terms ignored in that approximation.

(d) Use the Mean-Value Theorem to yield a new expression for Aj> =
f(xx + Ax)—f{xx). What is the difference between this expression
and that for the approximate increment? Does either provide infor-
mation the other does not?

(e) Show that 3-52-(0.02) < (5.02)3 - 5 3 < 3(5.02)2-(0.02) and calculate
these two bounds. What do these inequalities say about your estima-
tion in part (a)?

8. The result f(x) = xn =»/'(*) = nxn~l holds for all real values of n,
although we have not proved it. Assuming this result is valid, find
approximations for the following:

(a) v^02 (b) ^ 9 8 (c)

9. For ships of a certain type, the cost of operation per mile ($C) varies as
the cube of the speed (x knots), and C = 40 when x = 20. Find a
formula for C in terms of x. Approximately how much larger is C for
x = 30.2 than for x = 30?

10. A wooden cylinder has height 15 in. and base radius 5 in. If the height
remains constant, by approximately how much must the radius be

1 1 8 changed to reduce the volume by 50 in.3?



11. (a) For blood vessels of average size, the rate of flow (F mm3/sec) 3.4
varies as the fourth power of the diameter (D mm) of the blood Marginal cost
vessel, and F= 40.5 at D = 3. Approximately how much larger is F
for D = 3.02 than for D = 3?

(b) If the rate of flow in a blood vessel is constant, then the blood
pressure (P units) varies inversely as the fourth power of the
diameter, and P = 100 at D = 3. By approximately how much must
D increase to decrease P from 100 to 80 (a 20% decrease in P)?
What is the percentage increase in Dl (Doctors administer various
drugs to dilate blood vessels, permitting the same flow of blood with
substantial reduction in blood pressure, thus reducing the load on
the heart.)

12. The cost of paint for a large spherical gas storage tank comes to 10 cents
per square foot of surface area. Approximately how much less will be
the cost of paint for a tank of radius 19.9 ft than for a tank of radius
20 ft?

13. For certain aircraft, the lift (L units) varies as the square of the velocity
(v mph), and L = 54,000 when v = 300. Use differentiation to find
approximately how much smaller L is for v = 499.5 than for v = 500.

14. A growing pile of fine sand constantly has the shape of a cone in which
the height equals three-fourths the radius of the base. If the radius is
about 6 ft, use differentiation to find approximately how much the
radius will increase through the addition of 977 ft3 to the volume.

15. The water resistance (R units) encountered by a barge varies as the
square of the speed (v knots), and R = 24,000 when v = 10. Use differ-
entiation to find approximately how much larger R is for v = 8.1 than
for u = 8.

16. A metal cylinder contracts so as to keep its height equal to the diameter
of its base. If the radius of its base is about 5 in., use differentiation to
find by approximately how much the radius must change to reduce the
volume by 1 in.3

3.4 Applications to economics: marginal cost and unit cost

The problems we shall analyze here represent interesting applications of the
derivative and of the method of approximate increments. The topics, which
we shall present under the titles of marginal cost and unit cost, have
far-reaching significance in economics.

Let us study the expense of the sausage manufacturer we met in Problem
8, 1.4. In that problem and its sequel (Problem 5, 1.7) we decided that the
daily cost ($E) of making * lb of sausage was given, with satisfactory
accuracy, by the formula E = 128 + 2.8* - O.Obc2. 1 1 9



3 In this formula, the constant, 128, represents the sum of all the "fixed
Applications of the derivative costs" associated with the plant, whether or not any sausage is made -

interest on the investment, maintenance of the building, salaries and wages
of personnel whose pay goes on in any case, and so forth. The coefficient,
2.8, represents the basic cost of material and labor (i.e., $2.80 per pound of
sausage). The last term, which has a negligible effect for small JC, reduces
substantially the sum of 128 and 2.8.x when x is of moderate size. It
represents the fact that the manufacturer can operate somewhat more
efficiently if his production increases, for he can buy his materials more
cheaply in larger quantities, his personnel can be more effectively utilized,
and so forth.

But note that if x is large, the term 0.01.x2 dominates the other two terms
in the formula for E, and E will unrealistically become small, or even
negative!

Problem 1
Use the formula to calculate E for x = 300; for x = 400. Also calculate E for
A: =150 and for x =160.

Thus, this formula cannot possibly be correct for large values of x.
Indeed, despite the efficiencies involved in large-scale production, we don't
expect the cost of making 160 lb of sausage, say, to be less than the cost of
making 150 lb. In this illustration, x =120 is about as large a value as it is
reasonable to use with this formula, so the domain of the function we are
considering is [0,120]:

£ = 1 2 8 + 2.8JC-0.01JC2, 0 < J C < 1 2 0 . (1)

At* = 50, £ = 243;
atjc = 51, £ = 244.79.

Thus, for x = 50 and Ax = 1, &E = 1.79. In other words, the incremental cost
of producing 51 lb of sausage per day, rather than 50 lb, is $1.79. We can
readily find an approximation to this incremental cost by use of the
derivative: E'= 2.8-0.02*, so at x = 50, E'= 2.8-1 = 1.8.

Remembering that A£ « is'Ax, we conclude that the incremental cost is
approximately 1.80 X1 = 1.80 (dollars).

Problem 2
Use the method of approximate increments to show that

at x = 6, E is about 2.7 larger than at x = 5;

at x = 11, E is about 2.6 larger than at x = 10;

at JC = 21, E is about 2.4 larger than at x = 20;

at x = 80, E is about 1.2 larger than at x = 79;

at JC = 101, E is about 0.8 larger than at JC = 100;

1 2 0 at JC = 120, E is about 0.4 larger than at JC = 119.



We make the following definitions. 3.4
If E = f(x) is the formula for the total cost ($E) of producing x items, Marginal cost

then the incremental cost at x = n is f(n + 1 ) - /(«), and the marginal cost at
x = n is f'(n).

The significant fact is that

the marginal cost is an approximation to the incremental cost.

Problem 3
If the formula for E were E = 128 4- 2.8;c, what could you say about the
marginal cost of production?

Problem 4
If the sum of the fixed costs were 1000, rather than 128, what effect would
this have on the marginal cost of production?

The ideas of increments and marginality arise in contexts other than
cost - for instance, in value.

For example, if you are ravenously hungry and have plenty of money, a
hamburger might be worth $10 to you. After you have eaten one hamburger,
you still might set a high value on a second one, but perhaps something less
than $10. After you have eaten five hamburgers, you might set very low the
incremental value of a sixth hamburger. When you're stuffed, even the
thought of a hamburger might be so distasteful that you might give a
negative incremental value to the tenth hamburger!

If the value ($F) to you of x hamburgers is given by V= g(x\ then the
marginal value of a hamburger to you at x = n is given by g'(n).

We turn now to the concept of unit cost. If the total cost of producing x
items is E, then the average total cost or the total unit cost (TUC) is defined
by

TUC = —.
x

Thus, for the simple cost function of Problem 3, where E =128 + 2.8.*,

Because x appears only in the denominator in this formula, it is clear that
we have a decreasing function - TUC decreases as x increases. Another way
to see this is to examine the derivative of TUC: Because TUC =
128*-x+2.8,

Because the derivative is negative for all x in the domain, the function is
decreasing. This result is intuitively sensible: Because the total cost consists 121



3 of a fixed cost of 128 plus a variable cost that amounts to 2.8 per unit
Applications of the derivative produced, the average total cost or TUC will decrease with increasing x

because the fixed cost will be spread over more units as production
increases.

The same result is seen in the original example of sausage manufacture,
where E = 128 + 2.8* - 0.01.x2. In this case,

1 2 8 + 2 8 _
X

and

x
Because the derivative is negative for all x in the domain, TUC is again a
decreasing function.

In both these cases, we say that the manufacturing process exhibits
economies of scale for all levels of production - the larger the production,
the lower the total unit cost.

A more realistic situation is one in which diseconomies appear for large
production levels. Suppose, for example, that E is given by E = 128 + 2.8* +
0.02.x2. The last term on the right side, being positive, represents some
inefficiencies associated with large production levels. This does not imply,
however, that there are no economies of scale, for as production increases,
we still spread the fixed costs over more units. Exactly what happens is
discovered by expressing the total unit cost and differentiating:

= 1 2 8 + 2 8
X

Problem 5
Find the value of x that makes (TUC)' equal to zero. For what values of x,
then, is (TUC)' negative? Positive? Sketch a graph of TUC as a function of
x to exhibit these results.

You should have discovered that (TUC)' = 0 at x = 80. For 0 < x < 80,
(TUC)' is negative, so TUC is decreasing. For x > 80, (TUC)' is positive, so
TUC is increasing. Thus, we have economies of scale for 0 < x < 80, and
diseconomies for x > 80.

PROBLEMS

6. The total cost ($E) of producing x gal of maple syrup is given by
E = 2500 +4.x -0.005.x2, for 0 < x < 225. What is the marginal cost of

1 2 2 producing the 10th gallon? The 100th gallon? The 200th gallon?



7. The total cost ($£) of producing x lb of cheese is given by E =100 +
0.8.x - 0 . 0 0 2 A : 2 , for 0 < x < 150. What is the marginal cost of producing
the 10th lb? The 50th lb? The 100th lb?

8. The total cost ($C) of obtaining and delivering x cords of firewood is
given by C = 6000 + 35A; -0 .1A: 2 , for 0 < x < 150. What is the marginal
cost of the 10th cord? The 100th cord?

9. The total cost ($£) of producing x belts is given by E = 1000 + 5A: - I/A:,
for 1 < x < 100. What is the marginal cost of producing the first belt?
The 5th? The 10th?

10. The total cost ($E) of distributing x barrels of oil is given by E = 400 +
24A: + 0.01A:2, valid for 0 < x < 500.

(a) What is the marginal cost of distributing the 50th barrel? The 100th
barrel?

(b) Write a formula for the total unit cost, E/x.
(c) Find (TUCy and the value of x that makes (TUC)' = 0.
(d) For what x 's are there economies of scale? Diseconomies?
(e) For the x found in (c), compute the value of E/x. Of the marginal

cost.

3.5
Maxima and minima

3.5 Maxima and minima: the basic idea

There are many situations in which we want to know the maximum or the
minimum (the biggest or the smallest) value attained by a varying quantity:

What is the greatest height reached by the rocket?
What is the highest level attained by the flooding river?
What is the lowest cost of manufacturing a certain product?
What is the greatest profit of operating a certain factory?
What is the largest rectangular field that can be enclosed with a given

amount of fencing?
The basic idea we use is exemplified in Figure 3-10. If y is a function of JC,

with a graph that has a tangent everywhere, then at a maximum point, as in
the figure, the tangent is horizontal. Hence, if y = f(x)9 and if y has a
maximum value for x = p, we expect f\p) to be zero; similarly for a
minimum value. Hence, we search for maximum and minimum values of
f(x) among the roots of the equation/'(A:) = 0.

Example 1
For what positive number is the sum of the number and its reciprocal an
extreme (maximum or minimum)?

If we call the number x and the sum 5, we are to investigate S = f(x) =
x + 1/x, x > 0, for maxima and minima.

We note that if x is a very small positive number, then 1/x is very large,
so S is very large; and if A: is very large, S is again very large.

(a) y

(b)

Fig. 3-10
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3 Problem 1
Applications of the derivative Calculate S for x = 0.1, 0.2, 0.5, 0.8,1, 2, 4, and 10, and sketch the graph of

S as a function of x.

The graph makes it appear that S has a minimum value for some x.

Problem 2
Find/'(*), set it equal to zero, and solve for x, to find that x = 1 is the only
positive solution.

Hence, / ( I ) = 2 is the minimum value of S for positive x 's. There is no
maximum value of S for positive x 's, because we can make S as large as
desired by taking x sufficiently large (also by taking x sufficiently small).

We shall investigate the whole matter of maxima and minima more
carefully in the following sections, but we can solve simple problems now.

PROBLEMS

3. Using the method of this section, find the time at which the river crests
(Problem 3, 1.4), assuming, as in the result of Problem 10, 1.6, that the
formula for the level (L ft) is given by L = 0.5 + 2.1/ - O.I/2. What is the
maximum value of L?

4. For the toy rocket (Problem 4, 1.3), for which the height above the
ground (y ft) is given by y = 48 + 88/ - 1 6 / 2 , 0 < / < 6, find the time at
which y is a maximum. What is the maximum value of yi

5. For the sausage maker of Problem 8, 1.4, assume that the formula for
the total daily expense ($E) varies with the daily production (x lb) as
follows: E= 128 + 2.8JC -0 .01A: 2 . Find the value of x that makes E a
maximum. Check that it really gives a maximum. What is the maximum
value of El [Note that if the domain of E is limited, as in equation (1) in
Section 3.4, there is no maximum of the type we are now seeking. This is
consistent with the intuitive notion that a reasonable function for total
cost of production should always be increasing - the more sausage we
produce, the greater will be the total cost.]

6. Find the coordinates of the lowest point on the graph of y = 8 — 6x + x2,
over the natural domain. Sketch the graph. Is there a highest point?
Where does the graph meet the y axis? The x axis?

7. Find the coordinates of the highest point on the graph of j> = 9 — 8JC — X 2,
over the natural domain. Sketch the graph. Is there a lowest point?
Where does the graph meet the y axis? The x axis?

8. For the graph of each of the following functions, over the natural
-| 2 4 domain, find the coordinates of the lowest point. Also find where the



graph meets the y axis, and where it meets the JC axis (if it does). Sketch
each graph.

(b)j=.

(d).y = 1
( a ) J > = -
(c) J = 2 + 4JC+2JC2

(e) j = 20-10* + .
(g)j> = 25-10* + .

(f)
(h) >> = 3 0 - IOJC + JC2

9. For the graph of each of the following functions, over the natural
domain, find the coordinates of the highest point (if there is one) or of
the lowest point (if there is one). Also find where the graph meets the y
axis, and where it meets the x axis (if it does). Sketch each graph.
(a) y = 6 + x-2x2

(c) y = \ + x-2x2

(e) y=-2+x-2x2

(g) >> = 8 - 8 J C + 2 J C 2

(i) >> = 4 - 8 J C + 2 J C 2

(b) y = 3 + x-2x2

(d) y = x-2x2

(f) y = 1 0 - 8 * + 2JC2

(h) J> = 6 -8JC+2;C 2

(j) y = -%
* 10. (a) Find the coordinates of the lowest point on the graph of y =

8-6.x + JC2, without using calculus. (Hint: See Problem 5, 1.9.)
(b) Similarly for the graph of j> = 9 — 8JC — X2.

3.6
Is it a maximum
or a minimum?

3.6 How do we know whether we have a maximum
or a minimum?

In the case of Example 1 in the previous section, a rough analysis of the
behavior of the function/(JC) = x + 1/JC, or a sketch of the associated graph,
convinced us that there was one extreme and that it was a minimum. In
more complicated problems, where it is not easy to analyze the behavior of
the function or to sketch a graph, it is useful to have a test to decide just
what it is that the solutions of f'(x) = 0 signify. There are, in fact, three
standard tests for maxima and minima; we shall consider two of them now
and leave the third for later work.

We first introduce some new terms informally through consideration of a
function F with domain 1 < x < 8. We shall assume that F is differentiable
(i.e., that it has a derivative in the interval under discussion). The graph of
y = F(x) is shown in Figure 3-11. At the points on the curve where JC = 4
and x = 6, the tangent lines are horizontal: F'(4) = 0 and F'(6) = 0.

We call 4 and 6 critical numbers of the function F because F'{x) = 0 for
those numbers.

F(4) = 9 is called a relative maximum of i% because in the "neighborhood"
of x = 4 there is no value of F larger than 9.

F(8) = 6 is also called a relative maximum of F, because in the neighbor-
hood of JC = 8 there is no value of F larger than 6. Because the domain of F
ends at x = 8, we use a "one-sided neighborhood."

1 2 3 4 5 6 7
Fig. 3-11

125



3 ^(6) = 5 is called a relative minimum of F, because in the neighborhood of
Applications of the derivative x = 6 there is no value of F smaller than 5.

F(l) = 2 is also called a relative minimum of F9 because in the neighbor-
hood of x = 1 there is no value of F smaller than 2. Once again, we use a
one-sided neighborhood.

Of the two relative maxima, 9 is greater than 6, and we call 9 the absolute
maximum of F. Of the two relative minima, 2 is less than 5, and we call 2
the absolute minimum of F.

Maxima and minima where the derivative equals zero are called
"turning-point extremes." Maxima and minima at the ends of the domain
are called "end-point extremes."

To summarize for this example, we say that

at x = 1, F has the relative minimum value 2 as an end-point extreme;
at x = 4, F has the relative maximum value 9 as a turning-point extreme;
at x = 6, F has the relative minimum value 5 as a turning-point extreme;
at x = 8, F has the relative maximum value 6 as an end-point extreme.
The critical numbers of F are x = 4 and x = 6.
The absolute maximum of F equals 9, attained at x = 4.
The absolute minimum of F equals 2, attained at x = 1.
Thus, the range of F is the interval 2 < y < 9.

We now give formal definitions of our basic terms.

Definition 1
The solutions of f\x) = 0 are called the critical numbers of the function/.

Definition 2
A number, c, corresponds to a relative minimum of the function / if there is
an interval [/?,q] of the domain, withp <c<q, such that no value of / i n
[p9q] is smaller than/(c). If c should be the left end of the domain of/,
then we compare /(c) with the values of / in an interval [c, q\ q>c.
Similarly for relative maximum. Similarly if c should be the right end of the
domain.

Definition 3
A number c corresponds to an absolute minimum of the function/if there is
no x in the domain of / such that f(x) is smaller than f(c). Similarly for
absolute maximum.

End-point extremes are important because the functions encountered in
applications frequently have limited domains. Later we shall consider such
problems, but first we shall analyze turning-point extremes more thor-
oughly.

The first test for relative turning-point extremes is an entirely obvious
-| 2 6 one> which we shall explain in terms of Example 1, 3.5. In that example we



sought extremes of S = f(x) = x + 1/x, for x > 0. We found x = 1 to be a
critical number. Let us calculate the values of/on either side of the critical
number as well as at the critical number: f{\) = | , /(1) = 2, and/( |) = ^ , as
pictured in Figure 3-12. Because /(I) < f{\) and /(I) </(f), the critical
number corresponds to a minimum.

Clearly, we must choose values reasonably close to the critical number to
make the test reliable. In particular, if in testing the critical number x = 6
for the function graphed in Figure 3-11, we were to choose x = 2 on one
side and x = 8 on the other, we would be led to an erroneous conclusion,
because F(2) is less than F(6). We should choose an interval small enough
not to include any critical numbers other than the one we are testing. We
can now state our result formally.

TesM
Let x = c be a critical number of a differentiable function, / , and let [/?, q]
be an interval containing c but no other critical number of/. Iff(c) < f(p)
and/(c) <f(q\ then/(c) is a relative minimum of/. Similarly for a relative
maximum.

We also explain the second test in terfns of Example 1, 3.5. Let us
calculate the values of/' on either side of the critical number: S = f(x) =
JC + 1/JC, f\x) = \-l/x2, / / ( i ) = ~ 3 , / ' ( ! ) = i and/ ' ( l ) = 0, of course
(Figure 3-13). Putting this in general terms, we have the following.

Test 2
Let x = c be a critical number of a differentiable function, / , and let [p, q]
be an interval containing c but no other critical number of/. If f'{p)< 0
and f'(q)>0, then f(c) is a relative minimum of/. Similarly for a relative
maximum.

Let us use the foregoing ideas to help sketch the graph of y = f(x) =
2x3 —2\x2

 +60A; —40 over its natural domain (which is the set of all real
numbers), by finding relative extremes of y. We write

Thus, f'{x) = 0 for x = 2 and x = 5 - these are the critical numbers.

Atx = 2, j> = / (2)=16-84 + 120-40=12.

A t x = l , <y = / ( l ) = 2-21 + 60-40=1.

= 54-189 + 180-40 = 5.

Because 12 > 1 and 12 > 5, we conclude by Test 1 that 12 is a relative
maximum of/.

3.6
Is it a maximum
or a minimum?
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Fig. 3-13

127



Applications of the derivative

zero slope

negative slope
positive slope

\

Fig. 3-14

60JC - 40

Fig. 3-15

For practice, let us apply Test 2 for the same critical number (Figure
3-14):

At* = 2, / ' ( * ) = ().

At x = 1, / '(x) is positive.

At x = 3, / '(x) is negative.

Thus, Test 2 confirms that 12 is a relative maximum of / . (Often, but not
always, Test 2 involves less arithmetic computation than Test 1.)

Problem 1
Check at the other critical number, x = 5, that y = /(5) = —15, and use both
tests to verify that —15 is a relative minimum of/.

Now, if x is a very large positive number, the first term in/(x), 2x3, will
be dominant, and thus y will be a positive number - as x increases without
bound, so does y. Hence, there is no absolute maximum for y. If you wish,
you can say that y approaches infinity.

If x is a very large negative number, the first term, 2x3, is again dominant,
and thus y will be a negative number (because the cube of a negative
number is negative). As x gets larger negatively without bound, so does y.
Hence, there is no absolute minimum for y9 either. We now have enough
information to sketch the general form of the curve, as shown in Figure
3-15.

PROBLEMS

2. Use both Test 1 and Test 2 to check your result in
(a) Problem 3, 3.4
(b) Problem 4, 3.4
(c) Problem 5, 3.4

o 3. It is possible to have x = c as a critical number [i.e.,/'(c) = 0] without its
corresponding to either a relative minimum or a relative maximum.
Sketch a graph to illustrate how this can occur.

4. Investigate each following/(x) for maximum and minimum values, and
sketch the graph of y = f(x):

(b) - x3
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* 5. Investigate the function determined by

y = i*5 - x4 + f x3 + 2x2 - 3x + 2

for maximum and minimum values, and sketch the curve. (Hint: Find the
derivative and factor it by trial.)



* 6. Sketch some graphs showing functions that have maxima and minima
without their derivatives being zero.

3.7
Questions about

maxima and minima

3.7 Further questions about maxima and minima

We have seen that it is possible to have a situation like that in Figure 3-16,
where there is a horizontal tangent at P (the derivative of the function is
zero at P), but P does not correspond to a relative maximum or a relative
minimum of the function. We call P a horizontal point of inflection of the
curve, and we shall deal with points of inflection, horizontal and otherwise,
in the next chapter.

We now consider the converse question: Is it possible to have a maximum
or a minimum without having the derivative equal to zero? There are two
ways in which this can occur:

1. There may be abrupt extremes, as in Figure 3-17, corresponding to
values of x for which the derivative does not exist. In Figure 3-17(a), P
corresponds to a relative maximum of the function, but neither f'(x) nor the
tangent line to the curve exists at P. In Figure 3-17(b), Q corresponds to a
relative minimum of the function; f\x) does not exist there, but the curve
does have a (vertical) tangent line at Q. The points P and Q are called cusps
on their curves.

2. The second way in which we may get an extreme without having the
derivative zero occurs if the domain of the function is limited, as illustrated
in Figure 3-11, repeated here. Here the domain of F is the interval [1, 8].
The points A and B correspond to end-point extremes of the function. We
have relative minima at A and Z>, and relative maxima at C and B. Because
F(l) < F(6), A corresponds to the absolute minimum for this function; and
because F(4) > F(8), C corresponds to the absolute maximum.

For functions whose graphs are unbroken over a finite closed interval,
[a, b], we can set out the following procedure for the complete analysis of
maxima and minima:

(a) Locate any turning-point extremes by finding critical numbers (where
/ ' is zero) and testing for relative maxima and minima.

(b) Locate any "abrupt" extremes by investigating values of x for which
/ ' does not exist and testing for relative maxima and minima.

(c) Locate any end-point extremes.
If the domain of the function is a closed interval, the maximum of the

maxima (if there is more than one) is the absolute maximum; similarly for
the absolute minimum.

Most of the functions we encounter lead to nothing more complicated
than turning-point extremes, but we shall now work a few problems that
illustrate the other types.

Fig. 3-16

(a)

\

(b)

Fig. 3-17

1 2 3 4 5 6 7
Fig. 3-11
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Applications of the derivative
PROBLEMS

1. Draw a sketch of a function that has no derivative at some point P, but
for which P does not correspond to a relative maximum or a relative
minimum.

2. Assuming the validity of the formula for the derivative of xn for all
values of w, investigate the extremes of the functions defined by each of
the following equations, over their natural domains:

3. For the function determined by E = 128 + l.Sx - 0.01.x2, 0 < x < 120, find
minimum and maximum values of E.

4. Find the maxima and minima of the following functions. Be sure to
identify absolute extremes.
(a) y = x2-4x+6, 0 < J C < 3

(c) y = x3 + 3JC2 + 3JC + 7, - 2 < x < 2
(d)y = x 3 -3A: 2 +l , - 2 < x < 3

f v 2 _ i < v < i

I 1< <1
x , i<x_z

-4<JC<-2

-x+2,
V2

l < x < 2
* 5. Find the maxima and minima of the following functions:

. 3

(b) y = \x2-3\ (c)y = — x - 4
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3.8 Applied maxima and minima

When it comes to applications of the basic idea presented in Sec. 3.5, the
process of differentiation and the testing of the result often prove to be
easier than two other parts of the problem: (a) translating the words of the
problem into mathematical symbols and (b) expressing the quantity to be
maximized or minimized in terms of a single variable, so that we have a
function to which our method can be applied. There is no set of rules that
can be presented to make these matters automatic, but some examples
should be of help. The main thing that is needed is practice.

Example 1
A farmer has 200 rods of fencing with which he wishes to enclose a
rectangular pasture. What are the dimensions of the rectangle that will
provide the maximum area? How large an area can be enclosed?



If the dimensions of the rectangular pasture (Figure 3-18) are called x and
y9 we are trying to maximize the quantity A, given by A = xy. Were there no
other conditions, there would be no maximum - we could get larger and
larger areas by increasing either x ory or both.

But there is a constraint, of course: If we increase x we must decrease y,
for 2x + 2y cannot be greater than 200. In using all the fencing, we have
2x + 2y = 200, or y = 100 - x. Thus,

xy - x) = IOOJC - x2.

3.8
Applied maxima and minima

Fig. 3-18

Problem 1
We now have A expressed as a function of the single variable x. Differenti-
ate to obtain x = 50 as a critical number, and test that it corresponds to
maximum yl.

When x = 50, y also equals 50 (i.e., the rectangle is a square, a result in
agreement with most people's intuition), and the maximum A = 2500 square
rods.

Problem 2
Work the same problem if the length of fencing is / rods, to obtain the
dimensions x = 1/4, y = 1/4, leading to the following general result: "The
rectangle of maximum area for a fixed perimeter is a square."

Remark In Example 1 we found that x = 50 gives a relative maximum for
the area of the rectangular field. We have not yet checked that it also gives
the absolute maximum. To accomplish this, we must check for abrupt and
end-point extremes, as noted in (b) and (c) at the end of Section 3.7. Let us
do that now:

When we wrote A = lOOx — x2, the domain was really limited: x could not
be less than 0 nor more than 100. Indeed, if x = 0 or if x = 100, we don't
have much of a pasture, for A = 0 at each of these ends of the domain.
Moreover, the derivative of lOOx — x2 exists for all numbers x, so there are
no abrupt extremes. So, a complete answer to this problem might be worded
as follows: At each end point of the domain, A has the relative minimum
value zero, and at x = 50, A has a (turning-point) relative maximum value.
Hence, x = 50 corresponds to the absolute maximum of A. Figure 3-19
shows the situation.

Example 2
The load (L lb) that a rectangular beam of a certain length can carry
depends as follows on the dimensions of the cross section: L varies as the
width (JC in.) and the square of the depth (y in.). [Does this agree in general
with your intuition? In Figure 3-20, would you lay floor joists as in (a) or as

2500 A = IOOJC - x2

100
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Applications of the derivative

(a)
width

(b) width

Fig. 3-20

(a)

Fig. 3-21

in (b) for greater strength?] What are the dimensions of the strongest beam
(maximum L) that can be cut from a circular log of diameter 20 in.? What is
the value of the maximum L?

In this case, L = kxy2, with no information given to determine k. Were
there no further conditions, we could obtain a beam of arbitrarily large
strength by making x or y or both sufficiently large. But once again there is
a constraint: Any rectangle representing the cross section of the beam must
be inscribable in a circle of diameter 20, as shown in Figure 3-21(a)-(c).
Clearly, then, x is restricted to the interval (0,20), and y is also restricted to
the same interval. The relation between x and y comes from the Pythagorean
Theorem, as seen from the diameters drawn in each of the adjoining figures:

132

In principle, we can solve this equation for x in terms of y and substitute in
L = kxy2 to obtain L as a function of y alone; or we can solve fory in terms
of x and substitute to obtain L as a function of x alone.

Problem 3
One of these two routes gives a simpler result than the other. Follow the
route to the simpler result, obtaining L = kx(400- x2) = k(400x - x3), and
differentiate to obtain L' = k(400- 3x2).

We find the critical number(s) by setting U = 0.

Problem 4
Remembering that x must be positive, do the algebra to obtain x = 20/V^T
= (20/3^)/3 -11.55 in. as the critical number. Show that the corresponding

y is (2O/V^)\/2f« 16.33 in. and that the corresponding L is approximately
3079A: units.

Problem 5
Use either Test 1 or Test 2 to check that we have obtained a maximum L.

As with the remark at the end of Example 1, the domain of the function
we are concerned with is limited: For L = /ex(400— x2) we must have
0 < x < 20. Once again, the derivative of the function exists everywhere, so
there is no abrupt extreme, and the end points correspond to minima.
Hence, we have found the desired absolute maximum.

Problem 6
Solve this same problem for a circular log of arbitrary diameter, Z>, to
obtain the dimensions x = D/y/3, y = (D/j3)^29 leading to the following
general result: "The strongest beam that can be cut from a circular log has a
depth that is ]fl times the width."



Example 3
A rectangular garden is to be plowed in a piece of land in the shape of a
right triangle with legs 50 ft and 80 ft, as in Figure 3-22. What are the
dimensions of the rectangle of largest area that can be obtained?

If we call the sides of the rectangle x and y, we have A = xy to be
maximized. In this case, the relation between x and y comes from similar
triangles: Because triangle PQC is similar to triangle ABC, we conclude that

y 50 5
8 0 - x " 80 ~ 8 '

Problem 7
Solve this equation for y in terms of x, and substitute in A = xy to obtain

Problem 8
Differentiate, and set the derivative equal to zero, to obtain the critical
number x = 40 (ft). Then get the corresponding y = 25 (ft) and A = 1000
(ft2). What fractional part is this area of the area of triangle ABC?

Problem 9
Test that we have obtained a maximum and that it is an absolute maximum.

Problem 10
Solve the same problem as in Example 3 for a right triangle with legs a and
b, to obtain dimensions x = b/2, y = a/2, and area A = ab/4, leading to the
following general result: The rectangle of maximum area that can be
"inscribed" in a right triangle has sides that are half the lengths of the legs
of the right triangle and has an area half that of the right triangle.

These examples illustrate three of the common ways in which the rela-
tionship between two variables appears:

(a) In Example 1, the phrase "a farmer has 200 rods of fencing" leads
directly to the equation 2x +2y = 200.

(b) In Example 2, the phrase "the dimensions of the...beam...that can
be cut from a circular log of diameter 20 in." leads, through the Pythagorean
Theorem, to the equation x2 + y2 = 400.

(c) In Example 3, the phrase "as in Figure 3-22" leads, through a
proportionality in similar triangles, to the equation j>/(80 — x) = f.

It will be worthwhile to keep in mind these three methods of finding the
relationship between two variables, for they arise frequently.

We can summarize the procedure for finding turning-point extremes in
applied problems as follows:
1. Express the quantity to be maximized or minimized, perhaps in terms of

more than one variable.

3.8
Applied maxima and minima

Fig. 3-22
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3 2. Use the data of the problem, and/or your knowledge of geometry, to
Applications of the derivative express the quantity to be maximized or minimized as a function of one

variable.
3. Differentiate this function.
4. Set the derivative equal to zero, and solve to find the critical number(s).
5. Test to see whether you have a maximum or a minimum.
6. To find the extreme value(s) of the quantity, substitute the critical

number(s) in the formula for the quantity.
Then, to find absolute extremes, check also for abrupt extremes and end-point
extremes.

PROBLEMS

11. What are the dimensions of a rectangle of minimum perimeter if the
area is fixed at 2500 square units?

* 12. What is the shape of a rectangle of minimum perimeter for fixed area?
13. A farmer has 300 yards of fencing to be used to enclose three sides of a

rectangular field bordering a straight stream - no fencing is needed
along the stream. What are the dimensions of the field of maximum area
that can be so enclosed? Check that you have obtained a maximum.

Now visualize the situation if the farmer has another 300 yards of
fencing that he uses for a second field, directly across the stream from
the first. What are the dimensions of the two fields taken together?
Explain why the result is to be expected.

* 14. What is the shape of a rectangle of maximum area if the sum of the
lengths of three sides is fixed?

15. A rectangular corral of width x yards and length y yards is to be built
with materials costing $4 per yard for the width and $2 per yard for the
length.
(a) What are the dimensions of the corral of maximum area that can be

built for $80? Check that you have obtained a maximum.
(b) What are the dimensions of the corral of minimum cost that can be

built to enclose 50 square yards? Check that you have obtained a
minimum.

* 16. A rectangular corral is to be built with materials costing %a per yard for
the width and %b per yard for the length. What is the optimal shape of
the corral?

17. A rectangular gutter is to be made by bending up x in. from each end of
+ 20, • a sheet of aluminum 20 in. wide, as shown in Figure 3-23. What are the
Fig. 3-23 dimensions of the gutter of maximum carrying capacity (maximum

cross-sectional area) that can be so constructed? Check that you have
1 3 4 obtained a maximum.

i , \



18. (a) A closed cylindrical container (i.e., a cylinder with both top and
bottom) is to hold 250m in.3 What dimensions will require the least
material? How much material?

(b) A closed cylindrical container is to be made from 150TT in.2 of
plastic. Assuming no waste, what are the dimensions of the con-
tainer of maximum volume that can be made? What is the maximum
volume?

* (c) What is the optimal shape for a closed cylindrical container?
19. (a) A cylindrical container with a bottom but no top is to hold \25TT in.3

What dimensions will require the least material? How much material?
(b) A cylindrical container with a bottom but no top is to be made from

75TT in.2 of plastic. Assuming no waste, what are the dimensions of
the container of maximum volume that can be made? What is the
maximum volume?

(c) If you were to take two open-topped cylinders of the dimensions
obtained as the solutions of parts (a) and (b) and put them together
with the open tops coinciding, what would you have? (No wisecracks,
please.)

* (d) What is the optimal shape for a cylindrical container with a bottom
but no top?

20. What are the dimensions of the largest cylinder (cylinder of maximum
volume) that can be inscribed in a sphere (Figure 3-24) of radius 10 in.?

21. What are the dimensions of the largest cone (cone of maximum volume)
that can be inscribed in a sphere (Figure 3-25) of radius 10 in.?

* 22. As in Figure 3-26, a spring is at point S, at distances a and b from two
perpendicular paths, pY and p2. It is desired to make a path AB from px

to p2 and passing through S. Find the lengths x and y so that the length
of AB is a minimum. You may assume that this is equivalent to finding
x and y so that the square of the length of A B is a minimum.

23. A potato crop, if dug now, would yield 50 bushels worth $2 per bushel.
In every week from now on, the crop will grow by 5 bushels, and the
price will drop by 10 cents per bushel. When should the potatoes be dug
for maximum total value?

24. Today a farmer has 1000 boxes of apples in storage, worth $4 per box.
In every week from now, he will lose 20 boxes through spoilage, and the
value of the apples will increase by 10 cents per box. Express the
number of boxes he will have x weeks from now and the value of each
box at that time. When should he sell the apples for maximum return?

25. A closed cylindrical can is to be made of metal costing 5 cents per
square inch for the bottom, the same for the top, and 4 cents per square
inch for the lateral surface. What are the dimensions of a can containing
1280 in.3 if the cost of the metal is to be a minimum?

26. (a) The material for the bottom of a rectangular box with a square base
costs 10 cents per square inch; the material for the sides costs 2

3.8
Applied maxima and minima

Fig. 3-24

Fig. 3-25
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120-

Fig. 3-27

cents per square inch; there is no top. Find the dimensions of the
box of maximum volume that can be made for $30.

(b) Same as (a), if the material for the sides costs 5 cents per square
inch.

(c) Same as (a), if the material for the sides costs 10 cents per square
inch.

27. An apple grower has a yield of 30 bushels per tree when there are 20
trees per acre. Each additional tree per acre decreases the yield per tree
by 1 bushel because of crowding. How many trees per acre should there
be for maximum total yield? What is the maximum total yield?

28. A calf weighing 300 lb could now be sold for 80 cents per pound. If in
every week from now on, it is estimated that the weight of the calf will
increase by 10 lb and that the market price will decrease by 2 cents per
pound, when should the calf be sold for maximum return? (Note that we
neglect the expense of care and feeding of the calf over the next weeks.)

29. A rectangular corral is to be built using 300 yards of fencing for three
sides and using part or all of a 120-yard wall for the fourth side, as in
Figure 3-27.
(a) Express the area (A square yards) of the corral as a function ol x,

specifying the domain of this function. Find the dimensions of the
corral of maximum area that can be so constructed, and demon-
strate conclusively that you have obtained a maximum. Illustrate
your result by drawing a sketch of A as a function of x.

(b) Also express A as a function of y, specifying the domain of this
function, and illustrate your result by drawing a sketch of A as a
function of y.

30. (a) You are to build a rectangular box with square base to hold 36,000
cm3. If material for the base of the box costs 10 cents/cm2, material
for the top costs 6 cents/cm2, and material for the four sides also
costs 6 cents/cm2, what are the dimensions of the box for minimum
cost?

(b) Same as (a), if the side of the base must not exceed 25 cm.
(c) Same as (a), if the height of the box must not exceed 30 cm.
(d) Same as (a), if no dimension of the box may exceed 36 cm.
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3.9 Maxima and minima in some problems in economics

The problems we shall consider here represent an important application of
our methods for determining maxima and minima. The mathematics is quite
simple-we have only to translate each problem into appropriate mathemati-
cal symbolism.

Let us study the profit made by the sausage manufacturer we first met in
Problem 8, 1.4, and then again in Problem 5, 1.7, and in Section 3.4. In



Section 3.4 we decided that an adequate formula for the total daily expense 3.9
($E) of making * lb of sausage per day is Maxima and minima

in economics
£ =128 + 2.8*-0.01*2, 0<*<120 . (1)

If p is the selling price of a pound of sausage, then the total daily revenue
($R) from selling * lb of sausage is R = /?*, and the total daily profit ($P)
from making and selling x lb of sausage is

P = R-E = px- (128 + 2.8* -0.01*2).

But it is unlikely that an arbitrarily large number of pounds can be sold per
day at some fixed price,p. Usually we find that/? is a decreasing function of
*, as with the example of the wastebaskets in Problem 7,1.11. Let us assume
that a market study has shown that to sell the output of the manufacturer
and to operate steadily, p is related to x by the following "demand
function":

p = 6.4-0.03*. (2)

Problem 1
The natural domain of the function given by equation (2), if we think only
in mathematical terms, is (—00,00). But, if * and p have their economic
significance, what is the domain of the function, and what is its range?

Problem 2
Do the algebra to show that the daily profit is given by P = —128 + 3.6* —
0.02*2. What is P if * = 0? Is this result expected?

Problem 3
Use differentiation to show that the maximum daily profit is obtained for
* = 90. Check that it gives a maximum. What is the maximum value of P?

Problem 4
Find the maximum daily profit if the cost function is given by equation (1)
as before, but the demand function is given by p = 4.6 — 0.02*, rather than
by equation (2). What's the trouble?

Problem 5
If the daily profit is P on the sale of * lb, the daily profit per pound is, of
course, P/x.

(a) Compute the profit per pound for the values of * and P in Problem 3.
(b) If the cost function is given by equation (1) and the demand function

by equation (2), find the formula for the profit per pound, and show that it
is a maximum for * = 80. What, then, is the maximum profit per pound, and
what is the corresponding total profit? 1 3 7



3 As you see, the problems of this section are approached in the standard
Applications of the derivative manner: Translate the words into mathematical symbols, and find the

extreme by differentiating and setting the derivative equal to zero.

PROBLEMS

6. An oil company, selling x gal of gasoline per year at y cents per gallon,
finds from experience that the relation between x and y for steady
operation is

J C = 1 0 7 ( 1 5 0 - y)

and that their total annual expense (E cents) for producing and market-
ing JC gal is E = 4• 109 4- 90JC.

(a) Express the annual profit, P cents, as a function of y9 and find y, x,
and P corresponding to maximum P.

(b) Check your result in (a) by expressing P as a function of JC and by
finding x, y, and P corresponding to maximum P.

(c) How much is the profit per gallon in (a)?
(d) Express the profit per gallon as a function of JC, and find x, y, and P

corresponding to maximum profit per gallon. How much is the
maximum profit per gallon?

* 7. The total cost, C, of producing x items is given by

C = 0 + Z>JC,

and the relation between the number JC that can be sold and the selling
price, y, is

x = p-qy.

(a) Show that for maximum total profit, y = (p + bq)/2q.
(b) Show that for maximum unit profit (profit per item), x=}/aq, and

hence thaty = (p — Jaq)/q-
* 8. The total cost, C, of producing x items is given by

C = a + bx-cx2,
and the relation between the number x that can be sold and the selling
price, y9 is

x = p-qy.

(a) Show that for maximum total profit, x = (p — bq)/[2(l — cq)].
(b) Show that for maximum unit profit (profit per item), JC =

9. Suppose that the total cost ($E) of manufacturing x units of a certain
commodity is given by

.6JC+0.001JC2, 0 < J C < 2 5 0 .

Note that the " fixed cost" is 40 and the " variable cost" is 1.6JC + 0.001 JC2.
1 3 8 (a) Find the minimum and maximum values of E.



(b) Find the marginal cost of manufacturing the first unit. The 250th 3.10
unit. Approximate solution

(c) If the "average total cost" (or "total unit cost") is defined as E/x, of equations
write a formula for the average total cost in terms of x. What is the
domain of this function?

(d) Find the minimum value of the average total cost. Is there a
maximum value? Explain.

(e) If the "average variable cost" is defined as (variable cost)/*, find
the minimum and maximum values of the average variable cost.

* 10. In Problem 9(d), you should have found that the minimum value of the
average total cost is $2, attained at x = 200.
(a) Verify that the derivative, E\ is also 2 at x = 200. In other words,

for the cost function of Problem 9,

X

at the value of x that makes {E/x)' = 0.
(b) Show that the result stated in (a) is also valid for the cost function

E = a + bx + ex2, where a, b, and c are any positive constants. (In
Chapter 4 we shall find that this is a quite general result, not
restricted to quadratic cost functions.)

11. In a small shoe factory (this doesn't mean that they manufacture only
Cinderella slippers), the expense ($E) of producing x pairs per week is
as follows: E =1,000 + 12.5.x + 0.00L*2.
(a) Find a formula for the marginal cost. What, then, is the marginal

cost of producing 1 pair per week? The 100th pair? The 1000th pair?
(b) Find a formula for the total unit cost, E/x.
(c) What x makes the total unit cost an extreme? Maximum or mini-

mum?
(d) What is the total unit cost at the x found in (c)?
(e) What is the marginal cost at the x found in (c)?

3.10 Approximate solution of equations: the Newton-Raphson
method and the bisection method

It is simple to solve any linear equation ax + b = 0, with a and b being
constants, and a # 0.

For any quadratic equation, ax2 + bx + c = 0, with a, b, and c being
constants, and a # 0, we have the "quadratic formula":

x=(-b± }/b2-4ac)/2a.

(In some cases, the roots are not real numbers, of course.)
There is a formula for the (three) roots of the general cubic equation,

ax3 + bx2 + cx2 + d = 0, 1 3 9
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and a formula for the (four) roots of the general quartic equation,

= JC3 - 2x - 5

Fig. 3-28

P ( 2 , - 1 )

ax4 bx3

There are no comparable formulas for the roots of the general polynomial
equation of degree greater than four, and even the formulas for the roots of
the cubic and quartic are not convenient to use if we want a numerical
approximation to the roots.

A method essentially due to Newton uses the derivative to find such
approximations. The particular form that is now common appears in the
work of Raphson, a contemporary of Newton. We shall illustrate the
Newton-Raphson method by working an example that Newton himself
used in his Methods of Fluxions:

Example 1
The problem is to find the real root(s) of the equation x3 - 2x - 5 = 0. For
short, we shall designate x3 — 2x — 5 as f(x).

It is easy to make the following table:

X - 2
-9

- 1
- 4

0
- 5

1
- 6

2
- 1

3
16

By the rule stated at the end of Section 0.11 we know that there are no roots
less than - 2, and none greater than 3.

Now, f'(x) = 3x2 — 2, so critical numbers of this function are + ^/2/3 , or
±0.8165, approximately. We can quickly check that x = ^2/3 corresponds
to a relative minimum of / , and x = — ^/2/3 corresponds to a relative
maximum. We calculate that f(fe/3) « - 6.09, and / ( - ^2/3) « - 3.91.

The foregoing calculations enable us to draw Figure 3-28 as the graph of
y = f(x), indicating a root between x = 2 and x = 3, with no other real
roots. We choose x0 = 2 as an initial approximation to the root, and we get
a better approximation through "linearization": We approximate the curve
near x = 2 by a segment of the tangent line to the curve at x = 2 - as
shown in Figure 3-29, we use the straight-line segment PT as an approxima-
tion to the arc PQ. Of course, the root that we seek is the abscissa of point
Q. As our next approximation we use xl9 the abscissa of point T.

Now the slope of PT=[0-(-l)]/(xl-2). Also, the slope of PT =

Thus, l/(xl - 2) = 10; so xx - 2 = ^ , or xx = 2 + ^ = 2.1. Substituting 2.1
for x in f(x) gives /(2.1) = (2.1)3 -2(2.1)-5 = 0.061, a small number; so
xx = 2.1 is a reasonably good approximation to the desired root.

To obtain a better approximation we repeat the process, as shown in
Figure 3-30, which is not drawn to scale: We approximate the arc UQ by
the segment of the tangent UV. As our next approximation we use JC2, the
abscissa of point V. We see that the slope of UV= (0-0.061)/(x2 -2.1).
Also, the slope of UV = f\xx) = /'(2.1) = 3 • (2.1)2 - 2 = 11.23.



(7(2.1, 0.061)
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P(2, - I )

Fig. 3-30

Thus,

0.061
JC2-2.1

= 11.23;

so

11.23(x2 -2.1) = -0.061, or x2 -2 .1 =

or *2 = 2.1 - 2.095.

We calculate /(JC2) = / (2 .095) = (2.095)3-2(2.095)-5 = 0.005. Because
f(x2) is such a small number, x2 =• 2.095 is a good approximation to the
root. But we could repeat the process yet again for a still better approxima-
tion.

Problem 1
Starting with x2 = 2.095, and f(x2) =
and/(x3).

: 0.005, repeat the process to find x3

We now generalize the method of this example. Let r be a root of the
equation g(jc) = O. Suppose that x0 is an approximation to r. Let the
tangent line to the curve at the point with abscissa x0 meet the x axis at xl9

as in Figure 3-31. Then the slope of this tangent line is [0 — g{xo)]/(xl — x0).
But the slope also equals g'(x0). Equating these two expressions for the
slope gives

Fig. 3-31
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Problem 2
Solve this equation for xx to obtain

Xi Xr\
g(*o)

Note that g'(x0) must not equal zero for this equation to be valid.
If all is well, xx will be closer to r than x0 is. If g(xx) # 0, we repeat the

process, obtaining

Jxn, 0)

y = g(x)

y = g(x)

•(**, 0)

Fig. 3-32
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as the next approximation to r. In general, we have

g(xn)
X"+1~X"~ g'(xH)9 to"*"0'1'2'- *

Problem 3
With each of the sketches in Figure 3-32, determine JCW + 1 geometrically, and
verify that you are led to the preceding formula in each case.

Example 2
Let us apply the method to approximate yjl.

We take g(x) = x2-l. Then g'(x) = 2x. Because 22 = 4 and 32 = 9, it
would seem reasonable to start at x0 = 3. The formula for successive
approximations is

2 _ 7

Thus, xx = 3 - V = f = 2.666

Problem 4
Show that x2 = ^ = 2.6458333 • • •
which is approximately 6.9999999.

and that x3 ~ 2.6457513, the square of

A good check on accuracy is obtained by comparing each approximation
with a quite accurate approximation to Jl from a calculator or a large
table. We would find that the error in x0 is about 0.35, the error in x2 is
about 8 X 10~5, and the error in x3 is about 1X10"6.

This pattern of increasing accuracy is typical. When Newton's method is
working, the error at any step is roughly the square of that at the preceding
step. Thus, if the error is smaller than 1, the succeeding errors decrease
rapidly.

It is hard to predict exactly where the method does work. Certainly it is
unlikely to do so when g'(x0) is very close to zero, for then xx may be far



away (Figure 3-33). Another difficulty will be indicated later in Problem 9.
For these reasons, the method tends to be more useful in calculator work,
where one can watch what is happening, than in computer work.

The important thing is to start close to the root r. We can ensure this by
using the following simple, sure-fire method first: It is called bisection, and it
always works so long as the graph of / i s unbroken (continuous is the term
we shall use shortly) and crosses the x axis at an isolated root r. What this
amounts to is that there is an interval [a9 b] surrounding r such that f(a)
and/(ft) are of different signs - one positive, the other negative.

The method is simply to bisect [a9b] successively, each time narrowing
down on r. Let xx = (a + b)/2. There are three cases to consider.

Case 1. f(xx) = 0. We were lucky enough to land on r immediately, and
we are done.

Case 2. f(x1)-f(a)<0. That is, f(xx) and f(a) are of different signs.
Then we know that r lies between a and xl9 as shown in Figure 3-34. The
next step is to let xx take the place of b to determine x2 = (a + xx)/2.

Case 3. If neither Case 1 nor Case 2 obtains, f(xxyf(b) < 0, and r lies
between xl and b. We set x2 = (xx + b)/2.

And we keep going, forming x39xA,...9xn9 stopping if we land on r and
otherwise isolating r in ever-diminishing intervals. How close are we to r at
each step? Well, we know that xx can be no further from r than (b — a)/I.
And x2 can be no further from r than (b — a)/22. In general, xn is certain to
be within (b - a)/2n of r.

Let us take as an example/(JC) = x2 — 7 and find r = ]/l to an accuracy of
two decimal places. Because/(2) = — 3 and/(3) = 2 are of opposite sign, we
have r isolated in [a, b\ with a = 2 and b = 3. Then xx = f and f(xx) = — f
<0, so that r lies between xx and b (Case 3). Thus, x2 = ( f+ 3)/2 = ^ .
Then f(x2) = f(^) = -^> 0, which means that r lies between xx and x2

(Case 2). Thus, we set x3 = (xx + x2)/2 = f. Can we stop? Hardly. To be
certain of the desired accuracy, we must find xn so that (b — a)/2n = 2~n is
less than 5-10"3.

3.10
Approximate solution

of equations

>, 0 )

Fig. 3-33

Fig. 3-34

Problem 5
Show that n must be at least 8. Then verify that JC4 = y|, x5 = ff, x6 = ^ ,
xi = fit > *8 = 256 • Check to see that xs is sufficiently close to /f.

It is clear that bisection is a very tedious process. However, its simplicity
and reliability make it a handy device for use with computers, as well as for
narrowing down on a root with a calculator to a point where the
Newton-Raphson method can find the root quickly and to high accuracy. 143



Applications of the derivative c
PROBLEMS
6. Use the Newton-Raphson method to approximate

(a) \/l7 (b) ^120 (c) v^5
7. Let A be a positive number. Show that the Newton-Raphson formula

for finding \//F can be written in the form

C 8. Use three steps of the Newton-Raphson method to approximate yfl.
Determine the error at each step.

C 9. Let /(JC) = JC3-3.3JC2-7.7x+ 12.4. Make a rough graph of / to de-
termine that there are roots of f(x) = 0 near — 2, 1, and 4. Then use the
Newton-Raphson method to get close to these roots. If you have
programmed the calculation, use the program with various starting
values not very close to the roots, in particular with x0 = 0.8 and x0 = 3,
where the derivative is numerically small. The problem is not one of
convergence, but rather of how long it takes and where it ends up.

C 10. If your calculator is programmable and permits branching, program it
to bisect. Use your program on Problems 8 and 9.

24

Fig. 3-35
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3.11 Review

In reviewing, note the five types of problems mentioned at the start of this
chapter. Remember the definitions of functions increasing or decreasing over
an interval (Section 3.2). We have had two tests for "turning-point" maxima
and minima (Section 3.6). Translating the words of a maximum and
minimum problem into a function of a single variable may require ingenu-
ity; three helpful observations are given in Section 3.8. A procedure for a
complete analysis of maxima and minima is given at the end of Section 3.7,
and a procedure for applied maxima and minima is given at the end of Sec-
tion 3.8.

PROBLEMS

1. A rectangular sheet of aluminum 9 in. by 24 in. is to be formed into an
open rectangular box by cutting out squares x in. on a side from the
corners and bending up the aluminum along the dotted lines (Figure
3-35).
(a) Express the volume (V in.3) of the box as a function of x. What is

the domain of this function?
(b) What x gives maximum F?
(c) Discuss the question of extremes (maximum or minimum) for the

area of the bottom of the box.



2. You wish to make a rectangular box with a square base and no lid, of 3.11
volume 80 ft.3 The material for the sides will cost 20 cents per square Review
foot, and that for the base 50 cents per square foot. Find a formula for

the total cost (C cents) in terms of the length (x ft) of the side of the
base. Determine whether or not, with $20 to spend, you can afford to
make such a box.

3. (a) A quarter-mile (440-yard) running track consists of two sides of a
rectangle and two semicircles erected on the ends of the rectangle, as
in Figure 3-36. Show that if the area of the rectangle is to be as large
as possible, the two "straightaways" of the track represent half the Fig. 3-36
length of the track. (These are the standard dimensions in the rule
book.)

* (b) Show that the result in (a) applies to a track of any length, /. (In
particular, then, it will apply to a 400-m track.)

4. For the function/(JC) = x3 — 3x2 — 9JC + 2 over its natural domain, what
are the values of JC for which / is stationary? Increasing? Decreasing?

5. The cost ($C) of producing x tons of fertilizer is given by C = 100 + 13.x
— 0.01A:2. The selling price per ton ($5) at which x tons can be sold is
given by S = 25 — 0.02.x. What x gives maximum profit? How much is
the maximum profit? Check that you have a maximum.

6. For C as given in Problem 5, what is the marginal cost of producing the
1st ton? The 10th? The 100th?

7. The force of attraction (F dynes) between two particles varies inversely
as the square of the distance between them (x cm), and F= 40 when
x = 5. Find the formula for F in terms of x. Use differentiation to find
the approximate change in F if x decreases from 10.2 to 9.9.

8. A closed cylindrical can is to be made of metal costing 4C per square
inch for the bottom, the same for the top, and 3$ per square inch for the
lateral surface. What are the dimensions of a can containing HIT in.3 if
the cost of the metal is to be a minimum?

9. Sketch a graph of the function given by

i
x + 3 , - 5 < x < - 3 ,

9-x\ - 3 < x < 3 ,

(JC-3)2, 3<x<5.
For what values of x in the domain of / does / ' not exist? Where do
relative minima of / occur? Relative maxima? What is the absolute
minimum of/? The absolute maximum?

* 10. If the total expense ($E) of producing x units of a commodity is given
by E = a + bx + ex3, where a, b, and c are positive constants, show that
E' = E/x at that x which makes E/x an extreme.

11. The cost ($C) of producing x lb of grass seed is given by C = 100 + 4x
-O.Olx2, for 0 < x < 180. The selling price per pound ($S) at which x lb
can be sold is given by S = 7 - 0.02x. 1 4 5
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(-2,3) (2,3)

( - 1 , 0 ) (1 ,0)

Fig. 3-37

Fig. 3-38
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(a) Express the revenue (i.e., gross income), $R, as a function of x.
(b) Express the profit ($P) as a function of x.
(c) What x gives maximum profit?
(d) How much is the maximum profit? Check that you have a maxi-

mum.
(e) Find a formula for the marginal cost. Hence, what is the marginal

cost for x = 10? For x = 100?
12. The resistance (R ohms) of a wire varies inversely as the square of its

diameter (JC mm), and R = 20 at x = 5. Find a formula for R in terms of
x. Use differentiation to approximate the change in R if x decreases
from 10.2 to 9.9, giving the sign and units of your answer.

13. A voyage of 1000 miles is made at some speed, v mph.
(a) How many hours does the voyage take?
(b) What is the cost of the voyage if the hourly cost ($ y per hour) is

given by y = 160 + 0.01*;3?
(c) What speed makes the cost of the voyage a minimum?
(d) What is the minimum cost?

14. Figure 3-37 shows the graph of a function, >> = /(JC).

(a) Find a formula (or formulas) for / .
(b) For what values of x in the domain of /does/ ' not exist?
(c) What are the relative maxima of / , and where do they occur?
(d) What is the absolute maximum of / , and where does it occur?

15. For the function f(x) = 2x3 —9x2 —24x + 2, defined over its natural
domain, find those x's for which / is stationary. Is increasing. Is
decreasing.

16. As in Figure 3-38, a rectangular field, ABCD, is to be fenced, with no
fencing required along the river, but with a fence down the middle. If
1200 m of fencing is available, what are the dimensions of the field for
maximum area? What is the maximum area? Give the units of your
answer.

17. The intensity (/ calories/min) of heat from a lamp varies inversely as
the square of the distance (x cm) from the lamp, and / = 1000 for x = 2.
Find a formula for / in terms of x. Use differentiation to approximate
the change in / if x increases from 4.9 to 5.2. Give the sign and units of
your answer.

* 18. Use the definition of derivative to demonstrate that if f(x) = l/4x2, then
/ ' ( * ) = - 1 / 2 * 3 .

19. (a) A closed cylindrical can is to contain 547T in.3 What are the
dimensions of the can if the metal needed to make the can is to be
minimized?

(b) Same as (a), with the diameter of the base of the can not to exceed 5
in.

C (c) Same as (a), with the height of the can to be at least three times the
diameter of the base.



20. A peanut butter jar consists of an open glass cylinder with a metal
screw-on top. Make a reasonable model of the cost of making the jar,
and find the most economical shape for ajar to contain a given quantity
of peanut butter.

3.11
Review

SAMPLE TEST

1. For the function f(x) = x3 + 3x2 +3JC - 5 , considered over its natural
domain, determine where the function is stationary, is increasing, and is
decreasing.

2. For certain aircraft, the lift (L units) varies as the square of the velocity
(v mph), and L = 64,000 when v = 400. Use differentiation to find
approximately how much smaller L is for v = 498 than for v = 500.

3. A sheet of paper of area A in.2 is to have printing x in. by y in., with
margins of 2 in. top and bottom and margins of 1 in. on each side (Figure
3-39). If the printed area is to be 128 in.2, what are the dimensions of the
paper for minimum A1

4. The total cost ($E) of producing x tons of fertilizer is given by E = 5000
+ 45* -0.02JC2, 5 < x < 100. What is the marginal cost of producing the
10th ton? The 50th ton? The 100th ton?

5. Figure 3-40 shows the graph of a function, y = f(x).
(a) Find a formula (or formulas) for / .
(b) For what values of x in the domain of / does / ' not exist?
(c) What are the relative minima of / , and where do they occur?
(d) What is the absolute minimum of/, and where does it occur?

6. The material for the bottom of a rectangular box with a square base costs
2<P per square inch; the material for the sides costs 1$ per square inch;
there is no top.
(a) Find the dimensions of the box of maximum volume that can be

made for $6.
* (b) Can you explain intuitively why the box turns out to be a cube in this

case?
* 7. (a) A rectangular corral is to be built with 100 yards of fencing. An

existing 20-yard wall is to be used as part or all of one side, or the
wall can be extended by fencing, if desired (Figure 3-41). What are
the dimensions of the corral for maximum area?

(b) Discuss the problem of part (a) if the length of fencing is some
constant / and the length of the existing wall is some constant w.

1

2

2

1

Fig. 3-39

( - 3 , 4 ) (3,4)

20

4 20

y y

Fig. 3-41

147



Further
differentiation

In this chapter we shall extend the theory and technique of differentiation
begun in Chapter 3, enabling us to apply our methods to problems that we
couldn't handle earlier.

4.1 Repeated differentiation and derived curves

If a function, / (*) , has a derivative, / ' (*) , at all points of its domain, Df,
then / ' is also a function of JC, with a domain Df, = Df. Hence, we can ask
whether or not / ' has a derivative - the rate of change of/'. If it exists, the
derivative of/' is called the second derivative of / and is denoted by/" .

Problem 1
State the definition of f"{x) in terms of/' and the concept of limit.

For example, if f(x) = JC2, then/'(jc) = 2JC, and/"(x) = 2.
Table 4-1

x f(x) f\x) /"(*) Problem 2
$ Find g"(x) if g(x) = JC4 - 2x3 + x -1 + 1/x.

i

* Problem 3
3 lff(x) = \x3 - 2x2 + 3JC +1 , find/'(jc) and/"(*), and fill in Table 4-1.
2

2
Geometrically,/'(JC) is interpreted as the slope of the curves = /(JC). The

second derivative, /"(x), is called the flexion of the curve y = /(JC). Of
course,/"(JC) can also be interpreted as the slope of the curves = / '(JC). Let
us now show this graphically: If we use the / of Problem 3 and plot the
graph of y = f(x) as in Figure 4-l(a), we recognize that for each x, the value
of f'(x) is the slope of this curve. Hence, if we plot y = f'{x) as in Figure
4-l(b), the height of this curve for each x equals the slope of the original
purve at the same JC. The curve y = f\x) is called the first derived curve of
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Similarly, if we plot y = /"(*) as in Figure 4-l(c), the height of this curve
for each x equals the slope of the first derived curve at the same x, and it
also equals the rate of change of slope, or flexion, of the original curve at the
same x. The curve y = f"{x) is called the second derived curve of y = f(x).

Problem 4
Various relationships are set out in Table 4-2. Check them by referring to
the appropriate graphs, and complete the table where there are blanks.

Table 4-2

Interval (0,1) Increasing Positive
Slope of graph is decreasing Decreasing

l Maximum value 0
Slope of graph is decreasing Decreasing

Negative

Negative

Negative

0

Interval (1,2) Decreasing Negative
Slope of graph is decreasing Decreasing

2 Decreasing Negative
Slope of graph is minimum Minimum value

Interval (2,3)

3

Interval (3,4)

In the equationy = F(x\ if y represents displacement from some starting
point and x represents elapsed time, for a particle moving in a straight line,
then, as we know, F'(x) represents instantaneous velocity, the rate of change
of displacement with respect to time. The rate of change of velocity with
respect to time, F"(x)9 has a special name - it is called acceleration.

Problem 5
A projectile thrown vertically has height (s ft) above the ground at time
(t sec), according to the following formula:

s = - 16t2 + 80f + 96, 0 < / < 6.

(a) Verify that the velocity (v ft/sec) is given by v = — 321 + 80 and that the
acceleration (a ft/sec/sec) is constantly —32. In other words, the
velocity decreases by 32 ft/sec in each second.

4.1
Derived curves

f(x) = 3*3 - 2x2 + 3x

I I I

:-3) ffXx) = 2(x-2) (b) f
3

2 -

- 4

Fig. 4-1

1
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4 (b) Verify that the projectile was launched (t = 0) from a height of 96 ft
Further differentiation above the ground with an initial upward speed of 80 ft/sec. What was

the initial acceleration?
(c) Verify that the projectile achieves its maximum height at t = f. What is

the maximum height, and what is the acceleration at that time?
(d) Verify that the projectile hits the ground (s = 0) at t = 6. What are the

velocity and acceleration at that time?

Problem 6
A particle moves on the x axis so that its displacement (x ft) from the origin
varies with the elapsed time (t sec) as follows: x = t3 — 9t2 + 6t +10. Find a
formula for the acceleration at any time. For what values of t, then, is the
velocity increasing? Decreasing? When is the velocity an extreme? Is it then
a maximum or a minimum?

We sometimes deal with derivatives higher than the second. For example,
in considering the graph of y = f(x\ the rate of change of flexion is given
by the third derivative of y with respect to x9 f'"(x). Similarly, in the
equation y = F(x), if y represents displacement from some starting point
and x represents elapsed time, for a particle moving in a straight line, then
the rate of change of acceleration is given by F"\x). We do not have any
special names (comparable to slope, velocity, flexion, acceleration) for these
rates of change.

Note that one may be led astray by memorizing a shorthand statement
like "acceleration is the second derivative, and rate of change of accelera-
tion is the third derivative." If we should start with a formula for velocity,
v = f(t), then acceleration is f\t) and rate of change of acceleration is
/"(0- The correct statement reads "acceleration is the second derivative of
displacement with respect to time," and so forth.

PROBLEMS

o 7. The displacement (s cm) from a fixed point on a line of a particle
moving on that line varies with elapsed time (t sec) as follows:

s = t3 - 3 / 2 - 9 f + 4 , -2<t<4.

(a) Find turning-point extreme values of s, and test for maximum and
minimum.

(b) Find turning-point extreme values of the velocity, and test for
maximum and minimum.

(c) Find intervals of increasing s and of decreasing s.
(d) Find intervals of increasing velocity and of decreasing velocity.
(e) Plot the graph of s as a function of /, and relate your answers to

1 5 0 (a)-(d) to geometrical features of this graph.



8. Look again at Problem 7. 4.1
(a) What are the end-point extremes of s? Hence, what is the absolute Derived curves

maximum of si The absolute minimum?
(b) What are the end-point extremes of vl Hence, what is the absolute

maximum of vl The absolute minimum?
9. In Problem 10, 2.9, the height (s in.) above the ground of an ant

crawling up the trunk of a tree varied with the elapsed time (t sec) as
follows: s = 9t2 - t\ for 0 < t < 9.
(a) Find the turning-point and end-point extremes of s9 and thus find

the absolute minimum of s; find also the absolute maximum. (Give
units of your answers.)

(b) Find the turning-point and end-point extremes of the velocity, v,
and thus find the absolute minimum of v\ find also the absolute
maximum. (Give units of your answers.)

(c) Find the absolute minimum of the acceleration, a; find also the
absolute maximum.

(d) Find intervals of increasing s and of decreasing s.
(e) Find intervals of increasing v and of decreasing v.

10. In Problem 40, 2.9, the height (s ft) of a rock climber above the bottom
of a chimney varied with elapsed time (/ min) as follows: s = 4t3 — f4,
for 0 < t < 4.
(a) Find the turning-point and end-point extremes of s, and thus find

the absolute minimum of s\ find also the absolute maximum. (Give
units of your answers.)

(b) Find the turning-point and end-point extremes of the velocity, v9

and thus find the absolute minimum of v\ find also the absolute
maximum. (Give units of your answers.)

(c) Find the turning-point and end-point extremes of the acceleration,
a, and thus find the absolute minimum of a\ find also the absolute
maximum. (Give units of your answers.)

(d) Find the absolute minimum of the rate of change of acceleration;
find also the absolute maximum. (Give units of your answers.)

(e) Find intervals of increasing s and of decreasing s.
(f) Find intervals of increasing v and of decreasing v.
(g) Find intervals of increasing a and of decreasing a.

11. Consider the curve given by y = 2x3 — 3x2 — \2x +1, for — 2 < x < 4.
(a) Find the turning-point and end-point extremes of the height of the

curve, and thus find the absolute minimum of the height; find also
the absolute maximum.

(b) Find the turning-point and end-point extremes of the slope of the
curve, and thus find the absolute minimum of the slope; find also the
absolute maximum.

(c) Find the absolute minimum of the flexion and the absolute maxi-
mum. 1 5 1



Further differentiation

a

Fig. 4-2

b c

a p x qb

Fig. 4-3

Fig. 4-4
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4.2 Points of inflection and third test for maxima and minima

We begin with some terminology. In Figure 4-2, it seems reasonable to call
the curve ^ concave down over the interval (a,b) and the curve #2 concave
up over the interval (c,d). Here is a formal definition (refer to Figure 4-3):

Let P and Q be any two points on the curve in the interval, with
abscissas p and q. Let x be any number between p and q. If the
height of the line segment PQ at x is less than the height of VA at
x, for all choices of P, Q, and x, the curve VA is concave down
over (a, b).

Problem 1
Show by a sketch why it would be unsatisfactory to consider only one choice
of P and Q, say at the ends of the interval.

Problem 2
Give the definition of concave up over an interval.

In Figure 4-4, the curve is concave down between H and / , concave up
between / and K, and concave down again between K and L. The point J
where the curve changes its direction of bending from concave down to
concave up is called a point of inflection. The point K is also a point of
inflection:

A point where a curve changes its direction of bending from
concave down to concave up (or, from concave up to concave
down) is called a point of inflection of the curve.

In Figure 4-l(a), reproduced here, we note that the slope of y = f(x)
decreases from A to C (where the curve is concave down) and increases from
C to E (where the curve is concave up). At the point of inflection C, then,
the slope of y = f(x) is a minimum - a result that is also clearly seen in
Figure 4-l(b). By taking the second derivative of/(x), which is graphed in
Figure 4-l(c), we can seen that for functions like/(x), which have first and
second derivatives, the slope is decreasing and the curve is concave down
where the second derivative is negative. Likewise, the slope is increasing and
the curve is concave up where the second derivative is positive. At C, the
point of inflection where the slope is a minimum, f"(x) = 0. The point P in
Figure 4-5(a) is also a point of inflection.

Problem 3
Estimate the slopes at various points of the curve in Figure 4-5(a) and
sketch its first derived curve. What can you say about the value of g'(x)
atP?



As suggested by the tangents at C in Figure 4-l(a) and at P in Figure
4-5(a), the tangent line at a point of inflection crosses the curve there. This is
seen also in Figure 4-5(b) at Q, which is also a point of inflection - in this
case with a horizontal tangent, that is, F\x) = 0 at Q, or the corresponding
x is a critical number of F(x). But Q is not a maximum or minimum point
of the curve, of course. As we approach Q from the left, F'(x), the slope of
the tangent, is decreasing toward zero; and as we proceed on to the right
from Q, F'(x) increases from zero to greater and greater positive values. In
other words, F'(x) has a minimum value (which happens to be zero) at the
point of inflection, Q. We encountered a similar situation in Problem 4(c),
3.6, where we studied the curve f(x) = \x2 — 3x2+9x + l.

(a) (b)

F(x)

0

Fig. 4-5

In summary, for functions that have first and second derivatives, we can
state that at a point of inflection, the slope of the curve is an extreme
(maximum or minimum), and hence the second derivative of the original
function equals zero. However, the converse is not true: If the second
derivative is zero at some JC, the corresponding point on the curve is not
necessarily a point of inflection, just as, if the first derivative is zero at some
x, the corresponding point on the curve is not necessarily a maximum or
minimum point. In searching for maximum and minimum points on a
curve, we find critical numbers by setting the first derivative equal to zero,
and then test to make sure we have an extreme, in addition to checking any
points where the derivative does not exist. Likewise, in searching for points
of inflection on a curve, we set the second derivative equal to zero, and then
test to make sure that we have an extreme (maximum or minimum) of the
slope. Again we must check any points where the derivative being used (this
time the second derivative) does not exist, by finding the direction of
concavity of the curve (up or down) on each side of such points.

Problem 4
For the curve given by y = f(x) = x4 —4x3 +6x2 +Sx +4, check that
f"(x) = 12(x—I)2. Hence, if there is a point of inflection, it occurs for what

4.2
Points of inflection

and third test for
maxima and minima

(a)

Fig. 4-1
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Further differentiation

y =f(x) = - x 3 - 2x2 + 3x + 1

2 -

1 -

xl Find/'(*) at this x, at a smaller x, and at a larger x. Do we have a point
of inflection?

The following example shows that it is necessary, as in finding extrema, to
worry about points at which derivatives do not exist.

Problem 5
Sketch a graph of the function g given by

Show that the graph has a horizontal point of inflection at x = 0. Show that
g"(0) does not exist.

Returning to Figure 4-l(a), reproduced here again, we can learn the third
test for maximum and minimum, referred to in Section 3.6. In the vicinity of
a maximum point, like B, the curve, y — /(x)9 is concave down, which means
that f'(x) is decreasing (or possibly stationary) and hence that /"(*) is
negative (or possibly zero).

Problem 6
Make a comparable statement about a minimum point, like D.

In light of the foregoing observations, the following test for extrema
appears valid. A proof of its validity follows directly from an extended
version of the Mean-Value Theorem:

Test 3
If f\c) = 0 and/"(c) < 0, then/(;c) has a relative maximum value for x = c.

If f'{c) = 0 and f"{c) > 0, then f(x) has a relative minimum value for
x = c.

If / '(c) = 0 and /"(c) = 0, we must test further to find if we have a
maximum or a minimum or a horizontal point of inflection or none of these.

Note that

in Test 1 we check the values of / on both sides of the critical number;
in Test 2 we check the sign of/' on both sides of the critical number;
in Test 3 we check the sign of/" at the critical number.
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PROBLEMS

7. Use Test 3 to check for maxima and minima in the following problems
in Section 3.5:
(a) Problem 3, in which the relevant equation is L = 0.5 + 2.1/ -0.lt2



(b) Problem 4, in which the relevant equation is y = 48 + 88/ —16/2

(c) Problem 5, in which the relevant equation is E = 128 + 2.8% — O.Olx2

(d) Problem 6, in which the relevant equation isj> = 8-6jc + jc2

(e) Problem 7, in which the relevant equation isj> = 9 - 8 x - ; c 2

8. Use Test 3 to check for maxima and minima in the following problems
in Section 3.8:
(a) Problem 18(a) (b) Problem 20 (c) Problem 21

9. Recall Problem 7, 4.1.
(a) Use Test 3 to check your results in part (a).
(b) Use Test 3 to check your results in part (b).
(c) For the graph of part (e), locate the point of inflection and the

intervals for which the curve is concave up and concave down.
10. For Problem 9, 4.1, in which the relevant equation is s = 9/2 - /3, use

Test 3 to test for turning-point maxima and minima on the graph of this
equation, and also locate point(s) of inflection.

11. Same as the foregoing Problem 10 for Problem 10, 4.1, in which the
relevant equation is s = 4/3 — t4.

12. Same as the foregoing Problem 10 for Problem 11, 4.1, in which the
relevant equation is y = 2x3 — 3x2 — \2x + 1 .

13. For the curve determined by y = x4— 8 J C 3 + 1 8 J C 2 + 1 , find maximum
and minimum points and points of inflection, and sketch the curve over
the interval - 1 < x < 4. (Over this interval, y has too great a range to
permit drawing the curve with the same scale on the vertical and
horizontal axes unless you use an enormous sheet of paper.)

14. (a) Analyze the curves y = x2, y = x3, y = x4, y = x5, and y = x6, for
maximum and minimum points and points of inflection.

(b) Using a large scale, sketch each of these curves on the same axes
over the interval — 1 < x < 1.

(c) On the basis of your results in part (a), guess a result about
maximum and minimum points, and points of inflection, for the
curve y = xn

9 where n is an integer greater than or equal to 2.
* (d) Prove your conjecture of part (c). What can you say about maxi-

mum and minimum points, and points of inflection, for the curves
y = x", where n = 1,0, - 1 , - 2, . . . ?

15. Q = ax2 + bx 4- c.
(a) Find the second derivative of Q with respect to x.
(b) Show that the graph of Q as a function of x is concave up if a > 0

and concave down if a < 0.
* (c) Discuss the extreme value (or values) of Q. Compare with Problem

5(e), 1.9.
* 16. In Section 1.7 we approximated Figure 1-2 (see Section 1.3 or Section

1.7) by the formula

4.2
Points of inflection

and third test for
maxima and minima

- 9 . 2 + 8.7/-0.4/2 , 4 < / < 1 0 . 155



4 To use our present terminology, we argued that t = 4 seemed to corre-
Further differentiation spond to a point of inflection and that the first of the quadratic

expressions in A represented adequately the concave-up portion of the
curve to the left of t = 4, whereas the second of the quadratic expres-
sions did likewise for the concave-down portion of the curve to the right
of t = 4.
(a) Check that both the quadratic expressions give the same value for A

at / = 4.
(b) Check that the two quadratic expressions have different derivatives

at t = 4. This means that the left-hand tangent at t = 4 is not the
same as the right-hand tangent there - our approximating curve is
not smooth at / = 4.

(c) It is hardly believable that the function A9 giving the size of the
bacterial colony, does not have a derivative (i.e., a growth rate) at
t = 4. Yet we have just seen that such is the case for the approximat-
ing function A. Explain this anomaly.

17. For each of the following functions, defined for all real numbers, 0 is a
critical number. Try to apply Test 3 in each case - you should find that
it fails. Use some other test to decide if x = 0 corresponds to a
maximum of the function or a minimum or a horizontal point of
inflection or none of these.
(a)/1(x) = x4 (b)/2(x) = 2 - x 4 (c)/3(x) = x3 (d)/4(x) = 2

4.3 Extreme rates

Just as we may wish to find the maximum height attained by a rocket, or the
maximum velocity reached by a car, so likewise we may seek the maximum
(or minimum) acceleration of a moving particle. The method is straightfor-
ward: We first find the acceleration itself (which doubtless will involve some
differentiation) and then find the derivative of the acceleration and set it
equal to zero to obtain critical numbers corresponding to extreme values of
the acceleration. The same idea applies to finding extreme values of any
quantity that itself is a rate. Here is an example:

For what values of x is the rate of change of flexion of the curve given by
y = f(x) = x5 — j2X6 an extreme? Maximum or minimum? In this case we
have

height of curve = f(x) = x5 — nx6 ,

slope of curve = f'{x) = 5x4 — ^JC5,

flexion of curve = /"( JC) = 20x3 - f x4,

R = rate of change of flexion = / ' " (x) = 60x2 - 10.x3.

Because the rate of change of flexion is the quantity we are to investigate for
1 5 6 maxima and minima, we have designated it by the special letter R. For the



rest of our work it is irrelevant that we had to do a lot of differentiating to 4.4
find R - we simply now proceed to find the maximum or minimum of R The Chain Rule
given by R = 60x2 -

Problem 1
Verify that the critical numbers of the function determined by the equation
for R are JC = 0 and x = 4.

Problem 2
For the practice, use all three tests to determine that x = 0 corresponds to
minimum R and that x = 4 corresponds to maximum R.

In problems of this sort we have to be careful in translating the words
into the correct rate to be maximized or minimized; from then on, it's
usually simple.

PROBLEMS

3. The distance (y ft) traveled by an object in t min is y =15t4 — t5. Find
when the velocity is a maximum; likewise the acceleration. Test all the
critical numbers.

4. In Problem 3, find when the acceleration is increasing most rapidly.
5. If the distance (y ft) traveled by an object in t min is given by

y = 60/3 — /4, find the acceleration, a, at t = 20. Is a then increasing or
decreasing, and how rapidly? Find the maximum acceleration.

6. The equation of a curve is y = 12.x3 — x4. Find the flexion of the curve at
x = 2. At x = 2, is the flexion increasing or decreasing, and how rapidly?
Find the maximum flexion.

7. If the displacement (s ft) of a particle traveling on a straight line is
related to the time (t min) by s = 80 + 7/ +4t2 +10/3 - /4, find the
acceleration, a, at t = 5. Is a then increasing or decreasing, and how
rapidly? Find the maximum acceleration.

4.4 Derivative of a function of a function: the Chain Rule

It is common to have a "chain" of functional dependence. For example, in
any year the price per bushel ($p) of corn is a function of the size of the
crop (w bushels), and w, in turn, is a function of the amount of rainfall (x
in.); so, finally, p is a function of x. In symbols, this might be put as follows:
P = /(M) a nd u = g(x), sop = f[g(x)]. This is read "/? equals/of g of JC" -
note that this is not a case of multiplying functions / and g. The idea of a
"function of a function" was introduced in Section 1.10. We shall have
occasion to work with this concept extensively. 1 5 7



4 Problem 1
Further differentiation F o r practice, check that if y = f(u) = u2 - w + 1, and u = g(v) = 3v - 1 ,

then y = /[g(u)] = 3(3u2 - 3t; +1).

Problem 2
If y = g{u) = 3M - 1 and u = f(v)= v2 - v+ 1, what is the expression for

Problem 3
If/(w) = l/w, what is/[/(w)]?

Problem 4
If f(x) = l-x9g(x) = l/x,h(x) = l-l/x9 what is h{g[f(x)]}l

In our initial example in this section,

p = f(u), u = g{x)\ so p = f[g{x)].

We can designate this last equation by p = F(x).
We pose the question: How is the rate of change of price with respect to

rainfall related to the rate of change of price with respect to size of crop and
the rate of change of size of crop with respect to rainfall? That is:

How is F'(x) related to/'(w) and g'(jc)?

The answer to this question turns out to be simple and one of the most
powerful results in the calculus. A couple of problems help lead to the
answer.

Problem 5
Suppose thaty = f(u) = u4 and u = g(x) = 3JC2. Then J> = F(x) = f[g(x)] =
(3JC2)4 = 81JC8. Verify that F'(x) = 648.x7, and also check that this can be
written as F\x) = 4(3X2)3*6A:. Can you see why we have chosen to write the
answer in this complicated form?

Problem 6
Suppose that y = F(x)= (2x +1)3. Multiply this out, differentiate, and
collect terms to obtain F'(x) = 3(2x + l)2-2. Can you see why we have
chosen to write the answer in this particular form?

In Problem 5, the answer, F'(x) = 4(3x2)3-6x can also be written as
F'(x) = 4u3-6x. Now 4w3 = f\u\ and 6x = g'(x\ so in this case, if F(x) =
f(u) with u = g(x\ then F'(x) = f\u)-g'{x). The right side of this last
equation is a product. As we shall see, the result we have here is quite
general. It applies also to Problem 6 in the following sense: Suppose that we

-. c o set 2x +1 == M, = g(jc), say. Then we have F(x) = f[g(x)]9 with f(u) = w3,



and our answer can be written as F'(x) = 3w2-2. Because f\u) = 3w2 and 4.4
g\x) = 2, once again we see that F\x) = f'(u)'g'(x). The statement of the The Chain Rule
general result reads as follows:

Theorem: the Chain Rule
If f(u) and g(x) have derivatives, then F(x) = f[g(x)] has a derivative, and

= fXu)-g'(x)9 where u = g(x).

The two illustrations contained in Problems 5 and 6 do not prove the
Chain Rule, of course. A plausible argument, applied to Problem 5, goes as
follows: If w = g(x) = 3x2, then our method of approximate increments
(Section 3.3) shows that

Aw « g'(jc)-Ajt = 6xAx. (1)

Likewise, if y = g(u) = w4, then the same method shows that

Aj>«/'(w)-Aw = 4w3-Aw. (2)

Substituting for AM from (1) into (2), we have

Ajy « 4M3-6JCAJC. (3)

But if we write j> = /[g(*)] = ^(x), as we did in Problem 5, the same
method of approximate increments gives

^y~F'(x)^x. (4)

From (3) and (4), it seems reasonable to expect that

which is what the Chain Rule gives in this case.
Because a valid proof of the Chain Rule is a bit involved, we shall defer it

to Section 4.6, and we shall use the result without proof, comforting
ourselves with its reasonableness as seen in simple examples and in the
foregoing plausibility argument.

The foregoing discussion of Problem 6 illustrates an extremely important
special case of the Chain Rule:

Special Case of the Chain Rule
If F(x) = [g(x)]«, then F\x) = n[g(x)]»-1-g\x).

In words, this can be put as follows: "The derivative of the «th power of
a function equals «, times the (n - l )s t power of the function, times the
derivative of the function."

The justification of the statement comes from setting u = g(x), so that
F(x) = un, =/(w), say. Then / '(«) = nun~l = n[g(x)]"~\ and the Chain
Rule leads to the stated result. 1 5 9



4 Problem 7
Further differentiation It is true that Problem 6 was solved without too much effort by expanding

F(x) into a polynomial before differentiating. In principle, this could also
be done for the function F(x) = (x2 —2x +5)12, but it wouldn't be much
fun. Use the Special Case of the Chain Rule to find the derivative of this F.
Also, find maximum and minimum values of F(x).

Problem 8
If G(x) = 1/(2JC +1)3, we could find G'{x) by going back to the definition
of the derivative. It is much easier to find G\x) through use of the Chain
Rule. Do so.

So far we have seen the Chain Rule as a device for finding derivatives
more simply than we otherwise could or for finding derivatives that we
could not obtain without it. In subsequent sections there will be still other
uses for the Chain Rule.

PROBLEMS

9. The cost ($C) of producing n sport shirts in a certain factory is given by
C = 1000 + 4H -0.001A?2. The number (n shirts) that can be sold at $x
each is given by n = 2500— x2.
(a) Find the rate of change of C with respect to n and the rate of change

of n with respect to x.
(b) Hence, what is an expression for the rate of change of C with respect

to xl Find the value of this rate of change at x = 40.
(c) What is the approximate incremental cost of producing the 901st

shirt?
10. Consider the curve determined by the equation y = v25 — x2 , = F(x),

say.
(a) What is the natural domain of Fl What is its range?
(b) Find an expression for F'(x), the slope of the tangent to this curve.
(c) What is the domain of F"l What is its range?
(d) What is the slope of the tangent to the curve F at x = 4? At x = - 3?
(e) Draw the curve with some care, and show the tangents at the points

where x = — 3, 0, 4, and 5.
(f) Do you know what kind of curve this is?

11. Same as Problem 10 for the curve determined by the equation y =

! X 4

12. Find derivatives of each of the functions given by the following expres-
sions:
(a) (3x + l)50 (b) J * _ (c) t2 + ̂ - (d) fw +

1 6 0 ^^2 4~' { W



(f) vc2 - JC2 , where c is a constant

1
(simplify your result as much as possible)

(h) - — (i) ]/x2-6x
Jo

(j) (\/10+JC2 + x -1) (Hint: Use the Special Case of the Chain Rule
twice.)

(k) v 1 + yfx [Same hint as in (j)]
13. (a)-(k) For each of the parts of Problem 12, try to find the critical

number(s) of the function.
o 14. The length of an edge (x cm) of a metal cube varies with the tempera-

ture (T° above zero Celsius) as follows: x = 5 + 0.00027. Find how fast
the volume (V cm3) changes, per degree, at T = 1000. At x = 5.

4.5
Continuity

4.5 Continuity

Nearly all the graphs of functions we have examined in this and earlier
chapters have been "continuous" curves. In informal language this means
merely that the graphs are unbroken. Because variation is often continuous
in situations arising in the physical, life, and social sciences, continuity can
often be expected in our work. But there are exceptions, one such appearing
in Problem 10, 2.2, where the postage required for a letter of w oz,
0 < w < 3, is given by

(20, 0 < w < l ,
/ = 37, K w < 2 ,

154, 2 < w < 3 .

The graph of / (Figure 4-6) has breaks at the points corresponding to w = 1
and w = 2, and hence we say that the function is discontinuous for these
values of w.

In general, what we expect of a function not having a break at some
numberp is that if x is close to/?, thenf(x) is close to/(/?). Note that this
is not always the case with the postage function: We can choose numbers as
close as we like to 1, say 1.00001, for which /(1.00001) = 37, but /(I) = 20.
Our formal definition reads as follows:

Definition
A function / i s said to be continuous at/? in the domain of/if limM^ pf{u)

f(w)

54 -

3 7 -

20 —

Fig. 4-6

Note that this definition really has three parts to it:
1. l i m ^ ^ w ) must exist; 161



Further differentiation

Fig. 4-7

2. f(p) must exist;
3. the two numbers, \imu^pf(u) and/(/?), must be the same.
Condition 1 fails in the postage function at each integral (whole number) w.
For example, as w approaches 1 from the left (through weights less than 1),
f(w) approaches 20; but as w approaches 1 from the right (through weights
greater than l),/(w) approaches 37 - the "left-hand limit" is not the same
as the "right-hand limit," so limw^1f(w) does not exist.

Condition 2 fails at p = 0 for any function expressing an average rate of
change. For example, suppose that F(p) represents the average rate of
change of some function in the interval [a, a + p]. Then F(0) does not exist
- we cannot have an average rate of change in an interval of zero length -
so 0 is not in the domain of F, and we do not have continuity of F at p = 0.
Remember that this was basically the reason for the final phrase in the
definition of limit in Section 2.2.

Condition 3 can fail for "pathological" functions. For example, suppose

(Y\=fx2

' 15,
for* =£2, and
for x = 2.

162

The graph of y = f(x) is shown in Figure 4-7. This function is continuous at
all x # 2. But, because hmx_¥2f(x) = 4, while /(2) = 5, the function is not
continuous at x = 2.

We have here a removable discontinuity - we can easily "fix things up"
by dealing with a different function:

2, for x =£2, and
14, for* = 2,

or, more simply put, g(x) = x2 for all x.
At the end of Section 2.3 we had the following important result about

polynomials: For any polynomial,

P(u) = c0 + cxu + c2w
2 + • • • + cMw",

and for any real number a,

lim P(u) = P(a).
u-* a

In terms of our definition of continuity, this result is equivalent to the
following statement:

Every polynomial, P(u), is a continuous function for all real
numbers, u.

It would be pleasant if every continuous function were also differentiate,
but such is not the case. For example, the function given by f(x) = x2/3 is
continuous for all x (Figure 4-8). However, / ' (*) does not exist at x = 0,
although the curve does have a tangent (which is vertical) at x = 0. A sketch
of the graph of a continuous function with a cusp where there is no tangent



is shown in Figure 3-17(a). On the other hand, if a function is differentiable, 4.5
then it is continuous. This will be proved in the next section. Continuity

PROBLEMS

1. For what numbers is each of the following functions continuous? Con-
sider the domain to be the natural domain unless otherwise specified.

(c)/(w) = w2, -2<u<2

/3f+49, 0<f<17, and
= \ l00, 17<,<30

- J C 2 + 3 X + 1, x>2

x2 — 2.x+ 3, x<0, and

1 1
«=1,2,3, . . . , and

otherwise

(1) F(h) = - p , where a is a constant
n

2. (a) Find an extension of F in Problem l(g) that is continuous for all h.
(b) Same as (a), for Problem 1(1).
(c) Find a modification of/in Problem l(i) that is continuous for all x.
(d) Same as (c), for Problem l(j).

* 3. Suppose that/(x) and g(x) are both continuous functions at x = p. Use
one of the limit theorems to show that the function F = / + g is also
continuous at p. What can be said about the continuity of / • g, of / / g ,
and of kf, where A: is a constant?

* 4. (a) Write out the proof that the function given by f(x) = x is continuous
at all real numbers.

(b) Write out the proof that the polynomial P(x) = c0 + cxx + c2x
2 +

••• +cnx
n, where the c's are constants, is continuous at all real

numbers.
* 5. Show that the statement limM_+/7/(M) = L is equivalent to the statement

lim^o/X/? + h) = L. [Hence, the definition of continuity of function/at
p could be written lim^_,of(p + h) = f(p).]

* 6. Suppose/(JC) is a differentiable function everywhere (i.e., for - oo < x <
oo). Let F(h) = [f(x + h)-f(x)]/h9 h^O. Using the fact that a differen-
tiable function is continuous, show that F(h) is continuous for all h # 0
and has a removable discontinuity at h = 0. Remove the discontinuity. 1 6 3



4 * 4.6 Proof that differentiability implies continuity and proof of
Further differentiation the Chain Rule

Let / be a function, and suppose that / ' exists at p in Df. We wish to
demonstrate that/is continuous at/?. We express the difference between an
average rate of change and the instantaneous rate of change, and we then
extend this function to make the extension continuous at zero: Let E be the
function defined by the formula

10, k = 0.

Problem 1
Show that E is continuous at zero.

Problem 2

Show that for all k (including 0) such that (/? + k) is in Df,

f(p + k) = f(p) + f'(p)-k + E(k)-k, (5)

where \imk _+0E(k) = 0.

Problem 3
Use equation (5), Problem 5 in the previous section, and the existence of
/'(/?) to show that/is continuous at/?.

This is what we set out to prove. The immediately preceding work leads to a
proof of the Chain Rule.

Suppose that g is a function that is differentiate at a number r and that /
is a function that is differentiable at the number /? = g(r). Because in
equation (5), k can be any number, we can let k = g(r + h)-g(r) =
g(r + h)— /?, where h is such that r + h is in Dg.

Problem 4
Make this substitution in equation (5) and whatever other changes you need
to produce the equation

+ h)]-f[g(r)] = f ( , g{r + h)-g{r)
h J l g V n h

Problem 5
Show that limA_0[g(/- + h)— g(r)] = 0 and hence that

164



Problem 6
Complete the proof.

A more straightforward approach to this result would seem to lie in the
following manipulation:

h)]-f[g(r)] h)]-f[g(r)] h)-g(r)
h

h)-g(r)

4.7
Notation

Problem 7
How would the rest of the argument go? What is wrong with it? (Hint:
Consider what would happen if g were constant, for example.)

4.7 Notation

The calculus was invented in the latter half of the seventeenth century
almost simultaneously by Newton in England and Leibniz in what is now
Germany. They worked quite independently, and it is not surprising that
they created different notations for the concepts they developed. So intense
was the rivalry for priority in the creation of the calculus - more a
competition between the friends and supporters of Newton and Leibniz
than between the principals themselves - that the calculus developed with
one notation in England and another notation on the Continent. Over the
years, still other notations have appeared, for specialized purposes.

The notation we have been using for the successive derivatives of f(x)
with respect to x - f'(x), /"(*) , . . . - is similar to that introduced by
Newton; if displacement is represented by s, he wrote its derivative with
respect to time (i.e., velocity) as s, its second derivative with respect to time
(i.e., acceleration) as s\ and so forth. We shall now consider Leibniz's
notation for derivatives, because it is so widely used that you will un-
doubtedly encounter it in your reading, and, moreover, it is especially
convenient for some purposes, so that we shall use it whenever it is simpler
than our original notation.

To explain Leibniz's notation, it is easiest if we go back to the develop-
ment of the derivative: Starting with the function y = f(x)9 we give x an
increment that we called h before and that we now designate by Ax (read
"delta x"). So, in Figure 4-9, PR = h = Ax. We consider the change in the
value of the function, which previously we wrote as f(x + h) — f(x), and
which we shall now think of as the increment in y, designated by Ay. So, in
the figure,

Fig. 4-9
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4 Next we compute the average rate of change of the function over the interval
Further differentiation in question:

RQ f(x + h)-f(x) Aj
PR h AJC '

Finally, we define the derivative as the limit of this average rate of change,
as the length of the interval approaches zero:

l i m / ( , + M-/(x) ^
h0 n

or

lim -r^- = -7- (read "dee y, dee x " ) .
Ax-oAx dx v " y

Although A^/Ax is actually the ratio of two quantities, Ay and AJC, and
although we shall soon encounter some new quantities, dy and dx, called
"differentials," the new notation for the derivative, dy/dx, is not defined as
the ratio of two quantities - it is the limit of a ratio. For this reason, avoid
saying "dee y over dee x"

We practice with the new notation:

ify = x3
9 then -j- =

if z = u H—, then — = 1 ; and so forth.
u du u

2

These results can also be written as follows:

— (x3) = 3x2-
dxK ] '

u
The first of these equations is read "the derivative, with respect to JC, of x3

equals 3x2," and similarly for the others.
Now, if we wish the second derivative of y with respect to x, we recognize

it as "the derivative, with respect to x, of dy/dx"; and, in keeping with the
notation introduced earlier, we might write it as

(
dx[dx)

This is the motivation for the new notation for the second derivative,
d2y/dx2 (note where the superscript 2's appear). It is read "dee second y,
dee x second." We have, then d2y/dx2 = f'\x). Similarly, d3y/dx3 =

1 6 6 /'"(*)> and so forth.



In the new notation, the Chain Rule becomes particularly easy to remem- 4.7
ber. Recall that it reads as follows: If y = f(u) and w = g(x), so that Notation
y = f[g(*)] = F(x), then F\x) = f\u)-g'(x). In the new notation, F'(x) =
dy/dx, f\u) = dy/du, g\x) = du/dx, so the Chain Rule becomes

dy dy du
dx du dx'

It is just as though we could "cancel the dw's" on the right side of the
displayed equation. After all the emphasis that expressions like dy/dx are
not quotients of two quantities, they behave as though they were!

Let us see how the new notation applies to a problem involving the Chain
Rule. We shall work through it using both notations. You will probably find
the new notation easier to understand and apply. Consider Problem 9(b),
4.4. We have C = /(«) = 1000 + 4n -O.OOlw2, and n = g(x) = 2500- x1.
This implies that C is a function of x - C = F(x), say - and we are to find
the rate of change of C with respect to x - we are to find F\x\ or dC/dx.
By the Chain Rule,

F'(x) = f'(nygXx) or

Now,

/'(") = 4-0.002«

and

g'(x)= -2x

So

F'(x)= ( 4 - 0 . 0 0 2 H ) ( - 2 J C ) = ^

We can now substitute x = 40, and the corresponding value of n, into this
equation for the derivative to complete the problem.

Observe that there is an annoying ambiguity in one aspect of our earlier
notation: Starting with C = /(«) = 1000 + 4n — O.OOlw2, we have sometimes
written C = f'(n) = 4 — 0.002AZ. This gives rise to no difficulty if no other
variable is involved. But, if w = g(x) = 2500— x2, so that we also have
C = F(x) = f[g(x)] = 1000 + 4(2500 - x2)-0.001(2500 - x2)2, we might
write C = F\x) = • • •, and we would then be using the same symbol C" for
two different derivatives - the first being the rate of change of C with respect
to n, and the second being the rate of change of C with respect to x. The
symbols dC/dn and dC/dx make the distinction clear. So do the symbols
f\n) and F'(x), but we sometimes omit the functional notation and write
C = 1000 + 4« -O.OOlw2. Then it may be safer to write dC/dn = 4-0.002n,
rather than C' = 4 — 0.002«. We shall practice working with both notations
in the next several sections. 1 6 7

dC
dx ~
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4 4.8 Related rates
Further differentiation

We introduce the topic of related rates by using the Leibniz notation to
solve Problem 14, 4.4: The length of an edge (x cm) of a metal cube varies
with the temperature (7° Celsius) as follows: x = 5 + 0.00027. Find how fast
the volume (Fcm3) changes, per degree, at 7 = 1000. At x = 5.

We are given, explicitly, one variable, x, as a function of 7: JC = 5 +
0.00027, = g(7), say. We need V expressed as a function of 7. Because we
are dealing with a cube, we know that V= x3, = / (*) , say.

We can put these results together to read

F = (5 +0.00027 )3, = F ( 7 ) ,

say. We can apply the Special Case of the Chain Rule to F(T) to obtain

dV ~>
fiL = F'{T) = 3(5 + 0.00027)2(0.0002).

Problem 1
Show that F'(1000) « 0.0162 cm3/degree.

Problem 2
What 7 corresponds to x = 5? Show that for this 7, F(T) = 0.015
cm3/degree.

But, in fact, there was no need to write the explicit expression for F(7); we
could simply have differentiated the formulas for f(x) and g(7) to get
/ ' (*) = 3x2 and g'(7) = 0.0002. Then, from the Chain Rule itself, F(T) =
/ '(x)-g'(7) = 3x2(0.0002) = 0.0006x2. NOW, at 7 = 1000, x = 5.2, so that
F(1000) = 0.0006(5.2)2, the same result, of course, as obtained earlier.
Likewise, at x = 5, F'{T corresponding to x = 5) = 0.0006(5)2, also as
before. Note an interesting aspect of this last method of treating the
problem: To find F'(T) at x = 5 we do not need to know that particular
formula for g(7) as given in the problem; all we need to know is that
g'(7) = 0.0002.

In the other notation we would write:

V ~~~ X , ISO j 3X ,

x = 5 + 0.00027, so - ^ = 0.0002.
dT

Hence,

lff = ir'% = 3;c2(0-0002) = °-0006*2-
As observed earlier, we don't need the explicit formula for x in terms of 7;
all we need is the formula for dx/dT. A pair of examples will bring out two

-| g g further points in such problems.



Example 1 4.8
A growing pile of sawdust has the shape of a right circular cone whose Related rates
height always equals two-thirds the radius of its base. How fast is the
volume of the pile increasing when r = 6 ft, if r is then increasing at the rate
of 0.5 ft/min?

First we need the formula for the volume of a cone: V=\tTrr1h. In this
case, h = § r, so V can be expressed as a function of r alone:

say. Because r varies with the time, /, we know that r is some function of /:
r = g(t), say. We do not know an expression for g, but we are told that at
the time in question the value of g'(t) = 0.5.

Because V varies with r and r varies with t, Fis a function of t: V= F(t),
say. This is a typical example of a "function of a function": Fis a function
of t through the medium of r, we might say. Because we do not have an
expression for r a s a function of t, we also do not have an expression for V
as a function of /. But we don't need F(t)\ what we want is F'(t), which the
Chain Rule provides as

_,, v rt/ v t/ x dV dV dr ,x
F>{t)=f'{r).g'{t), O r - = — • - . (6)

Problem 3
Complete the problem by filling in the blanks:

Because V=-Q^r3, — = .We know that -r =

dV J , dV _ ,_ 3 / . ,
Hence, — = and, at r = 6, — = HIT (ft /minj.

The only new feature in this example is that we have to use the data to
obtain the equation expressing V as a function of the single variable r.

Example 2
As in Example 1, a growing pile of sawdust has the shape of a right circular
cone whose height always equals two-thirds the radius of its base. If sawdust
is added to the pile at the constant rate of 50 ft3/mm> how fast is the radius
increasing when it equals 5 ft?

Using the same notation, we have V— f(r) just as before; we are given
that dV/dt = F\t) = 50, and we are asked to find dr/dt = g\t) at r = 5. In
Example 1, we used equation (6) to find the required value of dV/dt by
using the values of the two factors on the right. Now we can use the same
equation to find dr/dt, knowing the values of the other two terms in the
equation.

Problem 4
Follow this method to obtain the result that at r = 5, dr/dt = 3/TT (ft/min). 1 6 9



4 In summary, we can say that the relation among rates of change, as set
Further differentiation out in equation (6), permits us to find F\t) if we know f'{r) and g'(t), or to

find g'(t) if we know F\t) and f\r). We shall usually need an expression
for/(r), perhaps from a geometrical relation, in order to obtain f'(r).

Alternatively expressed in the Leibniz notation, we can say the following:
By differentiating to obtain dV/dr, we can use the equation

dV=d]f dr_
dt dr dt

to obtain dV/dt if we know dr/dt, and dr/dt if we know dV/dt.

PROBLEMS

5. A cylinder contracts so that its height always equals four times its
radius. If the volume is decreasing at the rate of 2 in.3/hr, how fast is r
decreasing when r = 10?

6. A right circular cone expands so that its height always equals three
times the radius of its base. If the volume increases at the rate of 10
in.3/min, how fast is the radius increasing when it is 5 in.?

7. A cylinder expands in such a way that its height always equals twice the
radius of its base. If the volume increases at the rate of 30 in.3/hr, how
fast does r increase when r = 5?

8. If the volume of a spherical balloon increases at the rate of 10 in.3/min,
how fast does the radius increase when it is 5 in.? How fast is the surface
area of the balloon then changing? (Give the units of your answer.)

9. (a) At the moment that the radius of an expanding sphere equals 5 cm,
the surface area of the sphere is increasing at the rate of 8 cm2/min.
How fast is the volume of the sphere then changing? (Give the units
of your answer.) By approximately how much does the volume
change in the next 10 sec?

* (b) Show that if the surface area of a sphere is increasing at A cm2/min
when the radius of the sphere equals a cm, the volume of the sphere
is then increasing at (A-a)/2 cm3/min.

10. (a) The volume of a metal cube increases with temperature at 1.2
cm3/degree. If the cube contains 216 cm3 at a certain temperature,
how fast are the edge and the surface area of the cube increasing at
that temperature? (Give the units of your answer.) By approximately
how much does the surface area change if the temperature increases
0.5 degree from that temperature?

* (b) Show that if the volume of a cube increases at the rate of a
cm3/degree when the volume equals b cm3, the surface area of the

70 cube then increases at the rate of 4a/]fb cm2/degree.



4.9 Functions in implicit form and implicit differentiation 4.9
Implicit differentiation

Equations like y = x2-3x + l and y = v25 — x2 define functions explicitly:
In each case it is immediately clear what value of y corresponds to a value of
x. The equation has already been "solved for y in terms of x." Unlike the
situation just described, the equation

JC3 + / = 9 (7)

is not a formula stating the value of y corresponding to a value of x,
although it is the case that there is one, and only one, such value of y - and
we can rather easily write the formula:

~ (8)

We say that equation (7) defines y as a function of x implicitly, or that the
function is in implicit form.

Sometimes it is difficult or impossible to solve an equation like (7)
explicitly for y, and we therefore are led to this question: How do we find
the rate of change of y with respect to x from equation (7)? Or, equivalently,
how do we find the slope of the tangent at an arbitrary point of the curve
given by equation (7)?

We proceed as follows: Assume that equation (7) determines one or more
differentiable functions for y in terms of x. Let one of them be given by
j = / (* ) . Then

* 3 + [ / (* ) ] 3 = 9. (9)

The left side of equation (9) is a function of x\ call it F(x), so that

F(x) = x' + [f(x)}\ (10)

Problem 1
Use the Special Case of the Chain Rule to obtain

F'(x) = 3x2+3[f(x)]2-f'(x). (11)

But equation (9) also implies that F(x) is constantly equal to 9, so that
F'(x) equals zero. That is,

3x2+3[f(x)]2-f'(x) = 0.

Problem 2
Solve this equation to obtain

y

Thus, at the point (1,2) on the curve given by equation (7), the slope of the
tangent = — \.

The process we have exemplified is called implicit differentiation. -| 7 -|



Further differentiation
Problem 3
Use the Special Case of the Chain Rule with equation (8) to show that the
slope of the tangent to the curve = — x2/(9— x3)2 / 3 . Reconcile this result
with equation (12).

As we know, an equation in x and y sometimes does not define y as a
function of x. For example, the equation x2 + y2 = 25 is equivalent to
y = ± v 2 5 - x 2 , and because there are two values of y corresponding to each
x in ( - 5 , 5), this is not a function. However, there are two continuous
functions determined by

* 2 + j>2 = 25, (13)
namely,

y=]/25-x2 (14)
and

y = -y/25-x2, (15)

and the derivatives of these functions are correctly obtained by the process
of implicit differentiation.

Problem 4
(a) Use implicit differentiation with equation (13) to show that the slope of

the tangent = — x/y.
(b) Use equation (14) to show that the slope of the tangent = — x/y 25 — x2.

Find the slope at x = 3, reconcile with the result in part (a), and show
the tangent on a sketch of equation (14).

(c) Use equation (15) to show that the slope of the tangent = x/]/25- x2

Complete as in part (b).

Your results in Problem 4 should look like the sketches in Figure 4-10.

y — \/25 — x2 (upper semicircle)

y
(0,5)

slope of tangent = — ~

slope

(0, - 5 )

— \/25 — x2 (lower semicircle)

of tangent = -
4

172 Fig. 4-10 (a) (b)



4.10 Derivatives of fractional powers

In Section 2.7 we established the formula for the derivative of xn when n is
an integer - positive, negative, or zero - and we checked the validity of the
same formula for n = \ and \. But, although we have been blithely using the
formula for many fractional powers, we haven't yet proved it correct. The
Chain Rule and the method of implicit differentiation now permit us to do
this.

Theorem
If f(x) = xp/q, where p and q are integers and q # 0, then

We illustrate the method of proof in the numerical case of p = 3, q = 5,
that is, for f(x) = x3/5, which we shall assume is a differentiate function.
We raise both sides of the equation to the 5 th power, in order to eliminate
fractional exponents:

By the Chain Rule, the derivative of the left side is 5[/(JC)]4 • / ' ( » , and that
of the right is 3x2. Setting them equal and solving for/'(*) gives

3x2

/'(*) = —— .
5[/(x)]4

Problem 1
Substitute the expression for f(x) into the right side of this equation to
obtain

Note that this is nxn~l for n = f.

* Problem 2
Work through the same method for the general power, p/q, p and q integers
and q # 0, to prove the theorem.

4.10
Derivatives of

fractional powers

PROBLEMS

3. Here are routine problems for practice in differentiation, including the
use of the Chain Rule. Find the derivative in each case.

(a) y = 2x1'2

(c) y = }

-2*V2 ( b ) > , = ^L_ + _J
X X x3/2 x3
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Further differentiation
(f)

4. Consider the curve with equation xl/2 + _y1/2 = 2.
(a) Find dy/dx by implicit differentiation. What, then, is the slope of the

curve at x = 4? At x = 1? What happens at x = 0?
(b) Check all your results in (a) by first solving the given equation for y

and then differentiating explicitly.
(c) Write the equation of the tangent line at the point on the curve where

J C = 1 .

(d) Sketch the curve.
5. Consider the curve with equation x2 +4y2 = 25.

(a) Find dy/dx by implicit differentiation. What, then, is the slope of the
curve at x = 0, y = f ? At x = 3, y = 2? What happens at x = 5?

(b) Check all your results in (a) by solving the given equation for y,
choosing the positive square root, and differentiating explicitly.

(c) Write the equation of the tangent line at the point (3,2) on the curve.
(d) Sketch the entire curve.

Fig. 4-11

Fig. 4-12
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4.11 Implicit differentiation applied to related rates

Here is a problem that is neatly handled by our method of implicit
differentiation: Jeep A leaves a camp at noon and heads due east at 20 mph.
At two o'clock, jeep B leaves the same camp and heads due north at 30
mph. How fast are the jeeps separating at four o'clock?

At four o'clock, jeep A is 80 miles from the camp; and at that time jeep B
is 60 miles from the camp (Figure 4-11). By the Pythagorean Theorem, A
and B are then 100 miles apart. But to find the rate at which they are
separating, we have to consider not merely the static situation at the end of
4 hr but also the dynamic situation at a general time. Suppose that at time t
hr after jeep A starts, it is x miles from the camp, that jeep B is then j> miles
from the camp, and that the jeeps are then z miles apart (Figure 4-12). Then
z2 = x2 + y2, by the Pythagorean Theorem. Instead of solving for z, we
leave the equation in this form and observe that x, y, and z are all functions
of t: x = /( /) , y = g(0, z = h{t\ say. Then [h(t)]2 = [f(t)]2 + [g(t)]2. Dif-
ferentiating each side, implicitly, gives

Now h'(t) is the quantity desired at t = 4; / ( / ) is then 80; g(t) is then 60;
h{t) is then 100; f\t) is constantly 20; g\t) is constantly 30.



Problem 1
Use these values to obtain 34 mph as the answer to our problem.

We can use the new notation in this problem as follows: We have
z2 = x2 + y2, with x9 y, and z all functions of t. Differentiating with respect
to /, we write:

dz dx
2z— = 2x—rdt dt

dy
dt

[If you have difficulty in seeing this, think of the left side, z2, as being a
quantity, Q, say. Then Q = z2, and the Chain Rule gives dQ/dt = (dQ/dz)-
(dz/dt) = 2z(dz/dt). Similarly for the derivative of the right side.]

Now, dx/dt = 20 and dy/dt = 30. At t = 4, x = 80, y = 60, and z = 100.
So we obtain dz/dt = 34.

Problem 2
Work the same problem by showing that x = 20t and y = 30(7 - 2). Express
z2 in terms of t, and differentiate implicitly.

Problem 3
Work the same problem by proceeding as in Problem 2 and solving for z
before differentiating.

In some cases we may have a right triangle (as in this example), but with
one of the legs or the hypotenuse fixed in length. Then the rate of change of
that side is zero, of course.

4.11
Implicit differentiation applied

PROBLEMS

4. A 25-ft ladder leans against a wall, and the foot of the ladder is pulled
away from the base of the wall at 2 ft/sec. How fast is the top of the
ladder descending when the foot of the ladder is 15 ft from the base of
the wall?

5. The baseball "diamond" is a square 90 ft on a side. A ball was tapped
along the third-base line at a speed of 45 ft/sec. How fast was the
distance of the ball from first base changing 1 sec after starting?

6. An airplane flying horizontally at the rate of 200 ft/sec passes straight
over a pool, at an elevation of 6000 ft. How fast is its distance from the
pool increasing 40 sec later?

7. Jogger A leaves the corner of Church Street and High Street at the
constant rate of 300 yards/min. When she is 100 yards from the start
along High Street, jogger B leaves the corner of Church and High, going
along Church Street, also at 300 yards/min (Figure 4-13). How fast is
the straight-line distance between A and B changing 1 min after B
starts? (Give the units of your answer.)

Church St.

Fig. 4-13
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i iNorth

C

Fig. 4-14

East

300

Fig. 4-15 Fig. 4-16

Fig. 4-17

8. Two trains leave a city C, one going east at 40 mph and the other going
north at 50 mph. They leave at such times that at a certain instant the
eastbound train is 80 miles from C, and the northbound train is 60 miles
from C (Figure 4-14). At that instant, how fast is the distance between
the trains changing?

9. An auto leaves the base of a 300-ft-tall tower, traveling in a straight line
at 40 ft/sec (Figure 4-15). How fast is the distance between the auto
and the top of the tower changing 10 sec later?

10. A man, M, raises a weight by means of a rope run over a pulley, P, that
is 18 ft above the level of his hands (Figure 4-16). He walks away at the
rate of 5 ft/sec. How fast is the distance PM changing when the man is
24 ft from the point directly below PI

11. As in Figure 4-17, a policeman in a stationary helicopter (P) observes a
car (C), using radar to determine that the straight-line distance PC is
increasing at the rate of 54 ft/sec at the instant that PC = 750 ft. If the
helicopter is 600 ft up, is the car exceeding the 55-mph speed limit?
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4.12 Differentials

Although we have presented the derivative as a fundamental concept,
Newton emphasized differentials, and they still are useful. If j = /(x), the
differentials, dy and dx9 are defined as any two quantities whose ratio equals



the derivative:

or

dy (dy_
dx \dx

(16)

(17)

The long fraction line on the left side of equation (17) calls attention to the
fact that we have dy divided by dx, and the parentheses on the right serve to
emphasize that this is the derivative. Obviously, the defining equations (16)
and (17) are equivalent to

(In England, what we call the derivative was long called the "differential
coefficient" - it is the quantity by which dx is multiplied, just as 3 is the
coefficient in the expression 3x.) Because it is only the ratio of dy to dx that
is defined, we can choose dx at will, and then dy will be determined.

In practice we frequently choose dx = AJC, an increment in x. Then dy has
the following familiar interpretation: In Figure 4-18, PR = Ax = dx, and
RT/PR = slope of tangent = f'(x) = dy/dx. By taking the equality RT/PR
= dy/dx and multiplying both sides by PR, we obtain

That is,

RT

RT= -f-

\dx) » •

°r

Now RQ = Ay. If the interval is small, the tangent does not deviate much
from the curve, so

RQ « RT, or Ay ~ dy.

This is the familiar approximation that we have been using (without the
notation for "differential") ever since Section 3.3, Approximate Increments.
Because of the interpretation shown here, it is often called the differential
approximation.

4.12
Differentials

y = fix)

Fig. 4-18

PROBLEMS

1. Simplify each of the following expressions:

( , dV_ dx (Y\— —
dx dt dt dx

(c)
dy_

du

du
— •dt (d)

dy^ dx^
dx du

•du

2. (a) If V=x\ find dV/dx at x = 5.
(b) If x = Vy/\ find dx/dV at x = 5. 177



4 3. (a) If y = M3 +5 , express rfy in terms of u and du.
Further differentiation (b) If y is as in (a), and u = x2 4-1, express dj> in terms of x and dx.

(c) Are the answers to (a) and (b) equivalent? Explain.

4.13 Formulas for derivatives of products and quotients

One of the most basic of results in calculus is expressed as " the derivative of
the sum of two functions equals the sum of the derivatives of the functions,"
or, in symbols,

or
d , v du do

dxv ' dx dx

According to legend, Leibniz first thought that an analogous formula
applied to the product of two functions - " the derivative of the product of
two functions equals the product of their derivatives" - but he must quickly
have seen this to be fallacious from a simple example: If f(x) = x and
g(x) = x2, then G(x) = f(x)-g(x) = x\ We know that/'(•*) = 1, g'(x) = 2x,
and G\x) = 3JC2. But clearly, 1 -2x # 3x2.

The legend goes on to state that after realizing his mistake, Leibniz took
10 days to derive the correct formula. Here is how it goes: Suppose that

y = u-v, (18)

where u and v are functions of x. If x takes on an increment, Ax, then u
changes to u 4- AM, V to v 4- Ay, and, finally, y to y 4- A>>. Thus, correspond-
ing to x + Ax, we have

>> + A j = (w 4- Aw)(y + Ay). (19)

It may happen that AM = 0, or At; = 0, or by = 0, for a nonzero change in x,
but that doesn't make us any trouble. What is important is that limAjc_0AM
= 0; that is, as the new value, x 4- Ax, approaches the original value, x, we
know that the new value of the function, u 4- AM, approaches the original
value, M. This will be true if u is a continuous function of x. Likewise,
limA;c_0At? = 0, if v is continuous.

Now, if we subtract equation (18) from equation (19), we have

Aj> = (M 4-

Problem 1
Show that this reduces to

yg



The average rate of change of y with respect to x is given by 4.13

Derivatives of products;

By definition,

-r~ = 7—^———- quotients
Ax Ax

Ay AM AM A
= U~A h V—k h -:—Ay.

Ax Ax Ax

dy ,. Av
-j- = lim - ~ - ,
dx AJC-*O AX

so

dy ,. / Ay AM AM= lim L*L + 0*!L to \ ( }
Ax^ol Ax Ax Ax / v }

Problem 2
(a) What is an expression for limAjc^0Ay/Ax? For limAjc^0 AM/AX?

(b) What is the value of limAjc_0«? Of limAjc_ou? (Trick question)
(c) What is the value of limAjc^0Ay?
(d) State the basic limit theorems needed to conclude from equation (20)

that

dy dv du
dx dx dx

In words, we have this Rule for the Derivative of a Product:

The derivative of the product of two differentiable functions
equals the first function times the derivative of the second plus
the second function times the derivative of the first.

Using our old symbolism, we write:

If G = / . g ,

If we have the quotient of two functions,
M

with M and v functions of x, and v =£ 0, we can obtain a formula for the
derivative of y with respect to x by rewriting,

1
y = u-->

and using the formula for the derivative of a product found earlier. If we set
w = l/v9 we have>> = u-w and dy/dx = u(dw/dx)+ w(du/dx).

Problem 3
If w = l/v = v~\ use the Special Case of the Chain Rule to obtain dw/dx =
- v~2(dv/dx) = -(dv/dx)/v2. Thus, we have dy/dx = u[-(dv/dx)/v2] +
(l/v)(du/dx). 1 7 9



4 Problem 4
Further differentiation Do the algebra to reduce this to

dy _ I du dv

In words, we have the Rule for the Derivative of a Quotient:

The derivative of the quotient of two differentiable functions, in
which the denominator is not zero, equals the denominator times
the derivative of the numerator minus the numerator times the
derivative of the denominator, all divided by the square of the
denominator.

In our old symbolism, we write:

UF=£, XhenF'=g'f'~/'g'.
8 g2

We can use these differentiation formulas to solve more general related
rate problems than we handled in Section 4.8. In that section we solved
problems like this:

A growing pile of sawdust has the shape of a right circular cone whose
height always equals two-thirds the radius of its base. How fast is the
volume of the pile increasing when r = 6 ft, if r is then increasing at
the rate of 0.5 ft/min?

The given relation, h = f r, means that the volume, V, can be expressed as
a function of the single variable r.

We shall now consider an example in which we do not have this kind of
simplifying relation.

Example 1
If the radius of a cone increases at the rate of 0.5 in./hr and the height
decreases at the rate of 0.2 in./hr, how fast does the volume change when
r = 10 in. and h = 6 in.? We have

V=^r2h, (21)

where r and h are functions of time, t. Hence, V is also a function of t.
Indeed, the problem can be put in symbols as follows:

If dr/dt = 0.5 and dh/dt = - 0.2, what is the value of dV/dt when r = 10
and h = 6?

So we take equation (21) and differentiate to find dV/dt. The constant,
\m, remains as a multiplier, and we have the product of two quantities, r2

and h, to differentiate with respect to t. In accordance with the Rule for the
Derivative of a Product,

1 8 0 dt 3 [ dt dt



By the Chain Rule, 4.13
d{r2) d(r2) dr dr Derivatives of products;
~dT = ~^T 'Jt=lrTf quotients

Thus,

dh , ^

Substituting the values given in the problem results in

| T T ( - 2 0 + 60) = ^y- * 42 (in.3/hr).

PROBLEMS

5. Find the derivative for the function given by each of the following
expressions. In each case, specify the natural domain of the function
and of its derivative.

(b) ( x 2 + l ) 2 ( l - x ) 3

2 J C - 1

3(x-2) ( )

•) (0

(g) 2 * (h)
xl -9

v/4-x
1-x2

/ ^

./»-

2

x2

( 1 M / l ^ ® Vx^-25
6. If >> = (JC -1 ) / ( JC + 1), find dy/dx. Does this function, over its natural

domain, have any maxima or minima? Does its graph have any points of
inflection?

7. Same as Problem 6 fory = (x2-l)/(x2 +1).
8. Same as Problem 6 (or y = "/l + x2 /x.
9. Establish (for instance, by cross-multiplying) the identity

l-x

For what values of x is it valid? Calculate the derivatives of each side of
this identity and hence obtain a formula for the sum l-\-2x-\-3x2

+ • • • + lx6. Check it by putting x = -1.
10. If the radius of a cylinder decreases at the rate of 0.2 in./min and the

height of the cylinder increases at the rate of 0.1 in./min, how fast does
the lateral surface area of the cylinder change when r = 10 in. and h = 5
in.? (Give the units of your answer.) 181



4 11. If the radius of a cone increases at the rate of 0.2 in./min and the height
Further differentiation of the cone decreases at the rate of 0.3 in./min, how fast does the

volume change when r = 5 in. and h =15 in.? (Give the units of your
answer.)

12. If the radius of a cylinder increases at the rate of 0.1 in./min and the
height of the cylinder decreases at the rate of 0.2 in./min, how fast does
the total surface area (lateral surface plus top and bottom) change when
r = 10 in. and h = 5 in.? (Give the units of your answer.)

13. (a) If/and g are differentiable functions, and G = / g , find G", G'",
andG"".

* (b) Conjecture the formula for G(w), the nth derivative, and prove it
correct. The formula for G(n) is known as Leibniz's rule.

* 14. In Problem 9, 3.9, we defined the average total cost of production as
E/x9 where E is the total cost of producing x units. If E is a differentia-
ble function of x, show that, at the values of x that make the average
total cost a turning-point extreme, Ef equals that average total cost (cf.
Problem 10, 3.9).

4.14 Marginal cost, marginal revenue, and optimal
production levels

The concept of marginal cost was introduced in Section 3.4, where it was
noted that the idea of marginality applied also to quantities other than cost
(e.g., to value or utility). We shall now push further the concepts introduced
in Section 3.4.

If the cost (C) of producing n items is given by C = /(«), and if / is a
differentiable function, defined for all real numbers (not just for integers)
over a certain interval, then the marginal cost for any n is defined as

MC(/!)=/ ' (*) .

Likewise, if the gross revenue (R) from selling n items is given by R = g(n),
then the marginal revenue at the nth item is defined as

MR(n) = g'(n).

Now, the profit (P) obtained from producing and selling n items is clearly

P = R-C or P = g{n)-f(n).

To maximize P, we set P' = 0:

P' = g'(n)-f'(n) = 0.

Critical numbers, then, are given by solutions of

182 g'(n)=f'(n).



In words, this can be put as follows:
"Profit is maximized for production at which marginal revenue equals

marginal cost."
This makes intuitive sense: If the marginal revenue from selling the 5OOth

item is greater than the marginal cost of producing that item, it pays the
manufacturer to produce and sell the 500th item; if the marginal revenue
from selling the 700th item is less than the marginal cost of producing that
item, the manufacturer will be inclined to stop short of producing and
selling the 700th item.

4.14
Marginal cost and revenue

The distinction between marginal costs (and benefits) and total costs (and
benefits) is forcefully brought out in the following letter {Science, November
22, 1974):

Emission Standards: Costs and Benefits
It is reported by Constance Holden (News and Comment, 27 Sept., p.
1142) that the National Academy of Sciences (NAS) has okayed auto
emission standards. Indeed, the recent NAS study (1) prepared for the
Senate Public Works Committee endorses the numerical emission
standards set out in the 1970 Clean Air Act and sees "no substantial
basis for changing the standards." It claims that the standards are
justifiable in cost-benefit terms. It reaches this conclusion by finding
" that the benefits in monetary terms ... are commensurate with the
expected cost" of about $5 billion to $8 billion per year.

Unfortunately this conclusion is not justified: the optimum point of
operation is not one at which the dollar benefits are equal to the dollar
costs, but one at which the marginal (or incremental) benefits are equal
to the marginal costs [Figure 4-19]. This optimum point generally
occurs where the costs are much lower than the benefits. At the
optimum, a $1 increase in cost would buy an additional $1 of benefits;
at the point where costs equal benefits (which is well past the opti-
mum), it would buy substantially less. The summary report only hints
at this possibility. But the detailed results of the study itself can be
used directly to support the following contrary conclusions: Relaxing
the emission standards, or reducing their geographic coverage to cities
with serious pollution problems, or delaying the implementation of the
standards would lower the costs drastically without an important
reduction in benefits.

A 100

degree of pollution control

Fig. 4-19 Schematic diagram of costs and
benefits versus degree of pollution control
(2, p. 949). The optimum level of pollu-
tion is not at point A, where costs equals
benefits, but at point A', where the margi-
nal quantities (slopes) are equal.

S. FRED SINGER

Department of Environmental Sciences,
University of Virginia,
Charlottesville 22903 183
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PROBLEMS

For a certain manufacturing process, the cost ($C) of producing n items is
given by C = 200+ 5« -O.OOIAZ2, and the revenue ($R) obtained from
selling n items is given by R = In — 0.002«2.
1. Discuss the significance of each of the terms in these cost and revenue

functions.
2. What are the formulas for MC and MR7
3. For what values of n is C decreasing (MC negative)?
4. For what values of n is R decreasing (MR negative)?
(Because it is most unlikely in a real situation that the total cost of

producing 3000 items is less than that of producing 2999 items - or that the
cost of producing the 3000th item is negative - the domain of the cost
function is doubtless an interval [0, b]9 where b is less than 2500. Likewise,
because it is unlikely that the total revenue obtained from selling 2000 items
is less than that from selling 1999 items - or that the selling price of the
2000th item is negative - the domain of the revenue function is doubtless an
interval [0, c], where c is less than 1750. To be safe, let us assume that the
cost and revenue functions both have [0,1500] as domains.)
5. Find a formula for the profit, P. What n gives maximum PI What is the

maximum value of P?
6. Obtain the value of n for maximum P by solving the equation MR = MC.
7. Using a large scale, draw graphs of C, R, and P on the same axes over

[0,1500].
8. Immediately below the graphs of Problem 7, draw the graphs of the

derived curves MC, MR, and MP on the same axes over [0,1500].
9. What is the formula for average total cost (or total unit cost, TUC)?

10. For what production levels is (TUC)' negative? Positive? Hence, for
what production levels are there economies of scale? Diseconomies?

11. Answer the foregoing set of questions for a different manufacturing
process in which C = 200+ 5« + 0.0002 w2 and R = in -O.OOIH2. Also
verify for this cost function that at the n that makes average total cost a
minimum, the value of the marginal cost equals the value of the average
total cost.

12. With reference to the letter in Science reprinted in this section, draw
various hypothetical "cost-of-control" and " value-of-benefits" curves,
and observe how the position of the optimum point of operation

-| 84 changes.



4.15 Maxima and minima using implicit differentiation

Implicit differentiation provides an elegant method for treating some prob-
lems of finding maxima and minima, as the following example shows.

A rectangular area is to be fenced with materials costing $2 per yard for
the length and $3 per yard for the width. What is the shape of the rectangle
for (a) maximum area for given cost and (b) minimum cost for given area?

If the length is x and the width is y (Figure 4-20) then

A = xy, (22)

and
C = 4x+6y. (23)

To solve part (a), we observe that because the cost is fixed, equation (23)
could be solved for y in terms of x: y = /(JC), say. Substituting f(x) fory in
equations (22) and (23) gives

A = x-f(x)
and

C = 4JC+6/(JC).

For A to be a maximum, its derivative must equal zero; if C is constant, its
derivative also equals zero.

Problem 1
Use the content of the preceding sentence to obtain x-f'(x) + f(x) = 0,
4 + 6f'(x) = 0.

Problem 2
Eliminate f'(x) between these two equations, and replace f(x) by y to
obtain 2x = 3j>, or x/y = f.

In other words, we have maximum area for given cost if the ratio of length
to width of the rectangle equals §.

To solve part (b), we argue that because the area is fixed, equation (22)
could be solved for y in terms of x: y = g(;c), say. Substituting g(x) for y in
equations (22) and (23) gives

A = x-g(x) and C = 4x+6g(x).

If A is constant, its derivative equals zero; for C to be a minimum, its
derivative also must equal zero.

Problem 3
Complete part (b) to obtain the same result as before, namely, x/y = \.

In other words, the problems are equivalent, and we might phrase either of
them as "What is the optimal shape of the rectangle?"

4.15
Maxima and minima

using implicit differentiation

Fig. 4-20
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4 PROBLEMS
Further differentiation

Use the method of this section to solve each of the following problems from
Section 3.8:
4. Problem 6
5. Problem 12
6. Problem 14
7. Problem 18(c)
8. Problem 19(d)
9. Problem 20

10. Problem 21
11. What are the radii of two spheres if the sum of their volumes is fixed

and the sum of their surface areas is an extreme? If the sum of their
surface areas is fixed and the sum of their volumes is an extreme?
Discuss fully.

12. Rectangles are inscribed in the circle x2 + y2 = r2, with their sides
parallel to the coordinate axes. What are the dimensions and area of the
rectangle of maximum area?

13. Same as Problem 12 for the ellipse (x2/a2) + (y2/b2) = 1.

4.16 Summary

Our results in differentiation can be brought together under the following
headings. Write out for yourself the complete statement corresponding to
each of them.

General results
1. Derivative of the sum of two functions.
2. Derivative of a constant times a function.
3. Chain Rule.
4. Derivative of the product of two functions.
5. Derivative of the quotient of two functions.

Specific results
6. Derivative of xn, for n a rational number.
7. Derivative of [/(*)]", for n a rational number (consequence of 3 and 6).

There is a surprisingly large number of problems that can be handled
with these rather limited results. Later we shall continue with our question
"How fast does a quantity change?" by studying the rates of change of the
exponential, the logarithmic, and the trigonometric functions. But before we

-| g g do so, we shall consider the reverse of the rate problem.



PROBLEMS

1. (a) A trench is to be dug from point A, 15 yards off a road in a field, to
point B, 60 yards down the road from the point C, closest to A
(Figure 4-21). If the cost of digging in the field is $5 per yard, and
along the road $4 per yard, find the minimum cost of the trench.
(Hint: Assume that the trench goes through the field from A to P, x
yards along the road from C, and then from P to B.)

(b) Same as (a), if ~CB= 20.
(c) Same as (a), if C2? = 18.
(d) Discuss this problem in general, if AC= a, CB= b, cost of digging in

the field is $p per yard, and cost of digging along the road is $q per
yard.

2. A first approximation to a learning model is one in which the time (/
sec) it takes to memorize n nonsense syllables is proportional to n:
t = f(n) = kn.

A better model is that in which the formula for t is t = g(n) =
knyln - I ,where k and / are empirically determined constants, and Dg is
the set of integers greater than or equal to / + 1 . Assume that k = 7, that
/ = 5, and that we can treat g as though Dg consisted of all real numbers
greater than or equal to 6.
(a) Find g'(n) and show that it is positive for all n > 6.
(b) Find g"(n) and thus find a point of inflection on the graph of g.
(c) What is a power-law approximation to g' for large n!

3. (a) The hourly cost ($/?/hr) of operating an oil tanker varies with its
speed (v knots, i.e., v nautical miles per hour) as follows: p = 250
+ \v3. What is the minimum cost of a voyage of 500 nautical miles?
Check that you have obtained a minimum.

(b) Does the optimal speed change if the voyage has a length of 1000
nautical miles? Does the minimum cost change?

(c) What is the optimal speed if competition reduces the cost of leasing
an oil tanker so that the formula for the cost function becomes

4.16
Summary

4. In a table of squares of reciprocals, the entry opposite 0.52 is 3.69822.
Find (0.52001)"2 approximately.

5. A certain article costs $1 to manufacture. The number, JC, sold per
annum is related to the selling price, $/?, over a certain price range by
the equation x = k/p2, where A: is a constant; and 2500 are sold when
the selling price is $1.
(a) Express the annual profit as a function of JC, and find JC and p for

maximum profit. What is the maximum annual profit?
(b) Express the annual profit as a function of /?, and find p and JC for

maximum profit.
6. You wish to make a rectangular box with a square base and no lid, of

Fig. 4-21
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Further differentiation

B

Fig. 4-22

volume 80 ft3. The material for the sides costs 20 cents/ft2, and that for
the base 50 cents/ft2. Calculate whether, with $20 to spend, you can
afford to make such a box.

7. Water is running out of a conical funnel at the constant rate of 10
in.3/min. The axis of the funnel is vertical, the angle of the funnel is
60°, and the hole at the vertex is extremely small.
(a) Find the rate at which the depth (x in.) of water in the funnel is

falling when x = 5.
(b) Sketch the form of the graph of dx/dt as a function of x.

8. A private swimming pool is made in the shape of an equilateral triangle
with sides 30 ft (Figure 4-22). A reluctant bather stands at B and
waggles his toes in the water, causing circular ripples to spread out from
B at a speed of 5 ft/sec. How rapidly is the area affected by ripples
increasing as the first ripple reaches the side A Cl

9. A boy in a skiff is hauling on a painter (i.e., pulling on a rope), one end
of which is attached to a dock 8 ft above the level of the boy's hands. If
he pulls in rope at the uniform rate of 3 ft/sec, how fast is the skiff
moving when 17 ft of rope are still out?

10. The cost ($C) of producing n lb of a commodity is given by C = 500 +
5« — O.Oln2. The number, w, of pounds that can be sold at $x per pound
is given by n = 250 - lOx, 0 < x < 20. Find the approximate selling price
that maximizes the profit, and find the maximum profit.

11. U.S. postal regulations specify that, to go by parcel post, the length plus
girth of a package must not exceed 100 in.
(a) What are the dimensions and volume of the largest rectangular box

with square cross section that can be sent by parcel post? Discuss
fully.

(b) Can you show that if the condition "with square cross section" were
omitted, the rectangular box of maximum volume would neverthe-
less have square cross section?

(c) What are the dimensions and volume of the largest cylindrical
package that can be sent?

(d) Solve (a) and (c) of this problem by implicit differentiation, as
suggested in Section 4.15.

12. The cost functions we have considered thus far have been associated
either with efficiencies in production over the whole domain of the
function or with inefficiencies of production over the whole domain.
Probably neither type is as realistic as a cost function for which there
are efficiencies for small and medium production and inefficiencies for
very large production. We turn to such a case now.

Suppose that the total cost ($C) of producing x units of a commodity
per week is given by

/ 500 + 5JC -0.01.x2, 0 < x < 100,
188
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(a) Is / continuous over its domain? Differentiable? Sketch a graph of
this function.

(b) If the marginal cost is represented as the function g, write formulas
for g(x), indicating the domain. Is g continuous over its domain?
Differentiable? Sketch a graph of this function.

(c) If the average total cost is represented as the function F, write
formulas for F(x), indicating the domain. Is F continuous over its
domain? Differentiable? Sketch a graph of this function.

(d) What is the fixed cost in this operation? Write formulas for the
variable costs.

(e) For what x is the average total cost a minimum? What is the
minimum average total cost? Verify that this minimum average total
cost equals the value of / ' (the marginal cost) at the value of x
corresponding to the minimum (cf. Problem 14, 4.13).

(f) If the total revenue ($R) obtained by selling the production of x
units is given by R = 9x -0.01.x2, write formulas to express the
profit ($P) as a function of x. Sketch graphs of R and P on the same
axis as your graph of C. For what x is the profit a maximum? Show
on your graph that MC = MR for this x. What is the maximum
profit?

13. Find the point(s), P, on the circle x2 + y2 =1 such that the sum of the
distances from P to the points (1,0) and (-1,0) is an extreme.

* 14. What are the dimensions of the cone of minimum volume that can be
circumscribed about a given sphere?

15. Water is running out of the conical funnel shown in Figure 4-23 at the
constant rate of 2 in.3/sec, until h = \ (in.).
(a) What does your intuition tell you about the rate at which the water

level decreases?
(b) Find the rate at which h decreases at h = 4, 3, 2, and 1.
(c) What is the maximum rate of decrease of hi

* 16. By consideration of the first and second derivatives, discuss fully the
function given by g(x) = kx/{\ — x + kx), k constant. [From Peter
Newman, "Some Properties of Concave Functions," Journal of Eco-
nomic Theory (1969), pp. 291-314.]

17. The stiffness (T units) of a rectangular beam of fixed length varies as the
width (x in.) and the cube of the depth (y in.), as designated in Figure
4-24(a).
(a) Find the dimensions of the stiffest beam that can be cut from a

circular log of diameter 20 in. (For interest, compare with Example
2, 3.8.)

* (b) Solve this problem by implicit differentiation, as suggested in Sec-
tion 4.15.

18. Let / be the function defined by y = v4 + x2 .
(a) What is the natural domain of/?

4.16
Summary

6 in.

Fig. 4-23

(a)

Fig. 4-24

(b)
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4 (b) Find / '(*) and /"(*) .
Further differentiation (c) Find whatever numbers x correspond to maximum and minimum

values of y9 and find the corresponding values of y.
(d) Show that there are no points of inflection on the graph of/and that

the graph is everywhere concave up.
(e) Sketch the graph of the equation.

19. The formula for the slope, s, of a certain curve is s = 5 — 3x + 2x2 — 8.x3

+ x\
(a) Find a formula for R, the rate of change of flexion of this curve.
(b) For what x is R an extreme? Maximum or minimum?

20. If the radius of a cylinder increases at the rate of 0.5 in./min and the
height decreases at the rate of 0.8 in./min, how fast does the total
surface area change when r = 6 in. and h = 10 in.? (Give the units of

• your answer.)
21. The material for constructing a rectangular box with square cross

section costs 3C per in.2 for the bottom, the same for the top, and 2$ per
in.2 for the sides. If the edge of the bottom is x in. and the height of the
box is y in., express the cost of material for the box. What are the
dimensions of the box for minimum cost if the box is to contain 1500
in.3 and if no dimension of the box can exceed 12 in.?

* 22. Consider f(x) = Jx2-6x.
(a) State the natural domain of / .
(b) Find any maximum points, minimum points, and points of inflection

on the graph of y = f(x).
(c) Find regions where the graph is concave up. Concave down.
(d) Sketch the graph of y = f(x), showing where the tangent to the

curve is vertical.
* 23. Same as Problem 22 for g(x) = ]/x2 + ax , for any constant a.
* 24. The lateral surface area (L ft2) of a cone of radius r ft, height h ft, and

slant height s ft (Figure 4-25) is given by L = irrs. If r increases by 0.3
ft/hr and h decreases by 0.2 ft/hr, how fast does L change when r = 12
and h = 9cl Also, try to derive the given formula for L.

25. Let/(x) be the function defined by f(x) = ( 3 - x2)/(x +2).
Fig. 4-25 (a) Find / ' (x) and /"( x).

(b) Find whatever numbers x correspond to maximum and minimum
values off(x) and to points of inflection on the graph of/.

(c) Find maximum and minimum values of/in [ — 1.5,0].
26. If the length (JC ft) of a rectangular plate increases at 0.1 ft/min and the

width (y ft) decreases at the rate of 0.2 ft/min, how fast does the area
change when x = 5 and y = 10?

27. Consider the curve with equation y = \xA— 2JC3, over the natural do-
main.
(a) Find the coordinates of any turning-point maximum and minimum

-| gQ points on the curve.



(b) Find the coordinates of any points of inflection on the curve. 4.16
(c) Sketch the curve. Summary
(d) Find the maximum and minimum values of the flexion over the

interval [0,3].
28. Let / b e the function given by f(x) = (2x - 5)/x2.

(a) What is the natural domain of/?
(b) Findf'(x). (Hint: Simplify before differentiating.)
(c) Find any turning-point extremes of / .
(d) Find the coordinates of any points of inflection on the graph of / .
(e) Use two tests to determine whether, in (c), you found maxima or

minima. 3

* 29. For the curve given by y = (x — \)-yx}, find any maximum or mini-
mum points, any points of inflection, and any points where dy/dx is not
defined. Sketch a neat graph.

30. A rectangular box with a square base and no top is to hold 4000 in.3

What dimensions require the least material to build the box, if the edge
of the base cannot exceed 16 in.?

31. The volume (V ft3) of a cone is given by V=\irr2h. If the volume
increases by \m ft3/min and the height increases by 0.03 ft/min, find
the rate of change of the radius when r = 10 ft and h = 5 ft. (Give the
units of your answer.)

32. The equation of a curve is y = x4 - 8JC3 + 24.x2 - 24.x +10.
(a) Find the flexion ( / ' ) at x =1 .
(b) At x =1 , is the flexion increasing or decreasing, and how rapidly?
(c) Find the minimum flexion, and test to show that it is a minimum.

33. The material for constructing a rectangular box with square top and
bottom costs $2 per square meter for the bottom, the same for the top,
and $^ per square meter for the sides. What are the dimensions and cost
of the box of minimum cost that can be constructed to contain 32 m3 if
the height of the box cannot exceed 2 m?

* 34. Find maximum and minimum points and points of inflection on the
graph of y = 4x/(x2 +4), and sketch the curve.

35. The material for the bottom of a cylindrical can costs 6$ per square
inch, and for the lateral surface, 2$ per square inch; there is no top.
Express the cost of material for a cylinder of base radius r in. and height
h in. If the can is to contain 3000TT in.3, find the dimensions of the can
of minimum cost if neither r nor h can exceed 15 in.

36. Consider the function g given by g(x) = (x2 — 4)/v36— x2 .
(a) What is the natural domain?
(b) Find the coordinates of any maximum or minimum points.
(c) What is the range of the function g?
(d) Where does the graph of y = g(x) cross the x axis? Sketch the graph.

37. An island / is 8 miles off a straight coastline. A town T is 6 miles along
the coast from the point A on the coast nearest the island (Figure 4-26). -| g -|



4 If you can row at 3 mph and jog at 5 mph, where should you hit the
Further differentiation beach (point P, x miles from A) so that the total time for rowing the

distance IP and jogging the distance PT is a minimum?
£ * 38. You are asked to divide a given length of wire into two pieces, one of
I \ which you will form into a circle and the other into a square, so as to

8J \ maximize the total area obtained. What should you do? Explain fully.
\ ^ water * 39 s a m e as Problem 38, if you are to form a circle from each portion of the

•— \—»- wire.
A P T

land * 40. Find maximum and minimum points and points of inflection on the
FiS- 4 - 2 6 curvey = x3/(3x2 - 3x + 1 ) for 0 < x < 1. Sketch the curve. (Some polit-

ical scientists have studied the apparent validity of this formula with the
interpretation that x is the fraction of the total votes obtained by one of
the parties and y is the fraction of seats won in parliament by that
party.)

* 41. A f u n c t i o n / i s defined by

0 < J C < 5 .

(a) For what x 's in the domain of / is / continuous?
(b) Using the definition of derivative, determine whether /'(0) exists. If it

does, state the value of f'(0).
(c) Find/X-x) and state its domain.
(d) For what x 's in the domain of / ' is / ' continuous?
(e) Using the definition of derivative, determine whether /"(0) exists. If

it does, state the value of f"(0).
(f) Findf"(x) and state its domain.
(g) For what x 's in the domain of / " is / " continuous?
(h) Sketch graphs of / and its first and second derived curves,
(i) Show that (0,0) is a horizontal point of inflection.

SAMPLE TEST

1. Let f(x) be the function defined by y = (x2 + 5)/(x + 2).
(a) What is the natural domain of/?
(b) Find / ' (*) and /" (*) .
(c) Find whatever numbers x correspond to maximum and minimum

values of/(JC) and to points of inflection on the graph of/.
(d) Find the values of y corresponding to the values of x found in (c).
(e) Check whether you have maxima or minima in (c), using two tests in

each case.
2. The volume of a cone is given by V= ^irr2h. If the radius decreases at

the rate of 0.1 in./min and the height increases at the rate of 0.2 in./min,
how fast does the volume change when r = 10 in. and h = 12 in.? (Give

-(92 the units of your answer.)



3. A ladder 20 ft long, leaning against a wall, has its foot pulled out from 4.16
the bottom of the wall at the rate of 2 ft/sec. How fast is the top of the Summary
ladder descending when the foot of the ladder is 12 ft from the bottom of
the wall?

4. The equation of a curve is y = 8x3 - 2x4. Find the flexion of the curve at
x = 2. At x = 2, is the flexion increasing or decreasing, and how rapidly?
Find the maximum flexion.

5. A rectangular box with square top and bottom is to contain 250 ft3. If the
top and bottom are made of material costing $2 per square foot and the
sides are made of material costing $1 per square foot, find the dimensions
of the box for minimum cost, if no dimension can be greater than 8 ft.
Demonstrate conclusively that you have a minimum.

* 6. Demonstrate that whatever be the values of a and b, the curve y =
(x2 + a)/(x + b) has no points of inflection. Discuss the existence of
maximum and minimum points on this curve.

7. A lock-keeper on a bridge 10 ft above a canal is pulling a canal boat by
means of a rope attached to the boat at water level. If he hauls in rope at
the uniform rate of 6 ft/sec, how fast is the boat moving along the canal
when the length of the rope from boat to bridge is 26 ft?

8. (a) Part or all of a concrete slab 15 X15 ft is to be used as the base of a
rectangular storage container with a square cross section (horizontal),
to hold 750 ft3. Material for the four sides of the container costs $2
per square foot; material for the square flat top costs $3 per square
foot; no material is needed for the bottom because the concrete slab
serves that purpose. What are the dimensions of the container for
minimum cost?

(b) Same as (a), if the concrete slab is 1\ Xl\ ft.
* 9. What is the shape of the container in Problem 8 for any fixed volume?
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Antidifferentiation
and integration

5.1 The reverse of differentiation

Knowing how a quantity varies, we have been learning methods of finding
how fast it varies, that is, how to find / ' from / . We now turn to the reverse
problem: If we know the rate of change of a function, can we reconstruct
the function itself? Often the rate of change is known, from experiment or
theory, and the process of "antidifferentiation" turns out to be as important
as that of differentiation itself. The ideas of antidifferentiation can best be
introduced through a simple example:

Suppose that we know that the slope of a curve is

-j- = x, for all x,

and we wish to find an equation of the curve, that is, an expression for the
height, y, in terms of x.

Remembering that if f(x) = x2
9 then f\x) = 2x, we see that a slight

modification will do the trick: If g(x) = \x2, then g\x) = x9 and now we
have exactly the given derivative. Thus,

is a solution of our problem - for each x, the slope of the curve y = \x2 is,
j indeed, equal to ;c, as seen in Figure 5-1. But is this the only solution?

Problem 1
Before reading further, try to find other solutions.

We can quickly see thaty = h(x) = \x2 +1, y = j(x) = \x2 — 2, and, in fact,
y = F(x) = \x2 + c, for any constant c, are also solutions:

The geometrical significance of this fact is seen in Figure 5-2: For each x,
the slopes of the various curves are all equal. The curves are all the same
except for vertical displacement.



We are still left with a question: Are there still other curves, besides those
of the "family" given by y = F(JC) = \x2 + c, for any constant c, such that
dy/dx = JC? The answer is no, as we shall see in the next section. Before
proceeding with it, however, there is one more thing to be said about our
problem of dy/dx = x. Suppose that we assume that y = 1 at x = 0. Because
dy/dx = 0 at x = 0, we can approximate the curve by a short horizontal line
segment in the neighborhood of x = 0, as seen in Figure 5-3(a). Near x = j ,
the curve can be approximated by a short line segment of slope \, as shown
in Figure 5-3(b).

5.1
The reverse of
differentiation

Problem 2
Check the coordinates shown in Fig. 5-3(b).

Near x = \9 the curve can be approximated by a short line segment of slope \,
as shown in Figure 5-3(c), and so forth.

(0, 1

(a) (b)

(0, 1 (0, 1)

(d)
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Antidifferentiation;
integration

Fig. 5-4

Fig. 5-5

Problem 3
Check the coordinates shown in Figure 5-3(c).

The general effect, then, is seen in Figure 5-3(d). If we did not make the
initial assumption that y=l at x = 0, we would have to consider many
possibilities: j> = 2 at * = 0, >> = 0 at x = 0, y=-l at * = 0, and so forth,
and the method exemplified in Figure 5-3 would be translated into the result
shown in Figure 5-4.

In our problem, of course, we have found the general formula,y = \x2 + c,
corresponding to the given equation dy/dx = JC, so that we do not really
need the approximation shown in Figures 5-3 and 5-4. But such approxima-
tions are useful in cases in which we cannot find a formula for the
antiderivative, and even in our simple example, Figure 5-4 is instructive in
helping us to see "what's going on."

5.2 The antiderivatives of a given function
differ by at most a constant

Here is an argument to help justify the statement made in the preceding
section that all the functions satisfying dy/dx = x are given by y = \x2 + c,
with c an arbitrary constant. Suppose that two functions, / and g, have the
same derivative (i.e., / ' = g'). We set F = f - g. Then F' = f'-g' = 0. Now,
if the rate of change of a function is always zero, it seems reasonable to
conclude that the function is not changing at all (i.e., that it is constant). So
F= k, or / = g + k9 for some constant k.

The argument given here is equivalent to saying that if the rates of change
of / and g are equal, then at each x their tangents must be parallel, so that
the curves must look like those in Figure 5-5 - one is just the result of a
vertical displacement of the other. This argument is not a conclusive proof,
for it might be possible that some (perhaps complicated) function, not a
constant, has a zero rate of change. Perhaps we are just not clever enough to
have thought of an example of such a function. However, by use of the
Mean-Value Theorem (Section 3.1) we can prove that this is not the case:

Theorem 1
If F\x) = 0 over an interval [a, 6], then F(x) is constant over that interval.

Proof Let p and q be any two numbers in [a, b]. Then

Hq)-F(p)
q- p F'(z) for somez in (p,q).
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By hypothesis, F'(z) = 0. Hence, F(q)- F(p) = 0, or F(q) = F(p). Because
p and q are any two numbers in [a, b], it must be that F(x) is indeed
constant over [a,b].



It now follows that if two functions have the same derivative over an 5.3
interval, they differ by at most a constant; that is: Formulas for antiderivatives

Theorem 2
If f'(x) = g'(x) over an interval [a, b], then f(x) = g(x)+ k, for all x in
[a, b], where A: is a constant.

5.3 Formulas for antiderivatives

Corresponding to the formulas for differentiation, as summarized in Section
4.16, there are analogous formulas for antidifferentiation. We can develop
most of them quickly now. We begin with a specific formula: If dy/dx =
xn

9 what is the expression for y in terms of x? In Section 5.1, as a result of a
trial, we found that if dy/dx = x, then y = \x2 + c.

Problem 1
Use a similar trial method to find a formula for y if dy/dx = x2, if
dy/dx = x\ if dy/dx = x4, if dy/dx = x~2

9 if dy/dx = x2/\ if dy/dx =
x~1/2. Conjecture a general result.

The correct conjecture is verified simply by checking that if y = xx+1/(n +1),
then dy/dx = xn, and using the result of Section 5.2 that any other function
satisfying dy/dx = xn differs from this one only by a constant.

Problem 2
What happens if you apply the formula stated here to the case dy/dx = 1/x

Clearly, the formula fails in this case. In a sense, this is not surprising, for
we might at first think that dy/dx = x~l comes from differentiating y = x°.
But, of course, if y = x°, then dy/dx = O-JC"1 = 0.

In Chapter 7 we shall learn that the equation dy/dx = x~l implies that y
is a logarithmic function of x. For now, we make the following statement:

w i t h n*~l> t h e n y =
if j - = 9 > y n\i W

This is our basic specific formula. We also have several general formulas for
antidifferentiation, as we did for differentiation. We first put into symbols
the result of Section 5.2:

If -~ = / ' (x ) , then y = / (x) + c, for an arbitrary constant c. (2)



5 Next, we have
Antidifferentiation;
integration If -j^ = f'(x)+gXx), then y = f(x)+g(x)+c. (3)

"An antiderivative of the sum of two functions
equals the sum of their antiderivatives."

and

If ^ = k'f'(x\ then y = k-f(x)+c. (4)

"An antiderivative of a constant times a function equals
the constant times an antiderivative of the function."

The analogue of the Chain Rule is straightforward:

If ^ =/'(")•£'(*)> where u = g(x), then y = f(u) + c. (5)

The Special Case of the Chain Rule leads to an important formula:

If -j-=un-g\x), where u = g(x) and w=£-l,

then y = -^-un + l + c. (6)

Here are some examples that utilize our antidifferentiation formulas.

Example 1
If dy/dx = 5, what is an expression for y! A straightforward approach is to
note that the given equation could be written as

dx

so that an application of our basic specific formula (1) tells us that

y = 5x + c.

Alternatively, we could have observed that dy/dx can be interpreted as the
slope of a curve, and that one curve that has the slope constantly 5 is the
straight line y = 5x. Hence, the antiderivatives are y = 5x + c.

Example 2
The rate of absorption (R mg/min) by the liver of a certain chemical in the
bloodstream of an animal was found to vary with the time (t min) as
follows:

How much (Q mg) was absorbed in the first 2 min?
The central feature here is that R = dQ/dt, so that Q is an antiderivative

1 9 8 ofR.



Problem 3 5.3
Perform the antidifferentiation, and thus obtain Q = 5/ + 3t2 - t3 + c. Formulas for antiderivatives

At the start (t = 0), none of the chemical had yet been absorbed - Q was
then equal to zero. This implies that c = 0 for this example, and hence the
formula for Q at any time is Q = 5t + 3t2 — t3.

Problem 4
Verify that at / = 2, Q = 14. This is the answer.

Example 3
The slope of a certain curve is given by

(7)

Find an expression for the height of the curve for any x. We shall do the
antidifferentiation in two different ways.

Problem 5
Multiply out the right side of equation (7) and perform the antidifferentia-
tion to obtain

x6

y = — -x* + x2 + c. (8)

An alternative approach is to use formula (6) of this section: If we set
u = g(x) = x2 -I, then du/dx = g'(x) = 2x. Thus, equation (7) can be
written

^-^u2'g\x), where u = g(x) = x2-l. (9)

Applying formula (6) to equation (9) gives

y = \u3 + k = \(x2-lf+k. (10)

The letter k is used here because it is not necessarily the same as the c of
equation (8).

Problem 6
Expand the right side of equation (10) to get

y = ±(x6-3x4+3x2-\) + k. (11)

Equations (8) and (11) are two forms of the solution of the problem.
Reconcile them.

Example 4
Formula (6) was not really needed in Example 2, and it was not even much
of a help, but here is a case where it is essential. The slope of a certain curve 1 9 9



5 is given by
Antidifferentiation;
integration

Find an expression for the height of the curve for any x.
In this case, unlike what was done in Problem 4, we cannot "multiply

out" the right side of equation (12). Rather, as was done in the alternative
approach to Example 3, we set u = g(x) = x2 — 9, so that du/dx = g'(x) =
2x. Hence, equation (12) can be written

j ^ = M
1/2-g'(x), where u = g(x) = x2 - 9 . (13)

Problem 7
Verify that applying formula (6) to equation (13) results in y = f (x2 — 9)3/2

+ C.

You probably will have noticed that equation (12) was carefully tailored to
make formula (6) applicable to it. Equations like

dx

and

dx
are another story. We shall see later (Section 5.9) how to use formula (6) on
equation (14). Equation (15) requires quite a different technique.

Example 5
Remember that the derivative of a product does not equal the product of the
derivatives. Likewise, we cannot multiply the antiderivatives of two func-
tions to obtain antiderivatives of their product. For example, suppose
dy/dx = (x2 + l)-x3 = x5 + x3. Now,

x3

an antiderivative of (x2 +1) is — + x,

x4

an antiderivative of x3 is —, and

x6 x4

an antiderivative of x + x is ~r + —r.
6 4

x 3 \ x 4 x 6 x 4

The only way we can now treat antiderivatives of products is first to
"multiply out" (if we can), unless formula (5) or (6) applies. (In analogy to

20Q the product rule for differentiation, there is a procedure in antidifferentia-



tion called "integration by parts," but we shall not deal with it.) Similarly, 5.3
for quotients, we must first "divide out" (if we can), unless formula (5) or Formulas for antiderivatives
(6) applies.

PROBLEMS

8. Find the antiderivatives of each of the following functions:

5 1 xl xi 2\6c
(d) A + Bx + Cx2 + Dx3, where A, B, C, and D are constants

(C) 3 XV-
Y2 r

- - ) (j)]fx'(3x-2)2

9. Find the antiderivatives of each of the following functions:
(a) 4(4x +1)3 (b) \/25 + JC2 • 2x
(c) (25 + x2)-2x (Use two methods, and reconcile results.)

(d) v } -

(g) (Use two methods, and reconcile results.)
2/x

. . v3x1 / 3+l ( i ) 2 ( v /x 2 +4x -3 +2)(x+2) 0') ~2*
^ / 3

10. If the slope of a curve is given by dy/dx = x2 + 1 / * 2 , and if ^ = 0 at
x = 1, find the formula for y in terms of x.

11. Same as Problem 10, with dy/dx = \xl/2 -\-l/2xl/2 +1, and y = l at
x = 9.

12. For the curve of Example 3 in this section, determine maximum and
minimum points and inflectional points.

13. Same as Problem 12 for the curve of Example 4 in this section.
Remember to check the domain of the function!

14. The rate of domestic use of coal in a small city (R tons/year) varied
with the time (t years after 1930) as follows: R = 48,000-300/2. How
much coal (G tons) was used between 1930 and 1940?

15. The rate of flow (R gal/day) of water in a stream varied with the time (t
days after June 1) as follows: R = t3 -3t2 -24t + 1000. Find the total
quantity (Q gal) that flowed between / =1 and / = 5.

o 16. Careful accounting in a small factory manufacturing x items per week
shows that the marginal cost ($MC) is given by MC = 100 -0.2x, for
0 < x < 150, and that the marginal revenue ($MR) is given by MR =
120-0.4.x, for 40 < x < 150.
(a) Find x for maximum weekly profit. 201



5 (b) If the fixed costs of operation come to $400 per week, find a formula
Antidifferentiation; for the total cost of producing x items per week,
integration (c) Find a formula for the total revenue obtained from selling x items

per week.
(d) Express the profit made by manufacturing and selling x items per

week.
(e) Use (d) to find x for maximum profit, and thus check your answer to

(a). Find the maximum profit.

5.4 Repeated antidifferentiation: projectiles thrown vertically

If we know an expression for the second derivative of a function, one
antidifferentiation will give the first derivative of the function, and another
antidifferentiation will give the function itself.

Example 1
Suppose that the flexion of a curve is given by d2y/dx2 = 1 — \/{x and that
at x = 4, dy/dx = 1 and y = 3. What is the formula for y in terms of JC?

Problem 1
Perform one antidifferentiation and use some of the information given to
obtain dy/dx = x -2xl/2 + 1. Then antidifferentiate again to get y =

Example 2
Suppose that the acceleration of a particle moving on a straight line is given
by d2s/dt2 = |v^(l — t\ where t is elapsed time in seconds, and s represents
the displacement from a fixed point, in feet. Moreover, suppose that s = 5 at
t = 0 and that s = 8 at t = 1. What is the formula for s in terms of tl

Problem 2
Perform one antidifferentiation to obtain ds/dt = | / 3 / 2 - \t5/1 + cx and a
second antidifferentiation to get s = \t5/1 — ^t1/2 + cxt + c2. Use the other
given information to find that c2 = 5, cx = fr, so that the answer is s = \t5/1 —

An object not too far above the surface of the earth is attracted so that it
has an acceleration of about 32 ft/sec2, directed downward. (This is an
approximation, neglecting the effects of air friction, varying distance from
the surface, etc.) Thus, if the velocity of the object, at t = 5, say, is 40 ft/sec
(i.e., a speed of 40 ft/sec upward), its velocity at t = 6 will be 40 — 32 = 8
ft/sec in the absence of any forces other than that of gravitational attrac-

2 0 2 ti°n- Similarly, if the velocity of an object at t = 3 is 10 ft/sec, its velocity at



/ = 4 will be 10-32 = - 2 2 ft/sec (i.e., a speed of 22 ft/sec downward); 5.4
and if the velocity of an object at t =12 is - 2 1 ft/sec, its velocity at t =13 Projectiles thrown vertically
will be - 2 1 - 3 2 = - 5 3 ft/sec. All problems about projectiles thrown
vertically can be easily treated by a single method, using antidifferentiation,
as shown in the following examples.

Example 3
A rocket is shot straight up from the edge of the top of a building 112 ft
above ground level with an initial speed of 96 ft/sec. Find expressions for
the velocity (v ft/sec) and the height (y ft) of the rocket above the ground t
sec later.

We know that the velocity of the rocket is given by dy/dt and the
acceleration by d2y/dt2. It is simpler to choose the upward direction as
positive. Hence, d2y/dt2 = -32 .

Problem 3
Antidifferentiate twice and use the given information to obtainy = — 16t2 +
96/4-112.

Example 4
A stone is hurled straight down from the edge of a cliff 160 ft above a
beach, with an initial speed of 48 ft/sec. Find expressions for the velocity (v
ft/sec) and the height (y ft) of the stone above the beach t sec later.

Once again, d2y/dt2 = -32 .

Problem 4
Follow the antidifferentiation procedure to obtain v = - 3 2 / — 48 and y =

Example 5
We can work out a general result: If a projectile is thrown vertically from a
point h ft above ground level with an initial velocity of v0 ft/sec (v0 is a
constant that might be positive, negative, or zero), then the height (y ft)
above the ground t sec later is given by

y = h + vo-t-\6t2. (16)

Problem 5
Derive this equation.

Each of the terms on the right of equation (16) has a simple interpretation:
h, of course, is the initial height, vo-t is the effect on the height of the initial
velocity alone (a velocity of 10 ft/sec acting for 3 sec results in a distance
covered of 10-3 = 30 ft), and - 1 6 / 2 gives the effect on the height of the 2 0 3
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gravitational acceleration alone. The height at any time is the sum of these
three components.

PROBLEMS

6. In Example 3 in this section, when is the rocket highest, and what is the
maximum height? When does the rocket reach the level of the top of the
building in its downward flight? If the rocket just misses the building in
its downward flight, when does it hit the ground? With what speed?

7. In Example 4 in this section, when does the stone hit the beach? With
what speed?

8. (a) A stone is dropped (v0 = 0) from the edge of a cliff and hits the
beach 5 sec later. How high is the cliff? With what speed does the
stone hit the beach?

(b) A stone is hurled straight up from ground level and hits the ground
5 sec later. What was the initial speed of the stone? What was its
maximum height?

9. For the curve of Example 1 in this section, find maximum, minimum,
and inflectional points. [Hint: x - 2xl/2 +1 = (xl/2 -1)2.]

10. For the motion of the particle in Example 2 in this section, find when
the velocity has a maximum value. A minimum value. (Check the
domain of the function!)

11. A rocket is shot straight up with an initial speed of 192 ft/sec from an
airplane at an altitude of 7500 ft. Find its height above the ground t sec
later. When does it pass the 7820-ft level rising? Falling? What is its
speed at each of these times? When does it reach its maximum height?
What is its maximum height?

12. An object moving on an inclined plane is constantly subject to an
acceleration of 15 ft/sec2, directed downward along the plane.
(a) If it starts with an initial speed of 10 ft/sec downward along the

plane, express the distance (s ft) that it covers in / sec.
(b) If it starts from the bottom of the plane with an initial speed of 24

ft/sec upward along the plane, how far does it move up the plane?
* (c) If it starts from the bottom of the plane with an initial speed of v0

ft/sec upward along the plane, what is the value of v0 if the object
just reaches a point 120 ft up the plane?

13. An object sliding on a rough horizontal surface is subject to a constant
retarding acceleration of 10 ft/sec2.
(a) If it starts with an initial speed of 60 ft/sec, how far does it slide

before its speed equals zero?
* (b) What initial speed must it be given to slide 125 ft before its speed

equals zero?
* 14. An object moving on an inclined plane is constantly subject to an

acceleration of a ft/sec2, directed downward along the plane.



(a) If it starts from the bottom of the plane with an initial speed of vQ

ft/sec upward along the plane, how far does it move up the plane?
(b) If it starts from the bottom of the plane with an initial speed upward

along the plane, what must that initial speed be if the object is to
move b ft up the plane?

15. A block of wood sliding on an inclined plane is subject to gravitational
acceleration constantly equal to 16 ft/sec2, directed downward along the
plane (Figure 5-6). The block starts 56 ft from the bottom of the plane
with a shove that gives it an initial speed of 48 ft/sec upward along the
plane.
(a) Express the distance (y ft) of the block from the bottom of the plane

at time t sec.
(b) What maximum distance from the bottom is reached by the block?
(c) When is the block 96 ft from the bottom, going up? Going down?
(d) When does the block reach the bottom of the plane? With what

speed?

5.5
The limit of a sum

Fig. 5-6

5.5 The limit of a sum

We turn now to a completely different type of problem. Then we shall learn
that these new problems - those of the integral calculus - have a remark-
ably close relationship to those we have already encountered. The discovery
of this relationship was Newton's major contribution in this field, and the
articulation of the relationship - the Fundamental Theorem - links the
differential calculus and the integral calculus to form a magnificently unified
subject.

We begin by considering a problem that was solved over 2000 years ago
by Archimedes, who phrased the result as follows: "The area under a
parabolic arch is two-thirds the area of the circumscribing rectangle."
Relative to Figure 5-7(a), Archimedes' statement means that the shaded area
equals two-thirds the area of rectangle ABCD. Because of the obvious
symmetry of the figure, this is equivalent to stating that the vertically shaded
area in Figure 5-7(b) equals one-third the area of rectangle ABOO'.

Fig. 5-7
(a)
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y = x2
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Fig. 5-8

(a) v

(b)

Fig. 5-9
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Let us turn the figure upside down, as in Figure 5-7(c), and consider the
special case in which the equation of the parabola is y = x2 and the length
of OB is 1 unit.

Problem 1
What does this imply about the length of BA, and what is the magnitude of
the vertically shaded area, according to Archimedes?

We shall find the vertically shaded area by a method similar in spirit to that
of Archimedes. (The method works equally well for parabolas with other
equations and for lengths OB different from 1 unit.) We first approximate
the desired area by dividing the segment OB into equal parts (four of them
in Figure 5-8), erecting verticals up to the curve at the division points, and
completing rectangles, as shown. The sum of the areas of these four
rectangles is an approximation to the desired area, but it is obviously too
large. If we double the number of division points, the sum of the areas of
the eight rectangles is also larger than the desired area, but it is a closer
approximation than the preceding one - the shaded areas in Figure 5-9(a)
were included in the previous approximation, but they have been trimmed
away from this one. It appears that we can come as close as we like to the
desired area by summing the areas of the rectangles of a sufficiently fine
subdivision, as in Figure 5-9(b). This is reminiscent of the language of limits
(see Chapter 2), and we shall return to the idea later. Now let us do some
computation. If we divide the unit interval, OB, into n equal parts, each of
length Ax, then we have, of course,

-AJC=1. (17)

The abscissas of the points of subdivision are Ax, 2AX, 3AX,...,HAX, as in
Figure 5-10; and because the equation of the parabola is y = x2, the heights
of the curve at the subdivision points are (Ax)2, (2Ax)2, (3Ax)2,... ,(w Ax)2.

Problem 2
Show that S, the sum of the areas of the n rectangles, can be written as

S = ( A x ) 3 ( l 2 + 2 2 + 3 2 + . - - +« 2 ) . (18)

Now, if we take progressively finer subdivisions (ever narrower rectangles),
then the number of rectangles will, of course, have to increase. That is, as
Ax->0, n increases without bound, because «Ax=l. We cannot im-
mediately tell what happens to S under these circumstances, for, as Ax -> 0,
the first factor on the right side of equation (18) also approaches zero, while
the second factor increases without bound. What happens to the product of
these two factors? We need a trick to put the right side of equation (18) into
a form in which we can determine its limit as Ax -> 0.



Digression A similar situation occurs in every determination of a deriva-
tive. For instance, in example 1, 2.2, in which distance (s ft) varied with
time (/ sec) according to s =l6t2, the velocity at / =1 is given by

v = hm
h-*o

16(l + /02-16
:

= lim
16 + 32/*+16/*2-16

= hm
32h+l6h2

Now, as h -> 0, both the numerator and the denominator of the fraction
approach zero, and we cannot immediately tell what the limit of the fraction
is. (This will always happen for a continuous function, for the derivative of
f(x) is defined as limA_0{[/(jc + h)-f(x)]/h}; and, as h -> O,/(JC + h) ->
f(x) i f / is continuous, so that both numerator and denominator approach
zero. Indeed, if the numerator did not approach zero as the denom-
inator approached zero, the derivative would not exist.) In the case of
limA_0[(32ft +16h2)/h], we use an entirely obvious trick - we divide
numerator and denominator by h, which is legitimate so long as h =£ 0.

Now we return to equation (18). The trick here involves the use of a
formula for I2 + 22 4- 32 4- • • • + n2. The formula is

!2+22+32 ( y g 2 _ n ( n + l ) ( 2 * + l ) (19)

This is usually derived in algebra courses, often with the help of mathemati-
cal induction. We shall assume its validity.

Problem 3
To help make equation (19) seem reasonable, verify its correctness for n = 1,
2, 3, 4, and 5.

5.5
The limit of a sum

nAx = 1
AJC 2AJC 3 A X • • •

Fig. 5-10

Problem 4
Multiply out the right side of equation (19) to obtain

l 2 + 2 2 + 3 2 + ••• +n2 = \n3 + \n2 + \n.

Because, from equation (17), n =1/AJC, we can write equation (20) as

(20)

l2+22+32+ 1 1
3 (Ax)3 2 (Ax)

1 ' -I4z- <21)

Problem 5
Use equation (21) to put equation (18) into the form

(22)

Now we have an expression for the sum of the areas of the rectangles that
permits us to see what happens:

As Ax gets close to zero, S gets close to }. In fact, we can make
S arbitrarily close to y by making Ax sufficiently close to zero. 207
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We say, then, that the area bounded by OB, BA, and the parabolic arc
OA is y. Archimedes was right! - at least for the particular parabola we
have examined. For the general case, see Problem 7 at the end of this
section. Two remarks are in order:

1. Our result could seemingly be abbreviated as limA;c_0S' = j . But there
is one difference from the limit situations with which we have dealt before.
Previously, in dealing with a derivative, when we have written that
limA_0(32 + 16/i) = 32 we have thought of the domain of the function,
32 + 16h, as being all real numbers in the neighborhood of zero. Now, in our
area problem, if we write

lim S= Urn (23)

we must remember that /IAJC =1, so that Ax =l/n. Because n is a positive
integer, the values of Ax are reciprocals of integers, like 4,1 > Too> soo> 1,000,000 >
and so forth. It still is true that we can make S as close as we like to \ for all
sufficiently small reciprocals of integers, but we should realize that the idea
is conceptually a bit different from the previous definition of limit. We shall,
however, use the old notation, as in equation (23).

2. The ingenious method of finding the area bounded by OB, BA, and the
parabolic arc OA has a serious drawback: It depends on knowing the
formula contained in equation (19), and that formula would not help if
the curve OA of Figure 5-11 were something other than a parabola. The
Newtonian method, which will be presented in Section 5.7, has the
tremendous advantage of generality.

PROBLEMS

6. (a) Compute the values of I3 + 23 + 33 + • • • 4- n3 for n = 1, 2, 3, 4, and
5. Your results should make the following formula seem reasonable:

r+23
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(b) Use the formula of part (a) and the method of this section to find
the area (Figure 5-11) bounded by OB, BA, and the arc OA whose
equation is y = x3. (As before, OB =1.)

7. Use the method of this section to find the area (Figure 5-11) bounded by
OB = c, BA, and the arc OA whose equation is y = k -x2, where c and k
are constants. Check that this area equals one-third the area of the
circumscribing rectangle.

8. In deriving the area bounded by OB, BA, and the parabolic arc OA
whose equation is y = x2, we constructed rectangles by drawing vertical
segments up to the curve at the right end of each subinterval.
(a) Show that if the left end were used instead, then equation (18) would

become S = (Ax)3[02 + I2 + 22 + • • • + ( « - I)2] . Complete the



argument to obtain the same value for limAjc_*0S as for limAjc^05r,
namely, \.

(b) Show that if the midpoint of each subinterval were used instead
(Figure 5-12), then equation (18) would become

\2 / I A ~ \ 2 / * A V \ 2 ( (2n — l ) A x x 2 ^

2
\ \ ( ^ l \ \ ,/(2^-l)Ax\2|
) + \ 2 } + ' - + [ 2 ) \ >

or 5 = - ^ - [ l 2
+ 3 2

+ 5 2
+ . . . + ( 2 « - l

4 L

Here is a formula for the sum within square brackets:

C 9. (a)

(b)

C 10. (a)

(b)

C 11. (a)
C 12. (a)

C 13. (a)

C 14. (a)

C 15. (a)

(b)

Check that this formula is valid for n = 1 , 2, 3, and 4, and use the
formula to obtain S = j- - ^ ( Ax)2. Hence, limAjc _* 0 S = ?
Refer to Figure 5-9(b). Find an approximate value for the area
"under" the parabolic arc by calculating directly the sum of the
areas of the rectangles if there are 10 of them. Compare your answer
with the value given by equation (22) in this case.
With a programmable calculator or a computer, do the same as (a)
for 100 rectangles. For 1000 rectangles.
With reference to Figure 5-13, calculate directly the sum of the areas
of the rectangles, if Ax = 0.1, and the equation of the curve is y = x4.
With a programmable calculator or a computer, do the same as (a) if
Ax = 0.01. If Ax = 0.001.
and (b) Same as Problem 10, if the equation of the curve is y = 3x4.
and (b) Same as Problem 10, if the equation of the curve is
x4 + l.
and (b) Same as Problem 10, if the equation of the curve is y = ]fx .

and (b) Same as Problem 10, if the equation of the curve is y = \/x .
With reference to Figure 5-14, calculate directly the sum of the areas
of the rectangles, if a = 1 , b = 3, Ax = 0.1, and the equation of the
curve is>>=10 — x2.
With a programmable calculator or a computer, do the same as (a) if
Ax = 0.01. If Ax = 0.001.

5.6 Further limits of sums

To find the area bounded by a closed curve, like that in Figure 5-15, we
might set up x and y axes and add the areas of a number of component
parts of the type shaded. Therefore, we shall consider in detail the area
"under" a curve - the area bounded by the x axis, two vertical line
segments, and the arc of some curve, whose equation we shall call >> = / ( x ) ,

5.6
Further limits of sums

1 =

2 —•"• JLM ±i\x 5AJC ( 2 / I — 1

2 2 2

Fig. 5-12

Fig. 5-14
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Fig. 5-17

as in Figure 5-16. We shall assume that the curve does not fall below the x
axis.

We proceed as we did in the case of the area under the parabola (i.e., by
first approximating the desired area as the sum of areas of rectangles). As
before, we divide the interval [a, b] on the x axis into n equal subintervals,
each of length Ax. Then we construct rectangles whose heights are vertical
segments drawn up to the curve, but with a greater generality than before:
Instead of drawing the vertical at the right end of each subinterval, we draw
the vertical anywhere in the subinterval. We designate by xx the abscissa of
the point in the first subinterval at which we draw the vertical, by x2 the
abscissa of the point in the second subinterval, and so forth. In Figure 5-17,
Xj has been chosen close to the midpoint of the first subinterval, x2 has been
chosen quite far to the left in the second subinterval, x3 has been chosen at
the right end of the third subinterval, and so forth. Because the equation of
the curve isy = /(x), the heights of the rectangles are/(x1),/(x2),... ,/(*„),
and the sum, S, of the areas of the rectangles is

/(xJ-Ax,

or

(24)

As the subdivision gets finer (n increases, and Ax decreases), it appears that
S gets closer to what we think of as the area under the curve and that,
moreover, we approach the same value as Ax -» 0, no matter where within
the respective subintervals we choose x1,x2,...,xw. We assume then, that
limAjc _ 0S exists for any choice of the x 's, and we define the area under the
curve, A, as the value of this limit:

= Urn S= lim
Ax->0 AJC->0

-Ax. (25)
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As Ax->0, we know that n increases without bound, so that [f(xx)+
/(*2)+ * *' +/(**)] a l s o increases without bound. Thus, we are interested
in the product of two factors, one of which is "blowing up," and the other is
approaching zero. Another way of thinking of the situation is to observe
that we are adding the areas of more and more rectangles, each of which is
getting thinner and thinner. We still have no general method of finding the
limit.

Before we find the limit, we examine another problem that serves to
illustrate that a limit of the sort appearing in equation (25) is encountered
not just in defining areas under curves: As in Figure 5-18, consider the line
segment^ = x from the origin to the point (1,1), and revolve it about the x
axis, generating a cone (Figure 5-19). We proceed to find the volume within
this cone by dividing its altitude (along the x axis) into n equal parts, each
of length Ax. Thus, the abscissas of the division points are Ax, 2Ax,
3A.x,...,«Ax (=1). At each division point we take a plane section per-



pendicular to the x axis, cutting a circle from the cone. On each circle we
erect a cylinder of height Ax, as in Figure 5-20. The sum of the volumes
within these cylinders is an approximation to the volume within the cone,
and we assume that the volume within a cylinder is known.

For xl9 x 2 , . . . ,x n , w e a r e choosing the right ends of the various subinter-
vals. Because it was the line y = x we revolved to generate the cone, the
various radii of the bases of the cylinders are also xl9 x2, . . . ,xw. Hence, the
areas of the bases of the cylinders are mx\,fnx\,...,mx\, and the volumes
within these cylinders are ^x^-Ax, 77-x2-Ax,...,7rx;;-Ax. Therefore, y , the
sum of the volumes within these cylinders, is given by

Sf = TTX^AX + mx\ Ax + • • •

5.6
Further limits of sums

'U, 1)

<nx\ Fig. 5-18

Note that this is a sum of the sort expressed by equation (24).

Fig. 5-19 Fig. 5-20

Problem 1
What i s / ( x ) in this case?

As Ax -> 0, we obtain progressively shorter cylinders, but more and more
of them, and we appear to be getting closer to what we think of as the
volume within the cone. Indeed, we define V, the volume within the cone, as
the limit of the sum of the volumes within the cylinders, as Ax -* 0:

F = lim 6?= lim f TTX2 + <nx\ 4- • • • + irx2] -Ax.
211



5 Note that this is very similar to equation (25). Thus, we have an example of
Antidifferentiation; a limit of a sum of the sort appearing in equation (25), not only in the
integration context of an area under a curve but also in the context of a volume. We

shall find many other examples of the same sort of limit of a sum - so many
that it has been given a name, the integral. Here is the formal statement:

Let f(x) be defined over the interval [a, to], which is divided into
n subintervals, each of length Ax. Choose x1,x2,...,xn arbitra-
rily within the first, second,... ,nth subintervals. Then,
limAx_o[f(x1)+ f(x2)+ • • • + f(xn)]Ax, provided this limit exists,
is symbolized as j£f(x) cfx, which is read, "the integral, from a to
b, of f(x)dx."

Note that this statement serves just as a definition of the integral, a word
with the connotation of "wholeness" - we make the whole by summing up
lots of constituent bits, or, rather, by taking the limit of their sum. It can be
shown that, at least when f(x) is a continuous function, the limit that
appears in the foregoing statement exists, so we know, then, that the integral
of a continuous function exists. Because, if / > 0, the integral can always be
interpreted as an area - the area under the curve>> = f(x) - and because our
intuition tells us that the area under a continuous curve exists, the conclu-
sion of the preceding sentence is not surprising. We shall deal later with
integrals of functions that are negative.

The integral sign, /, is an elongated capital "S," reminiscent of the sum
involved in the definition of integral. The quantities a and b are called the
lower and upper limits of integration - not to be confused with the idea of
the limit of a function. The appearance of dx in the notation of the integral
is a vestige of the historical development of the subject; because it has some
usefulness, as we shall see, we preserve the notation. We haven't yet learned
how to evaluate, in general, the limit that defines the integral.

PROBLEMS

2. Return to the example of the volume within the cone:

F= lim &>= lim \<nx} + TTX\ + • • • + TTX2] Ax.

(a) Find expressions for xl9 x29..-9xn in terms of Ax.
(b) Use the result of part (a) to show that V=\imAx^0Sf

= limAjc_07T'S, where S is the sum of the areas of rectangles -
equation (18), 5.5.

(c) Knowing, as in Section 5.5, that limAjc_05' = j , find V, and check it
by use of the formula for the volume of a cone: "one-third the area of
the base times the altitude."

* 3. Use the method of this section to show that the volume, V, within a cone
2 1 2 °f b a s e radius r and altitude h is given by V= \iTr2h. [Hint: Revolve the



line segment y = (r/h)x from (0,0) to (/*, r) about the x axis to obtain
the cone, and divide the altitude into n equal parts, each of length Ax, so
that n Ax = A,....]

C 4. (a) Refer to Figure 5-11. Find an approximate value of the area "under"
the parabolic arc, assuming that OB = 2 and that the equation of the
curve is y = 3x2, by calculating directly the sum of the areas of the
rectangles if there are 10 of them,

(b) With a programmable calculator or a computer, make the calculation
of (a) if there are 100 rectangles. If there are 1000 rectangles.

C 5. Refer to Figure 5-20. Find an approximate value of the volume of the
cone by calculating the sum of the volumes of the cylinders if there are 10
of them. If there are 20 of them.

6. Consider the area bounded by y = 5 + 6* - x2, the x axis, x = 0, and
x = 6. Divide the interval into six equal parts (i.e., Ax = 1) and erect
ordinates to the curve at the division points. What is the sum of the areas
of rectangles whose heights are the heights of the curve at
(a) the right end points of the subintervals?
(b) the left end points of the subintervals?
(c) the midpoints of the subintervals?

C 7. (a)-(c) Same as Problem 6, if the interval [0,6] is divided into 60 equal
parts (i.e., Ax = 0.1).

5.7 The Fundamental Theorem

In the preceding section we made definitions leading to

A= lim [f(xl) + f(x2)+---+f(xn)]bx=[bf(x)dx, (26)
Ax->0 Ja

where A is the area under the curve y = / (x) between x = a and x = b, with
/ > 0 (Figure 5-21). We shall now approach the evaluation of A in a
different way, thus showing the reasonableness of a result known as the
Fundamental Theorem of the calculus. We restrict our attention to non-
negative functions. Suppose, then, in evaluating the area A mentioned
above, we think first of the area under the curve y = / (x) from x = a to
some arbitrary x: Let us call this A(x), recognizing that to each value of x
corresponds just one value of the area under the curve from a to that x -
hence, A(x) is a function of x, as the notation suggests (Figure 5-22).
Because A(b) is the area under the curve from x = a to x = b, we know that
A(b) = A9 as defined earlier.

Problem 1
What is the value of A(a)1

5.7
The Fundamental Theorem

y =

Fig. 5-21

= fix)

Fig. 5-22
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y = fW

Fig. 5-24

Fig. 5-25
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Now let us increase x by an amount h. The expression A(x + h)- A(x) is
seen as the horizontally shaded area in Figure 5-23. We need bounds on the
value of ̂ 4(JC + h)- A{x).

In the closed interval between JC and JC + h, the continuous function/(JC)
has a maximum value, attained, say, at xM. Then the maximum value of
f(x) in the interval isf(xM). Clearly, the horizontally shaded area of Figure
5-24 is not greater than the area of the rectangle of height f(xM) and
width h:

A(x + h)-A(x)<f(xM)-h. (27)

Likewise, in the same closed interval the continuous function f(x) has a
minimum value, attained, say, at xm. (In Figure 5-25, jcm happens to
coincide with x + A, the right end of the interval [JC, JC + h]9 but that is not
significant.) Then the minimum value of /(JC) in the interval is/(jcm).

Problem 2
Write a relation involving/(jcm) analogous to the inequality (27).

Putting (27) together with the result of Problem 2, we have

f(xm)'h<A(x + h)-A(x)<f(xM)'h.

We divide through by the positive quantity h9 obtaining

f(xj < Ayx + hr-Ayx) < f^My ( 2 8 )

As h gets smaller, so long as h # 0, the continued inequality (28) remains
valid. Now look at Figure 5-24 and imagine h approaching zero. It should
be clear, because / is a continuous function, that limA_+0/(jcM) = /(jc).
Likewise, as we see from Figure 5-25, Mmh^of{xm) = /(JC). Thus, as h -> 0,
the two end terms of the continued inequality (28) approach the same
quantity, / (x) . But note that the middle term of the continued inequality is
always pinned between the end terms. Hence, we conclude that

c + h)-A(x)
lim also equals / (JC) .

But remember the definition of derivative: limh^0[A(x + h)-A(x)]/h =
A'{x). We have arrived at an important conclusion:

A'{x) = f{x). (29)

We phrase this equation as follows: "If A(x) is the area under the graph of
y = /(•*) fr°m x = a t o a n arbitrary value of x9 the rate of change of A(x)
with respect to x equals/(*)•"

As we learned in Section 5.1, we can find A(x) from equation (29) by
antidifferentiation. Suppose that F(x) is an antiderivative of/(JC). Then,

A(x) = F(x) + c. (30)

From Problem 1 we know that A(a) = 0.



Problem 3 5.7
Use this fact and equation (30) to show that A(x) = F(x)— F(a). The Fundamental Theorem

Putting x = b, we have

A(b) = A = F(b)-F(a). (31)

Here we have an expression for A. Equation (26) provided an alternative
expression for A. Equating the two gives us the following:

The Fundamental Theorem of the calculus
If f(x) is a continuous function over the interval [a, b], then

/ f(x) dx = F(b)— F(a), where F(x) is an antiderivative of f(x).

This beautiful result, linking the limit of a sum to antidifferentiation, is a
tool of extraordinary power. No longer are we required to develop special
formulas, like that for I2 + 22 + 32 + • • • + n2, in order to find an integral -
rather, the whole kit of formulas resulting from our experience with differ-
entiation is at our command to use in integration problems.

We illustrate the power of the Fundamental Theorem by applying it to
find the area under the parabola y = x2 from x = 0 to x = 1. We have

A = f\2dx.

We know that if f(x) = x2, then an antiderivative is F(x) = x3/3.

Problem 4
Evaluate F(l) and F(0) to obtain A = \.

Problem 5
Another antiderivative is G(x) = x3/3 + 7. Evaluate G(l) and G(0) to verify

We see that, in this case, it does not matter whether we use the antideriva-
tive F(x) or the antiderivative G(x). In general, if H(x) = F(x)+c, then
H(b) = F(b)+ c, and H(a) = F(a)+ c, so

Hence, in applying the Fundamental Theorem, we may as well use the
simplest antiderivative we can find.

The discussion in this section has not been called a proof of the Funda-
mental Theorem - rather, it has been called an "argument" showing the
"reasonableness" of the statement of that theorem. For a proof\ it would be
necessary to demonstrate that the concept of area defined as a limit of a
sum is actually identical with the "growing" area that led to A\x) = f(x). 2 1 5



5 Likewise, it would be necessary to prove the "Pinching Theorem": If
Antidifferentiation; r(z)<s(z)<t(z)9 and if limz^ar(z) = /, ]imz _at(z) = /, then limz^a^(z)
integration also equals /. This was implicitly used in the last step leading to A'(x) = f(x).

There are still other gaps that would have to be filled to have a genuine
proof, but the heuristic argument presented should be sufficient for our
needs.

PROBLEMS

6. Find the area under y = x3 from x = 0 to x = 1, and compare your result
with what you found in Problem 6(b), 5.5. Compare the amount of
work, too!

7. Find the area under y = 4 — 2x + x2 between the given limits:
(a) x = 0 and x = 3 (b) x = 1 and x = 4 (c) x = - 2 and x = 1

8. Find the area undery = x3 — 6JC2 + 9JC between the given limits:
(a) x = 0 and x = 2 (b) x = 2 and x = 4 (c) JC = 1 and x = 3

9. (a)-(c) Same as Problem 8, for y = x3 - 6x2 + 9x + 5.
10. Find the area under y = 2/x2 between the given limits:

(a) x =1 and x = 5 (b) x =1 and JC =10
(c) x = 0.1 and JC =1 (d) JC = - 3 and x = - 1
(e) x= -2 and ;c = -0.1

11. Find the area under y = v9 + JC2 -2JC between JC = 0 and x = 4.
12. Find the area under ^ = 2x/^9-\- x2 between x = 0 and JC = 4.

o 13. (a) Use the Fundamental Theorem to show that if a< c<b, then
faf(x) dx + fcf(x) dx = faf(x) dx. Give a geometric interpretation
of this result.

(b) Because, in the definition of the integral, [a, b] is an interval, which
implies that a < b, there is no significance to /^/(JC)^JC or to
fgf(x)dx. Show, however, that a blind application of the Funda-
mental Theorem yields

Cf{x) dx = 0 and f/(JC) dx = - /*/(*) <**•

We shall choose these equations as defining the hitherto undefined
symbols JZf(x)dx and j£f(x)dx.

(c) Use part (b) to show that in part (a) the condition a<c<b can be
ignored.

14. Sketch a graph of y = 5 + 6x — JC2, 0 < x < 6, and approximate the area
under this curve by adding up the areas of six rectangles, each of base 1,
with heights being
(a) the maximum value of y in each subinterval;
(b) the minimum value of y in each subinterval;
(c) the value of y at the midpoint of each subinterval.

C 15. (a)-(c) Same as Problem 14, with 12 rectangles, each of base \.



C 16. (a)-(c) With a programmable calculator or a computer, same as Prob-
lem 14, with 60 rectangles, each of base 0.1.

C 17. (a)-(c) With a programmable calculator or computer, same as Problem
14, with 600 rectangles, each of base 0.01.

18. Find the exact area under the curve of Problem 14.
19. Draw figures like Figure 5-24 and Figure 5-25 for the case in which

h < 0 to deduce that

f(xm)-(-h)<A(x)-A(x + h)<f(xM)(-h)

and hence that the inequalities (28) hold for all small h =£ 0.

5.8
The Fundamental Theorem

applied

5.8 Applications of the Fundamental Theorem

Appreciation of the Fundamental Theorem follows from an understanding
of how it really applies to a host of diverse cases, and this understanding
comes only with lots of practice. We shall start that practice now.

Example 1
Find the area under the curve y — 5 + 6x — 3x2 from x = 0 to x = 2.

We have already solved problems more complicated than this one, but we
want to review the ideas and to introduce some convenient notation. The
desired area can be approximated by the sum of the areas of rectangles, one
of which is shown in Figure 5-26. The area of the shaded rectangle equals
y- Ax = (5 + 6x — 3.x2)Ax. The desired area is actually the limit of the sum of
such rectangles, as Ax -^ 0; that is,

An antiderivative of 5 + 6x — 3x2 is 5x + 3x2 — x3. A useful notation is
shown now:

A = (2(5 + 6x - 3x2) dx = (5x + 3x2 - x3) | 2

•'o

= (5-2 + 3-2 2-2 3 ) - (5-0 + 3-02-03)=14squareunits.

The symbol " |Q" means that the function that precedes it is to be evaluated
at 2, and then at 0, and the latter value is to be subtracted from the former.
Thus, if i^x) is an antiderivative of/(x), we have

o

Fig. 5-26

Compare this example with Example 2, 5.3. 217
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Problem 1
Follow the method and symbolism of the foregoing Example 1 to find the
area under the curve y = 6x — 3x2 from x = 0 to x = 3.

You should have found that A = 0 square units. This doesn't seem to make
sense - let's investigate it. The graph of y = 6x -3x2 over the interval [0,3]
appears in Figure 5-27. Because in these discussions Ax is always positive,
and because y has negative values between x = 2 and x = 3, the expression
ykx will likewise be negative there, and the same is true of the sum of such
expressions and, finally, of the limit of their sum. In other words, /2

3(6x -
3x2)dx has a negative value.

Problem 2
Verify that /2

3(6x - 3x2) dx = - 4 . Also verify that /0
2(6x - 3x2) dx = 4.

We see that the integral from x = 2 to x = 3 just "cancels out" the integral
from x = 0 to x = 2. If we want the shaded area in Figure 5-28, we observe
that the portion above the x axis equals 4 square units, and the portion
below the x axis also equals 4 square units, so that the total area is 8 square
units.

Whenever we want the area between a curve y = f(x) and the x axis, we
should check whether f(x) assumes negative values in the interval under
discussion; if it does, we must proceed as we did above.

- 6

- 9 I -

Fig. 5-28

Example 2
Find the area bounded by the curves y = / (*) = 30 — \Ax +2x2 and y •

218



Problem 3
Verify that f(x) has a minimum of
maximum of x at JC = £.

at x = \ and that g(x) has a

A rough sketch of the curves appears in Figure 5-29. The desired area
can be approximated by the sum of the areas of rectangles, one of
which is shown in the sketch. The area of the shaded rectangle equals
[g(x)-/(x)]Ax = [18 + x -x 2 - (30-14x+2x 2 ) ]Ax . The desired area is
actually the limit of the sum of the areas of such rectangles, as Ax -> 0.

Problem 4
Verify that A = ( -12* + ^x2 - x3)\b

a. To complete the problem, we must
find where the curves intersect, so that we will know a and b.

Problem 5
Solve the equations of the curves simultaneously to find that the abscissas of
the points of intersection are 1 and 4.

Problem 6
Verify that A •• square units.

Example 2 could also be solved by finding the area under y = g(x) from
x = 1 to x = 4 and subtracting from it the area under y = f(x) between the
same limits.

Problem 7
Compute f*g(x)dx and f*f{x)dx, and subtract to check the value of A
found in Problem 6.

Example 3
Every horizontal section of a steeple is a rectangle with dimensions y ft and
z ft given in terms of the vertical distance (JC ft) of the section below the top,
as follows: y = \x + \,z = x1/2. What is the volume within the steeple from
the top down to x = 36? The steeple is roughly sketched in Figure 5-30(a). If
we consider the portion of the steeple between sections taken at distances x
and (x + Ax) below the top, we have something that looks like Figure
5-30(b). The volume of this portion is approximated by a rectangular slab,
as in Figure 5-30(c). The volume, AF, of the rectangular slab is given by

AF= yz-kx = (\x +1)-JC1 / 2-AX.

The volume of the entire steeple is approximated by the sum of the volumes
of such slabs, and the volume equals the limit of the sum of the volumes of
such slabs, as their thickness, Ax, approaches zero. In other words,

5.8
The Fundamental Theorem

applied

30

20

10

y = fix)

y = g(x)

Fig. 5-29

(a)

\y
(b)

Ax

(c)

Fig. 5-30
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10

I

-A

Fig. 5-31

Problem 8
Multiply out the factors of the integrand (the function to be integrated), and
perform the integration to obtain F = ^ = 1180.8 (ft3).

Example 4
A beam of length 10 in. has a uniform cross section of 2 in. by 3 in. (Figure
5-31). The beam has a density (p oz/in.3) that varies with the distance (x
in.) from the left end of the bar, as follows: p = 2+ \x. What is the weight
of the bar?

If we consider the portion of the bar contained between sections at
distances x and (x + Ax) from the left end, the volume, AF, of this slab is
given exactly by

AF=2-3-Ax = 6Ax(in.3),

and the weight, APT, of this slab is given approximately by

This is not exact because the density varies somewhat within the slab -
although the density at the left face of the slab is 2 + ^x, by the time we get
to the right face the density is 2+ y(x + Ax). But, as usual, we are going to
take thinner and thinner slabs, and we shall get the exact weight by taking
the limit of the sum of the approximate weights of the slabs, as Ax -> 0. In
other words, the weight (W oz) of the bar is given by

rio/
W = f {2+\x)6dx.

Problem 9
Verify that W- 220 (oz).
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Problem 10
What is the density of the bar at the left end? At the right end? Because the
formula for the density is p = 2 + yx, we know that the density increases at a
uniform rate from left to right. What, then, do you think to be the average
density of the bar? What is the volume of the bar? Using your value of
average density, what do you get for the weight of the bar?

Example 5
In a "nitrogen-washout" experiment with a patient, it is found that the
concentration of nitrogen (y%) in the gas that he expires from his lungs
varies with the total volume (x ml) of gas that he has expired since he
started to breathe a nitrogen-free atmosphere, as follows: y = 80 - lOOOx +
30,000*2. What volume, FN, of nitrogen does he expire when x goes from 0
to 0.01?

If the concentration of nitrogen were 60%, say, in an expired volume of
gas of 0.001 ml, the volume of nitrogen expired would be ife(60)(0.001) ml.



Similarly, if the volume of gas expired were to increase by a small Ax from
x to (x + Ax), the volume of nitrogen expired would be approximately
Tfe(80-1000x + 30,000x2)Ax.

The entire volume of nitrogen expired as x goes from 0 to 0.01 would be
the limit of the sum of such volumes, as Ax -> 0; that is,

5.8
The Fundamental Theorem

applied

Problem 11
Verify that FN = 0.0076 (ml).

In all these cases, the method is essentially the same: We first approxi-
mate a small part of the desired quantity (area, volume, weight, volume of
nitrogen), and then express the whole of the desired quantity as the limit of
a sum of the approximations of the parts; this is an integral, which we
evaluate by antidifferentiation. In subsequent chapters we shall encounter
further applications of the integral.

PROBLEMS

12. Find the area under the curve y = x3 — 8x2 + 15x + 6, above the x axis,
between x = 0 and x = 4.

13. Horizontal sections of a steeple are rectangles whose lengths (/ ft) and
widths (w ft) vary thus with the distance (x ft) below the top: l = j(x +
6); w = x1/2. Find the volume within the steeple if it is 25 ft high.

14. The density (p g/cm3) of a bar whose cross section is a rectangle 2
cmX3 cm is proportional to the distance (x cm) from one end of the
bar, and p = 6 at x = 2. Find the weight of the bar if it is 5 cm long.

15. Sketch the curves j> = x2 and>> = x3 on the same set of axes, and find the
area of the region bounded by these curves. (The curves meet in only
two points, and there is only one region that is bounded by the curves.)

* 16. Every horizontal section of a solid is a ring between two concentric
circles whose radii (R, r ft) vary thus with the distance (x ft) above the
lowest point: R=Jx, r = x2 (Figure 5-32). Find the volume between
x = 0 andx =1.

17. The region bounded by y = x2, the x axis, x = 0, and x = 2 is revolved
about the x axis. Find the volume of the solid so generated.

* 18. The horizontal base of a solid is a circle of radius 5 in. Every vertical
section perpendicular to one diameter of the base is an isosceles triangle
whose altitude equals § its base. Find the volume of the solid.

19. Horizontal sections of an observatory tower 36 ft tall are squares whose
sides (s ft) vary thus with the distance (x ft) of the section below the top
of the tower: s = 5 + \y[x . Find the volume within the tower.

Fig. 5-32
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Fig. 5-33

20. The density (p g/cm3) of a bar whose cross section is 1 cm X 2 cm varies
with the distance (x cm) from one end of the bar as follows: p varies as
x2, and p = 12 at x = 2. Find the weight of the bar if it is 5 cm long.

21. Make a rough sketch of the curve y = (x + l)(x— 2). Find the area
between this curve and the x axis over the interval x = — 2 to x = 2.

22. An ellipse is a squashed circle that looks like Figure 5-33. The area
within such an ellipse, with "semiaxes" u and v, is m-u-v. Find the
volume within an elliptical cone of height 6 in. - a surface whose every
horizontal section x in. below the vertex is an ellipse with semiaxes given
by u = 2x, v = jx + \x2.

23. The area under the curve y = 3/x between x=l and x = 2 is rotated
through 360° about the x axis. Find the volume so generated.

24. Evaluate //[(I - x2)2/x2} dx.

5.9 Use of the Chain Rule in integration (antidifferentiation)

In Example 4, 5.3, we began with

(32)

and antidifferentiated to obtain y in the following way: We set u = g(x) =
x2 — 9, so that du/dx = g'(x) = 2x. Then equation (32) can be written

The general expression of the Chain Rule can be put

dy _ dy du
dx du dx'

Comparison of equations (33) and (34), term by term, gives

(33)

(34)

du
= M1 / 2 .

Straightforward antidifferentiation of this last equation leads to

and substitution of (x2 —9) for u provides the answer:
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You have already encountered many problems of this type, notably all ten
parts of Problem 9, 5.3.

Example 1
Let us now do essentially the problem of equation (32) in the context of
integration by evaluating /3V*2 —9 -2xdx.



As before, we set u = x2 — 9, which implies that du/dx = 2x, and du =
Ixdx. In writing the integral (which we shall abbreviate as J) in terms of w,
we must remember that the given limits of integration refer to x. One way to
make this clear goes thus:

- / ;
•x = 5

A slightly different approach is to observe that at x = 3, u — 0; and at x = 5,
u = 16. Hence,

= \ u3^ = f (16)3/2-0 = ^ .

5,9
Chain Rule in integration

Example 2
We now evaluate an integral that is not quite in the "perfect" form of
Example 1, by considering J3]/x2 -9xdx. As before, we set u = x2 - 9 , so
that du = 2xdx. We are missing the needed factor 2 in the given integral.
But we can get what we need by writing

/ = Nx2~9xdx= (5\lx2-9\-2xdx

Multiplying by \ and by 2 does not change the value of the integral, of
course; and bringing the factor out in front of the integral sign is valid
because

I k-f(x) dx = k I f(x) dx, for any constant k.

Thus,

= 1 f5
]fx

T^9 2x dx = \ f u1'2 du

Example 3
For the integral j3yx2 —9 3xdx, we begin by bringing the unneeded factor
3 out in front:

[5Jx2-93xdx = 3 (5ylx2-9xdx,(5)/x2-9 3xdx = 3(5

J3 J3

and then we proceed as in Example 2. 223



5 PROBLEMS
Antidifferentiation;
Integration Evaluate each of the following:

/-4\/x2 +9xdx r4 -xdx ^ r4 6xdx

4. / .

-dx

\/f2+20*+4 Ji 2(f2+20f+4)

6. f (/2+20f+4)~3/2| T + 2 | A 7. f2(x

4xdx r-2 xdx n

(1-JC2)2 ' J-3 (i-x
2)l/3 ' '0

5.10 The indefinite integral

The symbol j£f(x)dx, as we have defined it, is sometimes called the
"definite integral," to distinguish it from jf(x)dx, called the "indefinite
integral." The indefinite integral is synonymous with the antiderivative:

To say that ff(x)dx= F(x) is equivalent to saying that an anti-
derivative of f(x) is F(x), and both statements are equivalent, of
course, to f(x) = P(x).

We have gotten along perfectly well up to this point without the notation of
the indefinite integral. It is introduced now only because you may encounter
it in other mathematics readings.

In terms of the new notation, we have

If we take the derivatives of both sides, we obtain

d
— f
dxJ

x3 dx = x3.

This should not seem at all surprising. It is a specific case of the general
result:

j-Jf{x)dx=f{x).

That is: "The derivative of the integral off(x) equals/(x)." Or, even more
obviously: "The derivative of any antiderivative of f(x) equals/(x)."

Problem 1
Is it true that jf'{x) dx = f(x)l That is, is the integral of the derivative of

2 2 4 /(*) equal to/(;c)? Try several simple functions.



5.11 Summary 5.11
Summary

Whenever we know a rate of change and want to find the function whose
rate we know, we perform an antidifferentiation. Our set of results on
differentiation leads to an analogous set on antidifferentiation, except that
we have as yet no method of finding the antiderivative of one function that
we might have thought we could deal with: If dy/dx = 1/JC, we do not yet
know a formula for y. Two observations bring a broad class of problems
under the heading of antidifferentiation problems:

1. Any integral, like Jaf(x) dx, whatever the context in which it arises - a
volume, a weight, or whatever - can be interpreted in terms of areas, that is,
in terms of the areas bounded by the curve y = f(x) and the x axis, from
x = a to x = b.

2. If A(x) is the area under the curve y = f(x) from x = a to any x, then
dA/dx = /(JC), so A(x) is an antiderivative of f(x).

PROBLEMS

1. Find y if dy/dx is given as follows:

( a ) j c 2 - - ^ (b)v/^ + ^Lr (c) x3'2 - xl/2 + x~2/3 (d)(x + l)3

XL ]/X

[Do part (d) two ways, and reconcile your answers.]
2. (a) If dy/dx = (2-3JC) 5 , is y = (2-3x) 6 /6+ C? (Differentiate the sug-

gested y to see if you get the given dy/dx.) What is a correct
expression for yl

(b) If dy/dx = {ax + b)k, with a, b, and k constants, and k =£ — 1, find y.
(c) If dy/dx = \ / JC 2 +3 x, find j .

3. If the slope of a curve is given by dy/dx = 6x2 + 1/x2 - 2, and if j> = 3
when x = 1, find an equation for y in terms of x.

4. Shortly after violent exercise, the rate of consumption of oxygen (R
in.3/min) varies with the time (t min) since termination of exercise as
follows: R=1000/}ft. Find the number of cubic inches of oxygen
consumed between t = 1 and t = 9.

5. The rate of growth of bacteria in a culture (R bacteria per hour) varies
with the time (t hr) as follows: R=lO5-t3/2. Find the number of
bacteria added to the culture between / = 1 and t = 4.

6. An elevator, rising with a speed of 32 ft/sec, is at a height of 128 ft
above ground level when the cable breaks, thus transforming the eleva-
tor into a projectile subject to the acceleration due to gravity (because of
the lack of any safety equipment).
(a) What is the maximum height achieved by the elevator?
(b) When does it pass the 128-ft level on the way down?
(c) When does it hit the ground?
(d) With what speed does it hit the ground? 225



5 7. Sketch the curvesy = 2x2 and y=12—x2on the same set of axes, and
Antidifferentiation; find the area of the region bounded by the curves,
integration 8. A ball is thrown straight upward from the ground with a speed of 40

ft/sec at the same instant that another ball is dropped (from rest) from
a height of 100 ft. Show that they strike the ground simultaneously.

9. A certain function, given by y = f(x\ has the property that d3y/dx3 = 6
for all values of x. The graph of the function passes through the origin
with slope —1, and it has a point of inflection there. Find the formula
for y, and make a rough sketch of the function.

10. A man driving an automobile in a straight line at a speed of 80 ft/sec
applies the brakes at a certain instant, which we take to be t = 0. If the
brakes furnish a constant acceleration of — 20 ft/sec2, how far will he
go before he stops?

* 11. Let C be a curve with equation y = 9 — 9x + 6x2 — x3.
(a) Find relative maximum, relative minimum, and inflection points

on C.
(b) Sketch C and the line L, with equation y = 9 — x.
(c) Find the area bounded by C and L.
(d) Verify that C and the line Af, with equation^ =19-6x, intersect at

points with abscissas - 1 , 2, and 5.
(e) Find the area bounded by C and M.
(f) Use your results in (c) and (e) to conjecture a general result.

12. A curve satisfies the equation d2y/dx2 = — 6x. It passes through the
origin in a direction that makes an angle of 45° with the positive
direction of the x axis. Find the equation of the curve, and sketch it.

* 13. Assuming that the area under the curve y = x3 between x = 0 and x = r
is \rA, deduce that the area under the curve y = xl/3 between the same
values of x is | r 4 / 3 . (Hint: Consider the area between the second curve
and the y axis.)

14. Thomas Whiteside, in an article entitled "Tomatoes" (The New Yorker,
January 24, 1977), remarks on the deleterious effects of breeding the
fruit for mass shipment, gassed ripening, ability to stand the abuse of
self-service markets, and so forth. A solid, tough tomato of the new
breed can sustain a 6-ft fall onto a hard tiled floor.

Out of curiosity, I telephoned Dr. William Haddon, Jr., an auto
safety expert, who is president of the Insurance Institute for
Highway Safety, and asked him if one of his technical people
could compute the approximate impact speed of the Florida MH-1
[tomato] in the six-foot fall I had witnessed in ratio to the
minimum federal requirements for impact resistance in the bumpers
of cars sold in this country. Dr. Haddon obliged, and on the basis
of the figures he provided I concluded that Dr. Bryan's MH-1 was

2 2 6 able t o s u r v r v e its fall to the floor at an impact speed of 13.4 miles



per hour, more than two and a half times the speed which federal
auto-bumper safety standards provide for the minimum safety of
current-model cars. This undoubtedly represents a great step for-
ward in tomato safety. Yet

Show that the stated result (13.4 mph) is correct. We don't have to
depend on " technical people" for solution of problems of this sort.

* 15. Find the area bounded by the curve y = x3 -Sx2 + 15.X, the x axis,
x = 0, and x = 4. Find the abscissa(s) of the point(s) on this curve where
the tangent line has the same slope as the line joining the points on
the curve where x = 0 and x = 8. Sketch the curve and the tangent
line(s).

16. The flexion of a curve is given by d2y/dx2 = x2/(x2 + 9)1/2, and the
slope is - 2 at x = 0.
(a) Find those x 's corresponding to maximum and minimum values of y

on the curve, identifying which is maximum and which is minimum.
(b) Find those x 's corresponding to points of inflection on the curve.

* 17. The horizontal base of a solid is a circle of radius 5 in. Every vertical
section perpendicular to one diameter of the base is an equilateral
triangle. Find the volume of the solid.

18. Sketch the parabola y = 72 — 2x2 from x = — 6 to x = 6, and verify that
the area bounded by this portion of the curve and the x axis equals
two-thirds the area of the circumscribing rectangle.

19. If the slope of a curve is given by dy/dx = l/x3/2 - 1 + 6*2, and if
y = 120 when x = 4, find an equation for y in terms of x.

20. The rate of conversion of a certain substance subject to chemical change
(R g/hr) varies with the time (t hr) as follows: R =lO-tl/2. Find the
number of grams of the substance converted in the first 9 hr.

21. An ellipse is an oval that looks like that in Figure 5-34. The area within
this ellipse is irab square units. Find the volume of an "elliptical cone"
of height 25 in. - a solid every horizontal section of which x in. below
the top is an ellipse in which a = 2x and b = \xl/1.

22. Consider the curve with equation y = x3 — 6x2 + 9x.
(a) Find the coordinates of maximum and minimum points and points

of inflection on the curve, and sketch its graph.
(b) Find the area under the curve from x = 0 to x = 3.

23. The area (A square miles) covered by an oil slick increases with the time
(t days) after an accident in such a way that the rate of increase (R
square miles/day) is given by R = 4+ \t —0.03t2. Find A when t =10.

24. A wound heals at such a rate that the area {A mm2) of the wound
decreases at 2\/7 mm2/day, where / (days) is the time since the wound
was inflicted. At the start (when t = 0), A = 36.
(a) Find a formula for A at any time.
(b) When has the wound healed entirely (̂ 4 = 0)?

5.11
Summary

Fig. 5-34
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Fig. 5-35

Fig. 5-36

25. A water bag is hurled straight down with an initial speed of 32 ft/sec
from a fifth-floor window, 54 ft above ground level.
(a) Find a formula for the height of the bag at time t sec.
(b) When does it hit the head of a 6-ft-tall professor standing below?
(c) With what speed does it hit the victim? (Give your answer in miles

per hour; 1 mile = 5280 ft.)
26. Consider the curve with equation y = x3 - 9x2 +15* + 25.

(a) Find the coordinates of maximum and minimum points and points
of inflection on the curve, and sketch the curve.

(b) Find the area bounded by the curve, the x axis, x=l, and x = 3.
27. The rate of flow (R cc/sec) of blood through a vein varies thus with

elapsed time (/ sec): R = 10 - v7. Find the total quantity (Q cc) of blood
that flows through the vein between / = 0 and / = 36.

* 28. Figure 5-35 shows a parabola with a vertical axis, symmetrical about the
y axis. Demonstrate that the area marked B is twice the area marked A.

29. If dy/dx = xyx2 —16 , and y = 4 at x = — 4, find a formula for y in
terms of x.

30. Find the volume of the solid generated by revolving about the x axis the
area bounded by
(a) y = ]fx, the x axis, x = 2, and x = 6;
(b) y2 = 4<z;c, and * = Z>, where a and fe are constants.

31. Find the area between the curve y = 2 — x2 and the curve y = x2 — 6.
32. The region under the parabola y — 9— x2 above the x axis is revolved

about the x axis. Find the volume of the solid so generated.
33. Sketch the parabolay=l2 — 6x + x2 and the liney = 2x on the same set

of axes. Find the coordinates of their points of intersection. Find the
area between the curve and the line.

* 34. The horizontal base of a solid is the ellipse shown in Figure 5-36. The
equation of this ellipse is x2/36+ y2/25=l. Every vertical section of
the solid perpendicular to AB is a semicircle. One such section is shown
in the sketch. Find the volume of the solid.

* 35. The arc in Figure 5-37 is part of the parabola j> = kx2.

(i)
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(a) Find the shaded area. 5-11
(b) In Figure 5-37(ii) the line RS is tangent to the parabola, and the Summary

figure PQRS is a rectangle. Find the area of the rectangle.
(c) Verify that your answer to (a) equals two-thirds of your answer to

(b). This is the general result obtained by Archimedes.
* 36. Let Cx be the curve with equation y = x3 -9x2 +25* -10 , and C2 the

curve with equation y = 2 + 6x — x2.
(a) Find the abscissas of the maximum and minimum points on Cv

(b) Find the coordinates of the point of inflection on Cl9 and the slope
of C\ at that point.

(c) Sketch Cv

(d) Sketch C2 on the same axes used in (c).
(e) Find the area bounded by Cx and C2.

* 37. Like Problem 36, if Q has equation y = x3 - 5x2 + 2x + 8, and C2 has
equation y = 3x2 - 13JC + 8.

SAMPLE TEST

1. Find the area under the curve y = x3— 6 JC 2 +8JC+5 , above the x axis,
between x = 0 and x = 4.

2. Horizontal sections of a modernistic steeple are isosceles triangles whose
bases (b ft) and altitudes (h ft) vary thus with the distance (x ft) of the
section below the top of the steeple: b = ^JC2; h = 14- x. Find the volume
within the steeple from the top down to x = 30.

3. A projectile is shot straight up from a point 144 ft above the ground with
an initial upward speed of 128 ft/sec.
(a) Find a formula for the height of the projectile above the ground at

time t (sec).
(b) When does the projectile hit the ground?
(c) When does the projectile reach its highest point? What is its maxi-

mum height above the ground?
(d) When is the projectile at the 336-ft level rising? Falling?
(e) When, and with what initial speed, could the projectile have been

fired from ground level so that its behavior for t > 0 would have been
just as in the problem as stated?

4. The slope of a curve is given by - x/v25 — x2 , and y = 8 at x = 4. Find
an equation of the curve.

5. The density (p oz/in.3) of a bar whose cross section is a square 1 in. on a
side varies with the distance x in. from one end of the bar as follows: p is
proportional to x2, and p = 12 at JC = 2. Find the weight of the bar if it is
10 in. long.

6. Find the area bounded by the curvey = x3 — 6x2 + 8JC, the x axis, and the
lines x = 0 and x = 4. At what point or points is the tangent to this curve 229
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Fig. 5-38

parallel to the chord joining the points on the curve where x = 0 and

Here is another sample test on Chapter 5:
V. A point moved in such a way that d3y/dt3 = 72, y being the distance

traveled. At t = 0, the velocity was 200 and the acceleration — 6. Find y
at any time.

2'. A stone was dropped from a helicopter 2400 ft high when an auto
running 80 ft/sec passed directly beneath. How far apart were the stone
and the auto 10 sec later, and how fast was the distance between them
changing?

3'. Sketch the curves y = x3 and y = x4
9 and find the area bounded by them

in the first quadrant.
4'. The acceleration of a particle is given by t/ylO— t2, and the velocity, v,

is 14 at t =1. Find a formula for v at any time.
5'. Sketch the curves = x2 from x = 0 to x = 2. Find the volume of the solid

within the surface obtained by revolving this portion of the curve about
the x axis.

6'. The ellipse in Figure 5-38 has equation x2 +2y2 = 36. What are the
coordinates of the points A and Bl Find the volume of a solid whose
base is the region within this ellipse in a horizontal plane and whose
every vertical section of the solid perpendicular to the segment AB is a
square.
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Exponential
functions

6.1 Introduction to exponential functions

According to the New York Times (June 1, 1975), United States consump-
tion of water (Wbillions of gallons per day) has increased dramatically with
time, as shown in Table 6-1 - by over 100-fold in 160 years!

Problem 1
Use these data to plot a reasonably careful graph of the function de-
termined by Table 6-1, extend the function by sketching a smooth curve
joining the points you have plotted, and use graphical interpolation to
estimate the value of W in 1930. Also, extend the function further by using
graphical extrapolation to predict the value of W in the year 2000.

Using the data in Table 6-1, we construct Table 6-2, representing by t the
number of 20-year periods after 1800 and computing to the nearest
hundredth the ratio of each value of W to the preceding one (after the first,
of course). The striking feature is that the ratios are all nearly the same, so
we might approximate W by a function, W, for which the ratios are
constant, say 1.8. Then we would have the following:

a w = l , JF= 2(1.8) = 3.6,

a t / = 2, W

and, in general,

= 2(1.8)'.

Problem 2
Compute the values and graph the function W = 2(1.8)' for / =1,2,..., 10.
(A calculator will be helpful.) Does this formula for W give the value of W
for the first entry in the table (i.e., for t = 0)?

Table 6-1

Date

Table 6-2

W

W

1800
1820
1840
1860
1880
1900
1920
1940
1960

2.0
3.5
6.2
11.2

20.2
36.4

65.5

118.6
214.7

Ratio

0
1

2
3
4
5
6
7
8

2.0
3.5
6.2
11.2
20.2
36.4

65.5
118.6
214.7

1.75
1.78
1.80
1.80
1.80
1.80
1.81
1.81
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Fig. 6-1

By the formula, in the year 2000 (t =10), W will equal about 713, which
should check reasonably closely with your answer to the last part of
Problem 1. (This is well over three times as large as the consumption in
1960, a rate that was already straining our resources, so even greater reuse
of water is called for in the future - especially when we realize that the
factor 1.8 may be low.) We can also use the formula to interpolate for Win
1930 (/ = 6.5): W= 2(1.8)6 5. With a calculator, we find this to be approxi-
mately 91.3, which should be in good agreement with your graphical
interpolation in Problem 1.

Problem 3
Use linear interpolation with Table 6-1 (or Table 6-2) to approximate W in
1930. Compare the size of your result with the value found just above, and
explain the reasonableness of the difference.

We met a function very like this one in the case of the number of overseas
telephone calls at various times between 1950 and 1965 (Example 3, 1.6).
Both functions are of the the type

y = c-b\ (l)

where c and b are constants. Note that the variable x appears here as the
exponent, so this is not the same as the power law,

y = k-x\ (2)

where k and n are constants, which we encountered in Example 5, 1.6. The
distinction between equation (1) and equation (2) was emphasized in
Problem 7, 1.6, where you were asked to plot the graphs of y = x2 and
y = 2X on the same set of axes. You should have obtained a result similar to
that of Figure 6-1.

Problem 4
Plot on the same set of axes smooth graphs of

= xl/2
9 forO<x<9, and y= f o r - 3 < x < 6 .

232

Note that for x = 0,1,2,3,..., the successive values of 2X, and of (£)*, form
the terms of geometric progressions. For this reason, an exponential func-
tion is sometimes said to increase, or to decrease, "geometrically."

Problem 5
In equation (1), what limitations are there on the constants c and b if the
function is not to be uninterestingly simple?

There is another limitation on b, in addition to those referred to in
Problem 5: If b = — 8 and c = 1, say, we would have y = (— 8)x. Then for



x = j,y would be ( — 8)1/2 = \/— 8 , which is not a real number. On the other 6.1

hand, for x = i we would have y = ( - 8)1/3 = ̂ 8 " = - ^8 = - 2. No diffi- Introduction
culty here. In order not to have excessively wild domains, we restrict our
attention to positive values of b.

Definition
An exponential function is one given by an equation of the form y = c-bx

9

where c and b are constants, with c nonzero and b positive and not equal
to l .

An implication of the foregoing paragraphs is that the meaning of the
symbol bx is clear for positive values of b and for all x. However, the
meaning is not simple for some JC. If x is a positive integer, there's no
problem: bx means that b is taken as a factor x times. If x is a negative
integer, then bx is defined as \/b~x. For x = 0, bx = b° is defined as 1.

Suppose that x is the reciprocal of a positive integer: x =l/q, say. Then
bx = bl/q, which is defined as y/b, that is, as the number that when taken as
a factor q times equals b. Does such a number always exist? For example, is
there a numbery such that y3 = 15? The answer to this question is somewhat
lengthy: Because the cube of a negative number is negative, y cannot be
negative. Clearly, y is not an integer, for 2 is too small and 3 is too big, and
there is no integer between. Suppose, then, that there is a rational number
(i.e., a fraction), y = r/s, not an integer, such that j>3 = (r/s)3 = 15. Suppose
further that r/s is the fractional form "in lowest terms" (i.e., r and s have no
common factor other than 1). Because y is not an integer, s # 1 . Because r
and s have no common factor, r3 and .s3 also have no common factor.
Hence, r3/s3 is not an integer; in particular, r3/s3 =£15. Thus, there is no
integer or other rational numbery satisfying^3 =15.

Problem 6
By generalizing this argument, what can you say about the roots of integers?

We can, however, find by trial successive rational numbers whose cubes
get closer and closer to 15, as follows: Find consecutive integers between
which y lies:

23 = 8<15; 33 = 27>15; hence, 2<j><3.

Then find values that differ by 0.1; then by 0.01:

(2.4)3 =13.824 < 15; (2.5)3 =15.635 > 15; hence, 2.4 < y < 2.5;

(2.46)3 =14.886936 < 15; (2.47)3 =15.069223 > 15;

hence, 2.46 <y< 2.47.



6 In this way we could find a number whose cube is arbitrarily close to 15.
Exponential functions Continuing this process would give us a never-ending sequence of rational

numbers: 2, 2.4, 2.46,.... This sequence has a limit that we take to be the

number ^15" or 151/3. The same process could be used for any positive
integer q and any positive real number b to define (b)1/q.

Next, if x = p/q, where q is a positive integer and p is any integer, we
define bp/q as (bl/q)p. By a succession of steps, then, we have defined bx for
all rational values of x.

It is implied in what was said earlier that the real numbers may be defined
as the set of all decimals. The set of rational numbers corresponds to exactly
the subset made up of decimals that are terminating or periodic from some
point on.

* Problem 7
Prove the preceding statement.

Every irrational number, then, has a nonterminating, nonperiodic decimal
representation. For example, y/l =1.4142...; that is, y/2 is the limit of the
unending sequence of rational numbers:

1,1.4,1.41,1.414,1.4142,....

We then define b^ as the limit approached by

as the number of decimal places in our approximation to ]/l increases
indefinitely. Because we earlier defined the meaning of bx for rational x,
each of the numbers in this sequence has a meaning, and we shall assume
that a limit always exists. It turns out that the laws of exponents, such as
bx- by = bx+y

9 hold for all real numbers x and y.
Finally, then, in this way we have an interpretation of bx for any positive

b and for all real x. We assume such an interpretation when we draw a
smooth graph joining the points corresponding to W= 2(1.8)' for / = 0, 1, 2,
3, 4, 5, 6, 7, and 8.

PROBLEMS

8. By the method described earlier for /l5~, find the first three terms in the
sequence for (21)1/2 (i.e., find \/2T to two decimal places).

3

C 9. Same as Problem 8, to find v̂ lOO to three decimal places.
C 10. Same as Problem 8, to find /1000 to three decimal places.

11. Simplify the following expressions in which e is a constant:

(a)(e-*)2 (b) y/e-°2x (c) (e*)2 (d) - \ -
2 3 4 e L/x



12. Solve for x, or explain why no solution exists (e is a constant): 6.2
(a) e*2-4=l (b) e

l/x-e-x = l (c) e
x/2~1 = 0 The rate of change

(d)e-x-x-(x-3) = 0 (e) e 2 x - l = 0
13. On the same axes, sketch rough graphs corresponding to each of the

following exponential functions. In each case, specify the natural do-
main and the range.
(a);y = 3-2* (b)y=-3-2x ( c ) j = 3-(i)*
(d)y = $-2* (e)y=-3-5x

14. Same as Problem 13 for the following:
(a)j> = 2-3* (b) y = -2-3x (c) >; = 2-3"x

(d)y = -2.3~x (Q)y = 2-(±)x (f) y = 2-{\)~x

15. Show that each of the following equations defines an exponential
function by stating in each case the values of c and b in the standard
form y = c-bx. On the same axes, sketch rough graphs corresponding to
each equation.
(a)y = 2-x (b).y = 3-22* (c)y = ^)~2x (d) y = -4 ( 1 / 2 ) x

(e) y = 10(8)(~1/3^ (0 y= ~3(l,)(-l/3)x

(g) y = 5-2^x (h)y = 2~0lx (i) y = (±y2x

16. (a) What are the natural domain and the range of the function de-
termined by y = 2*2? Sketch a graph corresponding to this equation.
Is this an instance of an exponential function as defined in this
section?

(b) Same as (a) for y = 2~~x .

6.2 The rate of change: preliminary remarks

Having learned, in the previous section, the principal features of how an
exponential function behaves, we turn next to the question of how fast such
a function changes. This turns out to be a matter of particularly far-reaching
import, but the problem is more difficult than for the functions studied thus
far. Happily, we shall eventually discover that the answer is simple and
elegant, which is one of the reasons for the significance of the result.

A direct attempt to find the derivative of the exponential function would
go as follows:

if f{x) = c-bx,

then f(x + h) = cbx+h

Problem 1
Show that the average rate of change of / with respect to x in the interval
[x, x + h] can be written as cbx{bh - \)/h.

Then f\x) = limA_0[c• bx(bh —\)/h\ Because cbx does not change with 2 3 5



6 A, this can be written as
Exponential functions , h _ i

f'(x) = c-bxlim^

As h -> 0, bh ->1, so that both numerator and denominator of (bh -l)/h
approach zero. Of course, we always have this situation in applying the
definition of the derivative, and we need some trick to help us find the value
of the limit, if it exists.

But first some calculations will be instructive. Let us start with the case
b = 2, so that we are trying to find f'(x) if f(x) = c-2x. We have just seen
that we need to know the value of limA_>0[(2

A — l)//z], if it exists. With a
calculator having nothing more sophisticated than a square-root key, we can
make the following table:
i_ i I i I _i_ _ ! _ i i i

n l 2 4 8 16 ' * " 256 1024 2048 4096

^ - P i 1 0.8284 0.7568 0.7241

Problem 2
Use a calculator to find that for h = ̂ , (2* - \)/h « 0.6926.

It appears, then, that if y = c2x, dy/dx = c-2x-k, where A: is a constant
approximately equal to 0.6926.

Problem 3
Repeat this process for c • 5* to find that if y = c • 5*, dy/dx = c • 5X- /, where /
is a constant approximately equal to 1.6093.

Likewise, do the calculation to show that if y = c-10*, dy/dx seems to be
c-10*-m, where AW is a constant approximately equal to 2.3028.

Problem 4
Do you see any relationship among the three numbers we have found:
0.6926, 1.6093, and 2.3028?

Observe that as the "base" increases from 2 to 5 to 10, the constants
appearing in the derivative increase from (approximately) 0.69 to 1.61 to
2.30. We might hope that there is some "base" for which the constant
appearing in the derivative equals 1, exactly. If there is such a base (call it
B\ then for

That would be a marvelously simple result.
The relationship suggested in Problem 4 and the observation in the

2 3 6 preceding paragraph will reappear later. Now we look for the trick needed



to find the value of \imh^0[(bh -l)/h]. The needed trick is much more 6.3
complicated than for the functions we have met previously. We are forced to Compound interest
use a roundabout approach, but we shall gain some side benefits in the
process. An analysis of compound interest in the next two sections is the
roundabout approach that will help us find the derivative of the exponential
function.

6.3 Compound interest

An investment at simple interest pays interest only on the principal. For
principal P at simple annual interest rate r, the amount, A, after n years is P
plus the annual interest multiplied by the number of years; that is,

A = P + nrP = P(\ + nr).

For example, after 5 years, $100 at 10% simple annual interest would
amount to $150.

Compound interest pays interest on the interest. Compounding annually
means that at the end of each year the interest for that year is added to the
amount at the beginning of the year, with interest subsequently computed
on the total. Compounding semiannually means that the interest for each
half year is added to the amount; and, in general, compounding k times per
year means that at the end of each interest period (I/A: year) the interest is
added to the amount at the beginning of that period.

Problem 1
Assuming that no interest is paid for part of an interest period, fill in the
values of the amounts in Table 6-3, beginning in each case with $100.

Table 6-3

Simple interest,
10% per year

Compounding annually,
10% per year

Compounding
semiannually,
10% per year

At start $100 $100 $100
At end of 6 months
At end of first year
At end of 18 months
At end of 2 years

Problem 10, 1.6, concerns an investment at compound interest. There you
found, or should have, that the formula for the value of an investment of $P 2 3 7



6 at 10% compounded annually for n years is
Exponential functions A

an exponential formula.
An analysis in the language of investments will help to clarify the

behavior of exponential functions in general. Proceeding as in that problem,
we can get a formula for the amount after n years of a principal of P dollars
at interest rate r, compounded annually. "Compounding annually" means
that in each year the amount gained equals the amount at the beginning of
that year multiplied by r.

n A

2 P(l + r)+ P(l + r)r = P(l + r)(l + r) = P{\ + r)2

3 P(l + r)2 + P(l + r)2r = P(l + r)2(l + r) =

n

This table shows how it goes. The formula we are looking for, then, is

For future reference, we observe that

the amount gained in the following year will be A • r.

Clearly, if we dealt with interest periods instead of years, we could get, in
just the same way, the amount, Q, after m interest periods, of a principal of
P dollars at interest rate i per interest period, compounded each interest
period, as

Now suppose that instead of compounding annually we compounded
quarterly (i.e., four times per year). Then the number of interest periods
would be four times the number of years (m = 4n), and the interest rate per
interest period would be \ of the nominal annual rate (i = r/4). (Note that
6% per year can equally well be expressed as 3% per half year, or \\% per
quarter, or \% per month, just as the same velocity can be expressed in
miles per hour or miles per minute. To distinguish it from other rates, we
shall use the term "nominal" for the annual rate in terms of which the
investment is described.)

Thus, the amount after n years (4n quarters), compounding quarterly, is
P(l 4- r/4)4". Hereafter we shall use the notation Ak for the amount after n
years, compounding k times per year. For example, Ax means the amount
after n years, compounding annually; A2 means the amount after n years,
compounding semiannually. We have, then,

/ r N An

238 A^P(1+)



and, in general, we have the amount after n years, at nominal annual rate r, 6.3
compounded k times per year: Compound interest

Problem 2
(a) For a principal of $100 at nominal annual rate of 20%, tabulate the

values of each ofAvA2, and As at the end of each of its interest periods
from n = 0 to n = 2. (Use the interest table - Table A - at the end of
this book to find As.)

(b) Assuming that simple interest is paid for a partial period during which a
withdrawal is made, draw large-scale graphs of these functions on the
same set of axes. (Use 2 in. to represent \ year on the horizontal axis
and $10 on the vertical axis, and make $100 the lowest point on the
vertical axis.)

(c) For each, what is the amount gained during the first interest period? The
last?

(d) For each, what percentage of the initial amount ($100) is gained during
the first interest period? For each, what percentage of the amount at the
start of the last interest period is gained during the last interest period?

(e) For each, what is the amount gained during the first year? The last?
(f) For each, what percentage of the initial amount ($100) is gained during

the first year? For each, what percentage of the amount at the start of
the last year is gained during the last year? (This is called the yield rate.
It can be defined as the rate that, compounded annually, will give the
same amount as actually obtained at the end of each year.)

(g) How should the graphs be drawn if no interest is paid for partial interest
periods during which withdrawal is made?

We have been discussing cases in which something (like the amount in a
savings account) appreciates through the accrual of interest. Mathematically,
a similar situation exists when the value of something (like a car) depreciates
with time. Suppose that a car initially worth $10,000 depreciates each year
by 15% of its value at the beginning of the year. Then,

at the start, the car is worth $10,000;
at the end of 1 year, the car is worth 10,000(1 - 0.15) = 10,000(0.85) = $8,500;
at the end of 2 years, the car is worth 10,000(0.85)2 = $7,225;
at the end of 3 years, the car is worth 10,000(0.85)3 = $6,141.25; etc.

Note that the loss during the first year is $1500; during the second year,
$1275; during the third year, $1083.75. The annual losses, in dollars,
decrease with time, because the depreciation percentage is successively
applied to smaller amounts. Under our assumption of constant annual
percentage loss, the car never becomes valueless. 239



6 Problem 3
Exponential functions Check that if the value of something depreciates at a nominal annual rate /*,

all the work of this section carries through, with the sole change that A* is a
negative number, and we must speak of "loss" rather than "gain."

Problem 4
"CREF's net total rate of return for 1975, reflecting dividend earnings and
changes in the market value of CREF's common stocks, was plus 32.1%. In
1974, CREF's net total rate of return was minus 31.0%." What was the
2-year percentage change?

Problem 5
From an editorial, "Reflections on a 'Birthday'" {Saturday Review, Decem-
ber 13, 1975): "The value of a citizen's currency would shrink 10 per cent
when he or she crossed a state line. Thus a citizen who started out from New
Hampshire with $100 in his pocket would have $20.24 left by the time he
arrived in Georgia - without having spent a cent." Is the arithmetic of the
preceding statement correct?

Problem 6
(a) If your stock portfolio gained 30% in 1979 and then lost 30% in 1980,

what was your 2-year percentage change?
(b) If your stock portfolio lost 30% in 1980 and then gained 30% in 1981,

what was your 2-year percentage change?

6.4 Continuous compounding

If we let k increase indefinitely (denoted by k -» oo) so that the length of the
interest period approaches zero as a limit, we have a situation that may
reasonably be called "continuous compounding," with the amount after n
years given by

A= lim Ak= lim p f l + f ) |,

if the limit exists. The crucial question is the existence of this limit. To
simplify matters at the start, we shall take P = l , r=\ (i.e., an annual
interest rate of 100% - how that prime rate has exploded!), and n = 1 (i.e.,
we see what happens at the end of 1 year). Then the formula for the
amount, Ak, to which a principal of $1 at 100%, compounded k times per
year, grows in 1 year is
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Problem 1 6.4
Verify that Ax = 2\ A2 = 2.25; A3~2.37; A4~2A4. What is your guess Continuous compounding
about what happens to Ak for large kl

Problem 2
With a calculator, check the values in the following table:

k 10 100 1000 10,000 100,000 1,000,000
Ak 2.59374 2.70481 2.71692 2.71815 2.71828 2.71828

It appears as though Ak increases as k increases, but that the rate of increase
slows down, so we can guess that Ak does approach a limit as k increases
indefinitely. This can be proved, although we shall not do so here. The limit
of Ak as k increases indefinitely is called e\ its value is about 2.718. Like ^2 9

ir, and many other numbers with which we deal, e is irrational and hence
cannot be expressed exactly in terminating decimal form, nor in any other
fractional form, nor as a periodic decimal (see the last sentence of the text
just prior to Problem 7, 6.1). (Although the idea of e arose in connection
with the development of logarithms in the early seventeenth century, the
proof that e is irrational - indeed, " transcendental" - dates only from the
work of the French mathematician Hermite in 1873.) To summarize:

e is defined as the limit of (1 + 1/A:)* as k
increases indefinitely; its value is approximately
2.718.

This implies that $1 invested for a year at an annual rate of 100%, with
extremely frequent compounding, amounts to about $2.71 and that, with
continuous compounding, it amounts to e dollars.

Now we can take the general case:

A= lim A k = Urn W l + f ) | = P | lim f l + f ) T ,

because P and n are constant throughout the discussion. For convenience,
we set r/k=l/u, so that k = ru. Clearly, as k increases indefinitely, so
does u.

Problem 3
Do the algebra to show that Ak can be written as Ak = P[(l + \/u)u\rn.

Then ,4 =/>[limM^oo(l + l /w)T" . We know that (l + l/w)M approaches e
as u increases indefinitely. Assuming that the function we have here is
continuous, we conclude that A equals Pern. Thus,

A = Pern is the formula for the amount of an
initial P after n years at a rate r, compounded
continuously.

Depreciation, figured on a continuous compounding basis, is covered by the
same formula, with negative r. 241



6 Table B at the end of this book, giving approximate numerical values of
Exponential functions ex and e~x for various values of x, will be helpful in many of our problems.

When necessary, we can use linear interpolation in this table. Later we shall
be able to do more accurate work using logarithms.

Example 1
In how long will any sum be quadrupled at 10% nominal annual interest
compounded continuously?

An initial sum of $P will amount to A = Pe01n at the end of n years. The
question amounts to this: For what value of n does A = 4P1 We have to
solve, then, Pe°l" = 4P, or e°ln = 4. (It doesn't matter if we are talking
about $1 growing to $4, or $25 growing to $100, or whatever.) The relevant
entries from Table B are shown here:

X

1.3
1.4

e
3.669
4.055

Problem 4
Interpolate in this table to find that ex = 4 for x =1.39 approximately.

Thus, e0ln = 4 = e139. Hence, O.ln =1.39 and n =13.9 years.

Example 2
What is the equivalent, as a rate compounded semiannually, of a rate of
10% per year, compounded continuously?

In n years, a sum of %P will amount to Pe0ln, at a rate of 10%
compounded continuously. In the same time, at a rate r, compounded
semiannually, the same sum will amount to P(l + r/2)2n. The question asks
for the value of r that will make these amounts equal: P(l + r/2)2n = Pe°ln.
We divide both sides by P to obtain (1 + r/2)2n = eoln, and we take the nth
root of both sides to obtain

(3)K)-
(It doesn't matter if we start with $1 or $10 or whatever, and it doesn't
matter how many years we consider - if the amounts are equal at the end of
1 year, they will also be equal at the end of 2 years, at the end of 3 years,
etc.)

To solve equation (3) for r, it is easiest first to take the square roots of
both sides.

Problem 5
Do this, and use Table B to obtain 1 + r/2 =1.051.

2 4 2 Hence, r/2 = 0.051, and r = 0.102, or 10.2%.



PROBLEMS

6. Use Table B to solve the following equations for x (rough approxima-
tions will suffice; interpolation is not required):
(a) e2x = 3 (b) e(l/2)x = 0.5 (c) e~(l/3)x = 0.1

6.5
Derivative of the exponential

7. A risky investment provides a return of 20% per year, compounded
continuously. To what rate is this equivalent, compounded (a) annually,
(b) semiannually, and (c) quarterly?

8. In how long a time will any sum be doubled at 8% interest compounded
continuously?

9. A bank advertises that on certain savings accounts it pays interest of
6%, compounded continuously. To what rate, compounded annually, is
this equivalent?

10. How long does it take a sum of money to triple at 11% per year,
compounded continuously?

11. If a car depreciates by 35% per year, compounded continuously, about
how long does it take to lose half its value? Three-quarters of its value?

12. What can you say about limy_>0(l + v)1/v if v approaches zero through
the sequence 1, i , i , i , j , . . . ?

13. Use a calculator to guess the value of limyt^00(l + k)l/k.

6.5 The derivative of the exponential function

We can now use ideas from compound interest to obtain the formula for the
derivative of the exponential function. For the case of annual compounding,
at rate r%, an amount A at time t years will become A + A • r at time (t +1).
Hence, the gain is Ar, and the average rate of increase in the year is
A - r/\ = Ar. Thus, in Figure 6-2, the slope of line UV equals A • r.

For the case of semiannual compounding, at the same annual rate of r%,
an amount A at time t years will become A + A-r/2 at time t + \. Thus, as
in Figure 6-3, the average rate of increase in the first half year is {A • r/2)/\

Fig. 6-2
/ + 1 years

Fig. 6-3

semiannual compounding

+ Vi t + 1 years
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6
Exponential functions

= A • r = the slope of line UW. (Of course, the average rate of increase
during the second half year will be somewhat larger, but that is not of
concern to us.)

Consider one more case - that of quarterly compounding (Figure 6-4).
The gain during the first quarter year is A-r/4, so the average rate of
increase during the quarter is (A-r/4)/^, which again reduces to Ar. This
equals the slope of UX.

Thus, the lines UV, UW, and UX all have the same slope, and we can see
that no matter how often we compound, we always leave point U along a line
with slope Ar. It seems plausible, then, to conclude that for continuous
compounding, our initial direction, the tangent at U, will also have slope
A - r (Figure 6-5). This argument leads to the result that

dA
if A = Pert, then —- = Ar = Per

dt -r.

We no longer need to restrict ourselves to the language of "principal,"
"interest rate," and "amount," and we write the basic formula for the
derivative of an exponential function:

If y = cerx, where c and r are constants, then -j- = y-r = cerx-r. (4)

Note that this fits the definition of the exponential function, y = c • bx, with
b = er. Here is a special case:

If y- then £ -
dx (5)

What could be more beautifully simple than this?
Admittedly, we have not yet quite done what we set out to do, for we

began by looking for the rate of change of the function given by f(x) = c • bx.
We have, however, answered a question raised in Section 6.2: There, for
f(x) = cbx, it appeared that/'(•*) = c-fr*-(a number depending on b), and
we asked "For what b does this number equal 1?" We now have the answer:
for 6 = e. That is, iff(x) = cex, thenf'(x) = cexl.

In the next chapter we shall discuss the rate of change of an exponential
function for an arbitrary "base," b. In the remainder of this chapter we

quarterly compounding

244 Fig. 6-4

r i

t t + !/4 t + 1 years
Fig. 6-5

continuous compounding

+ 1 years



shall practice with equation (4) and show the power of that equation in 6.5
solving many central problems. Derivative of the exponential

Two further comments are in order:
1. In equation (4), note that c, the analogue of the "principal" or the

"original amount," is the value of y at x = 0; it is often called the initial
value of y and is designated by y0.

2. Our development, culminating in equation (4), was based on the idea of
compound interest, so that r was thought of as being a positive number. But
we could equally well deal with a constant percentage loss. For example,
suppose that the value of a car depreciated each year by 15% of its value at
the beginning of the year. Then we could write

' the average rate of \ I the value at the
gain in any year j \ beginning of that year } ^ ' ''

By continuing in this fashion we could conclude that equation (4) applies if
r is a negative, as well as a positive, number.

PROBLEMS

1. In Problem 2(b), 6.3, you drew graphs of Av A2, As on the same axes
from n = 0 to n = 2 on the assumption that simple interest is paid for a
partial period during which a withdrawal is made. Now add graphs of
Al0 and A from n = 0 to n = 1, both with the same nominal annual rate
(20%) as before. Verify from the shapes of the graphs that apparently
\imk_+oo[Ak-r] = dA/dn for n =1 , say.

2. (a) If y = 2ea/2)x
9 write the formula for dy/dx.

(b) Make a table of the values of y and dy/dx of part (a) for x = 0, 1, 2,
and —1.

(c) Draw a fairly careful, large-scale graph of y = 2e(1/2)x over — 2 < x
< 3, using the same scale vertically as horizontally.

(d) Draw the tangent lines to the curve of (c) at the points correspond-
ing to x = 0, 1, 2, and — 1.

3. Consider the function given by / (x) = c• erx, c =£ 0, r =£ 0.
(a) What is the natural domain?
(b) What is the range? (Be careful!)
(c) Is / (x) ever zero?
(d) Does/(x) have any critical values?
(e) Are there any points of inflection on the graph of/?

4. A sum of $1000 is on deposit for 10 years at a rate of 7% compounded
continuously. Use the derivative to approximate the change in the
amount if
(a) the money is left at interest for one more month;
(b) the time remains 10 years, but the interest rate for the whole period

is 7.1%. 245



Exponential functions
5. For the curve with equation y = x-ex, find maximum and minimum

points and points of inflection, and sketch the curve. Where is the
flexion an extreme? Maximum or minimum?

* 6. Same as Problem 5, for the curve with equation y = x2 -ex.
7. If f(x) = (ex + e~x)/(ex - e~x\ find / ' (*).
8. For the curve with equation y = ex/x, find maximum and minimum

points and points of inflection, if any, and sketch the curve. (Remember
to check the natural domain!)

9. Same as Problem 8, for y = x/ex.
10. Same as Problem 8, for y = \{ex + e~x). (You should be able to sketch

the curve quickly if you first sketch y = ex and y — e~x on the same set
of axes.)

* 11. Same as Problem 8, for y = ex/(ex + x).
C 12. (a) Make rough graphs of y = ex/1 and y = x +1 to find approximately

where the two curves intersect. Then use the Newton-Raphson
method of Section 3.10 to determine the results to two-decimal-place
accuracy.

(b) Same as (a), for the curves y = ex and y = x2.
(c) Same as (a), for the curves y = ex and y = 2 — x2.

* (d) If you were to use x0 = 100 as an initial approximation in parts (b)
and (c), your calculator would show xx = 99.0, x2 = 98.0, and x3 =
97.0. If you were to use x0 = 100 in part (a), your calculator would
show JCX = 98.0, x2 = 96.0, and x3 = 94.0. Explain this strange situa-
tion. In each of these cases, would you expect the pattern to
continue indefinitely? Or could the process lead to a solution?

6.6 Relative errors and relative rates

For most practical purposes, we need to know the size of a quantity: How
many bushels of wheat? How large a. rate of change in the population?
However, it is not uncommon to be more interested in the ratio of a
quantity, Q9 to some other quantity, P, than in the size of Q itself. For
example, an error of 1 ft in measuring the distance from the earth to the
moon is much less significant than an error of 1 ft in measuring the width of
a highway. What is often of importance, then, is the value of the ratio:

size of error

246

size of quantity being measured *

This ratio is called the relative error, and it can be expressed as relative
error = 1/25 = 0.04, say. Sometimes this same relative error is expressed as
4%, and then it would be called the percentage error.



Example 1 6.6
If the side of a square plate is measured as 8 in. with an error of not more Relative errors; relative rates
than 0.1 in., what is the approximate maximum possible error in the
computed area of the plate?

If we designate the length of the side by x and the area by A, then A = x2.
Using the differential approximation, we have Â 4 « dA = 2xdx. Hence, the
relative error in the area, kA/A, can be expressed as

Av4 dA 2xdx ^dx ,^

^ - ~ " — = 2T- <6>
For the given data, then, t±A/A«2*0.1/8 = 0.025, or, equivalently, a
percentage error of 2.5%.

Note an important aspect of equation (6): Because dx/x is the relative
error in the side of the square, equation (6) can be read as follows: "The
relative error in the computed area of a square equals two times the relative
error in the measurement of a side of the square."

To answer the question in the example, then, it will suffice to know the
relative error in the measurement of a side - it is not necessary to know the
actual error in the side and its length.

We turn now to another "relative" concept - that of the relative rate of
change of a function, f(x), which is defined as the ratio of the rate of change
to the value of the function itself. That is,

relative rate of change of f(x) = , . .
J\x)

Or, to use another notation, if y = /(x), the relative rate of change of y is
defined as (dy/dx)/y. This concept is of particular interest in connection
with the exponential function, y = cerx. As we know, dy/dx = cerx-r =
yr. Hence,

dy /

Tx/
y = r-

In other words, for the exponential function, the relative rate of change is
constant.

Problem 1
By way of contrast, if it is the rate of change off(x) that is constant, what is
an expression for/(x)?

Keep in mind the distinction between rate of change and relative rate of
change\ In summary, we note three equivalent statements:

If y = c.erxi

then
dy rx

Tx=ce "> 247



6 o r

dy /
-J- = y-r (

constant of proportionality is r "),

Exponential functions dy /«« u * * u • i * •* i* A *U
-J- = y-r ( the rate of change is proportional to j itself, and the

or

-j- /y = r (" the relative rate of change equals r, a constant").
dx

With differing phraseology, all say the same thing.

PROBLEMS

(These problems have nothing to do with exponential functions, but they
illustrate the concept of relative change.)
2. (a) The diameter of a steel ball is measured as 10 cm, with a maximum

possible error of 0.05 cm. What is the approximate possible relative
error in the computed volume of the ball?

(b) More generally, what is the relation between the relative error in the
diameter of the ball and the relative error in the computed volume of
the ball?

(c) What is the relation between the relative error in the diameter of the
ball and the relative error in the computed surface area of the ball?

3. (a) A growing pile of sand has the shape of a cone in which the radius of
the base always equals the height of the cone. What is the approxi-
mate relative change in the volume if the relative change in the height
is 0.06?

(b) Same as part (a), if the radius of the base always equals one-half the
height.

* 4. The radius of the base and the height of a cylinder are measured, with
certain relative errors, and the volume of the cylinder is then computed.
Express the relative error in the computed volume in terms of the relative
errors in the radius and the height.

5. Elasticity of demand.
(a) For the sausage problem, as developed in Section 3.9, solve equation

(2), 3.9, p = 6.4 — 0.03x, for x, the number of pounds sold daily in
steady operation, as a function of;?, the selling price per pound. Let
us call this the "demand function,"/(/?).

(b) Express the total revenue, R, as a function of p. For what /?'s is R
increasing? What is the value ofpM9 the/? corresponding to maximum
Rl (Note, by the way, that we are not speaking of maximum profit.)

(c) Compute the value of — (dx/x)/(dp/p) at p = pM.
The ideas contained in the specific illustration in parts (a)-(c) can be

described quite generally: If x = f(p) expresses demand as a function of
price, and if price changes by an amount dp, then demand changes

2 4 8 approximately by an amount dx. The relative change in price is dp/p,



and the relative change in demand is dx/x. In most cases, / is a 6.7
decreasing function, so if dp is positive (price goes up), dx is negative Antiderivatives of
(demand goes down), and dx/x is also negative. The elasticity of demand, the exponential
E(p), is defined by E(p)= -(dx/x)/(dp/p)y that is, the ratio of
relative increase in demand to relative increase in price.
(d) Use R = xp and the formula for the derivative of a product to show

that total revenue is an increasing function of price if E(p)<l and
total revenue is a maximum if E(p) = 1.

(e) Show that if demand, x, is a power function of price, /?, then E(p) is
constant.

6. Assume that the rate of flow, F, of blood varies with the diameter, D, of
the blood vessel and the blood pressure, P, as follows: F = kD4P, where
A: is a constant. Find an approximate expression for the relative change in
F in terms of the relative changes in D and in P. If the change in F is to
be zero (and hence also the relative change is to be zero), what is the
relationship between the relative change in D and the relative change in
PI (See Problem 11, 3.3.)

7. What is the limit on the relative error in measuring the edge of a cube if
the relative error in the
(a) volume computed from the edge is not to exceed 6%?
(b) surface area computed from the edge is not to exceed 6%?

8. A ball (sphere) is made of metal of known constant density (k g/cc).
What is the limit on the relative error in measuring the weight of the ball
if the relative error in the surface area computed from the weight is not to
exceed 4%? Is it necessary to know the value of kl

6.7 Antiderivatives of the exponential

In the equation^ = cerx we know that the constant r represents the constant
relative (or percentage) rate of change and that c represents the initial value
of y - the value of y at x = 0. As mentioned in the first comment at the end
of Section 6.5, we often designate this initial value of y by y0, so that the
basic exponential equation can be written as

y = yoe
rx- (7)

We know that if equation (7) holds, then

Is the converse valid? That is, does (8) imply (7)? This is a question about
antidifferentiation, and the answer is quickly found to be yes: Suppose that
y is any function of x for which equation (8) holds. Let us consider y/erx 249



6 and differentiate this as a quotient:

Exponential functions A(JL\- erx-y'~ yerx-r _ erx(y'-yr) _ y'-yr

dx \ erx I ~ e
2rx ~ e2rx ~ erx ''

or

because equation (8) holds. Hence, y/erx = a constant, c, or y = cerx. If
y = y0 at x = 0, we conclude that c = .y0, which completes the argument.
Thus:

dy
If -^- = y-r and if j> = y0 at x = 0, then y = j^e™.

Example 1
Suppose that the U.S. water consumption (W billions of gallons per day)
varies with time (t 20-year periods after 1800) as follows: dW/dt is always
58.1% of W, and W= 2 in 1800. What is the formula for W in terms of tf

Here we have r = 0.581 and Wo = 2, so W= 2-ea581' is the formula.

Problem 1
(a) What is the value of Win 1960? In 1900? (Compare with Table 6-1, 6.1.)
(b) What is the value of W in 1930? (Compare with the result of Problem 1,

6.1.)

By what date had the original W increased by a factor of 10? We must solve
the equation 2-e0581' = 20 for *. We have, then, e0581' = 10.

Problem 2
Use Table B at the end of this book to show that this is equivalent to
eO581' = e23, so that/ = 3.96.

Thus, the answer is 1879. (Check against Table 6-1.)

Example 2
If the quantity {Q mg) of a radioactive substance decreases at an instanta-
neous rate (per day) always equal to 10% of Q, and if Q = 3 at t = 0, the
formula is Q = 3- <r01'.

Problem 3
Find Q at the end of 15 days.

To find the "half-life" of this radioactive substance (the length of time
necessary for it to lose half its weight through decomposition) we must find t
corresponding to Q = 1.5:

2 5 0 3e-01 '=1.5, or e-01' = 0.5. (9)



(It doesn't matter if we see how long it takes 3 mg to decompose to 1.5 mg, 6.7
or 1 mg to decompose to \ mg, or 34 mg to decompose to 17 mg.) Antiderivatives of

the exponential
Problem 4
Use Table B to show that equation (9) is equivalent to e~01t = e~069 and,
hence, that / = 6.9 days.

PROBLEMS

5. The pressure (p lb/in.2) in a space capsule decreased at an instanta-
neous rate (per hour) always equal to 8% of p.
(a) If p equaled 75 originally, find p at the end of 10 hr.
(b) When had p decreased to one-third its original value?

6. The area (A mm2) of a bacterial colony grows for a limited time at a
constant relative rate per hour. If A = 4.4 at t = 0, and 6.8 at t = 1, find
the formula for A in terms of /. To what rate, compounded hourly, is
this growth equivalent? Use the formula and Table B to compute A for
/ = 2, 3, 5, and 10. (Compare your answers with Table 1-1, 1.2.)

7. In the interval between 1950 and 1965, the number (N million) of
overseas telephone calls originating in the United States varied with the
time (/ years after 1950) as follows: The relative rate of increase (per
year) was constant. At t = 0, N = 2.5, and at / =1, N = 2.75. Find the
formula for N in terms of t, and use it and Table B to compute N for
t = 5, 10, and 15. (Compare your answers with Table 1-5, 1.4.) Also use
the formula and Table B to compute N for 1972, and compare your
answer with 45, the actual figure as stated in Section 1.4.

8. A radioactive substance disintegrates at a constant percentage rate per
week. If there are 2.5 mg at some time, taken to be t = 0, and 0.753 mg
10 weeks later, find a formula for the amount (Q mg) at any /. What is
the half-life of this substance?

9. The pressure in a pump cylinder decreases at the constant instantaneous
percentage rate of 5% per day. How long does it take the pressure to
drop to 0.1 its original value?

10. An estate originally worth $300,000 depreciated so that the instanta-
neous rate of loss was continually 5% of the current value. What was its
value after t years? After 100 years? What percentage was actually lost
in a year?

11. Find the area under the curve y = ex from x = 0 to x = 1.
12. The area under the curve y = e05x from x = 0 to x = 1 is revolved about

the x axis. Find the volume so generated.
13. On the same pair of axes, make sketches of the graphs of y = ex,

y = ex — l, and y = ex — e. Find the area bounded by the graph of
y = ex — e, the x axis, and the lines x = 0 and x = 2. Use Table B to give
your answer to three decimal places.



Exponential functions

YOU CAN GET 6.5Z ON 5Z TEN-

YEAR BONDS THROUGH DAILY

COMPOUNDING.

14.

15.
16.
17.

18.

19.

20.

21.
• 22.

• 23.
Your 5% interest with us is

compounded every day, without fail.
That makes the 5% equivalent to an
average yearly rate of 6.5% over 10
years. Even if you hold your bond for
only 5 years, you still make 5.68%.

$16,487

$10,000J years

Fig. 6-6
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/

8

/

9

/

10

Find the coordinates of maximum and minimum points and points of
inflection, if any, on the curve y = e^l/2)x/x. Sketch the curve.
Same as Problem 14, for y = x/e(l/2)x.
Same as Problem 14, for y = x4e~x.
Sketch the curvey = 2ex — 2. Find the area bounded by this curve, the x
axis, and the lines x = — 1 and x = 2, to three decimal places, using
Table B.
If f(x) = (e2x + l)/ex

9 find/'(•*) in two ways: by dividing each term of
the numerator by the denominator and then differentiating; by using the
rule for the derivative of a quotient. Reconcile your results.
If G(x) = (ea/2)x + e-a/2)x^ea/2)x _ e-a/2)X^ find G , ^ i n t w o w a y s .

by multiplying out first, and then differentiating termwise; by using the
rule for the derivative of a product. Reconcile your results.
Sketch the curve y = ex — 1. Find the area bounded by this curve, the x
axis, and the lines x = - 1 and x=l, to three decimal places, using
Table B.
Same as Problem 20, for y = 3ex - 3, from x = - 1 to x = 2.
When the body has received a dose of a drug, the concentration c of
drug in the body fluids declines at an approximately exponential rate
according to the relation c = coe~\ where c0 is the initial dose and t the
time in suitable units. A dose c0 is administered repeatedly at constant
time intervals t0.
(a) Find the concentration immediately after the first, second, and third

doses.
(b) Deduce the concentration immediately after the Nth dose. [Hint:

1 + X + X2 + • • • + X""1 = (1 - XN)/(1 - X).]
(c) Show that when a very large number of doses have been given, the

concentration is approximately co/(e'° -1) immediately before each
dose and coe

to/(eh - 1 ) immediately after.
(d) Sketch the form of the graph of c against /.
Figure 6-6 is a paraphrase of an advertisement designed to make you
change your bank.
(a) Assuming that daily payment of interest is effectively continuous,

show that the two statements indicated by an asterisk are in a sense
correct.

(b) If you invest $100 with this bank, how much will you have after 10
years?

(c) If your present bank pays 5% compounded annually, how much will
you have after 10 years?

(d) What rate will your present bank need to pay annually to give the
same sum after 10 years as in part (b)?

(e) In what sense are the statements of part (a) not correct?
(f) Is it worth changing your account?



6.8 eu: derivative and antiderivative

The Chain Rule enables us to find dy/dx in case y = eu and u is a function
of x: From equation (5) 6.5, we know that dy/du = eu, so

dy _ dy du _ u du

dx du dx dx'

Example 1
The graph of the function defined by y = 4e~a/2)x2 is closely related to what
is called the normal probability curve. Let us analyze the graph.

Problem 1
Show that x = 0 is the only critical number.

Problem 2
Show that d2y/dx2 = 0 for x = +1.

We have a maximum point at (0,4) and points of inflection at (± l,4e~1/2).
The natural domain of the function is the set of all real numbers. The
general appearance of the curve is shown in Figure 6-7. In Problem 1 you
should have found that

which can be written as

dy
-

In Chapter 8 we shall "solve the differential equation," dy/dx = — xy, to
recapture the "primitive," y = 4e~(1/2)* .

Example 2
To find the area under the curve y = e2x from x = 0 to x=l we must
evaluate

fle2xdx,
Jo

and to do this we must find an antiderivative of e2x. A bit of experimen-
tation leads to the result:

Because - f (e2x) = e2x-2, we realize that ^-(\e
2x) = e2x.

dx dx

Hence,

6.8
eu\ derivative and

antiderivative

Fig. 6-7
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6 (It is easy to make the mistake of thinking that substitution of the lower
Exponential functions limit, 0, gives a zero result, but this is not so.)

PROBLEMS

3. If y = eax+b, where a and b are constants, verify that the relative rate of
change of y with respect to x is constant. What is the constant? Rewrite
the given expression for y in the form y = c erx, stating the values of c
and r.

4. If y = ex , is the relative range of change of y with respect to x constant?
5. Let/(x) = ex + e"x and g(x) = ex - e~x. Show that/'(x) = g(x), g\x)

6. If F(x) = (ex + e~x)2, find F\x) in two ways:
(a) First square the binomial and then differentiate each term.
(b) Set u = ex + e~x and use the Chain Rule directly.
Reconcile your results.

7. Uy = eeX,Gnddy/dx.
8. Find an antiderivative of each of the following:

(a) ex2-2x (b) ex2-x (c) ex2-3x
9. Verify that the area under the curve y = e~x from x = 0 to x = 1 equals

(1 — l/e) square units.
10. Verify that the volume of the solid generated by revolving the area from

Problem 9 about the x axis equals (IT/2)(1 — l/e2) cubic units.
11. Find the volume of the solid generated by revolving the area under the

curve y = e(1/3)*, between x = 0 and x = 3, about the x axis. Use Table
B to express your answer as k • TT cubic units, where k is given to three
decimal places.

12. Same as Problem 11, for y = e(3/2)x, between x = 0 and x = 1.
13. Same as Problem 11, for y = {xex , between x = 0 and x = 2.
14. For the curve y = x2-e2~x, find the coordinates of maximum and

minimum points and points of inflection, if any. What is the natural
domain of this function of x? Sketch the curve.

15. Same as Problem 14, for y = x • e1/x.
16. If F(x) = (ex + e~x)/ex

9 find F'(x) in two ways:
(a) Divide each term of the numerator by the denominator and then

differentiate.
(b) Use the formula for the derivative of a quotient.
Reconcile your results.

17. Consider the function f(x) = yfxe~001x2

(a) Find the natural domain.
(b) Find the coordinates of maximum and minimum points on the

graph of / .
(c) Find the volume obtained by revolving the area under the graph of

/ , between x = 0 and x = 5, about the x axis.



* (d) Find the coordinates of any point of inflection on the graph of / .
18. Consider the curve with equation^ = e^l/2)x — el/2.

(a) Determine the values of y at x = 0 and x = 2, using Table B.
(b) Determine where the curve crosses the x axis.
(c) Determine the general appearance of the curve in the interval [0,2].
(d) Find the area bounded by the curve, the x axis, and the lines x = 0

and x = 2. Use Table B to give the answer to three decimal places.
(e) Find the volume generated by revolving the area from (d) about the

x axis. Express the answer as k • IT cubic units, where A; is a number
to three decimal places (Table B).

6.9
Summary

6.9 Summary

The exponential function appears in so many contexts that it has many
names - the law of natural growth, the law of organic growth, and the
compound interest law are some of them. This function and its inverse, the
logarithmic function, are of central importance in any study of variation.
We turn to the logarithmic function in the next chapter.

SAMPLE TEST

These sample test questions include review material from earlier chapters.
1. In how long a time will any sum be trebled (tripled) at 10% interest,

compounded continuously. (Use Table B.)
2. If F(x) = (e3x + e~3x)2

9 find F'{x) in two ways: by squaring the
binomial and differentiating termwise; by setting u = e3x + e~3x. Recon-
cile your results.

3. Find the volume of the solid generated by revolving the area under the
curve y = e~x, between x = 0 and x = 2, about the x axis. Use Table B
to express the answer as km cubic units, where A: is a number to three
decimal places.

4. Find the maximum and minimum values of y on the curve j> = xe~(l/2)x2.
5. Sketch a graph of y = f(x) if /(0) = 1, /(3) = - 1 , /(7) = 4, /(9) = 3,

/(12) = 5, /'(3) = 0, f\l) = | , /'(9) does not exist, and f\x) increases
throughout 0 < x < 5, decreases throughout 5 < x < 9, and increases
throughout 9 < x < 12.

6. An ellipse is an oval that looks like that in Figure 6-8. The area within
such an ellipse with semiaxes u and v is given by A = muv. What is the
volume of an "elliptical cone" - a solid every horizontal section of
which x in. below the vertex is an ellipse for which u = 3x, u =
ed/io)x2 _1_ f r o m x = o to JC = 5? Use Table B.

7. Find all points of inflection on the curve y = xe~{l/2)x2.

Fig. 6-8
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6 Here is another sample test on Chapter 6:
Exponential functions l'. The pressure (p kg/cm2) in a space capsule decreases at the constant

instantaneous percentage rate of 11% per week. How long does it take
for p to drop to one-third of its initial value? Use Table B.

2'. If G(x) = (e2x + e~2x)/ex, find G' in two ways: by dividing each term
in the numerator by the denominator and then differentiating; by using
the formula for the derivative of a quotient. Reconcile your results.

y. Sketch the curves = e2x — 1. Find the area bounded by this curve, the x
axis, and the lines x = —l and x=l, to three-place accuracy, using
Table B.

4'. Find any maximum and minimum values of y on the curve y = x2-el/x,
testing to show whether your have a maximum or a minimum.

5'. Sketch a graph of y = / (x) , - 2 < x < 7, if / ( - 2) = 3, /(2) = 0, /(3) =
- 1 , /(7) = 2, /'(3) = 0, /'(4) does not exist, f"{x) < 0 throughout - 2 <
x < 2, f"(x) > 0 throughout 2 < x < 4, and /'(.x) increases throughout
4 < x < 7.

6\ A cone is generated by revolving about the x axis the line segment
joining the points with coordinates (0,0) and (5,2). Use integration to
find the volume of this cone, and check using the formula for the
volume of a cone.

7'. The slope of a curve is given by x-e~x2, and the curve passes through
the point (0,1).
(a) Find an equation of the curve.
(b) Find the values of x corresponding to maximum flexion and mini-

mum flexion on the curve, testing to show which.
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Logarithmic
functions

7.1 Introduction

You may have worked with logarithms of numbers as an aid to computa-
tion. A review of logarithms in this context is provided in Section 0.13. The
availability of calculators and computers has reduced the importance of
logarithms for numerical computation, but the logarithmic functions are still
of central importance in mathematics and its applications, as will be seen in
this chapter.

We shall introduce the logarithmic functions as inverses of the exponen-
tial functions.

7.2 Inverse functions and the inverse of the exponential

We first encountered the idea of functions that are inverses of each other in
Section 1.11. The discussion contained in that section informs us that
f(x) = x3, with Df = ( - oo, oo) and ^ = (-00,00), and g(x) = xl/3, with
Dg = ( - 00,00) and Rg = ( - 00,00), are inverses of each other, with graphs
as shown in Figure 7-1. Likewise, the functions F(x) = x2, with DF = [0,00)
and JRF = [0,oo), and G(x) = xl/2, with DG = [0,oo) and # G = [0,oo), are
inverses of each other, with graphs as shown in Figure 7-2.

G(x)

Fig. 7-1 Fig. 7-2 257



Logarithmic functions

(0,3)

(5, 0)
Fig. 7-3

Problem 1
Why is the domain of F restricted as described? That is, what about an
inverse of H(x) = x2, with its natural domain (—00,00)?

Problem 2
Figure 7-3 shows the graph of the function /?(JC) = | ( 2 5 —x2)1/2, with
Dp = [0,5] and Rp = [0,3]. Write the equation for its inverse function q{x\
state the domain and range of q, and sketch the graphs of p and q on the
same axes.

All this is by way of a review of the idea of inverse functions, as an
introduction to the extremely important inverse of the exponential function.
The graph of y = f(x) = ex is shown in Figure 7-4. Df = {— 00,00) and
it, = (0,oo).

Fig. 7-4

Because dy/dx = f\x) = ex
9 and because ex is always positive, we know

that/is a strictly increasing function, so any horizontal line above the x axis
meets the curve in only one point. Thus, the inverse of/is a function - call
it g(x). Dg = Rf = (0,00), and Rg = Df = ( - 00,00). A table of a few pairs
of values of the correspondence defining / looks like this:

X

/(*)

JogOU!

X

g(x)

0
1

s table for g,

1

0

1
e

then,

e
1

2
e1

looks

e2

2

3
e3

like this:

e3

3

- 1

1/e

l/e
- 1

h
fe

fe
I
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The function g has a name: It is called the natural logarithm and is
represented by the abbreviation In. Thus, we write y = g(x) = In x. This is
read " the natural logarithm of x"



The function/(x) = ex is not the only exponential that we encounter. We 7.3
also meet such exponentials as /^x) = 10*, f2{x) = (1.8)*, and, more gener- Laws of logarithms
ally, F(x) = bx for any positive b =£ 1. Each of these functions has an inverse,
called a logarithm, and abbreviated log. To distinguish among them, we
note the "base":

The inverse of fx (x) = 10x is log10 x.

The inverse of f2(x) = (1.8)* is \oglsx.

The inverse of F( x) = bx is log^ x.

The expression log ĵc is read " the logarithm of x to the base Z>."
The natural logarithm, lnjc, can also be written logex. If there is no

ambiguity about the base, it can be omitted, and the function can simply be
written log x. Unfortunately, there is occasional ambiguity in standard
practice: (a) For computational purposes, the base 10 is most convenient,
and log10x - the so-called common logarithm - is often written as log x. (b)
For theoretical purposes (the analysis of how functions behave), the base e
is most convenient, and logex - the natural logarithm - is also often written
as log x. It is to avoid this possible confusion that the notation In x for the
natural logarithm is adopted.

7.3 Laws of logarithms

Just as the equation y = x3 can be "solved for x" and written x = j>1/3, so
likewise the equation

can be "solved for x" and written

* = &>. (2)

Thus, instead of using the language of inverses, we can define the logarithm
of x to the base b as that number, y, such that x = by, or equivalently:

The logarithm of x to the base b is the exponent of the power to
which b must be raised to equal x.

Problem 1
What is the value of 10logl°100? Of lologioiooo? O f 10ioglo2o? Q f <>5? o f

tfoibx*) o f elnal

The importance of logarithms as an aid to computation is based on two
theorems, called the laws of logarithms:
I. \ogb(x1-x2) = logbxl+logbx2: "The log of a product equals the sum

of the logs." 2 5 9



7 II. log6x" = rtlog^x: "The log of a power equals the exponent times the
Logarithmic functions log."

These laws can be established using the definition of the logarithm [i.e., the
equivalence of equations (1) and (2)] and the known laws of exponents:

bu-bv = bu+v and (bu)" = bun.

Here's the way it goes:

If we set \ogb(xl'X2) = r, then xl-x2 = br.

If we set log^x^s , then x1 = bs.

If we set log6x2
 = '» t n e n xi = b*.

Now, br = x1-x2 = bs'bt = bs+t. Hence, r = s + t. Substituting the expres-
sions for r, s, and t into this last equation is exactly the statement of (I).
Similarly:

If we set logbx
n = u, then xn = bu.

If we set log^x = v, then x = bv.

If we raise both sides of this last equation to the nth power, we get
xn = (bv)n = bnv. But xn also equals bu. Hence, u = nv. Substituting the
expressions for u and v into this last equation is exactly the statement of
(II).

Problem 2
Use (I) and (II) to obtain the two corollary laws of logarithms:
III. \ogb(x1/x2) = \ogbxl-\ogbx2.

IV. \ o &

Because the operations of addition and subtraction are easier to perform
then are multiplication and division, and because multiplying or dividing by
n is much easier than raising to the nth power or extracting the nth root, the
availability of tables of log x was a tremendous boon to persons faced with
computational problems, and the invention of logarithms was characterized
by Laplace as "doubling the life of an astronomer." The great German
mathematician, Karl Friedrich Gauss, who did much work in astronomy
and physics, is said to have memorized a table of logarithms to save himself
the time of having to look up a value each time he needed it. The
development of calculators and of computers in the middle of the twentieth
century has reduced the importance of logarithms for computation, but not
the importance of the logarithmic functions.

The particular simplicity of the base 10 for computation stems from the
fact that we use 10 as the "base" of our number system. For example,

2 6 0 12.73 = 10(1.273); 127.3 =102(1.273); 0.01273 =10"2(1.273).



Hence, 7.3

Iog1012.73 = Iog1010 + log101.273 =1 + log101.273, Laws of logarithms

logl0127.3 = Iog10102 + log101.273 = 2 + log101.273, and

log10 0.01273 = log1010 " 2 + log101.273 = - 2 + log101.273.

Thus, if we have a table of common logarithms of numbers in the interval
(1,10), we can quickly write the logarithms of numbers of any size.

When we have occasion to compute with natural logarithms, we use
similar relationships:

lnl2.73 = lnl0 + lnl.273,

lnl27.3 = lnl02+lnl.273 = 21nl0 + lnl.273, and

= lnl0- 2+lnl .273=-21nl0 + lnl.2

The table of natural logarithms again needs to cover only the domain (1,10),
but we also need to know the value of In 10.

Example 1
Suppose that in a standard compound-interest situation the interest rate
changes a bit. How will this affect the amount after a certain number of
years? To be specific, let us determine the approximate change in the
amount of $2000 after 27 years at an annual rate, r, compounded semian-
nually, that would result from increasing r from 5.9% to 6.1%.

Because we are interested in the change in A corresponding to a change in
r, we first express A as a function of r:

A = 20001

Because the change in r is small, we can appropriately use the differential
approximation:

dr

Problem 3
Differentiate to obtain dA/dr = 54,000(1 + r/2)53

As long as we are approximating, we might as well simplify matters by using
r = 0.06, so dA/dr = 54,000(1.03)53. In this case, dr = 0.002, so dA =
1O8(1.O3)53. We now must calculate this number:

log10 dA = log10108 + 53 log10 (1.03)

= 2 + log101.08 + 531og10(1.03).

Problem 4
Use Table C at the end of this book to obtain log10 dA = 2.7118. 2 6 1



7 Working with the body of Table C, we find that the number whose log is
Logarithmic functions 0.7118 is 5.15. Hence, the number whose log is 2.7118 is 515. The answer,

then, is that E±A~dA = 515.

c Problem 5
Use a calculator to find the value of 108(1.03)53 without logs. Also calculate
A for r = 6.1 and for r — 5.9, and subtract to find AA without differentiat-
ing.

Example 2
In how long a time will any sum be doubled at 8% interest compounded
annually?

Starting with $P, we wish A to equal 2P, with A = P(1.08)n. Thus, we are
to solve the equation 2P = P(1.0S)n for n. As we have seen in similar cases,
this immediately reduces to (1.08)" = 2. Hence, n -Iog101.08 = Iog102, or

Iog102 0.3010 30.10
Iog101.08 0.0334 3.34 *

By long division, we obtain n = 9.01 years.

Problem 6
For practice, use common logs to perform this division.

Example 3
Same as Example 2, if interest is compounded continuously. This is the
same as Problem 8, 6.4, where we used the small tables of powers of e
(Table B) to obtain the answer. We shall now take a slightly different
approach.

Problem 7
Show that we must find / satisfying

eomt = 2. (3)

Using natural logs, we have 0.08/ = In 2, so t = (ln2)/0.08.

Problem 8
Use Table B and division to obtain t = 8.66.

We can also use common logarithms to solve equation (3): 0.08Mog10e =
Iog102, so

Iogio2 = Iog102
2 6 2 (0.08)log10e (0.08)log102.718 '



Problem 9 7.3
Use Table C to obtain the same value, / = 8.66. Laws of logarithms

In this case, natural logs are much easier to use!

PROBLEMS

10. The population of the United States was 150 million in 1936 and 200
million in 1964. Assuming a constant relative rate of growth, what will
be the population in the year 2000?

11. In how long a time will any sum be quadrupled at 10% interest,
compounded semiannually?

12. Use differentiation to determine the approximate change in the amount
of $1500 after 23 years at an annual rate r, compounded semiannually,
that would result from decreasing r from 0.072 to 0.069.

13. The population of Erewhon was 3 million in 1900 and 6 million in 1950.
Assuming a constant relative rate of growth, what will be its population
in 2050? Did you (can you) do this one in your head?

o 14. Starting with \o%ax = y, write this as x = ay, and take logs of both sides
to the base b, to obtain, finally

for all positive numbers x. Then set x = b to obtain

logab-logba = l.

15. The earth's population now produces energy at the rate of 5X1019

calories per year. The earth's land mass receives 2.5X1023 calories per
year from the sun. We have been increasing our production at the rate
of 5% per year. (From an editorial in Science, October 18, 1974.) If this
rate were to continue, in how many years would our production equal
the amount received by the land mass from the sun?

16. A formula allegedly used by bankers to get a quick, rough approxima-
tion to the length of time (N years) for a sum of money to double when
compounded annually at an interest rate r% is the following: N = 73/r.
For example, at a rate of 10%, compounded annually, money will
double in approximately 73/10 = 7.3 years; at a rate of 12%, in ap-
proximately 73/12 = 6.1 years; and so forth. Discuss this approxima-
tion.

17. (a) If your first child is born when you are 25 years old, then 25 years
from now he or she may be at the same stage at your college as you
are now. If college costs increase at the rate of 6% per year,
compounded annually, what will be the cost of a year at your college
for your first child? For your youngest child, born when you are 35
years old? 2 6 3



Logarithmic functions
(b) Same as (a), if college costs increase by 7% per year, compounded

annually.

y = x In x

Me

Fig. 7-5

7.4 The derivative of the log function

If y = In x, we can find the rate of change, dy/dx, easily by using implicit
differentiation. We use the definition of In to write x = ey, and knowing that
y is a function of x, we differentiate both sides of the equation with respect
to x to obtain

dx

Hence, dy/dx =l/ey = l/x. Thus, we have shown the following:

™ dy 1
If v = In x, then -f- = —.

' dx x (4)

Example 1
Let us use this formula to analyze the function given by the equation
y = x - In x.

Problem 1
What is the domain of this function? For what number(s) x is y = 0?

Problem 2
Show that the only critical number is x=l/e and that the corresponding
value of y is a minimum. What is the minimum value of yl

Problem 3
Show that there are no points of inflection on the graph of this function.

Problem 4
Knowing that In 10 = 2.3026, compute the values of y corresponding to
x = 0.1, 0.01, and 0.001.

The information you have obtained from working these problems enables us
to sketch the curve, as shown in Figure 7-5.

The Chain Rule, together with the basic formula, equation (4), leads to a
more general statement:

If v = In w, and u is a function of JC, then -7- = —. (5)
J * dx u dx v '

264
Example 2
If y = ln(x3 -1) , then dy/dx = [1/(JC3 -l)]-3x2.



Example 3 7.4
If y = lnx6, then dy/dx = (l/xe)-6x5 = 6/x. (It would have been simpler Derivative of the log function
to write y = 6 In x before differentiating.)

Example 4
If y = lny(;t2 — 9)/(x2 + 9), it surely pays to simplify before differenti-
ating: y = \ ln(jc2 - 9 ) - \ ln(;c2 + 9).

Problem 5
Now differentiate to obtain dy/dx =18JC/[(X2 - 9 ) O 2 +9)].

Example 5
Finding dy/dx if y = ]j(x2 -9)/(x2 +9) seems to have nothing to do with
logs, and, indeed, our earlier methods are adequate to answer the question.

Problem 6
Show that dy/dx =lSx/[(x2 -9)l/2(x2 +9)3/2].

The labor of this differentiation can be reduced by introducing logarithms,
as follows: Take logs of both sides, before differentiating, to obtain

In y = In

The purpose of this step is to permit a simplification of the right side, as was
done initially in Example 4:

Implicit differentiation now

1 dy
y dx

gives

1
2 x

2x

2 " l8x

-9)(x

1 2x
2 v-2 _j_ Q

2 + 9 ) '

Hence, dy/dx = yl$x/[(x2 -9)(x2 +9)], which reduces to the result ob-
tained in Problem 6. This technique of introducing logs to simplify the work
connected with a differentiation is called "logarithmic differentiation."

PROBLEMS

7. Use Table B to find the values of In x for x = J, \9 1, f, 2, f, and 3, and
plot a large-scale graph of j> = ln;t over the interval [i ,3], using the
same scale vertically as horizontally. Draw what look like the tangent
lines to this curve at x =1, at x = \, and at x = 2, and check the slopes 2 6 5



7 of the lines you have drawn against what you know to be the correct
Logarithmic functions values for these slopes.

8. Table B shows In 5 to be 1.6094. Use differential approximations to find
In 5.01, In5.02, In5.03, and In5.04, and check your results against those
given in the table. How large is h before ln(5 + h) found in this way
deviates from the tabulated value?

9. After preliminary simplifications, find dy/dx for each of the following
cases:
(a) y = 3 In xl/2 (b) y = 3(ln x)1/2 (c) y = In 5JC - In x2

(d)y = l n | + l n y (e) y = In (In*) (f) y = [x + l n ^ 3

(g) y = ln(jc + }/x2 — a2), where a is constant

I x + \x — a \
- ; = , where a is constant

j 2 2 )
(i) y = ln/LO/x

10. Find dy/dx in each of the following cases:
x) (b) y = /(5 + x)/(5- x)

11. Find dy/dx in each of the following cases:

12. Use logarithmic differentiation to solve Problem 5(e), 6.6.
* 13. Consider the curve y = JCX, for x> 0.

(a) Use logarithmic differentiation to find dy/dx, and thus find the
coordinates of any maximum and minimum points on the curve.

(b) Find d2y/dx2, and show that the curve is concave up for x> 0.
C (c) Calculate values of y for small positive x 's, and hence guess lim y as

x -> 0 through positive numbers. Thus extend the function by defin-
ing y at x = 0 so as to make the extension continuous for all x > 0.

(d) Sketch the graph of the extension of the function.
C 14. (a) Apply the Newton-Raphson method to approximate the solution of

the equation x + e • In x = 0 after plotting the graph of y = x 4- e • In x
to find a good starting point.

(b) Same as (a), for the equation ex — 2x — 1 = 0.
(c) Why would part (b) be awkward (or worse) to solve numerically if

you used an initial value near In 2? Why can no similar difficulty
arise in part (a)?

(d) Apply the Newton-Raphson method to find all solutions of x =
3 In*.

7.5 Antiderivatives of \/x

In Chapter 5 we found the antiderivatives of xn to be JC"+ 1 / («
provided that n =t — 1. The answer to the "missing case" - the antideriva-



tives of l/x - comes from equation (4), which states that the derivative of
In x is l/x. Hence, we now know the following:

For x > 0, the antiderivatives of l/x are In JC 4- c.

We can use this result to obtain the area under the curve j> = l/x from x = 1
to x = 2 (Figure 7-6):

A= I —dx = Inx\\ = In2 — lnl = In — = In2 (squareunits).
J-[ X 1

Problem 1
Show that the area under this curve from x = \ to x=l also equals In2
square units. Likewise for the area under this curve from x = a to x = 2a,
for any positive number a.

Problem 2
Show that the volume of the solid obtained by revolving the area under
y = l/x from x = 1 to JC = 2 about the x axis equals TT/2 cubic units.

Problem 3
Find the volume of the solid obtained by revolving the area of the first part
of Problem 1 about the x axis. The second part of Problem 1.

Problem 4
Find the volume of the solid obtained by revolving the area under y = l/4x
from x = 5 to x =15 about the x axis. Similarly, from x = a to x = 3a, for
any positive number a.

A portion of the curve y = ex/(ex -1) is shown in Figure 7-7. The area
(A square units) under this curve between x = 1 and JC = 2 is given by

A

A e — 1
dx.

We can evaluate this integral as follows: If we set u = ex — 1, then du/dx =
ex, and du = ex dx. Thus,

ex 1
—-—-dx = — du.
ex -1 u

We know that an antiderivative of 1/u is In w, and In w, of course, equals
\n(ex-l). Hence,

A = \n(ex -l)\l = \n(e2 - 1)-In(e -1) = l n ^ £ y .

7.5
Antiderivatives of 1 /x

Fig. 7-6

y = ~7ex-\

Fig. 7-7

Problem 5
Show that this reduces to A = \n(e 4-1). Evaluate this number by use of the
tables. 267



7 PROBLEMS

Logarithmic functions 6 ( a ) w h a t i§ t h e n a t u r a l domain of the function given by y = ex/(ex -1)?

(b) Show that the slope of the graph is negative everywhere.
(c) Sketch the graph.
(d) Find the area under the curve between x = 2 and x = 4, evaluating

the result by use of the tables.
7. Find the area under y = ex/(ex — I)2 between x = 2 and x = 4.
8. Without use of tables, find the area under y = l/x from x = kto x = ke,

where k is any positive number.
9. If a, b, and k are any positive numbers, show that the area under

y = l/x between x = a and x = b equals the area under this curve
between x = ka and x = kb.

10. Show that the area under y = 3/(x — 2) between x = 3 and .x = 6 equals
6-In2 square units.

11. Evaluate each of the following integrals, simplifying the results as much
as possible without using tables:

rs dx
(a)/ 3x + l

(f)

7.6 Derivatives of Ax and

We are now in a position to take that final step, referred to near the end of
Section 6.5, to find the derivative of y = c • bx. One approach is to find r such
that b = er. But, by the definition of logarithm, r = In b, so b = elnb. Hence,

and

^ (6)

Problem 1
Chapter 6 began with a consideration of the function W= 2(1.8)'. Follow
the method of the preceding paragraph to obtain dW/dt = PFlnl.8«

An alternative method is as follows: Take logs of both sides of the
equation W= 2(1.8)' as a preliminary to differentiation:
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Problem 2 7.7
Differentiate implicitly and solve for dW/dt to obtain dW/dt = JFlnl.8 = Log-log and semilog graphs

Problem 3
Use the method of Problem 2 with y = cbx to obtain dy/dx = ylnb =
c-bx\nb.

In practice it is unnecessary to memorize a formula like equation (6) - if the
derivative of y = bx is to be found, it is easy to proceed as in Problem 3.

Problem 4
If y =10*, find the rate of change of y with respect to x at x = 2.

We know the value of dy/dx if y = In x. What is the derivative if y = log^ x?
In Problem 14, 7.3, we found that log ĵc = \o%ax-\o%ha. For a = e, this
gives log^x = Inx-\o%be. Therefore, we can writer = log ĵc as

y = \nx'\ogbe.

The second factor on the right is a constant, of course. Hence, we have
immediately

dy 1 ,

T=VXo^e

Problem 5
If y = log10x, find dy/dx at x =1. At x = 5.

Problem 6
In Section 6.2, we noted, through use of the definition of the derivative, that
if f(x) = c-bx

9 thenf'(x) = cbx'\imh_0[(bh-l)/h]. We now know that
f'(x) = cbx'\nb. Hence, limh^0[(bh-l)/h] = Inb.

C (a) By means of the square-root key of a calculator (in effect, taking h of
the form 2~w), approximate In 10 to three decimal places. Check your
result by use of Table B or with a calculator that has a In function.

C (b) Approximate In2, In 5, and In 8.
(c) The merit of this technique is that you can calculate natural logarithms

on a calculator having nothing more sophisticated than a square-root
function. Discuss the limitations of the technique.

7.7 Log-log and semilog graphs

If the relation between two variables x and y is shown in a table of values -
obtained, perhaps, from an experiment, or from data accumulated by a
government office - we would like to know if there is an equation in x and 2 6 9



Logarithmic functions
y9 or, better still, a formula for y in terms of JC, that accords well with the
values of the table.

If a plot of the points corresponding to the pairs in the table shows them
to lie on a straight line, the answer is easy: y = ax + b, where the constants a
and b can be determined by using two pairs of values.

As was remarked in Chapter 1, the art of curve fitting in cases other than
the linear case can be complicated, but there are two situations of impor-
tance that we can now handle.

98-*

11.52 3 4567891"! .512 34567891

Fig. 7-8

The power law

If y = axn, for some constants a and n, (7)

then log y = log a + n log x, (8)

where any base of logarithms can be used. If we think of new variables
7 = log j> and X= log*, then equation (8) is equivalent to

Y=\o%a + n-X. (9)

But (9) is a linear equation in Y and X. Hence, if we start with pairs of
values satisfying the power law (7), and plot log* horizontally and logj>
vertically, the points will he along a straight line, of slope n.

Problem 1
For the equation^ = 5A;2, compute the values of y corresponding to x = 1, 2,
3, 4, and 5, and look up the natural logs of each value of x and its
corresponding^. Plot these logarithmic values, and see that the points lie on
a straight line. Do the same thing with common logs for this example.

Contrariwise, if we start with pairs of values such that the plot of log y
versus logx gives points lying on a straight line, we know that we have a
relation like equation (9), and, hence, by working back, like equation (7).
That is, the relation between x and y is a power law, and the values of a and
n can be determined from two pairs of the table. To save looking up
logarithms, we can plot the points on "log-log" paper, which has logarith-
mic scales, rather than uniform scales, both horizontally and vertically
(Figure 7-8). When we plot (7,98) on this paper, we actually are plotting
(log 7, log 98). Note that the horizontal axis begins with 1, not with 0 - the
log of 0 does not exist. If we start with 1, the successive division points on
the paper represent

1.5,2,3,4,5,6,7,8,9,10,15,20,30,40,...,100,150,200,....

The distance from 3 to 7, say, should appear the same as the distance from
30 to 70 or the distance from 300 to 700, because we really have the distance
from log 3 to log 7, and

270 Iog7-log3 = loĝ j} Iog70-log30, etc.



If we start the horizontal axis at 10, the successive division points on the
paper represent

15,20,30,40,50,60,70,80,90,100,150,200,300,400,..., 1000,1500,2000,...,

and if we start with 0.01, they represent

0.015,0.02,0.03,...,0.1,0.15,0.2,0.3,...,1,1.5,2,3,....

The foregoing remarks apply to the vertical axis as well. It is entirely
acceptable to start the horizontal axis at 100, say, and the vertical axis at
0.1.

7.7
Log-log and semilog graphs

Problem 2
On a piece of log-log paper, plot the points corresponding to this table:

x 1 2 3 4 5 6
y 360 90 40 22.5 14.4 10

You should find that they lie along a straight line, so that the relation
between y and x must be of the form y = axn.

Problem 3
Use two pairs from the table to determine a and n, and check with the other
pairs. What is the measured slope of the line you plotted?

The numbers in this example are so simple that you can find a and n almost
by inspection. In more complicated cases, you will have to use logs.

A log-log graph, even if not straight, is useful if we need to display a very
large domain and a very large range. Because log10l00,000 = 5, large inter-
vals are compressed so as to fit on a graph of reasonable size. Of course,
features of the relation between the variables appear different from the way
they would appear on a graph with uniform horizontal and vertical scales.

The exponential function

If y = cerx, for some constants c and r, (10)

then \ny = \nc + rx. (11)

If we think of new variables Y=\ny and X=x, then equation (11) is
equivalent to

Y=\nc + rX.

From here on, the discussion proceeds in a fashion analogous to that on the
power law earlier. We use "semilog" paper, with a uniform scale horizontally
and any logarithmic scale vertically (Figure 7-9). If the points corresponding
to the pairs in a table lie on a straight line, we have an exponential function,
as in equation (10), and we determine c and r from two pairs of the table.

There is one essential difference between the case of the power law and
the case of the exponential function: If y as a function of x is given as a

10

1 2 3 4 5 6 7

Fig. 7-9
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7 power law (y = axn\ then x = (\/a)l/fn-yl/n (i.e., x as a function of y) is
Logarithmic functions also a power law. It doesn't matter in our test, then, which variable we plot

horizontally. But if y as a function of x is an exponential, jcasa function of
y is not an exponential. This implies that if a semilog plot with x horizontal
does not give a straight line, we should try a semilog plot with x vertical
before we give up and conclude that we have no exponential function.

Example 1
The diameter (d units) of the pupil of the eye of a dog varied with the
intensity of light (/ units) as given here:

/ 1 2 4 10 50
d 4.6 3.9 3.2 2.3 0.7

We wish to discover the law relating d and /.

Problem 4
Plot on log-log paper, on semilog paper with / plotted horizontally, and on
semilog paper with d plotted horizontally.

Only the last gives points lying on a straight line. Hence, the relation is
l = cer'd for some c and r.

Problem 5
Use two pairs from the table to obtain r = - 1 and c = 100.

Hence, the answer is l = 100e~d.

PROBLEMS

6. The water resistance (R tons) encountered by a ship traveling at various
speeds (v knots) varied as in the following table. Discover the law.

v 10 12 16 20 25
R 1581 2494 5120 8944 15,625

7. The number, N, of bacteria remaining in a culture treated with an
antibiotic varied with the time (t hr) as in the following table. Discover
the law.

/ 0 1 2 3 4
N 10,000 6700 4490 3010 2020

8. The distances of the planets from the sun (in terms of the distance of the
earth from the sun as a unit) and their periods of revolution (T years)

2 7 2 are given below. Discover the law.



Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
D 0.387 0.723 1.00 1.52 5.20 9.54 19.2 30.1 41.3
T 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 265

9. The speed (v ft/sec) of a hailstone falling through the atmosphere varies
with its diameter (d mm) as in the following table. Discover the law.

0.5
7.07

1.0
20

1.5
36.74

2.0
56.56

3.0
103.92

10. The quantity (Q g) of radium left in a medical needle varied with the
time (t hr) as in the following table. Discover the law.

1
0.109

2
0.098

3
0.089

4

0.080
5

0.073

11. The Pareto distribution. The famous Italian economist Vilfredo Pareto
observed that many economic variables exhibit a power-law relation-
ship, y = axn, at least over a limited domain. Examples are shown in
Table 7-1.

Table 7-1

Annual sales Number of firms with sales > x
Wealth Percentage of population with wealth > x
Population Number of towns with population > x
Salary Number of government posts with initial salary > x
Years Percentage of firms that survive to age > x

7.7
Log-log and semilog graphs

(a) (Steindl) In 1931 the percentages (y) of owners in Sweden with
property equal to or greater than x (thousand crowns) were as
follows:

X

y
0
100

10
34.43

20
17.61

30
11.00

50
5.84

100
2.41

200
1.00

300
0.58

500
0.29

1000
0.11

2000
0.04

Draw a line that is a reasonable fit of the log-log plot of these data,
and find the formula.

(b) (Steindl) For U.S. firms that were born in 1944, the percentages (y)
still alive x years later were as follows:

x 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
y 80.9 56.7 42.2 34.1 29.6 26.5 24.2 22.6 21.2

Draw a line that is a reasonable fit of the log-log plot of these data,
and find the formula. 273



7 (c) If y, the number of people in the United States with annual income
Logarithmic functions >$*: is given by y = (1.9)101 2 /JC1 6 for 5-102 < JC <107, find the

number of people with incomes over $1,000,000, the lowest income
of the 50 people with highest incomes, and the number of people
with incomes between $50,000 and $100,000.

12. The relation between distance (JC m) from the stack of a smelter and
amount (y jug/g) of lead in air-dried soil is found to be:

x 50 100 150 200 250 300
y 13,815 9,000 6,180 4,185 2,630 1,365

Find the formula. (From Science, December 20, 1974, pp. 1120-1.)
13. (a) The intensity ( / units) of sunlight varies with the depth (JC m) below

the surface of clear seawater as follows:

JC

I
0

100
1

93.2
2

86.9
5

70.5
10

49.7
20

24.7
30

12.2

Find a formula for / in terms of x. How much is / for x = 100?
(b) The force of attraction (F units) between two charged particles

(unlike charges) varies with their distance apart (x mm) as follows:

JC 1 1.5 2 3 5 7 1 0
F 125 55.56 31.25 13.89 5 2.55 1.25

Find a formula for F in terms of JC. HOW much is F for x = 100?
(c) Compare the behavior of the two functions for small JC. For large x.

7.8 Summary

In Section 4.16, a summary of results on differentiation was given under the
headings of "General results" and "Specific results." We have nothing to
add to the general results, but our list of specific results now looks like this:

Specific results
1. Derivative of JC"
2. Derivative of ex

3. Derivative of In x
4. Derivative of bx

5. Derivative of log^jc
In each case, through use of the Chain Rule, we have generalizations:
1. Derivative of un

2. Derivative of eu

3. Derivative of In u
4. Derivative of bu

2 7 4 5. Derivative of log6w

where u is a function of x.



Moreover, we have results on antidifferentiation:

General results
1. Antiderivatives of the sum of two functions
2. Antiderivatives of a constant times a function

Specific results
1. Antiderivatives of x", n # — 1
2. Antiderivatives of x~l

3. Antiderivatives of ex

Each of these results can be generalized through use of the Chain Rule. It
will be worth your while to write out a complete statement for each of the
foregoing headings.

7.8
Summary

PROBLEMS

This set is not restricted to problems on logarithmic functions.
1. The number (/?) of pneumococci surviving / sec after treatment with an

antiseptic decreased according to the law/7 =107-2~'/15. Show that the
number of pneumococci halved every 15 sec. Show also that this law can
be written in the form/? = 107e~r', and find the value of r.

2. Find the maximum, minimum, and inflection points on the curve
y = -4xe~a/2)x2, and sketch the graph. What is the relation of this
curve to that of Example 1, 6.8?

3. Referring to the observations at the beginning of Problem 6, 7.6, find

(a) lim
hO

e"-l (b) lim
, 3 M - 1

(c) lim
0

ev-l

4. (a) A rectangle of dimensions x and j has area A given by 4̂ = xy, of
course. Take natural logs of both sides of this equation, and then
write the differential of each side. Express this result in words, in the
language of "relative error."

(b) Same as part (a), for the volume of a cylinder in terms of radius and
height (cf. Problem 4, 6.6).

5. In any 4-week period, a certain radioactive substance loses 30% of its
mass (i.e., of the mass at the beginning of that 4-week period). To what
rate per week of continuous compounding is this equivalent?

6. A bank offers 7.5%, compounded continuously, on 4-year certificates of
deposit. To what rate, compounded annually, is this equivalent?

7. If the consumer price index goes up by 1% in a month, this is sometimes
described as a 12% annual rate of inflation. If the index is actually 1%
higher each month than the month before, by how much will prices
increase in a year?

8. By counting for 10 sec intervals, it is estimated that the counts (N per
hour) from a radioactive source varied with the time (t hr) after the start
of an experiment as in Table 7-2.

Table

0
2
4
6
8
10
12
14

16

7-2

N

320
172
107
76
58
45
37
30
24
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Table 7-3

t

0
1
2
3
4

5
6
10
15
20
30

210
127
90
72
61
54

49
37
28
22
13

(a) Make a semilog plot, and observe that although all the points do not
lie on a straight line, those corresponding to large t do appear to lie
on a straight line. We assume, then, that the source is a mixture of
more than one radioactive substance, with different half-lives, and
that the straight-line portion of the graph corresponds to the re-
maining substance, after the other has (or the others have) "died
out."

(b) Fit an exponential formula to the straight-line portion of the graph,
and subtract its ordinates from those given in the table to obtain a
table of "residues." Then fit an exponential formula to the graph of
residues, to find the formula for N as the sum of two exponential
functions.

9. Same as Problem 8, for Table 7-3. (There are three component subs-
tances here.)

* 10. The function given by f{x) = xl/x is continuous for all x> 0.
(a) What do you think to be the value of hmx^O0f(x)l
(b) What is the definition of /(0) in order that the extended function be

continuous at x = 0?
(c) Locate maximum and minimum points on the curve y = x1/x, and

sketch the graph.
* 11. Which is larger, me or e"7

12. Consider the function / ( x ) = (In x)/yfx .
(a) What is the natural domain?
(b) What are the coordinates of maximum, minimum, and inflection

points, if any, on the curve y = / (*)?
(c) Sketch the curve.

* 13. Same as Problem 12, for g(x) = / * /In x.
14. Same as Problem 12, for F(x) = (In x)/x2.

* 15. Same as Problem 12, for G(x) = (In x)/xk, where A: is a positive integer.
* 16. Same as Problem 12, for H(x) = lnflnx).

17. The area (A mm2) of a bacterial culture increased with time (t days) as
follows:

t

A
0
5

2
6.35

4
8.10

6
10.30

8
13.10

10
16.60

12
21.15

14
26.85
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Use log and semilog paper, as needed, and tables to find a formula for A
in terms of t.

18. The quantity of energy (Q quads) used per year increased at a constant
instantaneous rate of 4% per year, and Q was 70 in 1960. Express Q as a
function of t, the number of years after 1960. Use differentiation to
express the approximate increase in Q if t increases from 10 to 10.2.
Give the answer to three decimal places.

19. The area bounded by y = § ex
9 the x axis, and the lines x = — 1 and x = 2

is revolved about the x axis. Find the volume so generated, expressing



the answer as km cubic units, where k is a number to three decimal 7.8

places. Summary
20. The flow (y units) from an orifice varied with the height (x units) of the

water surface above the orifice as follows:

X

y
l
2

2.25
6.75

4
16

9
54

16
128

Use log paper and semilog paper, as needed, and tables to find a
formula for y in terms of x.

21. The area {A mm2) of a bacterial culture increased at a constant
instantaneous rate of 10% per day, and A was 12 at t = 0. Express A as a
function of /, the number of days. Use differentiation to find the
approximate change in A if t increases from 20 to 20.25. Give the
answer to three decimal places.

22. The area bounded by y = / x e~x , the x axis, and the lines x = 0 and
x = 1 is revolved about the x axis. Find the volume so generated,
expressing the answer as km cubic units, where A: is a number to three
decimal places.

23. The relation between body mass (x kg) and stride frequency (y per
minute) at the trot-gallop transition is shown in this table:

X

y

mouse
0.02

500

mouse
0.04

455

mouse
0.05

443

rat
0.2

370

cat
1

300

dog
9

225

dog
20

203

horse
1600
115

On log-log paper plot these points, draw the most reasonable straight
line through them, and find an equation for y in terms of x. (Hint: For
simplicity, use the pair x = 1, y = 300.)

24. Find dy/dx if

( a ) j = W ( 1 6 - x 2 ) / ( 1 6 + x 2 ) (b).y = / ( 1 6 - x 2 ) / ( 1 6 + x 2 )
25. The area bounded by y = e2x, the x axis, and the lines x = — 1 and x = 1

is revolved about the x axis. Find the volume so generated, expressing
the answer as km, where A: is a number to three decimal places.

26. A certain strain of mouse cancer cells is treated with radiation. The
surviving fraction (F) of cells varies with the dose (D, in certain units)
as follows:

D
F

0
1

5
0.046

10
10" 3

15
10~4

20
io-5

Find an equation relating D and F. [From William D. Bloomer et al.,
"Astatine-211-Tellurium Radiocolloid Cures Experimental Malignant
Ascites," Science, Vol. 212 (1981), pp. 340-341.]

27. Approximations of In 3 and In 2.
(a) Find the area under the curve y = 1/JC, above the x axis, and

between the lines x = 1 and x = 3. 2 7 7
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Fig. 7-10

y =

Fig. 7-11

(b) Demonstrate that the tangent to the curve y = 1/JC at any point lies
beneath the curve.

(c) Find the area of the trapezoid formed by the tangent to the curve at
the point where x = 2, the x axis, and the lines x = 1 and x = 3 (i.e.,
the area of trapezoid ABCD in Figure 7-10).

(d) Use (a), (b), and (c) to demonstrate that In 3 >1.
(e) Find the area of the trapezoid formed by the tangent to the curve at

the point where x = §, the x axis, and the lines x=l and x = 2; also
find the area of the trapezoid formed by the tangent to the curve at
the point where x = f, the x axis, and the lines x = 2 and x = 3
(Figure 7-11).

(f) Add the areas in (e) to conclude that In 3 > 2(\ + \).
(g) Continue the process begun earlier, doubling the number of

trapezoids each time, to conclude that

In3>2(

and guess that

In3= lim 2
n -»oo

+ • • + • • +

(h) Use a similar process to conclude that

and guess that

In2= lim 2| —^— + *
2"+3

(i) Use a similar process to conclude that

In4> | + f + f

and hence that

l n 2 > | + 5 + y.

(j) Continue this process to conclude that

278

and guess that

l n 2 = l i m |rTT+2^3 +



(k) Use a calculator and various values of n to approximate In 3 and In 2, 7-8
comparing your results with values found in a table of natural logs. Summary
Also compare the accuracy of the process in (h) with that in (j).

28. Carbon 14 decays at a constant instantaneous percentage rate r. If its
half-life is 5568 years, what is the value of r?

29. A count of the number (n) of mathematical publications per year
between 1860 and 1965 suggests that n varies with / (the number of
years since 1860) as follows: n = 1400e0025'. [From K. O. May,
"Quantitative Growth of Mathematical Literature," Science, Vol. 154
(1966), pp. 1672-3.] There were major deviations from this formula
during World Wars I and II, but otherwise the formula applies closely.
(a) According to this formula, how long does it take for n to double?
(b) If this formula continued to apply, how many mathematical titles

were published in 1980?
(c) Use this formula, and assume that the mathematical publications up

to 1860 totaled 40,000, to find a formula for N, the total number of
mathematical titles published up to year t since 1860.

SAMPLE TEST

1. Find dy/dx if

2. Samples of soil all treated at the same time with the same amount of the
insecticide parathion were placed in five test jars, and 2000 fruit flies were
introduced into the jars, successively, at 1-day intervals. The number (N)
of fruit flies that died within 24 hr varied with the time (t days after the
start of the experiment) at which they were placed in the jar as follows:

/ 0 1 2 3 4
N 700 285 116 47 19

Express N as a function of t, using log and semilog paper, and the tables,
to help in the process.

3. Consider the function determined by y = (In x)/x.
(a) What is its domain?
(b) Find the extreme value(s) of this function, determining whether

maximum or minimum.
4. For the graph of the function in Problem 3, determine points of inflec-

tion.
Here is another sample test on Chapter 7.
l'.Find dy/dx if

(a) y = ln/ ( l0+x 2) / (10- jc 2) (b) y = /(10+ J C 2 ) / ( 1 0 - X2) 279



7 2'.The heat intensity (/ calories/mm2) at a point varies with the distance (x
Logarithmic functions cm) from the heat source as follows:

x 1 2 3 5 6
/ 3600 900 400 144 100

Using log and semilog paper, as needed, find an equation relating / and
x.

3'. Consider the function determined by y = x/ln x.
(a) What is its natural domain?
(b) Find the extreme value(s) of this function, determining whether

maximum or minimum.
4'. Evaluate

,2* 2 elx

h ezx-l h {elx-\y
Simplify your results as much as possible without the use of tables.

5'. A bacterial population, initially 4,000,000, grows at a rate constantly 20%
per day. Express the number, N, after t days. Use differentiating to
approximate the increase in N if t changes from 5 days to 5.1 days.

6'. Evaluate //2[(ln x)/x] dx.

PROJECTS

An individual project can provide an interesting and rewarding experience.
The form of the project may vary with the topic studied, but an appropriate
norm might be the writing of a paper of five pages or so in which you
describe as clearly as you can the nature of the problems treated in what
you read, the way that the author(s) attacked the problem, the conclusions
reached, and the role of mathematics in the solution. The last includes filling
in gaps in the mathematical treatment, to the extent that you can. Useful
sources are suggested:
1. V. A. Tucker, "The Energetic Cost of Moving About," American

Scientist, Vol. 63 (1975), pp. 413-19 (including bibliograpt y).
2. Josef Steindl, Random Processes and the Growth of Firms — A Study of

the Pareto Law, Hafner Publishing Co., 1965.
3. David Pilbeam and Stephen Jay Gould, "Size and Scaling in Human

Evolution," Science, Vol. 186 (1974), pp. 392-901; also, Roger Lewin,
"How Did Humans Evolve Big Brains?" Science, Vol. 216 (1982), pp.
840-1; and Este Armstrong, "Relative Brain Size and Metabolism in
Mammals," Science, Vol. 220 (1983), pp. 1302-4.

4. Kosta Tsipis, "Physics and Calculus of Countercity and Counterforce
Nuclear Attacks," Science, Vol. 187 (1975), pp. 393-7.

5. Fred N. White and James L. Kinney, "Avian Incubation," Science, Vol.
2 8 0 186 (1974), pp. 107-15.



6. Norman C. Heglund, C. Richard Taylor, and Thomas A. McMahon, 7.8
"Scaling Stride Frequency and Gait to Animal Size: Mice to Horses," Summary
Science, Vol. 186 (1974), pp. 1112-13 (including bibliography).

7. T. T. Liang and E. P. Lichtenstein, "Synergism of Insecticides by
Herbicides: Effect of Environmental Factors," Science, Vol. 186 (1974),
pp. 1128-30.

8. Roy M. Anderson and Robert M. May, "Directly Transmitted Infec-
tious Diseases: Control by Vaccination," Science, Vol. 215 (1982), pp.
1053-60.

9. Dennis Epple and Lester Lave, "The Helium Storage Controversy:
Modeling Natural Resource Supply," American Scientist, Vol. 70 (1982),
pp. 286-93 (including bibliography).

10. Bruce Hannon and James Brodrick, "Steel Recycling and Energy Con-
servation," Science, Vol. 216 (1982), pp. 485-91.

11. D. A. Smith, "Human Population Growth: Stability or Explosion,"
Mathematics Magazine, Vol. 50 (1977), pp. 186-97.

An excellent source of material for projects is Undergraduate Mathematics
and Applications (UMAP). A catalog of UMAP modules can be obtained
from Consortium for Mathematics and Its Applications, 271 Lincoln Street,
Suite 4, Lexington, MA 02173.
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Differential
equations

8.1 Introduction

We began Chapter 5 with problems of antidifferentiation: For example, if
we have a formula for the slope of a curve, can we find an equation of the
curve, that is, an expression for the height, y, in terms of xl In the first
example of Chapter 5 we concluded that

if j r = *, for all JC, (1)

x2

then y = — + c, for an arbitrary constant, c. (2)

Similarly, in Section 6.7 we determined that

then y = c • e2x
9 for an arbitrary constant, c. (4)

Equations (1) and (3) are examples of what are called differential equa-
tions, and equations (2) and (4) are the respective general solutions of these
differential equations. Other forms of equations (1) are

dy = x-dx (V)

and

/ ' ( * ) = * . (i")

Similarly, other forms of equation (3) are

dy = 2ydx (3')

and

g'(x) = 2.g(x). (3")

Of these equations, only (1') and (3') are actually written in differential
form. It might be more logical to call the other forms "equations involving
derivatives."

Note that the general solution of each of the differential equations
2 8 2 mentioned here embodies a whole "family" of functions - unlike the



situation with the algebraic equation 2x — 6 = 0, which has the single 8-1
solution x = 3, or that of the algebraic equation x2 — x — 2 = 0, which has Introduction
the pair of solutions x = — 1 and x = 2. (Some differential equations have no
solutions. This can occur with an algebraic equation, too. Consider 0-x = 5.)

With equation (3"), if we had the additional information that at x = 0,
g(x) = 10, we would get the particular solution g(x) = 10e2x.

Thus, a differential equation is an equation involving an independent
variable, an unknown function of that variable, and one or more derivatives
of that function. A solution of the differential equation consists of a function
such that when it and its derivatives are substituted for the unknown
function and its derivatives appearing in the equation, the equation is
satisfied for all values of the independent variable in a certain domain.

In view of the definition of a differential equation and its solution, it
should not seem surprising that antidifferentiation plays an important role
in solving differential equations. Indeed, much of the material in the first
part of Chapter 5 can be cast in the language of differential equations.

Example 1
If the velocity (v ft/sec) of a particle moving on a straight line varies with
time (t sec) as

then v = JlOtdt = 5t2 + c.

Example 2
If the height (y ft) of a projectile moving under the influence of gravity is
such that

^ = -32 forO</<8,
dt2

then 4jL

and y= f(-32t + kx) dt =-I6t2 + k^ + k2, 0<t<S.

The equation dv/dt = lOf is called a first-order differential equation,
because the only derivative that appears is the first derivative, whereas the
equation d2y/dt2 = —32 is called a second-order differential equation be-
cause it contains a second derivative.

The examples suggest that the general solution of a first-order differential
equation contains one arbitrary constant, and that of a second-order equa-
tion contains two arbitrary constants. This statement and its obvious exten-
sion to «th-order differential equations are essentially valid, but we shall not
try to prove them. 2 8 3



8 The study of differential equations began with the invention of calculus in
Differential equations the late seventeenth century, and it has continued to this day as a major part

of ongoing research in mathematics. The mathematical models of many
phenomena in the natural and social sciences contain differential equations,
and therefore methods for the solution of such equations are an important
part of calculus. We shall examine the elementary portions of the subject in
this chapter.

8.2 An approximate solution of a differential equation

Of the four differential equations mentioned in Section 8.1,

dy
dx

dy
dx

dv
dt

~d7

= x,

= 2y,

= 10?,

= - 3 2 ,

all but the second are easily solved by straightforward antidifferentiation,
and the second is solved through our knowledge of the basic property of the
exponential function.

The important differential equation

cannot be treated by either of these approaches. It is a member of a
particular class of first-order differential equations to be dealt with in

t*o yo) (*• y\) slope = o Section 8.3. We wish now to use equation (5) to illustrate an instructive
~~*s:::^ numerical procedure to approximate solutions of differential equations -

^ ^ ^ ^ the very same procedure used at the beginning of Chapter 5 to approximate
^ ^ ^ an antiderivative by means of short line segments.

slope = -0.4 \\re choose to approximate the particular solution of dy/dx = — xy for
which y = 4 at x = 0. That is, we seek a curve passing through the point
(0,4) such that at any point (JC, y% the slope of the tangent to the curve
equals - x • y.

o.i 0.2 x If (JC0, yo) = (0,4) is on the curve, the slope there is —0-4 = 0 - the
Fig. 8-1 tangent line is horizontal (Figure 8-1). So, if we use this tangent line as an

approximation to the curve for a small interval, say of length h = 0.1, we
obtain (0.1,4) as a point of our approximation. Call this point (xl9 yY).
Although (JCX, yx) is not on the curve, we assume that is close enough to

2 8 4 warrant repeating the process: If (xl9 yx) were actually on the curve, the



slope of the tangent line there would be — (0.1)(4) = —0.4. Then a move to 8.2
the right along this line by another x increment of h = 0.1 produces a drop An approximate solution
of 0.04. Thus, the value of what we name j>2 is 4 — 0.04 = 3.96, and we have
(*2> yi) = (0.2,3.96) as the next point of the approximation. We can tabu-
late the information as follows:

0.3 0.4 0.5X

y
dy
dx

0
4

0

0.1
4

-0.4

0.2
3.96

Problem 1
Carry on with this table, rounding to two decimal places, through x = 0.5.

Proceeding in the manner described yields a sequence of points (xn, yn)
where each successive point is determined by the equations

There is, in fact, precisely one solution of this differential equation passing
through (0,4), and the points obtained numerically by this "linearization"
process do not stray far from the solution curve. A smaller increment, h, will
give a more accurate approximation and a graph more closely resembling a
smooth curve.

PROBLEMS

o 2. Continue the process begun in Problem 1 as far as x = 3. You should
arrive at (x30, ^30) = (3,0.03) as the approximating point. Graph these
points, and connect successive points with line segments.

3. Sketch on your graph of Problem 2 how you expect the graph to look for
x>3.

o 4. Complete your graph to x= — 3 by using h = —0.1. If it is not im-
mediately clear from the foregoing formulas in the text what is going to
happen, calculate a few values.

C 5. With a programmable calculator, prepare similar data based on h =
±0.01. Compare the results with those of the previous problems.

C 6. Repeat Problems 1 and 2, with h = ±0.1, and with (JC0, y0) equal to
(a) (0,10) (b)(l,3) (c)(0,-4)

7. If a curve is such that dy/dx = - xy, then

Use this result to find the abscissas of the points of inflection on the
curve. Differentiate once more to find the abscissas of the points where
the flexion is an extreme. Maximum or minimum? Note that your 2 8 5



8 answers are independent of "initial conditions" - the answers are the
Differential equations same if (x0, y0) = (0,4) or (0,1) or (0,10) or whatever.

8.3 Variables separable

The method for dealing with differential equations of the type known as
"variables separable" is illustrated by solving the equation treated ap-
proximately in Section 8.2:

£ (6)If

then

and

dy =

y

-xy,

— xydx,

-xdx. (7)

The variables are now "separated," the left side being expressed in terms of
y and dy, and the right side in terms of x and dx. Our desired solution
would express y as a function of x,

y = f(x),

say. Because dy = /'(•*) dx, equation (7) would read

f'{x)dx = -xdx (7)

The basic principle to which we appeal is that antiderivatives of the left
and right sides of equation (7') differ by no more than a constant. Applying
this principle to the differential equation written in form (7) rather than (7')
gives

x2

In y = —— + c, if y > 0, and

in(->o = - Y + c, if y<o.

Problem 1
Show that either of these equations can be recast as

y = yo-e~x2/2- (8)

What is the value of the constant y0 in terms of c? By differentiation, verify
that equation (8) is actually a solution of equation (6). Sketch the graph of
equation (8) for y0 = 1. For y0 = 4. For y0 = — 4.

Whenever we can "separate the variables," as was done in this example,
we try to find antiderivatives of each side of the equation; if we succeed, the

2 8 6 equation is solved.



PROBLEMS 8.4

2. For practice, use the method of separation of variables to solve the Approximate and
characteristic equation of the exponential function: The rate of change of
y with respect to x is proportional to y.

3. Find the general solution of each of the following differential equations,
and sketch graphs of the solutions for three typical values of the arbitrary
constant in each case:

(a) ydx-xdy = 0 (b)ydx + xdy = 0 (c) ^ = - - , y * 0

o 4. Let Y represent national income, S represent stock of capital, / represent
total net investment, and C represent total consumption. Each of these
quantities is a function of time.

The definitions of the quantities imply that Y = C + / and that / =
dS/dt. We make the (doubtlessly over-simple) assumptions that 7 = kS
and C = IY for constants k and /.
(a) Show that dY/dt = k{\ - l)Y.
(b) Solve the differential equation of (a) to obtain Y = Yoe

k(1~l)t, where
Yo is income at t = 0.

(c) If consumption accounts for 90% of income and if each dollar of
capital stock generates 40 cents of income, what is the annual
percentage rate of growth of income?

8.4 Comparison of approximate and exact solutions

In the preceding section we found the exact solution of dy/dx = — xy, with
y = y0 at x = 0, to be

y = yoe-x2/2- (8)

The graph of (8), with y0 = l/Jln « 0.4, is called the Normal Curve, of
great importance in probability and statistics. The graph you sketched in
Problem 4, 8.2, is an approximation to the Normal Curve, except that all y
values were magnified by a factor of about 10 because we started at (0,4)
instead of at (0,l/i/2*r).

The method we used in Section 8.2 is known as Euler's method, named
for the great eighteenth-century Swiss mathematician. His method is appli-
cable to any differential equation of the form

^ = g(^,>;), with y = y0 at x = x0.

Note that g is a function of two variables. In the differential equation of 2 8 7



8
Differential equations

Section 8.2, g(x, y)= — x-y. As in the example of Section 8.2, Euler's
method gives a sequence of points generated by the formulas

xn+i ^ xo-\-(n-\-l)-h and

yn + l = yn + g(Xn>yn)ml*> 1 = 0 ,1 ,2 , . . . .

Euler's method is not accurate enough to be of great practical importance,
but simple calculations with the method can provide an idea of the nature of
a solution.

Table 8-1

"Exact" solution,
using Table B

x = 0.5
y = 4e-(

0-5)2/2 = 353 0

x = 2

y = 4e-2
2/2 = 0.541

Euler's method
with h = 0.1

JC5 = 0.5

y5 = 3.61

y5 - y = 0.08

X2Q = 2

y20 = 0.52

y20-y = -0.02

Euler's method

with h = 0.01

x50 = 0.5

y50 = 3.538

y50 - y = 0.008

•^200 = 2

y200 = 0.539

2̂00 -y = - o-ooi

x ••

Fig. 8-2

Table 8-1 presents some results of the method applied to the differential
equation dy/dx = — xy, with y = 4 at x = 0, as compared with what we now
know to be the exact solution, y = 4e~x2/2. Note that the errors with
h = 0.01 are about one-tenth the errors with h = 0.1 - with 10 times as much
work, we cut the errors by a factor of 10. This is only a modest improve-
ment, as compared, for example, with the "effort-improvement" ratio in the
Newton-Raphson method for solving ordinary equations. And that is why
Euler's method has been superseded by similar but more efficient methods.

All these methods face the problem of straying seriously from the exact
solution as errors accumulate in moving far from the starting point. The
problem we have dealt with, dy/dx = — xy9 is reasonably well-behaved in
this respect. Because initially the curve is concave downward, the tangent
lines lie above the curve, and the approximations overestimate the height of
the curve (Figure 8-2). But the curve has a point of inflection at x = 1 (see
Problem 7, 8.2), and compensation occurs thereafter. Eventually, both the
exact solution and its approximation become very small.

For the differential equation dy/dx =? xy, the Euler method does not give
good results, as the following problems show.

288
Problem 1
Verify that the solution of dy/dx = ;cy, with y = 1 at x = 0, is >> = .



c Problem 2 8.5
Program a calculator or computer to approximate the solution of dy/dx = jcy, Population changes
with (x0, yo) = (0,1), using Euler's method:

Use /* = 0.1, and let n go to 39. You should find that the approximation
gives y40 «1030, while e4 /2 = es = 2981. Thus, the error is approximately
1951, an error of 65% of the true value.

Use h = 0.01, and let n go to 399. You should find that the approximation
gives y400 « 2633, for an error of 12% of the true value.

8.5 Population changes

If a species has an unlimited food supply, without predators or competitors,
we may assume a birth rate b (per thousand, per year, say) and a death rate
d (also per thousand, per year), so that the net rate of increase per thousand
will be (b — d) per year. In assuming that b and d are constant, we are
ignoring the effects of a changing age structure of the population with time.

If y is the population (in thousands), if / is time (in years), and if we set
r = (b~ J)/1000, then the variation described in the preceding paragraph
is given by

dy/dt _
y

the "law of natural growth." We know that the solution of this differential
equation is

y = y*ert. (9)

Even with a limited food supply, a population may grow approximately like
(9) for some time, until nutrients run short.

PROBLEMS

1. If the population of a country is now 200 million individuals, how long
will it take the population to grow to 1 billion if
(a) the annual birth rate is 45 per thousand and the annual death rate is

20 per thousand?
(b) the birth rate is as in (a), but the death rate is 15 per thousand?

2. If the annual death rate is 15 per thousand, what must the birth rate be if
a population is to double in 100 years?

3. Suppose that a population is now P and that the annual death rate
remains fixed at 15 per thousand. If the annual birth rate is 45 per 2 8 9



8 thousand for the next 20 years, what must the birth rate be for the
Differential equations following 80 years if the population is to be IP one hundred years hence?

4. A colony of bacteria, initially 5 X104 in number, increases through fission
(division of each bacterium into two) every 20 min. Express the popula-
tion, y9 at any time / min after the start in terms of powers of 2. Of
powers of e.

8.6 The logistic equation

If the food supply is limited, a population may grow rapidly at first, almost
in accord with the law of natural growth; but as food becomes scarce, the
rate of growth becomes quite small, and the population stabilizes at some
constant level, the equilibrium population. The same effect can have a cause
other than shortage of food, such as the accumulation of metabolites, as in
the example of the bacterial colony in Section 1.2. In such cases the
following type of growth is often a satisfactory refinement of the law of
natural growth (in which, of course, relative rate of change of population is
constant):

The logistic law
The relative rate of change in population is proportional to the amount by
which the population falls short of the equilibrium population.

If y represents the population and yE is the equilibrium population, then
the logistic law can be put in the following symbolic form:

^ c(yE-y), (10)

where c is the constant of proportionality. Note that during a time interval
when y is very small relative to yE, we have an equation close to that
defining the law of natural growth; but when y is very close in size to yE9

then the relative rate of increase of y with respect to t is very small, and the
same is true of the rate of increase.

In equation (10), the differential equation of the logistic law, the variables
are separable; so as a step preliminary to solving the equation, we write
equation (10) in the form

=cdt.
y(yE-y)

How can we find an antiderivative of the left side? We require an
algebraic trick, to be discussed in the next section. But first we shall practice

2 9 0 with Euler's method to solve the differential equation approximately.



PROBLEMS

In Chapter 1 we studied an example of a colony of bacteria the population
of which was measured in terms of the area covered by the colony, as shown
in Table 1-1, here repeated. It is consistent with biological experience that
the logistic law applies to this situation. In Chapter 1 we estimated 40 as the
limiting area. Assume, then, that the growth of the colony conforms to
the differential equation

dA/dt , .
—L— = c(40- A).

A

o 1. Find ^ to be a reasonable value for c. To do this, you need to estimate
dA/dt at some value of t, say t = 4, where the variation is fairly regular.
Calculating [A(t + 1 ) - A(t)]/1 for / = 2, 3, 4, and 5 will be of help. The
expression for the approximating A in Section 1.7 will also be of help.

° C2. With h = 0.5, apply Euler's method to find approximate values for A:

An+l = An + ±An(40-An)h, n = 0,1,2,. ..,19,

starting with t0 = 0, Ao = 4.4. Compare your results with those of Table
1-1.

8.7
Method of partial fractions

Table 1-1

/(hr)

0

1

2

3

4

5

6

7

8

9

10

A (mm2)

4.4

6.8

10.2

14.4

19.2

24.2

28.6

32.2

34.8

36.7

38.0

8.7 The method of partial fractions

Suppose that we have the fraction

1
(x-3)(x+l)9

and ask if it can be written as the sum of two fractions whose denominators
are the factors (x -3 ) and (x + 1); that is, can we find constants p and q
such that

1 P . Q ~

x-3

Adding the two fractions on the right, we get

p(x + l) + q(x-3)
(x-3)(x

so that, if we are to reach our goal, we must have

(x-3)(x + l) (x-3)(x + l) '

It should seem reasonable to you that if this is to be a valid equality for all x
for which the original fraction is defined (i.e., all x except x = 3 and
x = — 1), we must have

p + q = 0 and
p-3q=l. 291



8 Problem 1
Differential equations Solve this pair of simultaneous equations to obtain the result

1 _ 1/4 - 1 / 4
(JC-3)(JC + 1 ) x-3 jc + 1 '

The method illustrated here is of use in many fields of mathematics. It
can be generalized to handle more complicated fractions, but the simple
case of the foregoing example is sufficient for dealing with the differential
equation of the logistic law.

PROBLEMS

In Problems 2-6 apply the method of partial fractions to break down each
of the following fractions into the sum of two fractions:

2., I ., 3 . - ^ — 4 . ^ - 5.
x2-2x-3

o 6. —; r, where yF is a constant.
y(yE-y)

7. Prove that if r 4- sx = a + bx for all x, then r = a and s = b.
* 8. Generalize Problem 7.

8.8 The logistic equation (continued)

Applying your answer to Problem 6, 8.7, to equation (11), we obtain

yE-y\

dy dy
-^ + — l — = cyEdt.
y yE- y

Problem 1
Solve this differential equation to obtain, for 0 < y < yE,

I n — - — = cy-t + d

(12)

yE- y
and hence

y c t

yE-y~

Problem 2
Verify that if y = y0 at / = 0, then k = yo/(yE- y0).

Problem 3
Solve equation (12) for y to obtain

—k-yE ^
2 9 2 * + *-<>*•' }



Problem 4
Using the result that if x < 0, jdx/x = ln(- JC)+ c, carry through the steps
leading to the same equation (13) for y < 0. For y > yE.

Thus, equation (13) applies for all y =£ 0; it is the general solution of the
logistic differential equation. Equation (13) and its S-shaped graph (Figure
8-3) are of far-reaching importance in applications of calculus to problems
of organic growth.

PROBLEMS yo

* 5. Beginning with equation (13), differentiate twice to locate the point of
inflection on the graph of the logistic equation. You should find that the
height (y coordinate) of the point of inflection equals \yE.

* 6. Begin with the differential equation of the logistic equation, dy/dt =
cy(yE — y)9 and differentiate once with respect to t to obtain an alterna-
tive form of the second derivative you found in Problem 5.

7. For a certain population, y individuals, the relationship with time (t
days) is given by equation (13), with yE = 200, with c = 0.001, and with
k determined by the fact that at / = 0, y = 50. Make a table of values for
t and y for all integral (whole-number) values of /, 0 < t < 20, and plot a
graph of this function carefully on a full-size sheet of graph paper.

8. In the basic differential equation (11), for values of y very much smaller
than ;>£, we may assume that j>£ - y « yE, so that equation (11) becomes
(approximately) dy/dt = cyE • y. Solve this equation for y in terms of t,
using the same constants as in Problem 7, make a table of values of t
and y for integral values of t, 0 <t < 10, and plot the graph of this
function on the same axes that you used for Problem 7.

9. Use Euler's method to find approximate solutions of the logistic dif-
ferential equation (10), with the data given in Problem 7. Use h = 1, and
plot the results on the same axes you used in Problems 7 and 8.

C 10. Show that the logistic differential equation dA/dt = ^ 4 ( 4 0 - A) for the
bacterial colony reintroduced in the problems of Section 8.6, with
A = 4.4 at t — 0, has for its solution (to five-decimal-place accuracy)
A = 4.94382/(0.12360+ e~t/2). Use this formula to calculate A for
t = 0,1,2,..., 10, and compare these numbers with (a) the values of A as
listed in Table 1-1; (b) the values of A obtained by Euler's method in
Problem 2, 8.6.

You should find the largest discrepancy between the exact solution
and trie Euler approximate solution to be 1.18 (at t = 4.5) where
A = 21.59. That is a fairly large error accumulation, considering that the
curve has an inflection poiui ~. * = 4.18. (The result of Problem 5 gives
the location of the inflection point.)

In examining your results, refer to the discussion in Section 8.4 of
error in Euler's method. The case before us shows that the method,

8.8
Logistic equation (continued)

Fig. 8-3
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8 although it produces entirely satisfactory results for the coarse data of
Differential equations the example, is not so good when greater precision is required. Of

course, the use of smaller h reduces the errors, but at the cost of
considerable effort. For example, with h = 0.1, the error at t = 4.5 is
0.23, an improvement by a factor of 5 in the error noted earlier with
h = 0.5.

8.9 Linear differential equations with constant coefficients

We shall introduce an important class of differential equations by consider-
ing a model of predator-prey relationships. Different conditions call for
different models; we shall assume separate generations of predators (rather
than overlapping generations), with a cohort of predators replaced by their
offspring in a unit of time. Then the model goes as follows: In the absence
of predators, the population (X) of prey would follow the logistic differen-
tial equation

f = aX(b-X).

If, in unit time, each predator kills a number of prey proportional to the
abundance of prey (i.e., number killed in unit time by one predator equals
cX), and if the population of predators is Y, then the total number of prey
killed in unit time is cXY. Hence, a differential equation for the rate of
change of prey population in the presence of predators is

^- = aX(b-X)-cXY. (14)

Now, if the number of offspring produced by each predator in unit time is
proportional to the number of prey killed by that predator (i.e., k • cX), then
Y predators give rise to kcXY offspring, and the increment of predator
population in unit time is kcXY — 7, or (kcX — 1)Y, so the rate of change of
the predator population is given by

% = (kcX-l)Y. (15)

Equations (14) and (15) are difficult to analyze. But if we assume that
there are certain equilibrium levels XE and YE, of X and 7, if we let x and y
represent deviations from these equilibrium levels (i.e., x = X— XE, y = Y —
YE\ and if we assume that x and j> are small, so that terms involving x2 and
xy can be ignored relative to terms involving x and y9 then equations (14)
and (15) are equivalent to

dx , v
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and 8.9
dy_ = rx / 1 7\ Linear differential equations
dt ' with constant coefficients

where/?, q, and r are positive constants. [See Problem 13 at the end of this
section for the details of how to get from (14) and (15) to (16) and (17).]

Problem 1
Eliminate x between equations (16) and (17) by solving equation (17) for JC,
differentiating with respect to /, and making substitutions in the first
equation to obtain

£ + , $ + w - 0 . (IS)

Equation (18) is a "second-order linear differential equation with con-
stant coefficients and with right member equal to zero":
second order, because the highest derivative is the second;
linear, because wherever y or one of its derivatives appears, it is raised to the

first power;
with constant coefficients, because the coefficients of d2y/dt2, dy/dt, and y

are all constants;
with right member equal to zero to distinguish equation (18) from another

important class of differential equations:

Later we shall show how to use Euler's method to obtain approximate
solutions of the pair of simultaneous differential equations (14) and (15); in
this section and the next we shall discuss exact solutions of linear differen-
tial equations with constant coefficients.

Problem 2
(a) Show that if y = F(t) is a solution of equation (18), then j> = k-F(t), for
any constant k, is also a solution.
(b) Show that if y = F(t) and y = G(t) are solutions of equation (18), then
y = F(t)+G(t) is also a solution.

The results of Problem 2 are valid for a linear differential equation with
constant coefficients and right member equal to zero, whatever its order, and
are basic to solving such equations. We illustrate a method of solution by
consideration of a particular example:

Experience with the exponential function and the way in which its



8 successive derivatives "replicate" the function itself suggests that the func-

Differential equations tion

y = emt (20)

may be a solution of equation (19) for some value or values of the con-
stant m.

Problem 3
Find dy/dt and d2y/dt2 from equation (20) and substitute into equation
(19) to show that if equation (20) is a solution of equation (19), then

m 2 + 5 m + 6 = 0. (21)

The roots of equation (21) are —2 and —3. Hence, we expect y = e~2t and
y = e~3t to be solutions of equation (19). By Problem 2, we know that if
these functions are solutions, then so are y = cxe~2\ y = c2e~3t, and y =

Problem 4
Verify that all the functions mentioned in the two preceding sentences are
solutions of equation (19).

Problem 5
Prove the converse of the result of Problem 3 for the general second-order
linear differential equation with constant coefficients and with right member
equal to zero; that is, show that if r is a root of

am2 + bm + c = 0,

then y = ert is a solution of

The function y = cxe
 2t + c2e

 3', involving two arbitrary constants, is
called the general solution of the second-order equation (19). In any given
case we may have initial conditions that provide information to determine cx

and c2.

Problem 6
Find the solution of

dx2 ~d-

for which y = 5 and dy/dx = 7 at x = 0. Sketch on the same axes the graphs
of y = 9e~x, y = -4e~4x, and y = 9e~x-4e-

4x, 0 < x < 4.

Equation (21) is called the characteristic equation of the differential
2 9 6 equation (19). In both examples so far considered, the roots of the char-



acteristic equation have been real and unequal. We shall learn in Chapter 10 8-9
that if the roots of the characteristic equation are imaginary, the solutions of Linear differential equations
the differential equation can be expressed in terms of trigonometric func- with constant coefficients
tions. Let us now investigate what happens if the roots of the characteristic
equation of a second-order equation are equal: The characteristic equation
of

is

m 2 - 6 m + 9 = ( m - 3 ) 2 = 0.

Following the pattern of our previous work, we know that

y = Cle
3x + c2e

3x (23)

is a solution of equation (22). But equation (23) does not really involve two
arbitrary constants. It can be written as

y = Ce3x, where C = q + c2.

Thus, we suspect that we do not yet have the general solution of equation
(22). Experimentation leads to the result that y = xe3x is a solution of the
differential equation.

Problem 7
Verify that y = xe3x is a solution of equation (22).

Hence, the general solution of equation (22) is

y = c1e
3x + c2xe3x = (cx + c2x)e3x.

The method that has been illustrated to solve second-order linear differen-
tial equations with constant coefficients and with right member zero, and the
modification for the case of a repeated root, are applicable to higher-order
differential equations of this type as well.

Example 1
The characteristic equation of

dt3 dt2 d

is

m3 - m2 -4m +4 = (m -\){m -2) (w +2) = 0.

Hence, the general solution of this third-order differential equation is
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8 Example 2
Differential equations The characteristic equation of

IS

m 3 - 5 m 2 + 8 r n - 4 = ( m - l ) ( m - 2 ) 2 = 0.

Hence, the general solution of this third-order differential equation is

y — c^e + yc2~r c3x)e . v^5)

Problem 8
Verify that equation (25) is a solution of equation (24).

PROBLEMS

9. Find the general solution of each of the following:

^ + 7 ^ + 1 2 ^ 0 (b) ^ + ^ - 6 f = 0
dx2 dx y

 dp dt2 dt

10. What does the solution to Problem 9(b) become if the initial conditions
are y = 0 and dy/dt = 3 at / = 0, and if y is to remain finite as t -> oo?

* 11. If fr2 - 4ac = 0, both roots of am2 + Z?m + c = 0 are fn = - Z?/2^- S n o w

that if b2-4ac = 0, then j = (^ + ^ ) e ^ x satisfies
Z?(^/Jx)4- cy = 0 for all constants p and g.

* 12. Conjecture the general solution of

^+6^+12
dx3 dx2 d

and verify that your conjectured solution does satisfy the differential
equation.

13. Recall the model of predator-prey relationship set out in this section.
(a) With X= x + XE, Y=y + YE, why does dX/dt = dx/dt and dY/dt

= dy/dt!
(b) When X= XE, why does dX/dt = 0?
(c) When X= XE, Y=YE, why does dX/dt = aXE(b - XE)- cXEYE!

* (d) Use the results of (a), (b), and (c), and ignore terms involving x2 and
2 9 8 xy, to obtain equations (16) and (17) from equations (14) and (15).



8.10 Linear differential equations with constant coefficients
(continued)

We turn now to a type of differential equation mentioned but not discussed
in the previous section: the linear equation with constant coefficients and
with right member not equal to zero, like

(26)

where f(t) is not identically zero.

Problem 1
The basic results on the equations studied in Section 8.9 are contained in
Problem 2 of that section. Show that analogous results are not valid for
equation (26).

However, there is a result bearing some similarity to those of Problem 2,
8.9:

8.10
Linear differential equations

with constant coefficients
(continued)

Theorem
If y = F(t) is a solution of equation (26) and ifj> = (/(/)isa solution of the
"reduced equation"

d2y dy , ^

then y = F(t)+G(t) is also a solution of equation (26).

Problem 2
Prove this theorem.

A solution of equation (26) is called a particular integral, the general
solution of equation (27) is called the complementary function. Because the
complementary function involves two arbitrary constants, we hold the key
to the problem:

The general solution of equation (26) equals a particular integral
plus the complementary function.

We know how to find the complementary function, but we do not yet have a
method for finding a particular integral. Good guessing and good luck are
helpful, but some general principles will appear in the following examples.

Example 1

(28)
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8 The same "replicating" property of the exponential function we exploited in
Differential equations Section 8.9 suggests that

y = ke4t (29)

may be a particular integral of equation (28) for some value of k.

Problem 3
Use equation (29) to substitute for y and its derivatives in equation (28).

You should have found that equation (29) is a particular integral of
equation (28) if and only if k = 5.

Problem 4
Find the complementary function and thus show that the general solution of
equation (28) is y = 5e4t + cxe

2t + c2e
3t.

Example 2

(30)

Problem 5
Try to find a particular integral of equation (30) by the method of Example
1, and explain what goes wrong.

Because e2t is part of the complementary function of equation (30), sub-
stitution of y = ke2t and its derivatives into that equation will make the left
side equal to zero, not 10e2'. What to do? In rough analogy to what we
found in Section 8.9 for the case of two equal roots of the characteristic
equation, we try

y = kte2t (31)

Problem 6
Use equation (31) and its derivatives to find that ( — 10te2') is a particular

integral of equation (30).

The general solution of equation (30), then, is y = (cx — 10t)e2t + c2e
3t.

Example 3

Because the right side of equation (32) is a constant, we try y = k as a
possible particular integral. We immediately find that k = 2, so the general

3 0 0 solution of equation (32) is y = 2+ cle
2t + c2e

3t.



Example 4

In this case we try y = k + // as a particular integral.

Problem 7
Show that this trial function leads to

-5/) + 6/ /=l l -6/ .

(33)

(34)

As with the method of partial fractions (Section 8.7, especially Problem 7),
we conclude that equation (34) will be valid for all values of / if and only if
6k -51 = 11 and 6/=—6. This means that / = — 1 and k=l. Hence, the
general solution of equation (33) isy = l — t + cxe

2t + c2e
3'.

Problem 8
Try y = p + qt + rt2 as a particular integral of equation (33), and determine
values of the constants/?, q, and r.

The preceding examples indicate how to find a particular integral if the
right member is an exponential function or a polynomial in the independent
variable. If the right member is the sum of an exponential and a polynomial
function, say 4e~2t + 19 + 2/ + 12/2, then a particular integral is the sum of
particular integrals corresponding to right members that are 4e~2t and
19 + 2/ + 12/2.

Several variations on these techniques will arise in the following problems
and in Section 10.10. Indeed, there is a summary comment on this matter at
the end of the text of Section 10.10.

PROBLEMS

9. (a) Find the general solution of

dx2 dx

(b) Find the general solution of

dx2 d

(c) Hence, write the general solution of

12JC2.

^ 7 + 1 ^ - + My = 4e'2x +19 + 2x + \2x2.
dx2 dx

8.10
Linear differential equations

with constant coefficients
{continued)

10. Find the general solution of

dt2 dt 301



8 11. Find the general solution of
Differential equations

j 2 J

dxl

12. Modify Problem 4, 8.3, by assuming that consumption has an "autono-
mous" (constant) component as well as a component proportional to
income (i.e., that C = p + IY).
(a) Show that dY/dt - k(l -l)Y=- kp.
(b) Find the general solution of this differential equation.
(c) Show that the solution for which Y=Y0 at t = 0 can be written

Py=
Y \ - i

Thus, national income is the sum of two terms, one growing with time
and the other constant.

SAMPLE TEST ON SECTIONS 8.1-8.10

1. Use separation of variables and the method of partial fractions to show
that the solution of dy/dx = y2 - 5y + 6, for which y = 4 at x = 0 can be
written in the formy = (2ex — 6)/(ex — 2). What is the value of limx _ ^yl
(Justify your answer.)

2. Find the general solution of d2y/dx2 — 9y = 0.
3. Find the general solution of d2y/dx2 -9(dy/dx) = 0.
4. Find the general solution of d2y/dx2 ~9y = 5e2x.
5. Find the solution of dy/dx = — y/x for which y = 3 at x = 3.

* 6. Find the general solution of d2y/dx2 -9(dy/dx) =lSe9x.

* 8.11 Approximating the solutions of a pair of simultaneous
differential equations

In Section 8.9, a certain model of the relationship between a prey popula-
tion, X, and a predator population, 7, was described by the pair of
differential equations

X(bX)XY (14)

and

^ = (kcX-\)Y (15)

for suitable constants a, b, c, and k. Because these equations are difficult to
analyze - for example, they are not linear - we reduced them to a related,
but not equivalent, pair of equations of relatively simple form:
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and 8.11
d2y | dy_+ = Q , v Approximate solutions
A 2 dt ' of a pair

where /?, #, and r are positive constants, and x and >> are the differences
between X and Y and their presumed equilibrium, or steady-state, values,
XE and YE.

Equations (17) and (18) are useful in analyzing the behavior of X and Y
only when x and y are small (i.e., when X and Y are close to equilibrium).
Indeed, the main use of these equations is to determine whether X and Y
approach equilibrium. Moreover, the characteristic equation of (18) not
uncommonly has imaginary roots, a situation that we can handle only after
we have developed trigonometric functions in Chapter 10. But we can solve
(14) and (15) approximately, by Euler's method, as we shall now illustrate.

Suppose that x and y are two quantities whose behavior is described by
the pair of differential equations

— = F(t9x, y) and — = G(t,x,y),

where F and G are specific functions of f, x, and y. Starting with initial
conditions - at t = tQ, x = x0 and y = y0 - we have numerical values for the
derivatives:

-£ = F(to,xo,yo) and -£ = G(t0, x0, y0).at at

At tx = t0 + h, let x = xx and y = yv Then

dx -
dt

and

(Note the similarity of this process to the approximate increments of Section
3.3.) Thus,

xl~xQ + h-F(to,x{),yo) and yx ~ y0 + h-G(t0, x0, y0).

Using these approximate values for xx and yx at tl9 we repeat the process at

x2~x1 + h-F(tl9x1,yl) and y2 « j>2 + h-G(tl9xl9 yx).

Continuing, we obtain the approximate solution by the following:

The Euler method for the system of two first-order differential equations,
dx/dt = F(t, x, y\ dy/dt = G(t, x, y), at t = t0, x = x0, and y = y0:
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8 Example 1
Differential equations Let us apply this Euler iterative method to the system (14) and (15), with

a = 0.01, fc=150, c = 0.05, k = 0.2 - constants that have been chosen to
correspond to neat equilibrium values of XE = 100 and YE = 10. Then the
Euler equations are

Xn+i = *n + A[0.01^(150- Xn)~0.05XnYn]

and

Yn+1 = Yn + h[(0.01Xn-l)Yn].

Note that t does not appear explicitly in this case.
We must choose initial values, Xo and 70, which can be done with

knowledge of the natural circumstances. If the ecological system actually
leads to a balance of the populations, we should attain values close to the
equilibria. For simplicity's sake, let us start with Xo =102 and Yo = 9.8 -
numbers very close to the equilibria. Later we shall consider initial values
much farther from the equilibrium values.

We choose h = 1 to stand for the duration of one generation in the prey
population. Then, to two decimal places,

Xx = 102 + [(0.01)(102)(150 -102) - (0.05)(102)(9.8)] = 100.98,

and

y1== 9.8+ [(0.01)(102)-l] [9.8] =10.00.

Both Xx and Yx are closer to XE and YE than Xo and Yo are. Let us take
another step:

X2 = 100.98 + [(0.01)(100.98)(150 -100.98) - (0.05)(100.98)(10.00)]

= 99.99,
and

y2 = 10.00 + [(0.01)(100.98) -1] [10.00] = 10.10.

This time, X has moved toward XE, but Y has moved away from YE.
Further steps display similar behavior - occasional improvements, occa-
sional setbacks - but over a substantial sequence of steps, the values of Xn

and Yn will approach their equilibria. We shall return to this example in the
problems at the end of this section.

Example 2
Here is a quite different example in which the Euler method can also
provide useful information:

with z = 0 and dz/dt = 1 at / = 0. This is a second-order linear differential
3 0 4 equation, with right member equal to zero, but the coefficient of dz/dt is not



a constant. Tricks are needed to solve equations of this sort - if, indeed, 8.11
they can be solved at all. In the problems at the end of this section we shall Approximate solutions
learn that the desired particular solution of this equation can be written as of a pair

z = e'2/2fe-s2/2ds. (36)

The integral appearing in this solution cannot be evaluated by antidifferenti-
ation, as we shall note in Chapter 9. Thus, the existence of this formula for
the solution does not obviate the need for numerical approximation, so we
may as well do the approximation at the outset.

To apply Euler's method to equation (35), we reduce it to a pair of
first-order equations through the substitution x = z and y = dz/dt.

Then

dx _ dz _ dy _ d2z _ dz _

Thus, equation (35) is equivalent to the system

dx , dy
- = y and -^-ty + x,

with x0 = 0 and y0 = 1 at t0 = 0. The Euler method gives us for this system

Choosing h = 0.1, we obtain

2 (0.1)] =1.02,

x3 = 0.2-h (0.1)(1.02) = 0.302,

>>3=1.02 + (0.1)[(0.2)(1.02) + (0.2)] =1.0604,

and so on.
Because x = z, the values of xn constitute the approximate solution. We

can compare the values of x for / = 0.1,0.2,0.3,... as thus obtained with the
values provided by equation (36), approximating the integral in that equa-
tion by using statistical tables or one of the techniques developed in
Chapter 9.

The accuracy of the Euler method for systems of differential equations is
again of order h: Halving h will tend to halve the error, reducing h by a
factor of 10 will tend to reduce the error by a factor of 10, and so forth. As
with a single equation, there exist other methods of greater efficiency, but we
shall not develop them here. 3 0 5



8 PROBLEMS

Differential equations L £ x t e n d ^ c a l c u l a t i o n s o f E x a m p i e i to n = 10. Observe the oscillations

about XE = 100, YE = 10 and their tendency to diminish in magnitude as
n increases.

C 2. (a) Prepare a program to calculate Xn and Yn of Example 1, and use it to
extend the sequence of Problem 1 to n — 20. To n = 50.

(b) Without knowledge of XE and YE in Example 1, a person might
choose more "distant" Xo and Yo. With understanding of the condi-
tions of the population problem, a choice as close as ^ = 1 1 0 ,
Yo = 20 is likely. Use these initial conditions to see whether you tend
toward XE and YE. (Although the first few steps are discouraging,
after n = 10 things look better.)

(c) Try other starting values, even such wild ones as Xo = 15, Yo = 1. Can
you account for the consequences on ecological grounds?

o 3. Extend the calculations of xn and yn of Example 2 to tn = 1.0 (i.e., n = 10).
o 4. (a) Same as Problem 3, with h = 0.01.

(b) For t =1, equation (36) gives z = ex/2He~sl/1 ds. By use of statistical
tables, we find this z to equal 1.41068614, to eight decimal places.
Calculate the error, z — x10, in Problem 3, and the error z - x100 in
Problem 4(a).

5. The aim of this problem is to find an exact solution of equation (35):

d2z dz
—--t-r-z = 0.
dt2 dt

(a) Verify that the left side of the differential equation is

d (dz
-rl-r ~ tz
dt\ dt

and hence that dz/dt — tz = cl9 where cx is an arbitrary constant.
(b) Multiply both sides of this last equation by e~l / 2 , and thus obtain

(In differential equations texts, the multiplier - in this case,
is called an "integrating factor".)
B

we can rewrite the equation of part (b) as

Hence, e t2/2-z = cxfoe s'l/1ds 4- c2. Solve for z to obtain the general
3 0 6 solution.



(d) Show that the initial conditions, z = 0 and dz/dt=\ at / = 0, imply 8.11
that cY=\ and c2 = 0, and hence that the particular solution of Approximate solutions
equation (35) is z = etl/2^e~sl/1 ds. of a pair

The remaining problems have exact solutions involving trigonometric
functions. Save your results on these problems to compare with results in
Chapter 10 where such functions are discussed.

o C 6. Apply Euler's method with h = 0.1 to the system of equations

dx A

Yrx~y and

dy
— = x + y, with

JC =1 and y = 0 at t = 0,

to obtain approximate solutions for / = 0.1,0.2,..., 1.0.
o C 7. Same as Problem 6, with h = 0.01.

o 8. (a) Reduce the differential equation d2z/dt2 +2(dz/dt) + 2z = 0, with
initial conditions z = 0 and dz/dt = 1 at t = 0, to the system dx/dt = y
and dy/dt = - 2(x 4- y\ with x = 0 and y = 1 at t = 0.

C (b) Apply Euler's method with h = 0.1 to this system to obtain approxi-
mate solutions for / = 0.1,0.2,... ,1.0.

o c 9. Same as Problem 8(b), with h = 0.01.
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Further integration

9.1 Introduction

There are five topics to be treated in this chapter:
1. Review of the role of the Chain Rule in antidifferentiation
2. More applications of integration, in the spirit of the discussion of

Chapter 5
3. New sorts of "elements" - besides rectangles, disks, and slabs - to sum

for the "whole"
4. The idea of mean (or average) value and its applications
5. Quadrature: numerical (approximate) integration

9.2 Review of the use of the Chain Rule in integration
(antidifferentiation)

We illustrate our first topic with a familiar example:

ndxf3— =
J>) X

It is also true that Jjdu/u = Inu\\ = In3-In2 = Inf.
The symbolism, of course, implies that the limits of integration refer to

the variable appearing in the integrand - x in the first case and u in the
second. The value of the integral, then, depends on the function appearing
in the integrand and on the limits of integration - it does not depend on the
particular letter or letters used. To emphasize this basic fact, we can write
Jid(*)/* = In * 12- Mathematicians with a primitive sense of humor some-
times write

d (cabin) -
——- = log cabin U.

cabin & l2

We have already made use of these observations extensively in Sections 5.9,
3 0 8 6.8, and 7.5, and we take this opportunity for some review.



Example 1 9.2
,2 9*+ 3 The Chain Rule In

1 = Jo 2x2+2x+9dX integration again

can be evaluated as follows: If we set u = 3x2 + 2x + 9, then du = (6x + 2) dx.
Hence, we write

/ = = r2 3(3x+l)dx = ri (3x + l)dx _
h 3x2+2;t+9 ô 3JC2+2JC+9 ~

= |(ln25-ln9)

Example 2

'o (3*2+2x + 9)1/2

can be evaluated through the same substitution as was used in Example 1:

•|2

/ =
W 1 / 2

MV2 2 1 / 2
= 3(3x2+2x + 9)1/2|,

Don't fall into the trap of antidifferentiating the function in this case as
ln(3x2 + 2JC + 9)1/2 just because (3.x2 + 2x + 9)1/2 appears in the denomina-
tor!

Example 3
The integral

looks forbidding, but it is susceptible to the same approach we have used in
the preceding examples: set e2x + e~2x = u.

Problem 1
Work out this example to show that the given integral equals ^In(e2* +
e~2x)\\ = iM.(eA' + l)/2e2]. Check by verifying that the derivative of
\\n(e2x + e~2x) equals (e2x - e~2x)/(e2x + e~2x).

PROBLEMS

2. Evaluate each of the following:

(a) f\x2+2)xdx (b) (\x2+2)xdx (two ways)



9
Further integration

2 Ax dx — xdx

(h) (29x2]/x3+ldx

dt -dt
t2+2t+3

3. Evaluate Jo(ex + e~x)(ex — e~x)dx in three ways:
(a) Multiply out the two factors of the integrand, and find the antideriva-

tive of each term.
(b) Set ex + e~x = u.
(c) Setex-e~x = u.

4. Evaluate f2(e3x dx)/(e3x -1) . Show that the answer can be written in
the form jln(e3 4-1).

5. Evaluate J3(e2xdx)/(e2x — 1). Show that the answer can be written in
the form ±\n(e4 + e2 +1).

6. Evaluate J2
2e~x2-xdx.

7. Evaluate j2{e3xdx)/(e3x - I ) 2 . Show that the answer can be written in
the form e3/3(e6-l).

8. Evaluate f3(e2xdx)/(e2x - I ) 2 . Show that the answer can be written in
the form e2(e2 + l)/2(e6 -1) .

9.3 Force of attraction

• <

Fig. 9-1

Newton's law of universal gravitation states that any two particles attract
each other with a force proportional to the product of their masses and
inversely proportional to the square of the distance between them. Accord-
ing to this law, the force of attraction (F dynes) between two particles, Px

and P2, of masses m1 g and m2 g, respectively, at a distance r cm apart
(Figure 9-1) is given by F=Gmxm2/r

2, where G is the constant of
proportionality - the so-called gravitational constant.

There are many quantities besides the force of gravitational attraction
that vary with distance in an "inverse square" fashion: The intensity of light
(or heat) at a distance from a source (like the sun) is inversely proportional
to the square of that distance; the force of repulsion between two electri-
cally charged particles of the same sign is inversely proportional to the
square of the distance between the particles, and so forth. The power law,
Q = kr", with n = — 2, is one of the most important types of variation for
many applications.

If we have two extensive bodies, composed of many particles, the total
force of gravitational attraction between the bodies is the sum of the forces
between their pairs of particles (Figure 9-2). Force, like velocity, is specified



by direction as well as magnitude, and the problem of summing forces of 9-3
differing directions as well as different magnitudes can be quite complicated. Force of attraction
We shall deal only with a problem involving a single direction; it will suffice
to illustrate the use of integration in such a problem. Suppose a particle of
mass m g is located at point P, in line with a bar AB, of length / cm, and
that the distance PA is a cm (Figure 9-3). Suppose, moreover, that the bar
has a uniform density, k g/cm. What is the total force of attraction between
the particle and the bar?

The crux of the problem lies in the varying distances between the particle
at P and the particles of the bar AB. A particle at A is at distance a from P,
and a particle at B is at distance a + / from P. Hence, according to the law
of universal gravitation, the forces differ. All the varying forces, though, are
directed along the straight line PAB, so that we can get the magnitude of the
total force by summing the magnitudes of the constituent parts. If we
consider a small piece of the bar, of length Ax cm, at distance x from P, as
in Figure 9-4, the mass of that piece is k-kx g. The force of attraction, AF Fig. 9-4
dynes, between the particle at P and this small piece of the bar is given
approximately by

G-mk^x

x2

Problem 1
Explain why this equation is only approximately (not exactly) valid.

The total force of attraction is the limit of the sum of such "elementary"
forces, as Ax -» 0, and the limit of this sum is the integral

a +1 Gmk dx

where the limits of integration correspond to the values of JC at the ends of
the bar.

Problem 2
Perform the integration to verify that

Gmkl ,
F= —, r dynes.

a{a + l)

Now let us change the problem by making the density of the bar variable:
Suppose that the bar's density, p g/cm, increases uniformly from ca g/cm
at A to c(a + /) g/cm at B.

Problem 3
Find a formula for p in terms of x. (Answer: p = ex.) 311



9 Problem 4
Further Integration Set up the integral for the total force of attraction between the particle at P

and the bar in this case, evaluate the integral, and thus verify that

a + l
F=Gmc\n dynes.

a

Problem 5
(a) Suppose that the bar's density, p g/cm, increases uniformly from 0 at A

to k at B. Find the formula for p in terms of x.
(b) Set up the integral for the total force of attraction between the particle

at P and the bar, and verify that it can be written in the form

Gmk ra + idx GmkaLrmk ra + idx_t ~ ~ r ) a ^ - a ^
(c) Evaluate these integrals, and thus verify that

F = Gmk —In : dynes.
L / a a +1\

9.4 Loads

-iQ ft » r If the load on the beam ST in Figure 9-5 were uniformly distributed - 25
I I lb/ft, say - then the total load on the beam would be found by simple
Fig. 9-5 arithmetic: 25 lb/ft X10 ft = 250 lb. However, if the loading is variable, we

may need integration. Let us assume that the loading (y lb/ft) varies with
the distance (JC ft) from S as follows: y = 2 + 5x — 0.3x2. Then the load on

s*« 1Qft *J the small piece of the beam marked Ax in Figure 9-6 is approximately
1 11 1 ykx = (2 + 5JC -0.3JC2)AX, and the total load (L lb) on the whole beam is
* *~* ̂ * the limit of the sum of such "elementary" loads. That is, L is given by
Fig- 9-6

L= f (2 + 5x-0.3x2)dx.

Problem 1
Evaluate this integral to verify that L =170 lb.

Problem 2
Suppose that the loading on this beam is given by y = 2 + 5x.
(a) Find the total load, L lb, in this case.
(b) At x = 0, y = 2; at x = 10, y = 52. What do you think to be the average

value of yl Hence, what total L?
(c) Interpret your results in (a) and (b) in terms of the area under y = 2 + 5x

from x = 0 to x = 10.
(d) Can the simple "averaging method" be used for the original loading

3 1 2 function, y = 2 + 5JC - Q3x 2 ? Explain.



Now we consider a two-dimensional loading problem. Suppose that the
loading (y lb/ft2) on a rectangular floor, 20 ft by 50 ft, varies thus with the
distance (x ft) from one of the 20-ft sides: y = 8 + 1.4* + 0.06x2. Then we
proceed to find the total load (L lb) as follows: All points on a line segment,
UV, parallel to the 20-ft sides have the same value of x, and hence the same
loading, y (Figure 9-7). On the shaded strip of width Ax, the load is
approximately (y lb/ft2)-(20-Ax ft2) = 20j>Ax lb. The total load on the
whole floor is the limit of the sum of such "elementary" loads; that is,

50
.4x+0.06x2)</x.

Problem 3
Evaluate the integral to verify that L = 46.5 tons.

Here is a two-dimensional problem that uses language somewhat different
from that of the preceding example, but a similar argument: The graph of
x2/100+ >>2/36 =1 is a closed oval curve, called an ellipse, as shown in
Figure 9-8(a). Suppose that a metal plate has the shape of the region
bounded by the coordinate axes and the arc of this ellipse in the first
quadrant, with x and y measured in inches, and suppose that the density
(p lb/in.2) of the plate varies thus with the distance (x in.) from the y axis:
p = i*. We find the total weight, W, of the plate as follows: The area, A 4̂,
of a strip of width Ax at distance x from the y axis is given approximately
by Av4 = >>-Ax, where y is the height of the curve corresponding to the
abscissa x, as shown in Figure 9-8(b). The weight of the strip is given
approximately by AJF=pj>Ax. Because all points in the strip have ap-
proximately the same abscissa, x, we know that &W=jx \y-Ax, approxi-
mately.

Problem 4
There are two approximations involved in this equation. What are they?

Problem 5
Solve the given equation of the ellipse for y in terms of x to obtain

9.4
Loads

V

u

20

50
Fig. 9-7

(b)

(x, y)

•10-

Fig. 9-8

Hence, AW=^]/l00- x2xAx. The entire weight of the plate is the limit
of the sum of the "elementary" weights of the strips. That is, W =

Problem 6
Evaluate this integral to obtain = l00 lb. 313
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w, p W2

Fig. 9-9

Fig. 9-10

P

Fig. 9-11

9.5 Moment of a force

As a child learns early from experience on a seesaw, one can balance a
heavier weight by sitting farther from the fulcrum on which the board rests.
In fact, in the situation in Figure 9-9, if Wl — 2W2, then x2 must equal 2xx

for balancing. In general, for equilibrium, Wl'Xl = W2-x2. The measure of
the tendency of a force to produce rotation about a point, P9 is given by the
magnitude of the force times its "lever arm" - the distance from P to the
line of action of the force (Figure 9-10). This measure is called the moment
of the force about P:

M=Fd.
Moments are additive: If we have two forces, Fx and F2, at distances dx and
d2 from P, as in Figure 9-11, then the total moment about P is given by

Fig. 9-13

Suppose, though, that we have not one or two or ten forces, but a
continuous distribution of forces, as is in fact the case even in our initial
example if we do not ignore the weight of the seesaw board itself. If the
density of the board is constant, it can be shown that the moment of its
weight about P is the same as though its entire weight were concentrated at
its midpoint (Figure 9-12). If the density varies, we must use integration:
Suppose that the horizontal beam has a weight (w lb/ft) that varies thus
with the distance (x ft) from A: w = 5 + 2x.

To find MA9 the moment of its weight about A, we proceed as suggested in
Figure 9-13: At distance x from A, a small piece of length Ax has a weight,
AW, given approximately by bW= (w lb/ft)-(Ax ft) = WAJC lb. The moment
of this piece about A is given approximately by

AM^ = (W-AJC)-JC

= (5 + 2x)-Ajc-Jc(lb-ft).

Problem 1
There are two approximations in this last equation. What are they?

The desired MA is the limit of the sum of the "elementary" moments,
so

MA= f (5 + 2x)xdx.
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Problem 2
Evaluate this integral to verify that MA = 234 lb-ft.

Problem 3
The density of this beam varies uniformly from 5 lb/ft at A to 17 lb/ft at B.
What, then, do you think to be its "average density"? Hence, what do you



think to be its total weight? Check by integration to verify that its total
weight is, in fact, 66 lb. Can one consider its total weight as being
concentrated at the midpoint of the beam to compute MA7

Problem 4
Suppose the density of a 6-ft beam to be constant: w = 5 lb/ft. Use
integration to verify that the moment of the weight of the beam about one
end of the beam is the same as though the entire weight were concentrated
at its midpoint.

Problem 5
For the case of the 6-ft beam in which w = 5 + 2x, where x is the distance
from A, find MB, the moment of the weight of the beam about B. (Hint:
What is the weight of a piece of length Ax at distance x from Al What is its
lever arm?)

Problem 6
The answer to Problem 5 is MB =162 lb-ft, which is less than MA, as found
in Problem 2. Can you give an argument that one should expect MB to be
less than MA7

Problem 7
The loading (/ lb/ft) on a beam, AB, 10 ft long varies thus with the distance
(x ft) from A: I = 2 + 3* -0.12*2.
(a) Find the total load, L lb, on the beam.
(b) Find the moment of the load about A.
(c) Find the moment of the load about B.

9.6
Consumers' surplus

9.6 Consumers9 and producers9 surpluses

Suppose that the demand curve for a product is as shown in Figure 9-14,
with the price ($/?) per item at which there is a market demand for q items
given by p = /(#), 0 < q < a. That is, corresponding to a demand for q items
is a price f(q). If the producer increases his production from q to q + A#,
his incremental revenue, AZ£, is given by

His total revenue, R, is the limit of the sum of such incremental revenues,
that is,

R = ff(q)dq.

In other words, the total revenue is the area under the demand curve. This is
valid on the assumption that the producer has perfect discrimination, and

^q a q

Fig. 9-14

315
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can practice it; that is, he can charge exactly "what the traffic will bear,"
obtaining from some eager, well-heeled customers the relatively high price
that they are willing to pay for his product, and scaling down the price to
sell also to those who can't or won't meet the premium prices.

Actually, it is more likely that the producer sells q0 items, say, all at the
fixed price p0 = f(q0), obtaining total revenue, Ro, given by

which appears graphically as the area of the shaded rectangle in Figure 9-15.
If he were able to practice perfect discrimination, his revenue in selling q0

items would be

The difference, R — Ro, is called consumers9 surplus and is shown graphi-
cally as the horizontally shaded area in the figure. It represents the total
financial advantage to those customers who were willing to pay more than
$p0 for the item.

Problem 1
If the demand function is given by p = 99 — 2q + O.Olq2, find the consumers'
surplus if the constant price corresponds to a demand of q0 = 30. If q0 = 60.

Pa = / W

Fig. 9-15

P = g(q)

a q 0
Fig. 9-16

The foregoing discussion has an analogue, leading to the concept of
producers' surplus: If the supply curve for a product is as shown in Figure
9-16, with the price ($/?) per item at which the producer is willing to supply
q items given by p = g(q)9 0 < q < b, then the total revenue obtained by
selling b items in accord with this pricing function is

R=[bg(q)dq.
Jo

However, if the producer sells q items, all at the fixed price oip = g(q) each,
his total revenue R is given by

316



R appears graphically as the area of the shaded rectangle in Figure 9-17, R
as the area under the curve between q = 0 and q = q, and the producers'
surplus, R — R9 as the doubly shaded area in the figure.

Problem 2
If the supply function is given by p =15 4- q+0.01q2, find the producers'
surplus if the supply is q = 10. If q = 30.

For steady operation, the quantity supplied should equal the quantity
demanded. The quantity (and price) corresponding to such an equilibrium
situation can be found by solving simultaneously the formulas for the
supply and demand functions.

Problem 3
For the demand function of Problem 1 and the supply function of Problem
2, find the equilibrium, q, and its corresponding/?.

Problem 4
For the constants p and q found in Problem 3, find the consumers' surplus
and the producers' surplus.

9.7
Horizontal strips;

circular strips

P = g (q)

Fig. 9-17
b q

9.7 Horizontal rectangular strips and circular strips

Thus far, in setting up integrals, we have had occasion to select "elements"
like those in Figure 9-18: short pieces of bars, thin vertical rectangles,
cylindrical disks, and slabs of rectangular and other shapes. In every case,
the criteria are as follows: (1) Can we express the desired quantity (area,
volume, mass, moment, load, etc.) as the limit of a sum of the quantity for
such elements? (2) Can we express the quantity for the element itself in the
form/(jc)-A;c, for some function,/? If both criteria are met, then we know
that the desired quantity equals

AJC

fbf(x)dx,

where the limits are such as to encompass the entire figure. We can then try
to evaluate the integral by finding an antiderivative of f(x).

The theory of integration does not restrict us to elements of the sort
pictured earlier, and we shall now consider some examples that necessitate
the use of other types of elements.

Example 1
Suppose that the quarter-elliptical plate encountered at the end of Section
9.4 has a density (p lb/in.2) that varies thus with the distance (y in.) from
the x axis: p = \y. If we set out to find the total weight, W, of the plate by

•A*

Fig. 9-18
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Fig. 9-19

x2

Too H

^

Av

Fig. 9-20

Fig. 9-21

Fig. 9-22
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taking vertical strips as before (Figure 9-19), we have no difficulty with the
area, AA, of the strip: AA = yAx, approximately, or AA = |V^100- x2 Ax,
approximately.

But there are many different values of y in the strip (indefinitely many, in
fact), so it is not correct to say that for this strip p = \y = jvlOO- x2 . (This
value of p in terms of x is valid only at the top of the strip, where the
equation of the curve is y = fvlOO— x2 .)

What we must do is to take a horizontal strip (Figure 9-20), within which
all values of y are essentially the same, and hence, also, all values of the
density are essentially constant.

Problem 1
Solve the given equation of the ellipse for x in terms of y.

The area, A A, of the horizontal strip shown in Figure 9-20 is given
approximately by

AA = x• Ay = | / 3 6 - y2 Ay.

Hence, the weight, AW, of the strip is given approximately by

AW=p-AA = \ y ^ 6 - y2Ay.

Then, the total weight, W, of the plate is the limit of the sum of the weights
of the "elementary" strips, so

Problem 2
Evaluate this integral to obtain W=40 lb.

Example 2
Suppose that the loading (w lb/ft2) on a circular floor of radius 6 ft varies
with the distance (r ft) from the center of the floor as follows: w = 2+ \r.
To find the total load (L lb) on the floor, we cannot use vertical rectangular
strips, as in Figure 9-21, because r varies within such a strip, and hence w
does, also. Horizontal strips would be no better. To obtain an element
within which r (and w) are essentially constant, we must take a circular strip,
as in Figure 9-22. We can approximate the area of such a circular strip by
thinking of its being made of paper, snipping it with scissors, and laying it
out as a long thin rectangle, whose length is 2?7T, the circumference of the
original circular strip, and whose width is Ar. Thus, AA = Imr-Ar, ap-
proximately.

Digression The exact value of A A is the difference between the area
within a circle of radius r + Ar and the area within a circle of radius r.



Problem 3
Assuming the formula for the area of a circle, verify that
7r(Ar)2, exactly.

We argue that if Ar is small, (Ar)2 is much smaller and can safely be
ignored in an approximation. Note the analogy with Example 1, 3.2.

Returning to our circular floor, we say that the load, AL, on a circular
strip is given by

AL = (w lb/ft2)-(AA ft2) = w-AA lb

The total load, L, is the limit of the sum of the "elementary" loads, or

L = (6(2+\r)2<nrdr.

Problem 4
Evaluate the integral and thus verify that L =144T7- lb.

In this section we have seen how horizontal rectangular strips and circular
strips can be used in setting up integrals. There are still other useful types of
"elements" that could be taken up if time were available.

9.7
Horizontal strips;

circular strips

PROBLEMS

5. Assuming knowledge of the formula for the circumference of a circle, use
integration with circular strips to find the area of a circle of radius R.

6. A washer consists of the region between two concentric circles of radii 1
mm and 7 mm, as in Figure 9-23. The density (p g/mm2) of the material
forming the washer varies thus with the distance (r mm) from the center:
p = 0.08\/l5 + r2 . Find the total weight of the washer.

* 7. The bottom of a tin can is in the form of a circle of radius 4 cm, with a
hole of radius 1 cm at the center. The bottom is covered uniformly with
fine dust particles, 105 of them per square centimeter. The dust is drawn
off through the hole by "suction," each particle traveling in a straight line
toward the center. Find the aggregate (i.e., total) distance traveled by all
particles in reaching the edge of the hole.

* 8. The ellipse with equation x2/a2 + y2/b2 =1 has semiaxes a and b.
According to a statement made at a number of points in this book, the
area within this ellipse equals mab square units. Obtain this result in the
following way:
(a) Using vertical rectangular strips, set up the integral expressing the

area, Ac, within the first quadrant of the circle x2 + y2 = a2 (Figure
9-24).

Fig. 9-23

Fig. 9-24
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Fig. 9-25

(b) Using vertical rectangular strips, set up the integral expressing the
area, AE9 within the first quadrant of the ellipse x2/a2 + y2/b2 = 1
(Figure 9-25).

(c) From (a) and (b), express the relationship between AE and Ac.
(d) Knowing the formula for the area within a circle, verify the formula

for the area within an ellipse.

Table 9-1

Grade

60

70
80

90

100

Table 9-2

Income

range

5001-7000
7001-9000

Number of

instances

3
4

6

5

2

20 Number of grades

9001-11,000
11,001-13,000

Number of

instances

45

63
82

85

275 Number
of families
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9.8 The idea of an average

Simple arithmetical averages are entirely familiar: If scores on three 1-hr
tests are 70, 80, and 90, then the average score is (70 + 80 + 90)/3 = 80.
Exactly the same idea is involved in averaging the homework grades in
Table 9-1, although there is more arithmetic: The average grade is

60 + 60 + 60 + 70 + 70 + + 100
20

= 79.5.

The arithmetic could be condensed by writing

60-3+ 70-4 +80-6 +90-5+ 100-2
average grade =

3 + 4 + 6 + 5 + 2

In this form, we can think of the coefficients 3, 4, 6, 5, and 2 as being
weights indicating the relative "importance" of the individual grades of 60,
70, 80, 90, and 100.

A generalization is seen in defining an average income for the data in
Table 9-2. It is customary to choose the mid-income of each range to
represent that range, leading, in this case, to the equation

average income =
6000•45 + 8000•63 +10000 - 82 +12000•85

45 + 63 + 82 + 85

In doing this, we are assuming that incomes are uniformly distributed
within each range.



9.9 Average velocity

Another familiar notion about averages is embodied in the query "What
was your average velocity in driving from Boston to Washington?" The
velocity (v mph) of the car is a function of the time (/ hr),

9 . 9
Average velocity

and it is likely that v is continuously changing. There are, then, infinitely
many values of v to average, and the ideas of the preceding section do not
immediately apply.

Problem 1
Before reading further, try to formulate a definition of average velocity.

There are two approaches we can use, leading (fortunately) to the same
result:

1. If we cover M miles in T hr, we define our average velocity (v mph) by
v = M/T. In other words, if a journey at a variable velocity takes T hr, the
same journey, at the constant velocity v9 will also take T hr. Because
v = ds/dt, where s is distance, we know that s is an antiderivative of v; and
if M miles are covered in T hr, it must be that

vdt.

Hence,

M
v = - = • = •

M = fTv

Fvdt [Tf(t)dt
Jo Jo

2. Another approach is to think of the graph of v = f(t) over 0 < / < T, as
in Figure 9-26. If we divide the interval [0, T] into n subintervals each of
length A/, we can choose some value of v within each subinterval as
representing the v's of that subinterval - in analogy with the income
example of the preceding section, we might choose, in each subinterval, the
value of v halfway between the minimum v and the maximum v of that
subinterval, but any choice will do. Let us designate by v1 = f(t1)9 v2 =
f(t2),--,vn= f(tn) the values of v in the first through «th subintervals. The
arithmetical average (also called the arithmetic mean) of these n values of v,

vx + v2+ ••• +vn f ( t l ) + f ( t 2 ) + ' " + / ( / J

is an approximation to what we think of as the average of the infinitely
many v9s. If n is larger (A/ is smaller), we expect the approximation to be
better, and we say that

v = lim
n —> oo

Ar
Fig. 9-26
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But, as so often happens, we can't immediately tell what the limit is: The
numerator of the fraction gets larger with increasing n (more terms), and the
denominator obviously does, too. The trick in this case is to multiply
numerator and denominator by A/:

n nkt

Problem 2
(a) What is a symbol for the limit of the numerator of the right side, as

(b) What is the value of the denominator of the right side? Hence, its limit?

This second approach, then, gives the same result as obtained with the first
approach:

If v = /(0» then v9 the average of v over the interval 0 < t < T, is given by

V =

y = fix)

— \f{x)dx-

y = fW
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9.10 The average of a function defined on an interval

The same arguments used to define average velocity, when v is a function of
t, can be used to define the average value of j , when^ is any function of x:

\iy = f(x), thenj>, the average of y over the interval a < x < b, is defined
by

y =

fbf(x)dx

b-a

A standard name for y is "mean value," or, in graphical language, "mean
ordinate" (synonym, average height of the curve). The defining relation for j>
can also be written as

a

Because Jaf(x) dx can be interpreted as the area under the curve y = f(x)
from x = a to x — b, we see from equation (1) that y is the height of that
rectangle with base (b — a) such that the area of the rectangle equals the
area under the curve: In Figure 9-27, the area of rectangle ABCD equals the
area under the curvey = f(x) from x — a to x = b.

This interpretation can be used to obtain a useful approximation to the
average value of y9 if y = /(*) , over the interval a<x<b: We plot the
graph of y = f(x) and then estimate the position of a horizontal line, CD,



such that the area(s) under the curve above CD equal(s) the area(s) under
CD above the curve. Then the height of CD equals y.

By way of emphasis, we note how the remarks on mean ordinate apply to
average velocity: Because v = (jjv dt)/T, we see that v is the mean ordinate
of a "speed-time" graph. But the area under a speed-time graph equals
distance traveled. Hence, v = M/T, as before.

Example 1
Suppose that the density (p g/cm) of a bar of length 8 cm (Figure 9-28)
varies thus with x, the distance from one end of the bar: p = 3 4- 2x. To find
the average density, p, we make use of the general formula given at the
beginning of this section, and we write

9.10
Average of a function

Fig. 9-28

Problem 1
Evaluate the integral to obtain p : = 11.

The integral represents the mass of the bar, so that if we note the units of
the component parts, we have 88 g/8 cm =11 g/cm. In words, the average
density equals the total mass divided by the length; or, the average density
is such that a bar of the same length, with a constant density equal to this
average, has a mass equal to that of the given bar.

Note that, in this case, at x = 0, p = 3; at x = 8, p=19. Because p
increases at a uniform rate, we expect that p will be the arithmetic average
of the initial and final values of p, and, indeed, this is the case:

We can visualize this result in Figure 9-29, where ABCD is a trapezoid
whose area represents the mass of the bar. The area of a trapezoid equals its
altitude times half the sum of its bases. In this case,

19

11 —

Fig. 9-29

and the mean ordinate, p, is that height such that the two triangular areas
with check marks are equal in area.

Example 2
In Problem 7, 9.5, the loading (/ lb/ft) on a 10-ft beam varied thus with the
distance (JC ft) from one end: / = 2 +3.x — 0.12.x2. To find the average
loading, /, we again make use of the general formula given at the beginning
of this section, and we write

l°(2 + 3x-0.12x2)dx
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9 Problem 2
Further integration Evaluate the integral to obtain / = i f = 13 lb/ft.

The integral represents the total load on the bar, so we can say that the
average loading equals the total load divided by the length, or the average
loading is such that a beam of the same length, with a constant loading
equal to this average, has a total load equal to that of the given beam.

Problem 3
Using a large scale, sketch the graph of / = 2 + 3JC — O.llx2 from x = 0 to
x =10, and estimate /by "balancing areas."

PROBLEMS

4. Find the mean ordinate of the curve y = kx2 over the interval
(a) [0,1] (b)[l,4] (c) [p,q] (Simplify.)

5. Find the mean ordinate of the curve y = 2x — x2 over the interval [0,3].
Interpret the result in a sketch of the graph of the curve.

6. Find the mean ordinate of the curves = ex over the interval [0,ln5].
7. If the loading (y lb/ft) on a beam 10 ft long varies with the distance (x

ft) from one end as y = 2 + 5x — 0.3.x2, find the average loading.
8. If the velocity (v ft/sec) varies with elapsed time (t sec) as v = v0 —32/,

where v0 is a constant, find the average velocity in the interval
(a) [0,1] (b)[l,2] (c)[2,3]

* (d) [t0, fj . Verify that v is the arithmetic average of the velocities at the
ends of the time interval.

9. An advertisement for the Porsche 924 Turbo provides the following data:

Gear
t (sec)
v (mph)

1st
2.3

30

2nd
7

52

3rd
12
78

4th
23.2

100

5th
49

120

(a) Assuming that the car is stationary at t = 0, find the average accelera-
tion in the first 2.3 sec. In the first 7 sec. In each case, express the
answer in terms of ft/sec2, and thus as a certain fraction of g, the
acceleration due to gravity, which is about 32 ft/sec2.

(b) Sketch a large graph of v in terms of t, assuming that the speed of the
car is constant for 0.2 sec at each change of gears (i.e., assuming that
v = 30 from t = 2.3 to 2.5, etc.).

(c) Use your graph to estimate the average speed of the car in each 7-sec
interval.

(d) Use your answers to (c) to estimate the distance traveled in the 49-sec
interval.

(e) Estimate the average speed in the 49-sec interval.
3 2 4 (0 Find an approximate formula for v in terms of /.



* 9.11 Further averages 9.11
Further averages

We illustrate by a couple of examples some slightly more complicated ideas
about averages.

Example 1
In Problem 7, 9.5, a beam, AB, 10 ft long, had a loading (/ lb/ft) that varied
with the distance (x ft) from A as follows: l = 2 + 3x — 0A2x2. Computation
in that problem showed that the total load was L = 130 lb, that the moment
of the load about A was MA = 800 lb-ft, and that the moment of the load
about B was MB = 500 lb-ft. In Example 2, 9.10, we found the average
loading, /lb/ft. We now ask: With respect to A9 what is the average lever
arm?

Problem 1
Before reading further, try to formulate a sensible definition of the average
lever arm with respect to A.

The definition is analogous to those we have encountered for average
velocity, average density, and the like: The average lever arm with respect to
A is a distance, 3c, such that if the entire load, L, were concentrated at that
distance from A, the moment of the load would equal MA. In other words,
Lx = MA, or

)
_ A A ) A - + 10
X L C°(2 + ?>x-012x2)dx

Because MA = 800 and L = 130, x = ff = 6 + ft. Figure 9-30 shows a point, Fig. 9-30
C, at distance x from ̂ 4.

Problem 2
Compute 7, the average lever arm with respect to B.

You should have found that y = y§. But the same point, C, is at distance yf
from B\ In fact, the average lever arm of the load with respect to any point
P in the line AB can be shown to equal PC.

Problem 3
For the practice in integration, help to verify the preceding sentence by
computing the average lever arm with respect to P, if P is (a) 1 ft to the left
of A, (b) 2 ft to the right of B, (c) 3 ft to the right of A. [In this case you will
have to take the difference between the (clockwise) moment of the load on
the portion PB of the beam and the (counterclockwise) moment of the load
on the portion PA of the beam.] 3 2 5



9
Further integration

Fig. 9-31

The point C is called the center of gravity of the load.

Problem 4
Let AB be a beam of length k ft with a loading (y lb/ft) at any point given
by y = f(x% where x (ft) is the distance of the point from A. If P is the
point on AB such that AP = p, p < k, let MP be the (clockwise) moment
about P of the load on PB minus the (counterclockwise) moment about P of
the load on AP.
(a) Show that MP = /0*(x - />)/(*) <foc. (Hint: Use the result of Problem 13,

5.7.)
(b) Let x be the average lever arm of the load with respect to A. Let C be

the point on AB such that AC = x (i.e., let C be the center of gravity of
the load). Show that Mc = 0.

Example 2
In Problem 7, 9.7, the total distance traveled by all dust particles in reaching
the edge of the hole (Figure 9-31) is given by

D= [4(r-l)l05-27rrdr

= 2.77r-106cm.

Observe that the number of dust particles on the bottom of the can infinite,
albeit extremely large, so that finding the aggregate distance traveled by
them in reaching the edge of the hole is merely an arithmetical problem -
an extraordinarily long arithmetical problem! Assuming a continuous distri-
bution of particles, so that calculus can be used, provides a simpler solution.
This is characteristic of our use of calculus in many physical situations: The
atomic theory implies that a piece of matter is composed of a finite number
of particles, but we find it easier to assume that matter is continuous when
we have to compute densities, moments, and so forth.

A natural question is "What is the average distance traveled by a
particle?"

Problem 5
Before reading further, try to formulate a sensible definition of average
distance in this case.

326

A definition of average distance consistent with our previous discussion is
the following: The average distance, x cm, is that distance such that if every
particle traveled that distance, the total distance traveled by all particles
would equal the actual total distance traveled. Or, equivalently, the average
distance equals the total distance divided by the number of particles. Thus,
if N = number of particles, N-x = D, or x = D/N.



Problem 6
Compute N and thus determine 3c to equal f cm.

Problem 7
Note that x as found in Problem 6 is greater than f, the distance from the
"midring" to the edge of the hole (Figure 9-32). Explain why this result is
reasonable.

There is a notation that can be used in all sorts of problems of finding
averages that helps to unify the subject and to make it easier to remember
how to proceed. We present the notation now in the context of examples
and problems that we have encountered.

In Section 9.9, the average velocity, v, in the interval 0 < t < T was seen to
be

J(\
vdt

v = T '

where v = f(t) expresses the way that v varies with /. We can write
T= /0

7dt, obtaining

f vdt

V = /v
To find v, we must go back and insert the formula for v in terms of t\ but
the symbolic formula is a convenient one to remember.

In Section 9.10, we expressed the mean ordinate, y, as

ff(x)dx
b-a '

wherey = f(x) is the formula for y in terms of x. Because b — a = j%dx, we
can write

f
L

In Section 9.10, Example 1, we obtained the average density, p, as

dx

P 8 '
where p = 3 + 2x is the formula for the density in terms of x. In general, we
can write

9.11
Further averages

Fig. 9-32
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9 Similarly, the average loading, /, is given by
Further integration fb

I Idx
/

Now we come to a couple of more interesting cases. In Example 1 in this
section, we determined x, the average lever arm of the load with respect to
A, by

fWx(2 + 3x-0.l2x2)dx

L (10(2 + 3x-0.12x2)dx '

The expression 2 + 3JC -0.12JC2 equals /, the loading (in lb/ft). Observe that
/ = dL/dx, so that

(2 + 3x -0.12.x2) dx ldx ^
' dx

Hence, a useful symbolic form for x is the following:

fx-dL
X =

fdL '
* n

Finally, in Example 2 in this section, we saw that x, the average distance
traveled by the dust particles, is given by

J4(r-l)105-27rrdr

If N is the total number of particles and A is the area of the bottom of the
can, then N = 105-A, and dN = 105dA = 105-2-!rrdr. Hence,

j\r-\)dN
l (V

For the sake of symmetry, we might introduce the quantity r as the
average distance to the center of the hole, whereas x is the average distance
to the edge of the hole. Then x = f — 1, and we have

\r-l)dN

3 2 8 • *



9.12 Summary

The problems of this chapter have followed a pattern:
(a) The quantity sought is approximated as the sum of "elementary"

quantities, which are expressed in terms of one variable and an increment of
that variable.

(b) The quantity sought is then expressed exactly as the limit of the sum
referred to in (a) (i.e., as an integral).

(c) The integral is evaluated by the Fundamental Theorem (i.e., by
antidifferentiation).

This pattern is characteristic of the way that integration is used in
scientific applications. Practice is needed, as in most mathematics, to learn
how to apply steps (a), (b), and (c) to an unfamiliar problem.

An excellent example of this pattern is provided by the derivation of a
formula needed in the article "Physostigmine: Improvement of Long-Term
Memory Processes in Normal Humans," by K. L. Davis and associates
[Science, Vol. 201 (July 21, 1978), pp. 272-4]. The drug was administered
by slow intravenous infusion (1 mg in 1 hr, at a constant rate) to human
subjects who had learned a list of words shortly before the start of the
infusion. About 2 hr later, subjects were tested for the number of words
recalled. The results were compared with the number of words recalled after
a saline injection used as a control on another day. Subjects did not know
which substance they were receiving, of course. The drug appeared to have a
significant effect in improving memory.

One of the critical issues was the amount of the drug present in the blood
plasma. If the drug had remained unchanged in the plasma after infusion,
there would have been no problem: With time (t hr) measured from the
beginning of the infusion, the graph of the rate of infusion (r mg/hr) would
appear as in Figure 9-33, and the amount (w mg) in the plasma at any time
would be given by

1, t>\.

But the situation is more complicated than this, for physostigmine decom-
poses at a constant percentage rate, with half-life of \ hr, so the amount of
the drug actually present in the blood plasma at any time T is less than the
total amount administered up to time T. The problem, then, is to express
the actual amount (U mg) of the drug present in the blood plasma in terms
of the time (T hr) since the start of infusion. We proceed to solve this
problem.

Because the drug decomposes at a constant percentage rate, we know that
if we administer^ mg at some time, the amount (y mg) at time x hr later is
given by y — y0- e~kx

9 where k is the percentage rate of decomposition. We
determine k from the given information about half-life: At x = \, y = \yQ.

9.12
Summary

r mg/hr

rhr

Fig. 9-33
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9 Problem 1
Further integration Solve this equation for k to obtain k = 21n2.

Hence,

To determine the amount of the drug present at time T, we must add up the
amounts resulting from the infusion administered for all times 0 < t < T. In
an interval of length A/ beginning at time t, the amount administered is
1 -A/ (Figure 9-34). This is they0 of equation (2). The time interval from t to

rm /hr Tis, of course, T—t; this is the x of equation (2). Hence, the amount of the
drug present in the plasma at time T resulting from the infusion in the
interval [t,t + &t] is given approximately by y = Af-e(~21n2)(7W), or y =
^t%e(2\n2)(t-T)^

The total amount of the drug present in the plasma at time T is obtained
by adding up the amounts resulting from each of the short intervals prior to

, £ j r T, or, more precisely, by taking the limit of such sums, as Af -> 0 - in other
Fig. 9-34 words, an integral:

fT
e(2ln2)(t-T)dt== fT

e
J0

We are integrating with respect to /. The letter T represents any time <1 .

Problem 2
Making the substitution v = (2\n2)(t — T\ perform the antidifferentiation
to obtain

U
21n2 o

Hence, U= [l/(21n2)][l - e
( " 2 1 n 2 ) r ] . Because eXnl = 2, we can write

e{-2\n2)T= (e\n2y2T= 2~2T = \/4T.

Thus, U= [l/(21n2)](l - l / 4 r ) .
This formula is valid for all T in the interval 0 < T < 1.

Problem 3
Check that U=0 at T=0. Make the calculation to show that at T = l,
C/=3/(81n2)«0.54.

Because no drug is administered after T = l9 the amount present in the
plasma for any T > 1 is simply the amount left from the decomposition of
the 3/(8In2) mg present at T = l. In other words, in equation (2), yo =
3/(8In2), and x = T-\. Thus, for T>1, U= [3/(81n2)]e(-21n2>(r"1>.

Problem 4
3 3 0 Simplify this last equation to U= [3/(21n2)](l/4r).



We can finally put our results together as follows: 9.12
Summary

u=

There appears to be a mistake in the Science article, for the authors
present a different formula for U - perhaps just a typographical error. It
may be useful to realize that statements are not valid just because they
appear in print. Caveat lector!

Problem 5
Make the calculations to show that 30 min after the start of the infusion, the
amount of the drug present in the plasma is about 0.36 mg, and that the
amount 80 min after the start of the experiment is about 0.34 mg.

PROBLEMS

6. Find the weight of a flat plate bounded by y = ex\ x = 1, x = 2, and the
x axis, if linear dimensions are measured in inches and the surface
density of the plate is given by p = 3x oz/in.2

7. Same as Problem 6, if the plate is bounded by y = x1/2, x = 0, x = 4,
and the x axis, with p = (1 + x) oz/in.2

8. Same as Problem 6, if the plate is bounded byy = lnx, x=l, x = e, and
the x axis, with p = l/x oz/in.2

9. Find the volume obtained by revolving about the x axis the area under
y = xex from x = -1 to x = 1.

10. Same as Problem 9, for y = xe~x .
* 11. If the plate of Problem 6 has a constant surface density of k oz/in.2 and

is in a horizontal position, find the moment of its weight about the y
axis.

* 12. In his History of Geometrical Methods, J. L. Coolidge states that Isaac
Barrow, some years before the development of the calculus by Isaac
Newton, obtained the formula for the area of a circle in the following
way, reminiscent of the method by which the area under a parabola was
obtained in Section 5.5: Divide the radius, R, into n equal parts, each of
length h. Draw circles, centered at the center of the given circle, through
each of the division points. Assuming that the circumference of a circle
of radius x is known to be 2irx, the areas of the various rings are
approximately h-lirh, h'2ir(2h% h27r(3h),...,h27r(nh). The area of the
given circle is the sum of the areas of these rings. Knowing that
1 + 2 + 3+ ••• +« = «(«+1)/2, finish the argument. 3 3 -|



9 In connection with the definition of the integral,
Further integration fb

ff
fbff(x)dx = hm

Ja Ax->0

we have noted several times that the quantity in brackets increases
without bound, while limAjc^0Ax = 0, of course. We may say, for short,
that we have an expression oo -0 to "evaluate."
The mathematician C. L. Dodgson (Lewis Carroll) wrote as follows in

making his annual report as bursar of Christ Church, Oxford:

The consumption of Madeira (B) has been, during the past year,
zero. After careful calculation I estimate that, if this rate of
consumption be steadily maintained, our present stock will last us
an indefinite number of years. And although there may be some-
thing monotonous and dreary in the prospect of such vast cycles
spent in drinking second-class Madeira, we may yet cheer our-
selves with the thought of how economically it may be done.

A « 5 * B 13. As in Figure 9-35, a particle of mass m is at point P, in line with a bar
p#"—3"*-' hVI ' of length 5 cm, PA equaling 3 cm. The density (p g/cm) of the bar

* x * increases uniformly from 0 at A to 10 at the other end, B.
Fig. 9-35 (a) Find a formula for the density at any point in the bar in terms of x,

the distance of the point from P.
(b) Find the force of attraction between the bar and the particle at P.

14. Same as Problem 13, if PA=l9 AB = 5, and p increases uniformly from
2 at A to 17 at B.

15. A plate has the shape of the region bounded by the portion of the ellipse
x2/25+ y2/l6=l in the first quadrant and the x and y axes. The
loading (/ oz/in.2) on the plate at any point (x, y) is given by / = 6x.
Find the total load on the plate.

16. Same as Problem 15, for the ellipse x2/9+ y2/l6 = 1 , if / = 5y.
17. The density (p lb/ft2) of a circular plate varies thus with the distance

(r ft) from its center: p = 2 + 3r. If the radius of the plate is 5 ft, find the
weight of the plate.

18. A floor has the shape of a circle of radius 5 m, with a hole of radius 2 m
at the center. The loading (/ kg/m2) varies thus with the distance (r m)
from the center of the hole: 1 = 5— r. Find the total load (L kg) on the
floor.

19. The velocity (v ft/sec) of a point moving on a straight line varies thus
with time (t sec): v = 3 — It +0.6/2. Find the average velocity between
f = 5 and f =10.

20. Same as Problem 19, with v = 2 + 5* -0.3f2, between t = 2 and / =10.
* 21. The density (p oz/in.) of a bar AB of length 3 in. varies thus with

distance (x in.) from the end A: p = 2 + 4x2. Find the distance of the
3 3 2 center of gravity from the end B.



* 22. The density (p oz/in.) of a bar AB of length 6 in. varies thus with the
distance (x in.) from the end A: p = 5 + ^JC2. Find the distance of the
center of gravity from the end A.

23. Evaluate

/x3+5
24. Find the area bounded by y = (4x - 2)3, x = 0, and x = 1.

9.12
Summary

SAMPLE TEST

1. (a) Evaluate

JQ e(l/2)x + x>

and show that the result can be written in the form \n(e +2el/2 +1).
(b) Evaluate

and show that the result can be written in the form l{e /{yfe +1).
2. As in Figure 9-36, a particle of mass m is in line with a bar of length

4 cm, the particle being 2 cm from the end of the bar. The density
(p g/cm) of the bar increases uniformly from 1 at A to 9 at the other
end, B.
(a) Find a formula for the density at any point of the bar in terms of x,

the distance of the point from the particle of mass m.
(b) If the force of attraction between two particles of masses m1 and ra2,

at distance r apart, is given by F = Gmlm2/r
2, where G is a constant,

find the force of attraction between the bar and the particle of
mass m.

3. A metal plate is in the shape of the region bounded by the portion of the
ellipse x2/25+ y2/l6=l in the first quadrant and the x and y axes
(Figure 9-37). The density (d oz/in.2) of the plate at any point varies
thus with they coordinate of the point: d = 6>>. Find the total weight (W
oz) of the plate.

4. A floor is in the shape of a circle of radius 5 ft, with a hole of radius 1 ft
at the center. The loading (/ lb/ft2) varies thus with the distance (r ft)
from the center of the hole: / = 1 + 3r. Find the total load (L lb) on the
floor.

5. The velocity (v ft/sec) of a point moving on a straight line varies thus
with the time (t sec): v =1 + 4/ — 0.6t2. Find the average velocity between
f =1 and t = 5.

Fig. 9-36

Fig. 9-37
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Further integration
* 6. The density (p oz/in.) of a bar AB of length 5 in. varies thus with the

distance (x in.) from the end A: p = 2 + l2x2. Find the distance of the
center of gravity from the end A.

Fig. 9-38
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9.13 Quadrature

As we know from Chapter 5, the integral of a continuous function / over an
interval [a, b], a<b, can be thought of as the area of the region bounded by
the graph of/, the x axis, and the lines x = a and x = b, provided the graph
lies on or above the axis. More generally, the integral faf(x) dx is the area
of that part of the region lying above the axis minus the area of that part
lying below it, as indicated in Figure 9-38. And as we reasoned in Chapter 5,
these areas can be approximated by adding together the areas of narrow
rectangles, the vertical length of each being the numerical value of the
function at some point in the base of the rectangle. In the figure, these
lengths are ±f(x), where x is taken to be the left end point of the
subintervals.

We also discovered in Chapter 5 that
(a) these approximations, if they are to be accurate, involve laborious

computations, and
(b) it is preferable to find the integral exactly (if possible) through the

Fundamental Theorem: If F is an antiderivative of/, then /J7(x)dx
= F(b)-F(a).

Unfortunately, it may be difficult or impossible to find an antiderivative.
Even with the elementary functions we have met, antidifferentiation may
require an ingenious trick, like a by-no-means-obvious substitution. During
the century and a half following the invention of the calculus, mathemati-
cians devoted much effort to discovering such tricks. The results are
impressive, but often complicated, and the end computations are frequently
troublesome. Worse still, although the theory ensures the existence of the
antiderivatives of continuous functions, the antiderivatives of many such
functions cannot be expressed explicitly in terms of elementary functions:
fe~x /2dx is one such example. Then a numerical approach becomes
mandatory, and even when antidifferentiation is possible, numerical solu-
tions may be more useful.

Numerical integration is called quadrature, reflecting the ancient tech-
nique of building complex areas out of small squares. Its essence is in the
rectangular method used in Chapter 5. This section and the next will be
given to two refinements of that method, refinements that yield more precise
approximations for similar computation.

To be specific about finding an approximation to j£f(x)dx, with a < b,
let n be a positive integer, set xo = a and xn = b, and choose xl9 JC2, ...,xn_x



as n — 1 equally spaced numbers between a and b, as in Figure 9-39. Thus,

Kn-2 - xn-l'

Designate by h this common length of a subinterval on the x axis. In this
partition, we have n subintervals. In these terms, the first rectangle in the
approximation contributes h -f(xo)\ the second, h 'f(xx)\ the third, h */(x2);
the «th, h-f(xn_l). Note that some of these contributions are negative
numbers for the function shown in Figure 9-40. Adding up these n contribu-
tions gives

which is the left-end-point rule for approximating /j/(x) dx.

As is stated later in Problem 7, this is the same result as would be obtained
by applying Euler's method (Chapter 8) to the differential equation dy/dx =
f(x).

Example 1
If we use the left-end-point rule to approximate j^x3 dx, with n = 2, we have
x0 = 0, xx = j , and h = \, whence

so the error in this case isBy antidifferentiation,
/o1*3 dx - L2 = | - £ = ^ . Pretty bad!

Problem 1
For the same integral, show that the error using L4 is ^ . Still not good.

With these small values of «, it is not surprising that the errors are large.
Increased accuracy comes with larger n: How much improvement will there
be for the additional work of using a large nl As stated later in Problem 6,
the result is as follows:

9.13
Quadrature

y = f(x)

i i
j I

Fig. 9-39

y = f(*)

x=b

Fig. 9-40

Bound on error with Ln

If the numerical value of f\x) does not exceed some constant, B\ for all
x in [a, b]9 then the difference between Ln and jaf(x)dx is at most
[B\b-a)/2]h.

Example 2
In approximating j^x3dx, we have f(x) = x3, so f'(x) = 3x2. Over the
interval [0,1], the maximum value of 3x2 is 3, so we can choose Br =3 .
Thus, the error in approximating the integral by L2 does not exceed
[3(1 - 0)/2]- \ = | , and the error with L4 does not exceed [3(1 - 0)/2]- \ = | .
These results are consistent with those of the foregoing Example 1 and
Problem 1. 335



9 By doubling n (and hence halving h), the error bound is halved. As
Further integration numerical processes go, that is not very good. The process would be much

more efficient if the error bound involved h2, or better yet a higher power of
/*, for then doubling n would reduce the error bound at least fourfold. In the
next section we shall develop another quadrature method and a modifica-
tion of that method. Both guarantee efficiencies of higher order, and both
take only slightly more complicated computation than the left-end-point
rule.

PROBLEMS

2. Write a formula for a right-end-point rule. What would you expect a
bound on the error to be?

3. Approximate j^x* dx by L2. By L4. What are the actual errors in these
approximations? What are the bounds on error provided by our formula?

4. Same as Problem 3, for f^[l/(l + x)] dx.

5. (a) Approximate Qe~x /2dx by L2. By L4. By L8. (This integral cannot
be obtained by antidifferentiation. Its value to four decimal places,
obtained by more refined numerical methods, is 1.1963.)

* (b) If f(x) = e~x2/2
9 what is the maximum value of | / ' (*) | in [0,2]?

Hence, what are the bounds on the errors in (a) provided by our
formula?

* 6. The purpose of this problem is to establish our formula for the bound on
the error for the left-end-point rule. We assume that / is continuous on
[a, b] and that | / ' (JC)| < B' for all x in (a, b).
(a) Show that fxy(x)dx-f(x0)-h = f£[f(x)-f(xo)]dx.
(b) Use the Mean-Value Theorem to show that \f(x) —f(xo)\<

B'-\x — xo\ = B'(x — x0) for all x in [x0, x j .
(c) For any continuous function/, it is true that | / j /(x) dx\< f£\f(x)\dx;

a sketch of a graph lying partly above and partly below the x axis
makes the relation seem reasonable. Use the relation to show that
\Jxy(x) dx - f(xo)-h\ < B'f*(x - x0) dx = B'h2/2.

(d) By repeated use of the inequality |M + y|<|«|+|y|, show that the
bound on the error, which is \Safix) dx - Ln\, is less than or equal to
[B'(b-a)/2]h.

7. Show that Euler's method (Section 8.4) applied to the differential equa-
tion dy/dx = f(x), with y0 = 0 at x = x0, produces yn = Ln.

9.14 More on quadrature: the trapezoidal rule and
its adjustment

The left-end-point rule uses a horizontal line segment, like PH in Figure
3 3 6 9-41(a), as a substitute for/(x) over any subinterval of the partition. For a
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better approximation, we take the line segment determined by the points on
the graph at the end points of the subinterval - PQ in Figure 9-41(b). If P
and Q are both above the x axis, as in Figure 9-42(a), then the integral over
this subinterval will be approximated by the area of the trapezoid ABQP,
which equals ^[f(xo)+/(x^-hAf P and Q are both below the x axis, as in
Figure 9-42(b), then the integral over this subinterval will be approximated
by the negative of the area of the trapezoid ABQP, which again equals
2[/(*o)+f(xi)]'h- [Note that both/(x0) and f(xx) are negative numbers
in this case.] If f(x0) is positive and /(xj is negative, then the integral
over this subinterval will be approximated by the area of triangle PAC
minus the area of triangle QBC (Figure 9-43). Once again, this equals
2[/(*o) + /(-*i)H- (See Problem 21 at the end of this section.) Similarly,
as shown in Figure 9-44, we approximate the integral over the second
subinterval by i[/(-*i)+ f(x2)]

mh, and so forth. We add all n parts to
obtain

or

Tn = ^[f(x0) + 2f{Xl) + 2f(x2)+ ••• +2f(xn_1)

which is the trapezoidal rule for approximating /j

Example 1
For f*x3dx, with n = 2, we have T2 = £ -^[03 +2(^)3 +I3] = tk- Because
JQX3 dx = i, the error in this approximation is ^ , still fairly large, but

9.14
The trapezoidal rule

f(Xo)

Is

Fig. 9-43

x,, - b
a = x0 Xi x2

Fig. 9-44
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- 1 0

Fig. 9-45

- 4 6

substantially smaller than the error of \ when we approximated this integral
by L2 (Example 1, 9.13).

Problem 1
For the same integral, show that the error using T4 is ̂ .

Basically through appeal to the Mean-Value Theorem, the following
bound on errors for the trapezoidal rule can be established:

Bound on error with Tn

If the numerical value of f"{x) does not exceed some constant, B'\ for all x
in [a, b], then the difference between Tn and jaf(x) dx is at most
B"\(b-a)/\2\h2.

It is the factor h2 in this bound that is particularly helpful.

Example 2
For f(x) = x\ f"(x) = 6JC. Hence, for any x in [0,1], we know that | /"(*) |
< 6. Thus, a bound on the error in T2 is [6(1 -0)/12](^)2 = | , and a bound
on the error in T4 is [6(1 — 0)/12](^)2 = ^ . These results are consistent with
those obtained in Example 1 and Problem 1.

Example 3
As a more complicated example (but still solvable exactly by antidifferentia-
tion), consider bounds on the error for the trapezoidal rule applied to

Here f(x) = x2-x4; / ' (*) = 2x -4x3 ; /"(*) = 2-12x2. We see from
Figure 9-45 that the largest numerical value of /"(*) over — 1 < x < 2 is 46,
so B" = 46. Hence, a bound on the error for the trapezoidal rule used to
approximate f2(x2 — x4) dx is

46-
12 2

If we seek to ensure accuracy to, say, three decimal places, we need to have

23 2 4

Because h = (b — a)/n = 3/«, we need

or

n2> \ = (20.7)104, or n >v/20?7-102 « 454.97.
T 4

338
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Thus, a partition into 455 subintervals will assure the desired accuracy. That



would take a lot of work, but it beats approximating by the left-end-point 9-14
rule, as the following problem shows. The trapezoidal rule

Problem 2
Show that the largest numerical value of f'(x) = 2x — 4x3 over — 1 < x < 2
is 28 and that to obtain three-decimal-place accuracy with the left-end-point
rule takes a partition into 252,000 subintervals (!).

Even with patience to apply the trapezoidal rule with n = 455, there are
likely to be blunders. A computer or programmable calculator can get the
approximate value easily, but writing the program and running it take some
time. (One calculator took 11 min to run this problem. Incidentally, the
result was —3.600108440, comfortably within the desired tolerance of
0.0005 of the exact value, which is -3.6.)

Another commonly used quadrature method, called Simpson's rule, uses
parabolic arcs instead of line segments to approximate the integrand. It
generally gives a better result than Tn. For instance, in Example 3, a
partition into 16 subintervals with Simpson's rule would assure the desired
accuracy - lots better than the 455 subintervals of the trapezoidal rule.
Simpson's rule is a popular method of quadrature, and it is a wired-in
feature of some calculators.

Surprisingly, a simple adjustment of the trapezoidal rule generally is even
better than Simpson's rule: We simply add {[f\a)-f\b)]/\2}h2 to Tn:

f 2)+ ''' +2f(xH_1

12

is the adjusted trapezoidal rule for approximating jafix) dx.

Error bound with ATn

If the numerical value of f(iv)(x) does not exceed some constant, B(w\ for
all x in [a9b]9 then the difference between ATn and f£f(x)dx is at most
B(iv)-[(b-a)/120]h4.

Example 4
For JQX3 dx, we saw in Example 1 that T2 = ^ . Hence,

5 3 -0 2 -3 - l 2

16 12 \2) 16 16 4 '

which is the exact value of the integral. Because, if/(jc) = x3,/( / i ; )(jc) = 0
for all x, the error bound with A Tn predicts that we should obtain the exact
value in this case. Indeed, the adjusted trapezoidal rule gives exact results 3 3 9



9 for all polynomials of degree 3 or less. (See Problem 22 at the end of this
Further integration section.)

Example 5
Let us apply ATn to the problem of Example 3, that is, to J-i(x2 — x4) dx.
In this case, f(iv)(x) = -24, so B(iv) can be taken as 24. Thus, a bound on
the error with ATn is [(24)(3)/720]/i4 = ±h4 = 34/(10«4). Hence, to ensure
three-decimal-place accuracy, we need 34/(10«4) < 5-10~4, or n4 >

(34/50)104, or n > 30^/1/50 . Two strokes of a square-root key tell us that n
must be greater than 11.3. Thus, ATl2 will provide three-decimal-place
accuracy in this case, contrasting with the T455 we found in Example 3.
Computation shows ATU to be —3.5996, within the desired tolerance of
0.0005 of the exact value, - 3.6.

Because of its simplicity and its efficiency, the adjusted trapezoidal rule is
an excellent quadrature method. Simpson's rule can be adjusted, too, but it
requires calculations involving/'". When increased accuracy is required, it is
usually easier to rerun the computation with a larger n.

A note of caution on the error bounds: They take account of imprecision
in the approximation of the integral, not of round-off errors in the calcula-
tion. Consequently, the bounds need to be accorded some tolerance when
the partition is fine (n is large) and each subinterval's contribution to the
approximation is correspondingly small.

PROBLEMS

3. Approximate j3_2x
4dx by

(a)T2 (b)AT2 (c)T4 (d)AT4

4. (a)-(d) Calculate the error bound for each of the approximations in
Problem 3.

5. (a)-(d) Calculate the actual error in each of the approximations in
Problem 3.

6. (a)-(d) Same as Problem 3, for f£[l/(l + JC)] dx.
7. (a)-(d) Similar to Problem 4, relative to Problem 6.
8. (a)-(d) Similar to Problem 5, relative to Problem 6.
9. (a)-(d) Same as Problem 3, for tf(l/x)dx.

10. (a)-(d) Similar to Problem 4, relative to Problem 9.
11. (a)-(d) Similar to Problem 5, relative to Problem 9.
12. Show geometrically that if the graph of f(x) is concave upward, then Tn

overestimates Jaf(x)dx and that if the graph of f(x) is concave
downward, the reverse is true.

13. (a) How large must n be in order to ensure three-decimal-place accuracy
in approximating Jl2(2x4 ~0.6x5)dx by Tnl

(b) Same as (a), for seven-decimal-place accuracy.
3 4 Q 14. (a),(b) Same as Problem 13, using ATn.



15. Suppose you use ATn to approximate j£(\/t) dt for x in increments of 9.14
0.01,1 < x < 10, in order to reproduce Table B of four-place natural logs The trapezoidal rule
at the back of the book. How large must n be to cover all cases?

For Problems 16 and 18 you will need a computer or a calculator that
you have programmed for the trapezoidal rule. The program should
allow a change in the function being integrated from one run to the
next. The adjustment to the trapezoidal rule is probably most easily
done by hand.

C 16. Determine A Tn for the following cases. Find or guess the exact value of
the integral when you can.

(a) flex dx, with n = 10; n = 20

(b) / -dx, with n =10; n = 20

n 4
(c) / -dx, with n = 10; n = 20

A) 1 + JC2

— ]/25-x2dx, with n = 50; n = 200

200
(e) fl°-dx, with n =100; n

17. Which is the more accurate estimate of In 10: the second number you
obtained in Problem 16(e) or the entry 2.3026 in Table B?

C 18. The function given by f(x) = (l/j27r)e~x2/2 is the standard normal
frequency function of probability and statistics. Justification of the
constant X/^Jlm should appear through this problem,
(a) Sketch a graph of f(x).
(b)To eight decimal places, j£f(x)dx = 0.34134475. Get as close to

this number as your calculator will allow through use of ATn.
(c) Use^r50 to approximate j2f{x)dx\ Hf(x)dx\ j*f{x)dx.
(d) Use your results in (b) and (c) to approximate fl_lf(x)dx;

jl2f(x)dx; fi3f(x)dx; jij(x)dx.
(e) Guess the approximate value of /L0

10/(x) dx. Of /L%O/(JC) dx. Why
would it make little sense to use your program here?

(f) Give a reasonable definition of f°?O0f(x)dx. What should its value
be?

* 19. For/(.x) = (l/]/2^)e-x2/2, find the extremes of / " on the interval [0,1]
and of f{iv) on the same interval. Show that the bound, B", for/" on
[0,1] can be taken to be 0.4 and that the bound, B(iv\ for f(iv) on [0,1]
can be taken to be 1.2. Thus, find error bounds in approximating
fof(x)dx by the trapezoidal rule with n =100. With n =1000. Do the
same for the adjusted trapezoidal rule.

* 20. An improvement on the Euler method for approximating the solution of
the differential equation dy/dx = g(jc, y), with y = y0 at x = JC0, comes 3 4 -|



9 about by applying the trapezoidal rule to approximate fg(x, y) dx. The
Further integration result, called the Heun method, is as follows:

n,yn))
yn+i = yn + 2

If the solution, y9 has a continuous third derivative, it can be shown that
the Heun method's order of accuracy is h2, as contrasted with h for the
Euler method.

In Section 8.11, Problem 5, we found that the solution of d2z/dt2 -
t{dz/dt)— z = 0 for which z = 0 and dz/dt = 1 at t = 0 can be written as

We also found that the differential equation can be recast as dz/dt —
tz = cv or, because of the initial conditions, as dz/dt — tz =1.

In our present notation, this equation becomes

£-*V + l, (3)
with y = 0 at x = 0, the exact solution of which is y = ex2/2/o* e~s2/2 ds.
(a) Show that the Heun method for the approximate solution of equa-

tion (3) takes the form

, xnyn+\ + {xn + h)[yn + h(xnyn+\)\+\ u
yn+i= yn + 2

(b) Apply the Heun method with h = 0.1 to approximate y at JC =
0.1,0.2,..., 1.0.

(c) Same as (b), with h = 0.01.
(d) Compare your answers in (b) and (c) with the Euler method for this

problem [your answers to Problems 3 and 4(a), 8.11] and the errors
[your answers to Problem 4(b), 8.11].

21. For the situation depicted in Figure 9-43, show that the area of triangle
PAC minus the area of triangle QBC equals i[/(*o) + /(*i)H> where
h = xx — x0. (Hint: The triangles are similar.)

22. Verify that if f(x) = c0 + cxx + c2x
2 + c3x

2, where the c's are constants,
ATX gives the exact value of faf(x) dx. Hence, ATn for n> 1 also gives
the exact value.

342



Trigonometric
functions

10.1 Introduction

This chapter focuses on three basic functions: the sine, cosine, and tangent
functions of trigonometry. They differ in a fundamental respect from
functions treated thus far in being periodic - they repeat themselves after a
fixed period.

In exact language, a nonconstant function / is called periodic if there is a
positive number p such that for any number x with both x and x + p in the
domain of / , f(x + p) = f(x). Part of the graph of a periodic function is
shown in Figure 10-1.

For the periodic function g pictured in Figure 10-2, we have g(x) =
g(x +1) = g(x + 2) = g(x + 3) = g(x + 4) = • • • for all x. The smallest num-
ber p such that g(x + p) = g(x) is called the period of g. Thus, in this case,
the period is 1, not 2 or 3 or anything else.

The importance of the functions of trigonometry lies less in the business
of measuring triangles (which accounts for the origin of the word trigonome-
try) than in describing phenomena that are basically periodic. A great many
aspects of our lives are of this nature, for instance, the angle of rotation of
the earth on its axis, which we see in the sun's apparent motion through the
sky each day. Another example: The mean (average) monthly temperature
at your home town undoubtedly shows considerable variation, but all the
same it comes close to repeating itself annually. Except for minor variations,
the height of an ocean wave, your body temperature, the voltage in an

Fig. 10-1
I
Fig. 10-2 343
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alternating-current circuit, and the position of a planet in its orbit are all
periodic functions of time.

According to the study cited in Section 1.13, Problem 4, the approval
rating of a U.S. president during his first term has varied in much the same
way for all presidents in recent times. Similarly, numerous economic and
business data show a generally cyclical pattern. A dramatic example of this
was observed in 1925 by N. D. Kondratieff, a Soviet economist, who
inferred a 50-year cycle in world economic levels. A greatly simplified
Kondratieff wave, with economic levels taken relative to 100 for 1967, is
shown in Figure 10-3.

100

90

80

70

60

50

40

30

1780

Fig. 10-3

1800 1820 1840 1860 1880 1900 1920 1940 1960 1975

Fig. 10-4
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The functions we are about to study are by no means so complicated as
this one. But because they are periodic, unlike rational, exponential, and
logarithmic functions, they are useful for the analysis of cyclic phenomena.
We come a bit closer to these functions in the following simple example.

Imagine a wheel rotating on its axle, with an attached flashlight, arranged
to remain horizontal regardless of the wheel's position. The flashlight is
aimed at a nearby wall, and as the wheel rotates steadily, the spot of light on
the wall rises and falls. After one revolution of the wheel, the spot of light is
back exactly where it started, and it repeats its position periodically in every
subsequent revolution.

PROBLEMS

o 1. Figure 10-4 suggests locating the position of the spot of light in terms of
its displacement (y cm) from point A. If we think of y as a function of
time (t sec), and if the wheel rotates one-half of a revolution in 1 sec,
what is the period of the light spot's motion? What is its maximum



displacement? Its minimum displacement? At what point(s) is the light
spot moving fastest? Slowest?

o 2. In Figure 10-4, consider the central angle, A OF. Describe how this angle
changes as the wheel rotates.

3. Extrapolate the Kondratieff wave of Figure 10-3 for another 50 years.
Does your extension conform with your sense of what has happened to
the world's economy since 1975? What does further extension portend?

4. Each of the sketches in Figure 10-5 is intended to represent the graph of
a function. Making reasonable assumptions about these intentions, state
which of the functions are periodic. For those that are periodic, what are
their periods?

10.1
Introduction

(a)

(b)

(c)

- 2 - 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(d)

(e)

(f)

(g)

10 20 30 40 50 60 70 80

Fig. 10-5 345
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= 1 (sec)

= \ (sec)

10.2 Angle measure

In many examples of periodic functions, time is the independent variable.
However, nothing in the definition of a periodic function requires that time
be the independent variable, and it is often useful to choose an independent
variable with a geometrical interpretation. For instance, in the case of the
flashlight on the rotating wheel (Figure 10-6), the displacement (y cm) could
be considered in relation to the central angle, 0 (degrees). (The symbol 0 is
the Greek letter theta.) Indeed, the change from time to angle is extremely
simple; if the wheel rotates one-half revolution in 1 sec (as proposed in
Problem 1 in the preceding section), then

t = 2 (sec) corresponds to 0 = 360 (degrees),

corresponds to 0 =180 (degrees),

corresponds to 0 = 90 (degrees),

t = \ (sec) corresponds to 0 = 45 (degrees), etc.

In essence, we have simply a change in the unit of measurement.
Another possible independent variable in this example is the length of arc

(s cm) traveled by the flashlight, as shown in Figure 10-7. Then we have the
following correspondence:

corresponds to s = lirr (cm),

corresponds to s = mr (cm),

corresponds to s = \mr (cm),

corresponds to s = \mr (cm), etc.

By choosing a certain unit (not the degree) for angle measurement, we can
obtain an especially simple correspondence between angle measure and arc
measure. This special unit is called the radian.

To obtain the radian measure of an angle 0, we draw a circle of radius 1
centered at the vertex of the angle, as in Figure 10-8. If 0 subtends an arc of
length s units, we define the radian measure of 0 to be s. We use the same
unit to measure the length of the arc as to measure the length of the radius.
In Figure 10-8, we could use a tape measure to determine that the measure
of 0 is about 1.75 radians.

0 = 360 (degrees)

0 =180 (degrees)

0 = 90 (degrees)

0 = 45 (degrees)
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Because the circumference of a circle of radius 1 is 277, we have the
following correspondences:

an angle with degree measure has radian measure

360 2?7
180 77

90 77/2

60 77/3
45 TT/4

30 77/6

It is often useful to consider what might be called "directed angles," or
"angles in trigonometric position," as in Figure 10-9. We think of the origin
of a coordinate system at the vertex of the angle, and the positive x axis
extending along what we choose as the initial side of the angle. Then, if it
requires a counterclockwise motion to rotate the first (initial) side of the
angle into the second (terminal) side, we say that the measure of 0 is
positive. On the other hand, if it requires a clockwise motion to rotate the
initial side into the terminal side, we say that the measure of the angle is
negative. In Figure 10-10, the angle a (Greek letter alpha) has a measure of
about —1.75 radians. In Figure 10-11, the angle /? (Greek letter beta) has a
measure of about + 4.5 radians.

Because of our interest in periodic functions, we do not restrict our
attention to angles between —2 77 and 2 77 radians. We may have more than
one revolution. In Figure 10-12, the angle 0Y has a measure of about
(277 + \) radians, or about 6.8 radians, and the angle 02 has a measure of
(-477 - 77/2) radians, or about —14.137 radians. The radian measure of an
angle in " trigonometric position" can be any real number.

Problem 1
Verify that an angle of 1 radian has degree measure of about 57.3, and that
an angle of 1 degree has radian measure of about 0.017.

We can use the definition of radian to obtain useful formulas for arc
length and area in circles of arbitrary radius: Suppose that we have a central
angle of 0 radians, 0 < 0 < 277, in a circle of radius r. Let s be the length of
the intercepted arc, and A the area of the sector, as in Figure 10-13. Then s
is the same fraction of the entire circumference that 0 is of the entire angle
around the center:

so

277A* 277 '

= 0-r.

10.2
Angle measure

Fig. 10-9

Fig. 10-11

Fig. 10-12

Fig. 10-13
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10 Likewise, A is the same fraction of the entire area of the circle that 0 is of
Trigonometric functions the entire angle around the center:

A = 0
2
 2 T T 'irr2

so

Radian measure is so much the standard in calculus that it is customary not
to label it as such. In statements like " the measure of 0 is TT/2," or the less
precise "0 = w/2," it is understood that the unit is radian. Calculators are
equipped to handle both radians and degrees. Make sure that yours is set
correctly, or you will get weird results.

PROBLEMS

2. Find the radian equivalent of each of the following:
(a) 15° (b) 22i° (c) 120° (d) 135° (e) 240°
(0 270° (g) 315° (h) -17° (i) 900° Q) d°

3. Find the degree equivalent of each of the following:

(a) - | (b) ^ (c) - ^ (d) -6TT (e) 0.035

(0 1.047 (g) -3.14159 (h) ^ (i)10 (j) r

4. Find the length of the arc subtended on a circle of radius 4 by a central
angle of

(a) 60° (b) 25° (c) ^ (d) ^

5. Find the area of the sector of a circle of radius 4 determined by a central
angle of

(a) 60° (b) 25° (c) ^ (d) ^

6. Find the measure of the central angle that on a circle of radius 4 subtends
an arc of length

(a) 7T (b) — (c) 7.2

7. Find the radius of a circle on which an arc of length 2 is subtended by a
central angle of
(a) 4 (b)7r (c)25°

8. (a) When we view the full moon from the earth, its diameter fills about
\ ° of our total field of vision. Assuming that for this small angle it is
adequate to think of the moon's diameter as being the arc s in Figure
10-13, and that r, the distance to the moon, is about 235,000 miles,
find the diameter of the moon.

(b) The sun appears to us as approximately the same size as the moon, as
3 4 8 illustrated during a total eclipse, when the moon blocks out the sun,



with little or no excess. If the distance to the sun is about 93,000,000
miles, about how many times the moon's diameter is the sun's?

9. The A.U. (astronomical unit) is a unit of distance: the mean distance
between the earth and the sun. The parsec is another unit of distance used
by astronomers. The parsec is defined as the distance at which 1 A.U.
subtends an angle of 1 second of arc (3^0°) at the eye of the observer.
Find the length of the parsec in the following units:
(a) A.U.'s.
(b) Miles, if 1 A.U. equals approximately 93,000,000 miles.
(c) Light-years (where 1 light-year equals the distance traveled by light in

1 year), if light travels at about 186,000 miles per second.

10.3
The sine and cosine functions

10.3 The sine and cosine functions

We define these functions in terms of relationships on a circle. Let w be any
real number, represented in Figure 10-14 as the (radian) measure of an
angle in trigonometric position. Draw a circle of radius r centered at the
origin. Then A, the point where the circle intersects the initial side of
the angle, has coordinates (r,0). Let the coordinates of P, the point where
the circle meets the terminal side of the angle, be called (JC, y).

As w increases, the number y behaves exactly like the displacement of the
light spot in the flashlight example. The number y varies periodically
between a minimum of — r and a maximum of r. The same is true of x,
although it is not the same as y, of course. Indeed, when y = ± r, x = 0; and
when y = 0, x = ± r.

We define the sine and cosine functions by the equations

sin u = —,

x
cos u = —.

r

Note that, depending on w, x and y may be positive, negative, or zero, but /*,
the length of the radius, is always positive.

The numbers sinw and cosw depend only on w, not on the size of the
circle we choose. For example, if we choose a circle of radius r', as in Figure
10-15, but keep the same number u as before, then triangle OQ'P' of Figure
10-15 is similar to triangle OQP of Figure 10-14, so y'/r' = y/r.

The domain of the sine or the cosine is the set of all real numbers. From
the figure used in their definition, it is clear that the range of each is the
interval [-1,1] and that each is periodic of period 2m. That is, for all w,

- l<s inw<l , and sin(w +2TT) = sinw,

- 1 < C O S W < 1 , and cos(w +277) = cosw. (1)

Fig. 10-14

Fig. 10-15
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P(x, yl

Fig. 10-16

It is not hard to verify that for all w,

sin(— w) = — sinw,

cos(— w) = cosw,

sin(w + TT) = —sinw,

cos(w + 77-) = — cosw.

Problem 1
Draw figures to support the assertions in (2).

From (2), we obtain

sin(7r — w) = — sin(— w) = sinw,

COS(77- — w ) = —COS(— w ) = —COSW.

Applying the Pythagorean Theorem to any version of the basic figure, such
as that shown in Figure 10-16, we have

X2 V2

x2 + y2 = r2
9 or ^ - + ^ - = 1 .

rl rl

Now, x/r = cosw, so x2/r2 = (cosw)2. It is customary to write cos2w for
(cosw)2, to save the need for parentheses. Similarly,y2/r2 = sin2w. Thus,

(3)

for all w, sin2w + cos2w = 1. (4)

Equations (1), (2), (3), and (4) are called trigonometric "identities,"
meaning that they are valid for all w. Two other trigonometric identities,
called the addition formulas, are as follows:

For all w and v9

sin(w + v) = sin w cosy + cosw sin v, and

cos(w-f v) = coswcosy —si

350

(5)

An indication of how the addition formulas can be proved will be found in
Problem 9, 10.4. Many other identities follow directly from these. We shall
encounter some of them in problems.

Graphing the sine function may at first seem difficult, because we cannot
readily calculate most values of sin w. A calculator or the sine table at the
back of the book will give us the value of the function for many values of
the independent variable, but even without them we can accomplish a good
deal.

First, because the sine function has period 2TT, it is necessary to graph it
only over an interval of that length; it repeats indefinitely on either side.
Next, because sin(w + ir) = — sin w, we need only the values over the interval
[0,TT]. Then, because sin(7r — w) = sinw, we need only the values over the



interval [0, TT/2]. This is the reason that the sine table gives values of sin u
only for 0 < u < m/2.

Now, from the defining circle, sinO = 0 and sin7r/2 =1.

Problem 2
Use geometry to obtain

IT 1
sin— = sin 30° = —,

o 1

sinT = sin60° = ^- « 0.866,

= - L « 0.707.
y/2

We are now ready to graph the sine function. To keep to our usual
conventions, we shall use JC, rather than w, as independent variable, and y as
dependent variable. Thus, we graph y = sin x. Plotting the values already
found gives the five points of Figure 10-17(a). Remembering the defining
circle (or the flashlight example), we expect the graph to be continuous and
smooth, as in Figure 10-17(b). Because sinO — x) = sinx, we extend the
graph as in Figure 10-17(c). Because sin(x + TT)= — sinx, we extend it
further, as in Figure 10-17(d). We now have the function graphed over an
entire period, and we can extend it for numbers x greater than 2 m or less
than zero, as in Figure 10-17(e).

10.3
The sine and cosine functions

(a)

l

o
i
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1
IT

4
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1

J
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|
IT

2

(b)

(c) v (d)

- 1

(e)
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10 To graph y = cos x, we can repeat the process used for graphing the sine
Trigonometric functions function, but it is easier to apply another identity: By use of the first

addition formula, and the values sin7r/2 = 1 , COSTT/2 = 0, we obtain

sinl w + — I = cos w, for all w. (6)

Problem 3
Verify the identity (6).

Thus, y = cosx = sin(x 4- TT/2), SO the graph of y = cos* can be obtained
from that of y = sin x by moving the y axis IT/2 units to the right and
relabeling points on the x axis. Details are left to Problems 4 and 5.

PROBLEMS

4. Complete the following table:

5TT_

6
77

U+2

• I ^
cos w = sinl w + —

5. Graph j> = cos x. For practice, use a calculator or the table at the back
of the book to find values besides those obtained in Problem 4.

6. Use geometry to obtain identity (6).
7. Without calculator or table, find exact expressions for each of the

following:
(a) sinl35° (b) cosl35° (c) sin210° (d) cos210° (e) sin270°
(f) cos270° (g) sin315° (h) cos315° (i) sin330° (j) cos330°

8. Use the trigonometric table and the identities (or the symmetries of the
sine and cosine graphs) to find approximately:
(a) sinlOO0 (b) cos27.5° (c) cos205° (d) sin205°
(e) cos 301° (f) sin 340°

9. Establish the following trigonometric identities on the basis of identities

0

77

2

77

"6
277

3

77
~4
377

4

77

I
77

2

(a) sin(w — v) = sin wcos v - cos wsin v
(b) cos(w — v) = cos wcos u + sin wsin v

(c) cosl w + — I = — sin w

(d) sinl — — w I = cos w

352



(e) cosf — - u I = sin u
v l ' The sine and cosine functions

(f) sin2w = 2sinwcosw
(g) cos2M = cos2w-sin2w = l —2sin2w = 2cos2w —1

(h) s in- = + / ( l - c o s w ) / 2

(i) cos— = ± / ( l + cosw)/2

10. Check identities (h) and (i) of Problem 9 for u = IT, 3TT/2, and 1TT/4.

Concoct rules by which the ambiguity of the signs can be resolved in
general.

11. On the basis of identities (d) and (e) in Problem 9, explain how tables of
sin u and cos u for 0 < u < TT/4 are adequate for all needs.

12. (a) Suppose that the wheel, of radius r cm, with the horizontally aimed
flashlight revolves twice per second. Graph the displacement of the
light spot as a function of time, t, through three revolutions. Let
t = 0 correspond to the flashlight's being closest to the wall.

(b) Consider the same situation as in (a), except that the flashlight is
aimed straight downward, so that the light spot appears on the floor
beneath the wheel. On the same axes used in (a), graph the displace-
ment of the light spot from the point directly below the center of the
wheel.

(c) Express each of the functions graphed in (a) and (b) by a formula.
13. Sketch graphs of

(a) y = 2sinx (b) y = sin2x (c) y = - ^sin x

(d)y = sin^x (e) y = 3cos(^7rx) (f) y =10COS(3TTX)

(g) y = sin x +1 (h) y = sin(x +1)

14. Find all x in [0,2TT] such that

(a) sin x = 1 (b) cos2x = - 1 (c) cosTx = —

v2

(d) sin2* = | (e) ^ ^ =y/2 (f) sin JC = 0.940

15. Find all values of
(a) sin x, if cos x = \ (b) sin x, if cos x = \
(c) cos x, if sin x = 0 (d) cos JC, if sin JC = — |

(e) sin x, if cos JC = —r- (f) cos JC, if sin x = —

(g) cos x, if sin JC = f (h) sin JC, if cos x = f

(i) sin x, if cos x = 1 (j) sin x, if cos x = —

(k) cos x, if sin x = — ^ (1) cos x, if sin x = 1
16. Where possible without using calculator or table, state the number(s) x

in [0,2TT] satisfying each part of Problem 15.
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10 10.4 The tangent function, and application of the basic
Trigonometric functions functions to triangles

The tangent is defined by the equation

sin w
tan w = .

COSW

Its domain consists of all real numbers except those at which cos w = 0.
Because the numbers in [0, 2 77] for which cos w = 0 are w = TT/2 and w = 3 77/2,
we have cosw = 0 for w = 77/2, 77/2 + 277, 77/2 + 477, 77/2 + 677,... and also
for W = 3T7/2, 377/2 + 277, 377/2 + 477, 377/2 + 677,.... Putting these together
into a single sequence, we conclude that cosw = 0 for w = + 77/2, +377/2,
+ 5T7/2> ± 7V2» • • • • Therefore:

The tangent function is defined everywhere except at odd multi-
ples Of 77/2.

As w approaches any one of these exceptions, sinw approaches + 1 , and
COSM approaches zero. Hence, the numerical value of tanw becomes un-
boundedly large. For example, a s« -> 77/2 from the left (through numbers
slightly less than 77/2), both sinw and cosw are positive. Hence, tanw is
positive and very large. As w approaches 77/2 from the right, sin w is positive
and cos w is negative. So tan w is negative and numerically very large. We
can describe the situation symbolically as follows:

lim (tanw) = 00; lim (tanw) = — 00.
M->TT/2~ U-+IT/2 +

c Problem 1
Find tan w at w = TT/2±0.0\. At w = TT/2±0.W\.

Certainly tan( w + 277) = tan w for all w. But in fact, tan( w + 77) =
sin(w + 77)/cos(w + 77) = ( —sin w)/( —cos w) = tan w. That makes 77 a
candidate for the period of the tangent function. Could any smaller number
be the period? No, because in the open interval (— 77/2,77/2), which is of
length 77, there is one and only one number where the sine, and hence the
tangent, is zero.

Thus, to graph y = tan x, it is necessary to work hard on only one
interval, say — 77/2 < x < IT/2. It is easy to determine these values:

tan0 = 0,

tan^ = -L"« 0.577,6 V3
77
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Problem 2
Verify these four values, and use a calculator or the trigonometric table to
obtain values of the tangent function for three or four more numbers in
(0,7T/2).

10.4
The tangent function

and applications

The information at hand enables us to sketch Figure 10-18(a). Because
tan( — u) = sin( - u )/cos( — u) = ( — sin u )/(cos u) = — tan u for all u for
which the function is defined, and because the function has period TT, the
graph of the tangent function looks like Figure 10-18(b).

(b) I

Fig. 10-18

Two identities involving the tangent function come from one of our
earlier identities:

sin2w +cos 2 w=l .

If we divide through by cos2w, we obtain

tan2w + l =
cos2w

(V)

provided that cos u ¥= 0, whereas if we divide through by sin2w, we obtain

1

or

1 +

1 +

cos2w

sin2w

tan2w

sin2w

sin2w
(8)

provided that sin u # 0.
Tradition gives standing to three other trigonometric functions: the

cosecant, the secant, and the cotangent, defined by

esc u = • sec u =
1

cot u =
1

sin u cos u tan u
Except for making the writing of such expressions as (7) and (8) somewhat
simpler, these functions serve no purpose in our development of trigonom-
etry. We shall make no use of them. 355
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Fig. 10-19

/

1
/

//
/64°

D
D
D
D
D

100

Fig. 10-20

Q
D
D
D
D

D
D
D
D
D

Fig. 10-21

This section concludes with some work with triangles. In right triangles,
where one of the angles has measure 77/2, each of the other angles must be
less than 77/2. The basic figure, like Figure 10-14 or Figure 10-16, looks like
Figure 10-19 in this case, and the equations

v x sin u y
sin u = —, cos u = —, tan u = = —

r r cosw x

become, in traditional language,

side opposite the angle
sin u = fr1— — ,

hypotenuse

side adjacent to the angle
COS U = rr 7 — ,

hypotenuse
side opposite the angle

tan u = — — - T T ^ — — — T — ^ - j - .
side adjacent to the angle

Knowing an angle and one of the three sides, x or y or r, enables us to
compute the other sides.

For example, if a surveyor, standing 100 ft away from the base of a
building, finds the angle of elevation of the top of the building to be 64°, as
in Figure 10-20, then the height (y ft) of the building can be found from the
equation tan 64° = .y/100. Using a calculator or the trigonometric table, we
find y to be 205 (ft).

More intricate formulas are needed for "solving" triangles in which no
angle is 77/2. To derive the most important of these, we label the lengths of
the sides of a triangle by a, b, and c, and the angle (more precisely, the
measure of the angle) opposite a by A. In Figure 10-21, A is less than 77/2.
As you will be asked to show, if A is greater than 77/2, the geometric
construction changes, but not the algebra. Let h be the length of the altitude
onto side c. Then h = bsin A, and the part of c to the left of the foot of the
altitude has length Z?cos^4. In the figure we see a right triangle with
hypotenuse a and legs 6 sin A and c — bcosA. By the Pythagorean Theorem,
we have

= b2sin2 A + c2 -2bccosA + b2cos2 A

356

or

a2 = b2 + c2 — 2bccos A. (9)

Equation (9) is known as the Law of Cosines: "In any triangle, the square
of a side equals the sum of the squares of the other two sides, minus twice
their product times the cosine of their included angle."

Note that if A = 77/2, then cos A = 0, and the Law of Cosines reduces to
a2 = b2 + c2 - the Pythagorean Theorem. Thus, the Law of Cosines is a



generalization of the Pythagorean Theorem. Moreover, if for some triangle,
a2 = b2 + c2, then the Law of Cosines tells us that - 2bc -cosA = 0. Because
neither b nor c is zero, we conclude that cos ̂ 4 = 0, and hence that A = TT/2.
This means that the triangle is a right triangle. Thus, we have derived the
converse of the Pythagorean Theorem: "If the square of one side of a
triangle equals the sum of the squares of the other two sides, then the
triangle is a right triangle."

10.4
The tangent function

and applications

tan 40°

PROBLEMS

3. Complete the proof of the Law of Cosines by dealing with the case in
which A is greater than IT/2. (Draw a figure to show that the foot of the
altitude lies outside the triangle, but that there is a right triangle with
sides a, bsmA, and c — Z>coŝ 4, so that the proof goes through in this
case as well.)

4. Use the trigonometric table to find

(a) tan 140° (b) tan 220° (c) tan 320° (d)

(e) tan 170° (f) tan 370°
5. Find all x such that

(a) tan x = 1 (b) Ax tan Ix = 0

(c) cos2xtan2x = \ (d) 3tan2(12.77r) —^ = x
COS2 (12.777)

6. Let 0, b, and c be the sides of a triangle, with A the angle opposite side
a. Fill in the missing elements of Table 10-1.

7. When the sun is 60° above the horizon, a tree casts a shadow 46 ft long.
How tall is the tree?

8. The distance formula.
(a) Let P(xv yx) and Q(x2, y2) be two points with x2 # xx and y2 =£ yv

Let R be the point with coordinates (x2, yx). Draw PR and RQ, and
use the Pythagorean Theorem to show that the distance between P
and Q is given by PQ=)j(x2- xx)

2+ (y2 - yxf .

(b) Show that the formula for PQ is true also if x2 = xx or y2 = yv

9. This problem outlines a proof of the addition formulas for the sine and
cosine [equations (5)].
(a) Angles u and v are represented in Figure 10-22. The circle is of

radius 1. Let P be the point with coordinates (cos w, sin u) and Q the
point with coordinates (cos v, sin v). The angle POQ is either u — v or
v — w, depending on whether u > u or v > u. It doesn't matter which,
because we shall need cos POQ and cos(w — v) = cos(u — u).

Calculate TQ2 by means of the distance formula (Problem 8). If
the points 0 , P, Q form a triangle and angle POQ < TT, the Law of
Cosines will give another expression for PQ2. Equate the two to
obtain cos(w — v) = cos ucos v + sin usin v.

Table

a

3

5

1

10-1

b

2

3

3

c

2

4

2

A

1
IT

IT

Fig. 10-22
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(b) Show that this last equation is also correct if angle POQ > 77, or if O,
P, Q do not form a triangle.

(c) By writing u + v = u-(-v), obtain the addition formula for the
cosine.

(d) Using the result of Problem 9(e), 10.3, write sin(w + v) = COS[T7/2 —

(H + u)] = cos[(7r/2- U)- V], and use the result of part (a) of this
problem to obtain the addition formula for the sine.

10. A surveyor on one bank of a river stands directly opposite a post on the
opposite bank. Another post is located 30 m downstream from the first,
and the angle between his lines of sight to the posts is 20°. How wide is
the river?

11. A barge is being towed by a tugboat, with the towline angled upward at
an angle A =10° to the horizontal. The effective force pulling the barge
equals the total force pulling on the towline times cos A. What per-
centage of the total force is effective?

12. A triangle has sides of lengths 3 and 4, with an angle of 77/3 between
them. How long is the third side?

13. Same as Problem 12, if the angle is 2TT/3.

14. Find all angles of a triangle with sides
(a) 2,3,4 (b) 2,2,3 (c) 3,4,5

15. The sides of a triangle have lengths 3, 5, and 7. What is the size of the
largest angle?

16. One side of a triangle is of length 7, and the opposite angle has measure
60°. If a second side is of length 3, what is the length of the third side?

* 17. Each of three successive sides of a hexagon inscribed in a circle is of
length 3 units; each of the remaining three sides is of length 5 units.
Find the area of the hexagon and the radius of the circle.

10.5 Differentiation of the trigonometric functions

The graph of y = sin x over one period is shown in Figure 10-17(d). Its
smoothness suggests that the sine function is differentiable everywhere.
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= 1

77

I
1

2

IT

1

o

Z77

T
I

" 2

Estimating slopes by eye, we guess that 10.5

477 377 577 Differentiation
w T T T lm

dy d i • x i 1
 A

 1 i i n 1 !
- r - = - ^ ( s i n j c ) = 1 - 0 - - - 1 - - 0 - 1
ax dx 2 2 2 2

A plot of these points leads to the sketch of the first derived curve shown in
Figure 10-23, which looks like the cosine curve. Thus, we guess that if
y = sin x, dy/dx = cos x. We proceed to show that this is correct by revert-
ing to the definition of derivative:

For any JC, f(x) = sin*.

Atx + A, f(x + h) = sin(.x + h).

The change in the function = f(x + h) — f(x) = sin(x + h) — sinx.

y = cos JC

0 ir\ IT X 3TT 2TT

- 1

Fig. 10-23

The average rate of change of the function =

sin(.x + h) — shut

Then,/r(x)= lim
h0

As is inevitable with a difference quotient for a differentiable function, we
are faced with a fraction in which both the numerator and the denominator
approach zero. We must employ some gambit to determine the limit.

Problem 1
Expand sin(jc + h) by the addition formula, and combine terms to obtain

— I)-\-cos x sin h]/h.

Note that sin* and cos* are unchanged as h approaches zero. Hence, 3 5 9
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through use of the Limit Theorems, we can write

f (x) = s r cosA-1 sinh
hm - l-cosx- hm —-—

360

Problem 2
Experiment with your calculator, or read values from the trigonometric
table, for small values of /*, to guess values of lim^^0(cosA — 1)/A and
Ximh ̂  0{sm h)/h. (The trigonometric functions are evaluated as though the
real number h is the radian measure of an angle.)

For example:

cos(0.035)-l 0.999-1 0.001
0.035

cos(0.017)-l

0.035

1-1

= -0.0029,

" y

0.035

sin(0.035) 0.035
*- •

0.017 0.017 ' 0.035 0.035
It appears as though limA_0(cos/i — l)/h = 0 and \imh^0(sinh)/h =1.
For now we shall assume that these statements are correct, leaving their
justification to the problems. Then we conclude that f\x) = sin.x-0 +
cos JC • 1 = cos x. In other words,

if f(x) = sinx, then /'(;c) = cosx.

We can now easily obtain the derivative of the cosine function: By Problem
9(d), 10.3,

cos* = sinl — — x I.

Hence, if g(x) = cos A: = sinl — — x I, we use the Chain Rule to conclude

that

g'(*) = cos(f-*)(-l).

But, by Problem 9(e), 10.3,
(IT \

cosl — — x I = sinx.

Hence,
if g(jc) = cos;c, then g'(x) = —sinx.

We can differentiate the tangent function by writing tanx = (sinx)/(cosx)
and using the formula for the derivative of a quotient.

Problem 3
Do this to obtain the result that

if then F'(x) =
cos2*

Many books write this as F'(x) = sec2*.



Example 1 10.5
We apply our knowledge of differentiation to find maximum and minimum Differentiation
points and points of inflection on the curve y = sin x + cos x in the interval
[0,2TT].

Here, dy/dx = cos JC - sin x, and d2y/dx2 = — sin x — cos x. Critical num-
bers are the roots of

COSJC - s i n x = 0,

which is equivalent to

sin x = cos x or tan x = 1.

The roots of this equation in [0,2TT] are JC = 77/4, 5TT/4.

At x = ir/4, y = l/}/2+l/}/2=2/]/2=}/2, and d2y/dx2 =-I/ft-
l / \ /T, which is a negative number. So (TT/4,/2*) is a relative maximum
point on the curve.

At JC = 5TT/4, y=-l/}/2-l/}/2 = -2/j2 = -}/2, and d2y/dx2 =
l/]/l+l/j2, which is a positive number. So (5ir/49—j2) is a relative
minimum point on the curve.

To find points of inflection, we set d2y/dx2 = 0:

sin x=— cosx, or t a n x = — 1.

The roots of this equation in [0,2 77] are x = 37r/4, 7TT/4.

At JC = 3TT/4, y = 1/V2 - 1 / \ / 2 = 0, and at x = 7T7/4, J> = -1 /1 /2 + 1 / / 2

= 0. So (3TT/4, 0) and (777/4,0) are points of inflection on the curve. At the
left end of the interval, JC = 0, y = sin 0 +cos 0 = 1 ; and at the right end of
the interval, x = 2TT, y = sin 2 77- + cos27r = 1 . Because the turning-point max-
imum, (77/4, /2~), is higher than either of these end points, and the turning-
point minimum, (5TT/4, —y/2), is lower than either of these end points, we
conclude that the turning-point extremes are also the absolute extremes.

Problem 4
Sketch y = sin JC and y — COSJC on the same axes over [0,2 77-], and use your
sketches to sketch y = sinx +cosx, illustrating the results just obtained in
Example 1.

Example 2
Let us practice with the Chain Rule by finding the critical numbers in
[0,27r] for the function/(JC) = sin2(jc/2).

It may be clearer if we write the function as

Then

/ ' ( x ) = 2l sin — I • I derivative of sin — I

J . x\ JC 1
= 2(sin-).cos-.- .
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Thus,

= s in - c o s - .

Then / ' (*) = 0 if and only if sin(x/2) = 0 or COS(JC/2) = 0. Now sin(x/2)
= 0 provided x/2 = 0 or TT, that is, provided x = 0 or 2TT. And cos(x/2) = 0
provided x/2 = m/2 or 3TT/2, that is, provided x = m or 3?7. But 3ir is not
within the interval [0,2TT], SO the critical numbers in [0,27r] for this function
are 0,77, and 2TT.

It would have been simpler in this case had we used the "double-angle
formula" [Problem 9(f), 10.3] to write f\x) in a different form:

x x 1
f'(x) = s in - -cos- = - s in* .

Now, very quickly, sin x = 0 for x = 0, IT, 2TT.

c A

Fig. 10-24
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PROBLEMS

5. Differentiate:

(a) sin3;c

X I X \ ( X \

(d) — +cos — (e) 2 cos2 —
o \ o / V11

(g) cos2(3x)+sin2(3x)

0)

(m)

x + 3

( h ) cos(3x

(k) tan(sinx)

()

(c)

(1)

tanx

sinx
L — sin2*

sin4* w
 S i n(x2)

6. The light in a lighthouse 5 miles off shore turns at 2 revolutions per
minute. If the shore is straight, at what rate is the lighted spot on the
beach moving at a point 10 miles from the nearest point on shore?

7. An alternating current (1 amperes) is determined as a function of time
(/ sec) by the formula i =100sin(7rf/30 — 1). For what values of / does /
attain its maximum value?

8. Find the maximum and minimum points and the points of inflection in
the interval [0, m\ on the curve y = COS2(2JC). Sketch the curve. What is
the period of cos2(2x)?

9. Here is the argument leading to lim^_>0(sin h)/h =1 , a result required
to obtain the derivative of the sine function: In Figure 10-24, A OB is a
sector of radius 1, in which the arc length, AB, is h. Hence, the central
angle is also h. In this figure, h is any real number in the interval
(0,77/2). BC and DA are perpendicular to OA. From the figure:
area of triangle BOC < area of sector BOA < area of triangle DO A.
(a) Show that the area of triangle BOC = \ sin h cos h.



(b) Show that the area of sector BOA = \h. 10.6
(c) Show that the area of triangle DOA = ^tan h = ^(sin h)/(cosh). Antidifferentiation; integration

Hence, ^sinhcosh<\h<^(sinh)/(cosh).
(d) Multiply through by the positive number 2/(sin h) to obtain

h 1
cos h < ——r < r •

sin h cos h
(e) Why is it legitimate to conclude that l/(cos/z) > (sin/*)//* > cos hi

Because cos h = JC, cos h approaches 1 as h -> 0.
Because (sin/*)//* is pinched between two quantities, each of

which approaches 1, (sin/*)//* also approaches 1.
The argument can be carried through for negative h approaching

zero, leading to the same result.
10. The other result we need in finding the derivative of the sine function is

lim^ _̂  0(l - cos h)/h = 0.
Write (1-cosh)/h as

1 — cos h 1 + cos h

h 1 + cos h '

and reduce this to

1 sin/* . .
— : : Sin h .
1 + cos h h

How does this give us the desired result?
11. Obtain the formula for the derivative of the cosine function in the same

way that the derivative of the sine function is obtained in the text - by
going back to the definition of derivative.

* 12. (a) Find limA_0(sin2h)/h. (Hint: Let 2h = q.)
C (b) Set your calculator to its "degree" mode, and find (sin h)/h for

h = 0.1, 0.01, and 0.001. What is the apparent limit as h approaches
zero? Can you account for this?

10.6 Antidifferentiation and integration of trigonometric
functions

From the differentiation formulas of the three basic trigonometric functions
we immediately obtain three antidifferentiation formulas. We write them
using the symbolism of the indefinite integral:

/ cos x dx = sin x + c,

/ sin x dx = — cos x + c,

r 1 J
/ —dx = tanx + c.

J COS X
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y = sin x

Fig. 10-25

y

l

0
\

IT

y =

— - \

sin JC

\

\

"2
1
1

Fig. 10-26

y = tan 2x

y

0

/

/

IT'

6

i
ii
i
i
i
i

4

Fig. 10-27
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We can apply these formulas to solve integration problems similar to those
encountered in Chapter 5 and subsequent chapters.

Example 1
The area under an arch of the curve y = sin JC, as in Figure 10-25, is given by

A= I sinxdx= -COSX|Q = -(COSTT -COSO) = - ( - 1 - 1 ) = 2 units,
'o

Example 2
To find the area bounded by the curve y = sin JC, the jc-axis, and the lines
x = 77/4 and x = 3 77/2, as in Figure 10-26, we must observe that part of the
curve is below the x axis. Hence, the desired area is

sinxdx — I sinxdx = — cos*
IT/4

I 7T\ ( 3iT \
- I COS IT — COS— I + COS-r COS 77

= - ( - 1 - -L- j + 0 - (-1) = 2+ - L « 2.707 units.

Example 3
To find the area under the curve y = tan 2.x; between x = 0 and x = 77/6, as
in Figure 10-27, we must evaluate the integral J = f£/6 tan2x dx. If we write
tan2x = (sin2jc)/(cos2x), we see a substitution that will work. Let us set
w = COS2JC, SO that dw = — sin 2.x • 2 dx. Then

= --("
1 fn/6 —sinlx-ldx dw

= — —lnw
7T/6

= - — In(cos2x)
2

COS2JC

TT/6

_ 1 rw/6 dw

2Jx = ow

0

Problem 1
Complete the evaluation to obtain J = ^In2 « 0.3466.

Example 4
To find the area bounded by the curve y = cos3 JC, the JC axis, and the lines
JC = 0 and JC = TT/2, we first observe that the curve y = cos3 x does not dip
below the JC axis in this interval, because cos JC is nonnegative over [0,77/2].
Hence, we must evaluate / = JQ/2cos3xdx. It is not correct to say that this
integral equals (COS4JC)/4|O/ 2. Why?

The following trick works: Write COS3JC = COS2JC-COSJC = (1 — sin2
 JC)COSJC.

Then / = JQ/2 (1 - sin2 JC )COS JC dx = /J^cos JC dx - JQ/2 sin2 JC cos JC dx. The
first of these integrals is one of our three basic forms. The second can be
handled with the substitution w = sin x.



Problem 2 10.7
Show that / = [sin* -(sin3jc)/3]|£/2 = j . Inverse trigonometric

functions

PROBLEMS

3. Find the following antiderivatives:

YTT^dx (b) (x-sin(x2-4)dx

(c) f^r-du (d) fsm\2t)dt
J cos2w Jcos2w

(e) /"sin3.* cos x
cos2(.x2)

(f) j(cos2x — l)cos x sin x dx

(g) I do (h) /cos3.x-tan3.xdx
J tan o J

_ /• sin w , ... f tan3x ,
(i) / du ()) I
w J tanw U M

4. Evaluate
/ x f27r J /ux r/

(a) / cosxJx (b) /

(c) fsin3/2xcosx^ (d) f
J0 J

 -T

cos

TT/24 COS

(e) r/4[9 + lycos(y2)]dy (f) T

r cos2x
dx

5. Find /sinxcosxrfx in three ways:
(a) by setting u = sin x,
(b) by setting v = cos x,
(c) by using the identity sin2;c = 2 sin JCCOSJC.

Reconcile your results.
6. Find maximum and minimum points and points of inflection on the

graph of y = COS3JC, and sketch the curve on the same axes on which you
sketch y = cos x.

7. Find maximum and minimum points and points of inflection on the
graph of y = tan2*, and sketch the curve on the same axes on which you
sketch y = tan x.

10.7 Inverse trigonometric functions

If / is a periodic function, its inverse cannot be a function, for any
horizontal line in the range of / meets the graph of / more than once - in 3 6 5
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graph of a periodic function /

(a)

graph of a restriction of/
x

(b)

Fig. 10-28

fact, in infinitely many points, as seen in Figure 10-28(a). However
restriction of a periodic function to an interval on which the function
strictly increasing, or is strictly decreasing, will have an inverse that i:
function, as in Figure 10-28(b). This is what we do with the basic trigoi
metric functions. It turns out that we can express antiderivatives of so
commonly appearing functions in terms of these inverses.

Let us start with the sine. It is strictly increasing over [ — ir/29 IT/2], O

[37r/2,57r/2], over [ — 577/2, — 37T/2], and over infinitely many more ini
vals, as we see in Figure 10-29. For simplicity's sake, we restrict the dom
to the interval including the number 0. That is, let F be the function gh
by

F:y = sinx, - IT/2 <X< IT/2.

The range of F is the interval — 1 < y < 1, as for the unrestricted s
function. The inverse of F is expressed by interchanging JC and y in
equation for F, and solving for y in terms of x. But we have no symbol
this, and we have to invent a new expression:

F~l: y = arcsinjc.

The right side is read " the arc length whose sine is x," or, for short, " the ;
sine of x."

The range of F1 is - 1 < x < 1, and the domain of F'1 is - m/2 < y
ir/2.

The graph of F~l is constructed by reflecting the graph of F in the 1
y = x, as shown in Figure 10-30. It is, of course, true that sin(arcsinx) =

366
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y = F(x) = sin x

for all numbers JC for which this equation is meaningful ( — 1 < JC < 1): "The
sine of (the arc length whose sine is x) is x." It is also true that

arcsin(sin JC) = JC, provided that — TT/2 <X< IT/2.

This equation is not true for all numbers x for which the equation is
meaningful. For example,

if x = 77, shuc = sinvr = 0,

and arcsin(sin x) = arcsin(O) = 0.

But 0 # 77.

A calculator will not protect you from making this error. (However, if you
insult the calculator by asking it for arcsin «, with u numerically greater
than 1, it will insult you back.)

The graph of the inverse of the sine function suggests that the derivative
exists over the interval — 1 < x < 1 . (Because the tangent lines to the graph
of the sine function are horizontal at JC = — TT/2 and at x = TT/2, we expect
the tangent lines to the graph of the inverse sine function to be vertical at
x= - 1 and at x=l.) Thus, assuming the existence of the derivative, we
write y = arcsin JC in the form x = sin y9 and differentiate implicitly, using
the Chain Rule:

dy 1y
= COS V - 7 - ,

ax

so dx cos y

Using the identity sin2j> + cos2 y = 1, we write cosj> = + y l -s in 2 j> . But
because, for our restricted function, y lies in [ — TT/2, 77/2], we know that
cos y > 0. Hence, cos y = y 1 — sin2 y = v 1 — x2 . We have our result:

dx
If v =y = arcsin JC,

\-x2

As predicted, the derivative does not exist at x = + 1 .

10.7
Inverse trigonometric

functions

367
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Discussion of the inverse of the cosine function proceeds in the same
fashion and is left to you:

Problem 1
Restrict the domain of the cosine to [0,77], on which interval it is strictly
decreasing. Define arccosx, — 1 < x < 1, display its graph on the same axes
as you sketch a graph of the (restricted) y = cosx, and show that:

dy 1
If v = arccosx, then -f- = ; -\<x<\.

This provides us nothing new for antidifferentiation.
The tangent function does give us something useful. Let us call G the

restriction of the tangent function to the interval (— 77/2, 77/2):
7T

The range of G is the set of all real numbers, - oo < y < oo. We define G~l

by

G~l:y = arctanx,

which we read as " the arc length whose tangent is x," or " the arc tangent of
x."

The domain of G"1 is - oo < x < oo, and the range of G~l is - IT/2 < y
< TT/2, as we see in Figure 10-31.

Assuming the existence of the derivative, we proceed as we did with the
arcsine function: If y = arctan JC, then x = tan y. Hence,

i*y 9
or -r- = cos v.

dxcos2>>

368

y = G~l(x)

- 1

y = G(x)
= tan JC

y = G l(x) = arc tan JC

- 1

Fig. 10-31



For all j> in(-ir/2,ir/2),

cos2 y =
1 + tan2 y '

Hence, cos y = 1/(1 + x ), and we have our result:

If y = arctan x, — :, for all real numbers x.
dx 1 + x-

In terms of antidifferentiation, this result takes the form

/
•J 1 +

dx = arctan x + c.

The earlier result takes the form

= arcsinx + c.

Here are some applications:

Example 1
To find an expression for / (1/V4- x2)dx, we make the substitution

x = 2M, SO that ]/4— x2 becomes \/4 — 4w2 = 2^1— w2 . Now, dx = 2 du, so

we have / ( l / \ / 4 - x 2 ) dx = / ( l / 2 \ / l - u2)-2du = arcsinw + c = arcsinx/2

10.7
Inverse trigonometric

functions

Example 2
Evaluating

does not seem to be related to what we have been developing. But the trial
substitution u = ]/x2 - 1 proves fruitful: We have w2 = x2 - 1 , s o x 2 = l + w2,
and 2x dx = 2udu. Thus,

dx _ udu/x _ du _ du

x]/x
2-l x'u ~ x2~ \+u2'

Hence,

du
= arctan u

= arctanyx2 — 1 \i/fi = arctan 1 — arctan——

7T 77" 77

12"

PROBLEMS

2. Evaluate without a calculator or tables: ,_
(a) arcsin 1 (b) arctan 0 (c) arccos(——) 369
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Trigonometric functions (d) arctan( -1 ) (e) arcsin —r- (f) arccos 0

3. Find in degrees, using a calculator or the trigonometric tables:
(a) arccos(-0.1736) (b) arctan(5.671) (c) arcsin( - 0.7660)
(d) arccos(0.9848) (e) arctan(-0.8391)

4. Evaluate: _

(a) cos(arcsin 0)

/ v/3
(d) sin I arccos-r-

5. Find dy/dx if
x

(a) y = 4 arcsin—

(f) arcsin(0.1736)

(c) sin[arctan( — 1)]
/

(e) cosl arcsin- I (f) cos(arctan 7)

/ i/2
(b) tan arccos—

(b) y = x arctan
\ 3

(c) y = 3(arccos2x)3 (d) y =

, . arcsin A:
arctan x

(f) y = (1-4JC2)3/2arccos2x
J arctan 5x

6. Do the following antidifferentiations:

7. Evaluate:
3du

8. Show that if a is a constant, fdx/ya = 3ircsin(x/a)+c.

370

9. Show that if a is a constant, jdx/(a2 + x2) = (I/a)arctan(jc/a)+ c.
10. (a) An aircraft is flying at speed v (mph), climbing at an angle 0

(degrees) to the horizontal. Express the rate (R mph) at which it is
gaining altitude in terms of u and 0.

(b) The speed (v mph) of an aircraft at full throttle is roughly propor-
tional to the square of the cosine of its climbing angle (0°). What 0
gives maximum rate of climb (R mph)? If the aircraft's top speed in
level flight is 1500 mph, what is the maximum value of the rate of
climb, expressed in feet per second?

* 11. Show that because (d/dx) (arcsin x + arccosJC) = 0, arcsin x = IT/2 —
arccos x.

o 12. (a) Divide 1 by 1 + x2 to obtain 1/(1 + x2) = 1 - x2 + x4 - x6 4- • • • .
The right side is a geometric series with 1 as first term and ( - x2) as
common ratio. For x2 < 1, the "sum to infinity" of this infinite series
does equal 1/(1 + x2), as the division suggests. (See the last para-



graphs of Section 0.12.) It is correct, but beyond us to justify at this 10.8
stage, to integrate "term by term" to obtain Further integration

f\dx- (\2dx + i\Ux- (\6dx+
J0 •'O J0 •'O+ JC2

(b) Perform the integrations to obtain arctan;c|o = • • • .
(c) Evaluate the first 10 terms of the right side of your result in (b) to

obtain an approximation to TT/4. The convergence is slow, so this is
not a useful way to approximate IT.

10.8 Further integration involving trigonometric functions

Virtually all the antidifferentiation problems faced so far have called for
little more than direct reversal of differentiation formulas, or changes of
variable through reasonably transparent substitutions, to permit reversal of
differentiation formulas.

With the introduction of the trigonometric functions and their inverses,
our collection of "elementary" functions is essentially complete. We have,
then, no further means to perform antidifferentiations other than through
tricks, like the one used to find jdx/xyx2 — 1, or through approximation.
The lore of antidifferentiation techniques is large, many based on the use of
trigonometric functions, a consequence of the wealth of relationships - the
identities - involving those functions. We undertake a tiny sampling of
these techniques in the following examples.

Example 1
/ sin2 x dx. The identity cos 2 u = 1 - 2 sin2 u permits us to write sin2 JC

). Thus,

fsin2xdx = \\{\ — COS2JC) dx = \ I dx — \ I coslxdx

j ^ c.

Repeated application of a "double-angle" formula can be used to find
expressions for /sin4jc dx, fsivPxdx, and so forth.

Example 2
fcos6xdx. The identity cos 2M = 2cos2w — 1 permits us to write cos2x

). Thus,

C O S 6 J C =

Now, the antiderivatives of 1 and of 3 cos2.x are easy to obtain. To
antidifferentiate 3cos2(2x), repeat application of a double-angle formula.
To antidifferentiate cos3(2x), apply the method described in Example 4,
10.6. 371
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Fig. 10-32

(x,y)

Fig. 10-33

372

Problem 1
Complete the antidifferentiation sketched above to obtain

I cos = j^ c.

Example 3

/0V25 — x2dx. We use a substitution based on the identity 1 — cos2u = sin2 w:
Set x = 5 cos u. Then dx = — 5 sin u du.

At x = 0, cos u = 0, so u = TT/2; at x = 5, cos w = 1, so w = 0. Now,

- x2 = v^25-25cos2w = 5^1-cos2 M = 5\/sin2w = 5 sin w,

a positive sign being justified in this last step because sin u > 0 for u in the
interval [0, TT/2]. Thus,

5 sin2udu.f ]/25-x2dx= f (5sinu)(-5sinu)du=-25

Using the result of Example 1, we have

Now, because x = 5 cos w, u = arccos(jc/5), and

. „ „ . „ y/25- x2 x 2x
sin2w = 2sinwcosw = 2-

from Figure 10-32. Hence,

= -25[iarccosl-0-(^arccosO-0)]
25 7T

4 "

Note that if P(JC, 7) is any point on the arc in the first quadrant of the
circle of radius 5, as shown in Figure 10-33, the Pythagorean Theorem gives
us

Hence, /O
5v25 — x2dx equals the area within a quarter circle, and our result

in Example 3 confirms that the area within a circle of radius r is mr2.
The methods illustrated in the three foregoing examples are typical of the

material of a large topic in calculus called "techniques of integration."
Application of those techniques leads to the compilation of "tables of
integrals." Faced with a complicated F(x), we can search in a table of
integrals for jF(x)dx.



The results of Problems 8 and 9, 10.7, 10.8
x Further integration

= arcsin—h c and
2 a

dx I x
= — arctan—h c,n2 + Y 2

a T^ x — —
are typical of entries in a table of integrals. So is a generalization of
Example 3:

f r~2—2~J i n — 2 Q1 X ,
/ v« - x ax = -zxya — x —— arccos—\- c.
J 2 2 a

It takes practice to recognize which entry in a table of integrals corresponds
to a given JF(x)dx, for expressions may not obviously correspond, and a
change of variable may be required.

Unfortunately, the antiderivatives of many continuous functions cannot
be expressed in terms of elementary functions, no matter how ingenious our
attempts. A significant example is the function

/ sinx
z o o - — ' for**0'

I 1, atx = 0.
For all nonzero x, (sinx)/x is continuous. Moreover, as we discovered in
obtaining the derivative of the sine function,

sinx
hm = 1 =

x^O X

so this function, / , is continuous everywhere. Hence, its antiderivatives exist,
but it can be proved that no ingenious substitutions or other trickery will
enable us to express //(x) dx as combinations of elementary functions.

It would be natural, then, to approximate integrals of this function, such
as Jof(x) dx, by quadrature - say the Trapezoidal Rule. In fact, because the
derivatives of this/(x) exist everywhere (as we shall verify in the problems),
we could use the Adjusted Trapezoidal Rule.

There is an even better way, based on infinite series, one of the most
powerful concepts in calculus. We have occasionally referred to infinite
series, but we have not developed the topic systematically, and we shall not
do so now. We shall merely provide a few illustrations.

It can be shown that for all x,

x3 x5 x7

sinx = x - — + — - — + •••,

where n\, called "« factorial," is defined by

(Thus, 3! = l-2-3 = 6; 5! = l-2-3-4-5 =120, etc.) 3 7 3
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It is correct, although beyond our resources to justify, that

/ sin*

/(*)= X

1,
V 2

for J C ^ O ,

at x = 0,

X X4 X6

3! 5! 7!

the result of dividing each term of the series for sin x by x. It is also correct,
but again beyond our resources to justify at this stage, to integrate this last
series "term by term," as we did in Problem 12(b), 10.7. That is,

or

/•I /*1 /*1 JC2 /*1 X 4 /*1 X*3

f f(x)dx= / l d x - / ^ j r < f c + / T f ^ ~ / ^ * + ••• »

/Vw&-.
Jo

o 3-3! 5-5! o 7-7!

1
3-3! 5-5! 7-7!

The sum of 1 term, S1=l.

The sum of 2 terms, S2=l- -^7 = 0.9444....

The sum of 3 terms, S3 = 1 - -z-^r + ^ - r r = 0.946111

= ° - 9 4 6 0 8 2 8The sum of 4 terms, Sd = 1 — ^ - T T + T~^
4 3-3! 5-5i / • / !

This convergence is rapid: S4 is correct as far as the sixth decimal place.

PROBLEMS

2. Find jsin4xdx.
3. Find fsin5xdx.
4. (a) Use the substitution x = acosu, in which a is a constant, to obtain

^2 x
arccos—V c.

a
/ y[c? — x2 dx = \xyja2 — x2 — r -
J 2

(b) Differentiate the right side of the preceding equation to obtain
yfa^c2.

5. Find:

(a) Jcos2(3x)dx (b) J]/l-4x2dx

dx

374

(c) /

(d)/

xy/2x2-lS
x3dx

(see Example 2, 10.7)

/x2+9
(set x = 3tanw)



6. Find: 10.9
x + 2 ,U\ f x + 2 j Other periodic functions(a) f * — d x (b) f .

yfJx2+4x + 8 ' J ^ 2 + 4 ^ + 8
dx

x + 2 , , „ r 1(c)f^rti^dx (d)/ dx
JC2+4JC + 8

(e) / ^ T i (f) IsStrf*
7. Evaluate:

8. Some antidifferentiations can be successfully attacked by a small amount
of trial. For example, to seek antiderivatives of dy/dx = In JC, we might
try y = x In x. Then dy/dx = 1 + In jt, which means that we do not have
the right y, but we are not far off. Fix things up to obtain jlnxdx =
xlnx — x + c.

9. Apply the idea of Problem 8 to find jxex dx.
10. Apply the idea of Problem 8 to find Jexsinxdx and jexcosxdx.

C 11. Calculate S5 and S6 of the infinite series for fQ[(sinx)/x]dx. As for
accuracy, S6 is correct to 10 decimal places!

12. Differentiate term by term the series for

/ sin x
f{x)-\—> f°r**°'

I 1 , atx = 0,
and set x = 0. The result suggests that /'(0) = 0. Find /"(0), / ' " (0), and
/(/y)(0) in similar fashion.

C 13. With a programmable calculator, apply the Adjusted Trapezoidal Rule
to JQ[(sinx)/x]dx, with n = 50; « =100; n = 500. Compare with your
results in Problem 11.

* 10.9 Other periodic functions

Most periodic functions do not exhibit the simplicity of the basic trigono-
metric functions. A good example is the function sketched in Figure 10-1,
reproduced here with scales on the axes to make its period 2TT and its

Fig. io-i 3 7 5
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maximum 5. As a matter of fact, Figure 10-1 is the graph of / ( JC) =
2 sin* — cos2x; at any x, the height o f / i s the sum of the heights of

0

= 2 + 2 sin x - cos 2x

/y2 \ V y
y, = 2 sin x

y2 = - c o s 2JC

2ir

Fig. 10-34

y1 , and

y2 = — cos2x,

as seen in Figure 10-34.
That the period of COS2JC equals IT is clear from the graph. Likewise,

sin 2 A: has period m. More generally, sin3x and COS3JC have period 2T7/3;

sin 4.x and cos4x have period 27r/4; • • • for any positive integer n, sinnx
and COSHX have period lir/n.

Problem 1
Show that if g(x) is a function of period /?, then G(x) = g(nx) has period
p/n.

In Problem 1, n does not have to be an integer. For example, sin(^jc) has
period 2TT/\ = 4TT\ cos(fx) has period 27r/f = 37r; sin(77jc) has period
277-/77 = 2; and so forth.

Problem 2
Using 1 in. as a unit on both the x and y axes, sketch graphs of the
following equations on the same axes:

The addition of constant multiples of sin nx and of cos nx to a function of
period 27r gives a new function with oscillations within a subinterval of
length only lir/n. We can generate in this way very complicated periodic
functions.

The big questions are "How general are these functions?" and "Can any
function of period 2TT be expressed as a 'trigonometric polynomial,'

a0 + axcosx +

+ blsinx 4-

ancosnx

bnsinnx,

376

for some positive integer n and real numbers aQ9 ax, a2,...,an, bl9 b29...,bnT
(This is not actually a polynomial, but the phrase is conventionally used.)

The answer to the second question is clearly no. For example, a function
with some points of discontinuity, like tan(x/2), which has period 2TT,
cannot be expressed as the sum of functions that are everywhere continuous.

But for continuous periodic functions, there is a satisfying theorem from
the nineteenth-century German mathematician Karl Weierstrass: A continu-
ous function of period 2TT can be approximated throughout its domain, to
any degree of accuracy, by some trigonometric polynomial.



Simplification is what this discussion is all about. Practical application of 10.9
the Weierstrass theorem takes the form of decomposing a complicated Other periodic functions
periodic function, at least approximately, into its simple trigonometric
components. It could be revealing, for example, to approximate the nearly
periodic Kondratieff wave (Section 10.1) by a trigonometric polynomial.
With those components having large coefficients we would try to associate
historical, cyclic factors of shorter period than the roughly 50 years of the
wave. These factors would be the ones most likely to account for the long
cyclic nature Kondratieff conjectured for the world's economy.

That is a bigger problem than we are prepared to tackle. Instead, we shall
illustrate a method of approximating the components of the less com-
plicated function

But first a word about the period. The period, 2?r, has arisen naturally
because it is the period of our building blocks, sinjc and cos*. However,
that does not preclude treatment of functions of quite different periods. For
example, if the Kondratieff wave is called K(t) for t > 1780, and if we attach
a period of 50 years to the wave, we would write components of K(t) in
terms of a new variable

Problem 3
Verify that sin[(27r/50)(/ -1780)] and cos[(2ir/50)(t -1780)] have period
50, and that the first is 0, the second 1, at / =1780.

The method we use for approximating components of a function of period
277 calls for numbers, x, evenly distributed through [0,2TT], numbers for
which corresponding values of the function are at least approximately
known. The data thus consist of N points

where

2m 2TT 2 i r , v
xo-°^xi = ̂ -^2 = — -29...,xN_l = —(N-l),

and they's are the corresponding observed values of the function. It takes
quite a bit of manipulation to derive the formulas for the coefficients of an
approximating trigonometric polynomial

y = a0 + axcosx + a2cos2x + • • • + ancosnx

• • • + bnsinnx.
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Trigonometric functions 1 _ _ _

( + +
2 / - - - \

ai =
 TV^O + yicosxl + >>2COSA;2 + • • • 4- yN_l-cosxN_l),

2
c! + >>2cos2x2 + • • • + >V

The formula for a3 is the same as that for a2 except that 3JC1,3JC2,...,3.X;V_1

replace 2x1,2x29...92xN_1. The &'s, starting with bl9 are the same as the
corresponding a's, except that cos is replaced by sin.

If there are more data points than the number of coefficients to be
determined, we have a desirable smoothing effect. The formulas create that
trigonometric polynomial that best fits the data in the sense that the sum of
the squares of the errors is minimal.

We proceed to experiment with the function/(x) = 2 + 2sinx — cos2.x by
pretending that it is known to us only through the seven points recorded in
the first two columns of Table 10-2. As you note, these are not very precise
readings of the function. Let us see what happens. The first of the formulas
yields

a0 = ^(0.9 + 3.9 + 4.8 + 2.4 + 0.5 + 0.9 + 0.7) * 2.014.

With the help of a calculator, we obtain from the formulas ax« 0.011,
bx « 2.002, a2 ~ —1.010, b2 ~ 0.022. It is by no means inconceivable that
one would guess from this information alone that the underlying function is

2 + 0-cosx + ( — I)cos2x +2sinx +0sin2* = 2 + 2sinx —cos2x,

which indeed it is. That is not too bad, considering that our data were

Table 10-2

x y f(x) (to 3 decimal places)

= 2TT

* 1 ~ 7

x - 2 . —
7

x 3 - 3 - 7

* 4 = 4- —
= 2^7

*5 5- 7

2m_
*6 1

378

= 0.9

= 3.9

= 4.8

= 2.4

= 0.5

= 0.9

= 0.7

1.0

3.786

4.851

2.244

0.509

0.951

0.659



neither numerous nor especially accurate. A larger sample would have 10.9
assured greater reliability in the guess. Other periodic functions

PROBLEMS

4. In each of the following cases, find a simple formula for a function, / , of
period /?, satisfying the given conditions:

O\P=1 (c)7 | - ] = 4;/> = 2

-\,p = \ (f) /(5) = 2;jp=100
5. Suppose that the following data have been collected for what is suspected

to be a function of period 2:

/ I 9 i i 13 15 17 19
I 1 7 7 7 7 7 7

y 0.9 3.9 4.8 2.4 0.5 0.9 0.7

(a) Find a change of variable of the form x = at + b that puts these data
in the form (x, y\ with JC in [0,2TT]. (The data will then be those we
have just used in the text.)

(b) Convert the function/(JC) = 2 + 2sin;c — cos2x to a function g(r), of
period 2, that approximates the data of this problem.

6. On a single set of axes, sketch reasonably large and accurate graphs of
the following functions on [0,2TT]:

(a) yx = 2cos.x (b) y2 = — ^sin2x (c) y3 = 2cos2;c

(d)y4 = sin3x (e) y = y1 + y2 + y3 + y4
C 7. The following data are drawn, with small changes, from the function

y = 2cosx — ^sin2x + 2cos2x +sin3.x of Problem 6. See how accurately
you can reconstruct this function from the data:

LIT AIT 277" 2?7 2TT 2?7 2TT 2TT
X ° "9" 2*~9~ 3 ' " 9 " 4 ' T 5 * T 6*"9" 7'~9~ 8 ' " 9 "
y 3.9 2.3 -2.5 -1.5 0.8 -1 .6 -2 .4 -0 .4 1.5

[The coefficients turn out to be (to three places) a0 = 0.011, ax = 2.002,
bx = 0.010, a2 =1.916, b2 = -0.501, a3 = -0.011, 63 =1.012.]

C 8. Repeat Problem 7 for the following data drawn from the same function:

2T7 2TT 2TT 2TT
x 0 — 2>— 3 - — 4- —

y 3.9 -1 .9 0.5 -2 .4 -0 .1

What goes wrong?
C 9. Find a0, ax, bv a2, b2, a3, b3 for the following data:

2TT 2TT 2TT 2m 2m 2TT 2TT 2<TT
^ 0 — 2 — 3 - — 4 - — 5 - — 6 — 7 — 8- —

y -0 .4 1.9 1.6 -1 .3 2.1 2.9 0.3 3.4 3.2

Guess the underlying function. 3 7 9



10 10.10 A return to differential equations
Trigonometric functions

As a final topic, we apply trigonometric functions to the solution of linear
differential equations with constant coefficients. In Chapter 8 we deferred
treating the case in which the roots of the characteristic equation are
imaginary numbers. We shall take up this case now and shall find that the
solution of such a differential equation involves sines and cosines.

As before, we begin with a second-order equation having right member
zero:

We observed in Section 8.9 that if the reasonable guess

y = emt (11)

is to be a solution, then m must satisfy the characteristic equation

Am2 + Bm + C = 0. (12)

We verified, conversely, that if m is a solution of equation (12) and is also a
real number, then (11) is a solution of the differential equation (10).

If m is an imaginary number, say

m = a + bi,

where a and b are real, and i = /—T, we face the problem of interpreting
the expression emt. To do this, we need the definition

ebi = cos b + i sin b, where b is a real number.

It turns out that with this definition, all the usual laws of exponents apply to
imaginary numbers. (It is not hard to show this, but it is somewhat lengthy
and would take us too far afield.) We now have

This is not yet much of a help. But let us review the algebra of solving the
characteristic equation (12). By the quadratic formula, the roots are

-B±]/B2-4AC
2A

If the roots are imaginary numbers, B2 — 4AC<0, so the roots can be
expressed as

-B±]/4AC-B2i -B ]/4AC-B2 .
± h2A 2A ± 2A

where 4AC — B2 is positive, so \4AC — B2 is real. Thus, if we set a =
— B/2A and b = \4AC — B2/2A, we can express the two roots of the

3 8 0 characteristic equation as mx = a + bi and m2 = a — bi.



We therefore have trial solutions of the form

yx = em* = e(a+bi)t = ea'(cosbt + /sin bt),

y2 = em^ = e^a~bi)t = e a ' [ cos ( - b)t + / s i n ( - b)t] = eat(cosbt - /sinbt).

With / = \/—1 appearing in j>x and j>2, these potential solutions still have an
undesired imaginary form. But because our differential equation (10) is
linear with right member zero, if yx and y2 are solutions of the differential
equation, \yx + \y2 should also be a solution. Now

Likewise, — \iyx + \iy2 = eatsin bt might be a solution. We must confirm
that each of these functions is a solution of (10); so far we have seen merely
that they appear to be good candidates.

Problem 1
Verify that if y = eatcosbt, then dy/dt = aeatcosbt - beatsinbt, and d2y/dt2

= (a2 - b2)eatcos bt -2abeatsin bt.

Substitution of these expressions into the left side of (10) gives

dt2

^ - + B^- + Cy = A(a2- b2)eatcosbt -2Aabeatsin bt

+ Baeatcos bt - Bbeatsin bt + Cea'cos bt

= eatcosbt[A(a2- b2) + Ba + C}- beatsinbt[2Aa

Problem 2
Remembering that a = - B/2A and that b = ]/4AC- B2 /2A, verify that
A(a2 - b2)+ Ba + C = 0 and that 2Aa + 5 = 0.

Thus, when we set y = eatcos bt, we find that

A— + B^- + Cy = eatcosbt'0-beatsinbt-0 = 0;
dt2 dt

that is, y = eatcosbt is, indeed, a solution of (10).

Problem 3
Verify that y = ea'sin bt also satisfies the differential equation.

We now know the general solution of (10):

y = cxe
atcosbt + c2e

atsinbt,

for arbitrary (real) constants cx and c2.

10.10
Return to differential

equations

381
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Trigonometric functions

The analysis of second-order linear differential equations with constant
coefficients and right member zero is now complete:

Roots of the characteristic equation General solution
1. mx and m2, real and distinct y = cxe

mit 4- c2e
mit

2. w, a double root y = em\cx + c2t)
3. a + bi and a - bi y = + c2e

atsin bt

Example 1
The differential equation d2y/dt2 4- y = 0 has characteristic equation m2 4-
1 = 0, which has roots ± /, or 04- / and 0— /. Hence, yx = e0tcost = cost
and y2 = e° 'sin t = sin t are solutions, and the general solution is

y = qcosf 4- c2sint.

(Note the contrast with the differential equation d2y/dt2 — y = 0, which has
solutions yl = et and y2

 = e~\ and therefore the general solution

Problem 4
Show that the solution of d2y/dt2 + y = Q, for which y=\ at f = 0 and
y=—l at / = 77/4, is y = cos t — (1 +

Example 2
In Section 8.9 we considered a complicated system of differential equations
describing the relationship of a population X of prey and a population Y of
predators. We found that it is possible to simplify this system to one
involving linear differential equations with constant coefficients by introduc-
ing new variables x = X— XE and y = Y—YE, the deviations of the popula-
tions from their presumed equilibria, and assuming these deviations to be
small.

For the data used in Section 8.11 to approximate solutions of the original
system, the reduced system is

dy _ x
~di~T6'

The characteristic equation of the first of these equations is

the roots of which are

382

Therefore, the general solution is

y = c ^ ' ^ c o s — 4- c2e~'/2sin—
2 ' o r y = < s - 4- c 2s in-



For any given constants, cx and c2, the expression c1cos(t/2)+c2sin(t/2) 10 10
oscillates above and below zero by a maximum amount determined by cx Return to differential
and c2. But as t increases, e~t/2 approaches zero, so the quantity e~t/2 equations
"damps" these oscillations, forcings toward zero as / increases.

Problem 5
Differentiate the expression found for y, and substitute the derivative in
dy/dt = JC/10 to obtain

2 2 2 2,

Hence, x behaves in the same way that y does. This information is
consistent with what was obtained in the much more elaborate numerical
experiment of Section 8.11.

When the right member of the differential equation is not zero, we have
the same situation as encountered in Chapter 8, namely,

for the equation A —~ + B-j- + Cy = f(t),
dt2 dt

the general solution = (the complementary function) 4- (a particular integral).

Finding a particular integral is the tricky part. We make the same kinds of
guesses that we did in Chapter 8.

Example 3
As a particular integral of

we see if y = ke* will work for some constant, k.

Problem 6
Find the first and second derivatives of ke\ and substitute in the differential
equation to show that k must equal \.

Conversely, y = \e' does satisfy the differential equation, so we have a
particular integral. The characteristic equation is m2 — 2m+5 = 0, with
roots

2±y/420
m = =1±2/ .

Hence, the complementary function is

c^'coslt + c2e'sin2/,

and the general solution is

y = c^coslt + c2e'sin2f + \el. 3 8 3



10 Example 4
Trigonometric functions For the differential equation

+ 4j> =
dt2

we encounter the same sort of difficulty met in Example 2, 8.10. Because the
characteristic equation,

has roots m = +2/, the complementary function is

c1cos2t 4- c2sin2f;

hence, the most obvious attempt at a particular integral,

y = kcos2t, for some k,

won't work - substituting this in the left side of the differential equation
gives zero for all k. Instead, we try y = ktcos2t.

Problem 7
Find the first and second derivatives of kt cos 2t, and substitute in the left
side of the differential equation to obtain -4&sin2f.

For no value of k can this expression equal cos2f for all t, so this attempt
has not given us a particular integral, either. But it does suggest a fruitful
approach.

Problem 8
Try y = kt sin 2t, and show that this is a particular integral if and only if

Hence, the general solution of our differential equation is

y = clcos2t + (c2 +

It can be frustrating to probe an equation with nonzero right member to
search for a particular integral by trial. However, experienced workers will
often proceed by trial despite the existence of systematic methods, because
these methods are sometimes too cumbersome to apply.

Nevertheless, it is useful to know that in principle all equations of this
kind can be solved. It takes us only a little beyond our experience here and
in Chapter 8 to observe that every constant-coefficient linear differential
equation, of any positive integral order, with right member zero, has all its
solutions expressible in terms of two kinds of functions,

tneatcosbt and t"eatsinbt,

3 8 4 with n = 0,1,2,..., and a and b real numbers.



From these functions, a method called variation of parameters will provide
a particular integral for an equation whose right member is a continuous
function, although more often than not that integral will not be expressible
in terms of elementary functions.

The universal solvability of constant-coefficient linear differential equa-
tions is a major reason for the importance they hold.

10.10
Return to differential

equations

PROBLEMS

9. Find the general solution of each of the following:
dv

(a) - ^
13

du2 du
d v d v

^-2,-0

10. Findy if d2y/dt2 + dy/dt + y = 0, andy = 1 and dy/dt = - \ at / = 0.
11. Find the general solution of each of the following:

e l. By inspection of your answer, what is the

value of li

(c)

d2y

(e) — - + 2-^- + y = e'cos2f. What function, then, approximates y for

large ti
12. Physical principles, mainly Newton's second law of motion, lead to the

following differential equation for the motion of a pendulum:

rd
2e

where L (ft) is the length of the pendulum, g is the gravitational
constant (approximately 32 ft/sec2), and 0 is the angle shown in Figure
10-35.
(a) Justify approximating sin# by 0 when 0 is small.
(b) Find the general solution of the resulting differential equation.
(c) If the pendulum bob is gently released from an initial 0O = TT/24 »

7.5°, and L =128, find a formula for 0 at any time (t sec).
(d) What is the period of the motion (i.e., how long does it take the bob

to return to its initial position)? Would the period be changed if 0O

were changed somewhat?
(e) Is the approximation sin 0 ~ 0 appropriate in this case?
(f) Find the length of a "second's pendulum" - a pendulum that has a

period of 1 sec for small oscillations.

Fig. 10-35

385



10 13. Suppose that the reduced predator-prey equations of Example 2 had
Trigonometric functions turned out to be

d2y dy y—T - -f + £ = 0 and
dt2 dt 2

dy _ x
~di~T6'

Solve these equations. Do you expect the population to approach
equilibrium over a long period?

* 14. Let y be a solution of the differential equation A(d2y/dt2)+ B(dy/dt)
+ Cy = 0, 2?2 — 4̂ 4 C < 0 and A and 1? are of the same sign. Discuss
lim, _„;>(/).

* 15. Problem 6, 8.11, calls for obtaining approximate solutions of the system
dx/dt = x — y9 dy/dt = x + y, with x = 1 and >> = 0 at t = 0.
(a) Obtain from this system a second-order differential equation in y.

Solve that equation and then solve for x to obtain y = e'sint,
x = e'cost.

C (b) Prepare a table of values of x and y for t = 0.1,0.2,..., 1.0, and
compare its entries with the results you obtained in Problems 6 and
7, 8.11.

* 16. Problem 8, 8.11, involves the equation d2z/dt2 +2(dz/dt) + 2z = 0,
with z = 0 and dz/df = 1 at f = 0.
(a) Solve this equation to obtain

z = e'^int.dz/dt = e~*cost — e~'sin/.

C (b) Prepare a table of values of z and dz/df for t = 0.1,0.2,..., 1.0, and
compare its entries with the results you obtained in Problems 8 and
9, 8.11 (where z was called x and dz/dt was called y).

10.11 Summary

Periodic functions are essential in the mathematical description and treat-
ment of cyclic behavior, whether it be that of the ocean's tides, the
populations of two competing species, or the seasonal changes of a labor
market. Two periodic functions - the sine and cosine - are the key elements
of this chapter, because from their properties the nature of other periodic
functions can be uncovered.

In this chapter we have defined radian measure, defined the sine, cosine,
and tangent functions, and determined the fundamental properties of them
and their restricted inverses. We have made use of these functions in
geometric problems involving circles and triangles, and in antidifferentia-
tions we could not perform earlier. We have applied the sine and cosine to

3 8 6 complete the solution of second-order constant-coefficient linear differential



equations with right member zero. And with those of you who worked 10.11
through Section 10.9, we have explored the powerful methods by which the Summary
sine and cosine can be used to account for general periodic behavior.

PROBLEMS

1. Which of the following phenomena do you believe to be, at least in
some rough approximate sense, periodic? Discuss, naming the variables
involved.
(a) the motion of a tuning fork
(b) the value of the American dollar in British pounds
(c) a human heartbeat
(d) the angular velocity of a record turntable
(e) the mass of a piece of carbon 14
(f) the percentage of Americans who consider Lincoln our greatest

president
(g) the annual number of California earthquakes exceeding 4 on the

Richter scale
(h) a woodpecker's pecks
(i) sunspot activity
(j) the Dow-Jones industrial average
(k) the lemming population in Norway

2. A grad is ^ t h of a right angle. How many degrees are there in a grad?
How many radians?

3. Establish the following identities, determining any limitations on s and t
for their validity:

1 + sin s 1 „ x 1 — tan2s
(b)(a) 2 = - r ^ (b) _ 9 = cos2s

(I l \ 2

(c) + - — tan s ••
\ cos s sin s ) cos3ssins

(d) tan(s + /) = (e) sin 3s = 3 sin s — 4 sin3s
v ' v } 1 - t an5 tan /

4. By means of the identities

cos(.s + /) = cosscos/ — sin .s sin/

cos(s — /) = cos s cos / + sin s sin /

obtain the identities

sin .s sin/ = ^cos(s — /) —^cos(s + / ) .

5. Use the results of Problem 4 to show that for any positive integers m
and «,

sinmxsinnxdx= I cos mx cos nx dx = I .c
m n' ««-»

^0 I IT, lftf! = fl. 387
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s = arc tan Vi

Fig. 10-36

6. A radar operator locates an airplane 50 miles away at 30° east of due
north and another at the same elevation 40 miles away at 10° west of
due north. How far apart are the planes?

7. Deduce the remaining parts (side and angles) of the triangle in Figure
10-36.

8. Find all s in [0,2<n\ such that
1

(a)
cos s

= - 2 (b) tan2* = 3

(c) sinJC(1 + sinx) = 0 (d) 2sin2x— 3 sin * +1 = 0
9. In Section 10.10, the formula ea+bi = ea(cosb + /sin6) was used.

(a) Use it again to find ea+bi when a + hi =1,777,1 + iri,(ir/2)i,(ir/4)i.
(b) Assuming that (e(7r/4)/)2 = e2<7T/4)i, find a square root of i. Check

your result.
(c) Find a fourth root of i.

10. A central angle of 2 subtends an arc of length 10 on a circle. Find the
radius of the circle. Find the area of the sector determined by the angle.

11. (a) Express 1/(1 + x2) as an infinite geometric series.
(b) Assuming that this series can be integrated term by term, show that

1 1 1 1 1

(This is the basis for Problem 31, 2.9.)
12. (a) By differentiating term by term the infinite series for sinx, intro-

duced in Section 10.8, show formally that

, x2 x4 x6 xs

c o s x = l - — + — - — + -gj- .

(b) Calculate the sum of the first three terms of this series with x = TT/2
«1.57. How close is this value to the correct answer? Include the
next term and answer the same question.

C (c) Use the cosine series to approximate ]/2 to seven decimal places.
13. Find the general solution of each of the following differential equations:

dt

388

(c) —r- — 2- j— 3y = sin t
dt "t

14. Find the maxima and minima of the function f{x) = sin* — \
Sketch the graph of/.

15. Find dy/dx if
(a) y = tan2x (b) y = COS2(3JC) (C) y = /arcsin x
(d) y = sin3(3x)tan2(2x)

16. Verify that y = cos2/ is a solution of the differential equation d2y/dt2 +
dy/dt = — 2(cos2/ +sin2/), and obtain the general solution.



17. Find antiderivatives of the following functions: 10.11
/ \ // \ /o . ->\ /u\ / \ / t a n x \ 2 , x f / x 2x Summary
(a) f(x) = cos(3x + 2) (b) g(x) = —— (c) *(*) = " j

VCOSX/ 1 + JC

(d) F(x) = -±- (e) G(*) = xsinx (f)
xmx

(e) G(*) = xsinx (f) //(*) = ^
xmx x +4

• 18. In Problems 9 and 10, 10.5, we demonstrated that

lim —-— = 1 and hm = 0.
/i->0 n h->0 n

In Section 10.8 we stated that

3 ! + 5 ! 7 ! + ""' *

In Problem 12(a) of this section, we differentiated this series term by
term to guess that

cos 2! 4! 6! + ' " '

(a) Use the series for sin x to give a plausible argument that

(b) Use the series for cos x to give a plausible argument that
lim,,_>0(l — cosh)/h = 0. What does the same argument suggest
about lim^^Q^-cos/i)/^2?

(c) Multiply (1-cosh)/h2 by (1 + cos/*)/(l + cos/*), and simplify to
demonstrate that lim,, _ 0(l - cos h)/h2 = \.

(d) Use Figure 10-24 to show that for 0 < h < ?r/2, sin h < h < tan h.
(e) If f(x) is defined by

_ I (sinx)/jc, for x # 0,/w={(sjn

use the definition of the derivative to show that

(0 Now, for 0 < h< TT/2,

h - sin h tan h - sin h

by (d). Find lim,, _ 0(tan h - sin h)/h2. Hence, /'(0) = ?
(g) For the function G(x) = (sinjc)/*, x ̂  0, find G\x) and

limJC_>o(j'(.x). Is / ' (^) continuous at all xl

SAMPLE TEST

1. A light is spotted directly off a straight coastline at the same time an
observation post 10 miles away reports that its sighting forms a 60° angle
with the coastline. How far is the light off shore?

2. Determine f£(l/]/4-x2) dx. 389



10 3. For what numbers x is sin2jc = sin xl
Trigonometric functions 4. Find (<i/t/x)arctan(sinx).

5. What is the general solution of the differential equation d2y/dt2 + 9y = 0?
6. Find the solution y of the equation d2y/dt2 +9(dy/dt) = t such that

y = 1 and dy/dt = - % when / = 0.
* 7. Find

sinx2
 t ,. coslh— 1

hm — and lim : .
x^o x2 h^o n

390



Answers to
selected problems

Answers to most odd-numbered problems and sample test problems
are given here. There are also answers to certain even-numbered
problems of particular interest or novelty.

Chapter 0

Section 0.1
1. (a) 20 (b) 6 (c) 2 (d) 300 (e) 0 (0 40 (g) 1 (h) 9 (i) 6 (j) 9 (k) 4
(1) 35 2. (a) a(p + q) (b) c2 + 4d2 (c) b1 - a2 (d)y2 3. (a) x3 + 3x2/* +
3xh2 + h3 (b)x4+4x3h+6x2h2+4xh3 + h4 (c) x5 +5x4/* +l0x3h2 +
\0x2h3+5xh4 + h5

Section 0.2
1. (a) - 3, - 2, 0 (b) - 3, - 5, not possible (c) 3, 4, not possible (d) 0, not
possible, not possible 3. (a) (a + b)q (b) x(u - u) (c) x2 + y2 (d) 0
(e) ef-cd (f)b-a 4. (a) x2 - y2 (b) x3 - y3 (c) x4 - y4

Section 0.3
1. (a) | (b ) f (c)¥ (d)£ (e)16 (01 (g)6A/(6+/i) (h) x/[5(x +2)]
(i) 3y3/(y + 3) (j) 3/[y(y +3)] 3. (a) - l / [4(4+ A)]
(b) -3(2x + h)/[x2{x + h)2] (c) -(3JC2 +3JC/Z + /*2)/[JC3(.X + /z)3]

Section 0.4
1. x + l/jc 3. (x3-x)/2 5. (x- l ) / (4x 2 - l ) 7. .xy
9. [jcy/(x + y)]2 11. b2/2a2 13. a13/b1 15. (w + l)2/w6

Section 0.5

1. (a) 2V^ (b) (f )2 / 3 (c) {a (a — b) or {a (b — a), whichever is nonnegative,
provided a > 0 (d) 2(a3 - b3)1/3 (e) ft/(a + /?)3/2 3. (a) yes (b) no, yes
when p > 0 (c) no, yes when a or b = 0 (d) no, yes when pq = 0 (e) same o g -i



Answers to as (d) (f) yes (g) no, no (h) no, no 5. (a) 18^/(81 - y4)
selected problems (b) lSy/[(9- y2)]/si- y4]

Section 0.7
1. 10 3. ^ 5. 3 7. 4, - 1 9. 7, - 2 11. - 5 13. f, - \

Section 0.8
1. j c > 3 o r ; c < - l 3. - 6 < x < - l 5. x< -4 1. x>^ or x<3
9. x > 3 o r x < - 3 11. - 2 < J C < 2

Section 0.9
1. x = \ 3. x = 3, y = 1 5. x can be any number; then y = \x - 4
6. no solution 8. JC = ̂ , y = ̂ # 10. * = + 2, j> = 1

Section 0.10
I. i 3 3. (5±)fli)/2 5. 0,4 7. 2 (double root). 9. (7±i/57)/2
II. 7 , -4 13. (3±i/5)/2

Section 0.11
1. 5, I, - ^ 2. 5, (l + i/9f)/6*1.8, ( l - i / 9 1 ) / 6 * -1.4 3. To two
decimal places, which is greater precision than graphical methods easily
afford, the roots are 5.01,1.65, -1.49 4. 2 is the only real root 5. 3, - 1 ,
-4 7.1,2,-7 9. -6, (-3±i/l7)/4 11. 3, -2, -2±i/2
13. (a) 12, 226, -58, -54 (b) approximately -8.76, -2.22X107,
2.70 X1015

Section 0.12
1. (a) 12, 42 (b) 64,126 3. (a) -28, -78 (b) -64, -42 5. (a) 11, 36
(b) 243, 364 7. £ 9. (a) £ (b) £ (c) £ (d) g

Section 0.13
1. 0.646 3. 2.51 5. (a) 5 (b) - 2 (c) 4 (d) \ (e) 4 (f) 3 (g) 9 (h) 1
7. (a)loglo(x+2) (b)log^ (c) § (d) loga(* +

Section 0.14
1. (a) 4° per hour (b) 8° (c) 8 hours 3. «1.2

Chapter 1

Section 1.5
392 5. 35.4, 3.8 7. (a) 2.1737 (b) 2.1772 (c) 10.2183



Section 1.6
6. (a).y-4 = 2(jc + l) (b) 3.x + 4j>=19 (c)j = 7 (d)y = cx (e)j>+3 =
2(x+2) (f)3x+4j> + l = 0 (g)j> = ;c+2 (h)3j> = 2x (i) by = *(JC -1 )
8. (a) E = - ^ P + 9 10. (b) ,4 = P(l.l)" 13. C = ^v3 15. 5 = 2600-
16t2 17. </ = (1.23)v^ 19. Z) = 24,000/^ , 8000, 4800, $5.76
21. (b) 5 times as strong, 3.125 times as strong 22. v =100— ff,
/? = 100 - f f, c = 100 - §f, approximately 25. 6.67 X KT20

Section 1.7
3. 9.1,22.9 5. (b) i t * - 0 . 0 1

Section 1.9
1. yes, no 3. (a) - 2 < y < \ (b) no function (c) ^ < i; < 1 (d) \ < v < 100
or -100 < v < - \ (e) v is a function for 0 < M < 2, w =£ 1; f; < - 3 or i; > 3
(f) - 1 < v < 1 (g) 0 < v < 25 (h) 0 < v < 2n 5. (a) maximum Q = 15
attained at x = | , no minimum (b) minimum P = 20 attained at x = — 3,
no maximum

Section 1.10
1. 1, 0, 6, a3 + 2a2 - 4a +1, 3* + 5/i2 + /*3 3. (a) 4, 5, 4^2 - 5 (b) 0.6063,

0.6006 (c)(6+/0/[ / l6 + (3+/0 2 +5] 5. (a)x (b)jc (c)x (d
x) 7. (a)[i,oo)(b)(-oo,oo)

Answers to
selected problems

Section 1.11
1. (b)[l,5] (d)no (
- 2 < x < 0 3. (b)[0,25] (d)no (e) f(x) = Wx - x2, 0 < x <5; or

/(JC) = 1 0 X - X 2 , 5 < J C < 1 0 7. (a) [1,6], [500,18,000] (b)/? =i/l8,0
[500,18,000], [1,6] (c) all JC # 0, (0, oo) (d) .y = ±\/18,000//x , not a
function, j> = 18,000/x2, x > 0

Section 1.12
1. (a) - 5 < x < 5 (b) - 5 < x < 0 or 0 < x < 5 (c) 3 < x < 5 or
- 5 < x < - 3 3. FigureA-1 4. \xy\ = \x\'\yl\x/y\ = \

1, 0)
(c) (0, 4) (d), (e)

Jl , -5)
(0.

Fig. A-l

Section 1.13
6. (a) 1.33333206, f (b) 0.79999924, f 8. (b) 6 (c) 12(2-/3 ) 1 / 2 = 6.2117
(d) 6.2653, 6.2787, 6.2821 (e) 3.1410 393



Answers to
selected problems

Sample test
1. y = 3600/x2

2. x 2
y 900

4
225

6
100

8
56.25

10
36

12
25,

Figure A-2 3. 30.5 4. It should be larger 5. y - 36 = - 16(x -10)
6. JC ^ 0 7. [9,3600] 8. not a function 9. j> = 6 0 / / * , 9 < * < 3600
10. Figure A-3

1000

500

2 4 6 8 10 12

Fig. A-2 Fig. A-3

Chapter 2

Section 2.1
3. (b) / = 2 (c) 64 (d) (i) 16, 16 (ii) 16, -16 (iii) 26f, 16 (iv) 32, 0
5. 54.4, 55.84, 55.984 7. (a) 24 | (b) 44, 52, 48£ (c) 8, 44, -52 , - 8

Section 2.2
5. (a) 4 (b) - 2 (c) - 3 (d)0 7. (a) 11 (b)0 (c) 6 (d) -2/* + /*2 (e)0
(f) 0 (g) - 2 + 2JC 9. (a) 1000 (b) does not exist (c) 1331 (d) does not
exist 11. (a) 2 (b) 0 (c) 4 (d) 6 (e) 0 (f) 2t (g) 2t (h) 12-2*
13. (a) 0.25 (b)0 (c) -0.0625 15. average velocity = 66f mph

Section 2.3
6. (a) 50 (b) does not exist (c) 3 (d) 0 (e) does not exist (f) does not exist
7. anii a*0

Section 2.5
5. 6, 0, - 6 , 3xx; 3 7. 16, 0, 8, 2x1+3x1

2 9. 6, 2, 0, - 2 , 6-2JCX; 1

11. 3 13. 3, 3, 0, does not exist 15. 2xx if xx < 3, 12-2xx if xx > 3
17. y*r2 / 3 19. 1; 1; - 1 ; 1 if xx > 0, - 1 if xx < 0; slope does not exist
at x = 0

394

Section 2.6
5. , j> = 0, y — —4 — 4.x, j> = — x}

; = - 2 x 3 + 3 x 2 x (c)j> = -

7 = 3 -2x , y = 3 + 2x, y = 3/xf -(2/x\)x (c)

Cy = Qy== _4g
• = 1 — 4x, y = 5 — x\ + 2JCXJC

L — J C / X 2 ( b ) ^ = (3 — x ) / 4 ,



y = - 4 - 3 J C , y = 4/x3 -(3/jef)x 11. >> = -21-4x,.y = - l l , .y = - 3 +
8JC, y = (4*! + 8)x - {2x\ + 3)

Section 2.7
9. (a) 7 (b) x2

(h )2x -2 /x 3 I
(m) 4t+l (n) <
11. (a)

X

(b) Figure A-4

13. (a)

(c) - 2 / x 2

- 1

- 4 |
8

( 0 , - 1 + 3:

J

(d)

*G)
I 5 -

0
1
3

x,x

l / x 3 (e)
-4 /9x 3

I / ' 2 (P)

1

0

+ ^ = ^,

) = {_}'

0 (f)2-•2?
(k)fc+2c?
- 3 / 2 x

—

v — 1
„ ^ "2

2 +

2

If
1

(g)
(1)
4/>

4x3+12x
- 4 x + 18y2
:3

3 4
1 2
0 3

(b)
3JC2,JC>0

15. (a) 101-3100, 0, does not exist

17. (a)and(b) f'(x) = g'(x) =

(r) F'(x) = Z2*

Answers to
selected problems

4

2

i

2

y
y

1
4

Fig. A-4

Section 2.8
1. (b) \ 3. (d) In the first case, if x is the limit, then x > 0 and
x = (6+ x)1/2. Thus, x2 - x - 6 = 0 and x = 3.

Section 2.9

Sample test
1. (a) - 2/x4 (b) - 2 + 6t (c) 2x - 2/x3 2. /(0) = 4, /'(0) = 0, /(I) = 2,
/ ' ( l )= -3 , / (2 ) = 0,/'(2) = 0,>;-2 = -3(x- l ) ,> ; = 0 3. (a)i;(O = 20-2
(b) t = 10, ̂ (10) = 100 (c) t = 20 (d) 200 ft (e) 20 ft/sec 4. |(5JC + 2)-171
= \5(x - 3)| < 0.01, or e, if and only if \x - 3| < 0.01/5, or e/5 5. (3,10)
6. Figure A-5 7. (a) (0,4)

(b) V } \8-2JC,2<A:<4

8. Dy = ( - oo,2)U(2, oo); Rf = (09 oo); no, because two values of x
correspond to each positivey 9. (a) 3*-5-1/ .X3 ( b ) 3 / 2 - 4 f + l (c) 18M

10

3 7

Fig. A-5

395



Answers to
selected problems

11. (2,13), y -13 = - 6(x - 2) 13. Figure A-6 15. (a) x = - 1 (c) - 5
17. 9, 9 + 6h + A2, 6/z 4- h2, 6 + A, 6 21. 0.05/6, e/6 23. j ; - 2JC + 4,
y = 9 27. (a) 80 (b) u(/) = 64- 32f (c) * = 2 (d) t = 5 (e) 208 (f) 96
29. Figure A-7 32. The limits are (a) 4 (b) f (c) ff 33. DF = [ - 2, oo),
RF = [0, oo) The function given by y = (JC2 - 8)1/3 is the inverse of F
35. D/ = [0,2)U(2,5)U(5,7] Figure A-8 37. /(0) = 0,/(I) = 1,/(2) = 0,
/'(0) = 4 ,Al )=- l , / / (2 ) = 0 , ^ - l = - ( x - l ) , ^ = 0 39. (a)/'(*) = fx
- 4 - 3 / x 2 (b)//(O = 4 / 3 - 2 - 2 / / 3 (c)f'(u)=-2/u6 41. >>(-l) = 0,
^(0)= -2 , y(l)= - 4 , / ( - l ) = 0, / (0)= - 3 , /(1) = 0, 7 +2 = -3x,
^+4 = 0 43. (a)/'(x) = 4x2-10x+l/;c3 (b)/'(O = 3-1/r2

 (C)/'(M)

2w -18/u3 45. (a) ̂ (2) = 3, y(6) = 23 (b) y - 3 = 5(x - 2) (c) (4,9)
(d)^-9 = 5(x-4) 47. Z)G = (-oo,oo),^G = (-oo,4],j = (64-x3)1/2

is the inverse of G for x < 4

10

0

A-7

10 0 2

Fig. A-8

Chapter 3

Section 3.1
4. z = 1, [0,00), (0,00), yes 6. z = f, yes

Section 3.2
3. (a) strictly decreasing on [ -1 ,1 ] (b) strictly increasing on [ — 1,2]
(c) strictly increasing on (— 00,00) (d) strictly decreasing on [0,3]
(e) strictly increasing on ( - 00,00) (f) strictly increasing on [4,00)
(g) strictly increasing on [2,00) 4. f(x) = x3 on [ — 1,1] is strictly
increasing, but / '(0) = 0

Section 3.3
7. (a) 1.5,126.5 9. C = (0.005)*3, 2.7 11. (a) 1.08 (b) 0.15, 5% 13. 300
units 15. 384

396

Section 3.4
7. 0.76, 0.60, 0.40 9. 6, 5.04, 5.01 10. (a) 25, 26 (b) E/x = 400/x + 24
+ 0.01* (c) 200 (d) 0 < x < 200, x > 200 (e) 28, 28

Section 3.5
3. 10.5,11.525 5. 140; by completing the square, we obtain E
0.01O -140)2 , which show that £(140) = 324 is the maximum.

324 —



7. ( — 4,25) is the highest point. There is no lowest point; 9 is the y
intercept; 1 and — 9 are the x intercepts. 9. (a) (0.25,6.125), —, 6,
(1 ± 7)/4 (c) (0.25,1.125), - , 1, (1 ± 3)/4 (e) (0.25, -1.875), - , - 2, -
(g) - , (2,0), 8, 2 (i) - , (2, -4) , 4, 2±v/2

Section 3.6
3. yes; check/(x) = x3 and c = 0, for example 5. The only rel. maximum
occurs at x = — 1; the only rel. minimum occurs at x = 3.

Section 3.7
1. Figure A-9 3. 128, 320 4. (a) 6 is the maximum; 2 is the minimum
(b) 35 is the maximum; -19 is the minimum; - 1 is a rel. maximum at
x = 0; - y is a rel. minimum at x = — 2 (c) 33 is the maximum; 5 is the
minimum (d) —19 is the minimum; 1 is the maximum, which is attained
at both 0 and 3; - 3 is a rel. minimum attained at 2 (e) (0,0) is the
minimum point; (1,1) the maximum point; (2, j) is a rel. minimum point;
(~~ h i) is a rel- maximum point (f) 8 is the maximum; — 5 is the minimum;
a rel. maximum of 1 occurs at 1; a rel. minimum of 0 occurs at 0
5. (a) The minimum is 0. (b) The minimum is 0; it occurs at + y/3; (0,3)
is a rel. maximum point, (c) The minimum is - 4, at 0, ± \/J; there are rel.
maxima of value - ^ at ± 1.

Section 3.8
12. a square 14. One side is twice as long as the other. 15. (a) 10 X 20
(b) 5 X10 17. 5 X10 19. (a) radius = 5, height = 5, 75TT in.2 (b) radius =
5, height = 5, 125TT in.3 21. h = f,r = h/yjl 23. 5 weeks from now

25. 8 / ^ 27. 25 trees, 625 bushels 30. (a) b = 30, h = 40 (b) b = 25,
h = 57.6 (c) b = 20i/3 , y = 30 (d) b = 10\/l0", h = 36

Answers to
selected problems

Fig. A-9

Section 3.9
6. (a)^ -120, x = 30-107, P = 5-109 9. (a) 40, 502.5 (b) 1.602, 2.1
11. (c) 1000, minimum (d) 14.5 (e) 14.5

Section 3.10
6. (a) If x0 = 4, Xl = 4.125, x2 = 4.123106, x3 = 4.12310563 (b) If x0 = 5,
*! = 4.933, x2 = 4.932424, x3 = 4.93242415 (c) If x0 = 3, JCX = 3.037,

JC2 = 3.036370, x3 = 3.03637028 8. To eight decimal places, ^7 =

1.91293118, and with x0 = 2, JCX =1.91666667, JCX - VT = 0.00373548,

;c2 = 1.91293846, x2 - ]fl = 0.00000728, JC3 = 1.91293118, x3 - ^1 = 0

Section 3.11
1. (a) F = ( 9 - 2 J C ) ( 2 4 - 2 J C ) J C , 0 < ; C < ! (b) JC = 2 (c)>4 = (9 -2JC) (24 -2JC)

has no extremes for 0 < JC < \. It approaches 216 as x approaches 0, and 397



Answers to
selected problems

it approaches 0 as x approaches f. 5. 600 tons, $3,500 7. F = 1000/JC2,

+ 0.6 dynes 9. f'{x) does not exist at x = ± 3; relative minima occur at
x = — 5 and 3; relative maxima at 0 and 5. The absolute minimum = — 2;
the absolute maximum = 9 11. (a) R = (7 - 0.02x)x (b) P = -100 + 3x -
O.Olx2 (c) 150 (d) 125 (e) 4-0.02*, 3.8, 2 13. (a) 1000 A (b) 160,000/*;
— 10t>2 (c) 20 (d) 12,000 15. / i s stationary at x = —1,4, decreasing for
- 1 < x < 4, and increasing elsewhere 17. / = 4000/JC2, -19.2

calories/min/ft 19. (a) r = 3, h = 6 (b) r = f, h = ^ (c) r = fc , A = ^

Sample test
1. / is stationary at x = — 1; it is increasing elsewhere
3. 8 in. X16 in. 4. $44.6, $43, $41

2. 800 units less

4.x+ 16, -<

5. (a)
0<x<3
3<JC<4

(b) - 3, 0, 3 (c) 0 at - 3 and 3; 1 at 0 (d) 0 at - 3 and 3 6. Each side
length = 10. Because the base costs twice what the sides do for each square
inch, the problem is equivalent to that of a closed box with uniform cost
7. (a) JC = 30 = y (b) x = (/ + w)/4 = y

10-

- 5

-15

-25

Fig. A-10
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Chapter 4

Section 4.1
7. (a) s is at a maximum of 9 at t = — 1, a minimum of — 23 at f = 3 (b)
v is at a minimum of —12 at / = 1 (c) s decreases on [ — 1,3] and increases
elsewhere (d) v decreases on (— oo,l], increases on [1, oo) (e) Figure A-10
9. (a) The absolute maximum of s is 108 in., at t = 6; the absolute minimum
is 0, at t = 0 and 9 (b) The absolute maximum of v is 27 in./sec, at / = 3;
the absolute minimum is - 81 in./sec, at t = 9 (c) - 36,18 (d) [0,6], [6,9]
(e) [0,3], [3,9] 11. ( a ) j ( - 2 ) = - 3 , j ( - l ) = 8,^(2)=-19,7(4) = 33;
absolute maximum = 33, absolute minimum =—19 (b) j>'(~2) = 24,
^'(2) = — f̂, y'(4) = 60; absolute maximum = 60, absolute minimum = — ^
(c) - 30, 42

Section 4.2
9. (a) s"(t) = 6(t -1); becauses"(-l) < 0, s is at a maximum at f = - 1 ;
because 5"(3) > 0, s is at a minimum at / = 3 (b) v"(t) = 6, which means
that v is at a minimum at / = 1 (c) (1,-7), [-2,1), (1,4] 11. The
maximum of s is 27, at t = 3; (2,16) is a point of inflection [if the natural
domain is considered, (0,4) is also a point of inflection]. 13. j>(0) = 1 is
minimal. The maxima occur at the end points; (1,12) and (3,28) are points



of inflection. 16. (c) A is only an approximate model for the growth of
the bacterial colony. The problem points to a respect in which it fails to
reflect reality. 17. (0,0) is the minimum point for/x, the maximum point
for/2, and the horizontal point of inflection for/3.

Answers to
selected problems

Section 4.3
3. t = 9 gives maximum velocity; t = 6 gives maximum acceleration
5. 2400, decreasing at 120 ft/min, 2700 7. 8, decreasing at 60 ft/min,
83

Section 4.4
3. w 7. F'(x) = 12(x2 - 2x + 5)U(2JC - 2), x = 1 corresponds to minimum,
F(l) = 412; there is no maximum 9. (a) C = 4-0.002w, «' = - 2JC
(b)2x-0.004A;3, -176 (c) 2.2 11. (a) x # l , j>*0 (b) - 1 2 / ( J C - 1 ) 2

(c)x#l , ( -oo,0) (d) - ! , - ! 13. (a) - £ (b) 0 (c) «-0.09(bythe

Newton-Raphson method) (d) ±1 (e) - ^ 4 , 2 (f) 0 (g) 0 (h) 0 (i) 3
(j) - f (k) no critical numbers

Section 4.5
1. (a) (-00,00) (b)jc^O (c)[-2,2) ( d ) / # l ( e ) w * ± 3 (f)[0,30]
(g) A # 0 (h) ( - oo, oo) (i) x # 0 (j) ̂  * 3 (k) only at * = 0 (1) A # 0
3. limx^p(f + g)(x) = \imx_+pf(x)+\imx_.pg(x) = f(p)+g(p) =
(f+gXpY'f'g a nd ^/are continuous; f/g is continuous provided
5. In 0 < \u - p\ < 8 => \f(u)- L\ < e, replace u with/? + A.

Section 4.8
5. dr/<& = - 1/(600TT) in./hr 7. dr/A = 1/(5TT) in./hr 9. (a) 20
cm3/min, + f cm3 (b) dA/dt = Sirr(dr/dt), dV/dt = 4irr2(dr/dt)
(r/2)(dA/dt) = (a-

Section 4.10
3. (a)x-1

(0(l/^)(\/2/2 + l )(g)-(

(j)

(b) - x - 3 / 2 - 2 x - 4

(d)8/( / 2-3)3 (e) -

5. (a) dy/dx = - x/4^, 0, — f, vertical tangent (b) dy/dx
(c) 3JC + 8>; = 25 (d) Figure A-ll Fig. A l l

Section 4.11
5. 45/i/5 ft/sec 7. 420 yards/min 9. 32 ft/sec 399



Answers to Section 4.12
selected problems 1. (a) dV/dt (b) dS/dx (c) dy (d) dy 3. (a) dy = 3u2 du (b) dy = 3(x2 +

2 (c) yes, given in (a) that u = x2 4-1

Section 4.13
5. (a)(16-2x2)/(16-x2)1/2,[-4,4],(-4,4) (b) -(x2 +1)(1- JC)3(7X2

-4x+3), (-00,00), (-00,00) (c) - f(x -2)~2, x # 2, JC # 2 (d)(15-
2x)/[2(4- x)3/2], (-oo,4), (-oo,4) (e) (1 -3x2)/(2]fx~% [0, oo), (0, oo)
(f) - (3*2+l) /(x/^) , (0,oo), (0,oo) (g) (3x2-26x+27)/(x2-9)2,
x * + 3 , x * + 3 (h) 9/(9-x2)3 ' 2 , (-3,3), (-3,3) (i) - l l x / [ (25 -
x2)1/2(36 - x2)3/2]9 [ - 5,5], ( - 5,5) (j) not a function, because there is no
domain 7. minimum of - 1 at x = 0; (1/VJ, -1/2) and ( - 1/i/J, -1/2)
are points of inflection 9. valid for x # 1 11. volume increases aX^m
in.3/min 13. (a) G" = /g" + 2/'g' + /"g, (?'" = /g'" + 3/'g" + 3/"g' +

(b)

( nk \

/ ( w )g ( 0 ) , where

Section 4.14
3. /i > 2500 5. P = - 200 + In - O.OOIH2, * = 1000, P(1000) = 800
9. TUC = 200/H + 5 -O.OOlrt 11. MC = 5 + 0.0004«; MR = 8 - 0.002«;
C is always increasing; R is decreasing for H > 4000; P = — 200 + 3« —
0.0012A*2; P(1250) = 1675 is maximal; TUC = 200/« +5 + 0.0002n\ (TUC)'
= - 2 0 0 / H 2 +0.0002; < 0 (economies of scale) if 0 < n <1000; > 0
(diseconomies of scale) if n > 1000

Section 4.15
5. a square 7. h = 2r gives maximum volume for given area or minimum
area for given volume 9. r = 10(f )1/2, h = 20/V^ 11. In either case the
radii must be equal. 13. x = a/yjl', j> = &//2^

Section 4.16
1. (a) 285 (b)125 (c) 117.15 (d)p(a2 + 62)1/2if qa/{p2 - q2f/2 > b and
/> > q; ap2/(p2 - q2)^2 + q[b - ^ / ( / ? 2 - q2)1'2] if ^ / ( / ? 2 - ^ 2 ) ^ 2 < b
and/? > tf,/?(tf2 + b2)l/2 ifp < q 3. (a) $18,750 (b) no; yes, to $37,500
(c) 8 knots 5. (a) 50/x - JC, JC = 625, p = 2, profit = 625
(b) 2500 (I//? -1//?2) , /? = 2, x = 625, profit = 625 7. (a) - 6/(5w)
(b) dx/dt = -30/TTX2 9. 3.4 ft/sec 11. (a) f and ^ (b) For any
specific length, maximum volume goes with maximum cross-sectional area.
(c) radius = 100/(3TT), length = 100/3 13. maximum at (0,1) and
(0, -1) ; minimum at (1,0) and (-1,0) 14. height = 4r, radius = }/2 r,

4 0 0 where r is the radius of the sphere 15. (b) 18/(16TT), 18/(9TT), 18/(4TT),



18/TT in./sec (c) 72/TT 17. 10 X 10\/3 in. 19. R = 4 - 48.x + 12x2,
minimum at x = 2 21. 6.x2 + 8xy, x = 10 andj> = 15, x = 5VT andy=l2
23. (a) The domain consists of all JC except those between 0 and — a.
(b) (0,0) and ( - 0,0) are minimum points; at each, the tangent is vertical
(c) concave down throughout the domain (d) Figure A-12 25. (a)/'(•*) =
- (x + 3)(JC + l)/(x + 2)2, f"{x) = - 2/(x + 2)3 (b) x = - 1 corresponds
to a maximum; x = — 3 corresponds to a minimum; there are no points of
inflection (c) maximum = | , minimum = 1.5 27. (a) (3, -13.5) is minimum
point (b) (0,0), (2, - 8) (c) Figure A-13 (d) 18, - 6 29. (0,0) is maximum
point; (0.4,-0.326) is minimum point; (-0.2,-0.410) is point of
inflection; dy/dx is not defined at x = 0; Figure A-14 31. — 0.01 ft/min
33. 2 x 2 x 4 m, 4 x 4 x 2 m 35. h =15, r =\0]/2 in. 37. x = 6 miles
38. One piece should be the shortest possible that can be formed into a
square (better yet is to defy instructions and make only the circle).
41. (a) [-5,5] (b)0 (c) |x | /(25-x2)1 '2 , (-5,5) (d)(-5,5) (e)/"(0)does
not exist

(0

(g) all

/ " ( * ) =
-25(25- JC2)~3/2, - 5 < J C < 0

25(25-JC2)~3/2, 0 < J C < 5

Sample test
1. (a) all real numbers except - 2 (b) f\x) = (x + 5)(JC —1)/(JC + 2)2,
f"(x) = 18/(JC + 2)3 (c) 1 (min), - 5 (max), no points of inflection (d) 2,
-10 2. -4V3in . /min 3. \ ft/sec 4. 0; decreasing, j>"(2)= -48;
24 5. |^5" X 4^5" X 8 6. / ' = 2(a + 62)/(x + Z>)3, which cannot change
sign at any point in the domain; JC = — b— (a + b2)1/2 corresponds to the
only maximum, and x = — 6 + (a + b2)l/1 corresponds to the only
minimum, provided a + b2 > 0 7. 6.5 ft/sec 8. (a) 10 X10 X 7.5
(b) T X ¥ X f 9. (a) height = \ side length (b) height = (volume)/(7.5)2

Answers to
selected problems

g(x) = V*2 + ax, a = - 6

\

1 )

- 5

10
/

(
5

i

10

Fig. A-12

Fig. A-14

Chapter 5

Section 5.3
9. (a) (4JC +1)4 + c (b) f (25 + x2)3 / 2 + c (c) £(25 + JC2)2 + c or 25x2 +
JC 4 /2+ A:; A: = *§* + c (d) 2(10-2x + x2)1 / 2 + c (e) f [x3 + ( 9 - x2)3/2]+
(0 ~(5 + 3x - x3)"x + c (g) | ( ^ ~ V "̂)3 + c or ^JC3/2 - }/lx +2yfc + k\
k = c-\fl (h) f(3x1/3 -hl)3/2 + c (i) |(JC2 +4x - 3 ) 3 / 2 +2(x +2)2 + c
0) 2(16 - x2)1 /2 + c 11. y = \x3/2 + x1/2 4- JC - 20 13. minimum of c
at JC = ± 3; there are no maxima or points of inflection 15. 3744 gallons
16. (a) 100 (b) C = IOOJC - 0.1 JC2 + 400 (c) R = 120.x -0.2JC2 (d) P = 20JC
0.1 JC2-400 (e)600 401



Answers to
selected problems

Section 5.4
7. 2 sec, 112 ft/sec 9. (1, ^ ) is a horizontal point of inflection; there are
no maxima or minima 11. -16 / 2 +192/ + 7500, t = 2, t = 10,128 ft/sec,
/ = 6, 8076 13. (a) 180 ft (b) 50 ft/sec 15. (a) y = - St2 4-48/ + 56
(b) 128 ft (c) / =1, 5 (d) t = 7, 64 ft/sec

Section 5.5
9. (a) 0.385 (b) 0.33835, 0.33383 11. (a) 0.75999 (b) 0.61510, 0.60150
13. (a) 0.71051 (b) 0.67146, 0.66716 15. (a) 10.52 (b) 11.2532,11.32533

Section 5.6
1. mx2 5. 1.20951, 1.12705 7. (a) 65.99 (b) 65.99 (c) 66.005

Section 5.7
7. (a) 12 (b) 18 (c) 18 9. (a) 16 (b) 12 (c) 14 11. ^ 15. (a) 70.25
(b) 61.25 (c) 66.125 17. (a) 66.08990 (b) 65.86468 (c) 65.95498

Section 5.8
13. 500 15. £ 17. 32TT/5 18. 500 19. 1782 20. 250 21. f

23. 9T7/2

y = 12 - x2

( - 2 , 8 ; (2, 8)

Fig. A-15

Section 5.9
1. f 3. 12 5. 7. f 9. K4-91/3)

Section 5.10
1. no; jf'(x) dx is undetermined to the extent of a constant

Section 5.11
1. (a) JC3/3 +1 /x + c (b) 2/x (x/3 +1)4- c (c) f x5/2 - §x3/2 + 3xl/3 + c
(d) \{x +1)4 + c or JC 4/4+ x3 + ix2 + x + fc, where A: = c + i 3. j> = 2x3

-\/x-2x+4 5. 1.24-106 7. 32, Figure A-15 9. j = x3 - JC, Figure
A-16 11. (a) (1,5) (min), (3,9) (max), (2,7) (inflection) (c) 8 (e) 40.5
15. T ; 0 , ^ 17. 500/v/3 19. - 2 J C ~ 1 / 2 - x + 2 J C 3 - 3 21. 500TT

23. 55 25. (a) 54-32/ -\6t2 (b) / =1 (c) 46.64 mph 27. 216 cc
29. y = \{x2 -16)3/2 +4 31. f 33. f, Figure A-17
35. (a) (k/6)(b - a)3 37. (a) (5 - yfl9 ) /3, (5 + yf\9 )/3 (b) (|, §) , - f
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Sample test
1. 20 2. 3525 3. (a) y = - 16r2 +128/ +144 (b) t = 9 (c) 4, 400
(d) 2, 6 (e) - 1 , 160 4. y = (25 - x 2 ) 1 / 2 +5 5. 1000 6. 8; 0 and 4

Sample test
lr. / = 12/3 - 3r2 + 200/ + y(0) 2'. 800\/2 ft, - 3/(20^2) ft/sec
3'. Figure A-18, ^ 4'. 17-(lO-t2)l/2 5'. 32TT/5 6'- (±6,0), 576

Chapter 6

Section 6.1
11. (a) e~2x (b) e~0lx (c) e2^ (d) 3el/x 12. (a) x = ±2 (b) x = + 1
(c) no solution (d) x = 0, 3 (e) x = 0 15. (a) c = 1, fe = £ (b) c = 3, b = 4

Section 6.3
4. (1.321)(0.690)-l= -0.08851= -8.851%

Section 6.4
7. (a) 22.1% (b) 21.0% (c) 20.5% 9. 6.18% 11. 1.98 years, 3.96 years
13. 1

Section 6.5
3. (a) ( - oo,oo) (b) (0,oo) if c> 0, ( - oo,0) if c < 0 (c) no (d) no (e) no
5. ( — 1, -l/e) is the minimum point; ( - 2 , — 2/e2) is the point of
inflection; Figure A-19; the flexion is minimal at x = — 3 6. minimum
point = (0,0); maximum point = ( — 2,4e2); points of inflection at JC = — 2 +
y/2 7. -4/(ex - e~x)2 9. (1,1/e) is the maximum point; (2 ,2/e2) is
the point of inflection; the curve approaches the x axis for large positive
x 11. minimum point = (1, e/(e +1)); y approaches the line x = 1 from
below as ;c -> + oo, + oo as JC approaches the solution of ex + x = 0
( « — 0.57) from the right, — oo as x approaches this value from the left;
the only inflection point is « (2.27,0.81)

Section 6.6
3. (a) 0.18 (b) ^ p 4. twice the relative error of the radius plus the relative
error of the height 5. (b) R = pf(p) = (640/7 -100/? 2) /3 , pM = 3.2
(c) - 1 7. (a) 2% (b) 3%

Section 6.7
3. 0.669 mg 5. (a) 33.7 lb/in.2 (b) 13.7 hr 7. N = 2.5e01t 9. 46 days
11. e -1 13. (e -1)2 ~ 2.952 15. maximum point = (2,2/e); inflection

Answers to
selected problems

Fig. A-18

1 i

v = xe

- 1
i

Fig. A-19
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Answers to
selected problems

Fig. A-20

point = (4,4/e2); Figure A-20 17. 2(e2 - 3 + 1/e) « 9.514 19. ex + e~x

22. (b) co(l - e-Nt°)/(l - e-'») 23. (b) $164.87 (c) $162.89 (d) 5.13%

Section 6.8
3. a, c = eb, r = a 7. exp(ex + x) 11. (W2)(e - 1 ) « 8.097
13. (ir/4)(es -1 ) 15. minimum point = (1, e), concave upward for JC> 0,
concave downward for x < 0; y -> 0 as x -> 0 from the left, + oo as x -> 0
from the right, and the line^ = x as x -> + oo 17. (a) [0, oo) (b) minimum
point = (0,0); maximum point = (5,\/5 e~025) (c) 50TT(1 - \ / { e )
(d) inflection point ~ (10.29,1.11)

Section 6.9

Sample test
1. about 11 years
4. e~l/1, -e~x/1

2. 6(e6x - e~6x) 3. (TT/2)(1 - e~4) « 77(0.491)
5. Figure A-21 6. 157r(e25-3.5) 7. (0,0),

10

Fig. A-21

12
- 2

Fig. A-22 Fig. A-23

Sample test
1'. about 10 weeks 2'. ex-3e~2x 3'. Figure A-22, \{e + e~l

4'. minimum of e2/4 5'. Figure A-23 6'. 20TT/3 7 . (a) -\i
(b) maximum flexion at x = + (|)1 /2, minimum flexion at x = 0

404

Chapter 7

Section 7.3
11. 14.21 years 13. 24 million 15. 170 years
C = present yearly cost (b) 5.4C, 10.7C

17. (a) 4.3C, 7.7C, where

Section 7.4
9. (a) 3/(2x) (b) i[l/(WInT)] (c) - 1/x (d) 2/x (e) \/{X\XLX)

(0 3(x-lnx)2(l-lA) (g) {x2-a2y1/2 (h) ( ^ - f l 2 ) - 1 / 2 - ^
a2)"1/2 (i) -1/(2*) 11. (a) 50x/(625-x4)



(b) [(25 + JC2)/(25 - JC2)]1/2[50JC/(625 - JC4)] 13. (a) xx(l + In JC),

minimum point = (1/e, e~l/e) (b) JC*[(1 + ln JC)2 + 1/JC]

(d) Figure A-24 14. (a) 0.756945 (b) 1.256431, 0 (d) 1.857184, 4.536404

Section 7.5
3. IT, 7T/2a 7. e2/(e4 -1) 11. (a) | l n 2 (b)

Section 7.6
4. 230.26 5. 0.434, 0.087

(c) Inj (d) 2 (e) (ln3)/2

Answers to
selected problems

= <xx

Fig. A-24

Section 7.7
6. # = 5t;25 7. JV = 10,000<?-°At 8. T = Z ) 1 5 9. v = 20d15 10. £> =
0.12e-01/ 11. (a) y « 695JC~X 23 (b) >> « 73JC~0 6 (C) 480, $4.1 million,

39,000 12. 7 * 20,000*-°°°8* 13. (a) / = 100*"°Olx (b) F = 125 / JC 2

(c) For large JC, both approach 0; for small x, only one is bounded.

Section 7.8
1. r = (ln2)/15 3. (a) 1 (b) 3 (c) \ 5. -0.089 7. (1.01)12 - l =
9. 7V«60e-°O5r + 90e - a 5 ' + 60e- 1 5 / 11. e ' 13. (a) x > 0, JC # 1
(b) g'(x) = [l/(2v^)][lnx - 2 ) / ( l n x ) 2 ] , g»(x) =
[8-( lnx)2] / [4x3 / 2 ( ln JC)3]; (e2, e/2) = minimum point; ( e 2 ^ , /{f))
and (e"2*2, — e~*2/(2}/2)) are points of inflection (c) The graph is concave
upward on (0, e~2*2) and (l ,*2^2), concave downward elsewhere; it
approaches zero as x -> 0, oo as JC -> oo and as JC -* 1 from the right, - oo
as JC -> 1 from the left. 15. (a) (0, oo) (b) (el/k, 1/ke) = maximum point,

*k(k-
= i m Qf i n f l e c t i o n

(c) Figure A-25 17. A * 5e°1 2 ' 19. A: = 12.103 21. A = Ueol\
dA = 2.217 23. j « 300JC"° 13 24. (a) - 32JC/ (256 - JC4)

(b) - 3 2 J C / ( 1 6 - *2)1 / 2(16 + JC 2 ) 3 / 2 29. (a) 27.7 years (b) 28,000
(c) 40,000 + 56,000e0025'

Sample test
1. (a) -5(JC + 1 ) / ( 5 + JC2)(5 + JC) (b) -5(JC + l ) / ( 5 - JC2)1/2(5 + JC2)2

2. N * 700e~09x 3. (a) (0, oo) (b) (e, 1/e) = maximum point
4. (e3 / 2 , f e " 3 / 2 ) = point of inflection

Fig. A-25

Sample test
1'. (a)20jc/(100-jc4) (b)[20x/(100-jc4)][(10 + jc2)/(10-jc2)]1/2

2'. / - 3 6 0 0 / J C 2 1 / 2 3'. (a) JC> 0, JC # 1 (b)(e9e) = minimum point 405



Answers to
selected problems

4'. (a)
6'. \

+1)«1.063 (b) e2/[2(e4-l)] * 0.069 5'. 2.2-105

Fig. A-26

Chapter 8

Section 8.2
5. Several approximating points are (± 0.1,3.982), (+1.0,2.434),
(±2.0,0.540), (±3.0,0.043) 6. sample points: (a) (±1.0,6.28)
(b) (2.0,0.62), (0,5.11), (-1.0,3.21) (c) (±1.0, -2.51) 7. x=±lgives
points of inflection; the flexion is maximal at 0, minimal at ± V^

Section 8.3
1. y0 = ± ec, Figure A-26 3. (a) y = ex (b)y = c/x (c) any differentiable
functiony satisfying^2 + x2 = c (d) any differentiable function^ satisfying
y2 - x2 = c (e)y = - 4 / ( J C 4 + c) 4. (c) 4%

Section 8.5
1. (a) 64.4 years (b) 53.6 years 3. 16.16 births per thousand

Section 8.7
3. 2 / ( * - 3 ) - 2 / ( x -2 ) 5. 5/[4(JC-3)] + 3/[4(JC + 1)]

Section 8.8
6. d2y/dt2 = (dy/dt)[c(yE-2y)] = c2y(yE-y)(yE-2y) 7. FigureA-27
9. The numerically largest difference^ — y is —1.5 which occurs when
n{ = t) = 6 (also,>>„ - >> = 1.4 at n = 18).

150

100

50

Fig. A-27
10 15 20
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Section 8.9
9.

10. . y = l -

+ c2e~4x (b)y = q
(e)j/ = c / + c 2 r '
12. >y = (c1 + c2x +

c2e ~2x

Section 8.10
1. (a) If y = F(t) is a solution of equation (26) and k =£ 0, then for
j> = k-F(t), we have ^(</2y/dt2)+ B{dy/dt)+ Cy = kf(t) * / ( / ) .



9. (a)j> = 2e 2x + cxe
 3x + c2e

 4x (b)y = x2 - x +2+ cxe
 3x + c2e

 4x Answers to
(c)y = 2e~2x + x2 - x + 2+ c^~3x + c2e~4x 10. ^ = 5te~3' + qe"3r + selected problems
c2e~4t 1\. y = (c1-x/4)a-2x + c2e

2x 12. (b) Y= cek(l~l)t + P / ( l - /)

Sample test
1. l / (y 2 - 5y + 6) = l / ( j - 3)- \ / {y -2), so that dy/(y2 -5y+6) = dx
means \n[(y — 3)/(y —2)] = x + c or (y —3)/(y ~2) = kex [note that
j(0) = 4 implies that, at least for values of x near 0, y — 3 > 0 and j> — 2 > 0];
from j>(0) = 4 it follows that k = £ and>> = (2e* - 6)/(ex - 2), lim^ _ ^y =
\\mx^O0Q. — 6/ex)/(\ — 2/ex) — 2 2. y = cxe

3x + c2e~3x 3.y = cl-\-

c2e
9x 4. y = - e2x + cxe

3x + c2e~3x 5.y = 9/x 6. y = (2x + cx)e
9x + c2

Section 8.11
1. Carrying two-decimal-place accuracy, you should obtain Xl0 = 100.00,
y10 = 10.01 2. (b) X20 = 99.89, y20 = 10.03 (c) A large departure from an
equilibrium will cause instability in the other population as well.
4. ( b ) z - x l o = 1 . 4 0 - 1 0 - 1 , z - x l o o = 1 . 6 2 - 1 0 - 2 6. xx =1.100,^ = 0.100;
x5 = 1.478, y5 = 0.720; JC10 = 1.666, yl0 = 2.128 7. xl0 = 1.100, yl0 = 0.109;
x50 = 1.451, >̂ 50 = 0.783; xl00 = 1.491, y100 = 2.273 8. xx = 0.100, yx = 0.800;
x5 = 0.320, j>5 = 0.198; JC10 = 0.332, y10 = - 0.166 9. JC10 = 0.091, yl0 =
0.809; x50 = 0.293, ̂ 50 = 0.237; xl00 = 0.312, y100 = -0.116

Chapter 9

Section 9.2
2. (a) 8 (b)24 (c )v /6 - /2 /3 (d)21n3 (e) - £ (f) 5(^6 - ^ ) (g) 261
(h) 52 (i) ±ln2 (j) i/6 - / 3 (k) £ 6. 0

Section 9.5
7. (a) 130 lb (b) 800 lb-ft (c) 500 lb-ft

Section 9.6
1. 720, 2160 2. 96| , 1710 3. q = 20, p = 63 4. 346|, 573^

Section 9.7
6. 23.89^77 gm 7. 2 .7TT-106 cm

Section 9.10
5. 0 6. 4/(ln5) 7. 17 lb-ft

Section 9.12
9 {ir/6){e2 - e~2) 11 \7. 272/15 oz 9. {ir/6){e2 - e~2) 11. \(eA - e) oz-in.

13. Gm[21n(8/3)-5/4] dynes 15. 200 oz 17. 30077 1b 19. 23 ft/sec 4 Q 7



Answers to 21. 6/7 in. 23. (a) f [(e6 -1 ) 1 / 2 - ( e 3 -1)1 / 2] (b) ^[ln(3+ e ) - l ] (c) 7/3
selected problems (d) f(/5~-2)

Sample test
2. (a) 2 J C - 3 (b) Gm(21n3-1) 3. 160 oz 4. 272TT lb 5. 6.8 ft/sec
6. « 3.7 in.

Section 9.13
3. L2 = ± « 0.03, L4 = ijgy * 0.10; 0.17, 0.10; 1, \ 5. (a) 1.61,1.41,1.31
(b) 0.61, 0.30, 0.15

Section 9.14
3. (a) 121.4062 (b) 48.4898 (c) 72.8227 (d) 54.5335 4. (a) 281.2500
(b) 6.5104 (c) 93.7500 (d) 0.4069 5. (a) 66.4062 (b) 6.5102 (c) 17.8227
(d) 0.4065 9. (a) 0.70833 (b) 0.69271 (c) 0.69702 (d) 0.69312
10. (a) 0.04167 (b) 0.00208 (c) 0.01042 (d) 0.00013 11. (a) 0.01519
(b) 0.00044 (c) 0.00388 (d) 0.00003 13. (a) 1432 (b) 143,109
14. (a) 28 (b) 272 15. 80 17. The results in the problem are correct to
within 2-KT5 and 10"6. 19. / ' (* )= - JC/(JC), /"(*) = (*2 — 1)/(JC),

/ ' " ( JC) = ( - JC3 + 3x)/(x),/""(*) = (x4 -6x + 3)/(x); the error bounds
are3.3-10-6,3.3-10-8, U-IO"1 1 and 1.7-10~15 20. (d) With^ = y(l) =
1.4106861, the errors of the Heun method are j> - yl0 = -1.08 • 10 ~3 and
y- yioo = -1.16-10"5; note the improvement, by a factor of 93, as
contrasted with 8.6 for the Euler method.

Chapter 10

Section 10.1
1. 2 sec, r cm, - r cm, at point A, at the top and bottom 4. (a) p = 1
(b) not periodic (c) p = 0.4 (d) not periodic (e) p = 30 (f) not periodic
(g) not periodic

Section 10.2
3. (a) -90° (b)135° (c) -270° (d) -1080° (e) 2.005° (f) 59.989°
(g) -180° (h) 2° (i) 572.958° (j) 57.296r 5. (a) 8.378 (b) 3.491
(c) 16.755 (d) 20.944 7. (a) \ (b) 2/TT (C) 4.584 9. (a) 206265
(b)1.92-1013 (c)3.27

Section 10.3
12. (c) y = sin47r/, y = COS4TT̂  14. (a) <n/2 (b) ir/2, 3TT/2 (C) (IT/2%)

(1 + 8/I) and (ir/28) (7 + 8/i), for n = 0,1,2,3,4,5,6 (d) ir/4, 3ir/4, 5TT/4,

ITT/4 (e) 77/8, 7TT/8, 9TT/S, 15TT/S (f) 1.22,1.92 15. (a) ±i /3 /2 (b) ± |
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(c) ±1 (d) ±f (e) ±\ (f) ±\ (g) + /2T/5 (h) ±\ (i)0 (j) ±i/3/2
00 ±E 0)0

Section 10.4
5. (a) 77/4+ A277-, where « is any integer (b) «7r, where n is any integer
(c) [(2/i +l)/4]ir, where « is any integer (d) - 3 7. 80 ft 11. 98.5%
13. y/ff 15. 2TT/3 17. radius = 7/i/3, area = f v̂ 3

Section 10.5
5. (a)3cos3;c (b) COS(JC2+l)-2x2sin(jc2+1) (c) -l/sin2jc (d)(x2/2)
[l-sin(;c3/6)] (e) —sinx (f) 3 sin2*cos ;c—4 sin4.x (g) 0
(h) [3tan(3jc+l)]/cos(3x+l) (i) l/[3cos2(jt/3)]-6.x2sin.x3cos.x3

(j) [\5}fx{x + 3)cos(5x3/2)-2sin(5x3/2)]/[2(jc + 2)2] (k) (COSJC)/

[cos2(sinx)] (1) -(cosjc)/(sin2x) (m) -4/sin24jc (n) -[2;CCOS(JC2)]/

[sin2(jc2)] (o) - sin x if cos x > 0; sin x if cos x < 0 7. 30/TT +15(4« +1),
where n is any integer

Section 10.6
3. (a)2tan2* + c (b) ~ICOS(JC2 - 4 ) + C (C)1/COSW + C (d) -(cos2r)/2 +
(cos320/6+c (e)(sin4x)/4 + (tan;c2)/2+c (f) -(sin4jc)/4+c
(g)ln(sini;)4-cif sin 1; > 0; ln( —siny)+cif sint> < 0 (h)-(cos3x)/3+ c
(i) sin u + c (j) 1/(3 cos 3A:)+ c 7. minimum value of 0 at x = AITT, « an
integer, no points of inflection, Figure A-28

Section 10.7
2. (a) TT/2 (b) 0 (c) 3TT/4 (d) - <n/2 (e) 77/4 (f) vr/2 3. (a) 100° (b) 80°

(c) -50° (d)10° (e) -40° (f) 10° 5. (a) 4 / (4-JC2 ) 1 / 2 (b) 2x arctan[(x
+ 1 ) / 3 ] + 3X2/[9 + (JC + 1)2] (c) -18(arccos2x)2/(l-4x2)1/2

(d) -2/[(arctanx)2(l + x2)] (e) [(arctan5x)/(l- x2)1 / 2 -(5arcsin;c)/
(l + 25jc2)](arctan5x)"2 (f) -2(l-4x2)1/2[6arccos2;c
7. (a) TT/2 (b) 3TT/8 (C) V(4\^") (d) TT/4 12. (c) 0.76

Section 10.8
2. 3x/8-[(sin2A;)/4]+[(sin4x)/32]+c 3. -cosx + f cos3x -
^cos5x + c 5. (a)ijc + ^sin6x + c (b) i x ( l -4x 2 ) 1 / 2 + i s in - 1

-9)1 / 2 /3]+c (d) 27{sec3[tan-1(^/3)]-
= (l/3)(9 + ;c2)3 /2-9(9+jc2)1/2 + c 7. (a)

(b) 81TT/16 9. (JC - l)ex + c 11. 0.9460830726, 0.9460830704
13. 0.946083070, 0.946083071, 0.946083070

Section 10.9
5. (a)jc = ir(f-l) (b)
9. 1.5-sin*-2cos3.x

Answers to
selected problems

Fig. A-28
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Answers to Section 10.10
selected problems 9. (a) y = qcoste + c2sin4* (b) y = e(5/2)M[c1cos(«/2)+ c2sin(w/2)]

(c)y = e~(1/2)r[c1cos(//v^)+c2sin(r/V^")] (d)y = e\cx +
11. (a)<y = e~'(l + c1cos/ + c2sin/) (b)y = ^ + \t + e"2r(
(c) ^ = 2-3* +2f2 + ^"2/(c1cos/ + c2sin0 (d) y = - tcost + qcosf +
c2sinf (e)>y = ^ 's in2/ + e"r(c1 + c2O 13. j =10er/2[c1cos(r/2)+
c2sin(//2)], x = ^/2{[(cx + c2)/2]cos(//2)+[(c2 - Cl)/2]fim(t/2)}; no, the
populations would fluctuate wildly, and at least one of them would probably
disappear

Section 10.11
7. 5 is the length of the side opposite s; the other angles are s and IT —2s
9. (b) l/v/2 + I/T/2 (C) COS(TT/8)+ isin(ir/8) = 0.924 + 0.383/
13. (a) y = e~t(clcos2t + c2sin2O (b) y = cxe

l + c2e~2' (c) .y = ^cos/
- |sinr + cxe

3' + c2e~' 15. (a) 2/cos2x (b) -6cos3xsin3x (c) [4(1 -
jc2)arcsinx]~1/2 (d) tan2xsin23;c[9cos3jctan2x+(4sin3x)/cos22;c]
17. (a) ysin(3x + 2)+ c (b) (tan3x)/3 + c (c) arctan x2 + c (d) ln(ln JC)+ c
if lnx>0, ln( —lnx)+c if l n x < 0 (e) sinx — JCCOSJC + c (f) JC — 2
arctan(jc/2)+c

Sample test
1. 1 0 ^ miles 2. TT/6 3. n*n, (77/3)(6« ±1), where n is any integer
4. (cosx)/(l 4- sin2x) 5. qcos3r + c2sin3r 6. 7 = f/9 + cos3/ — sin3/
7. 1,0
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Appendix: Tables

Table A. Compound interest: (1+ r)n

AMOUNT OF ONE DOLLAR PRINCIPAL AT COMPOUND INTEREST AFTER n YEJAHS

n

1
2
3

4
5
6

7
8
9
10
11
12
13

14
15
16

17
18
19

20

21
22
23

24
25
26

27
28
29
30

31
32
33

34
35
36

37
38
39
40

41
42
43

44
45
46

47
48
49
50

1.0200
1.0404
1.0612

1.0824
1.1041
1.1262

1.1487
1.1717
1.1951

1.2190

1.2434
1.2682
1.2936

1.3195
1.3459
1.3728

1.4002
1.4282
1.4568
1.4859

1.5157
1.5460
1.5769

1.6084
1.6406
1.6734

1.7069
1.7410
1.7758
1.8114

1.8476
1.8845
1.9222

1.9607
1.9999
2.0399

2.0807
2.1223
2.1647
2.2080

2.2522
2.2972
2.3432

2.3901
2.4379
2.4866

2.5363
2.5871
2.6388
2.6916

2\H°
1.0250
1.0506
1.0769

1.1038
1.1314
1.1597

1.1887
1.2184
1.2489

1.2801

1.3121
1.3449
1.3785

1.4130
1.4483
1.4845

1.5216
1.5597
1.5987
1.6386

1.6796
1.7216
1.7646

1.8087
1.8539
1.9003

1.9478
1.9965
2.0464
2.0976

2.1500
2.2038
2.2589

2.3153
2.3732
2.4325

2.4933
2.5557
2.6196
2.6851

2.7522
2.8210
2.8915

2.9638
3.0379
3.1139

3.1917
3.2715
3.3533

3.4371

3 °fo

1.0300
1.0609
1.0927

1.1255
1.1593
1.1941

1.2299
1.2668
1.3048

1.3439

1.3842
1.4258
1.4685

1.5126
1.5580
1.6047

1.6528
1.7024
1.7535
1.8061

1.8603
1.91G1
1.9736

2.0328
2.0938
2.1566

2.2213
2.2879
2.3566
2.4273

2.5001
2.5751
2.6523

2.7319
2.8109
2.8983

2.9852
3.0748
3.1670
3.2620
3.3599
3.4607
3.5645

3.6715
3.7816
3.8950

4.0119
4.1323
4.2562
4.3839

3\°lo

1.0350
1.0712
1.1087

1.1475
1.1877
1.2293

1.2723
1.3168
1.3629

1.4106

1.4600
1.5111
1.5640

1.6187
1.6753
1.7340

1.7947
1.8575
1.9225

1.9898

2.0594
2.1315
2.2061

2.2833
2.3632
2.4460

2.5316
2.6202
2.7119
2.8068

2.9050
3.0067
3.1119

3.2209
3.3336
3.4503

3.5710
3.6960
3.8254
3.9593

4.0978
4.2413
4.3897

4.5433
4.7024
4.8669

5.0373
5.2136
5.3961
5.5849

4°/o

1.0400
1.0816
1.1249

1.1699
1.2167
1.2653

1.3159
1.3686
1.4233

1.4802

1.5395
1.0010
1.6651

1.7317
1.8009
1.8730

1.9479
2.0258
2.1068
2.1911

2.2788
2.3699
2.4647

2.5633
2.6658
2.7725

2.8834
2.9987
3.1187
3.2434

3.3731
3.5081
3.6484

3.7943
3.9461
4.1039

4.2681
4.4388
4.6164
4.801O

4.9931
5.1928
5.4005

5.6165
5.8412
6.0748

6.3178
6.5705
6.8333
7.1067

4\H*
1.0450
1.0920
1.1412

1.1925
1.2462
1.3023

1.3609
1.4221
1.4861
1.5530

1.6229
1.6959
1.7722

1.8519
1.9353
2.0224

2.1134
2.2085
2.3079
2.4117

2.5202
2.6337
2.7522

2.8760
6.0054
3.1407

3.2820
3.4297
3.5840
3.7453

3.9139
4.0900
4.2740

4.4664
4.6673
4.8774

5.0969
5.3262
5.5659
5.8164

6.0781
6.3516
6.6374

6.9361
7.2482
7.5744
7.9153
8.2715
8.6437
9.0326

5°/o

1.0500
1.1025
1.1576

1.2155
1.2763
1.3401

1.4071
1.4775
1.5513

1.6289

1.7103
1.7959
1.8856

1.9799
2.0789
2.1829

2.2920
2.4066
2.5270

2.6533

2.7860
2.9253
3.0715

3.2251
3.3864
3.5557
3.7335
3.9201
4.1161
4.3219

4.5380
4.7649
5.0032

5.2533
5.5160
5.7918

6.0814
6.3855
6.7048
7.0400

7.3920
7.7616
8.1497

8.5572
8.9850
9.4343

9.9060
10.4013
10.9213
11.4674

6°lo

1.0600
1.1236
1.1910

1.2625
1.3382
1.4185

1.5036
1.5938
1.6895
1.7908

1.8983
2.0122
2.1329

2.2609
2.3966
2.5404

2.6928
2.8543
3.0256

3.2071

3.3996
3.6035
3.8197

4.0489
4.2919
4.5494

4.8223
5.1117
5.4184

5.7435

6.0881
6.4534
6.8406

7.2510
7.6861
8.1473

8.6361
9.1543
9.7035
10.2857

10.9029
11.5570
12.2505
12.9855
13.76^6
14.5905

15.4659
16.3939
17.3775
18.4202

7<?o

1.0700
1.1449
1.2250

1.3108
1.4026
1.5007

1.6058
1.7182
1.8385
1.9672

2.1049
2.2522
2.4098

2.5785
2.7590
2.9522

3.1588
3.3799
3.6165

3.8697

4.1406
4.4304
4.7405

5.0724
5.4274
5.8074

6.2139
6.6488
7.1143
7.6123

8.1451
8.7153
9.3253

9.9781
10.6766
11.4239

12.2236
13.0793
13.9948
14.9745

16.0227
17.1443
18.3444

19.6285
21.0025
28.4726

24.0457
25,7289
27.5299
29.4570 411
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X

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.6

.7

.8

.9

1.0
1.1
1.2

1.3
1.4

1.5

1.6

1.7

1.8
1.9
2.0
2.1
2.2
2.3
2.4

2.5

3.0

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

8.0

ex

1.051

1.105
1.162
1.221

1.284
1.350
1.419
1.492

1.568
1.649

1.822

2.014

2.226
2.460

2.718
3.004

3.320
3.669
4.055

4.482

4.953

5.474
6.050

6.686
7.389

8.166
9.025
9.974
11.023
12.182

20.086

33.115
54.598
90.017
148.413
244.692
403.429
665.14
1096.6
1808.0

2981.0

X

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

.6

.7

.8

.9

1.0
1.1
1.2
1.3
1.4

1.5

1.6

1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5

3.0

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

8.0

e~x

.951

.905

.861

.819

.779

.741

.705

.670

.638

.607

.549

.497

.449

.407

.368

.333

.301

.273

.247

.223

.202

.183

.165

.150

.135

.122

.111

.100

.091

.082

.050

.030

.018

.011

.0067

.0041

.0025

.0015

.0009

.0006

.0003



Table B2. Natural logarithms (In x) Appendix: Tables

X

I'O

I-I
1*2

1*3

i*4

i*5

1-7

i 8

1-9

2*0

2*1

2-2

2*3

25
26

2-7

2-8

29

30

3*1

3*3

3*4
3*5

3'7

3*9

40

41
4-2

43

4*4
4*5
46

47
4-8

49

50

5*1

53

0

ooooo

00953

0-1823

0-2624

03365
0-4055
0-4700

05306

05878

06419

06931

07419

0-7885

08329

0-8755

09163

0*9555

0-9933
1 0296
10647

10986

1-1314

1-1632

II939

1-2238

1-2528

12809

1-3083
1-3350
1-3610

13863

1-4110

1*4351
1-4586

1-4816
1 5041
1-5261

1-5476
1-5686
1 5892

16094

16292
1-6487

1-6677

1

0100

1044
1906
2700

3436
4121
4762

5365
5933
6471

6981

7467
7930
8372

8796

9203
9594

9969
0332
0682

1019

1346
1663
1969

2267
2556
2837

3110
3376

3635

3888

4134
4375
4609

4839
5063
5282

5497
5707
5913

6114

6312
6506
6696

2

0198

1133
1989
2776

3507
4187
4824

5423
5988
6523

7031

7514
7975
8416

8838

9243
9632

0006
0367
0716

1053

1378
1694
2000

2296

2585
2865

3137
3403
3661

3913

4159
4398

4633

4861
5085
5304

5518
5728
5933

6134

6332
6525
6715

3

0296

1222
2070
2852

3577
4253
4886

5481
6043
6575

7080

756l
8020
8459

8879
9282
9670

0043
0403
0750

1086

1410

1725
2030

2326
2613
2892

3164
3429
3686

3938

4183
4422
4656

4884
5107
5326

5539

5748

5953

6i54

6351
6544

6734

4

0392

1310
2151
2927

3646

4318

4947

5539
6098
6627

7129

7608
8065
8502

8920
9322
9708

0080
0438
0784

1119

1442
1756
2060

2355
2641
2920

3191
3455
3712

3962

4207
4446

4679

4907
5129
5347

556o

5769

5974

6174

6371
6563
6752

5

0488

1398
2231
3001

4383
5008

5596
6152
6678

7178

7655

8109
8544

8961
936i
9746

0116

0473
0818

1151

1474
1787
2090

2384
2669
2947

3218
348i
3737

3987

4231
4469
4702

4929
5151
5369

558i
579O
5994

6i94

6390
6582
6771

6

0583

1484
2311
3075

3784
4447
5068

5653
6206
6729

7227

7701
8154
8587

9002
9400
9783

0152
0508
0852

1184

1506
1817
2119

2413
2698
2975

3244
3507
3762

4012

4255
4493
4725

4951
5173
5390

5602
5810
6014

6214

6409
6601
6790

7

0677

1570
2390
3148

3853
4511
5128

5710
6259
6780

7275

7747
8198
8629

9042
9439
9821

0188

0543
0886

1217

1537
1848
2149

2442
2726
3002

3271
3533
3788

4036

4279

4748

4974
5195
5412

5623
5831
6034

6233

6429
6620
6808

8

0770

1655
2469
3221

3920

4574
5188

5766
6313
6831

7324

7793
8242
8671

9083
9478
9858

0225
0578
0919

1249

1569

1878

2179

2470
2754
3029

3297
3558
3813

4061

4303
4540
4770

4996
5217
5433

5644
5851
6054

6253

6448

6639

6827

9

0862

1740
2546
3293

3988

4637

5247

5822
6366

6881

7372

7839
8286

8713

9123
9517
9895

0260

0613

0953

1282

1600
1909
2208

2499
2782
3056

3324
3584
3838

4085

4327
4563

4793

5019
5239
5454

5665
5872
6074

6273

6467
6658
6845

1

10

9
8
7

7
6
6

6
5
5

5

5
4
4

4
4
4

4
4
3

3

3
3
3

3
3
3

3
3
3

2

2
2
2

2
2
2

2
2
2

2

2
2
2

2

19

17
16
15

14
13
12

11
11
10

10

9
9
9

00 00 00

7
7
7

7

ON
 
O
N
 
O
N

6
6
5

5
5
5

5

LA
 
L
A
 
L
A

4
4
4

4
4
4

4

4
4
4

3

29

26

24
22

21
19
18

17
16

15

15

14
13
13

12
12
II

II
II
10

10

10
9
9

9
8
8

00
 
00
 
00

7

7
7
7

7
7
6

O
N
 O
N
 O
N

6

6
6
6

4

38

35
32
30

28
26
24

23
22
21

20

19
18
17

16
16
15

15
14
14

13

13
12
12

12
II

II

II

10

10

10

10

9
9

9
9
9

00
 
00
 
00

8

8
8
7

5

48

44
40

37

35
32
30

29

27
26

24

23
22
21

20
20
19

18
18
17

16

16
15
15

15
14
14

13
13
13

12

12
12
12

11
11
11

11
10
10

10

O
 

O
 

ON 1

6

57

52
48
45

42
39
36

34
33
31

29

28
27
26

25
24
23

22
21
20

20

19
18
18

17
17
16

16
16
15

15

14
14
14

13
13
13

13
12
12

12

12
11
11

7

67

61
56
52

48
45
43

40
38
36

34

33

30

29
28
26

26
25
24

23

22
22
21

20
20
19

19
18
18

17

17
16
16

LA
 
L
A
 O
N

15
14
14

14

14
13
13

8

77

70
64
60

55

52
49

46
43
41

39

37
36
34

33
31
30

29
28
27

26

25
25
24

23
23
22

21
21
20

20

19
19
18

18
18
17

17
17
16

16

16
15
15

9

86

79
72
67

LA
 
L
A
 
O
N

LA
 
00

 K
>

52
49
46

44

42
40
38

37
35
34

33
32
31

30

29

28

27

26

25
25

24
23
23

22

22
21
21

20
20
19

19
19
18

18

17
17
17

For further values, e.g. In 4560, write 4560 = 4-560x io8, so that In 4560 = In 4560+In 10s and use the table below.
x 1 2 3 4 5 6

In 10* 2-3026 46052 6-9078 92103 n-5129 13-8155
413
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X

5*4
5*5
5*6

5*7
5*8
59

6o

6l
6*2
6*3

6*4

6*6

6*7
68
6*9

7*o

7*2

7*3

7*4
7*5
7*6

77
7-8
7*9

8o

8*1

8-2

8'3

8*4
8*5
8*6

8*7
8-8
8*9

9*o

9*1
9*2

9*3

9*4
9'5
9*6

9*7
9*8

9*9

B2 (continued)

0

16864
1-7047
1-7228

1-7405
1-7579
1-7750

1-7918

18083
18245
18405

18563
1-8718
1-8871

1-9021

1-9169

I-93I5

1-9459

1-9601
1 9741
19879

20015
20149
20281

2-0412
20541
20669

20794

20919

2-1041

2-1163

21282

2-1401

2-1518

21633
21748
21861

21972

22083

22192

22300

22407

22513

22618

2-2721

2*2824

22925

1

6882
7066
7246

7422
7596
7766

7934

8099
8262
8421

8579
8733
8886

9036
9184
9330

9473

9615
9755
9892

0028

0162

0295

0425
0554
0681

0807

0931

1054

1175

1294

1412

1529

1645
1759
1872

1983

2094
2203

2311

2418

2523

2628

2732

2834
2935

2

6901
7084
7263

7440
7613
7783

7951

8116
8278
8437

8594
8749
8901

9051
9199
9344

9488

9629
9769
9906

0042

0176

0308

0438
0567
0694

0819

0943
1066
1187

1306
1424
1541

1656
1770
1883

1994

2105

2214
2322

2428
2534
2638

2742
2844
2946

3

6919
7102
7281

7457
7630
7800

7967

8132
8294
8453

8610

8764
8916

9066
9213
9359

9502

9643
9782
9920

0055

0189

0321

>O45I

0580

0707

0832

0956
1078
1199

1318

1436
1552

1668
1782
1894

2006

2116

2225
2332

2439
2544
2649

2752
2854
2956

4

6938
7120

7299

7475
7647
7817

7984

8148
8310
8469

8625
8779
8931

9081

9228

9373

9516

9657
9796
9933

0069

0202
0334

0464
0592
0719

0844

0968
1090
1211

1330
1448
1564

1679
1793
1905

2017

2127

2235

2343

2450

2555

2659

2762

2865

2966

5

6956
7138
7317

7492
7664
7834

8001

8165
8326
8485

8641
8795
8946

9O95
9242

9387

9530

9671
9810
9947

0082

0215

0347

0477
0605

0732

0857

0980

1102

1223

1342

1459

1576

1691

1804

1917

2028

2138

2246

2354

2460
2565
2670

2773
2875
2976

6

6974
7156
7334

7509
7681
7851

8017

8181
8342
8500

8656
8810
8961

9110

9257
9402

9544

9685
9824
996i

0096
0229
0360

0490
0618
0744

0869

0992
1114

1235

1353
1471
1587

1702

1815

1928

2039

2148

2257

2364

2471
2576
2680

2783
2885
2986

7

6993
7174
7352

7527
7699
7867

8034

8197
8358
8516

8672
8825
8976

9125
9272
9416

9559

9699
9838
9974

0109

0242

0373

0503

0631

0757

0882

1005

1126

1247

1365
1483
1599

1713
1827

1939

2050

2159

2268

2375

2481

2586
2690

2793
2895
2996

8

7011
7192
7370

7544
7716
7884

8050

8213
8374
8532

8687
8840
8991

9140
9286
9430

9573

9713
9851
9988

0122

0255

0386

0516
0643
0769

0894

1017

1138

1258

1377
1494
1610

1725
1838
1950

2061

2170

2279
2386

2492

2597
2701

2803

2905

3006

9

7029

7210

7387

756i
7733
7901

8066

8229
8390
8547

8703
8856
9006

9155
9301
9445

9587

9727
9865
0001

0136
0268
0399

0528
0656
0782

0906

1029
1150
1270

1389
1506
1622

1736
1849
1961

2072

2181

2289
2396

2502

2607

2711

2814

2915

3016

1

to
 

to
 

to

2
2
2

2

2
2
2

2
2
2

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

2

4
4
4

3
3
3

3

O
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Appendix: Tables Table C (continued)
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Table D. Trigonometric functions Appendix: Tables
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1478
1650

1822

1994
2164
2334

2504
2672
2840

3007
3173
3338

3502

3665
3827
3987

4147
4305
4462

4617
4772
4924

5075

5225
5373
5519

5664
5807
5948

6088
6225
6361

6494

6626
6756
6884

•5

•6

0105

0279
0454
0628

0802
0976
1149

1323
1495
1668

1840

2011
2181
2351

2521
2689
2857

3024
3190
3355

3518

3681
3843
4003

4163
4321
4478

4633
4787
4939

5090

5240
5388
5534

5678
5821
5962111

6508

6639
6769
6896

*7

0122

0297
0471
0645

0819
0993
1167

1340
1513
1685

1857

2028
2198
2368

2538
2706
2874

3040
3206
3371

3535

3697
3859
4019

4179
4337
4493

4648
4802
4955

5105

5255
5402
5548

5693
5835
5976

6115
6252
6388

6521

6652
6782
6909

•3

•8

0140

0314
0488
0663

0837
ion
1184

1357
1530
1702

1874

2045
2215
2385

2554
2723
2890

3057
3223

3387

3551

3714
3875
4035

4195
4352
4509

4664
4818
4970

5120

5270
5417
5563

5707
5850
5990

6129
6266
6401

6534

6665

6794
6921

•2

•9

0157

0332
0506
0680

0854
1028
1201

1374
1547
1719

1891

2062
2233
2402

2571
2740
2907

3074
3239
3404

3567

3730
3891
4051

4210
4368
4524

4679
4833
4985

5135

5284
5432
5577

5721
5864
6004

6143
6280
6414

6547

6678
6807
6934

•I

I'O

0175

0349
0523
0698

0872
1045
1219

1392
1564
1736

1908

2079
2250
2419

2588
2756
2924

3090
3256
3420

3584

3746
3907
4067

4226
4384
4540

4695
4848
5000

5150

5299
5446
5592

5736
5878
6018

6i57
6293
6428

6561

6691
6820
6947

•0

89°

88

87
86

85
84
83

82
81
80

79

78
77
76

75
74
73

72

70

69

68

67
66

65
64
63
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61
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59
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57
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54
53
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49
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47
46
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3
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5
5
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6
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6
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6
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O
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5
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9
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9
9
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9

9
9
8

8
8
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0 
00

8

00
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00
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00
 
00

00
 
00
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8

7
7
7

7
7
7

7
7
7

7

7
6
6

5

6
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10
10

10
10
10
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10
10
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10
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10
10
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N
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II
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10
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9
9
9

7

8

14
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14
14
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9
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15
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Appendix: Tables Table D (continued)
SINES

418

44°
45
46

47
48
49

50

51
52
53

54
55
56

57
58
59

6o

6i
62

63

64
65
66

67
68
69

70

71
72
73

74
75
76

77
78
79

80

81

82

83

84
85
86

87
88
89

•0

•6947
•7071
•7193

•7314
•7431
•7547

•7660

•7771
•7880
•7986

•8090
•8192
•8290

•8387
•8480
•8572

•8660

•8746
•8829
•8910

•8988
•9063
•9135

•9205
•9272
•9336

•9397

•9455
•9511
•9563

•9613
9659
•9703

•9744
•978i
•9816

•9848

•9877
•9903
9925

•9945
•9962
•9976

•9986
9994
•9998

1*0

•1

6959
7083
7206

7325
7443
7559

7672

7782
7891
7997

8100
8202
8300

8396
8490
8581

8669

8755
8838
8918

8996
9070
9143

9212
9278
9342

9403

946i

9568

9617
9664
9707

9748
9785
9820

9851

9880
9905
9928

9947
9963
9977

9987
9995
9999

•9

•2

6972
7096
7218

7337
7455
7570

7683

7793
7902
8007

8111
8211
8310

8406
8499
8590

8678

8763
8846
8926

9003
9078
9150

9219
9285
9348

9409

9466
9521
9573

9622
9668
9711

9751
9789
9823

9854

9882
9907
9930

9949
9965
9978

9988
9995
9999

•8

3

6984
7108
7230

7349
7466
758i

7694

7804
7912
8018

8121
8221
8320

8415
8508
8599

8686

8771
8854
8934

9011
9085
9157

9225
9291
9354

9415

9472
9527
9578

9627
9673
9715

9755
9792
9826

9857

9885
9910
9932

9951
9966

9979

9989
9996
9999

7

*4

6997
7120
7242

736l
7478
7593

7705

7815
7923
8028

8131
8231
8329

8425
8517
8607

8695

8780
8862
8942

9018
9092
9164

9232
9298
936i

9421

9478
9532
9583

9632
9677
9720

9759
9796
9829

9860

9888
9912
9934

9952
9968
9980

9990
9996
9999

•6

•5

7009
7133
7254

7373
7490
7604

7716

7826
7934
8039

8141
8241
8339

8434
8526
8616

8704

8788
8870
8949

9026
9100
9171

9239
9304
9367

9426

9483
9537
9588

9636
9681
9724

9763
9799
9833

9863

9890
9914
9936

9954
9969
998l

9990
9997
0000

*5

•6

7022

7145
7266

7385
7501
7615

7727

7837
7944
8049

8151
8251
8348

8443
8536
8625

8712

8796
8878
8957

9033
9107
9178

9245
9311
9373

9432

9489
9542
9593

9641
9686
9728

9767
9803
9836

9866

9893
9917
9938

9956
9971
9982

9991
9997
0000

•4

•7

7034
7157
7278

7396
7513
7627

7738

7848
7955
8059

8161
8261
8358

8453
8545
8634

8721

8805
8886
8965

9041

9114
9184

9252
9317
9379

9438

9494
9548
9598

9646
9690
9732

9770
9806
9839

9869

9895
9919
9940

9957
9972

9983

9992
9997
0000

•3

•8

7046
7169
7290

7408
7524
7638

7749

7859
7965
8070

8171
8271
8368

8462
8554
8643

8729

8813
8894
8973

9048
9121
9191

9259
9323
9385

9444

9500
9553
9603

9650
9694
9736

9774
9810
9842

9871

9898
9921
9942

9959
9973
9984

9993
9998
0000

•2

•9

7059
7181
7302

7420
7536
7649

7760

7869
7976
8080

8181
8281
8377

8471
8563
8652

8738

8821
8902
8980

9056
9128
9198

9265
9330
9391

9449

9505
9558
9608

9655
9699
9740

9778
9813
9845

9874

9900
9923
9943

9960
9974
9985

9993
9998
0000

•1

1*0

7071
7193
7314

7431
7547
7660

7771

7880
7986
8090

8192
8290
8387

8480
8572
8660

8746

8829
8910
8988

9063
9135
9205

9272
9336
9397

9455

9511
9563
9613

9659
9703
9744

978i
9816
9848

9877

9903
9925
9945

9962
9976
9986

9994
9998
0000

•0

45°
44
43

42

40

39

38
37
36

35
34
33

32

30

29

28

27
26

25
24
23

22
21
20

19

18

17
16

15
14
13

12
11
10

9

8
7
6

5
4
3

2
1
0

1

I

I

I

I

I

I

1

I

1

I

I

I

1
1
I

1

1
1
1

1
1
1

1
1
1

I

1
1
0

0
0
0

0
0
0

0

0
0
0

0
0
0

0
0
0

1

2

2
2
2

2
2
2

2

2
2
2

2
2
2

2
2
2

2

2
2
2

2
1
1

1
1
1

1

1
1
1

1
1
1

1
1
1

1

1
0
0

0
0
0

0
0
0

2

3

4
4
4

4
3
3

3

3
3
3

3
3
3

3
3
3

3

to
 

to
 

to

2
2
2

2
2
2

2

2
2
I

I

I

I

I

I

I

I

I

I

I

0
0

0
0
0

3

4

5
5
5

5
5
5

4

4
4
4

4
4
4

4
4
4 <

3 *

3 i

3 i

3 *

5

6
6
6

6
6
6

5

5 '
5 <
5 <

5 <
5 <
5 <

5 <
5 .
X i

X i

X i
X I
X I

6

7
7
7

7
7
7

7

7
5
5

5
5
5

5

5
5

5

5

>

3 4 5
3 4 4
3 3 4

3 :
3 :
2 :

2 .

to
 

to
 

to
to

 
to

 
to

2 ,

I ,

I

I

I

I

I

I

0

0 (
0 (
0 (

4

J 4
5 4
5 4

3 :

3 :
3 :
1 :

J

$
J
J

1 3
i 3
1 2

2 2

2 2

2 2

[ :

[ :

r
t

[

l

l

) 0
y 0
3 0

S <S

7

9
9
8

8

8
7
7

7
7
7

7
6
6

6

6
6
5

5
5
5

5
4
4

4

4
4
3

3
3
3

3
2
2

2

2
2
1

1
1
1

1
0
0

7

8

10
10
10

9
9
9

9

ON 00 
00

00
 0

0 
00

8
7
7

7

7
6
6

6
6
6

5
5
5

5

4
4
4

4
3
3

3
3
3

2

2
2
2

I

I

I

I

0
0

8

9

11
11
11

11
10
10

10

10
10
9

9
9
9

00 OC 
00

8

7
7
7

7
7
6

6
6
6

5

5
5
4

4
4
4

3
3
3

3

2
2
2

2
I

I

I

0
0
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Table D (continued)
TANGENTS

Appendix: Tables

0°

z
2
3

4
5
6

7

9

zo

zz
12
13
M
15
16

17
18

19

20

21

22

33

34
35
26

37
28
39

30

31
33
33

34
35
36

37
38
39

40

41
43
43

•0

0*0000

00175
00349

0*0524

00699
00875
0*1051

0*1228
0*1405
OI584

OI763

0*2126
0*2309

0*2493
02679
02867

0*3057
03249
0*3443

03640

03839
0*4040
04245

0*4452
04663
04877

0*5095
05317
0*5543

0*5774

0*6009
0*6249
06494

0*6745
0*7002
07265

0*753*5
0*7813
08098

0*8391

08693
09004
09325

I'O

•z

0017

0192
0367

0542

0717
0892
1069

1246
1423
1602

1781

1962
2144
2327

2512
2698
2886

3076
3269
3463

3659

3859
4061
4265

4473
4684
4899

5117
5340
5566

5797

6032
6273
6519

6771
7028
7292

7563
7841
8127

8421

8724
9036
9358

•9

•2

0035

0209

0384

0559

0734
0910
1086

1263
1441
1620

1799

1980
2162
2345

2530
2717
2905

3096
3288
3482

3679

3879
4081
4286

4494
4706
4921

5139
5362
5589

5820

6056
6297
6544

6796
7054
7319

7590
7869
8156

8451

8754
9067
9391

•8

#3

0052

0227
0402

0577

0752
0928
1104

1281
1459
1638

1817

1998
2180
2364

2549
2736
2924

3"5
3307
3502

3699

3899
4101
4307

4515
4727
4942

5161
5384
5612

5844

6080
6322
6569

6822
7080
7346

7618
7898
8185

8481

8785
9099
9424

•7

•4

0070

0244
0419

0594

0769
0945
1122

1299
1477
1655

1835

2016

2199
2382

2568
2754
2943

3134
3327
3522

3719

3919
4122
4327

4536
4748
4964

5184
5407
5635

5867

6104
6346
6594

6847
7107
7373

7646
7926
8214

8511

8816
9131
9457

•6

•5

0087

0262
0437
0612

0787
0963
1139

1317
1495
1673

1853

2217
2401

2586
2773
2962

3153
3346
3541

3739

3939
4142
4348

4557
4770
4986

5206
5430
5658

5890

6128
6371
6619

6873
7133
7400

7673
7954
8243

8541

8847
9163
9490

•5

•6

0105

0279
0454
0629

0805
0981
1157

1334
1512
1691

1871

2235
2419

2605
2792
2981

3172
3365
3561

3759

3959
4163
4369

4578
4791
5008

5228
5452
5681

5914

6152
6395
6644

6899
7159
7427

7701
7983
8273

8571

8878
9195
9523

•4

•7

0122

0297
0472
0647

0822
0998
H75

1352
1530
1709

1890

2071

2254
2438

2623
2811
3000

3191
3385
3581

3779

3979
4183
4390

4599
4813
5029

5250
5475
5704

5938

6176
6420
6669

6924
7186
7454

7729
8012
8302

8601

8910
9228
9556

•3

•8

0140

0314
0489
0664

0840
1016
1192

1370
1548
1727

1908

2089
2272
2456

2642
2830
3019

3211
3404
3600

3799

4000
4204
4411

4621
4834
5051

5272
5498
5727

5961

6200
6445
6694

6950
7212
748i

7757
8040
8332

8632

8941
9260
9590

•2

•9

0157

0332
0507
0682

0857
1033
1210

1388
1566
1745

1926

2107
2290

2475

2661
2849
3038

3230
3424
3620

3819

4020
4224
4431

4642
4856
5073

5295
5520
5750

5985

6224
6469
6720

6976
7239
7508

7785
8O69
836I

8662

8972
9293
9623

•z

Z'O

0175

0349
0524
0699

0875
1051
1228

1405
1584
1763

1944

2126
2309
2493

2679
2867
3057

3249
3443
3640

3839

4040
4245
4452

4663
4877
5095

5317
5543
5774

6009

6249
6494
6745

7002
7265
7536

7813
8098
8391

8693

9004
9325
9657

'0

89°

88

87
86

85
84
83

82
81
80

79

78
i9

77
76

75
74
73

73
71
70

69

68
67
66

65
64
63

62
61
60

59

58
57
56

55
54
53

53

50

49

48
47
46

z

2

2
2
2

2

2

2

2
2

2
2
2

2
2
2

2

2
2
2

2
2
2

2
2
2

2

2
2

3

3
3
3

3
3
3

3

3
3
3

z

2

3

4
4
4

4

4

4

4
4

4
4
4

4
4
4

4

4
4
4

4
4
4

4
5
5

5

5
5
5

CM
 C
M
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M

6
6
6

6

6
6
7

2

3

5

CM
 C
M
 C
M
 
C
l

CM
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M
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M

5

6

6
6
6

6
6
6

6

6
6
6

6
6
7

7
7
7

7

7
7
8

00 00 00

8
9
9

9

9
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3

4

7

7
7
7

7

7

7

7
7

7
8
8

00
 0
0
 0
0

8

00
 0
0
 0
0

8
9
9

9
9
9

9

10
10
10

10
11
11

11
11
12

12

12
13
13

4

5

9

9
9
9

9

9

9

9
9

9
9
9

10
10
10

10

10
10
10

11
11
11

11
11
12

12

12
12
13

13
13
14

14
14
15

15

16
16
17

5

6

10

10
10

11
11
II

II
II
II

II

II
II

II
II
II

12
12
12

12

12
12
12

13
13
13

13
14
14

14

14
15
15

15
16
16

17
17
18

18

19
19
20

6

7

12

12
12
12

12
12
12
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Appendix: Tables

Table D (continued)
TANGENTS

44°
45
46

47
48
49

5©

5i
52
53

54
55
56

57
58
59

6o

6i
62
63

64
65
66

67
68
69

70

71
72
73

74
75
76

77
78
79

80

81
82
83

84
85
86

87
88
89

•0

09657
1*0000
1-0355

1*0724

1*1504

1*1918

12349
1*2799
1*3270

1*3764
1*4281
1-4826

1-5399
1-6003
16643

I-732I

1-8040
1-8807
19626

2-0503
21445
2*2460

2*3559
2-4751
2-6051

2-7475

29042
3*0777
32709

34874
3-7321
4-0108

4-3315
47046
51446

5671

6*314
7II5
8144

9*514
u-430
14301

19*081
28636
57-29

1*0

•1

9691
0035
0392

0761
1145
1544

i960

2393
2846
3319

3814
4335
4882

5458
6066
6709

7391

8115
8887
9711

0594
1543
2566

3673
4876
6187

7625

9208
0961
2914

5105
7583
0408

3662
7453
1929

5*730

6*386
7-207
8264

9-677
11664
14669

19*740
30-145
6366

•9

•2

9725
0070
0428

0799
1184
1585

2002

2437
2892
3367

3865
4388
4938

5517
6128
6775

746I

819O
8967
9797

0686
1642
2673

3789
5002
6325

7776

9375
1146
3122

5339
7848
0713

4015
7867
2422

5789

6460
7-300
8386

9-845
11909
15056

20446
31*821
71-62

•8

•3

9759
0105
0464

0837
1224
1626

2045

2482
2938
3416

3916
4442
4994

5577
6191
6842

7532

8265
9047
9883

0778
1742
2781

3906
5129
6464

7929

9544
1334
3332

5576
8118
1022

4373
8288
2924

5*850

6-535
7*396
8-513

10*019
12*163
I5-464

21*205

33*694
8185

•7

*4

9793
0141
0501

0875
1263
1667

2088

2527
2985
3465

3968
4496
5051

5637
6255
6909

7603

8341
9128
9970

0872
1842
2889

4023
5257
6605

8083

9714
1524
3544

5816
8391
1335

4737
8716
3435

5912

6612
7*495
8643

10-199
12429
15-895

22-022

35*801

9549

•6

•5

9827
0176
0538

0913
1303
1708

2131

2572
3032
3514

4019
4550
5108

5697
6319
6977

7675

8418
9210
0057

0965
1943
2998

4142
5386
6746

8239

9887
1716
3759

6059
8667
1653

5107
9152
3955

5976

6691
7596
8-777

10385
12-706
16-350

22904
38188
H4-59

•5

•6

9861
0212
0575

0951
1343
1750

2174

2617
3079
3564

4071
4605
5166

5757
6383
7045

7747

8495
9292
0145

1060
2045
3109

4262
5517
6889

8397

0061

1910

3977

6305
8947
1976

5483
9594
4486

6041

6-772
7-700
8-915

10-579
12996
16832

23859
40-917
143-24

•4

•7

9896
0247
0612

0990
1383
1792

2218

2662
3127
3613

4124
4659
5224

5818
6447
7ii3

7820

8572
9375
0233

1155
2148
3220

4383
5649
7034

8556

0237

2106

4197

6554
9232
2303

5864
0045
5026

6-107

6855
7806
9058

10-780
13300
17*343

24898
44066
19098

3

•8

9930
0283
0649

1028
1423
1833

2261

2708
3175
3663

4176
4715
5282

5880
6512
7182

7893

8650
9458
0323

1251
2251
3332

4504
5782
7179

8716

0415
2305
4420

6806
9520
2635

6252

0504
5578

6174

6940
7-916
9205

10988
13617
17886

26031
47-740
28648

•2

•9

9965
0319
0686

1067
1463
1875

2305

2753
3222
3713

4229
4770
5340

5941
6577
7251

7966

8728
9542
0413

1348
2355
3445

4627
5916
7326

8878

0595
2506
4646

7062
9812
2972

6646
0970
6140

6243

7-026
8028
9357

11 -205
13*951
18464

27-271
52-081
572*96

•1

I'O

0000

0355
0724

1106
1504
1918

2349

2799
3270
3764

4281
4826

5399

6003
6643
7321

8040

8807
9626
0503

1445
2460
3559

4751
6051
7475

9042

0777
2709
4874

7321
0108

3315

7046
1446
6713

6-314

7-H5
8144
9-514

n-430
14301
19-081

28636
57-290

•0

45°
44
43

42
41
40

39

38
37
36

35
34
33

32

30

29

28
27
26

25
24
23

22
21
20

19
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17
16

15
14
13

12
II
10

9

8
7
6

5
4
3

2
1
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3
4
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4
4
4

4

5
5
5

5
5
6

6
6
7
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8
8
9

9
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7
7
7
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54
57
61

66

71
77
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27
28
29

31
32
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36
38
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58

61
66
70

75
81
88
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3i
32
33

34
36
37

39

41
42
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47
49
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54
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61

65

69
74
79

85
91
99
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Index

absolute value, 65
acceleration, 149
adjusted trapezoidal rule, 339

error bound with, 339
angle measure, 346
antiderivatives, 194-205

of constant times a function, 198
of cos JC, 363
differ by a constant, 196
of exponential functions, 249, 253
involving trigonometric functions, 371-5
of 1/JC, 266
repeated, 202
of sin JC, 363
of sum of functions, 198
using the Chain Rule, 198, 222-4, 308-10
of various trigonometric functions, 364-5
oix",n± - 1 , 1 9 7

averages, 320-8

center of gravity, 326
Chain Rule, 159, 167

proof of, 164
special case of, 159

consumers' and producers' surplus, 315
cost

average total or total unit, 121
fixed, 120
incremental, 121
marginal, 121, 182

curve-fitting, 44-8, 53-6, 68, 270-4
curves,

concave up (down), 152
derived, 149

derivative
of arccos x, 368
of arcsin x, 367
of arctanx, 369
of a constant times a function, 96
of cos .x, 360
of an exponential function, 244, 253, 268
of a function, 93
of a logarithmic function, 264, 269
of a product, 179
of a quotient, 180

of sin*, 360
of a sum, 96
of tan JC, 360
of JC", if n is an integer, 96
of x", if n is a rational number, 173

differential equations
approximate solutions (Euler method),

284, 287, 302
approximate solutions (Heun method),

342
with constant coefficients, 294, 299
definition of, 283
definition of a solution of, 283
with trigonometric solutions, 380-6
with variables separable, 286

differentials, 176
differentiation

definition of, 93
implicit, 172, 174, 185
logarithmic, 265
repeated, 148

displacement, 73
distance formula, 357
division, synthetic, 22

equations
approximate solution of (bisection

method), 143
approximate solution of (Newton-

Raphson method), 140, 142
differential, see differential equations
logistic, 290, 292
solution of higher degree, 20
solution of linear, 16, 139
solution of quadratic, 18, 139
solution of simultaneous linear, 16

error, relative or percentage, 246
exponents

fractional, 9
integral, 8

flexion, 148
force of attraction, 310
formulas

different for different regions, 45

exponential, 46, 233, 271
mensuration, 30
polynomial, 44
power law, 47, 270

function
complementary, 299
continuous, 161
cosine, 349
decreasing (strictly), 112
definition of, 56
derived, 93
differentiable, 125
domain and range of a, 56
extension of a, 57
function of a, 60
implicit form of a, 171
increasing (strictly), 112
inverse of a, 62, 257
natural domain of a, 60
periodic, 343
restriction of a, 57
sine, 349
stationary, 113
tangent, 354

functions
exponential, 233
logarithmic, 259
periodic, 375-9
products of, 60
sums of, 60

Fundamental Theorem of Calculus
applications of, 217-22, 310-17, 329-31
statement of, 215

graphs
with log-log scales, 269
with semilog scales, 269
with uniform scales, 34-41

increments, 114, 165
approximate, 115, 116, 117

inflection, point of, 152
integral, 212

indefinite, 224
interest, compound, 50, 80, 237-9
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Index

interpolation
graphical, 35
linear, 41

intervals, notation for, 61
inverse trigonometric functions, 365-71

left-end-point rule, 335
error bound with, 335

limit
of a constant function, 82, 87
of a function, 76, 85
of g(w)=w, 82, 87
of the product of two functions, 82, 87
of the quotient of two functions, 82, 87
of the quotient of two functions (supple-

ment), 83
of a sum (integral), 205-13
of the sum of two functions, 82, 86

limits, guessing with a calculator, 101
linearization, 117
loads, 312
logarithms

common, 259
definition of, 27, 259
laws of, 27, 259
natural, 258

maxima and minima, 123
absolute, 126

end-point, 126
first test for, 127
relative, 126
second test for, 127
third test for, 154
turning-point, 126

Mean-Value Theorem, 110
moment of a force, 314

numbers
critical, 126
ordered pairs of, 16
rational, 5
real, 10

partial fractions, 291
particular integral, 299
polynomial

continuity of a, 162
definition of a, 20
limit of a, 84

profit, 182
maximization of, 183

progressions
arithmetic, 24
geometric, 25

projectiles thrown vertically, 202-4

quadrature, 334

radian measure, 346
radicals, 9
rate(s) of change

average, 98,166
instantaneous, 98,166
related, 168,174
relative (or percentage), 246

revenue
gross, 182
marginal, 182

scale, economies (diseconomies) of, 122
slope

average, 88
at a point, 89

speed
average, 72
instantaneous, 75

tangent to a curve, 92
trapezoidal rule, 337

error bound with, 338

value, incremental and marginal, 121
velocity

average, 73
instantaneous, 75, 77
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