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ix

Practice Makes Perfect: Calculus is designed as a tool for review and practice in 
calculus for the advanced beginner or intermediate learner of calculus. It is not 
intended to introduce concepts, but rather it is meant to reinforce what already 
has been presented to readers. To that end, it is a useful supplementary text for 
introductory courses in calculus. It can also serve as a refresher text for readers 
who need to revitalize previously acquired calculus skills.

Like most topics worth knowing, learning calculus requires diligence and 
hard work. The foremost purpose of Practice Makes Perfect: Calculus is as a source 
of solved calculus problems. We believe that the best way to develop accuracy and 
speed in calculus is to work numerous practice exercises. This book has more than 
500 practice exercises from beginning to end. A variety of exercises and levels of 
difficulty are presented to provide reinforcement of calculus concepts. In each 
unit, a concept discussion followed by example problems precedes each set of ex-
ercises to serve as a concise review for readers already familiar with the topics 
covered. Concepts are broken into basic components to provide ample practice of 
fundamental skills.

To use Practice Makes Perfect: Calculus in the most effective way, it is impor-
tant that you work through every exercise. After working a set of exercises, use the 
worked-out solutions to check your understanding of the concepts. We sincerely 
hope this book will help you acquire greater competence and confidence in using 
calculus in your future endeavors.

Preface
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1

LIMITS

The fundamental idea of the calculus is the concept of limit. The exercises in Part I 
are designed to improve your understanding and skills in working with this con-
cept. The symbolisms involved are useful contractions/abbreviations and recogniz-
ing the “form” of these is essential in successfully producing required results. Before 
you begin, if you need a review of functions, see Appendix A: Basic functions and 
their graphs.

· I ·
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Limit definition and intuition
A function f x( ) is said to have a limit A as x approaches c written lim ( )

x c
f x A,

provided the error between f x( ) and A, written | ( ) |f x A , can be made less than 
any preassigned positive number  whenever x is close to, but not equal to, c. Heu-
ristically, “The limit of f at the point c is A if the value of f gets near A when x is near c.” 
We will explore this definition intuitively through the following examples.

Compute the value of f x x( ) 2 5 for the following values of x that are close 
to, but not equal to 2 in value; and then make an observation about the 
results.

a. x  2.07 f x( ) 9.2849
b. x  1.98 f x( ) 8.9204
c. x  2.0006 f x( ) 9.00240036

Observation: It appears that when x is close to 2 in value, then f(x) is close to 
9 in value.

Compute the value of f x
x

( ) 4
 for the following values of x that are close to, 

but not equal to 0 in value, and then make an intuitive observation about the 
results.

a. x  .01 f x( ) 400
b. x  –.001 f x( ) –4000
c. x  .001 f x( ) 4000

Observation: It appears that when x is close to 0 in value, f(x) is not close to 
any fixed number in value.

Using limit notation, you can represent your observation statements for the 
above examples, respectively, as:

lim
x

x
2

2 5 9  and lim
x x0

4  does not exist.

The limit concept ·1·
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1·1
EXERCISE

Compute the value of f(x) when x has the indicated values given in (a) and (b). For (c), make 
an observation based on your results in (a) and (b).

1. f x( )
x
x

2
5

a. x  3.001
b. x  2.99
c. Observation? ________________________________________________________

2. f x( )
x

x
5

4
a. x  1.002
b. x  .993
c. Observation? ________________________________________________________

3. f x( )
3 2x

x
a. x  .001
b. x .001
c. Observation? ________________________________________________________

Properties of limits
Basic theorems that are designed to facilitate work with limits exist, and these theorems are the 
“bare bones” ideas you must master to successfully deal with the limit concept. Succinctly, the 
most useful of these theorems are the following:

If lim ( )
x c

f x  and lim ( )
x c

g x  both exist, then

1. The limit of the sum (or difference) is the sum (or difference) of the limits.
lim[ ( ) ( )]
x c

f x g x lim ( ) lim ( )
x c x c

f x g x

2. The limit of the product is the product of the limits.
lim[ ( ) ( )]
x c

f x g x lim ( ) lim ( )
x c x c

f x g x

3. The limit of a quotient is the quotient of the limits provided the denominator limit is not 0.

lim ( )
( )x c

f x
g x

lim ( )

lim ( )
x c

x c

f x

g x

4. If f x f x f x
x c

n
x c

n( ) 0, then lim ( ) lim ( ) for n  0

5. lim ( ) lim ( )
x c x c

af x a f x where a is a constant

6. lim[ ( )] lim ( )
x c x c

n
f x f x

n

for any positive integer n

7. lim
x c

x c

8. lim
x c x c

1 1  provided c 0
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You must guard against the error of writing or thinking that lim ( )
x c

f x f c( ); that is, that you 
determine the limit by substituting x c into the expression that defines f(x) and then evaluate. 
Recall that in the limit concept, x cannot assume the value of c. The complete explanation re-
quires the concept of continuity, which is discussed in Chapter 3.

PROBLEMS Evaluate the following limits.

a. lim
x

x
x2

3 5
5 2

b. lim( )
x

x x
4

3 16

c. lim
x

x
x4

2 16
4

SOLUTIONS a. lim
lim

limx

x

x

x
x

x

x2

2

2

3 5
5 2

3 5

5 2
1

12

b. lim( ) lim lim lim
x x x x

x x x x x
4 4 4 4

3 16 3 16 3 llim16 12 64 20
4

x
x

c. lim lim ( )( ) lim(
x x x

x
x

x x
x

x
4

2

4 4

16
4

4 4
4

4 8)

Notice that in this example, you cannot use the quotient theorem because the limit of the 
denominator is zero; that is, lim( )

x
x

4
4 0. However, as shown, you can take an algebraic ap-

proach to determine the limit. First, you factor the numerator. Next, using the fact that for all 

x x x
x

x4 4 4
4

4, ( )( ) , you can simplify the fraction and then evaluate the limit. This is a 

useful approach that can be applied to a number of limit problems.

d. lim
x

x
1

6 12 does not exist because 6x  12  0 when x is close to 1.

1·2
EXERCISE

Find the following limits or indicate nonexistence.

1. lim
x

x
x3

2 4
1

6. lim
x

x
x0

2

3

9 3
11

2. lim
x

x
x2

2 9
2

7. lim
x

x x
x1

2

2

2 1
1

3. lim
x

x
1

3 7 8. lim
x

x
x4 2

6 3
16

4. lim( )
x

x5 92 9. lim
x

x
2

34 11

5. lim
x

x
x0

5 3
11

10. lim
x

x
x6

8 3
6
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Zero denominator limits
Some of the most useful limits are those in which the denominator limit is 0, even 
though our previous limit theorems are not directly applicable in these cases.

These types of limits can exist only if there is some sort of cancellation com-
ing from the numerator. The key is to seek common factors of the numerator and 
denominator that will cancel.

PROBLEMS Evaluate the following limits.

a. lim
x

x
x4

3 8
2

b. lim ( ) ( )
h

x xh h x
h0

2 2 25 10 5 2 5 2

c. lim
h

x h x
h0

SOLUTIONS a. lim lim ( )( ) lim
x x x

x
x

x x x
x4

3

4

28
2

2 2 4
2 44

2 2 4 28( )x x

b. lim ( ) ( ) lim
h h

x xh h x
h

xh
0

2 2 2

0

5 10 5 2 5 2 10 55 2h
h

lim( )
h

x h x
0

10 5 10

c. lim lim ( )( )
( )h h

x h x
h

x h x x h x
h x h x0 0

    lim ( )
( )

lim
( )h h

x h x
h x h x

h
h x h x0 0

    lim
( )h x h x x0

1 1
2

PROBLEM If f(x)  6x2 7, then find lim ( ) ( )
h

f x h f x
h0

.

SOLUTION lim ( ) ( ) lim ( ( ) ) (
h h

f x h f x
h

x h x
0 0

2 26 7 6 7))
h

         lim
h

x xh h x
h0

2 2 26 12 6 7 6 7

lim( )
h

x h x
0

12 6 12

Special limits ·2·
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2·1
EXERCISE

Evaluate the following limits.

1. lim
x

x
x x3 2

3
12

2. lim
( )

h

x h x
h0

2 2

3. lim
x

x
x4

3

2

64
16

4. If f x x( ) 5 8, find lim
( ) ( )

h

f x h f x
h0

.

5. lim
x

x
x3 2

5 7
3

6. lim
x

x
x25

5
25

7. If g x x( ) 2 , find lim
( ) ( )

x

g x g
x2

2
2

.

8. lim
x

x x
x0

22 4

9. lim
r

x r x
r0

10. lim
x

x
x4

3 6
4

Infinite limits and limits involving infinity
The variable x is said to approach ( ) if x increases (decreases) without bound. For example, x
approaches if x assumes the values 2, 3, 4, 5, 6, and so on, consecutively. Note, however, that y
does not approach infinity if y assumes the values 2, –2, 4, –4, 6, –6, and so on, in the same 
manner.

A function becomes positively infinite as x approaches c if for every M  0, f(x) M for 
every x close to, but not equal to, c. Similarly, a function becomes negatively infinite as x ap-
proaches c if for every M  0, f(x) M for every x close to, but not equal to, c.

PROBLEMS Evaluate the following limits.

a. lim ,
x

a
x

where a is any constant

b. lim
x

x 2

c. lim
x

x
x

3 12
1

d. lim
| |x x3

4
3
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SOLUTIONS a. lim
x

a
x

0 for any constant a

b. lim
x

x 2

c. lim lim
x x

x
x

x

x

3 12
1

3 12

1 1
3 0
1 0

3

d. lim
| |x x3

4
3

2·2
EXERCISE

Evaluate the following limits.

1. lim( )
x

x5 7 6. lim
x

x
x x

2
5 62

2. lim
x x

7
3

7. lim
x

x x
x x

5 3

6 2

6 7
5 6 11

3. lim
x

x3 95 8. lim
x

x x x
x x

7 6 3
3 7 5

4 2

3

4. lim
x

x x x
x x

3 2

3

47 9
18 76 11

9. lim
x

x x
x

2 8 5
3 4

3

2

5. lim
x x

8
4

10. lim
x x

5
42

Left-hand and right-hand limits
Directional limits are necessary in many applications and we write lim ( )

x c
f x to denote the limit 

concept as x approaches c through values of x larger than c. This limit is called the right-hand 
limit of f at c; and, similarly, lim ( )

x c
f x is the notation for the left-hand limit of f at c.

Theorem: lim ( )
x c

f x L if and only if lim ( ) lim ( )
x c x c

f x f x L. This theorem is a very useful tool 

in evaluating certain limits and in determining whether a limit exists.

PROBLEMS Evaluate the following limits.

a. lim
x x3

4
3

b. lim
x x1

15
1

c. lim[ ]
x

x
2

 Note: [x] denotes the greatest integer function (See Appendix A)
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d. lim[ ]
x

x
2

e. lim[ ]
x

x
2

SOLUTIONS a. lim
x x3

4
3

b. lim
x x1

15
1

c. lim[ ]
x

x
2

2

d. lim[ ]
x

x
2

1

e. lim[ ]
x

x
2

does not exist because lim[ ]
x

x
2

2 and lim[ ]
x

x
2

1, so the right- and   

    left-hand limits are not equal.

2·3
EXERCISE

Evaluate the following limits if they exist. If a limit does not exist, show why.

1. lim [ ]
x

x
4

1 6. lim
x

x
x3

2 9
3

2. lim
x

x
x2

2 4
2

7. lim
x x4

7
4

3. lim
x x8

4
9

8. lim
x

x x
x4

5 4 8
4

4. lim
x

x
0

4 3 9. lim
x

x
x4

2 16
4

5. lim[ ]
x

x
5

1 10. lim
x

x
x4

2 16
4
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Continuity

Definition of continuity
A function f is continuous at a point c if and only if 

1. f c( ) is defined; and

2. lim ( ) ;
x c

f x exists and

3. lim ( ) (lim ) ( ).
x c x c

f x f x f c

If a function fails to satisfy any one of these conditions, then it is not con-
tinuous at x c and is said to be discontinuous at x c.

Roughly speaking, a function is continuous if its graph can be drawn with-
out lifting the pencil. Strictly speaking, this is not mathematically accurate, but it 
is an intuitive way of visualizing continuity.

Notice that when a function is continuous at a point c, you have the situation 
whereby the limit may be calculated by actually evaluating the function at the 
point c. Recall that you were cautioned against determining limits this way in an 
earlier discussion; however, when a function is known to be continuous at x c,
then lim ( ) ( ).

x c
f x f c

By its definition, continuity is a point-wise property of a function, but this 
idea is extended by saying that a function is continuous on an interval a x b
if and only if f is continuous at each point in the interval. At the end points, the 
right- and left-hand limits apply, respectively, to get right and left continuity if 
these limits exist.

PROBLEMS Determine whether the following functions are either 
continuous or discontinuous at the indicated point.

a. f x x( ) 4 7 at x  4

b. f x x( ) 4 at x  3

c. f x x( ) 3 72 at x  2

d. f x
x

( ) 12
2

at x  2

e. f x x
x

( )
2 4

2
at x  2

·3·
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SOLUTIONS a. lim lim( ) (lim ) ;
x x x

x x x
4 4 4

4 7 4 7 4 7 23  thus, the 

function is continuous at 4.
b. lim( ) ((lim ) ) ;

x x
x x

3 3
4 4 1  thus, the function is continuous at 3.

c. lim( ) ( (lim ) ) ;
x x

x x
2

2

2

23 7 3 7 19  thus, the function is continuous at 2.

d. lim
x x2

12
2

 does not exist; thus, the function is discontinuous at 2.

e. f x x
x

( )
2 4

2
 is discontinuous at 2 because the function is not defined at 2. 

However, the limit of f(x) as x approaches 2 is 4, so the limit exists but 
lim ( ) ( ).
x

f x f
2

2  If f ( )2  is now defined to be 4 then the “new” function f(x)

x
x

x

x

2 4
2

2

4 2

 is continuous at 2. Since the discontinuity at 2 can be “removed,” 

then the original function is said to have a removable discontinuity at 2.

3·1
EXERCISE

Show that the following functions are either continuous or discontinuous at the indicated 
point.

1. f x x( ) 5 7  at x  1 6. g x
x

x
( )

5
5

at x  3

2. f x
x

x
( )

3 8
2

 at x  0 7. g x
x

x
( )

5
2

at x  8

3. f x
x

( )
4

2 3
 at x  1 8. h x x x( ) 5 72 at x  5

4. f x x( ) [ ]  at x  3 9. f x
x
x

( )
6
2

at x  6

5. g x
x
x

( )
2 6

5
 at x  4 10. h x

x a x
x a

( )
( )2 6

3
at x a

Properties of continuity
The arithmetic properties of continuity follow immediately from the limit properties in Chapter 1. 
If f and g are continuous at x c, then the following functions are also continuous at c:

1. Sum and difference: f g

2. Product: fg

3. Scalar multiple: af, for a a real number

4. Quotient: f
g , provided g c( ) 0
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Further, if g is continuous at c and f  is continuous at g(c) then the composite function f g
defined by ( )( ) ( ( ))f g x f g x  is continuous at c. In limit notation, lim ( ( )) (lim ( ))

x c x c
f g x f g x

f g c( ( )).  This function composition property is one of the most important results of continuity.
If a function is continuous on the entire real line, the function is everywhere continuous;

that is to say, its graph has no holes, jumps, or gaps in it. The following types of functions are 
continuous at every point in their domains:

Constant functions: f(x) k, where k is a constant
Power functions: f x xn( ) , where n is a positive integer
Polynomial functions: f x a x a x a x an

n
n

n( ) 1
1

1 0

Rational functions: f x p x
q x

( ) ( )
( )

, provided p x( ) and q x( ) are polynomials and q x( ) 0

Radical functions: f x x xn( ) , ,0 n a positive integer
Trigonometric functions: f(x)  sin x and f(x)  cos x are everywhere continuous; f(x)  tan x,
f(x)  csc x, f(x)  sec x, and f(x)  cot x are continuous only wherever they exist.
Logarithm functions: f x x( ) ln  and f x x b bb( ) log , ,0 1
Exponential functions: f x ex( ) and f x b b bx( ) , ,0 1

PROBLEM Discuss the continuity of the following function: g x x( ) (sin )3 3 at a real number c.
SOLUTION 3x is continuous at c and sinx is continuous at all real numbers and so sin( )3x is 

continuous at c by the composition property. Finally, 3 3sin( )x  is continuous at c
by the constant multiple property of continuity.

3·2
EXERCISE

Discuss the continuity of the following functional expressions.

1. f x x( ) ( tan )5 3 at a real number c 6. G x
x x

x
( )

sin
11 8 92

 on the real line

2. h x x x( ) tan cos( )3 1 at c  4 7. V x x x( ) sin cos on the real line

3. f x
x x

x
x x x( )

cos
tan sin

5 23
34 at c  5 8. T x x x( ) sin cos2 2  at c

11

4. t x x x( ) cos tan5 3  at c
2

9. f x
x
x

( )
tan
sin

 at x 2 and at x 6

5. H x x x( ) sin8 4 1325 for x  1 10. g x x x( ) sin15 10 at x  11

Intermediate Value Theorem (IVT)
The Intermediate Value Theorem states: If f is continuous on the closed interval [a, b] and if 
f a f b( ) ( ), then for every number k between f(a) and f(b) there exists a value x0 in the interval 

[a, b] such that f x k( )0 .
The Intermediate Value Theorem is a useful tool for showing the existence of zeros of a func-

tion. If a continuous function changes sign on an interval, then this theorem assures you that there 
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must be a point in the interval at which the function takes on the value of 0. It must be noted, 
however, that the theorem is an existence theorem and does not locate the point at which the zero 
occurs. Finding that point is another problem. The following example will illustrate using the IVT 
to determine whether a zero exists and give some insight into finding such a point (or points).

PROBLEM Is there a number in the interval [0, 3] such that f x x x( ) ?2 2 1
This question is equivalent to asking whether there is a number in [0, 3] such 
that f x x x( ) .2 1 0

SOLUTION The function is continuous on [0, 3], and you can see that f ( )0 0 0 1 12

and f ( ) .3 3 3 1 52  Since f ( )0 0 and f ( )3 0, by the IVT, you know 
there must be a number in [0, 3] such that f x x x( ) .2 1 0; that is, there 
is a solution to the problem. In this case, a solution can be found by solving 

the quadratic equation, x x2 1  0, to obtain the two roots: 1 5
2

.

Approximating these two values gives 1.62 and 0.62, of which only 1.62 is in the 

interval [0, 3]. Thus, there does exist a number, namely 1 5
2

, in the interval 

[0, 3] such that f 1 5
2

0.

3·3
EXERCISE

For 1–5, use the IVT to determine whether the given function has a zero in the given interval. 
Explain your reasoning.

1. f x x x x( ) 4 3 2 54 3  on [ 2, 0] 4. g x
x

x
( )

8
3 5

 on [10, 12] 

2. g x x( ) 9 2  on [ 2.5, 2] 5. f x
x x

x
( )

3 2

1
 on [ 2, 2]

3. f x
x

( )
3

4
 on [ 5, 0] 

For 6–10, use the IVT to determine whether a zero exists in the given interval; and, if so, find the zero 
(or zeros) in the interval.

6. h x x x( ) 2 5 2  on [ 3, 4] 9. F x x( ) cos( ) on [5, 8]

7. g x
x
x

( )
3 3

4
 on [0, 6] 10. G x

x
x

( )
sin( )
cos( )

on
4 4

,

8. h x x( ) sin( ) on [ 1, 1]
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DIFFERENTIATION

Differentiation is the process of determining the derivative of a function. Part II 
begins with the formal definition of the derivative of a function and shows how 
the definition is used to find the derivative. However, the material swiftly moves 
on to finding derivatives using standard formulas for differentiation of certain 
basic function types. Properties of derivatives, numerical derivatives, implicit dif-
ferentiation, and higher-order derivatives are also presented.

· II ·
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Definition of the derivative
The derivative f (read “ f prime”) of the function f at the number x is defined as 

f x f x h f x
hh

( ) lim ( ) ( ) ,
0

 if this limit exists. If this limit does not exist, then f does 

not have a derivative at x. This limit may also be written f c f x f c
x cx c

( ) lim ( ) ( )

for the derivative at c.

PROBLEM Given the function f defined by f x x( ) ,2 5  use the 

definition of the derivative to find f x( ).

SOLUTION By definition, f x f x h f x
hh

( ) lim ( ) ( )
0

lim ( ( ) ) ( ) lim (
h h

x h x
h

x h
0 0

2 5 2 5 2 2 5)) 2 5x
h

lim lim lim( )
h h h

x h x
h

h
h0 0 0

2 2 5 2 5 2 2 2.

PROBLEM Given the function f defined by f x x x( ) ,2 2  use the definition 

of the derivative to find f x( ).

SOLUTION By definition, f x f x h f x
hh

( ) lim ( ) ( )
0

lim (( ) ( )) ( )
h

x h x h x x
h0

2 22 2

lim ( )
h

x xh h x h x x
h0

2 2 22 2 2 2

lim lim
h h

x xh h x h x x
h

xh h
0

2 2 2

0

22 2 2 2 2 22h
h

lim ( ) lim( ) .
h h

h x h
h

x h x
0 0

2 2 2 2 2 2

Various symbols are used to represent the derivative of a function f. If you 

use the notation y f(x), then the derivative of f can be symbolized by 

f x y D f x D y dy
dxx x( ), , ( ), , ,  or d

dx
f x( ).

Definition of the derivative 
and derivatives of some 

simple functions
·4·
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Note: Hereafter, you should assume that any value for which a function is undefined is excluded.

4·1
EXERCISE

Use the definition of the derivative to find f x( ).

1. f x( ) 4 6. f x x x( ) 5 32

2. f x x( ) 7 2 7. f x x x( ) 3 13

3. f x x( ) 3 9 8. f x x( ) 2 153

4. f x x( ) 10 3 9. f x
x

( )
1

5. f x x( )
3
4

10. f x
x

( )
1

Derivative of a constant function
Fortunately, you do not have to resort to finding the derivative of a function directly from the 
definition of a derivative. Instead, you can memorize standard formulas for differentiating cer-
tain basic functions. For instance, the derivative of a constant function is always zero. In other 
words, if f x c( ) is a constant function, then f x( ) 0 ; that is, if c is any constant, d

dx
c( ) .0

The following examples illustrate the use of this formula:

d
dx

( )25 0

d
dx

( )100 0

4·2
EXERCISE

Find the derivative of the given function.

1. f x( ) 7 6. g x( ) 25

2. y  5 7. s t( ) 100

3. f x( ) 0 8. z x( ) 23

4. f t( ) 3 9. y
1
2

5. f x( ) 10. f x( ) 41



Definition of the derivative and derivatives of some simple functions 19

Derivative of a linear function
The derivative of a linear function is the slope of its graph. Thus, if f x mx b( ) is a linear func-

tion, then f x m( ) ; that is, d
dx

mx b m( ) .

The following examples illustrate the use of this formula:

If f x x( ) ,10 2 then f x( ) 10

If y 2x + 5, then y 2
d

dx
x3

5
3
5

4·3
EXERCISE

Find the derivative of the given function.

1 f x x( ) 9 6. f x x( ) 25

2. g x x( ) 75 7. f x x( )
3
4

3. f x x( ) 1 8. s t t( ) 100 45

4. y  50x + 30 9. z x x( ) .0 08 400

5. f t t( ) 2 5 10. f x x( ) 41 1

Derivative of a power function
The function f(x) xn is called a power function. The following formula for finding the derivative 
of a power function is one you will use frequently in calculus:

If n is a real number, then d
dx

x nxn n( ) .1

The following examples illustrate the use of this formula:

If f x x( ) ,2  then f x x( ) 2

If y x
1
2,  then y x1

2
1
2

d
dx

x x( )1 21
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4·4
EXERCISE

Find the derivative of the given function.

1. f x x( ) 3 6. f x x( )

2. g x x( ) 100 7. f x
x

( )
1

5

3. f x x( )
1
4 8. s t t( ) .0 6

4. y x 9. h s s( )
4
5

5. f t t( ) 1 10. f x
x

( )
1

23

Numerical derivatives
In many applications derivatives need to be computed numerically. The term numerical derivative
refers to the numerical value of the derivative of a given function at a given point, provided the 
function has a derivative at the given point. 

Suppose k is a real number and the function f is differentiable at k, then the numerical de-
rivative of f at the point k is the value of f x( ) when x k. To find the numerical derivative of a 
function at a given point, first find the derivative of the function, and then evaluate the derivative 
at the given point. Proper notation to represent the value of the derivative of a function f at a point 

k includes f k dy
dx x k

( ), , and dy
dx k

.

PROBLEM If f x x( ) ,2  find f ( ).5

SOLUTION For f x x f x x( ) , ( ) ;2 2  thus, f ( ) ( )5 2 5 10

PROBLEM If y x
1
2 ,  find dy

dx x 9

.

SOLUTION For y x y dy
dx

x
1
2

1
2

1
2

, ;  thus, dy
dx x 9

1
2

9 1
2

1
3

1
6

1
2( )

PROBLEM Find d
dx

x( )1  at x  25.

SOLUTION
d

dx
x x( ) ;1 21  at x x25 1 1 25 1

625
2 2, ( )

Note the following two special situations:

1. If f x c( )  is a constant function, then f x( ) ,0  for every real number x; and 

2. If f x mx b( ) is a linear function, then f x m( ) , for every real number x.
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Numerical derivatives of these functions are illustrated in the following examples:

 If f x( ) ,25  then f ( )5 0

If y 2x + 5, then dy
dx x 9

2

4·5
EXERCISE

Evaluate the following.

1. If f x x( ) ,3 find f ( ).5 6. If f x x( ) , find f ( ).10

2. If g x( ) ,100 find g ( ).25 7. If f x
x

( ) ,
1

5
find f ( ).2

3. If f x x( ) ,
1
4 find f ( ).81 8. If s t t( ) ,.0 6 find s ( ).32

4. If y x , find dy
dx

x 49

. 9. If h s s( ) ,
4
5 find h ( ).32

5. If f t t( ) , find f ( ).19 10. If y
x

1
23

, find dy
dx

64

.
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Constant multiple of a function rule
Suppose f is any differentiable function and k is any real number, then kf is also 
differentiable with its derivative given by

d
dx

kf x k d
dx

f x kf x( ( )) ( ( )) ( )

Thus, the derivative of a constant times a differentiable function is the prod-
uct of the constant times the derivative of the function. This rule allows you to 
factor out constants when you are finding a derivative. The rule applies even when 
the constant is in the denominator as shown here:

d
dx

f x
k

d
dx k

f x
k

d
dx

f x( ) ( ) ( ( ))1 1 11
k

f x( )

If f(x) 5x2, then f x d
dx

x x x( ) ( ) ( )5 5 2 102 1

  If y x6
1
2 ,  then y dy

dx
d

dx
x d

dx
x x6 6 6 1

2
3

1
2

1
2

1
2 xx

1
2

d
dx

x d
dx

x x( ) ( )4 4 41 1 2

5·1
EXERCISE

For problems 1–10, use the constant multiple of a function rule to find the 
derivative of the given function.

1. f x x( ) 2 3 6. f x
x

( )
2

2. g x
x

( )
100

25
7. f x

x
( )

10
5

3. f x x( ) 20
1
4 8. s t t( ) .100 0 6

4. y x16 9. h s s( ) 25
4
5

5. f t
t

( )
2
3

10. f x
x

( )
1

4 23

·5·
Rules of differentiation ·5·
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For problems 11–15, find the indicated numerical derivative.

11. f ( )3  when f(x)  2x3 14. dy
dx

25

when y x16

12. g ( )1  when g x
x

( )
100

25
15. f ( )200  when f t

t
( )

2
3

13. f ( )81 when f x x( ) 20
1
4

Rule for sums and differences
For all x where both f and g are differentiable functions, the function (f + g) is differentiable with 
its derivative given by

d
dx

f x g x f x g x( ( ) ( )) ( ) ( )

Similarly, for all x where both f and g are differentiable functions, the function (f g) is dif-
ferentiable with its derivative given by

d
dx

f x g x f x g x( ( ) ( )) ( ) ( )

Thus, the derivative of the sum (or difference) of two differentiable functions is equal to the 
sum (or difference) of the derivatives of the individual functions. 

If h x x x( ) ,5 2  then h x d
dx

x d
dx

x x( ) ( ) ( )5 10 12

If y x x x3 2 5 14 3 ,  then y d
dx

x d
dx

x d
dx

x d
dx

3 2 5 14 3

   12 6 5 0 12 6 53 2 3 2x x x x
d

dx
x x d

dx
x d

dx
x x( ) ( ) ( )10 3 10 3 50 35 5 4

5·2
EXERCISE

For problems 1–10, use the rule for sums and differences to find the derivative of the given 
function.

1. f x x x( ) 7 102 4. C x x x( ) 1000 200 40 2

2. h x x( ) 30 5 2 5. y
x
15

25

3. g x x x( ) 100 540 6. s t t
t

( ) 16
2
3

102
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7. g x
x

x( )
100

25
20 9. q v v v( )

2
5

3
57 15

8. y x x12 0 450 2. . 10. f x
x x

( )
5

2
5

2
5
22 2

For problems 11–15, find the indicated numerical derivative.

11. h
1
2

 when h x x( ) 30 5 2 14. q ( )32  when q v v v( )
2
5

3
57 15

12. C ( )300  when C x x x( ) 1000 200 40 2 15. f ( )6  when f x
x x

( )
5

2
5

2
5
22 2

13. s ( )0  when s t t
t

( ) 16
2
3

102

Product rule
For all x where both f and g are differentiable functions, the function (fg) is differentiable with its 
derivative given by

d
dx

f x g x f x g x g x f x( ( ) ( )) ( ) ( ) ( ) ( )

Thus, the derivative of the product of two differentiable functions is equal to the first func-
tion times the derivative of the second function plus the second function times the derivative of 
the first function. 

If h x x x( ) ( )( ),2 4 2 3

then h x x d
dx

x x d
dx

x( ) ( ) ( ) ( ) ( )2 24 2 3 2 3 4 ( )( ) ( )( )x x x2 4 2 2 3 2

   2 8 4 6 6 6 82 2 2x x x x x
If y x x x( )( ),2 1 5 103 2

then y x d
dx

x x x x d
dx

x( ) ( ) ( ) (2 1 5 10 5 10 23 2 2 3 1)

( )( ) ( )( )2 1 2 5 5 10 63 2 2x x x x x

  ( ) ( )4 10 2 5 6 30 604 3 4 3 2x x x x x x
  10 40 60 2 54 3 2x x x x

Notice in the following example that converting to negative and fractional exponents makes 
differentiating easier.



26 Differentiation

d
dx

x
x

x x d
dx

x x( ) ( )2 2 15 3 2 5 3 2
11
2

1
23 2 51 2x x d

dx
x( )

            ( ) ( )x x x x x x2 2 15 3 3 2 2
1
2

1
2

            3 15 5 6 40 2 03
2

1
2

3
2x x x x x x

            5 15 5 3
3
2

1
22x x x .

You might choose to write answers without negative or fractional exponents.

5·3
EXERCISE

For problems 1–10, use the product rule to find the derivative of the given function.

1. f x x x( ) ( )( )2 3 2 32 6. s t t t( ) 4
1
2

5
3
4

2. h x x x x( ) ( )( )4 1 2 53 2 7. g x x x x( ) ( )( )2 2 23 2 3

3. g x x
x

( ) ( )2 5
3

8. f x
x

x
( )

10 1
55

3

4. C x x x( ) ( )( )50 20 100 2 9. q v v v( ) ( )( )2 27 5 2

5. y
x

x
15

25 5( ) 10. f x x x( ) ( )( )2 3 33 23

For problems 11–15, find the indicated numerical derivative.

11. f ( . )1 5  when f x x x( ) ( )( )2 3 2 32

12. g ( )10  when g x x
x

( ) ( )2 5
3

13. C ( )150  when C x x x( ) ( )( )50 20 100 2

14. dy
dx

x 25

 when y
x

x
15

25 5( )

15. f ( )2  when f x
x

x
( )

10 1
55

3

Quotient rule
For all x where both f and g are differentiable functions and g x( ) ,0 the function f

g
 is dif-

ferentiable with its derivative given by

d
dx

f x
g x

g x f x f x g x
g x

( )
( )

( ) ( ) ( ) ( )
( ( ))22 0, ( )g x
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Thus, the derivative of the quotient of two differentiable functions is equal to the denomina-
tor function times the derivative of the numerator function minus the numerator function times 
the derivative of the denominator function all divided by the square of the denominator function, 
for all real numbers x for which the denominator function is not equal to zero.

If h x x
x

( ) ,5 4
3

2

 then h x
x d

dx
x x d

dx
x

x
( )

( ) ( ) ( ) ( )

( )

3 5 4 5 4 3

3

2 2

2

              ( )( ) ( )( )
( )

3 10 5 4 3
3

30 15 12
9

2

2

2 2x x x
x

x x
xx 2

15 12
9

5 4
3

2

2

2

2

x
x

x
x

If y
x

1 ,  then y
x d

dx
d

dx
x

x

x d
dx

x( ) ( ) ( ) ( )

( )

( )( ) ( )1 1 0 1
2

1
2

( )x 2

         
( )1 1

2 1
2

1
2

3
2

x

x x

d
dx

x
x

x d
dx

x x d
8

2 6

2 6 8 85
4

5
4

5
4

4

4( )
ddx

x

x

x x x x( )

( )

( ) (2 6

2 6

2 6 10 8 84

4 2

4 1
4

5
4 33

4 22 6

)

( )x

  
20 60 64

4 24 36
20

17
4

1
4

17
4 17

4

8 4

x x x

x x
x 660 64
4 24 36

15 11
6

1
4

17
4

1
4

17
4

8 4 8 4

x x
x x

x x
x x 9

5·4
EXERCISE

For problems 1–10, use the quotient rule to find the derivative of the given function.

1. f x
x
x

( )
5 2
3 1

  6. s t
t

t
( )

2 3

4 6

3
2

1
2

2. h x
x

x
( )

4 5
8

2

7. g x
x

x
( )

100

5 10

3. g x
x

( )
5

8. y
x

x
4 5
8 7

3

2

4. f x
x

x
( )

3 1

2 6

3
2

1
2

9. q v
v

v
v

( )
3

2
3

2
1

5. y
x
15 10. f x

x

x

( )
4

4
8

2

2
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For problems 11–15, find the indicated numerical derivative.

11. f ( )25  when f x
x
x

( )
5 2
3 1

14. dy
dx

10

 when y
x
15

12. h ( . )0 2  when h x
x

x
( )

4 5
8

2

15. g ( )1 when g x
x

x
( )

100

5 10

13. g ( . )0 25  when g x
x

( )
5

Chain rule
If y f(u) and u g(x) are differentiable functions of u and x, respectively, then the composition 
of f and g, defined by y f(g(x)), is differentiable with its derivative given by

dy
dx

dy
du

du
dx

or equivalently,

d
dx

f g x f g x g x[ ( ( ))] ( ( )) ( )

Notice that y f g x( ( )) is a “function of a function of x”; that is, f ’s argument is the function 

denoted by g x( ), which itself is a function of x. Thus, to find d
dx

f g x[ ( ( ))], you must differentiate 

f with respect to g x( ) first, and then multiply the result by the derivative of g x( ) with respect to x.
The examples that follow illustrate the chain rule.

Find y , when y x x x3 2 5 14 3 ;  let u x x x3 2 5 14 3 ,

then y dy
dx

dy
du

du
dx

d
du

u d
dx

x x x( ) (
1
2 3 2 5 14 3 )) ( )1

2
12 6 5

1
2 3 2u x x

1
2

3 2 5 1 12 6 5 12 64 3 3 2
3 2

1
2( ) ( )x x x x x x x 55

2 3 2 5 14 3x x x

Find f x( ), when f x x( ) ( ) ;2 38  let g x x( ) ,2 8

then d
dx

f g x d
dx

x f g x g x[ ( ( ))] [( ) ] ( ( )) ( )2 38

   3 3 8 2 6 82 2 2 2 2( ( )) ( ) ( ) ( )g x g x x x x x

d
dx

x x d
dx

x x x( ) ( ) ( ) ( )1 4 1 1 4 1 1
2

4 3 3 1
2

2 1 3( )x
x
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5·5
EXERCISE

For problems 1–10, use the chain rule to find the derivative of the given function.

1. f x x( ) ( )3 102 3 6. y
x

1
82 3( )

2. g x x( ) ( )40 3 102 3 7. y x x2 5 13

3. h x x( ) ( )10 3 102 3 8. s t t t( ) ( )2 53
1
3

4. h x x( ) ( )3 2 9. f x
x

( )
( )

10
2 6 5

5. f u
u

u( )
1

2

3

10. C t
t

( )
50

15 120

For problems 11–15, find the indicated numerical derivative.

11. f ( )10  when f x x( ) ( )3 102 3 14. f ( )2  when f u
u

u( )
1

2

3

12. h ( )3  when h x x( ) ( )10 3 102 3 15. dy
dx

4

 when y
x

1
82 3( )

13. f ( )144  when f x x( ) ( )3 2

Implicit differentiation
Thus far, you’ve seen how to find the derivative of a function only if the function is expressed in what 
is called explicit form. A function in explicit form is defined by an equation of the type y f(x), where 
y is on one side of the equation and all the terms containing x are on the other side. For example, the 
function f defined by y f(x)  x3 + 5 is expressed in explicit form. For this function the variable y
is defined explicitly as a function of the variable x. 

On the other hand, for equations in which the variables x and y appear on the same side of the 
equation, the function is said to be expressed in implicit form. For example, the equation x2y  1 

defines the function y 1
2x

implicitly in terms of x. In this case, the implicit form of the equa-

tion can be solved for y as a function of x; however, for many implicit forms, it is difficult and 
sometimes impossible to solve for y in terms of x.

Under the assumption that dy
dx , the derivative of y with respect to x, exists, you can use the 

technique of implicit differentiation to find dy
dx

 when a function is expressed in implicit form—

regardless of whether you can express the function in explicit form. Use the following steps:

1. Differentiate every term on both sides of the equation with respect to x.

2. Solve the resulting equation for dy
dx .
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PROBLEM Given the equation x y2 32 30, use implicit differentiation to find dy
dx .

SOLUTION Step 1: Differentiate every term on both sides of the equation with respect to x:

d
dx

x y d
dx

( ) ( )2 32 30

d
dx

x d
dx

y d
dx

( ) ( ) ( )2 32 30

2 6 02x y dy
dx

Step 2: Solve the resulting equation for 
dy
dx .

6 22y dy
dx

x

dy
dx

x
y
2

6 2

Note that in this example, dy
dx

 is expressed in terms of both x and y. To evaluate such a 

derivative, you would need to know both x and y at a particular point (x, y). You can denote the 

numerical derivative as dy
dx x y( , )

.

The example that follows illustrates this situation.

dy
dx

x
y
2

6 2  at (3, 1) is given by

dy
dx

x
y( , ) ( , )

( )
( )3 1

2
3 1

2

2
6

2 3
6 1

1

5·6
EXERCISE

For problems 1–10, use implicit differentiation to find dy
dx

.

1. x2y  1 4. 1 1
9

x y
2. xy3  3x2y + 5y 5. x2 + y2 16

3. x y 25
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For problems 6–10, find the indicated numerical derivative.

6. dy
dx

( , )3 1

 when x2y  1 9. dy
dx

( , )5 10

 when 1 1
9

x y

7. dy
dx

( , )5 2

 when xy3  3x2y + 5y 10. dy
dx

( , )2 1

  when x2 + y2 16

8. dy
dx

( , )4 9

 when x y 25
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Derivative of the natural 
exponential function ex

Exponential functions are defined by equations of the form y f x bx( )
( , ),b b1 0 where b is the base of the exponential function. The natural expo-
nential function is the exponential function whose base is the irrational number e.

The number e is the limit as n approaches infinity of 1 1
n

n

, which is approxi-
mately 2.718281828 (to nine decimal places).

The natural exponential function is its own derivative; that is, d
dx

e ex x( ) .

Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

e e du
dx

u u( )

If f x ex( ) ,6 then f x d
dx

e ex x( ) ( )6 6

If y e2x, then y e d
dx

x e ex x x2 2 22 2 2( ) ( )

d
dx

e e d
dx

x e x xex x x x( ) ( ) ( )3 3 2 3 32 2 2 2

3 6 6

6·1
EXERCISE

Find the derivative of the given function.

1. f x e x( ) 20 6. f x x e x( ) 15 102

2. y  e 3x 7. g x e x x( ) 7 2 3

3. g x e x( ) 5 3

8. f t
e t

( )
.

100
0 5

4. y e x4 5 3

9. g t e t( ) 2500 2 1

5. h x e x( ) 10 3

10. f x e
x

( )
1

2

2

2

·6·
Additional derivatives ·6·
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Derivative of the natural logarithmic function lnx
Logarithmic functions are defined by equations of the form y f(x)  log

b
x if and only if 

b x xy ( ),0 where b is the base of the logarithmic function, (b  1, b  0). For a given base, the 
logarithmic function is the inverse function of the corresponding exponential function, and re-
ciprocally. The logarithmic function defined by y xelog , usually denoted ln ,x is the natural 
logarithmic function. It is the inverse function of the natural exponential function y ex.

The derivative of the natural logarithmic function is as follows:

d
dx

x
x

(ln ) 1

Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

u
u

du
dx

(ln ) 1

If f x x( ) ln ,6 then f x d
dx

x
x x

( ) (ln )6 6 1 6

If y xln( ),2 3  then y
x

d
dx

x
x

x
x

1
2

2 1
2

6 3
3

3
3

2( ) ( )

d
dx

x
x

d
dx

x
x x

(ln ) ( ) ( )2 1
2

2 1
2

2 1

The above example illustrates that for any nonzero constant k,

d
dx

kx
kx

d
dx

kx
kx

k
x

(ln ) ( ) ( )1 1 1

6·2
EXERCISE

Find the derivative of the given function.

1. f x x( ) ln20 6. f x x x( ) ln15 102

2. y xln 3 7. g x x x( ) ln( )7 2 3

3. g x x( ) ln( )5 3 8. f t t t( ) ln( )3 5 202

4. y x4 5 3ln( ) 9. g t et( ) ln( )

5. h x x( ) ln( )10 3 10. f x x( ) ln(ln )

Derivatives of exponential functions 
for bases other than e

Suppose b is a positive real number (b  1), then
d

dx
b b bx x( ) (ln )
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Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

b b b du
dx

u u( ) (ln )

If f x x( ) ( ) ,6 2  then f x d
dx

x x( ) ( ) (ln )6 2 6 2 2

If y x52 , then y d
dx

xx x x(ln ) ( ) (ln ) ( ) (ln )5 5 2 5 5 2 2 5 52 2 2

d
dx

d
dx

xx x x( ) (ln ) ( ) (ln )10 10 10 3 10 103 3 2 32 2 2

(( ) (ln )6 6 10 10 3 2

x x x

6·3
EXERCISE

Find the derivative of the given function.

1. f x x( ) ( )20 3 6. f x x x( ) ( )15 10 52 3

2. y x53 7. g x x x( ) 37 2 3

3. g x x( ) 25 3

8. f t
t

( )
.

100
10 0 5

4. y x4 25 3

( ) 9. g t t( ) ( )2500 52 1

5. h x x( ) 4 10 3

10. f x
x

( ) 8
2

2

Derivatives of logarithmic functions 
for bases other than e

Suppose b is a positive real number (b  1), then

d
dx

x
b xb(log )

(ln )
1

Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

u
b u

du
dxb(log )

(ln )
1

If f x x( ) log ,6 2 then f x d
dx

x
x x

( ) (log )
(ln ) ln

6 6 1
2

6
22

If y xlog ( ),5
32 then y

x
d

dx
x

x
x

x
1

5 2
2 1

5 2
6 3

53
3

3
2

(ln )
( )

(ln )
( )

ln

d
dx

x
x

d
dx

x
x

(log )
(ln )

( )
(ln )

( )3 2 1
3 2

2 1
3 2

2 1
xx ln3
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The above example illustrates that for any nonzero constant k,

d
dx

kx
b kx

d
dx

kx
b kx

kb(log )
(ln )

( )
(ln )

( )1 1 1
xx bln

6·4
EXERCISE

Find the derivative of the given function.

1. f x x( ) log20 4 6. f x x x( ) log15 102
2

2. y xlog10 3 7. g x x x( ) log ( )6
37 2

3. g x x( ) log ( )8
35 8. f t t t( ) log ( )16

23 5 20

4. y x4 58
3log ( ) 9. g t et( ) log ( )2

5. h x x( ) log ( )5
310 10. f x x( ) log (log )10 10

Derivatives of trigonometric functions 
The derivatives of the trigonometric functions are as follows:

d
dx

x x(sin ) cos

d
dx

x x(cos ) sin

d
dx

x x(tan ) sec2

d
dx

x x(cot ) csc2

d
dx

x x x(sec ) sec tan

d
dx

x x x(csc ) csc cot

Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

u u du
dx

(sin ) cos

d
dx

u u du
dx

(cos ) sin

d
dx

u u du
dx

(tan ) sec2
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d
dx

u u du
dx

(cot ) csc2

d
dx

u u u du
dx

(sec ) (sec tan )

d
dx

u u u du
dx

(csc ) ( csc cot )

If h x x( ) sin ,3 then h x x d
dx

x x x( ) (cos ) ( ) (cos )( ) cos3 3 3 3 3 3

If y x3
3

cos ,  then y x d
dx

x x3
3 3

3
3

sin sin 1
3 3

sin x

d
dx

x x d
dx

x d
dx

x(tan cot ) (tan ) (cot ) sec2 2 2 2 2(( ) ( ) csc ( ) ( )2 2 2 22x d
dx

x x d
dx

x

   [sec ( )]( ) [csc ( )]( ) sec ( ) csc2 2 22 2 2 2 2 2 2x x x 22 2( )x

6·5
EXERCISE

Find the derivative of the given function.

1. f x x( ) sin5 3 6. s t t( ) cot4 5

2. h x x( ) cos( )
1
4

2 2   7. g x
x

x( ) tan6
2
3

203

3. g x
x

( ) tan5
3
5

8. f x x x x( ) sin cos2 2

4. f x x( ) sec10 2 9. h x
x

x
( )

sin
sin

3
1 3

5. y x
2
3

2 3sec( ) 10. f x e xx( ) sin4 2

Derivatives of inverse trigonometric functions
The derivatives of the inverse trigonometric functions are as follows:

d
dx

x
x

(sin )1

2

1

1
d

dx
x

x
(cos )1

2

1

1
d

dx
x

x
(tan )1

2

1
1
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d
dx

x
x

(cot )1
2

1
1

d
dx

x
x x

(sec )
| |

1

2

1

1
d

dx
x

x x
(csc )

| |
1

2

1

1

Furthermore, by the chain rule, if u is a differentiable function of x, then 

d
dx

u
u

du
dx

(sin )1

2

1

1
d

dx
u

u
du
dx

(cos )1

2

1

1
d

dx
u

u
du
dx

(tan )1
2

1
1

d
dx

u
u

du
dx

(cot )1
2

1
1

d
dx

u
u u

du
dx

(sec )
| |

1

2

1

1
d

dx
u

u u
du
dx

(csc )
| |

1

2

1

1

If h x x( ) ( ),sin 1 2  then h x
x

d
dx

x
x x

( )
( )

( ) ( )1

1 2
2 1

1 4
2 2

1 42 2 2

If y xcos ,1

3
 then y

x

d
dx

x

x

1

1
3

3
1

1
9

1
32 2

1

3 9
9

2x

   1

3 1
3

9

1

92
2

x x

d
dx

x x d
dx

x d
dx

x(tan cot ) (tan ) (cot )1 1 1 1 11
1

1
1

02 2x x

Note: An alternative notation for an inverse trigonometric function is to prefix the original func-
tion with “arc,” as in “arcsin x,” which is read “arcsine of x” or “an angle whose sine is x.” An 
advantage of this notation is that it helps you avoid the common error of confusing the inverse 

function; for example, sin ,1x  with its reciprocal (sin )
sin

.x
x

1 1
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6·6
EXERCISE

Find the derivative of the given function.

1. f x x( ) sin ( )1 3 6. f x x( ) cos ( )1 2

2. h x e x( ) cos ( )1 7. h x x( ) csc ( )1 2

3. g x x( ) tan ( )1 2 8. g x
x

( ) sec4
2

1

4. f x x( ) cot ( )1 7 5 9. f x x x( ) sin ( )1 27

5. y x
1

15
51 3sin ( ) 10. y xarcsin( )1 2

Higher-order derivatives
For a given function f, higher-order derivatives of f, if they exist, are obtained by differentiating f
successively multiple times. The derivative f  is called the first derivative of f. The derivative of f
is called the second derivative of f and is denoted f . Similarly, the derivative of f is called the 
third derivative of f and is denoted f ,   and so on. 

Other common notations for higher-order derivatives are the following:

1st derivative: f x y dy
dx

D f xx( ), , , [ ( )]

2nd derivative: f x y d y
d x

D f xx( ), , , [ ( )]
2

2
2

3rd derivative: f x y d y
d x

D f xx( ), , , [ ( )]
3

3
3

4th derivative: f x y d y
d x

D f xx
( ) ( )( ), , , [ ( )]4 4

4

4
4

nth derivative: f x y d y
d x

D f xn n
n

n x
n( ) ( )( ), , , [ ( )]

Note: The nth derivative is also called the nth-order derivative. Thus, the first derivative is the first-
order derivative; the second derivative, the second-order derivative; the third derivative, the 
third-order derivative; and so on.

PROBLEM Find the first three derivatives of f if f(x) x 100  40x 5.
SOLUTION f x x x( ) 100 20099 4

f x x x( ) 9900 80098 3

f x x x( ) 970200 240097 2
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6·7
EXERCISE

Find the indicated derivative of the given function.

1. If f x x x( ) ,7 102  find f x( ). 6. If s t t
t

( ) ,16
2
3

102  find s t( ).

2. If h x x( ) ,3  find h x( ). 7. If g x x( ) ln ,3  find D g xx
3[ ( )].

3. If g x x( ) ,2  find g x( ) ( ).5 8. If f x
x

x
( ) ,

10
55

3

 find f x( ) ( ).4

4. If f x e x( ) ,5  find f x( ) ( ).4 9. If f x x( ) ,32  find f x( ).

5. If y xsin ,3  find d y
d x

3

3
. 10. If y xlog ,2 5  find d y

d x

4

4
.
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INTEGRATION

Fundamentally, integration is the process of reversing the results of differentia-
tion. In Part III you will be working with integration formulas for certain basic 
function types, along with practicing various techniques of integration. The 
material begins with a focus on indefinite integrals, and then moves on to definite 
integrals and the crowning triumph of integral calculus, the First Fundamental 
Theorem of Calculus. The highly useful Second Fundamental Theorem of Calculus 
and Mean Value Theorem for Integrals are also presented.

· III ·
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Antiderivatives and the indefinite integral
An antiderivative of a function f on an interval I is any function F such that 
F x( ) d

dx
F x[ ( )] f x( ) for all x in I.

Thus, an antiderivative is the result of reversing the process of differentia-
tion, so to speak. The following examples illustrate this concept.

5 3x  is an antiderivative of 15 2x  because d
dx

x( )5 3 15 2x .

5 3x  20 is an antiderivative of 15 2x  because d
dx

x( )5 203 15 2x  0 
15 2x .

5 3x  100 is an antiderivative of 15 2x  because d
dx

x( )5 1003 15 2x  0 
15 2x .
tan x is an antiderivative of sec2 x  because d

dx
x(tan ) sec2 x .

tan x  4 is an antiderivative of sec2 x because d
dx

x(tan )4 sec2 x 0
sec2 x .
tan x  30 is an antiderivative of sec2 x because d

dx
x(tan )30 sec2 x  0 

sec2 x.

From these examples, you can see that, although functions have at most one 
derivative, they may have many (in fact, infinitely many) antiderivatives. Thus, if 
F is an antiderivative of a function f over an interval I, then F x( ) C represents 
the set of antiderivatives of f, where C is an arbitrary constant.

The indefinite integral of f is the set of all antiderivatives of f and is denoted 
by f x dx( ) . Thus, 

f x dx( ) F x( ) C,

where F is an antiderivative of f over an interval I and C is an arbitrary constant. 
The process of determining the indefinite integral is called integration. The 
expression f x dx( )  is read “the integral of f of x with respect to x”; f x( ) is
called the integrand, dx is called the differential, and C is called the constant of
integration.

Indefinite integral and 
basic integration 

formulas and rules
·7·
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Note: The differential dx indicates that the integration takes place with respect to the variable x.

Hereafter, it will be understood that in the expression f x dx( ) F x( ) C, F is an 
antiderivative of f over an interval.

You likely have surmised that integration “undoes” the process of differentiation to within a 
constant value. In a like manner, differentiation “undoes” the process of integration. The fol-
lowing examples illustrate this inverse (“undoing”) relationship between integration and 
differentiation.

PROBLEM Verify that 15 2x dx 5 3x C by differentiating the right member.

SOLUTION
d

dx
x C( )5 3 15 2x  0 15 2x

PROBLEM Verify that sec2 xdx  tan x C by differentiating the right member.

SOLUTION
d

dx
x C(tan ) sec2 x  0 sec2 x

7·1
EXERCISE

Verify the following statements by differentiating the right member.

1. 100 dx 100x C 6. ( )10 30 103x dx ( )10 30
4

4x
C

2. 6x dx 3 2x C 7. ( )x x dx2 43 2
( )x

C
2 53

5

3. ( )3 4 52x x dx x x3 22  5x C 8. sin cos2 x x dx
sin3

3
x

C

4. ( )x x dx x x C2 1
2
7

2
3

7
2

3
2 9. x x dx2 3sin

cos x
C

3

3

5. ( )x e dxe x x
e

e C
e

x
1

1
10. ln x dx x x x Cln

Integration of constant functions
If k is any constant, then k dx kx C, where C is an arbitrary constant.

3 dx  3x C

7 dx 7 x C

dx 1dx  1x C x C

Note: This solution is usually written dx x C.
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7·2
EXERCISE

Find the most general indefinite integral.

1. 8 dx 6. 16 2 dt

2. 3
4

dx 7. e dx2

3. 9 75. dx 8. 2 dr

4. 3 dx 9. 21du

5. 40

10 15

3

dx 10. 6
e

dx

Integration of power functions
The following integral formulas for power functions can be derived from the formulas for dif-
ferentiating power functions (see Chapter 4) and the natural logarithm function (see Chapter 6): 

x dxn x
n

n 1

1
C, for all n 1;

and

x dx1 1
x

dx ln | |x C,

where C is an arbitrary constant.

x dx2 x3

3
C

x dx x dx
1
2

x
3
2

3
2

C 2
3

3
2x C

1
5x

dx x dx5 x 4

4
C 1

4 4x
C

x dx
x 1

1
C

1
u

du ln | |u C

7·3
EXERCISE

Find the most general indefinite integral.

1. x dx5 3. x dx2

2. x dx34 4. 1
2x

dx
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5. t dt100 8. x
x

dx
5

2

6. u du2 9. r dr1

7. 1

x
dx 10. 1

t
dt

Integration of exponential functions
The following integral formulas for exponential functions can be derived from the rules for 
differentiating exponential functions (see Chapter 6) and the chain rule (see Chapter 5): 

e dxx ex C;

e dxkx 1
k

ekx C, for all k 0;

b dxx 1
lnb

bx C, for all b  0, b  1; and

b dxkx 1
k b

bkx

ln
C, for all b  0, b  1, k 0,

where C is an arbitrary constant.

e duu eu C

e dxx5 1
5

5e x C e x5

5
C

2xdx 1
2

2
ln

x C 2
2

x

ln
C

25xdx 1
5 2

25

ln
x C 2

5 2

5x

ln
C

7·4
EXERCISE

Find the most general indefinite integral.

1. e dtt 6. e dxx3

2. e dxx20 7. 4 x dx

3. e dxx 8. 23 x dx

4. e dxx0 25. 9. 1000 25. x dx

5. e dx
x

5 10.
x

dx5
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Integration of derivatives of trigonometric functions
The following integral formulas can be derived from the rules for differentiating the six trigono-
metric functions (see Chapter 6) and the chain rule (see Chapter 5): 

sin x dx cosx C;

sin( ) cos ( )kx dx
k

kx1 C, for all k  0; 

cos sinx dx x C;

cos( ) sin( )kx dx
k

kx1 C, for all k  0;

sec tan2 x dx x C;

sec ( ) tan( )2 1kx dx
k

kx C, for all k  0;

csc cot2 x dx x C;

csc ( ) cot( )2 1kx dx
k

kx C, for all k  0;

sec tan secx x dx x C;

sec( )tan( ) sec( )kx kx dx
k

kx1 C, for all k  0;

csc cot cscx x dx x C; and

csc( )cot( ) csc( )kx kx dx
k

kx1 C, for all k  0, 

where C is an arbitrary constant.

sin cosudu u C

cos( ) sin( )10 1
10

10x dx x C

sec ( . )2 0 5x dx 1
0 5

0 5
.

tan( . )x C tan( . )
.
0 5

0 5
x C

csc cot2 t dt t C

sec tan3
4

3
4

x x dx sec tan3
4

3
4

x x dx
1 3

43
4

sec x C 4
3

3
4

sec x C

Note: Special techniques are needed to determine the following integrals: tan ,x dx cot ,x dx
sec ,x dx  and csc x dx. These integrals can be determined using techniques presented in Chapter 8.
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7·5
EXERCISE

Find the most general indefinite integral.

1. cosv dv 6. sec tan
5
6

5
6

x x dx

2. sin 1
2 x dx 7. csc cot

x x
dx

3 3

3. cos( )18x dx 8. csc( )cot( )ex ex dx

4. sec ( )2 3x dx 9. sin3 d

5. csc ( . )2 2 5x dx 10. cos( )25 x dx

Integration of derivatives of inverse 
trigonometric functions

The following integral formulas can be derived from the rules for differentiating the six inverse 
trigonometric functions (see Chapter 6) and the chain rule (see Chapter 5):

1
1 2x

dx sin 1 x C cos 1 x C;

1
2 2a x

dx sin 1 x
a

C cos 1 x
a

C, for all a  0;

1
1 2x

dx tan 1 x C cot 1 x C;

1
2 2a x

dx
1 1

a
x
a

tan C 1 1

a
x
a

cot C, for all a  0;

1

12| |x x
dx sec 1 x C csc 1 x C; and

1
2 2| |x x a

dx
1 1

a
x
a

sec C 1 1

a
x
a

csc C, for all a  0,

where C is an arbitrary constant.
As you can see from the above formulas, for each integrand that represents a derivative of 

one of the six inverse trigonometric functions, you have a pair of corresponding antiderivatives 
from which to choose. This circumstance occurs because the derivatives of the six inverse trigo-
nometric functions fall into three pairs. In each pair, the derivatives differ only in sign. For 
example, d

dx
x(sin )1 1

1 2x
 and d

dx
x(cos )1 1

1 2x
. When you are integrating an in-

tegrand that is the derivative of an inverse trigonometric function, you select only one member 
from the corresponding pair of antiderivatives. Although mathematically either member is correct, 
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it is customary to select the inverse sine, inverse tangent, and inverse secant functions over the nega-
tives of the inverse cosine, inverse cotangent, and inverse cosecant functions, respectively.

du
u1 2

1
1 2u

du sin 1 u C

1
9 2x

dx
1

32 2x
dx sin 1

3
x C

1
5 2x

dx 1
5 2 2( ) x

dx
1
5 5

1tan x C

1
36
25

2 2x x
dx 1

2 6
5

2| | ( )x x
dx

1
6

5

1

6
5

sec x C 5
6

5
6

1sec x C

7·6
EXERCISE

Find the most general indefinite integral.

1.
1

1 2
d 6. 1

412| |x x
dx

2.
dx

x16 2
7. 1

81
100

2x

dx

3.
1

49 2x
dx 8.

1
2 2x

dx

4.
dt

t0 25 2.
9. dt

t t2 2 1
4

5. du

u u2 2 1( )
10. 1

72| |x x
dx

Two useful integration rules
Two rules that allow you to integrate a variety of functions are the constant multiple rule and the 
rule for sums and differences.

The constant multiple rule states that the integral of a constant times a function is the prod-
uct of that constant times the integral of the function: Symbolically, you have, if k is any constant, 

kf x dx( ) k f x dx( ) . This rule allows you to factor out constants from an integral, and it 

applies even when the constant is in the denominator as shown here: f x dx
k

( ) 1
k

f x dx( ) ,
provided k  0.
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The rule for sums and differences states that the integral of the sum (or difference) of two 
functions is equal to the sum (or difference) of the integrals of the individual functions. Symboli-
cally, you have [ ( ) ( )]f x g x dx f x dx( ) g x dx( ) .

The example that follows illustrates using the two rules.

( )10 64x x dx 10 4x dx 6x dx by the Rule for Sums and Difference

10 4x dx 6 x dx  by the Constant Multiple Rule

10
5

5x C1 6
2

2x C2 2 5x 3 2x  C, where C C1 C2

Note: It is not necessary to write the two arbitrary constants C1  and C2  separately, as shown in 
the example above, since their sum C also is an arbitrary constant. When integrating a sum or 
difference of two or more functions, you can add one constant C to represent the sum of all the 
arbitrary constants in the solution.

Following are additional examples of applying the constant multiple rule and the rule for 
sums and differences.

( )5 2 7 12 84 3 2x x x x dx 5 4x dx 2 3x dx 7 2x dx 12x dx 8dx

5 4x dx 2 3x dx 7 2x dx 12 x dx 8 dx 5
5

5x 2
4

4x
7

3

3x 12
2

2x

8x C x5 1
2

4x 7
3

3x 6 2x  8x C

[ sin( )]2 5 10x x dx 2x dx 5 10sin( )x dx 2 x dx 5 10 2
2

2

sin( )x dx x

5 1
10

10cos x C x 2 1
2

10cos x C

2 3
4x x

dx 2
x

dx 3
4x

dx 2 1
x

dx 3 4x dx  2 ln | |x 3
3

3x C  2 ln x

x 3 C  2 ln | |x 1
3x

C

1
9

1
52 2x x

dx 1
9 2x

dx 1
5 2x

dx
1

32 2x
dx 1

5 2 2( ) x
dx

sin 1

3
x 1

5 5
1tan x C

As it stands, the integral in the next example does not appear to fit any of the basic integra-
tion formulas that you’ve seen thus far. However, simplifying first produces the following:

e e
e

dx
x x

x

5 4

( )e e dxx x4 3 e dxx4 e dxx3 1
4

4e x 1
3

3e x C
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7·7
EXERCISE

Find the most general indefinite integral.

1. ( )3 5 21 36 104 3 2x x x x dx 6. x x
x

dx
7 4

5

2. 3 4 22x x dxcos( ) 7. 1
6 2e x

dx

3. 8 5
5t t

dt 8. ( )x dx2 24

4. 1

25

1
1002 2

d 9. 7
3 t

dt

5. e e
e

dx
x x

x

5 4

2
10. 20 x

x
dx
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·8·Basic integration 
techniques

Integration by substitution
None of the integration formulas or rules from Chapter 7 fit directly any of the 
following integrals: ( ) ,x x dx e x dxx2 5 24 2

3

, or x
x

dx
3

4 2
. To find integrals

such as these, you can use a method called integration by substitution (often 
called Integration by µ – Substitution). Integration by substitution relies on the 
chain rule that you used in differentiation. (See Chapter 5 for a discussion of using 
the chain rule in differentiation.) In integration by substitution you substitute a 
new variable for a judiciously selected functional expression in the integrand; and 
then after transforming the original integral, as needed, based on your under-
standing of the chain rule, you integrate with respect to the new variable. When 
transforming the integral, the objective is to create an integral that has the form 

f g x g x dx( ( )) ( ) .
Commonly, the variable u is used as the variable of substitution, as shown in 

the following examples.

PROBLEM Find ( )x x dx2 53 2 .
SOLUTION If you let u x 2 3, then du  2x dx. When you make these 

substitutions, the integral takes the form of a power function, 
which you can integrate as shown below.

( )x x dx2 53 2 u du5 Substituting u x 2 3  and du  2x dx

u C
6

6
Integrating with respect to u

( )x C3
6

6 Substituting x 2 3 u so that the 
solution is in terms of the original 
variable

PROBLEM Find e x dxx3 2 .
SOLUTION If you let u x3, then du 3 2x dx. Since the constant 3 does not 

appear in the original integrand, you will need to transform the 
integrand by multiplying the integrand by 1 in the form 1

3
3,

and then factoring out 1
3

 from the integral, as shown here.
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e x dxx3 2 e x dxx3 1
3

3 2 Multiplying by 1
3

3

1
3

3
3 2e x dxx 1

3
e duu Factoring out 1

3
 and substituting u x3 and 

du 3 2x dx
1
3

e Cu Integrating with respect to u

1
3

3
e Cx Substituting x3 u so that the solution is in 

terms of the original variable

Note: You can use the technique (shown in the above example) of multiplying the integrand by 1 
in the form 1

k
k, and then factoring out 1

k
 from the integral for any nonzero constant k; however, 

a similar technique with variables is not valid. It is incorrect to factor an expression containing 
the variable from an integral.

PROBLEM Find x
x

dx
3

4 2
.

SOLUTION If you let u x 4 2, then du 4 3x dx. Since the constant 4 does not appear in 
the original integrand, you will need to transform the integral by multiplying 
the integrand by 1 in the form 1

4
4, and then factoring out 1

4
 from the integral, 

as shown here.

x
x

dx
3

4 2
1
4

4
2

3

4

x
x

dx Multiplying by 1
4

4

1
4

4
2

3

4

x
x

dx 1
4

du
u

Factoring out 1
4

 and substituting u x 4 2 and 
du 4 3x dx

1
4

ln u C Integrating with respect to u

1
4

24ln( )x C Substituting x 4 2 u so that the solution is in terms 
of the original variable

Becoming adept at choosing u-substitutions takes practice. You should memorize the basic 
integration formulas presented in Chapter 7 to facilitate the process. Here are some general guide-
lines: Substitute u for

an expression in parentheses
the exponent in an exponential expression
the denominator of a fraction or
an expression under a radical sign (except when the integrand has the form of the deriva-
tive of an inverse sine or secant function)
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8·1
EXERCISE

Use integration by substitution to find the most general indefinite integral.

1. 3 53 4 2( )x x dx   6. x x
x x

dx
3

4 2

2
4 5

2. e x dxx 4 3   7. x x dxcos( )3 12

3. t
t

dt
2 7

8. 3 2cos (sin )x x

x
dx

4. ( ) ( )x x x dx5 43 5 3
1
4 9. e

e
dx

x

x

2

41

5. x x
x x

dx
3

4 2 4

2
4 5( )

  10. 6 2 23

t e dtt

Integration by parts
Integration by parts is a powerful technique for integrating certain complicated integrals such 
as x x dxsin3 , x x dx5 ln , and x e dxx2  that do not lend themselves to basic integration formu-
las or to the technique of integration by substitution. If u and v are differentiable functions, then 
the equation for integration by parts is given by

udv u v  − v du

The given integral is u dv, which has two “parts”: u and dv. The goal of integration by parts 
is to wisely select these two parts so that the resulting integral on the right, v du, is easier to 
integrate than the original integral on the left, udv. To see how the formula works, consider the 
following examples.

PROBLEM Find x x dxsin3 .
SOLUTION Let u x and dv sin3x dx.

Then du dx and v sin3x dx 1
3

3cos x .

Note: The constant of integration is added at the end of the process.

  Now, using the integration by parts equation, you have

  udv u v − v du

x x dxsin3 ( ) cosx x1
3

3  − 1
3

3cos x dx

1
3

3x xcos 1
3

3cos x dx
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1
3

3x xcos 1
3

1
3

3sin x

1
3

3x xcos 1
9

3sin x C.

PROBLEM Find x x dx5 ln .
SOLUTION Let u lnx and dv x dx5 .

Then du 1
x

dx  and v x dx5 x6

6
.

Now, using the integration by parts equation, you have

udv u v v du

x x dx5 ln (ln )x x6

6
x

x
dx

6

6
1

x x6

6
ln 1

6
5x dx

x x6

6
ln 1

6 6

6x

x x6

6
ln x6

36
C.

Sometimes, you might need to apply integration by parts more than once as shown in the 
following example.

PROBLEM Find x e dxx2 .
SOLUTION Let u x 2 and dv e dxx .

Then du 2x dx  and v e dxx e x .

Now, using the integration by parts equation, you have

udv u v v du

x e dxx2 ( )( )x e x2 e xdxx 2

x e x2 2xe dxx

As you can see, the integral on the right does not fit a basic integration formula. To integrate 
that integral, you can apply integration by parts for a second time.

This time, let u  2x and dv e dxx .
Then du  2 dx and v e dxx e x.
Now, using the integration by parts equation, you have

udv u v v du

2xe dxx ( )( )2x e x e dxx 2

2xe x 2 e dxx

2xe x 2e x
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Combining these two results, you have

x e dx x ex x2 2 2xe x 2e x C.

Here are some general guidelines to follow for integration by parts.

1. Try letting dv be the most complicated part of the integrand that you recognize as 
integrable.

2. Always include the differential as part of dv.

3. Try letting u be a portion of the integrand whose derivative is simpler than u.

4. For integrals that consist of a single factor times the differential, let dv be the differential.

5. Be prepared to apply integration by parts more than once within the same problem.

8·2
EXERCISE

Use integration by parts to find the most general indefinite integral.

1. 2 2x x dxsin   6. x e dxx2

2. x x dx3 ln   7. w w dw( )3 2

3. te dtt   8. x x dx3 4ln( )

4. x x dxcos   9. t t dt( )5 4

5. cot ( )1 x dx   10. x x dx2

Integration by using tables of integral formulas
Another technique of integration is to integrate by using tables of integral formulas. A table of 67 
common integral formulas is provided in Appendix C for your convenience. The following is 
some helpful information about tables of integrals in general:

1. Letters at the beginning of the alphabet (e.g., a, b, c, and d) represent constants.

2. The letter n is often used to represent a constant exponent (e.g., xn).

3. The letter k is often used to represent a constant in an exponential expression (e.g., ekx).

4. If the integrand contains a fraction, the differential might be in the numerator of the 
fraction.

5. The constant of integration might be omitted.

6. The natural logarithm might be written as log(x) instead of ln x.
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To integrate using a table of integral formulas, you simply look through the table until you 
find an integral formula in which the integrand exactly matches the form of the integrand of the 
integral you want to integrate. Sometimes, the task of locating such an integral formula is straight-
forward as in the following examples.

PROBLEM Find 1
1 e

dxx .

SOLUTION This integral matches Formula 38. Therefore,
1

1 e
dxx x ln( )1 ex C

PROBLEM Find tanudu.
SOLUTION This integral matches Formula 13. Therefore,

tan ln|cos |udu u C

PROBLEM Find ln .t dt
SOLUTION This integral matches Formula 40. Therefore,

ln lnt dt t t t C

In some cases, you might need to substitute values for constants that appear in the formula 
as shown in this example.

PROBLEM Find 1
3 5x x

dx.

SOLUTION This integral matches Formula 55 with a  3 and b  5. Therefore, you have

1
x ax b

dx 1
b

ax b b
ax b b

ln C

1
3 5x x

dx 1
5

3 5 5
3 5 5

ln x
x

C

Sometimes, the appropriate integration formula might be difficult to find. Before giving up, 
experiment with the following techniques to try to transform the given integral into one for 
which you can use a table of integral formulas.

1. Expand expressions that are raised to a power.

2. Rewrite expressions that are raised to a negative power as equivalent expressions raised to 
a positive power.

3. Factor out extraneous constants from the integral.

4. Separate a numerator that has more than one term into separate algebraic fractions.

5. Write an improper algebraic fraction as a quotient plus remainder over denominator.

6. Complete the square for a quadratic expression.

If this line of attack fails, you might have to concede that the integral cannot be integrated 
using basic methods. 

Note: Certain graphing calculators (e.g., the TI-92) and some software programs (e.g., Derive, 
Maple, and Mathematica) are capable of producing symbolic results of integration. However, it is 
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not unusual for the results to differ from what you obtain through traditional means. Further-
more, you might find that the symbolic integration tool is unable to find the antiderivative for the 
integrand. Nevertheless, a symbolic integration tool can be useful for performing integration of 
complicated integrals. Understanding the process as shown in this chapter will greatly benefit 
you when using such a utility.

8·3
EXERCISE

Use the table of integral formulas in Appendix C to find the most general indefinite integral.

1. cot x dx   6. 3xe dxx

2. 1
2 3 5( )( )x x

dx   7. 10 3w dw

3. (ln )x dx2   8. t t dt( )5 1

4. x x dxcos   9. x x dx2

5. x
x

dx
( )2 2

  10. 1
sin cosu u

du
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·9·The definite integral

Definition of the definite integral and the 
First Fundamental Theorem of Calculus

If a function f is defined on the closed interval [a, b], then the definite integral of f
from a to b is defined as a limiting sum given by: f x dx

a

b
( ) lim

max xi 0
f c xi i

i

n

( )
1

,
where [a, b] is divided into n subintervals (not necessarily equal), ci is a point in 
the ith subinterval [xi – 1, xi], and ∆xi xi − xi – 1, provided this limit exists.

The limiting sum, f c xi i
i

n

( )
=1

, in the definition of the definite integral is 

called a Riemann sum. This sum is a numerical result.
Fortunately, the following theorem means that for continuous functions 

there is a powerful method to evaluate definite integrals rather than the use of 
Riemann sums.

The First Fundamental Theorem of Calculus: If f is continuous on the closed 
interval [a, b] and F is an antiderivative of f on [a, b], then the evaluation of the 
definite integral f x dx

a

b
( ) is given by f x dx

a

b
( ) F(b) − F(a). 

This theorem means that you can evaluate the definite integral, f x dx
a

b
( ) ,

through a four-step process:

1. Determine F an antiderivative of f.
2. Evaluate F(b).
3. Evaluate F(a).
4. Calculate F(b) − F(a).

Note: The constant of integration is subtracted out when a definite integral is 
evaluated. Therefore, you can omit it from the calculations.

The following notations are used when applying the Fundamental Theorem 
of Calculus to evaluate the definite integral,

f x dx
a

b

a
b

a
bF b F a F x F x F x( ) ( ) ( ) ( )| [ ( )] [ ( )]aa

b
x a
x bF x[ ( )]

Note: Hereafter, the symbol  will be used to mean “approximately equal to.”

PROBLEM Evaluate 15 2

1

4
x dx.

SOLUTION 15 2

1

4
x dx 5 3

1

4

x 5 4 3( )  − 5 1 3( )  320 − 5  315
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PROBLEM Evaluate sec2

0

4 d .

SOLUTION sec2

0

4 d tan 0
4 tan

4
 − tan( )0  1 − 0  1

PROBLEM Evaluate ( )10 64

2

2
x x dx.

SOLUTION ( )10 64

2

2
x x dx ( )2 35 2

2

2

x x ( )2 2 3 25 2  − ( ( ) ( ) )2 2 3 25 2

76  52  128

PROBLEM Evaluate e x dxx3 2

1

2
.

SOLUTION e x dxx3 2

1

2 1
3

3
3 2

1

2

e x dxx 1
3

3

1

2

ex 1
3

2 3
e( )  − 1

3
1 3

e( ) 1
3

8e  − 1
3

1e

993.6526... − .1226...  993.53  (Note: Avoid rounding until the final calculation.)

PROBLEM Evaluate lnt dt
3

10
.

SOLUTION lnt dt
3

10
( ln )t t t

3

10
( ln )10 10 10  − ( ln )3 3 3  13.0258... − 0.2958... 12.73

9·1
EXERCISE

Evaluate the following definite integrals. (Give approximate answers for nonterminating 
results.)

1.  6.

2.  7.

3. 8.

4.  9.

5.  10.

( )3 4 52

10

10
x x dx

8
50

30
dx

x
x

dx
5

22

7

1
6

36

t
dt

sec tan
.

5
6

5
60 5

d

dx

x4 21

3

( )3 5 21 36 104 3 2

1

2
x x x x dx

( ln )x x dx3

3

5

cot ( )1

1

3
x dx

1
12

5

e
dx

x

Useful properties of the definite integral
The definite integral has the following useful properties. 

1. If f is defined at x a, then f x dx
a

a
( )  0.

2.  If f is integrable on [a, b], then f x dx
a

b
( ) f x dx

b

a
( ) .
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3. If f is integrable on [a, b], [a, c], and [c, b], then f x dx
a

b
( ) f x dx

a

c
( ) f x dx

c

b
( ) .

4. If f is integrable on [a, b] and k is a constant, then kf x dx
a

b
( ) k f x dx

a

b
( ) .

5. If f and g are integrable on [a, b], then [ ( ) ( )]f x g x dx
a

b
f x dx

a

b
( )  ± g x dx

a

b
( ) .

6. If f is integrable and nonnegative on [a, b], then f x dx
a

b
( ) 0 .

7. If f and g are integrable on [a, b] and if f x g x( ) ( ) for every x in [a, b], then f x dx
a

b
( )

g x dx
a

b
( ) .

PROBLEM Given f x dx( )
0

4
 25 and f x dx( )

4

9
 40, find

(a) f x dx( )
4

0

(b) f x dx( )
0

9

(c) f x dx( )
4

4

(d) 2
0

4
f x dx( )

SOLUTION (a) By Property 2, f x dx( )
4

0
f x dx( )

0

4
 −25.

(b) By Property 3, f x dx( )
0

9
f x dx( )

0

4
f x dx( )

4

9
 25  40  65.

(c) By Property 1, f x dx( )
4

4
 0.

(d) By Property 4, 2
0

4
f x dx( ) 2

0

4
f x dx( )  2(25)  50.

PROBLEM Given f x dx( )
5

5
 6 and g x dx( )

5

5
 −4, find

(a) [ ( ) ( )]f x g x dx
5

5

(b) [ ( ) ( )]f x g x dx
5

5

SOLUTION (a) By Property 5, [ ( ) ( )]f x g x dx
5

5
f x dx( )

5

5
g x dx( )

5

5
 6  (−4)  2.

(b) By Property 5, [ ( ) ( )]f x g x dx
5

5
f x dx( )

5

5
 − g x dx( )

5

5
 6 − (−4)  10.

9·2
EXERCISE

For problems 1–6, evaluate the definite integral, given f x dx( )
2

0
 = 12 and f x dx( )

0

2
 15. 

Justify your answer.   

1.  4.

2.  5.

3.  6.

f x dx( )
2

2

f x dx( )
0

2

f x dx( )
1

1

f x dx( )
2

2

5
2

0
f x dx( )

10
2

2
f x dx( )
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Second Fundamental Theorem of Calculus
The Second Fundamental Theorem of Calculus states that if f is continuous on the closed inter-
val [a, b], then the function F defined by

F x( ) f t dt
a

x
( ) , where x is in [a, b]

is differentiable on [a, b] and is an antiderivative of f; that is to say, for every x in [a, b],

F x( ) d
dx

f t dt
a

x
( ) f(x)

Note: To avoid confusion, since the variable x is used as the upper limit in the integral, f t dt
a

x
( ) ,

the variable t is used as the variable of integration.

The following examples illustrate this useful theorem.

d
dx

t dt
x
sin( )

0
sin( )x

d
dx

t dt
x 3

1
x3

d
dx

t dt
x

2
1

x 2

PROBLEM Find F x( ), when F x( ) 1
3 t

dt
x

.

SOLUTION F x( ) d
dx t

dt
x 1

3

1
x

The next example illustrates applying the chain rule in conjunction with the Second Funda-
mental Theorem of Calculus.

d
dx

t dt
x

sin( )
0

3 2

sin( ) ( )3 32 2x d
dx

x sin( )3 62x x 6 3 2x xsin( )

The Second Fundamental Theorem of Calculus guarantees that if a function is continuous, 
then it has an antiderivative. However, the antiderivative might not be readily obtainable.

For problems 7–10, evaluate the definite integral, given f x dx( )
1

5

– 8 and  

g x dx( )
1

5
 22. Justify your answer.

7.  9.

8.  10. 2
1

5
g x dx( ) 3

1

5
f x dx( )

[ ( ) ( )]f x g x dx
1

5

[ ( ) ( )]f x g x dx
1

5

1
21

5
f x dx( )
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Mean Value Theorem for Integrals
The Mean Value Theorem for Integrals states that if f is continuous on the closed interval [a, b], 
then there exists a number c in [a, b] such that

f x dx
a

b
( ) f c b a( )( )

This theorem guarantees that the number c exists in [a, b], but notice that the theorem does 
not specify the value of c. Many of the problems associated with this concept involve finding val-
ues of c. On the other hand, in some cases, it may be sufficient just to know that at least one such 
number in [a, b] exists.

PROBLEM Find the value of c guaranteed by the Mean Value Theorem for Integrals for the 
function defined by f x( ) x 2 2 and the interval [0, 3].

SOLUTION By the Mean Value Theorem for Integrals, you have

f x dx
a

b
( ) f c b a( )( )

   
( )x dx2

0

3
2 ( )( )c2 2 3 0

   x x
3

0

3

3
2 3 62c

  ( ) ( )3
3

2 3
3 ( ) ( )0

3
2 0

3

3 62c

15 − 0 3 62c
     9 3 2c
     3 c2

3 c

9·3
EXERCISE

For problems 1–5, use the Second Fundamental Theorem of Calculus to find the derivative.

1.
d

dx
t dt

x
( )2 5

0
3 4.

d
dx

t dt
x 23

5

5 2

2.
d

dx
t dt

x
3 5

1
5.

d
dx

t t dt
x

( )2

10

2
2 1

3.
d

dx
t t dt

x
sin

4

For problems 6–10, use the Second Fundamental Theorem of Calculus to find F x( ).

6. F x( ) sin( )3
0

t dt
x

9. F x( ) 2 4

3
t dt

x

7. F x( )
1

15

4

t
dt

x
10. F x( ) ( )3 7

8

2 1
t dt

x

8. F x( ) 6 2

0
t dt

xsin
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Of these two possible values for c, only the value 3  lies in [0, 3], so c 3  is the value guar-
anteed by the Mean Value Theorem for Integrals.

If f is integrable on the closed interval [a, b], the average value of f is

1
b a

f x dx
a

b
( )

In other words, the value of f c( ) given in the Mean Value Theorem for Integrals is the aver-
age value of f on the interval [a, b].

PROBLEM Find the average value of f x( ) x 2 2  on the interval [0, 3].
SOLUTION The average value is given by

1
b a

f x dx
a

b
( ) 1

3
22

0

3
( )x dx

1
3 3

2
3

0

3
x x

1
3

3
3

2 3 0
3

2 0
3 3( ) ( ) ( ) ( ) 1

3
15 0 1

3
15 5[( ) ( )] [ ]

9·4
EXERCISE

In problems 1–5, find the value of c guaranteed by the Mean Value Theorem for Integrals for 
the given function over the indicated interval.

1. f x( ) 2 6x and the interval [−1, 1] 4. f x( ) sin x and the interval [ , ]0

2. f x( ) 2 5 x and the interval [0, 4] 5. f x( ) 1
x

and the interval [1, 3]

3. f x( )
4

3x
and the interval [1, 4]

For problems 6–10, find the average value of the given function over the indicated interval.

6. f x( ) x 2 and the interval [−2, 2] 9. f x( ) 9
2

x and the interval [1, 4]

7. f x( ) 1
x

and the interval [1, 3] 10. f x( ) e x and the interval [0, 1]

8. f x( ) cos x and the interval
2 2

,
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APPLICATIONS OF THE 
DERIVATIVE AND THE 
DEFINITE INTEGRAL

This culminating Part IV highlights some applications of differential and 
integral calculus. Of course, there are many other applications since calculus 
is used in virtually every branch of the physical sciences and also in engi-
neering, computer science, statistics, economics, business, medicine, and in 
numerous other real-world venues. Nonetheless, this material is designed to 
give you an appreciation of the versatility and power of calculus and why it is 
an important and valuable mathematical tool.

· IV·
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Slope of the tangent line at a point
If f a( ) exists, then the slope of the tangent line to the graph of the function f at 
the point P a f a( , ( )) is the line through P that has slope m f a( ).

PROBLEM Find the equation of the tangent line to the parabola y f x( )
x 2 1 at the point (2, 5).

SOLUTION f x x m f( ) , ( ) .2 2 4so Now, since the point (2, 5) is on the 
tangent, the equation of the desired line is y y m x x1 1( ),
or in this case y x5 4 2( ), which gives y x4 2 5( ) and 
finally y x4 3.

PROBLEM Find the equation of the tangent line to y g x e x( ) 3 at the 
y-intercept.

SOLUTION Since g x e x( ) ,3 3 the solution is given by the equation 
y g x( )( )0 0 1 since the y-intercept occurs at (0, 1). Hence 
the required equation is y x3 1.

PROBLEM Find all the points on the curve y f x x x( ) 4 2 where the 
tangent line is horizontal.

SOLUTION The tangent line will be horizontal at any point x where it has zero 

slope; that is, when f x( ) .0  Inspection of f x x x

x x
( ) ( )

( )

2 3

4 2
1
2

reveals that x  0 is the only value that could possibly make the 
derivative zero; but at this value, f is undefined. Thus, there is no 
solution to this problem.

PROBLEM Find all the points on the curve y f x ex x( ) cos2

where the 
tangent line is horizontal.

SOLUTION f x x x ex x( ) ( sin ) .cos2
2  So if you set f x( ) 0 and solve, you

have ex x2
0cos or ( sin ) .2 0x x The first expression is never 

equal to 0. Therefore, you solve ( sin )2 0x x or 2x xsin
which, by inspection, is true only when is x 0. Thus,

( , ( )) ( , ) ,cos0 0 0 0 10f e
e

is the solution.

Applications of 
the derivative ·10·
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10·1
EXERCISE

Solve the following.

1. Find the slope of the tangent line to f x x e xx( ) sin( )3 at x 1.

2. Find the slope of the tangent line to f x x x( ) ln( )1 2 at x  2.

3. Find the equation of the line tangent to the curve y x x2 42 at ( , ).2 0

4. Find the slope of the line tangent to the curve at ( , ( ))x f x for f x x x x( ) .3 26 9 2

5. Find all points on the curve f x x x( ) 2 4 1 where the tangent line is horizontal.

6. Find all points on the curve f x x x x( ) 5 35 20 7 where the tangent line is horizontal.

7. Find the equation of the line tangent to the curve x xy y2 23 5 at (1, 1).

8. Find the equation of the tangent line to the curve y x2 32 that is parallel 
to the line y x8 3.

9. Find the equation of the line tangent to the curve y x4 2 at (1, 2).

10. Find the equation of the line tangent to the curve f x
x

x
( )

sin1
1

at x  (0, 1).

Instantaneous rate of change 
If f t( ) exists, then the (instantaneous) rate of change of f at t is f t( ). For example, if s(t) is the 
position function of a moving object at time t, then the velocity v, the instantaneous rate of 
change, of the object at time t is s t v t( ) ( ). (This is yet another interpretation of the derivative.) 
Additionally, the acceleration a of the object at time t is s t v t a t( ) ( ) ( ).

The sign of the velocity function indicates the direction in which the object is moving. When
v t( ) ,0  the object is moving to the right, and when v t( ) ,0  the object is moving to the left. Fur-
thermore, as logic would dictate, at the instant that a moving object changes direction, v t( ) 0
(since the object must stop in order to change direction).

Speed is defined as the absolute value of the velocity. That definition is the reason the main 
dial on an automobile is called a speedometer. It gives you the speed, but not the direction of 
travel. 

PROBLEM Discuss the motion of a particle that moves along a horizontal line so that the 
position s of the particle on the horizontal line is a function of time t according 
to the equation s t t t t( ) .3 22

SOLUTION Differentiating the position function with respect to time gives the velocity 
function, s t v t t t( ) ( ) .3 4 12 A quick analysis of this quadratic function 

indicates that v t( ) is zero at times t 1
3

and t 1. Moreover, it is positive when 

t 1
3

or when t 1 and negative elsewhere. Thus, the particle moves to the right 

for values of t 1
3

and then reverses direction at t 1
3

, moving to the left; it 
continues to move to the left and then reverses direction again at t 1; it then 
continues on, moving to the right.
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PROBLEM As a cold front approaches your area, the weather station estimates that the 
temperature T (in degrees) is a function of time t (in hours) after 10 p.m. of that 

day according to the equation T t t t( ) ,40 4
10

2

 where 0 14t . (a) What will 
be the temperature at noon the following day, and (b) what is the instantaneous 
rate of change of the temperature at 3 a.m. and at 10 a.m. of the following day?

SOLUTION (a) Noon of the following day is 14 hours after 10 p.m. of the given day, so 

T( ) ( ) .14 40 4 14 14
10

3 6
2

degrees. 

(b) The instantaneous rate of change (in degrees per hour) in temperature 
T with respect to t, the time after 10 p.m. of the given day, is the derivative,
T t t( ) .4

5
 Thus, at 3 a.m., which is 5 hours after 10 p.m., the instantaneous 

rate of change of the temperature is T ( )5 4 5
5

3 degrees per hour; at 
10 a.m, which is 12 hours after 10 p.m., the instantaneous rate of change of the 

temperature is T ( ) .12 4 12
5

1 6 degrees per hour. 

10·2
EXERCISE

Solve the following.

1. A forest fire spreads so that after t hours f t t t( ) 80 20 2 acres are burning. What is the rate 
of growth of acreage burning after 1½ hours?

2. The velocity of a thrown ball as a function of time t is given by v(t) 80 – 32t (feet/second) 
after being released. What is the acceleration of the ball as a function of time?

3. It is estimated that a shop worker can make y castings x hours after coming to work at 7 A.M.
according to the equation y x x x3 8 2 3. At what rate (castings per hour) is the worker 
making castings at 9 A.M. of a given day?

4. A pool ball is hit and travels in a straight line. Suppose s t t t( ) 100 1002 is the distance (in 
centimeters) of the ball from its initial position at t seconds. At what velocity is the ball traveling 
when the ball has traveled 39 centimeters?

5. A particle moves in a horizontal line according to the formula s t t t t t( ) ,4 3 26 12 10 3
where s is the position of the particle at time t. Discuss the motion of the particle. (Hint: 
Factor the derivative.)

6. A particle moves in a straight line according to the formula s t
t

t( ) ,
3

2
2  where s is the 

position of the particle at time t (in seconds). Compare the velocity and acceleration of the 
particle at the end of 2 seconds.

7. A mathematician gardener found that the rate of yield of his garden was y x
x

60 24
12

5

2

pints of vegetables per x pounds of compost used. What is the rate of change of yield with 
respect to the amount of compost when he uses 3 pounds of compost?

8. A stone is dropped from the top of a tower and the location from the starting point s (in feet) 
of the stone at time t (in seconds) is given by the equation s t t( ) ,16 2 where direction 
upward is considered positive. If the building is 256 feet tall, find (a) the velocity and (b) the 
acceleration of the stone after 2 seconds.

9. A potato is projected vertically upward with an initial velocity of 112 feet/second, and it moves 
as a function of time t (in seconds) according to the formula s t t t( ) 112 16 2 where s t( ) is the 
distance (in feet) from the starting point. (a) What is the velocity when t  3 seconds, and (b) 
what is the maximum height the potato will reach?
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10. Water is being drained from a commercial catfish pond and the volume V (in gallons) of 
water in the pond after t minutes is given by V t t t( ) ( ).250 1600 80 2 How fast is the 
water flowing out of the pond at time t = 5 minutes?

Differentiability and continuity
A differentiable function is a function that has a derivative. If f c( ) exists, then f is differentiable 
at c; otherwise, f does not have a derivative at c.

If a function f is differentiable at c, then f is continuous at c; in other words, differentiability 
implies continuity. Therefore, if f is not continuous at c, then f is also not differentiable at c. Caution: 
Continuity does not imply differentiability. A function can be continuous at a point a even though
f x( ) does not exist at a. This circumstance occurs when there is a cusp (a sharp corner) or a 

vertical tangent line at ( , ( )).a f a A good example is the continuous function f x x( ) | | for which 
the derivative does not exist at 0. A graph is shown in Figure 10.1.

PROBLEM Show that the function f x x( )
2
3 is continuous at x  0, but is not differentiable 

at x  0.
SOLUTION To investigate we consider lim ( ) lim ( ),

x x
f x x f

0 0

2
3 0 0 which shows that the 

function is continuous at x  0. Also, f f x f
x

x
xx x x

( ) lim ( ) ( ) lim lim0 0
0

1
0 0

2
3

0
xx

1
3

,

which does not exist, indicating that f is not differentiable at x 0. Therefore, the 

function f x x( )
2
3 is continuous at x  0, but is not differentiable at x  0.

PROBLEM Determine the values of x for which f x x( ) [ ], the greatest integer function, is 
not differentiable.

SOLUTION The function f x x( ) [ ] has jump discontinuities at integer values for x; that 
is, at integer values the left-hand and right-hand limits exist and are finite, but 
they are different. For instance, if x is less than an integer n, as x gets close to n
from the left, f x n( ) ,1 but if x is greater than n, as x gets close to n from the 
right, f x n( ) . Thus the greatest integer function is not differentiable at integer 
values for x. Between non-integer values the function is constant and, thus, 
differentiable there; in fact, f x( ) 0 at those values.

–4 −2 2 4

1

2

3

4

5

Figure 10.1 Graph of the function f(x)  |x|
for which the derivative does not exist at 0
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10·3
EXERCISE

Solve the following.

1. Determine the values of x for which f x
x x

x
( )

2 5 6
3

is not differentiable.

2. Show that the derivative of f x x( ) | | does not exist at x  0, but that the derivative does 
exist elsewhere.

3. Show that f x x( ) ( )2
1
3 is continuous at x  2, but is not differentiable at 2.

4. Determine whether f x
x x

x x
( )

5 6 3

4 32
is differentiable at x  3. (Hint: Consider left- and 

right-hand limits.)

5. Determine whether f x
x x

x x
( )

2 0

02
is differentiable at x  0.

Increasing and decreasing functions, 
extrema, and critical points

The derivative of a function is a valuable tool in analyzing its graph. For instance, just knowing 
the algebraic sign of the derivative at a point gives important information. A sign diagram for
f x( ) is a diagram along the real line showing the signs for f x( ) between critical numbers for f.

You can use a sign diagram to predict a rough shape of the graph of f.
The following definitions are stated for completeness and as a reminder of the concepts.

1. If f is continuous on a closed interval [a, b] and differentiable on the open interval (a, b), 
then (i) f is increasing on [a, b] if f x( ) 0 on (a, b); (ii) f is decreasing on [a, b] if 
f x( ) 0 on (a, b); and (iii) f is constant on [a, b] if f x( ) 0 on (a, b).

2. If f is defined on an interval containing c, f(c) is a minimum (also, called the absolute 
minimum) of f in the interval if f c f x( ) ( ) for every number x in the interval; similarly,
f(c) is a maximum (also, called the absolute maximum) of f in the interval if f c f x( ) ( )
for every number x in the interval. The minimum and maximum values of a function in 
an interval are the extreme values, or extrema, of the function in the interval.

3. The number f c( ) is a relative minimum of a function f if there exists an open interval 
containing c in which f c( ) is a minimum; similarly, the number f c( ) is a relative maximum 
of a function f if there exists an open interval containing c in which f c( ) is a maximum. If 
f c( ) is a relative minimum or maximum of f, it is called a relative extremum of f.

4. If c is a number in the domain of f, c is called a critical number of f if either f c( ) 0 or 
f c( ) does not exist. The critical numbers determine points at which f x( ) can change 
signs; that is, these are the only numbers for which the graph of f can have turning points, 
cusps, or discontinuities. If c is a critical number for f, then f c( ) is a critical value of f and 
the point ( , ( ))c f c is a critical point of the graph.

5. If f is continuous and has a relative extremum at c, then either f c( ) 0 or f c( ) does not 
exist. However, the converse is not necessarily valid. For example, if f x x( ) ,3 then 
f x x( ) 3 2 and f ( ) ;0 0 but f ( )0 0 is neither a relative maximum nor a relative mini-
mum of the function.
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6. The Extreme Value Theorem states that if f is continuous on a closed interval [a, b], then 
f has both a minimum and a maximum value on [a, b].

All of these ideas taken together are tools that can be used to predict the nature and shape of a 
graph, especially if graphing tools are not applicable or available. Moreover, if graphing is not needed, 
these ideas can also be extremely valuable in answering maximum and minimum questions.

The function whose graph is depicted in Figure 10.2 has relative and absolute maximums of 1 
at 

2
and 5

2
, relative and absolute minimums of –1 at 

2
and 3

2
, is increasing on the intervals

2 2
, and 3

2
5
2

, , and is decreasing on the intervals , , , ,
2 2

3
2

and 5
2

3, .

The critical numbers are 
2 2

3
2

5
2

, , , and at which the derivative is 0.

A sign diagram for the graph of the function described above would be as illustrated in 
Figure 10.3.

The following examples are designed to solidify the concepts above and to give you practice 
in approaching problems dealing with maximum and minimum ideas.

PROBLEM Given f x x x x( ) .3 26 9 1 (a) Find the critical numbers; (b) find the critical 
values; and (c) determine where the function is increasing and decreasing. 

SOLUTION Differentiating, you have f x x x( ) .3 12 92 (a) Setting f x( ) ,0 you obtain 
3 12 9 3 1 3 02x x x x( )( ) . Thus x  1 and x  3 are the critical numbers for f.
(b) The critical values are f ( )1 5 and f ( ) .3 1 (c) When x f x1, ( ) is positive 
and so f is increasing for values of x less than 1; when 1 3x f x, ( ) is negative 
and so f is decreasing when x is between 1 and 3; when x f x3, ( ) is positive and so 
f is increasing for values of x greater than 3.

Figure 10.2 Graph illustrating maxima and 
minima

1

0.5

0.5

2
–

1

2 2
3

2
5

Figure 10.3 Sign graph for the graph of the function 
in Figure 10.2

f (x) –

–p /2 3p /2 5p /2p /2

0 + 0 – 0 + 0 –
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In the problem above, since f f( ) ( ),1 0 3  the function has horizontal tangents at 1 and 
3, and, thus, possibly a relative or absolute maximum or minimum at one or both of these points. 
This conjecture for the point x  1 can be investigated by evaluating the function at nearby points 
such as f (. ) .99 4 999699 and f ( . ) . ,1 01 4 999701 which seems to indicate a relative maximum at 
x  1. However, this approach can result in erroneous results because the real numbers are dense 
and other close-by numbers may give different results.

The following theorems give you analytical tools for making positive decisions regarding 
maximums and minimums.

The First Derivative Test provides that if c is a critical number of a function f that is con-
tinuous on an open interval (a, b) containing c, then (i) if f x( ) changes sign from negative to 
positive at c, then f c( ) is a relative minimum of f; and (ii) if f x( ) changes sign from positive to 
negative at c, then f c( ) is a relative maximum of f.

The Second Derivative Test provides that if f c( ) 0 and f c( ) exists on an open interval 
containing c, then (i) f c( ) is a relative minimum of f if f c( ) ;0  and (ii) f c( ) is a relative maxi-
mum of f if f c( ) .0 If f c( ) ,0 the test is inconclusive.

PROBLEM Given f x x x( ) ,2 9 23 2 find the critical points and the relative extrema of the 
function.

SOLUTION Set the first derivative f x x x x x( ) ( )6 18 6 3 02 to obtain x  0 and 
x  3 as critical points. Observe that when x  0 or if x f x3, ( ) is positive, and 
that when 0 3x f x, ( ) is negative. Consequently, by the First Derivative Test,
f ( )0 2 is a relative maximum because f x( ) changes sign from positive to 
negative at 0, and f ( )3 25 is a relative minimum because f x( ) changes sign 
from negative to positive at 3.

PROBLEM Given f x x x( ) ,2 9 23 2 find the critical points and the relative extrema of 
the function.

SOLUTION Set f x x x x x( ) ( )6 18 6 3 02 to obtain x  0 and x  3 as critical points. 
Next, evaluate the second derivative f x x x( ) ( )12 18 6 2 3 at the critical 
points to obtain f ( )0 18 and f ( ) .3 18 Thus, by the Second Derivative 
Test, f ( )0 2 is a relative maximum because f ( ) ,0 18 0 and f ( )3 25
is a relative minimum because f ( ) ,3 18 0 which is the same result as was 
obtained in the first problem.

Note: The Second Derivative Test is usually invoked if the second derivative is a rather simple 
calculation. In many cases, it is simpler to use the First Derivative Test than to calculate the sec-
ond derivative and then test it. Experience with these tests is probably the best way to determine 
which test to use at any given time.

PROBLEM Given f x x x x( ) .
5 3

5
5

3
4 1  (a) Find the critical numbers and critical values; 

(b) determine the intervals over which f is increasing and over which f is 
decreasing; and (c) identify any relative maxima or minima of f.

SOLUTION f x x x x x x x x( ) ( )( ) ( )( )( )4 2 2 25 4 1 4 1 1 2 (( )x 2 and 

f x x x x x( ) ( ).4 10 2 2 53 2 (a) Set f x( ) ;0 to obtain the critical numbers 

x and x1 2. Thus, the critical values are f f( ) , ( ) ,1 53
15

1 23
15

f ( ) ,2 31
15

and f ( ) .2 1
15
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(b) The function is increasing on the intervals ( , ],[ , ],2 1 1 and [ , )2
because the first derivative is positive on these intervals and decreasing on the 
intervals [ 2, 1] and [1, 2] because the first derivative is negative on these intervals. 
(c) f f f( ) , ( ) , ( ) ,1 0 1 0 2 0 and f ( ) ,2 0 therefore, f ( )1 53

15
is a 

relative maximum, f ( )1 23
15

is a relative minimum, f ( )2 31
15

is a relative 

minimum, and f ( )2 1
15

is a relative maximum. 

PROBLEM 20 feet of wire is to be allocated to form two figures that do not touch: an 
equilateral triangle and a square. How much wire should be allocated for each 
figure so that the total area enclosed is a maximum?

SOLUTION There are constraints on the problem that cannot be ignored. These constraints 
are the following: the amount of wire available and the properties of the 
geometric figures. Let x denote the length of a side of the square, s denote the 
length of a side of the equilateral triangle, and T denote the total area enclosed 

by the two figures. Then, 4 3 20 0 20
4

5 0 20
3

x s x s, , , the area of 

the square is x 2, and the area of the triangle is 
1
2

3
2

3
4

2( ) .s s s Thus, 

the total area enclosed by the two figures is T x s2 23
4

. To express T as a 

function of x, solve 4x 3s  20 for s and substitute the result in the equation 

for T. Thus T x x x( ) .2
2

3
4

20 4
3

Now, T x x x( ) ( )2 2 3
9

20 4

18 8 3
9

40 3
9

x , which is 0 when x 20 3
9 4 3

2 175. . Also, T x( )

18 8 3
9

0, so the critical value T 20 3
9 4 3

is a relative minimum. By the 

Extreme Value Theorem, T has an absolute maximum on 0 20
4

5x . Since 
the maximum does not occur at the critical number, it must occur at one of 

the end points of the interval. Since T( ) .0 100 3
9

19 245 and T( ) ,5 20 the 

maximum area is achieved when all the wire is used to form the square. 

10·4
EXERCISE

For problems 1–6 do the following: (a) find the critical numbers and critical points; 
(b) determine the intervals over which f is increasing and over which f is decreasing; and 
(c) identify any relative extrema.

1. f x
x

x x( )
4

3 2

4
3. f x

x
( ) sin4

2

2. f x x
x

( )
1

4. f x x x( ) 2 9
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5. f x
x x

x x
( )

2 9 2

1 22

if

if

6. f x x( ) ( )2 3 4
2
3

7. Find a and b so that the function f x x ax b( ) 3 2 will have a relative extreme value at (2, 3).

8. A rancher has 100 feet of wire to make a small pen or pens for chickens. The pens can be in 
the shape of a square and/or a regular pentagon and do not touch. How much wire should 
be used for each figure so that the total area enclosed is a maximum? Note: The area of a 

pentagon is given by the formula A
s

p

5 36
2

2 cot( ) where s is the length of a side.

9. Assume that the amount of money deposited in a bank is proportional to the square of the 
interest rate the bank pays on this money. Furthermore, the bank can reinvest this money at 
9%. Find the interest rate the bank should pay to maximize its profit. (Use the simple 
interest formula.)

10. A cylindrical glass jar has a flat pewter top. The top costs three times as much as the glass 
per unit area. Find the proportions, in terms of the height h and radius r of the jar, of the 
least costly jar that holds a given volume V.

Concavity and points of inflection
If f is a function whose first and second derivatives exist on some open interval containing the 
number c, then (i) the graph of f is concave upward at ( , ( ))c f c if f c( ) ,0 and (ii) the graph of f
is concave downward at ( , ( ))c f c if f c( ) .0

The point ( , ( ))c f c is a point of inflection if the concavity of the graph of f changes at ( , ( ))c f c
and if the graph of f has a tangent there.

Note: As you work through the examples and exercises in this section, you will find it helpful to 
know that the graph of a function has a vertical tangent at the point ( , ( ))x f x0 0  if and only if 
f x( )  approaches  or  as x approaches x0.

The function whose graph is depicted in Figure 10.4 is concave up on [ , ],0 concave down 
on [ , ],0 and concave up on [ , ].2 There are points of inflection at ( , )0 0 and ( , ). The func-
tion has a horizontal tangent at ( , ).0 0

Figure 10.4 Depiction of concavity and 
points of inflection
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−4
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2 4 6 8
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PROBLEM Determine the concavity and points of inflection of the graph of f x( )
x x x4 26 3 5.

SOLUTION f x x x( ) 4 12 33 and f x x( ) .12 122  Solving f x( ) 0 yields x 1.
For x 1 or x  1, f x( ) 0 indicating the graph is concave up when x 1 or 
x  1; for 1 x  1, f x( ) 0 indicating the graph is concave down. 

Consequently, the points ( , )1 7 and ( , )1 13 are points of inflection. 

PROBLEM Determine the concavity and points of inflection of the graph of f x x x( ) .2 36 4

SOLUTION f x x x( ) 12 125 3 and f x x x x x( ) ( ).60 36 12 5 34 2 2 2 Now, the algebraic 

sign of the second derivative is positive when x 3
5

or x 3
5

and the sign 

is negative when 3
5

3
5

x , so the concavity is upward in the first two cases 

and downward in the latter case. Hence, the points of inflection occur where the 

concavity changes, namely, at 3
5

81
125

, and 3
5

81
125

, . The graph will 

be shaped somewhat like a W with zeros at x  0 and x 3
2

.

PROBLEM   Determine the concavity and inflection points of the graph of 

f x
x x

x x
( ) .

4 1
2 1

2

2

if
if

SOLUTION f x x( ) 2  when x  1 and f x x( ) 2 when x  1; but since lim ( ) ( )
x

f x f
x1

1
1

lim ( ) ( ) lim lim
x x x

x
x

x
x1

2

1

22 4 1
1

1
1 11 1

1 1
1

1 2( )( ) lim( )x x
x

x
x

and 

lim ( ) ( ) lim ( ) ( )
x x

f x f
x

x
x1 1

21
1

4 4 1
1

llim
x

x
x1

21
1

2  the derivative does 

not exist at x  1. Moreover, there is no vertical tangent at (1, 3), because the 
derivative does not approach  or  as x approaches 1. Thus, (1, 3) is not a point 
of inflection.

PROBLEM   Determine the concavity and inflection points of the graph of y x
1
3 .

SOLUTION y
x

1

3
2
3

 and y
x

2

9
5
3

.  The second derivative is positive when x  0 and 

is negative when x  0. Since y
x

1

3
2
3

, the derivative approaches infinity as x

approaches 0 and, therefore, does not exist at x  0. However, the graph has a 
vertical tangent at (0, 0), and so (0, 0) is a point of inflection.

Note: A skillful technique for finding candidates for inflection points is to find the zeros of f
and test its algebraic sign on the left and right of the zeros.
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10·5
EXERCISE

In problems 1–9, determine the concavity and points of inflection of the graph of the function.

1. f x x x( ) 4 6 2

2. f x x x x x( ) 4 3 26 12 8

3. g x x( ) 3 7

4. y x x3 2
3
5( )

5. f x
x x

x x
( )

2

2

1 2

7 2

if

if

6. f x
x x

x x
( )

3

4

0

0

if

if

7. f x x( ) sin( )2 3 for x in [ , ]

8. y x( )1 2
1
3

9. y x x4 218 1

10. For h x ax bx cx d( ) 3 2 find values for a, b, c, and d so that there is a point of inflection 
at (1, 1) and a relative maximum at (0, 3)

Mean Value Theorem
The Mean Value Theorem (MVT) states that if the function f is continuous in the closed interval 
[a, b] and if f x( ) exists on the open interval (a, b), then there exists a number c in (a, b) such that 
f b f a b a f c( ) ( ) ( ) ( ).

This theorem is valuable for so many purposes that it is a good exercise to become familiar 
with some of its nuances. For instance, the theorem guarantees that the number c exists, but no-
tice that the theorem does not specify the value of c. Many of the problems associated with this 
concept involve finding values of c. On the other hand, in some cases, it may be sufficient just to 
know that c exists. You might also observe that the final equation of the theorem can be rewritten 

as f c f b f a
b a

( ) ( ) ( ) .

A graphical picture of this concept is given in Figure 10.5, where the upper tangent is the line 
through (1, 3) with slope –2, which is the same as the slope of the secant line that connects the 
points (0, f (0)) and(2, f (2)). 

Figure 10.5 Graphical concept of the 
Mean Value Theorem

0.5 1 1.5 2

1

2
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line
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The theorem states that there exists a point between 0 and 2 at which the tangent to the 
curve has a slope equal to the slope of the depicted secant line. 

PROBLEM Find the value of c described by the MVT for f x x( ) 2 and the interval [1, 3]. 
SOLUTION The function f is continuous on [1, 3] and differentiable on (1, 3). Therefore, the 

MVT applies to the function on the interval [1, 3]. You must find c such that 

f c f f( ) ( ) ( ) .3 1
3 1

9 1
3 1

4 Since f x x( ) ,2 you need to solve 2c  4 to obtain 

c  2.

PROBLEM Find the value of c described in the MVT for f x
x

( ) 5
3

and the interval [ , ].2 2

SOLUTION The function f is continuous on [ , ]2 2 and differentiable on ( , ).2 2 Therefore, 
the MVT applies to the function on the interval [ , ].2 2 Since f x

x
( )

( )
5
3 2

and f ( )2 5 and f ( ) ,2 1 you must solve 5
3

1 5
2 2

4
4

12( ) ( )c
or

( ) ,c 3 52 which gives c 3 5. Of these two possible values for c, only the 

value 3 5 lies in the interval [ , ].2 2 Thus, c 3 5 is the desired value.

PROBLEM Find the value of c described in the MVT for f x x( ) | | and the interval [ , ].1 3
SOLUTION The function f is continuous on [ , ];1 3 however, when x f x0 1, ( ) and 

when x f x0 1, ( ) ; so f ( )0 does not exist. Therefore, f does not satisfy the 
hypotheses of the MVT because 0 is in the open interval ( , ),1 3 but f ( )0 does 
not exist. Thus, the MTV does not apply to f, so the result is not guaranteed.

PROBLEM Suppose you average 50 mph on at trip that covers 300 miles. Show that at some 
instant during the trip you traveled at exactly 50 mph.

SOLUTION If s t( ) denotes your distance from the starting point at time t then s t( ) is the 

velocity at time t. If you start at time a and end at time b then s c s b s a
b a

( ) ( ) ( )

for some time c between a and b. But s b s a
b a

( ) ( ) is the average speed, so there is 

an instant, c, such that s c( ) 50 mph. (This of course assumes your driving fits 
the hypotheses of the MVT.)

PROBLEM Show that 1
5

5
4

1
4

ln .

SOLUTION Let f x x( ) ln and consider the interval [4, 5]. The function f satisfies the 
hypotheses of the MVT, so you know there exists c in [4, 5] such that f c c( ) 1

ln ln ln5 4
5 4

5
4

or c 1
5
4ln

. Substituting this value into 4 c  5 yields 

4 1 5
5
4ln

, which can be rewritten as the equivalent inequality 1
5

5
4

1
4

ln ,

the desired result. 
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PROBLEM Find the value(s) of c where the mean value is attained for f x x x( ) sin on 

2
, .

SOLUTION f x x( ) cos ,1 so you need to solve 1
2 2

2

cos( )
( sin ) sin

c

2
1

2

1 2 so that c arccos .2

10·6
EXERCISE

Find the value(s) of c where the mean value is attained in problems 1–9.

1. f x x x( ) 3 4 on [ , ]1 2

2. f x x
x

( )
1

on 1
1
2

,

3. g x x x( ) on [ , ]1 4

4. f x
x
x

( )
1
1

on [ , ]0 2

5. f x x x( ) 3 23 on [ , ]1 3

6. h x x x( ) 2
2
5 on [ , ]1 1

7. f x x x( ) cos on ,
3
2

8. f x x x x( ) 8 18 3 73 2 on [ , ]2 1

9. f x
x

x
( )

sin
cos1

on 0
2

,

10. Show that 
1
8

8
7

1
7

ln by considering the function ln x on 1
8
7

,
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Area of a region under one curve
One of the major advances of calculus was the ability to find areas of plane regions 
bounded by curves. Euclidean geometry developed formulas and methods for 
finding areas of plane regions bounded by line segments, but faltered when faced 
with areas of regions bounded by curves.

If f is a continuous function with f x( ) 0 on [a, b], then f x dx
a

b
( ) is the area 

of the region bounded by the curve y f x( ), the x-axis, and the lines x a and 
x b.

PROBLEM Find the area of the region bounded by the x-axis, the lines x  4 
and x  6, and the curve y x x2 2 .

SOLUTION The function f defined by y x x2 2 is continuous and 
nonnegative on [ , ].4 6 Thus, the area of the specified region 

equals ( )x x dx x x2

4

6 3 2 6

4

2
3

2
2

70 2
3

square units. This 

solution assumes, of course, that all measurements are in the 
same units.

PROBLEM Find the area of the region bounded by y x x2 2 3, the 
x-axis, and the lines x 2 and x  1.

SOLUTION The function defined by y x x2 2 3 is continuous and 
nonnegative on [ , ].2 1  Thus, the specified area equals 

( )x x dx x x x2

2

1 3 2

2

1

2 3
3

2
2

3 15 square units.

PROBLEM Find the area of the region bounded by the curve y xtan ,2 the 

x-axis, and the lines x  0 and x
4

.

SOLUTION The function defined by y xtan2 is continuous and 

nonnegative on 0
4

, . Thus, the specified area equals 

tan [tan ]2

0

4

0
4 1

4
x dx x x square units.

Applications of the 
definite integral ·11·
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PROBLEM Find the area of the region bounded by y x 2, the x-axis, and the lines x  0 and 
x  1.

SOLUTION The function defined by y x 2 is continuous and nonnegative on [0, 1] so the 

area is given by x dx x2

0

1 3

0

1

3
1
3

square units.

11·1
EXERCISE

Find the area of the region bounded by the indicated curves. 

1. y x x x x x2 2 24 3 62 ; ;- axis;

2. y x x x xsin ; ;-axis; =
3

2
3

3. y x x x x x8 2 2; -axis; =1; = 3

4. y x x ysec ;2 -axis; -axis; =
4

x

5. y x x y4 4 ; -axis; -axis; = 8x

6. y x x y xcos ; -axis; -axis; =
6

Area of a region between two curves
If f and g are continuous functions with f x g x( ) ( ) on [a, b], then the area between the two 
curves is given by [ ( ) ( )] .f x g x dx

a

b

As you can see, the problem of finding areas between curves involves essentially exploiting 
ideas developed in the first section of this chapter.

PROBLEM Find the area enclosed by the curves y f x x x( ) 3 and y h x x( ) sin , the 
x-axis, and the lines x

2
and x .

SOLUTION Both f and h are continuous and nonnegative in 
2

, and f x h x( ) ( )

on 
2

, . Thus, the specified area is given by [( ) sin ]
/

x x x dx3

2

x x x
4 2

2

4 2 4

64 2 4 2
1

2
cos

/

2

3

4 2

2
15

64
3

8
1 square units.

PROBLEM Find the area enclosed by the lines x  0, x  1, the x-axis, and the curves y
f x x( ) 1 and y g x x( ) .2

SOLUTION Solve for the intersection of the two functions by equating the expressions to 
get x x2 1 or x x2 1 0. The solutions to this quadratic equation are 

x 1 5
2

and the value in the interval [0, 1] is x 5 1
2

. Also, f
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dominates when x is less than this value and g dominates when x is 

greater than this value so the specified area equals [( ) ]x x dx1 2

0

5 1
2

[ ( )]x x dx x x x x2

5 1
2

1 2 3

0

5 1
2

1
2 3

33 2

5 1
2

1

3 2
x x

5 1
2

2
5 1
2

5 1
2

3

2 3

1
3

1
2

1

5 1
2

3

5 1
2

2
5 1
2

3 2

2

5 1
2

2
5 1
2

5 1
2

2 3

3

1
6

2 3 5
4

5 1
2

5 2
3

1
6

2 3
4

1
2

2( ) ( )
33

5
4

5
2

5
3

1
6

2 5 5 7
12

1
6

5 5 8
6

0 530057. square units. 

PROBLEM Find the area of the region between f x x( ) 2 2 and g x x( ) 1 between 
x  0 and x  1. 

SOLUTION The functions f and g are continuous on [0, 1]. Moreover, since x x x0 1 02, .
Thus, x x2 2 1 and so f x g x( ) ( ). The area of the specified region is 

[( ) ( )] [ ]x x dx x x dx x x x2

0

1
2

0

1 3 2

2 1 1
3 2

0

1
1
3

1
2

1 11
6

square units.

PROBLEM Find the area between the curves y x – 1 and y x2 13 between x  1 and x  2.
SOLUTION The functions defined by y g x x( ) 1 and y f x x( ) 2 13 are continuous 

functions. Furthermore, since 1 2x it follows that x 1 1 and 2 1 13x

and so f x g x( ) ( ). Thus, the specified area equals [( ) ( )]2 1 13

1

2

x x dx

( ) ( )2 2
4 2

8 2 0 63

1

2 4 2

1

2

x x dx x x square units.

PROBLEM Find the area of the region bounded by the graphs of f x x x( ) 3 3 2 and 
g x x( ) .2

SOLUTION Consider f x g x x x x x x x x x( ) ( ) ( ) ( ) ( )( )3 33 2 2 4 2 2 .. When 
2 0x ,  you have f x g x( ) ( ) 0 or, equivalently, f x g x( ) ( ); and when 

0 2x ,  you have f x g x( ) ( ) 0 or, equivalently, f x g x( ) ( ). Based on this 
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information, you know the required area is enclosed in two regions. Thus, the 
area is given by the sum of the two integrals that follow. 

Area x x x dx x x x[( ) ( )] [( ) (3

2

0
33 2 2 2 3 22

0

2

)]dx

( ) ( )x x dx x x dx x x3

2

0
3

0

2 4 2

4 4
4

4
2

22

0 2 4

0

2
4

2 4
4 4 8x x

square units.

11·2
EXERCISE

Find the area of the region bounded by the given curves. 

1. f x x( ) 4 2 and the x-axis

2. y x 2 and y x 2

3. y x 2 and y x

4. y x( )1 3 and y x 1

5. y x x y x x3 0 1 1; ; ;

6. y x y x x x2 3 6 0 1; ; ;

7. y e y e xx; ; 0

8. y x x x x y x x4 3 22 2 1 1 1 0; ; ;

9. y x y x x x3 1 1 12 ; ; ;

10. y x y2 1;

Length of an arc
If a function f has a continuous derivative on [a, b], then the length of the arc of the curve y f(x)
between the point (a, f (a)) and the point (b, f (b)) is given by the formula 

arc length L f x dx
a

b

1 2[ ( )]

On the other hand, if x h(y) is expressed as a function of y and h is continuous on the 

interval [c, d], then L h y dy
c

d

1 2[ ( )] .

PROBLEM Find the length of the arc of the curve y f x x( )
2
3 from the point (1, 1) to the 

point (8, 4).

SOLUTION The length of the specified arc L f x dx
x

dx
a

b

1 1 2

3
2

2

1

8

1
3

[ ( )]

1 4

9

9 4

9

1
3

9 4
2
31

8
2
3

2
31

8
2
3

1
31

8

x
dx x

x
dx x

x
dx. Now if you make the substitution 



Applications of the definite integral 87

u x9 4
2
3 then the integral transforms to L u du u1

18
1

18
2

3

1
2

13

40
3
2

13

40

1
27

40 13 7 6
3
2

3
2 . . A simpler integration could be achieved by first solving for 

x in terms of y and using the appropriate formula.

PROBLEM Find the length of the arc of f x x( ) ( )2
3

1 2
3
2 between x 0 and x 3.

SOLUTION L f x dx x x dx
a

b

1 1 1 2 12 2
1
2

2

0

3

[ ( )] ( ) ( ) 44 42 4

0

3

x x dx

( ) ( )1 2 1 2 2
3

22 2

0

3
2

0

3 3

0

3

x dx x dx x x 11.

PROBLEM Find the length of the arc of x e y2 1 between x 0 and x 1
2

.

SOLUTION First, solve for y in terms of x to get y xln( ).1 2 Then apply the formula 

to get L f x dx x
x

dx x

a

b

1 1 2
1

2
2

2

0

1
2 4

[ ( )] 2 1
1

2

2 2
0

1
2 x

x
dx

( )

( )
( )
x

x
dx x

x
dx

x

2 2

2 2
0

1
2 2

2
0

1
2

2

1
1

1
1

2
1

1
0

1
2

0

1
21

1
3 1

2
dx x

x
xln ln .

11·3
EXERCISE

Find the arc length of the indicated curve on the given interval.

1. y
x 2

2
between x 3 and x = 0 6. y

x x( )3 1
3

on [1, 4]

2. y
x

4
4
9

between its x and y intercepts 7. y xln on [ , ]1 3

3. y
x( )2

3
22

3
on [0, 3] 8. y

x
x

3

3
1

4
on [1, 3] 

4. 6 34xy y from y = 1 to y = 2 9.  y
x x2

23
9

( )
; the length desired is in the 

first quadrant on [1, 3]

5. y
x

x

4

24
1

8
on [1, 2] 10. y x2 1

3
2( ) on 1

17
9

,
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A function f is a set of ordered pairs (x, y) for which each first element, x, is paired 
with one and only one second element, y; that is, if ( , )x y f1 and ( , ) ,x y f2  then
y y1 2 . The symbol f (x) (read “ f of x”) is commonly used to denote the value (or 
image) of f at x. Thus, ( , )x y f can be expressed as ( , ( ))x f x f or, simply, 
y f x( ). The set consisting of all the first elements in the ordered pairs contained 
in f is the domain of f, and the set of all second elements is the range of f.

Linear functions are defined by equations of the form y mx b. The do-
main and range for a linear function are both R, the set of real numbers. The only 

zero is x b
m
– ; that is, the graph crosses the x-axis at the point – , ,b

m
0  provided m

is not zero. The graph is a straight line that has slope m and y-intercept b. Figure A.1 
shows a graph of the linear function y x2 5.

The identity function is the linear function defined by the equation y x. 
The identity function maps each x-value to an identical y-value. The only zero is 
x  0. The graph passes through the origin, so both the x- and y-intercepts are 
zero. Figure A.2 shows the identity function.

Constant functions are linear functions defined by equations of the form 
y b, where b R. The domain is R, and the range is the set {b} containing the 
single element b. Constant functions can have either no zeros or infinitely many 
zeros: If b ≠ 0, it has no zeros; if b  0, every real number x is a zero. The graph of 
a constant function is a horizontal line that is |b| units above or below the x-axis 
when b ≠ 0 and is coincident with the x axis when b  0. Figure A.3 shows the 
constant function y 2.

Proportional functions are linear functions defined by equations of the 
form y kx, where k R is a constant called the constant of proportionality. The 
domain and range are both R. The only zero is x  0. The graph passes through 
the origin, so both the x- and y-intercept is zero. Figure A.4 shows the propor-
tional function y  4x.

Quadratic functions are defined by equations of the form y ax bx c2 ,
(a ≠ 0). The domain is R and the range is a subset of R. The zeros are the roots of 
the quadratic equation ax bx c2 0.  The quantity b ac2 4  is called the dis-
criminant of the quadratic equation. It determines three cases for the zeros of the 
quadratic function: If b ac2 4 0, the quadratic function has two real unequal
zeros; if b ac2 4 0, the quadratic function one real zero (double root); and if 
b ac2 4 0, the quadratic function has no real zeros.

The graphs of quadratic functions defined by equations of the form 
y ax bx c2  are parabolas. When a  0, the parabola opens upward and has a 
minimum value at its vertex. When a  0, the parabola opens downward and has 

appendix a

Basic functions and 
their graphs
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a maximum value at its vertex. The parabola is symmetric about its axis of symmetry, a vertical 
line through its vertex that is parallel to the y-axis. Depending on the solution set of  ax bx c2 0,
the parabola might or might not intersect the x-axis. Three cases occur: If ax bx c2 0 has two
real unequal roots, the parabola will intersect the x-axis at those two points; if ax bx c2 0 has 
exactly one real root, the parabola will be tangent to the x-axis at only that one point; and if 
ax bx c2 0 has no real roots, the parabola will not intersect the x-axis. Figure A.5 shows the 
quadratic function y x 2 .

Polynomial functions are defined by equations of the form y P x a x a xn
n

n
n( ) 1

1

a x a1 0 , where n is a nonnegative integer and an 0. The degree of the polynomial is n. Lin-
ear and quadratic functions are polynomial functions of degree one and two, respectively. The 
domain for any polynomial function is R. When n is odd, the range is R. When n is even, the 
range is a subset of R. The zeros, if any, are the solutions of the equation P(x)  0. A number r is 
a zero of y P x( ) if it is a root of the equation P x( ) .0 If P r( ) 0 and r R, the graph of y P x( )
intersects the x-axis at r. The graph has y-intercept P( ).0  Figure A.6 shows the polynomial func-
tion y x3 (called the cubic function) and Figure A.7 shows the polynomial function 
y x x x4 22 1.

Some useful theorems to know about polynomial functions are the following:

1. If a b R,  such that P a( ) and P b( ) have opposite signs, then P has at least one zero between 
a and b.

2. Fundamental Theorem of Algebra. Over the complex numbers, every polynomial of de-
gree n  1 has at least one zero. It follows that if you allow complex roots and count a root 
again each time it occurs more than once, a polynomial of degree n has exactly n roots.

3. Factor Theorem. P r( ) 0 if and only if x – r is a factor of P x a x a x a x an
n

n
n( ) .1

1
1 0

Figure A.5 y x 2
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4. Remainder Theorem. If a polynomial P x a x a x a x an
n

n
n( ) 1

1
1 0  is divided by x a,

the remainder is P a( ).

5. Descartes’ Rule of Signs. If y P x( ) is a polynomial with real coefficients, then the num-
ber of positive real roots of P x( ) 0 is either the number of sign changes, from left to right, 
occurring in the coefficients of P x( ), or else is less than this number by an even number. 
Similarly, the number of negative real roots of P x( ) 0 is either the number of sign changes, 
from left to right, occurring in the coefficients of P x( ), or else is less than this number by 
an even number.

Rational functions are defined by equations of the form y P x
Q x

( )
( )a x a x a x a

b x b x b x b
n

n
n

n

m
m

m
m

1
1

1 0

1
1

1 00

,  where P x( ) and Q x( ) are polynomials and Q x( ) .0  The domain 

is { | ( ) }.x R Q x 0  The range is a subset of R. The zeros, if any, occur at x values for which y  0. 

Since y P x
Q x

( )
( )

 is not defined when Q x( ) ,0  graphing the function usually proceeds by determin-

ing asymptotes of the function. The vertical asymptotes, if any, will be located at values for x (if 
any) for which Q x( ) .0  Use the following guidelines to identify horizontal asymptotes: if n  m,
then the x-axis (y  0) is a horizontal asymptote; if n m, then y

a
b

n

n

, is a horizontal asymptote; 

and if n m, y P x
Q x

( )
( )

 will not have a horizontal asymptote. However, if n m  1, then y P x
Q x

( )
( )

will have an oblique asymptote, which you can find by dividing P(x) by Q(x). Figure A.8 shows 

the rational function y x
x

1
1

.
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Square root functions are defined by equations of the form y ax b . The domain is 
{ | }.x R ax b 0  The range is { | }.y R y 0  The graph is nonnegative with the only zero at 

x b
a

. Figure A.9 shows the square root function y x .
Absolute value functions are defined by equations of the form y ax b| | . The domain is 

R, and the range is { | }.y R y 0  The only zero occurs at x b
a

, and the y-intercept is located 

at |b|. Technically, y ax b| |  is a piecewise function because you can write it as 

y
ax b x

ax b x

b
a

b
a

if
if( )

. Figure A.10 shows the absolute value function y  |x|.

The greatest integer function is defined by y  [x], where the brackets denote to find the 
greatest integer n such that n x. The domain is R, and the range is , the set of integers. The 
zeros consists of all the numbers in the interval [0, 1). Figure A.11 shows the greatest integer 
function y x[ ].

Exponential functions are defined by equations of the form y bx (b ≠ 1, b  0), where b is 
the base of the exponential function. The domain is R, and the range is { | }.y R y 0  The graph 
of y bx does not cross the x-axis, so there are no zeros. The graph passes through (0, 1) and (1, b). 
The x-axis is a horizontal asymptote. The function is increasing if b  1 and decreasing if 0 b  1.

Two important exponential functions are defined by y x10 , with base 10, and y ex ,  the 
natural exponential function, with base e, the irrational number whose rational decimal ap-
proximation is 2.718281828 (to nine digits). Figure A.12 shows the exponential function y ex .
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Logarithmic functions are defined by equations of the form y xblog , where b is the base
of the logarithmic function, (b ≠ 1, b  0) such that b xy (x  0). The domain is { | },x R x 0  and 
the range is R. The only zero occurs at x  1. The graph passes through (1, 0) and (b, 1). The y-axis 
is a vertical asymptote. The function is increasing if b  1 and is decreasing if 0 b  1. Figure A.13 
shows the logarithm function y xln .

For a given base, the logarithmic function is the inverse of the corresponding exponential 
function, and conversely. The logarithm function y xlog10  (common logarithmic function) is 
the inverse of the exponential function y x10 . The logarithm function y  lnx (natural logarith-
mic function) is the inverse of the exponential function y ex .

The standard sine function is defined by y xsin . The domain is R, and the range is 
{ | }.y R y1 1  The zeros occur at x k , where k .  The graph is periodic with period 

2 .  The curve is a sinusoidal wave that has amplitude  1. The general sine function is defined by 
y a b x h ksin ( ) , which is “centered” at (h, k), has amplitude | |,a  and period 2

| |
.

b
 Figure 

A.14 shows the sine function y xsin .
The standard cosine function is defined by y xcos . The domain is R, and the range is 

{ | }.y R y1 1  The zeros occur at x k
2

, where k . The graph is periodic with period 

2 . The curve is a sinusoidal wave that has amplitude  1. The general cosine function is defined 
by y a b x h kcos ( ) , which is “centered” at (h, k), has amplitude  |a|, and period 2

| |
.

bFigure A.15 shows the cosine function y xcos .

The standard tangent function is defined by y xtan . The domain is x R x k
2

,

and the range is R. The zeros occur at x k , where k . The graph is periodic with period .
The curve has vertical asymptotes at x k

2
. The general tangent function is defined by 

y a b x h ktan ( ) , which is “centered” at (h, k) and has period 
| |

.
b

 Figure A.16 shows the 
tangent function y xtan .
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Figure A.13 y x= ln
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1.
d

dx
c( ) 0

2.
d

dx
x( ) 1

3.
d

dx
mx b m( )

4.
d

dx
mu b m du

dx
( )

5.
d

dx
x nxn n( ) 1

6.
d

dx
u nu du

dx
n n( ) 1

7.
d

dx
e ex x( )

8.
d

dx
e e du

dx
u u( )

9.
d

dx
x

x
(ln ) 1

10.
d

dx
kx

x
(ln ) 1

11.
d

dx
u

u
du
dx

(ln ) 1

12.
d

dx
b b b bx x( ) (ln ) , 1

13.
d

dx
b b b du

dx
bu u( ) (ln ) , 1

14.
d

dx
x

b x
bb(log )

(ln )
,1 1

15.
d

dx
u

b u
du
dx

bb(log )
(ln )

,1 1

16.
d

dx
x x(sin ) cos

17.
d

dx
x x(cos ) sin

18.
d

dx
x x(tan ) sec2

19.
d

dx
x x(cot ) csc2

20.
d

dx
x x x(sec ) sec tan

21.
d

dx
x x x(csc ) csc cot

22.
d

dx
u u du

dx
(sin ) cos

23.
d

dx
u u du

dx
(cos ) sin

24.
d

dx
u u du

dx
(tan ) sec2

25.
d

dx
u u du

dx
(cot ) csc2

26.
d

dx
u u u du

dx
(sec ) (sec tan )

27.
d

dx
u u u du

dx
(csc ) ( csc cot )

28.
d

dx
x

x
(sin )1

2

1

1

29.
d

dx
u

u
du
dx

(sin )1

2

1

1

30.
d

dx
x

x
(cos )1

2

1

1

31.
d

dx
u

u
du
dx

(cos )1

2

1

1

32.
d

dx
x

x
(tan )1

2

1
1
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33.
d

dx
u

u
du
dx

(tan )1
2

1
1

34.
d

dx
x

x
(cot )1

2

1
1

35.
d

dx
u

u
du
dx

(cot )1
2

1
1

36.
d

dx
x

x x
(sec )

| |
1

2

1

1

37.
d

dx
u

u u
du
dx

(sec )
| |

1

2

1

1

38.
d

dx
x

x x
(csc )

| |
1

2

1

1

39.
d

dx
u

u u
du
dx

(csc )
| |

1

2

1

1

40.
d

dx
x x

x
x(| |) | | , 0

41.
d

dx
u u

u
du
dx

u(| |) | | , 0

42.
d

dx
kf x k d

dx
f x k f x( ( )) ( ( )) ( ).

43. d
dx

f x
k

d
dx k

f x
k

d
dx

f x( ) ( ) ( ( ))1 1

1 0
k

f x k( ),

44.
d

dx
f x g x f x g x( ( ) ( )) ( ) ( ).

45.
d

dx
f x g x f x g x( ( ) ( )) ( ) ( ).

46.
d

dx
f x g x f x g x g x f x( ( ) ( )) ( ) ( ) ( ) ( )

47. d
dx

f x
g x

g x f x f x g x
g x

g( )
( )

( ) ( ) ( ) ( )
( ( ))

, (2 xx) 0

48.
d

dx
f g x f g x g x[ ( ( ))] ( ( )) ( )
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1. dx x C

2. k dx kx C

3. x dx x
n

C nn
n 1

1
1,

4. x dx
x

dx x C1 1 ln| |

5. e dx e Cx x

6. e dx
k

e C kkx kx1 0,

7. b dx
b

b C b bx x1 0 1
ln

, ,

8. b dx
k b

b C b b kkx kx1 0 1 0
ln

, , ,

9. sin cosx dx x C

10. sin( ) cos( ) ,kx dx
k

kx C k1 0

11. cos sinx dx x C

12. cos( ) sin( ) ,kx dx
k

kx C k1 0

13. tan ln|cos |x dx x C

14. tan( ) ln|cos( )| ,kx dx
k

kx C k1 0

15. cot ln| sin |x dx x C

16. cot( ) ln| sin( )| ,kx dx
k

kx C k1 0

appendix c
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17. sec ln| sec tan |x dx x x C

18. sec( ) ln| sec( ) tan( )| ,kx dx
k

kx kx C k1 0

19. csc ln|csc cot |x dx x x C

20. csc( ) ln|csc( ) cot( )| ,kx dx
k

kx kx C k1 0

21. sec tan2 x dx x C

22. sec ( ) tan( ) ,2 1 0kx dx
k

kx C k

23. csc cot2 x dx x C

24. csc ( ) cot( ) ,2 1 0kx dx
k

kx C k

25. sec tan secx x dx x C

26. sec( )tan( ) sec( ) ,kx kx dx
k

kx C k1 0

27. csc cot cscx x dx x C

28. csc( )cot( ) csc( ) ,kx kx dx
k

kx C k1 0

29.
1

1 2

1 1

x
dx x C x Csin cos

30.
1

2 2

1 1

a x
dx x

a
C x

a
Csin cos , aa 0

31.
1

1 2
1 1

x
dx x C x Ctan cot

32.
1 1 1

2 2
1 1

a x
dx

a
x
a

C
a

x
a

C atan cot , 00

33.
1

12

1 1

| |
sec csc

x x
dx x C x C

34.
1 1 1

2 2

1 1

| |
sec csc

x x a
dx

a
x
a

C
a

x
a

C c, 0

35. xe dx e x Cx x ( )1

36. x e dx e x x Cx x2 2 2 2( )

37. xe dx
k

e kx C kkx kx1 1 02 ( ) ,
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38.
1

1
1

e
dx x e Cx

xln( )

39.
1 1 0 0

a be
dx x

a ak
a be C a b kkx

kxln( ) , , ,

40. ln lnx dx x x x C

41. (ln ) ln (ln )x dx x x x x x C2 22 2

42. x x dx x x x C(ln ) ln2 2

2 4

43. x x dx x x
n

x
n

C nn
n n

(ln ) ln
( )

,
1 1

21 1
1

44.
1 1

2
02 2

2 2

x a
dx

a
x a
x a

C a x aln , ,

45.
1 1 0

ax b
dx

a
ax b C aln | | ,

46. 1 1 02( ) ( )
, ,

ax b
dx

a ax b
C a b

47.
1 1 0

x ax b
dx

b
x

ax b
C a b

( )
ln , ,

48.
x

ax b
dx x

a
b
a

ax b C2 ln| |

49.
x

ax b
dx

a
b

ax b
ax b C a b

( )
ln| | , ,2 2

1 0

50.
1 1

( )( )
ln , , , ,

ax b cx d
dx

ad bc
ax b
cx d

C a b c d 0

51. ax b dx
a

ax b C2
3

3
2( )

52. x ax b dx ax b
a

ax b C2 3 2
15 2

3
2

( )( )

53. x a dx x x a a x x a C2 2 2 2
2

2 2

2 2
ln

54.
1

2 2

2 2

x a
dx x x a Cln

55.
1 1 0

x ax b
dx

b
ax b b
ax b b

C bln ,

56. x x dx x x x Csin sin cos
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57. x x dx x x x Ccos cos sin

58.
1

sin cos
ln| tan |

x x
dx x C

59.
1

1 sin
tan sec

x
dx x x C

60.
1

1 cos
cot csc

x
dx x x C

61. a x dx x a x a x a x C2 2 2 2
2

2 2

2 2
ln| |

62.
a x

x
dx a x a a a x

x
C

2 2
2 2

2 2

ln

63. kf x dx k f x dx( ) ( )

64.
f x dx

k k
f x dx k( ) ( ) ,1 0

65. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx

66. f g x g x dx f u du u g x( ( )) ( ) ( ) , ( )

67. udv u v v du
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Answer key

I LIMITS

1 The limit concept
1·1 1. a. –2.50175 b. –2.48259 c. f (x) is close to –2.5 when x is close to 3.

2. a. –0.99750 b. –1.00881 c. f (x) is close to –1 when x is close to 1.
3. a. 0.003 b. –0.003 c. f (x) is close to 0 when x is close to 0.

1·2 1. 5/4 6. 9/11
2. Does not exist 7. 0
3. 8 8. Does not exist
4. Approximately 58.348 9. Does not exist
5. 5/11 10. –13/6

2 Special limits
2·1 1. 1/7 6. 1/10

2. 2x 7. 4
3. 6 8. –4
4. 5 9. 1 2/ x
5. –4/3 10. Does not exist

2·2 1. 6. 0
2. 0 7. 0
3. 8.
4. 1/18 9.
5. 0 10. 0

2·3 1. 5 6. 6
2. 4 7.
3. –4 8.
4. 3 9. 8
5.  Does not exist 10. 8
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3 Continuity
3·1 1. Not continuous 6. Not continuous

2. Continuous 7. Continuous
3. Not continuous 8. Continuous
4. Not continuous 9. Continuous
5. Continuous 10. Continuous

3·2 1.  The tangent function is discontinuous for 3 2 1
2

x n( )  for integers n, so you have continuity at c when 

c n( ) .2 1
6

2. The tangent and cosine functions are both continuous at 4, and so the sum is continuous at 4.
3. The cosine is not 0 at 5 and since all the functions are continuous at 5, then f  is continuous at 5.
4. The tangent function is not continuous at 

2
, so t is not continuous at 

2
.

5. Since x  1, the radicand is positive, and so the function H is continuous at all values of x  1.
6. The sine function is 0 at integral multiples of , so the function G is discontinuous at those values.
7. The sine and cosine functions are continuous on the real line, so the function V is continuous there.
8. This is a disguised trig identity, so T(x)  1 and therefore the function T is continuous at 

11
.

9.  Since sin x is 0 at 2  and 6 , f is discontinuous at those points.
10. The square root function is not defined at x  11, and so the function g is not continuous at x  11.

3·3 1.  By inspection you can see that f (–2) is positive and f(0) is negative, so there is a zero between x  –2 
and x  0. 

2. g(x) is always positive on [–2.5, 2], so there are no zeros in the interval.
3. The function is not continuous in the interval [–5, 0], so the IVT does not apply.
4. The only value for which the function is 0 is x  0, and this value is not in the interval [10, 12].
5. The IVT does not apply in this case since f (–2) f (2)  4.
6.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 

approximately x  0.37.
7.  The function changes sign at the end points and is continuous in the interval, so there is a zero in the 

interval. The zero is at x 3 1 443 . .
8.  The function changes sign at the end points and is continuous in the interval, so there is a zero in the 

interval. The zero is x  0.
9.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 

x 5
2

7 85. .

10.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 
at x  0.

II DIFFERENTIATION

4 Definition of the derivative and 
derivatives of some simple functions

4·1 1. f x( ) 0 4. f x( ) 3
2. f x( ) 7 5. f x( ) 3

4
3. f x( ) 3 6. f x x( ) 10 1
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7. f x x( ) 3 132 9. f x
x

( ) 1
2

8. f x x( ) 6 2 10. f x
x x

( ) 1
2

4·2 1. d
dx

( )7 0 6. d
dx

( )25 0

2. d
dx

( )5 0 7. d
dt

( )100 0

3. d
dx

( )0 0 8. d
dx

( )2 03

4. d
dt

( )3 0 9. d
dx

1
2

0

5. d
dx

( ) 0 10. d
dx

( )41 0

4·3 1. f x( ) 9 6. f x( )

2. g x( ) 75 7. f x( ) 3
4

3. f x( ) 1 8. s t( ) 100

4. y 50 9. z x( ) .0 08

5. f t( ) 2 10. f x( ) 41

4·4 1. f x x( ) 3 2 6. f x x( ) 1

2. g x x( ) 100 99 7. f x
x

( ) 5
6

3. f x
x

( ) 1

4
3
4

8. s t
t

( ) .
.

0 6
0 4

4. y
x
1

2
1
2

9. h s
s

( ) 4

5
1
5

5. f t( ) 1 10. f x
x

( ) 2

3
5
3

4·5 1. f ( )5 75 6. f ( ) ( ) .10 10 435 25381

2. g ( )25 0 7. f ( )2 5
64

3. f ( )81 1
108

8. s ( ) .32 0 15

4. dy
dx x 49

1
14

9. h ( )32 2
5

5. f ( )19 1 10. dy
dx 64

1
1536
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5 Rules of differentiation
5·1 1. f x x( ) 6 2 9. h s

s
( ) 20

1
5

2. g x x( ) 4 99 10. f x
x

( ) 1

6
5
3

3. f x
x

( ) 5
3
4

11. f ( )3 54

4. y
x
8

1
2

12. g ( )1 4

5. f t( ) 2
3

13. f ( )81 5
27

6. f x x( )
1

2
14. dy

dx 25

1 6.

7. f x
x

( ) 50
6 15. f ( )200 2

3

8. s t
t

( ) .

60
0 4

5·2 1. f x x x( ) 7 206 9 9. q v
v v

( ) 2

5

9
3
5

2
5

2. h x x x( ) 0 10 10   10. f x
x

x( ) 5 53

3. g x x x( ) 100 20099 4   11. h 1
2

5

4. C x x( ) 200 80   12. C ( ) ,300 23 800

5. y
x
15

2 13. s ( )0 2
3

6. s t t( ) 32 2
3

  14. q ( ) .32 2 2

7. g x x
x

( ) 4 1099
1
2

  15. f ( )6 29 211
216

8. y
x
2 4 0 450 8

. ..

5·3 1. f x x x( ) 12 12 62 5. y
x x x

25
2

75
2

2. h x x x x x( ) 20 32 60 2 24 3 2 6. s t t( ) 40 1
2

3. g x
x

( ) 15 32   7. g x x x( ) 40
3

28
3

7
3

4
3

4. C x x( ) 1900 80   8. f x
x x

( ) 4 10
3 6
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9. q v
v

v( ) 70 43   13. C ( ) ,150 10 100

10. f x x x
x

( ) 22
3

18 2
8
3

1
3

2 14. dy
dx x 25

2 8.

11. f ( . )1 5 15   15. f ( ) .2 21
32

0 65625

12. g ( ) .10 3 15

5·4 1. f x
x

( )
( )

11
3 1 2   9. q v v v v

v v
v

( )
8 3 5

4 2
3

2

6 4 6

1

2. h x
x

( ) 1
2

5
82   10. f x x

x
x

( ) 64 64

4 8

2

2

2

3. g x
x

( ) 5

2
3
2

  11. f ( )25 11
5476

4. f x x x x
x x

( )
( )

6 27 1
4 3 2

  12. h ( . ) .0 2 13 125

5. y
x
15

2 13. g ( . )0 25 20

6. s t t t t
t t

( )
( )

4 9 3
2 2 3 2

  14. dy
dx 10

0 15.

7. g x x x

x

( ) 105 1000

1 10

94 99

5

2   15. g ( )1 1105
121

8. y x x x
x

40 105 64
8 7

4 2

2 2( )

5·5 1. f x x x( ) ( )18 3 102 2   7. y x
x x
6 5

2 2 5 1

2

3

2. g x x x( ) ( )720 3 102 2   8. s t t
t t

( )
( )

6 5

3 2 5

2

3 2
3

3. h x x
x

( )
( )

180
3 102 4   9. f x

x
( )

( )
100

2 6 6

4. h x
x

( ) 1 3   10. C t
t

( )
( )

375

15 120
3
2

5. f u
u u

u( ) 6 3 1
3 2

2

11. f x( ) .1 5138 107

6. y x
x

6
82 4( )

  12. h x( )
,

540
83 521
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13. f x( ) 1 1
4

15. y 3
512

14. f ( )2 735
64

5·6 1. dy
dx

y
x
2 , provided x  0 6. dy

dx ( , )3 1

2
3

2. dy
dx

xy y
xy x

6
3 3 5

3

2 2
  7. dy

dx ( , )5 2

13
5

3. dy
dx

y
x

8. dy
dx ( , )4 9

3
2

4. dy
dx

y
x

2

2
9. dy

dx ( , )5 10

4

5. dy
dx

x
y

10. dy
dx ( , )2 1

2

6 Additional derivatives
6·1 1. f x ex( ) 20   6. f x x ex( ) 30 10

2. y e x3 3 7. g x x e x x( ) ( )7 6 2 7 2 3

3. g x x e x( ) 15 2 5 3

  8. f t e t( ) .50 0 5

4. y x e x60 2 5 3

  9. g t e t( ) 5000 2 1

5. h x x e x( ) 30 2 10 3

  10. f x x e
x

( )
2

2

2

6·2 1. f x
x

( ) 20 6. f x x
x

( ) 30 10

2. y
x
1

7. g x x
x x

( ) 7 6
7 2

2

3

3. g x
x

( ) 3 8. f t t
t t

( ) 6 5
3 5 202

4. y
x

12
9. g t( ) 1

5. h x
x

( ) 3 10. f x
x x

( )
ln
1

6·3 1. f x x( ) (ln )( )20 3 3   4. y x x60 2 22 5 3

(ln )( )

2. y x3 5 53(ln )( )   5. h x x x( ) (ln )( )30 4 42 10 3

3. g x d
dx

xx x( ) ( ) (ln )( )2 15 2 25 2 53 3

6. f x x x( ) (ln )( )30 30 5 53
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7. g x xx x( ) (ln )( )( )3 3 7 67 2 23
9. g t t( ) (ln )( )5000 5 52 1

8. f t t( ) (ln )( ).50 10 100 5   10. f x x
x

( ) (ln )8 8
2

2

6·4 1. f x
x

( )
ln
20

4
  6. f x x

x
( )

ln
30 10

2

2. y
x

1
10ln   7. g x x

x x
( )

( )ln
7 6

7 2 6

2

3

3. g x
x

( )
ln
3

8
  8. f t t

t t
( )

( )ln
6 5

3 5 20 162

4. y
x

12
8ln

  9. g t( )
ln
1

2

5. h x
x

( )
ln
3

5
  10. f x

x x
( )

(ln )(ln )
1

10

6·5 1. f x x( ) cos15 3   6. s t t( ) csc20 52

2. h x x x( ) sin( )2 2   7. g x x x
x

( ) tan sec12 2
3

2
3

102 2

3. g x x( ) sec3 3
5

2   8. f x x x x x( ) cos sin sin2 2 2 2

4. f x x x( ) sec tan20 2 2   9. h x x
x

( ) cos
( sin )

3 3
1 3 2

5. y x x x4 2 22 3 3sec( )tan( ) 10. f x e x e xx x( ) cos sin2 2 4 24 4

6·6 1. f x x
x

( ) 3
1

2

6
  6. f x x

x
( ) 2

1 4

2. h x e
e

x

x
( )

1 2
  7. h x

x x
( )

| |
1
4 12

3. g x x
x

( ) 2
1 4   8. g x

x x
( )

| |

4

4
1

2

4. f x
x

( )
( )

7
1 7 5 2   9. f x x

x
x( ) sin ( )14

1 49
7

2

4

1 2

5. y x
x

2

61 25
  10. y x

x x| | 1 2

6·7 1. f x x x( ) 210 14404 7 4. f x ex( )( )4 5

2. h x x
x

( ) 2
9

2

9

5
3

5
3

  5. d y
d x

x
3

3 27 3cos

3. g x( )( )5 0 6. s t( ) 32



110 Answer key

7. D g x
xx

3
3

2[ ( )]   9. f x x( ) (ln ) ( )8 3 33 2

8. f x
x

( )( ) ,4
9

16 800
  10.

d y
d x x

4

4 4

6
2ln

III INTEGRATION

7 Indefinite integral and basic integration formulas and rules

7·1 1. d
dx

x C( )100 100   6. d
dx

x C x( ) ( )10 30
4

10 10 30
4

3

2. d
dx

x C x( )3 62   7. d
dx

x C x x( ) ( ) ( )
2 5

2 43
5

3 2

3. d
dx

x x x C x x( )3 2 22 5 3 4 5 8. d
dx

x C x xsin sin (cos )
3

2

3

4. d
dx

x x C x x2
7

2
3

1
7
2

3
2 2( ) 9. d

dx
x C x xcos (sin )

3
2 3

3

5. d
dx

x
e

e C x e
e

x e x
1

1
10. d

dx
x x x C x( ln ) ln

7·2 1. 8 8dx x C   6. 16 2 16 2dt t C

2. 3
4

3
4

dx x C   7. e dx e x C2 2

3. 9 75 9 75. .dx x C   8. 2 2dr r C

4. 3 3dx x C   9. 21 21du u C

5. 40
10 15

40
10 15

3 3

dx x C 10. 6 6
e
dx

e
x C

7·3 1. x dx x C5
6

6
  6. u du u C

2
2 1

2 1

2. x dx x C34 4
7

7
4   7. 1 2

x
dx x C

3. x dx x C2
2 1

2 1
  8. x

x
dx x C

5

2

4

4

4. 1 1
2x
dx

x
C   9. r dr r C1 ln | |

5. t dt t C100
101

101
  10. 1

t
dt t Cln | |
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7·4 1. e dt e Ct t   6. e dx e Cx
x

3
3

3

2. e dx e Cx
x

20
20

20
  7. 4 4

4
x

x

dx C
ln

3. e dx e Cx
x

  8. 2 2
3 2

3
3

x
x

dx C
ln

4. e dx e Cx x0 25 0 254. .   9. 100 4 100
100

0 25
0 25

.
.( )

ln
x

x

dx C

5. e dx e C
x
5 55

x

  10.
x

x

dx C5
55

ln

7·5 1. cos sinvdv v C   6. sec tan sec5
6

5
6

6
5

5
6

x x dx x CC

2. sin( )
cos( )1

2

1
22

x dx
x

C 7. csc cot cscx x dx x C
3 3

3
3

3. cos( ) sin( )18 18
18

x dx x C 8. csc( )cot( ) csc( )ex ex dx ex
e

C

4. sec ( ) tan( )2 3 3
3

x dx x C 9. sin cos3 3
3

d C

5. csc ( . ) . cot( . )2 2 5 0 4 2 5x dx x C 10. cos( ) sin( )25 25
25

x dx x C

7·6 1. 1
1 2

1d Ctan   6. 1
41

1
41 412

1

| |
sec

x x
dx x C

2. dx
x

x C
16 42

1sin 7. 1
81

100

10
92

1

x
dx x Csin

3. 1
49

1
7 72

1

x
dx x Ctan 8. 1 1

2 2
1

x
dx x Ctan

4. dt
t

t C
0 25

2 22
1

.
tan ( ) 9. dt

t t
t C

2 2

1

1
4

2 2sec ( )

5. du
u u

u C
2 2

1

1( )
sec 10. 1

7
1
7 72

1

| |
sec

x x
dx x C

7·7 1. ( )3 5 21 36 10 3
5

5
4

7 184 3 2
5 4

3 2x x x x dx x x x x 10x C

2. [ cos( )] sin( )3 4 2 2 22 3x x dx x x C

3. 8 5 2 55 4t t
dt

t
t Cln
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4. 1
25

1
100 5

1
102 2

1d sin tann 1

10
C

5.
e e

e
dx e e C

x x

x

x x5 4

2

3 2

3 2

6. x x
x

dx x x C
7 4

5

3

3
ln

7. 1 1
6 2 3

1
3e x

dx
e

x
e

Ctan

8. ( ) ( )x dx x x dx x x x C2 2 4 2
5 3

4 8 16
5

8
3

16

9. 7 21
23

2
3

t
dt t C

10. 20 40 2
3

x
x

dx x x x C| |

8 Basic integration techniques

8·1 1. 3 5 5
5

3 4 2
3 5

( ) ( )x x dx x C 6. x x
x x

dx x x C
3

4 2
4 22

4 5
1
4

4 5ln |( )|

2. e x dx e Cx x4 43 1
4

  7. x x dx x Ccos( ) sin( )3 1 1
6

3 12 2

3. t
t

dt t C2
2

7
1
2

7ln( ) 8. 3 2
2

3cos (sin ) cos ( )x x
x

dx x C

4. ( ) ( ) ( )x x x dx x x C5 4
5

3 5 3 4 3
5

1
4

5
4

9. e
e

dx e C
x

x
x

2

4
1 2

1
1
2

tan ( )

5. x x
x x

dx
x x

C
3

4 2 4 4 2 3

2
4 5

1
12 4 5( ) ( )

10. 6 22 2 23 3

t e dt e Ct t

8·2 1. 2 2 1
2

2 2x x dx x x x Csin( ) sin( ) cos( ) 6. x e dx x e xe e Cx x x x2 2 2 2

2. x xdx x x x C3
4 4

4 16
ln ln 7. w w dw w w w C( ) ( ) ( )3 3

3
3

12
2

3 4

3. te dt e t Ct t ( )1   8. x x dx x x x C3
4 4

4 4
4 16

ln( ) ln( )

4. x xdx x x x Ccos sin cos 9. t t dt t
t t

C( )
( ) ( )

5
3 5

1
6 5

4
3 2

5. cot ( ) (cot ) ln | |1 1 21
2

1x dx x x x C 10. x x dx x x x C2 2 2
3

4
15

2
3
2 5

2
( ) ( )
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8·3 1. cot ln | sin |xdx x C   6. 3 3 1xe dx e x Cx x ( )

2. 1
2 3 5

2
3 5( )( )

ln
x x

dx x
x

C 7. 10 3 1
15

10 3
3
2w dw w C( )

3. (ln ) ln (ln )x dx x x x x x C2 22 2   8. t t dt t t C( ) ln | |5 5 51

4. x xdx x x x Ccos cos sin 9. x x dx x x C2 2 3 4
15

2
3
2

( )( )

5. x
x

dx
x

x C
( )

ln | |
2

2
2

22 10. 1
sin cos

ln | tan |
u u

du u C

9 The definite integral

9·1 1. ( )3 4 5 19002

10

10
x x dx

2. 8 640
50

30
dx

3. x
x

dx
5

22

7
596 25.

4. 1 6
6

36

t
dt ln

5. sec tan sec
.

5
6

5
6

6
5

5
60 5

d sec .5
12

6 0221

6. dx
x4 6

0 5236
21

3
.

7. ( ) .3 5 21 36 10 103
20

5 154 3 2

1

2
x x x x dx

8. ( ln ) ln lnx x dx3

3

5 4 4 4 45 5
4

5
16

3 3
4

3
16

195 2278.

9. cot ( ) ln( ) ln( )1

1

3
3

6
1
2

4
4

1
2

2x dx 0 4681.

10. 1
1

3 1 1 0 1202
2

5 5 2

e
dx e ex ln( ) ln( ) .

9·2 1. By Property 1, f x dx( ) .
2

2
0 6. By Properties 4 and 3, 10 270

2

2
f x dx( ) .

2. By Property 2, f x dx( ) .
0

2
12 7. By Property 5, [ ( ) ( )] .f x g x dx 14

1

5

3. By Property 1, f x dx( ) .
1

1
0 8. By Property 5, [ ( ) ( )] .f x g x dx

1

5
30

4. By Property 3, f x dx( ) .
2

2
27 9. By Property 4, 1

2
4

1

5
f x dx( ) .

5. By Property 4, 5 60
2

0
f x dx( ) . 10. By Property 4, 2 3 20

1

5

1

5
g x dx f x dx( ) ( ) .

9·3 1. d
dx

t dt
x

x
( )

( )
2 5

0 2 53 1
3

3. d
dx

t t dt x x
x

sin sin( )
4

4 7 4

2. d
dx

t dt x
x

3 5 3 5
1

4. d
dx

t dt x x
x 23

5

5 2 3
2

10 25
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5. d
dx

t t dt x x
x

( )2

10

2 22 1 2 1 8. F x x x( ) sin cos6 2

6. F x x( ) sin( )3   9. F x x( )
3
2

7. F x
x

( ) 4
4 1

  10. F x x( ) 12 8

9·4 1. c  0 6. 1
2 2

4
3

2

2

2

( ( ))
x dx

2. c 16
9

7. 1
3 1

1 3
21

3

( )
ln

x
dx

3. c 2 4
5

3 8. 1

2 2

2

2

2

cosxdx

4. c sin 1 2   9. 1
4 1

9
2

7
1

4

( )
x dx

5. c 2
3ln

10. 1
1 0

1
0

1

( )
e dx ex

IV APPLICATIONS OF THE DERIVATIVE 
AND THE DEFINITE INTEGRAL

10 Applications of the derivative

10·1 1. 3 1 1
e

cos( )   6. (2, –41) and (–2, 55)

2. 5 7. y x 2
3. y x4 8   8. y x8 5

4. m x x3 12 92   9. No solution

5. (1, –2) 10. y x2 1

10·2 1. 20 acres/hour
2. –32 ft/sec
3. 23 castings/hour
4. 160 cm/sec
5.  The direction of motion changes at t  2.5 sec. At t  1 both the velocity and acceleration are 0 so we 

cannot glean any information at that time.
6. v  4 ft/sec and a  6 ft/sec2

7. 48/5 pints/lb
8. –64 ft/sec and –32 ft/sec2

9. 16 ft/sec and 196 ft
10. –17,500 gal/min
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10·3 1. x  3

2.  f x
x

x
xx x x

( ) lim| | lim| | . lim |0 0
00 0 0

But xx
x

x
xx

| lim
0

1 and lim | | lim ,
x x

x
x

x
x0 0

1  so the lim| |
x

x
x0

 does not 

exist and the function is not differentiable at x  0. On the other hand, f x x( ) ,1 0when and
f x( ) 1 when x 0.

3.  lim( )
x

x
2

2 0
1
3  and thus the function is continuous there, but lim ( ) lim

( )
x x

x
x

x
2

1
3

2 2
3

2 0
2

1

2
 does not 

exist and the function is not differentiable at x  2.
4. yes
5. no

10·4 1. a. x  0, 1, 2 and ( , ), , , ( , )0 0 1 1
4

2 0

  b. Incr. [0, 1] and [2, ); Decr. (– , 0], [1, 2]

  c. f rel f rel f rel( ) , min; ( ) , max; ( ) , min0 0 1 1
4

2 0

2. a. No critical points  
  b. Incr. ( , );0  Decr. nowhere
  c. No relative extrema

3. a. x k x k( ) , ( )4 1 4 3  for integers k and (( ) , ),(( ) , )4 1 4 4 3 4k k
  b. Incr. [( ) ,( ) ];4 1 4 1k k  Decr. [( ) ,( ) ]4 1 4 3k k
  c. f has a rel max of 4 at x k( )4 1  and a rel min of –4 at 
    x k( )4 3  where k is an integer.

4. a. No critical points
  b. Incr. ( , ] [ , )3 3and
  c. No extrema since the only zeros of f occur outside the domain of f.

5. a. x  0, –2 and (0, 1), (–2, 5)
  b. Incr. [ , ] [ , );2 0and  Decr. [–2, 0]
  c. f rel f rel( ) , max; ( ) , min2 5 0 1

6. a. x  4 at which the derivative is undefined and (4, 2)
  b. Incr. [ , ]4  and Decr. [ , )4
  c. f rel( ) , max4 2

7. a  –3 and b  7
8. All the wire should be put on the square.
9. r  .06 or 6% interest

10. h  4r

10·5 1. Concave up on x x0 0and . The point (0, 2) is not a point of inflection.
2. (1, –1) and (2, 0) are points of inflection. Concave up for x  1 or x  2 and concave down for 1 x  2.
3. No concavity and no points of inflection.
4. (–2, –6) is a point of inflection and the curve is concave up for x  –2 and down for x –2
5. No points of inflection. Concave up for x  2 and down for x  2.
6. (0, 0) is a point of inflection. Concave up for x  0 and down for x  0.
7. (0, 0) is a point of inflection. Concave up for x  0 and down for x  0.
8. (1, –2) is a point of inflection. Concave up for x 1 and down for x  1.
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9.  ( , )3 44  are points of inflection. Concave up for x x3 3or  and concave down for 

3 3x .
10. a  2, b  –6, c 0, d 3.

10·6 1. c 1 and c = –1
2. No solution since f is discontinuous at 0.
3. c  9/4
4. No solution since f is discontinuous at 1.

5. c 3 2 3
3

6. No solution since f is not differentiable at 0.

7. c arcsin 2

8. c 3 13
4

9. c arccos
2

1

10.  Let f x x( ) ln  and consider the interval 1 8
7

, . By the MVT you get 1
8
7

1

8
7

1c

ln ln( )
 or on 

simplification 1 7 8
7c

ln  or finally that c 1

7 8
7

ln
. Also you know that 1 8

7
c . So you get 

1 1

7 8
7

8
7

ln
 and solving this inequality you get 

1
8

8
7

1
7

ln .

11 Applications of the definite integral

11·1 1. 81 sq. units 4. 1 sq. unit

2. 1 sq. unit 5. 104/3 sq. units

3. 44/3 sq. units  6.
1
2 sq. unit

11·2 1. 32/3 sq. units  6. 3/2 sq. units

2. 9/2 sq. units  7. 1 sq. unit

3. 1/3 sq. unit 8. 19/30 sq. unit

4. 1
2

sq. unit 9. 10/3 sq. units

5. 3/2 sq. units  10. 4/3 sq. units

11·3 1. 3 2 3
2

ln( )   6. 33/16

2. 97 7. 2 2 1 2 3
2

ln( ) ln

3. 12 8. 53/6

4. 17/12 9. 2 3 4
3

5. 123/32 10. 52/27
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I LIMITS

1 The limit concept

1·1 1. a. –2.50175 b. –2.48259 c. f(x) is close to –2.5 when x is close to 3.
2. a. –0.99750  b. –1.00881 c. f(x) is close to –1 when x is close to 1.
3. a. .003  b. –.003 c. f(x) is close to 0 when x is close to 0.

1·2 1. lim
lim( )

lim( )

lim
x

x

x

xx
x

x

x

x
3

2
3

2

3

3

2
4

1

4

1

44

1
5
4

3
lim
x

x

2.  lim
lim( )

lim( )

lim
x

x

x

xx
x

x

x

x
2

2
2

2

2

2

2
9
2

9

2

99

2
2

lim
x

x
 This yields 0 in the denominator and –5 in the 

numerator, so the limit does not exist.

3. lim lim
x x

x x
1

3

1

37 7 8

4. lim lim .
x x

x x5 9 5 9 5 9 58 3480222 2 2

5. lim
lim( )

lim( )

lim
x

x

x

xx
x

x

x0

0

0

5 3
11

5 3

11

5 3
0

0
11

5
11

x

x
x
lim

6. lim
lim( )

lim( )x
x

x

x
x

x

x0

2

3
0

2

0

3

9 3
11

9 3

11

9 3llim

lim
x

x

x

x
0

2

0

3 11
9

11

7. lim lim ( )
( )( )

lim
x x x

x x
x

x
x x1

2

2 1

2

1

2 1
1

1
1 1

(( )
( )

lim( )

lim( )

lim

lim
x
x

x

x

x
x

x

x1
1

1

1

1
1

1

1

xx
x

1
1

0

8.  lim
lim( )

lim( )

li
x

x

x

x
x

x

x4 2
4

4

2

6 3
16

6 3

16

6 3 mm

lim
x

x

x

x
4

4

2 16
 This yields 0 in the denominator and a –6 in 

the numerator, so the limit does not exist.

9. lim lim
x x

x x
2

3

2

34 11 4 11  The radicand is negative, so the limit does not exist.

10. lim
lim( )

lim( )

lim
x

x

x

x
x

x

x6

6

6

8 3
6

8 3

6

8 3
xx

x

x

x
6

6
6

26
12

13
6lim

Worked solutions
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2 Special limits
2·1 1. lim lim

( )( )
lim

x x x

x
x x

x
x x x3 2 3 3

3
12

3
3 4

1
4

1
7

2. lim ( ) lim lim
h h h

x h x
h

x xh h x
h

xh
0

2 2

0

2 2 2

0

2 2 hh
h

x h x
h

2

0
2 2lim( )

3. lim lim ( )( )
( )(x x

x
x

x x x
x x4

3

2 4

264
16

4 4 16
4 4))

lim
x

x x
x4

2 4 16
4

16 16 16
8

6

4. If f x x f x h f x
h

x h
h h

( ) , lim ( ) ( ) lim ( ( ) ) (5 8 5 8
0 0

55 8 5 5 5
0 0

x
h

h
hh h

) lim lim

5. lim
x

x
x3 2

5 7
3

15 7
9 3

8
6

4
3

6. lim lim
( )( )

lim
x x x

x
x

x
x x x25 25 25

5
25

25
25 5

1
5

1
10

7. If g x x g x g
x

x
xx x x

( ) , lim ( ) ( ) lim lim2

2 2

2

2

2
2

4
2

(( )( ) lim( )x x
x

x
x

2 2
2

2 4
2

8. lim lim ( ) lim( )
x x x

x x
x

x x
x

x
0

2

0 0

2 4 2 4 2 4 4

9. lim lim ( )( )
( )

lim
r r r

x r x
r

x r x x r x
r x r x0 0 00 0

1 1
2

( )
( )

lim
( )

x r x
r x r x x r x xr

10.  lim
x

x
x4

3 6
4

 This yields 0 in the denominator and 70 in the numerator, so the limit does not exist.

2·2 1. lim
x

x5 7

2. lim
x x

7 03

3. lim
x

x3 95

4. lim lim
x x

x x x
x x

x x x
3 2

3

247 9
18 76 11

1 1 47 9
33

2 318 76 11
1 0 0 0
18 0 0

1
18

x x
5. lim

x x
8

4
0

6. lim lim
x x

x
x x

x x

x x

2
5 6

1 2

1 5 6
0 0

1 0 02

2

2

00

7. lim lim
x x

x x
x x

x x x

x

5 3

6 2

3 6

4

6 7
5 6 11

1 6 7

5 6 111
0 0 0
5 0 0

0

6x

8. lim lim
x x

x x x
x x

x
x x7 6 3

3 7 5

7 6 3

3 7

4 2

3

2

xx x2 3

5
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9. lim lim
x x

x x
x

x
x x

x

2 8 5
3 4

2 8 5

3 4

3

2

2

2

10. lim
x x

5
4

02

2·3 1. lim[ ]
x

x
4

1 4 1 5

2. lim lim ( )( ) lim(
x x x

x
x

x x
x

x
2

2

2 2

4
2

2 2
2

2)) 4

3. lim
x x8

4
9

4

4. lim
x

x
0

4 3 3

5. lim[ ]
x

x
5

1 4  and lim[ ] ,
x

x
5

1 3  so the limit does not exist

6. lim lim ( )( ) lim(
x x x

x
x

x x
x

x
3 3 3

2

9
3

3 3
3

3)) 6

7. lim
x x4

7
4

8. lim
x

x x
x4

5 4 8
4

9. lim lim ( )( ) lim(
x x x

x
x

x x
x

x
4

2

4 4

16
4

4 4
4

44 8)

10. lim lim ( )( ) lim(
x x x

x
x

x x
x

x
4

2

4 4

16
4

4 4
4

44 8)

3 Continuity
3·1 1.  Looking at lim ,

x
x

1
5 7  when x assumes values close to 1, the radicand is negative; and thus the limit 

does not exist, so the function is not continuous at 1.

2.  lim lim ( )( )
( )

lim
x x x

x
x

x x x
x0

3

0

2

0

8
2

2 2 4
2

( ) .x x2 2 4 4  Since the limit exists and equals 

f ( ) ,0 0 8
2 0

4
3

the function is continuous at 0.

3.  Looking at lim ,
x x1

4
2 3

 when x assumes values close to 1, the radicand is negative; and thus the limit 

does not exist, so the function is not continuous at 1.

4. Since lim[ ]
x

x
3

3 and lim[ ] ,
x

x
3

2  the limit does not exist at 3; so the function is not continuous at 3.

5. lim
(lim )

limx
x

x

x
x

x

x4

2
4

2

4

6
5

6

5
16 6
4 5

22,,  so the function is continuous at 4. 

6.  Looking at lim ,
x

x
x3

5
5

 when x assumes values close to 3, the radicand is negative; thus, the limit does 

not exist, so the function is not continuous at 3.
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7. lim
lim

lim
,

x

x

x

x
x

x

x8

8

8

5
2

5

2
8 5
10

 so the function is continuous at 8.

8.  lim( ) (lim ) lim
x x x

x x x x
5

2

5

2

5
5 7 5 7 125 5 7 132 5, so the function is continuous at 5.

9. lim
lim

lim
,

x
x

x

x
x

x

x6

6

6

6
2

6

2
6 6

4
0  so the function is continuous at 6.

10. lim ( ) (lim ) lim
x a

x a xx a x
x a

x a x2 2
6

3

6
aa

x a
x a

a
lim

,
3

6
3

so the function is continuous at a.

3·2 1.  The tangent function is discontinuous for 3 2 1
2

x n( )  for integers n, so you have continuity at c when 

c n( ) .2 1
6

2. The tangent and cosine functions are both continuous at 4, and so the sum is continuous at 4.
3. The cosine is not 0 at 5 and since all the functions are continuous at 5, then f is continuous at 5.
4. The tangent function is not continuous at 

2
, so t is not continuous at 

2
.

5. Since x  1, the radicand is positive, and so the function H is continuous at all values of x 1.
6. The sine function is 0 at integral multiples of , so the function G is discontinuous at those values.
7. The sine and cosine functions are continuous on the real line, so the function V is continuous there.
8. This is a disguised trig identity, so T(x)  1 and therefore the function T is continuous at 

11
.

9.  Since sin x is 0 at 2  and 6 , f is discontinuous at those points. However, f has removable discontinuities 
at both points, and thus f redefined at those points is continuous at both points.

10. The square root function is not defined at x  11, and so the function g is not continuous at x  11.

3·3 1.  By inspection you can see that f(–2) = 79 is positive and f(0) = –5 is negative, so there is a zero between 
x  –2 and x  0.

2. g(x) is always positive on [–2.5, 2], so there are no zeros in the interval.
3.  The function is not continuous in the interval [–5, 0], so the IVT does not apply.
4.  The only value for which the function is 0 is x  0, and this value is not in the interval [10, 12].
5.  The IVT does not apply in this case since f(–2) f(2)  4.
6.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 

approximately x  0.37.
7.  The function changes sign at the end points and is continuous in the interval, so there is a zero in the 

interval. The zero is at x 3 1 443 . .
8.  The function changes sign at the end points and is continuous in the interval, so there is a zero in the 

interval. The zero is x  0.
9.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 

x 5
2

7 85.

10.  The function is continuous and changes sign in the interval, so there is a zero in the interval. The zero is 
at x  0.
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II DIFFERENTIATION

4 Definition of the derivative and 
derivatives of some simple functions

4·1 1.  By definition, f x f x h f x
hh

( ) lim ( ) ( ) .
0

 Since f x( ) 4 for all values of x, you have f x( )

lim ( ) ( ) lim lim lim
h h h h

f x h f x
h h h0 0 0 0

4 4 0 0 00.

2.  By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim ( ( ) ) (
0 0

7 2 77 2 7 7 2 7 2
0

x
h

x h x
hh

) lim ( ) ( )

lim lim lim .
h h h

x h x
h

h
h0 0 0

7 7 2 7 2 7 7 7

3.  By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim ( ( ) )
0 0

3 9 (( ) lim ( ) ( )3 9 3 3 9 3 9
0

x
h

x h x
hh

lim lim lim
h h h

x h x
h

h
h0 0 0

3 3 9 3 9 3 3 3..

4. By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim ( ( ))
0 0

10 3 (( ) lim ( ) ( )10 3 10 3 3 10 3
0

x
h

x h x
hh

lim lim lim
h h h

x h x
h

h
h0 0 0

10 3 3 10 3 3 3 33.

5. By definition, f x f x h f x
h

x h

h h
( ) lim ( ) ( ) lim

( )

0 0

3
4

3
4

3
4

3
4

3
4

0

x

h

x h x

hh
lim

lim lim .
h h

h

h0 0

3
4 3

4
3
4

6. By definition, f x f x h f x
h

x h x
h h

( ) lim ( ) ( ) lim ( ( ) (
0 0

25 hh x x
h
) ) ( )3 5 32

lim ( ( ) ( ) ) ( ) lim
h

x xh h x h x x
h0

2 2 25 2 3 5 3
hh

x xh h x h x x
h0

2 2 25 10 5 3 5 3( ) ( )

lim lim
h h

x xh h x h x x
h

x
0

2 2 2

0

5 10 5 3 5 3 10 hh h h
h

x h x
h

5 10 5 1 10 1
2

0
lim( ) .

7. By definition, f x f x h f x
h

x h x h
h h

( ) lim ( ) ( ) lim (( ) ( ))
0 0

3 13 ( )x x
h

3 13

lim (( ) ( )) (
h

x x h xh h x h x x
0

3 2 2 3 33 3 13 13 13 )) lim
h

x x h xh h x h x x
hh 0

3 2 2 3 33 3 13 13 13

lim lim(
h h

x h xh h h
h

x xh h
0

2 2 3

0

2 23 3 13 3 3 133 3 132) .x

8. By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim ( ( ) )
0 0

32 15 ( )2 153x
h

lim ( ( ) ) ( ) lim
h

x x h xh h x
h0

3 2 2 3 32 3 3 15 2 15
hh

x x h xh h x
h0

3 2 2 3 32 6 6 2 15 2 15( ) ( )

lim lim(
h h

x x h xh h x
h0

3 2 2 3 3

0

2 6 6 2 15 2 15 6xx xh h x2 2 26 2 6) .
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9. By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim
0 0

1 1 1 1

0

x
h

x h x
hh

lim

lim
( )

lim
( )

lim
h h h

x x h
hx x h

h
hx x h x0 0 0

1
(( )

.
x h x

1
2

10. By definition, f x f x h f x
h

x h
h h

( ) lim ( ) ( ) lim
0 0

1 1
xx

h

x x h
x x h

hh
lim

0

lim lim
h h

x x h
x x h

x x h
x x h

h0 0 0

x x h
x x h x x h

h

x x h
x x h x h

h

( )
( ) lim ( )) x

h

lim
( )

.
h x x h x h x x x0

1 1
2

4·2 1. d
dx

( )7 0 6. d
dx

( )25 0

2. d
dx

( )5 0 7. d
dt

( )100 0

3. d
dx

( )0 0 8. d
dx

( )2 03

4. d
dt

( )3 0 9. d
dx

1
2

0

5. d
dx

( ) 0 10. d
dx

( )41 0

4·3 1. f x( ) 9 6. f x( )

2. g x( ) 75   7. f x( ) 3
4

3. f x( ) 1 8. s t( ) 100

4. y 50 9. z x( ) .0 08

5. f t( ) 2 10. f x( ) 41

4·4 1. f x x( ) 3 2 6. f x x( ) 1

2. g x x( ) 100 99   7. f x d
dx x

d
dx

x x
x

( ) ( )1 5 5
5

5 6
6

3. f x x
x

( ) 1
4

1

4

3
4

3
4

  8. s t t
t t

( ) . . ..
. .0 6 0 6 1 0 60 4

0 4 0 4

4. y d
dx

x d
dx

x x
x

( )
1
2

1
2

1
2

1
2

1

2
9. h s s

s
( ) 4

5
4

5

1
5

1
5

5. f t( ) 1 10. f x d
dx x

d
dx

x x( ) 1 2
3

2

323

2
3

5
3

xx
5
3
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4·5 1. For f x x f x x( ) , ( ) ;3 23  thus, f ( ) .5 3 5 752

2. For g x g x( ) , ( )100 0 for all values of x; thus, g ( ) .25 0

3. For f x x f x x
x

( ) , ( ) ;
1
4

1
4

1

4

3
4

3
4

 thus, f ( )
( ) ( )

.81 1

4 81

1
4 27

1
1083

4

4. For y x y d
dx

x d
dx

x x
x

, ( ) ;
1
2

1
2

1
2

1
2

1

2
 thus, dy

dx x 49

1

2 49

1
141

2( )
.

5. For f t t f t( ) , ( ) 1  for all values of t; thus, f ( ) .19 1

6. For f x x f x x( ) , ( ) 1 thus, f ( ) ( ) . .10 10 435 25381

7. For f x
x

f x d
dx x

d
dx

x
x

( ) , ( ) ( ) ;1 1 5
5 5

5
6  thus, f ( ) .2 5

2
5
646

8. For s t t s t t
t t

( ) , ( ) . . . ;. .
. .

0 6 0 4
0 4 0 40 6 0 6 1 0 6  thus, s ( ) . . . ..32 0 6

32
0 6
4

0 150 4

9. For h s s h s s
s

( ) , ( ) ;
4
5

1
5

1
5

4
5

4

5
 thus, h ( )

( )
.32 4

5 32

2
51

5

10. For y
x

y d
dx x

d
dx

x
x

1 1 2

323 23

2
3

5
3

, ;  thus, dy
dx 64

2
3 1024

1
1536( )

.

5 Rules of differentiation
5·1 1. If f x x( ) ,2 3  then f x d

dx
x x x( ) ( ) ( ) .2 2 3 63 2 2

2. If g x x( ) ,
100

25
 then g x d

dx
x x x( ) ( ) ( ) .1

25
1
25

100 4100 99 99

3. If f x x( ) ,20
1
4  then f x d

dx
x

x x
( ) .20 20 1

4

51
4

3
4

3
4

4. If y x16 , then y d
dx

x d
dx

x
x

16 16 16 1

2

1
2

1
2

( ) 88
1
2x

.

5. If f t t( ) ,2
3

 then f t d
dt

t( ) ( ) .2
3

2
3

1 2
3

6. If f x x( ) ,
2

 then f x d
dx

x x x( ) ( ) .1
2

1
2 2

1
1

7. If f x
x

( ) ,10
5  then f x d

dx x x x
( ) .10 1 10 5 50

5 6 6

8. If s t t( ) ,.100 0 6  then s t d
dt

t
t t

( ) ( ) . ..
. .100 100 0 6 600 6

0 4 0 4

9. If h s s( ) ,25
4
5  then h s d

dx
s

s s
( ) .25 25 4

5

204
5

1
5

1
5

10. If f x
x

( ) ,1
4 23

 then f x d
dx x x x

( ) 1
4

1 1
4

2

3

1

623 5
3

5
33

.

11. When f x x f x x( ) , ( ) ;2 63 2  thus, f ( ) .3 6 3 542

12. When g x x g x x( ) , ( ) ;
100

99

25
4  thus, g ( ) .1 4 1 499
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13. When f x x f x
x

( ) , ( ) ;20 51
4

3
4

 thus, f ( )
( )

.81 5

81

5
273

4

14. When y x y
x

16 8
1
2

, ; thus, dy
dx 25

8

25

8
5

1 61
2

. .

15. when f t t f t( ) , ( )2
3

2
3

 for all values of t; thus, f ( ) .200 2
3

5·2 1. When f (x) x7  2x10, f x x x( ) .7 206 9

2. When h x x h x x x( ) , ( ) .30 5 0 10 102

3. When g x x x g x x x( ) , ( ) .100 5 99 440 100 200

4. When C x x x C x x x( ) , ( )1000 200 40 0 200 80 200 802 ..

5. When y
x

y d
dx

x d
dx

x15 25 15 25 151 2, ( ) ( ) ( ) 00 15 152
2x

x
.

6. When s t t t s t t t( ) , ( ) .16 2
3

10 32 2
3

0 32 2
3

2

7. When g x x x g x x d
dx

x x( ) , ( )
100

99 99

25
20 4 20 4

1
2 110 4 101

2
1
2

99x x
x

.

8. When y x x y x
x

12 0 45 2 4 0 45 2 4 0 40 2 0 8
0 8

. .
.. , . . . . 55.

9. When q v v v q v v v
v

( ) , ( )
2
5

3
5

3
5

2
5

3
5

7 15 2
5

0 9 2

5

9
2
5v

.

10. When f x
x x

f x d
dx

x d
dx

x( ) , ( ) ( ) (5
2

5
2

5
2

5
2

5
22 2

2 22 3
3

5
2

1 5 5 0 5 5) ( ) ( ) .d
dx

x x
x

x

11. When h x x h x x( ) , ( ) ;30 5 102  thus, h 1
2

10 1
2

5.

12. When C x x x C x x( ) , ( ) ;1000 200 40 200 802  thus, C ( ) ( ) , .300 200 80 300 23 800

13. When s t t t s t t( ) , ( ) ;16 2
3

10 32 2
3

2  thus, s ( ) ( ) .0 32 0 2
3

2
3

14. When q v v v q v
v v

( ) , ( ) ;
2
5

3
5

3
5

2
5

7 15 2

5

9  thus, q ( )
( ) ( ) ( ) ( )

. .32 2

5 32

9

32

2
5 8

9
4

2 23
5

2
5

15. When f x
x x

f x
x

x( ) , ( ) ;5
2

5
2

5
2

5 52 2 3  thus, f ( ) ( ) .6 5
6

5 6 5
216

30 29 211
2163

5·3 1. If f x x x( ) ( )( ),2 3 2 32  then f x x d
dx

x x d
dx

x x( ) ( ) ( ) ( ) ( ) (2 3 2 3 2 3 2 3 22 2 22 3 2)( )

( )( ) .2 3 4 12 12 62x x x x

2. If h x x x x( ) ( )( ),4 1 2 53 2  then h x x d
dx

x x x x d
dx

x( ) ( ) ( ) ( ) (4 1 2 5 2 5 43 2 2 33 1)

( )( ) ( )( )4 1 2 2 2 5 12 20 323 2 2 4 3x x x x x x x 660 2 22x x .

3. If g x x
x

( ) ( ) ,2 5 3  then g x x d
dx x x

d
dx

x( ) ( ) ( ) (2 25 3 3 5 xx
x x

x
x

2
2 25 3 3 2 15 3) ( ) .

4. If C x x x( ) ( )( ),50 20 100 2  then C x x d
dx

x x d
dx

( ) ( ) ( ) ( ) (50 20 100 2 100 2 50 20xx)
( )( ) ( )( ) .50 20 2 100 2 20 1900 80x x x
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5. If y
x

x15 25 5( ), then y
x

d
dx

x x d
dx x

15 25 5 5 15 25( ) ( )

  15 25 1

2
5 15

2
2

1
2x x

x
x x

( ) 55
2

75
2x x x

.

6. If s t t t( ) ,4 1
2

5 3
4

 then s t t d
dx

t t( ) 4 1
2

5 3
4

5 3
4

dd
dx

t4 1
2

4 1
2

5 5 3
4

4 40 1
2

t t t( ) ( ) .

7. If g x x x x( ) ( )( ),2 2 23 2 3  then g x x x d
dx

x x d
dx

x x( ) ( ) ( )2 2 2 2 2 23 2 3 21
3

1
3

( ) ( )2 2 2
3

2 6 4 403 2
1
3 22

3x x x x x x xx x
7
3

4
3

3
28

3
.

8. If f x
x

x( ) ,10 1
55

3

 then f x x d
dx

x x d
dx

x( ) ( ) ( )10 1
5

1 1
5

105 3
3

5 5 22 3( )( )x x

x x
x x

3
6

3 6

1
5

50 4 10( ) .

9. If q v v v( ) ( )( ),2 27 5 2  then q v v d
dv

v v d
dv

v( ) ( ) ( ) ( ) ( )2 2 2 27 5 2 5 2 7

( )( ) ( )( ) .v v v v
v

v2 3 2
37 10 5 2 2 70 4

10. If f x x x( ) ( )( ),2 3 33 23  then f x x d
dx

x x d
dx

x( ) ( ) ( )2 3 3 3 2 33 32
3

2
3

( ) ( )2 3 2
3

3 6 22
3

13 21
3

2
3

8
3

x x x x x 88 22
1
3

x
x

.

11. When f x x x f x x x( ) ( )( ), ( ) ;2 3 2 3 12 12 62 2  thus, f ( . ) ( . ) ( . ) .1 5 12 1 5 12 1 5 6 152

12. When g x x
x

g x
x

( ) ( ) , ( ) ;2
25 3 15 3  thus, g ( ) . .10 15

10
3 3 152

13. When C x x x C x x( ) ( )( ), ( ) ;50 20 100 2 1900 80  thus, C ( ) ( ) , .150 1900 80 150 10 100

14. When y
x

x y
x x x

15 25 5 25
2

75
2

( ), ; thus, dy
dx x 25

25
2 25

75
2 25 25

2 8
( )

. .

15. When f x
x

x f x
x x

( ) , ( ) ;10 1
5

4 10
5

3

3 6  thus, f ( ) . .2 4
2

10
2

21
32

0 656253 6

5·4 1. If f x x
x

( ) ,5 2
3 1

 then f x
x d

dx
x x d

dx
x

x
( )

( ) ( ) ( ) ( )

( )

3 1 5 2 5 2 3 1

3 1 22 2

3 1 5 5 2 3
3 1

( )( ) ( )( )
( )

x x
x

11
3 1 2( )

.
x

2. If h x x
x

( ) ,4 5
8

2

 then h x
x d

dx
x x d

dx
x

x
( )

( ) ( ) ( ) ( )

( )
(8 4 5 4 5 8

8
8

2 2

2

xx x x
x

)( ) ( )( )
( )

10 4 5 8
8

2

2

1
2

5
82x

.

3. If g x
x

( ) ,5  then g x
x d

dx
d
dx

x

x

x
( )

( ) ( ) (1
2

1
2

1
2

1
25 5 0

2

)) ( )
.

5 1
2 5

2

1
2

3
2

x

x x
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4. If f x x
x

( ) ,3 1

2 6

3
2

1
2

 then f x
x d

dx
x x d

dx
x

( )
2 6 3 1 3 1 2 6

1
2

3
2

3
2

1
2

2 6
1
2

2

x

2 6 9
2

3 1

2 6

1
2

1
2

3
2

1
2

1
2

2

x x x x

x

6 27

2 6

6 27 1

2 6

1
2

1
2

1
2

1
2

2 2

x x x

x

x x
x

x

6 27 1
2 32 2

x x x
x x( ) ( )

6 27 1
4 3 2

x x x
x x( )

.

5. If y
x
15 , then y

x d
dx

d
dx

x

x
x( ) ( ) ( )

( )
( ) ( )( )

(

15 15 0 15 1
2 xx x)

.2 2

15

6. If s t t
t

( ) ,2 3

4 6

3
2

1
2

 then s t
t d

dt
t t d

dt
t

( )
4 6 2 3 2 3 4 6

1
2

3
2

3
2

1
2

4 6

4 6 3 2 3 2
1
2

1
2

1
2

3
2

1
2

2

x

t t t t

44 6
1
2

2

x

( )12 18 4 6

4 6

8 18 6

4
1
2

12

t t t
t

x

t t
t

x 22 6

8 18 6
2 2 3

4 9 3
2 22 2 2

t t t
t t

t t t
t t( ) ( ) ( 3 2)

.

7. If g x x
x

( ) ,
100

5 10
 then g x

x d
dx

x x d
dx

x

x
( )

( ) ( ) ( ) ( )

(

5 100 100 510 10
5 210)

( )( ) ( )( )
( )

x x x x
x

5 99 100 6

5 2

10 100 5
10

105xx x

x

94 99

5

2

1000

1 10

.

8. If y x
x

4 5
8 7

3

2 , then y
x d

dx
x x d

dx
x

x

( ) ( ) ( ) ( )

(

8 7 4 5 4 5 8 7

8

2 3 3 2

2 77 2)

( )( ) ( )( )
( )

8 7 15 4 5 16
8 7

40 12 2 3

2 2

4x x x x
x

x 005 64
8 7

2

2 2

x x
x( )

.

9. If q v v

v
v

( ) ,
3

2
3

2
1

 then q v
v

v
d
dv

v v d
dv

v
v( )

( ) ( )2
3

3 3 2
3

1 2 2 1

v
v

2
3

2
1

  
v

v
v v v v

v
v

2
3

2 3 4

2
3

1 3 2 2 3

1

( ) ( )( )

2

4
4

2
3

2

8 3 5
6 4 6

1

6 4 6v
v

v
v

v
v

v v v

vv v
v

4 2
3

2
1

.

10. If f x x

x

( ) ,4
4 8

2

2

 then f x
x d

dx
x x d

dx
x

( )
( ) ( ) ( ) ( )

(

4 8 4 4 4 8

4

2 2 2 2

xx 2 28)

( )( ) ( )( )
( )

4 8 8 4 8
4 8

322 2 3

2 2

1x x x x
x

x 64 32
4 8

64 64

4 8
641

2 2 2 2

x x
x

x
x

x( ) ( )
664

4 8

2

2

2

x

x
x

.



Worked solutions 127

11. If f x x
x

( ) ,5 2
3 1

 then f x
x

( )
( )

;11
3 1 2  thus, f ( )

( ( ) )
.25 11

3 25 1
11

54762

12. If h x x
x

( ) ,4 5
8

2

 then h x
x

( ) ;1
2

5
82  thus, h ( . )

( . )
. .0 2 1

2 0 2
5
8

13 1252

13. If g x
x

( ) ,5  then g x
x

( ) ;5

2
3
2

 thus, g ( . )
( . )

.0 25 5

2 0 25
203

2

14. If y
x
15 , then y

x
15

2 ; thus, dy
dx 10

2

15
10

0 15
( )

. .

15. If g x x
x

( ) ,
100

5 10
 then g x x x

x

( ) ;105 1000

1 10

94 99

5

2  thus, g ( ) ( ) ( )

( )

1 105 1 1000 1

1
1

10

11094 99

5

2

55
121

.

5·5 1. f x d
dx

x x d
dx

x( ) [( ) ] ( ) ( )3 10 3 3 10 3 102 3 2 2 2 33 3 10 6 18 3 102 2 2 2( ) ( ) ( ) .x x x x

2. g x d
dx

x d
dx

x( ) [ ( ) ] [( ) ] (40 3 10 40 3 10 402 3 2 3 118 3 10 720 3 102 2 2 2x x x x( ) ) ( ) .

3. h x d
dx

x x d
dx

( ) [ ( ) ] ( )( )10 3 10 10 3 3 102 3 2 4 (( )
( )

( )
(

3 10 30
3 10

6 180
3

2
2 4 2x

x
x x

x 110 4)
.

4. h x d
dx

x x d
dx

x x( ) [( ) ] ( ) [( )] ( )3 2 3 3 2 3 1
2

2

xx x
1 3 .

5. f u d
du u

u
u

u( ) 1 3 1
2

3

2

2
dd
du

u u
u

u u
u

( ) ( )2
2

2
3

33 1 2 1 6 3 1
2

2

u
u .

6. y d
dx x

d
dx

x x1
8

8 3 82 3
2 3 2

( )
[( ) ] ( ) 4 2 2 4

2 48 3 8 2 6
8

d
dx

x x x x
x

( ) ( ) ( )
( )

.

7. y d
dx

x x d
dx

x x x x d2 5 1 2 5 1 1
2

2 5 13 3 31
2

1
2( ) ( )
ddx

x x x x x( ) ( ) ( )2 5 1 1
2

2 5 1 6 53 3 21
2

6 5

2 2 5 1

6 5
2 2 5 1

2

3

2

31
2

x
x x

x
x x( )

.

8. s t d
dt

t t t t d
dt

( ) ( ) ( ) (2 5 1
3

2 53
1
3 3 2

3 22 5 1
3

2 5 6 5 6 5

3 2 5
3 3 2

2

3

2
3t t t t t t

t t
) ( ) ( )

( ))
.2

3

9. f x d
dx x

d
dx

x( )
( )

[( ) ]10
2 6

10 2 6 105
5 (( )( ) ( ) ( )( ) ( )5 2 6 2 6 50 2 6 2 106 6x d

dx
x x 00

2 6 6( )
.

x

10. C t d
dt t

d
dt

t( ) ( )50
15 120

50 15 120
1
2 50 1

2
15 120 15 120

3
2( ) ( )t d
dt

t

( )( ) ( )
( )

.25 15 120 15 375

15 120

3
2

3
2

t
t

11. f x d
dx

x x x( ) [( ) ] ( ) ;3 10 18 3 102 3 2 2  thus, f ( ) ( )( ( ) ) . .10 18 10 3 10 10 1 5138 102 2 7

12. h x d
dx

x x
x

( ) [ ( ) ]
( )

;10 3 10 180
3 10

2 3
2 4  thus, h ( ) ( )

( ( ) ) ,
.3 180 3

3 3 10
540

83 5212 4
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13. f x d
dx

x
x

( ) [( ) ] ;3 1 32  thus, f ( ) .144 1 3
144

1 1
4

14. f u d
du u

u
u

( ) 1 6 3 1
2

3

3 uu
u2

2

; thus, f ( )
( ) ( )

( )2 6
2

3 1
2

2 735
643 2

2

..

15. y d
dx x

x
x

1
8

6
82 3 2 4( ) ( )

;  thus, dy
dx 4

2 4

6 4
4 8

3
512

( )
(( ) )

.

5·6 1. Step 1. Differentiate every term on both sides of the equation with respect to x:

d
dx

x y d
dx

( ) ( )2 1

x d
dx

y y d
dx

x2 2 0( ) ( )

x dy
dx

xy2 2 0

  Step 2. Solve the resulting equation for dy
dx

.

x dy
dx

xy2 2

dy
dx

xy
x

y
x

2 2
2 ,  provided x  0

2. Step 1. Differentiate every term on both sides of the equation with respect to x:

d
dx

xy d
dx

x y y( ) ( )3 23 5

x d
dx

y y d
dx

x x d
dx

y y d
dx

x d
dx

( ) ( ) ( ) ( ) (3 3 2 23 3 5 yy)

x y dy
dx

y x dy
dx

y x dy
dx

( ) ( ) ( )3 1 3 6 52 3 2

( )3 3 6 52 3 2xy dy
dx

y x dy
dx

xy dy
dx

  Step 2. Solve the resulting equation for 
dy
dx

.

( )3 3 5 62 2 3xy dy
dx

x dy
dx

dy
dx

xy y

dy
dx

xy y
xy x

6
3 3 5

3

2 2 .

3. Step 1. Differentiate every term on both sides of the equation with respect to x:

d
dx

x d
dx

y d
dx

1
2

1
2 25( )

1
2

1
2

0
1
2

1
2x y dy

dx

  Step 2. Solve the resulting equation for dy
dx

.

dy
dx

x

y

y
x

1
2
1
2

1
2

1
2

.
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4. Step 1. Differentiate every term on both sides of the equation with respect to x:

d
dx

x d
dx

y d
dx

( ) ( ) ( )1 1 9

1 1 02 2x y dy
dx

( )

  Step 2. Solve the resulting equation for dy
dx

.

dy
dx

x
y

y
x

2

2

2

2

5. Step 1. Differentiate every term on both sides of the equation with respect to x:

d
dx

x d
dx

y d
dx

( ) ( ) ( )2 2 16

2 2 0x y dy
dx

( )

  Step 2. Solve the resulting equation for 
dy
dx

.

dy
dx

x
y

x
y

2
2

6. Whenx y dy
dx

xy
x

y
x

2
21 2 2, ;  thus, dy

dx ( , )

( )
( )

.
3 1

2 1
3

2
3

7. When xy3  3x2y 5y,
dy
dx

xy y
xy x

6
3 3 5

3

2 2 ;  thus, dy
dx ( , )

( )( ) ( )
( )( ) ( )5 2

3

2 2

6 5 2 2
3 5 2 3 5 5

13
5

..

8. When x y dy
dx

y
x

25, ; thus, dy
dx ( , )

.
4 9

9
4

3
2

9. When 1 1 9
2

2x y
dy
dx

y
x

, ; thus, dy
dx ( , )

.
5 10

100
25

4

10. When x2 y2 16, dy
dx

x
y

; thus, dy
dx ( , )

( )
( )

.
2 1

2
1

2

6 Additional derivatives

6·1 1. f x d
dx

e d
dx

e ex x x( ) ( ) ( )20 20 20

2. y d
dx

e e ex x x( ) ( )3 3 33 3

3. g x d
dx

e x x ex x( ) ( )5 2 2 53 3

15 15

4. y d
dx

e e x x ex x x( ) ( )( )4 4 15 605 5 2 2 53 3 3

5. h x d
dx

e e x x ex x x( ) ( ) ( )10 10 2 2 103 3 3

30 30

6. f x d
dx

x d
dx

e x ex x( ) ( ) ( ) ( )15 10 15 2 10 302 xx ex10
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7. g x d
dx

e e x x ex x x x x x( ) ( ) ( ) ( )7 2 7 2 2 2 7 23 3

7 6 7 6
33

8. f t d
dt e

d
dt

e et
t t( ) ( ).

. .100 100 1000 5
0 5 0 5 (( . ) .0 5 50 0 5e t

9. g t d
dt

e e et t t( ) ( ) ( )2500 2500 2 50002 1 2 1 2 1

10. f x d
dx

e e x xx x

( ) ( )1
2

1
2 2

2

2

2

2 e
x2

2

6·2 1. f x d
dx

x
x x

( ) (ln )20 20 1 20

2. y d
dx

x
x x

(ln ) ( )3 1
3

3 1

3. g x d
dx

x
x

x
x

( ) [ln( )] ( )5 1
5

15 33
3

2

4. y d
dx

x
x

x
x

4 5 4 1
5

15 123
3

2[ln( )] ( )

5. h x d
dx

x
x

x
x

( ) [ln( )] ( )10 1
10

30 33
3

2

6. f x d
dx

x d
dx

x x
x

( ) ( ) (ln ) ( )15 10 15 2 10 12 330 10x
x

7. g x d
dx

x x
x x

x x( ) [ln( )] ( )7 2 1
7 2

7 6 7 6
7

3
3

2
2

xx x2 3

8. f t d
dt

t t
t t

t t( ) [ln( )] ( )3 5 20 1
3 5 20

6 5 6 5
3

2
2 tt t2 5 20

9. g t d
dt

e d
dt

tt( ) [ln( )] ( ) 1

10. f x d
dx

x
x x x x

( ) [ln(ln )]
ln ln

1 1 1

6·3 1. f x d
dx

x x( ) ( ) (ln )( )20 3 20 3 3

2. y d
dx

x x x( ) (ln )( )( ) (ln )( )5 5 5 3 3 5 53 3 3

3. g x d
dx

xx x( ) ( ) (ln )( )2 15 2 25 2 53 3

4. y d
dx

xx x4 2 60 2 25 2 53 3

( ) (ln )( )

5. h x d
dx

xx x( ) ( ) (ln )( )4 30 4 410 2 103 3

6. f x d
dx

x d
dx

xx( ) ( ) ( ) ( ) (ln15 10 5 15 2 10 52 3 ))( ) (ln )( )5 3 30 30 5 53 3x xx

7. g x d
dx

xx x x x( ) ( ) (ln )( )( )3 3 3 7 67 2 7 2 23 3

8. f t d
dt

t t( ) ( ) (ln )( )( .. .100 10 100 10 10 0 50 5 0 5 )) (ln )( ).50 10 100 5t
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9. g t d
dt

t t( ) ( ) (ln )( )( )2500 5 2500 5 5 2 52 1 2 1 0000 5 52 1(ln )( )t

10. f x d
dx

x
x x

( ) (ln )8 8 8 1
2

2
2

2

2

2 x
x

(ln )8 8
2

2

6·4 1. f x d
dx

x
x x

( ) (log )
ln ln

20 20 1
4

20
44

2. y d
dx

x
x x

(log )
ln

( )
ln10 3 1

3 10
3 1

10

3. g x d
dx

x
x

x
x

( ) [log ( )]
ln

( )
ln8

3
3

25 1
5 8

15 3
8

4. y d
dx

x d
dx

x
x

[ log ( )] [log ( )]
l

4 5 4 5 12
8

3
8

3

nn8

5. h x d
dx

x
x

x
x

( ) [log ( )]
ln

( )
ln5

3
3

210 1
10 5

30 3
5

6. f x d
dx

x d
dx

x x
x

( ) ( ) (log )
ln

15 10 30 10
2

2
2

7. g x d
dx

x x
x x

x( ) [log ( )]
( )ln

( )6
3

3
27 2 1

7 2 6
7 6 7 6xx

x x

2

37 2 6( )ln

8. f t d
dt

t t
t t

t( ) [log ( )]
( )ln

(16
2

23 5 20 1
3 5 20 16

6 5 6 5
3 5 20 162)

( )ln
t

t t

9. g t d
dt

e
e

et
t

t( ) [log ( )]
ln

( )
ln2

1
2

1
2

10. f x d
dx

x
x

d
dx

( ) [log (log )]
(ln )(log )10 10

10

1
10

((log )
(ln ) ln

ln

(log )10 10
1

10
10

1x
x

d
dx

x
lln lnx x

1
10

1
10x x(ln )(ln )

6·5 1. f x d
dx

x x x( ) (sin ) (cos )( ) cos5 3 5 3 3 15 3

2. h x d
dx

x x x x( ) [cos( )] sin( ) ( ) s1
4

2 1
4

2 42 2 iin( )2 2x

3. g x d
dx

x x( ) tan sec5 3
5

5 3
5

2 3
5

3 3
5

2sec x

4. f x d
dx

x x x( ) (sec ) sec tan ( ) sec10 2 10 2 2 2 20 2xx xtan2

5. y d
dx

x x x x2
3

2 2
3

2 2 63 3 3 2[sec( )] sec( )tan( ) ( )) sec( )tan( )4 2 22 3 3x x x

6. s t d
dt

t t t( ) (cot ) csc ( ) csc4 5 4 5 5 20 52 2

7. g x d
dx

x d
dx

x( ) tan6 2
3

203
1
2 6 3 2

3
2
3

2
3

2 2tan secx x

20 1
2

12 2
3

2
3

1
2 2 2x x xtan sec 10

x
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8. f x d
dx

x x d
dx

x x x( ) ( sin ) (cos ) [ (cos ) sin2 2 2 xx x x x x x( )] sin ( ) cos sin sin1 2 2 2 2 2 2

9. h x d
dx

x
x

x x( ) sin
sin

( sin )(cos3
1 3

1 3 3 ))( ) sin ( cos )( )
( sin )

3 3 0 3 3
1 3 2

x x
x

3 1 3 3 3 3 3
1 3

3 3
2

( sin )(cos ) sin cos
( sin )

cosx x x x
x

x 33 3 3 3 3 3
1 3

3 3
12

sin cos sin cos
( sin )

cos
( sin

x x x x
x

x
33 2x)

10. f x d
dx

e x e x x ex x x( ) [ sin ] (cos )( ) (sin )( )(4 4 42 2 2 2 44 2 2 4 24 4) cos sine x e xx x

6·6 1. f x d
dx

x
x

x x( ) [sin ( )]
( )

( )1 3

3 2

2
21

1
3 3

11 6x

2. h x d
dx

e
e

e e
e

x

x

x
x

x
( ) [cos ( )]

( )
( )1

2 2

1
1 1

3. g x d
dx

x
x

x x
x

( ) [tan ( )]
( )

( )1 2
2 2 4

1
1

2 2
1

4. f x d
dx

x
x

( ) [cot ( )]
( )

( )1
27 5 1

1 7 5
7 7

1 (( )7 5 2x

5. y d
dx

x
x

x1
15

5 1
15

1
1 5

151 3

3 2

2[sin ( )]
( )

( ) x
x

2

61 25

6. f x d
dx

x
x

x x
x

( ) [cos ( )]
( )

( )1 2

2 2 4

1
1

2 2
1

7. h x d
dx

x
x x x

( ) [csc ( )]
| | ( )

( )
|

1

2
2 1

2 2 1
2 1

|| 4 12x

8. g x d
dx

x

x x
( ) sec4

2
4 1

2 2
1

1

2

1
2

4

4
1

2

| |x x

9. f x d
dx

x x x
x

x x( ) [ sin ( )]
( )

( ) sin (1 2

2 2

17 1
1 7

14 7 22
2

4

1 21 14
1 49

7)( ) sin ( )x
x

x

10. y d
dx

x
x

x[arcsin( )]
( )

( )1 1

1 1

1
2

12

2 2

2 1
2 (( )

( )
2

1 1 12 2
x x

x x

x
x x

x
x x

x
x x1 1 1 1 12 2 2 2 2| |

6·7 1. f x d
dx

x x x x f x x x( ) [ ] ; ( ) ;7 10 6 9 5 82 7 20 42 180  thus, f x x x( ) 210 14404 7

2. h x d
dx

x x( ) ;
1
3

2
3

1
3

 thus, h x x
x

( ) 2
9

2

9

5
3

5
3

3. g x d
dx

x g x( ) ( ) ; ( ) ;2 2 0  thus, g x( )( )5 0
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4. f x d
dx

e e f x e f x ex x x x( ) ( ) ; ( ) ; ( ) ;5 5 5 5 ff x ex( )( )4 5

5. y d
dx

x x d y
d x

x(sin ) cos ; sin ;3 3 3 9 3
2

2 thus, d y
d x

x
3

3 27 3cos

6. s t d
dt

t t t( ) ;16 2
3

10 32 2
3

2  thus, s t( ) 32

7. g x D x
x x

D g x
xx x( ) [ln ] ; [ ( )] ;3 3

3
1 12

2  thus, D g x
xx

3
3

2[ ( )]

8. f x d
dx

x d
dx

x f x x( ) ( ) ( ); ( )10 1
5

50 35 3 6

55
300 6

5
2100 6

5
2 7 8x f x x x f x x; ( ) ; ( ) ;

  thus, f x x
x

( )( ) , ,4 9
916 800 0 16 800

9. f x d
dx

f xx x x( ) ( ) ln ( ); ( ) (ln ) ( );3 2 3 3 4 3 32 2 2 2  thus, f x x( ) (ln ) ( )8 3 33 2

10. y dy
dx

d
dx

x
x x

d y
d x

(log )
ln

( )
ln

;
ln2

2

25 1
5 2

5 1
2

1
2
dd
dx x x

1 1
22 ln

;

d y
d x

d
dx x x

3

3 2 3

1
2

1 2
2ln ln

; thus, 
d y
d x

d
dx x x

4

4 3 4

1
2

2 6
2ln ln

III INTEGRATION

7 Indefinite integral and basic integration formulas and rules

7·1 1. d
dx

x C( )100 100 0 100

2. d
dx

x C x x( )3 6 0 62

3. d
dx

x x x C x x x x( )3 2 2 22 5 3 4 5 0 3 4 5

4. d
dx

x x C x x2
7

2
3

7
2

2
7

3
2

2
3

0
7
2

3
2

5
2

1
2 xx x x x x x

5
2

1
2

4
2

1
21 12( )

5. d
dx

x
e

e C
e

e x e x e
e

x e x e x
1

1
1

1
1 0( )

6. d
dx

x C x( ) ( ) ( )10 30
4

4 1
4

10 30 10 0
4

3 110 10 30 3( )x

7. d
dx

x C x x x( ) ( ) ( ) ( )
2 5

2 4 23
5

5 1
5

3 2 3 44 2( )x

8. d
dx

x C x x xsin sin (cos ) sin (
3

2 2

3
3 1

3
0 ccos )x

9. d
dx

x C x x xcos ( sin )( ) (
3

3 2 2

3
1
3

3 0 ssin )x3

10. d
dx

x x x C x
x

x x x( ln ) ln ln ln1 1 1 0 1 1
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7·2 1. 8 8dx x C

2. 3
4

3
4

dx x C

3. 9 75 9 75. .dx x C

4. 3 3dx x C

5. 40
10 15

40
10 15

3 3

dx x C

6. 16 2 16 2dt t C

7. e dx e x C2 2

8. 2 2dr r C

9. 21 21du u C

10. 6 6
e
dx

e
x C

7·3 1. x dx x C5
6

6

2. x dx x dx x C x C34
7
4

3
4

7
4 7

4
4
7

3. x dx x C2
2 1

2 1

4. 1
1

1
2

2
1

x
dx x dx x C

x
C

5. t dt t C100
101

101

6. u du u C
2

2 1

2 1

7. 1 2 2
1
2

1
2 1

2

1
2x

dx x dx x C x C x C

8. x
x

dx x dx x C
5

2
3

4

4

9. r dr r C1 ln | |

10. 1
t
dt t Cln | |

7·4 1. e dt e Ct t

2. e dx e Cx
x

20
20

20

3. e dx e Cx
x

4. e dx e C e Cx
x

x0 25
0 25

0 25

0 25
4.

.
.

.
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5. e dx e C e C
x

x
x

5
5

5

1
5

5

6. e dx e Cx
x

3
3

3

7. 4 4
4

x
x

dx C
ln

8. 2 2
3 2

3
3

x
x

dx C
ln

9. 100 100
0 25 100

4 1000 25
0 25 0 25

.
. .

. ln
( )x

x x

dx C
lln100

C

10.
x

x x

dx C C5
5 5

1
5

5
ln ln

7·5 1. cos sinvdv v C

2. sin
cos cos

1
2

1
2

1
2

1
22

x dx
x

C
x

C

3. cos( ) sin( )18 18
18

x dx x C

4. sec ( ) tan( )2 3 3
3

x dx x C

5. csc ( . ) cot( . )
.

. cot( . )2 2 5 2 5
2 5

0 4 2 5x dx x C x C

6. sec tan
sec

5
6

5
6

5
6

5
6

x x dx
x

CC x C6
5

5
6

sec

7. csc cot
csc

cscx x dx

x

C x C
3 3

3
1
3

3
3

8. csc( )cot( ) csc( )ex ex dx ex
e

C

9. sin cos3 3
3

d C

10. cos( ) sin( )25 25
25

x dx x C

7·6 1. 1
1 2

1d Ctan

2. dx
x x

dx x C
16

1
4 42 2 2

1sin

3. 1
49

1
7

1
7 72 2 2

1

x
dx

x
dx x Ctan

4. dt
t t

dt t
0 25

1
0 5

1
0 5 0 52 2 2

1

. ( . ) .
tan

.
C t C2 21tan ( )
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5. du
u u u u

du u C
2 2 2

1

1
1

1( ) | | ( )
sec

6. 1
41

1

41

1
41 412 2 2

1

| | | | ( )
sec

x x
dx

x x
dx x C

7. 1
81

100

1

9
10

2
2

2

1
9

10x
dx

x

dx xsin CC x Csin 1 10
9

8. 1 1
2 2

1

x
dx x Ctan

9. dt

t t t t

dt
2 2 2

2 11
4

1

1
2

1

| |
22

1
1
2

12 2sec sec ( )t C t C

10. 1
7

1

7

1
7 72 2 2

1

| | | | ( )
sec

x x
dx

x x
dx x CC

7·7 1. ( )3 5 21 36 10 3 5 214 3 2 4 3 2x x x x dx x dx x dx x dx 336 10xdx dx

3
5

5
4

21
3

36
2

5 4 3 2x x x x 10 3
5

5
4

7 18 10
5 4

3 2( )x C x x x x x C

2. [ cos( )] cos( ) si3 4 2 3 4 2 3
3

42 2
3

x x dx x dx x dx x nn( ) sin( )2
2

2 23x C x x C

3. 8 5 8 5 8 5 1 85 5
5

t t
dt

t
dt

t
dt t dt

t
dt t 44

44
5 2 5ln lnt C

t
t C

4. 1
25

1
100

1
5

1
102 2 2 2 2 2d d d sinn tan1 1

5
1

10 10
C

5. e e
e

dx e e dx e dx e dx e ex x

x
x x x x

x5 4

2
3 2 3 2

3

3
( )

22

2

x

C

6. x x
x

dx x
x

dx x dx
x
dx x7 4

5
2 2

31 1
3

lnx C

7. 1 1 1
6 2 3 2 2 3

1
3e x

dx
e x

dx
e

x
e

C
( )

tan

8. ( ) ( )x dx x x dx x dx x dx dx2 2 4 2 4 24 8 16 8 16 x x x C x x x C
5 3 5 3

5
8

3
16

5
8

3
16

9. 7 7 7 21
3 2

3

1
3

2
3

t
dt t dt t C t

22
3

2
C

10. 20 20 20
1
2

1
2

x
x

dx
x

x
x

dx x dx x dx C 20
1
2

3
2

1
2

3
2

x x C

40 2
3

40 2
3

1
2

3
2x x C x x x C| |
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8 Basic integration techniques

8·1 1. 3 5 5 3 5
5

3 4 2 3 4 2
3 5

( ) ( ) ( )x x dx x x dx x C

2. e x dx e x dx e Cx x x4 4 43 31
4

4 1
4

3. t
t

dt t
t

dt t C2 2
2

7
1
2

2
7

1
2

7ln( )

4. ( ) ( ) ( ) ( )x x x dx x x C x x5 4
5

5
4

5

3 5 3 3 4 31
4

5
4

5
44

5
C

5. x x
x x

dx x x x x
3

4 2 4
4 2 4 32

4 5
1
4

4 5 4 8
( )

( ) ( )ddx x x C
x x

C1
4

4 5
3

1
12 4 5

4 2 3

4 2 3

( )
( )

6. x x
x x

dx
x x

x x dx
3

4 2 4 2
32

4 5
1
4

1
4 5

4 8 1
( )

( )
44

4 54 2ln |( )|x x C

7. x x dx x x dx xcos( ) cos( ) sin(3 1 1
6

6 3 1 1
6

32 2 2 11) C

8. 3 2 3 1
2

2
2 1

2
1
2

1cos (sin ) cos sinx x
x

dx x x x 22
1
22 23 3dx x C x Ccos cos ( )

9. e
e

dx
e

e dx e
x

x x
x x

2

4 2 2
2 1 2

1
1
2

1
1

2 1
2( )

tan ( ) C

10. 6 2 3 22 2 2 2 23 3 3

t e dt e t dt e Ct t t

8·2 1. Let u x and dv x dxsin( ) ,2 2  then 2 2 2 2x x dx x x dx u v v dusin( ) sin( )

x x x dx x x x dx( cos( )) cos cos( ) cos2 2 2 1
2

2 2 xx x x Ccos( ) sin( )2 1
2

2
1
2

2 2sin( ) cos( ) .x x x C

2. Let u xln  and dv x dx3 , then x x dx u v v du x x x
x
dx3

4 4

4 4
1ln ln

x x x dx x x x C x x x4
3

4 4 4 4

4
1
4 4

1
4 4 4 16

ln ln ln CC.

3. Let u t and dv e dtt , then te dt t e e dt te e C e t Ct t t t t t ( ) .1

4. Let u x and dv xdxcos , then x xdx x x x dx x x x Ccos sin sin sin cos .

5. Let u xcot 1  and dv dx , then cot ( ) (cot )1 1
2

1
1

x dx u v v du x x x
x

dx

x x
x

xdx x x x C(cot )
( )

(cot ) ln | |1
2

1 21
2

1
1

2 1
2

1 ..

6.  Let u x 2 and dv e dxx , then x e dx u v v du x e e xdx x e e xdxx x x x x2 2 22 2 ; for the 

second integral, let u x and dv e dxx , then x e dx x e x e e dx x e xe e Cx x x x x x x2 2 22 2 2 .
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7. Let u w and dv w dw( ) ,3 2  then w w dw u v v du w w w dw( ) ( ) ( )3 3
3

3
3

2
3 3

w w w C( ) ( ) .3
3

3
12

3 4

8. Let u xln( )4  and dv x dx3 , then x x dx u v v du x x x
x
dx3

4 4

4 4
4 4

1ln( ) ln( )

x x x dx x x x C
4 3 4 44

4 4
4

4 16
ln( ) ln( ) .

9. Let u t and dv t dt( ) ,5 4  then t t dt u v v du t t t( ) ( ) ( )5 5
3

1
3

54
3

33 dt

t
t

t dt t
t

t
3 5

1
3

5
3 5

1
3

5
3

3
3( )

( )
( )

( ) 22

3 22 3 5
1

6 5
t

t t
C

( ) ( )
.

10. Let u x and dv x( ) ,2
1
2  then x x dx x x x dx x x2 2 2

3
2
3

2 2 2
3
2 3

2
( ) ( ) ( )

33
2

3

2
3

2 2 2
3

2
3

2
5

2 23
2

3
2 5

2( ) ( ) ( ) (x dx x x x C x x 22
3

4
15

2
3
2 5

2
) ( ) .x C

8·3 1. cotxdx  matches Formula 15. Therefore, cot ln | sin | .xdx x C

2. 1
2 3 5( )( )x x

dx  matches Formula 50 with a  1, b  2, c  3, and d  5. Therefore,   

1
2 3 5

1
1 5 2 3

2
3 5

2
3( )( )

ln ln
x x

dx x
x

C x
xx

C
5

.

3. (ln )x dx2  matches Formula 41. Therefore, (ln ) ln (ln ) .x dx x x x x x C2 22 2

4. x xdxcos  matches Formula 57. Therefore, x xdx x x x Ccos cos sin .

5. x
x

dx
( )2 2  matches Formula 49 with a  1 and b  2. Therefore, x

x
dx

x
x

( )
ln | |

2
1
1

2
2

22 2

C
x

x C2
2

2ln | | .

6. 3 3xe dx xe dxx x  matches Formula 35. Therefore, 3 3 1 3 1xe dx e x C e x Cx x x( ( )) ( ) .

7. 10 3w dw  matches Formula 51 with a  10 and b  3. Therefore, 10 3 2
3 10

10 3
3
2w dw w( )

C w C1
15

10 3
3
2( ) .

8. t t dt t
t

dt( )5
5

1  matches Formula 48 with a  1 and b  5. Therefore, t
t

dt t t
5 1

5
1

52 ln | |

C t t C5 5ln | | .

9. x x dx2  matches Formula 52 with a  1 and b  2. Therefore, x x dx x x2 2 3 1 2 2
15 1

22

3
2

( )( )

C x x C2 3 4
15

2
3
2

( )( ) .

10. 1
sin cosu u

du matches Formula 58. Therefore, 1
sin cos

ln | tan | .
u u

du u C
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9 The definite integral

9·1 1. ( ) ( ) (3 4 5 2 5 10 2 102

10

10 3 2

10

10 3 2x x dx x x x 55 10 10 2 10 5 10 19003 2) (( ) ( ) ( ))

2. 8 8 8 30 8 50 640
50

30

50

30
dx x( ) ( ) ( )

3. x
x

dx x dx x5

22

7 3

2

7 4

2

7
4 4

4
7
4

2
4

2385
4

596 25.

4. 1 36 6 36
6

6
6

36

6

36

t
dt t(ln ) (ln ) (ln ) ln ln

5. sec tan sec
.

5
6

5
6

6
5

5
60 5

d
00 5

6
5

5
6

6
5

5
6

0 5
.

sec sec .

6
5

5
6

5
12

6 0221sec sec .

6. dx
x

dx
x

x
4 2 2

3
221

3

2 21

3 1

1

3
1sin sin sin .1 1

2 3 6 6
0 5236

7. ( )3 5 21 36 10 3
5

5
4

7 18 14 3 2

1

2 5 4
3 2x x x x dx x x x x 00

1

2

x

  3 2
5

5 2
4

7 2 18 2 10 2 3 1
5

5 1
4

7
5 4

3 2
5 4

1 18 1 10 1 103
20

5 153 2 .

8. ( ln ) ln lnx x dx x x x3

3

5 4 4

3

5
4 4

4 16
5 5

4
5
16

3 3
4

3
16

195 2278
4 4ln .

9. cot ( ) cot ln | | cot1

1

3 1 2

1

3
11

2
1 3x dx x x x 33 1

2
1 3 2ln | ( ) |

1 1 1
2

1 1 3 3 1
2

41 2 1cot ( ) ln | ( ) | cot ln( )) cot ( ) ln( ) ln(1 1 1
2

2 3
6

1
2

4))

4
1
2

2 0 4681ln( ) .

10. 1
1

1 5 1 2 1
2

5

2

5 5

e
dx x e ex

x( ln( )) ( ln( )) ( ln( ee e e2 5 23 1 1 0 1202)) ln( ) ln( ) .

9·2 1. By Property 1, f x dx( ) .
2

2
0

2. By Property 2, f x dx f x dx( ) ( ) .
0

2

2

0
12

3. By Property 1, f x dx( ) .
1

1
0

4. By Property 3, f x dx f x dx f x dx( ) ( ) ( ) .
2

2

2

0

0

2
12 15 27

5. By Property 4, 5 5 5 12 60
2

0

2

0
f x dx f x dx( ) ( ) .

6. By Properties 4 and 3, 10 10 10
2

2

2

2

2

0

0
f x dx f x dx f x dx f x dx( ) ( ) ( ) ( )

22

10 12 15 10 27 270( ) ( ) .
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7. By Property 5, [ ( ) ( )] ( ) ( ) .f x g x dx f x dx g x dx
1

5

1

5

1

5
8 22 14

8. By Property 5, [ ( ) ( )] ( ) ( ) .f x g x dx f x dx g x dx
1

5

1

5

1

5
8 22 30

9. By Property 4, 1
2

1
2

1
2

8 4
1

5

1

5
f x dx f x dx( ) ( ) ( ) .

10. By Property 4, 2 3 2 3 2 2
1

5

1

5

1

5

1

5
g x dx f x dx g x dx f x dx( ) ( ) ( ) ( ) ( 22 3 8 20) ( ) .

9·3 1. d
dx

t dt x
x

x
( ) ( )

( )
2 5

0

2 5
2 53 3 1

3

2. d
dx

t dt x
x

3 5 3 5
1

3. d
dx

t t dt x x x x x
x

sin ( )sin( )( ) sin(
4

4 4 3 7 44 4 ))

4. d
dx

t dt x x x x
x 23

5

5 2 23 43
2

5 10 10 25( ) ( ) 110 252 3x x

5. d
dx

t t dt x x x
x

( ) ( ) ( )2

10

2 2 22 1 2 2 2 1 22 1x

6. If F x t dt
x

( ) sin( ) ,3
0

 then F x x( ) sin( ).3

7. If F x
t

dt
x

( ) ,1
15

4
 then F x

x x
( )

( )
.1

4 1
4 4

4 1

8. If F x t dt
x

( ) ,
sin

6 2

0
 then F x x x x x( ) (sin ) cos sin cos .6 62 2

9. If F x t dt
x

( ) ,2 4

3
 then F x x x x( ) ( ) .2 1

2
4 1

2
3
2

10. If F x t dt
x

( ) ( ) ,3 7
8

2 1
 then F x x x( ) ( ( ) ) .3 2 1 7 2 12 8

9·4 Note: In these exercises, the symbol means “implies.”

1. By the Mean Value Theorem, you have ( ) ( )( ( )) ( ) ( )(2 6 2 6 1 1 6 2 6 2
1

1 2

1

1
x dx c x x c ))

(( ) ( )) (( ) ( )) .1 6 1 1 6 1 4 12 12 4 12 02 2 c c c

2. By the Mean Value Theorem, you have ( ) ( )( )2 5 2 5 4 0 2 10
30

4

0

4
3
2x dx c x x

( )( ) ( ) ( )2 5 4 2 4 10
3

4 2 0 10
3

0
3
2

3
2c 8 20 8 80

3
8 20 16

9
c c c.

3. By the Mean Value Theorem, you have 4 4 4 1 2 4
31

4

3 2
1

4

3x
dx

c x c
( ) (33)

2
4

2
1

12 15
8

12 2 4
52 2 3 3

3

c c
c.

4. By the Mean Value Theorem, you have sin (sin )( ) ( cos ) (sin )( )xdx c x c
0 0

0

( cos ) ( cos ) sin (sin )( ) ( ( )) ( (0 1c c 11 2 2)) sin sinc c

sin sin .c c1 2
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5. By the Mean Value Theorem, you have 1 1 3 1 1 2 3
1

3

1

3

x
dx

c
x

c
( ) (ln | |) ( ) ln ln1

1 2 3 0 2 3 2 2
3c c c

c( ) ln ln
ln

.

6.
1 1

2 2
1
4 3

2

2

2 3

2

2

b a
f x dx x dx x

a

b
( )

( ( ))
11
4

2
3

2
3

1
4

8
3

8
3

4
3

3 3( ) .

7.
1 1

3 1
1 1

2
1
2

3
1

3

1

3

b a
f x dx

x
dx x

a

b
( )

( )
(ln ) (ln ln11 1

2
3 0 3

2
) (ln ) ln .

8. 1 1

2 2

1

2

2

b a
f x dx xdx

a

b
( ) cos (sin ) sin sinx

2

2 1
2 2

11 1 1 2( ( )) .

9. 1 1
4 1

9
2

1
3

3 4 1
1

4

1

43
2

3
2

3
2

b a
f x dx x dx x

a

b
( )

( )
( ) .8 1 7

10. 1 1
1 0

1
1

1
0

1

0

1 1 0

b a
f x dx e dx e e e e

a

b x x( )
( )

( ) .

IV APPLICATIONS OF THE DERIVATIVE 
AND THE DEFINITE INTEGRAL

10 Applications of the derivative

10·1 1. f x x e xx( ) cos( )3 2  and thus f
e e

( ) cos( ) cos( ).1 3 1 1 3 1 1

2. f x
x

x( ) 1
1

2  and thus f ( ) .2 5

3. y x4 4 hence y ( )2 4 so the required equation is y x x4 2 4 8( ) .

4. f x x x( ) .3 12 92

5. f x x
x

( ) .2 2  Set f x( ) 0 and solve to get 2 2 0

3
2x
x

 or x 1. Thus the only point is (1, –2).

6. Setting f x( ) 0 and solving you get f x x x x x( ) ( )5 15 20 5 3 44 2 4 2

5 4 1 02 2( )( )x x  whose solution is x 2 so the points are (2, –41) and (–2, 55).

7.  Differentiating implicitly you get 2 3 3 2 0x xy y yy , so y x y
x y

2 3
3 2

 and at (1, 1) you get the 

slope y 1. This gives the required equation to be y x1 1 1( ) and simplifying you get y x 2.

8.  y x4  and to be parallel to y x8 3 the slopes must be equal, so x must be 2. Also the tangent point 
must be on the curve and the point is therefore (2, 11). The required equation is then y x11 8 2( ) or 
simply y x8 5.

9. There is no solution since (1, 2) is not on the curve.

10.  f x x x x
x

( ) ( )( cos ) ( sin )
( )

1 1
1 2  and so f ( ) .0 2  and the required equation is y x1 2 0( ) or 

simply y x2 1.
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10·2 1. f t( ) 80 40t and f 3
2

20 acres per hour

2. v t( ) 32 ft/sec2

3. y x x3 16 3 2 and at t y2 23,  castings per hour.

4.  s t( ) 200 100t  and if s t( ) 39  then solve 100 100 392t t  to get t 3
10

 or 13
10

. Reject the negative 

value and the velocity is s 3
10

160 cm/sec.

5.  v t s t t t t t t( ) ( ) ( )( )4 18 24 10 2 2 5 13 2 2 and a t v t s t t t t t( ) ( ) ( ) ( )( ).12 36 24 12 1 22

   At t  2.5, v  0, but a 0,  so the direction changes but v does not change sign at t  1. Both v and a are 0 
at t  1, so no information is known.

6. v t s t t( ) ( ) 3
2

2
2

 and a t v t s t t( ) ( ) ( ) .3  At t  2, v  4 ft/sec and a  6 ft/sec2.

7. y x24 24
5

 and y ( )3 24 1 3
5

48
5

 pints/lb.

8.  v t s t t( ) ( ) 32  and a t v t( ) ( ) 32 so the velocity at 2 seconds is –64 ft/sec and the acceleration is 
–32 ft/sec2.

9.  v t t( ) 112 32  and a t( ) 32 and when t  3, v  16 ft/sec. Also, v  0 when t  3.5 so the maximum 
height is s( . )3 5 196 ft.

10. V t t( ) ( )250 80 2  so V ( )5 –17,500 gal/min.

10·3 1.  Technically, there is a discontinuity at x  3, and thus the function is not differentiable there. However, 
the discontinuity is removable and on removal the resulting function is differentiable there.

2. f x
x

x
xx x x

( ) lim| | lim| | . lim |0 0
00 0 0

But xx
x

x
xx

| lim
0

1  and lim | | lim
x x

x
x

x
x0 0

1, so the limit does not 

  exist and the function is not differentiable at x  0. On the other hand, f x( ) 1 when x  0, and f x( )
1 0when x .

3.  lim( )
x

x
2

2 0
1
3  and thus the function is continuous there but lim ( ) lim

( )
x x

x
x

x
2

1
3

2 2
3

2 0
2

1

2
 does not exist 

and the function is not differentiable at x  2. In fact, there is a vertical tangent at (2, 0).

4. lim ( ) ( ) lim ( ( ) ) (
h h

f h f
h

h
0 0

23 3 4 3 13)) lim lim( )
h

h h
h

h
h h0

2

0

6 6 6  and 

lim ( ) ( ) lim ( ( ) ( )
h h

f h f
h

h
h0 0

3 3 5 6 3 13 lim
h

h
h0

6 6  so the derivative exists at x  3.

5.  lim ( ) ( ) lim lim
x x x

f x f
x

x
x

x
0 0

2

0

0
0

0 and lim ( ) ( ) lim
x x

f x f
x

x
x0 0

0
0

2  and this limit does not exist so the 

function is not differentiable at x  0.

10·4 1. a.  f x x x x x x x x x x( ) ( ) ( )( )3 2 23 2 3 2 1 2  so the critical numbers are 0, 1, and 2 and the 

corresponding critical values are 0 1
4

, , and 0.

  b.  The derivative is positive on [0, 1] and [2, )  and negative on ( , 0] and [1, 2] and the function is 
increasing on [0, 1] and [2, ) and decreasing on ( , ]0  and [1, 2].

  c. f ( )0 0 and f ( )2 0 are relative minimums and f ( )1 1
4  is a relative maximum.
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2. a.  f x
x x x x

x

x
( ) 1

2

1

2

1
2

1 1 1

2
1
2

3
2

3
2

 and this is equal to 0 when x  –1, but that value is not in the 

domain so there are no critical points or critical values.
  b.  The domain is (0, ) and the function is increasing over its domain since the derivative is positive 

there.
  c.  There are no relative extrema.

3. a.  f x x( ) cos2
2

 and this is equal to 0 when x n
2

2 1
2

( )  or when x n( )2 1  for n an integer. The 

critical values are 4  at these values.
  b.  The function is increasing on [( ) ,( )]4 1 4 1k k  and decreasing on [( ) ,( ) ]4 1 4 3k k  for integers k.
  c.  The function has relative maximums of 4 at x k( )4 1  and relative minimums of –4 at x k( ) .4 3

4. a.  f x x
x

x x
x

( ) ,
2

2

2
2

29
9 2 9

9
 which is 0 when x 3

2
 but the function is undefined at these 

points. There are no critical points or critical values.
  b.  The derivative is positive on ( , )3  and ( , ).3  The function is undefined on (–3, 3).
  c. There are no relative extrema.

5. a.  lim lim ( )( ) ,
x x

x
x

x x
x2

2

2

1 5
2

2 2
2

4  but lim ( ) ,
x

x
x2

2 2
2

2  so the derivative does not exist at x  –2. 

Also, f ( )0  0 so the critical points are –2 and 0. The corresponding critical values are f ( )2 5
and f ( ) .0 1

  b.  The derivative is positive on ( , )2  and ( , )0  and negative on (–2, 0).

  c. There is a relative maximum value of f ( )2 5  and a relative minimum value of f ( ) .0 1

6. a.  f x
x

( )
( )

2

4
1
3

 and is thus undefined at x  4, which is the only critical point and the corresponding 

critical value is f ( ) .4 2
  b. The derivative is positive on ( , )4  and negative on ( , ).4
  c.  There is a relative maximum of 2 at x  4.

7.  f x x ax( ) 3 22  and for a relative extreme to occur at (2, 3), f(2)  8  4a b  3 and since f ( )2  must 
be 0, you get 12  4a  0 or a  –3 and thus b  7.

8.  The constraints are the geometric figures and the amount of wire. So 0 25x  and 0 20s  where x
and s denote length of the sides of the square and pentagon, respectively. Also, 4 5 100x s  from which 

it follows that s x100 4
5

. For ease, let a 5 36
2

cot( ) . Then the total area is given by T x as2 2 and 

T x ass2 2  by implicit differentiation. Setting this equal to 0 and solving for x you get 

2 8
5

100 4
5

0x a x  and simplifying you get x a a2 32
25

800
25

 or x a
a

a
a

800
50 32

400
25 16

 but T 0

at this value indicating a minimum, which is not what you wanted. So the maximum value is achieved at 
x  5 which is an interval endpoint. Thus put all the wire on the square.

9.   Since the amount A is proportional to the square of the interest rate r, assume A kr 2. Then the profit, 
P A rA.09 k r r(. )09 2 3  and P kr kr kr r. (. )18 3 3 062  and this is 0 when r  .06 and this will be 
a maximum since P  is negative at this point.
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10.  Let C denote the total cost, h the height of the jar, r the radius of the jar top, a the cost of the glass per 
unit area and V the volume. Then C a r a rh a r a r a rh2 2 22 3 4 2( ) ( )  and V r h2 . Now
dC
dr

ar a r dh
dr

h8 2  and from the equation for V you get 0 22r dh
dr

rh  from which you get

dh
dr

h
r

2 . Substitute this into the equation above to get dC
dr

ar ah ah ar ah8 4 2 8 2 .  Now 

  set dC
dr

0 to get h  4r. Finally, d C
dr

a a dh
dr

a a
2

2 8 2 8 16 0. So h  4r give a minimum.

10·5 1.  f x x( ) 4 63  and f x x( ) ,12 2  so 0 is a possible point of inflection, but since the second derivative is 
positive for all non-zero values, the curve is concave up and (0, 2) is not a point of inflection.

2.  f x x x x( ) 4 18 24 83 2  and f x x x( ) 12 36 242  and f x x( ) .24 36  The possible points of 
inflection are determined by x  1, 2 and since f x( ) 0 at either of these points, both determine points 
of inflection. Employ the little-used fact that if f c( ) 0 and f c( ) ,0  then ( , ( ))c f c  is a point of 
inflection. The points of inflection are (1, –1) and (2, 0)

3.  This is a straight line graph and has no points of inflection.

4.  y
x

3 3

5 2
2
5( )

 and this is undefined for x  –2. Also y
x

6

25 2
7
5( )

 and y 0 (concave up) when 

x  –2, and y 0 (concave down) when x  –2, so (–2, –6) is a point of inflection.

5.  f x
x x
x x

( )
2 2

2 2
if
if

 and f x
x
x

( ) .
2 2

2 2
if
if

 The function is not continuous at 2 and thus has no 

  derivative there and also no tangent. The graph changes concavity at (2, 3), but it is not a point of inflection.

6.  f x
x x
x x

( )
3 0
4 0

2

3

if
if

 and f x
x x
x x

( ) .
6 0
12 02

if
if

 Solve f x( ) 0 to get x  0. The graph is concave 

  up for x  0 and concave down for x  0, so (0, 0) is a point of inflection.

7.  f x x( ) cos( )6 3  and f x x( ) sin( ).18 3  Solve f x( ) 0 to get x  0 to possibly determine a point of 
inflection. The curve is concave up for x  0 and concave down for x  0 and (0, 0) is a point of inflection.

8. y
x

1

3 1
2
3( )

 and y
x

2

9 1
5
3( )

 The function is continuous at x  1, but y
x

1

3 1
2
3( )

 and

   y
x

2

9 1
5
3( )

 do not exist at x 1. However, since y  approaches as x approaches 1, there is a vertical 

tangent at (1, –2). Also, y  is positive when x  1 and negative when x  1, so the concavity changes at x  1. 
Thus, (1, –2) is a point of inflection.

9.  y x x4 363  and y x x x12 36 12 3 32 ( )( ). Thus, 3 possibly determine points of 
inflection. In fact the curve is concave up for x 3 or x 3 and concave down for 3 3x , so 
the points of inflection are ( , ).3 44

10.  h x ax bx c( ) 3 22  and h x ax b( ) .6 2  Since a relative max will occur at (0, 3), h ( )0 0 so 
c  0. Also, h( )0 3 implies that d  3. h ( )1 0 implies that 6 2 0a b  and h( )1 1 implies that 
a b c d 1. So you get 3 0a b  and a b 4. Solving this set of equations gives a  2 and b  –6. 
The solution equation is  y x x2 6 33 2 .

10·6 1. f x x( ) 3 12 , so solve 3 1 2 1
2 1

12
3

42c f f( ) ( )
( )

 to get c  1 and c 1.
2. There is no solution since the function is not continuous in the interval, particularly at 0.

3. g x
x

( ) ,1 1
2

 so solve 1 1
2

2
3c

 or 1
2

1
3c

 or 2 3c  or finally c 9
4

.
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4. There is no solution since the function is discontinuous at 1.

5. Solve 3 6 12c c  to get c 6 36 12
6

6 4 3
6

3 2 3
3

.

6. There is no solution since the derivative does not exist at 0.

7. Solve 1

3
2

3
2
3
2

sin( )
cos ( cos( ))

c 2

2

1
1 2  or sin( ) ,c

2
 which solves as 

c arcsin .
2

8. Solve 24 36 3 22 5
3

27
3

92c c ( )  to obtain c 3 13
4

.

9. f x x x x x
x

( ) ( cos )(cos ) sin ( sin )
( cos )

c1
1 2

oos cos sin
( cos )

cos
( cos )

;x x x
x

x
x

2 2

2 21
1
1

 so solve 1
1

1

2
( cos )c

 or 

1
2

cos ,c  which solves as c arccos .
2

1

10.  Let f x x( ) ln  and consider the interval 1 8
7

, . By the MVT you get 1
8
7

1

8
7

1c

ln ln( )
 or on 

simplification 1 7 8
7c

ln  or finally that c 1

7 8
7

ln
. Also you know that 1 8

7
c . So you get 

1 1

7 8
7

8
7

ln
 and solving this inequality you get 1

8
8
7

1
7

ln .

11 Applications of the definite integral

11·1 1. ( ) ( )2 2 24 2
3

24 2 216
3

362

3

6 3
2

3

6

x x dx x x x 24 6 2 27
3

9 24 3( ) ( ) ( )

[ ]144 36 144 18 9 72 81

2. sin [ cos ] cos cosxdx x

3

2
3

3

2
3 2

3 3
1
2

1
2

1

3. ( )8 2 4 2
3

44
3

2

1

3
2

3

1

3

x x dx x x

4. sec [tan ]2

0

4

0
4 1xdx x

5. 4 4 2 1 2 1
3
2

4

0

8

0

8
3
2

0

8

x dx x dx x( ) (99
3

4
3

4 27 4
3

104
3

3
2) ( )

6. cos [sin ]xdx x
0

6

0
6 1

2
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11·2 1. y x4 2 intersects the x-axis at –2 and 2. Thus, the desired area ( )4 4
3

2

2

2 3

2

2

x dx x x

8 8
3

8 8
3

16 16
3

32
3

.

2.  Solve for the intersection points by setting x x2 2, which has solutions x 1 2and . Thus the area is 

(( ) )x x dx x x x2
2

2
3

6 8
3

2

1

2 2 3

1

2

2 5
6

9
2

.

3. The curves intersect at x  0 and 1. The area is ( ) .x x dx x x2

0

1
3
2 3

0

1

2
3 3

1
3

4.  Solve for the intersection points by setting ( ) ( )x x1 13  to get x 0 1, , and –2. Now, ( ) ( )x x1 13

   ( )(( ) ) ( )( );x x x x x1 1 1 1 22 2  which is less than or equal to 0 when 1 0x  and is greater than 

or equal to 0 when 2 1x , so the area is given by the following two integrals: (( ) ( ))x x dx1 13

2

1

(( ) ( ) ) ( ) ( )x x dx x x1 1 1
4

1
2

3

1

0 4 2

2

1
(( ) ( ) .x x1

2
1

4
1
2

2 4

1

0

5.  The area is given by two integrals since y  0 dominates when x  0 and is dominated when x  0. The 

  area is ( ) ( )x x dx x x dx x x x3

1

0
3

0

1 4 2

1

0 4

4 2 4
x 2

0

1

2
3
2

.

6.  The curves intersect when 2 3 6x x ; that is, when x 1. To find which function is greater, solve 

2 3 6x x  to find that this occurs when x 1.  Thus, the area is (( ) ( ))x x dx6 2 3
0

1

( ) .3 3 3
2

3 3
20

1 2

0

1

x dx x x

7.  The curves intersect when e ex ;  that is, when x  1. When 0 1x , the curve y e is greater than y ex,

  so the area is ( ) [ ] .e e dx ex ex x

0

1

0
1 1

8.  Factoring the first equation you get y x x x x x x x x( ) ( )( )( ) .4 3 22 2 1 1 1 2 1  The curves 
   intersect when their equations are equal; that is, when x  0, 1, 1,  and 2. To get an idea of the 

dominance in the region of interest notice that when x  2, the quartic function is positive. From this 

  observation, you can deduce the area is given by the integral ( )1 2 2 14 3 2

1

0

x x x x dx

x x x x x x
5 4 3 2

1

0

5
2

4 3
2

2
1
5

1
2

1
3

1 19
30

.

9.  In the region of interest, the curves intersect when 3 12x x ; that is, when x x2 2 0, which 
occurs when x  –1 and x  2. Reject 2 because it lies outside [–1, 1]. Also, the quadratic function 

dominates on [–1, 1], so the area is (( ) ( )) .3 1
3 2

2 10
3

2

1

1 3 2

1

1

x x dx x x x

10.  The curves intersect when x 1 and y  1 dominates between these values so the area is 

( ) .1
3

4
3

2

1

1 3

1

1

x dx x x
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11·3 In the following worked exercises, techniques of integration and integral tables are used. This approach is 
intended to illustrate and strengthen your use of these strategies. L will be used to indicate the arc length 
in all problems.

1. The arc equation is y x y x
2

2
;  and then

L x dx x x x x1 1
2

1
2

32

3

0 2 2

3

0

ln( ) ln(( )2 3
2

 (Formula 61).

2. The arc equation is y x y4 4
9

4
9

;  and then 

L dx dx x1 16
81

97
9

97
9

97
0

9

0

9

0

9

.

3. The arc equation is y x y x x( ) ; ( )
2

3
2

2
1
22

3
2  and then L x x dx x dx1 2 12 2

0

3
2 2

0

3

( ) ( )

( ) .x dx x x2

0

3 3

0

3

1
3

12

4. The arc equation is x y
y

y
y

4 33
6 6

1
2

 and x y
y

y
y

2

2

4

22
1

2
1
2

1  and then L y
y

dy1 1
4

4 2

4
1

2 ( )

( ) ( ) ( )y
y

dy y
y

dy y y dy
4 2

4
1

2 4

2
1

2
2 2

1

21
4

1
2

1 1
2

1
2 3

1 1
2

8
3

1
2

1
3

1
3

1

2
y

y
17
12

.

5. The arc equation is y x
x

y x
x

x
x

4

2
3

3

6

34
1

8
1

4
4 1

4
;  and then L x

x
dx1 4 1

16

6 2

6
1

2 ( )

( ) ( )4 1
16

4 1
4 4

6 2

6
1

2 6

3
1

2
3

3x
x

dx x
x

dx x x

11

2 4

2
1

2

4
1

8
16
4

1
32

1
4

1
8

dx x
x

123
32

.

6. The arc equation is y x x y x
x

x
x

x
x

( ) ;3 1
3

3
2

1
6

18 2
12

9 1
6

 and then 

L x
x

dx x
x

dx x
x

1 9 1
36

9 1
36

9 1
6

2

1

4 2

1

4

1

( ) ( ) 44
1
2

1
2

1

4 3
2

1
23

2 6 3
dx x x dx x x

1

4

8 2
3

1 1
3

22
3

.

7. The arc equation is y x y
x

ln ; 1  and then L
x

dx x
x

dx1 1 1
2

1

3 2

1

3

x x
x

2
2

1

3

1 1 1 2 3
3

ln ln ( ln( ) ln( ) ln .2 1 2 2 2 1 2 3
2

  (Formula 62 was used for the integration.)

8. The arc equation is y x
x

y x
x

x
x

3
2

2

4

23
1

4
1

4
4 1

4
:  and then 

L x
x

dx x
x

dx x
x

1 4 1
16

4 1
16

4 1
4

4 2

4
1

3 4 2

4
1

3 4( ) ( )
22

1

3
2

2

1

3 3

1

3

4 3
1

4
dx x x dx x

x

27
3

1
12

1
3

1
4

53
6

.



148 Worked solutions

9. The arc equation is y x x2
23

9
( ) . Since 1 3 3 32x x x, ( ) . Thus, the arc equation can be 

  restated as y x x x x y x x
x

x( ) ;3
3 3 2 2

1
2

11
2

3
2

1
2

1
2 1

2
1 x

x

  and then L x
x

dx x
x

dx x
x
dx x1 1

4
1

4
1

2
1
2

2

1

3 2

1

3

1

3 1( ) ( ) 22
1
2

1

3
3
2 1

2

1

3

1
2

2
3

2x dx x x

1
2

2 27
3

2 3 2
3

2 2 3 4
3

.

10.  The arc equation is y x y x2 1 3 1
3
2

1
2( ) ; ( ) and then L x dx x dx1 9 1 9 8

1

17
9 1

2

1

17
9

( ) ( ) .  Now let 

u x9 8, then du =9dx; and when x  1, u  1 and when x u17
9

9, . Thus, you have 

L u du u1
9

1
9

2
3

1
9

54
3

2
3

1
2

1

9
3
2

1

9

52
27

.
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