Words to the reader about how to use this textbook

|. What This Book Does and Does Not Contain

Thistext isintended for use by beginning graduate students and advanced upper
division undergraduate studentsin all areas of chemistry.

It provides:

(i) An introduction to the fundamentals of quantum mechanics as they apply to chemistry,
(i) Material that provides brief introductions to the subjects of molecular spectroscopy and
chemical dynamics,

(i) Anintroduction to computationa chemistry applied to the treatment of electronic
structures of atoms, molecules, radicals, and ions,

(iv) A large number of exercises, problems, and detailed solutions.

It does not provide much historical perspective on the development of quantum
mechanics. Subjects such as the photoel ectric effect, black-body radiation, the dual nature
of electrons and photons, and the Davisson and Germer experiments are not even
discussed.

To provide atext that students can use to gain introductory level knowledge of
guantum mechanics as applied to chemistry problems, such a non-historical approach had
to be followed. Thistext immediately exposes the reader to the machinery of quantum
mechanics.

Sections 1 and 2 (i.e., Chapters 1-7), together with Appendices A, B, C and E,
could constitute a one-semester course for most first-year Ph. D. programsintheU. S. A.
Section 3 (Chapters 8-12) and selected material from other appendices or selections from
Section 6 would be appropriate for a second-quarter or second-semester course. Chapters
13- 15 of Sections4 and 5 would be of use for providing alink to a one-quarter or one-
semester class covering molecular spectroscopy. Chapter 16 of Section 5 provides a brief
introduction to chemical dynamics that could be used at the beginning of a class on this
subject.

There are many quantum chemistry and quantum mechanics textbooks that cover
material similar to that contained in Sections 1 and 2; in fact, our treatment of this material
isgeneraly briefer and less detailed than one finds in, for example, Quantum Chemistry,
H. Eyring, J. Walter, and G. E. Kimball, J. Wiley and Sons, New Y ork, N.Y. (1947),
Quantum Chemistry, D. A. McQuarrie, University Science Books, Mill Valley, Ca.
(1983), Molecular Quantum Mechanics, P. W. Atkins, Oxford Univ. Press, Oxford,
England (1983), or Quantum Chemistry, I. N. Levine, Prentice Hall, Englewood Cliffs,




N. J. (1991), Depending on the backgrounds of the students, our coverage may have to be
supplemented in these first two Sections.

By covering thisintroductory material in less detail, we are able, within the
confines of atext that can be used for a one-year or atwo-quarter course, to introduce the
student to the more modern subjects treated in Sections 3, 5, and 6. Our coverage of
modern quantum chemistry methodology is not as detailed as that found in Modern
Quantum Chemistry, A. Szabo and N. S. Ostlund, Mc Graw-Hill, New Y ork (1989),
which contains little or none of the introductory material of our Sections 1 and 2.

By combining both introductory and modern up-to-date quantum chemistry material
in asingle book designed to serve as atext for one-quarter, one-semester, two-quarter, or
one-year classesfor first-year graduate students, we offer a unique product.

It is anticipated that a course dealing with atomic and molecular spectroscopy will
follow the student's mastery of the material covered in Sections 1- 4. For this reason,
beyond these introductory sections, this text's emphasisis placed on el ectronic structure
applications rather than on vibrational and rotational energy levels, which are traditionally
covered in considerable detail in spectroscopy courses.

In brief summary, this book includes the following material:

1. The Section entitted The Basic Tools of Quantum Mechanics treats
the fundamental postulates of quantum mechanics and several applicationsto exactly
soluble model problems. These problemsinclude the conventional particle-in-a-box (in one
and more dimensions), rigid-rotor, harmonic oscillator, and one-electron hydrogenic
atomic orbitals. The concept of the Born-Oppenheimer separation of electronic and
vibration-rotation motions is introduced here. Moreover, the vibrational and rotational
energies, states, and wavefunctions of diatomic, linear polyatomic and non-linear
polyatomic molecules are discussed here at an introductory level. This section also
introduces the variational method and perturbation theory as tools that are used to deal with
problems that can not be solved exactly.

2. The SectionSimple Molecular Orbital Theory deaswith atomic and
molecular orbitalsin a qualitative manner, including their symmetries, shapes, sizes, and
energies. It introduces bonding, non-bonding, and antibonding orbitals, delocalized,
hybrid, and Rydberg orbitals, and introduces Hiickel-level models for the calculation of
molecular orbitals as linear combinations of atomic orbitals (amore extensive treatment of



several semi-empirical methodsis provided in Appendix F). This section also develops
the Orbital Correlation Diagram concept that plays a central role in using Woodward-
Hoffmann rules to predict whether chemical reactions encounter symmetry-imposed
barriers.

3. The Electronic Configurations, Term Symbols, and States
Section treats the spatial, angular momentum, and spin symmetries of the many-electron
wavefunctions that are formed as antisymmetrized products of atomic or molecular orbitals.
Proper coupling of angular momenta (orbital and spin) is covered here, and atomic and
molecular term symbols are treated. The need to include Configuration Interaction to
achieve qualitatively correct descriptions of certain species electronic structures is treated
here. Therole of the resultant Configuration Correlation Diagrams in the Woodward-
Hoffmann theory of chemical reactivity is aso devel oped.

4. The SectiononMolecular Rotation and Vibration providesan
introduction to how vibrational and rotational energy levels and wavefunctions are
expressed for diatomic, linear polyatomic, and non-linear polyatomic molecules whose
electronic energies are described by a single potential energy surface. Rotations of "rigid”
molecules and harmonic vibrations of uncoupled normal modes congtitute the starting point
of such treatments.

5. TheTime Dependent Processes Section usestime-dependent perturbation
theory, combined with the classical e ectric and magnetic fields that arise due to the
interaction of photons with the nuclei and electrons of a molecule, to derive expressions for
the rates of transitions among atomic or molecular electronic, vibrational, and rotational
states induced by photon absorption or emission. Sources of line broadening and time
correlation function treatments of absorption lineshapes are briefly introduced. Finaly,
transitions induced by collisions rather than by electromagnetic fields are briefly treated to
provide an introduction to the subject of theoretical chemical dynamics.

6. The SectiononMore Quantitive Aspects of Electronic Structure
Calculations introduces many of the computational chemistry methods that are used
to quantitatively evaluate molecular orbital and configuration mixing amplitudes. The
Hartree-Fock self-consistent field (SCF), configuration interaction (Cl),
multiconfigurational SCF (M CSCF), many-body and Mgller-Plesset perturbation theories,



coupled-cluster (CC), and density functional or X5 -like methods are included. The
strengths and weaknesses of each of these techniques are discussed in some detail. Having
mastered this section, the reader should be familiar with how potential energy
hypersurfaces, molecular properties, forces on the individual atomic centers, and responses
to externally applied fields or perturbations are evaluated on high speed computers.

I1. How to Use This Book: Other Sources of Information and Building Necessary
Background

In most class room settings, the group of students learning quantum mechanics as it
appliesto chemistry have quite diverse backgrounds. In particular, the level of preparation
in mathematicsis likely to vary considerably from student to student, as will the exposure
to symmetry and group theory. Thistext is organized in amanner that allows students to
skip material that is already familiar while providing access to most if not al necessary
background materia. Thisis accomplished by dividing the material into sections, chapters
and Appendices which fill in the background, provide methodological tools, and provide
additional details.

The Appendices covering Point Group Symmetry and Mathematics Review are
especially important to master. Neither of these two Appendices provides afirst-principles
treatment of their subject matter. The students are assumed to have fulfilled normal
American Chemical Society mathematics requirements for adegreein chemistry, so only a
review of the material especialy relevant to quantum chemistry is given in the Mathematics
Review Appendix.  Likewise, the student is assumed to have learned or to be
simultaneously learning about symmetry and group theory as applied to chemistry, so this
subject istreated in areview and practical-application manner here. If group theory isto be
included as an integral part of the class, then this text should be supplemented (e.g., by
using the text Chemical Applications of Group Theory, F. A. Cotton, Interscience, New
York, N. Y. (1963)).

The progression of sections leads the reader from the principles of quantum
mechanics and several model problems which illustrate these principles and relate to
chemical phenomena, through atomic and molecular orbitals, N-electron configurations,
states, and term symbols, vibrational and rotational energy levels, photon-induced
transitions among various levels, and eventually to computational techniques for treating
chemical bonding and reactivity.




At the end of each Section, aset of Review Exercises and fully worked out
answers are given. Attempting to work these exercises should allow the student to
determine whether he or she needs to pursue additional background building viathe
Appendices .

In addition to the Review Exercises , sets of Exercises and Problems, and
their solutions, are given at the end of each section.

The exercises are brief and highly focused on learning a particular skill. They alow the
student to practice the mathematical steps and other materia introduced in the section. The
problems are more extensive and require that numerous steps be executed. They illustrate
application of the material contained in the chapter to chemical phenomenaand they help
teach the relevance of this material to experimental chemistry. In many cases, new material
isintroduced in the problems, so all readers are encouraged to become actively involved in
solving all problems.

To further assist the learning process, readers may find it useful to consult other
textbooks or literature references. Severa particular texts are recommended for additional
reading, further details, or smply an aternative point of view. They include the following
(in each case, the abbreviated name used in thistext is given following the proper
reference):

1. Quantum Chemistry, H. Eyring, J. Walter, and G. E. Kimball, J. Wiley

and Sons, New York, N.Y. (1947)- EWK.

2. Quantum Chemistry, D. A. McQuarrie, University Science Books, Mill Valley, Ca.
(1983)- McQuarrie.

3. Molecular Quantum Mechanics, P. W. Atkins, Oxford Univ. Press, Oxford, England
(1983)- Atkins.

4. The Fundamental Principles of Quantum Mechanics, E. C. Kemble, McGraw-Hill, New
York, N.Y. (1937)- Kemble.

5. The Theory of Atomic Spectra, E. U. Condon and G. H. Shortley, Cambridge Univ.
Press, Cambridge, England (1963)- Condon and Shortley.

6. The Principles of Quantum Mechanics, P. A. M. Dirac, Oxford Univ. Press, Oxford,
England (1947)- Dirac.

7. Molecular Vibrations, E. B. Wilson, J. C. Decius, and P. C. Cross, Dover Pub., New
York, N. Y. (1955)- WDC.

8. Chemical Applications of Group Theory, F. A. Cotton, Interscience, New York, N. Y.
(1963)- Cotton.

9. Angular Momentum, R. N. Zare, John Wiley and Sons, New York, N. Y. (1988)-
Zare.




10. Introduction to Quantum Mechanics, L. Pauling and E. B. Wilson, Dover Publications,
Inc., New York, N. Y. (1963)- Pauling and Wilson.

11. Modern Quantum Chemistry, A. Szabo and N. S. Ostlund, Mc Graw-Hill, New Y ork
(1989)- Szabo and Ostlund.

12. Quantum Chemidtry, I. N. Levine, Prentice Hall, Englewood Cliffs, N. J. (1991)-
Levine.

13. Energetic Principles of Chemical Reactions, J. Simons, Jones and Bartlett, Portola
Valley, Cdlif. (1983),




Section 1 The Basic Tools of Quantum Mechanics

Chapter 1
Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels.
Physical Measurements are Described in Terms of Operators Acting on Wavefunctions

|. Operators, Wavefunctions, and the Schrodinger Equation

Thetrendsin chemical and physical properties of the elements described beautifully
in the periodic table and the ability of early spectroscopiststo fit atomic line spectra by
simple mathematical formulas and to interpret atomic electronic statesin terms of empirical
guantum numbers provide compelling evidence that some relatively simple framework
must exist for understanding the electronic structures of all atoms. The great predictive
power of the concept of atomic valence further suggests that molecular € ectronic structure
should be understandable in terms of those of the constituent atoms.

Much of quantum chemistry attempts to make more quantitative these aspects of
chemists view of the periodic table and of atomic valence and structure. By starting from
first principles and treating atomic and molecular states as solutions of a so-called
Schrédinger equation, quantum chemistry seeks to determine what underlies the empirica
guantum numbers, orbitals, theaufbau principle and the concept of vaence used by
spectroscopists and chemists, in some cases, even prior to the advent of quantum
mechanics.

Quantum mechanicsis cast in alanguage that is not familiar to most students of
chemistry who are examining the subject for the first time. Its mathematical content and
how it relates to experimental measurements both require agreat deal of effort to master.
With these thoughts in mind, the authors have organized this introductory section in a
manner that first provides the student with a brief introduction to the two primary
constructs of quantum mechanics, operators and wavefunctions that obey a Schrodinger
equation, then demonstrates the application of these constructsto several chemically
relevant model problems, and finally returnsto examinein more detail the conceptual
structure of quantum mechanics.

By learning the solutions of the Schrodinger equation for afew model systems, the
student can better appreciate the treatment of the fundamental postulates of quantum
mechanics aswell as their relation to experimental measurement because the wavefunctions
of the known model problems can be used to illustrate.



A. Operators

Each physically measurable quantity has a corresponding operator. The eigenvalues
of the operator tell the values of the corresponding physical property that can be observed

In guantum mechanics, any experimentally measurable physical quantity F (e.g.,
energy, dipole moment, orbital angular momentum, spin angular momentum, linear
momentum, Kinetic energy) whose classical mechanical expression can be written in terms
of the cartesian positions{g;j} and momenta{p;} of the particles that comprise the system

of interest is assigned a corresponding quantum mechanical operator F. Given F in terms
of the{q} and {pi}, F isformed by replacing pj by -ik{/fg; and leaving ¢ untouched.
For example, if

F=Si=1N (p%/2m + V2 k(ai-a19? + L(q-q9)),
then

F=Si=1N (- B22my 12112 + V2 k(q-q9? + L(a-99))
is the corresponding quantum mechanical operator. Such an operator would occur when,
for example, one describes the sum of the kinetic energies of a collection of particles (the
Si=1.N (p&/2my ) term, plus the sum of "Hookes Law" parabolic potentials (the 1/2 Sj=1 N

k(gi-919)2), and (the last term in F) the interactions of the particles with an externally

applied field whose potential energy varies linearly as the particles move away from their
equilibrium positions { %} .
The sum of the z-components of angular momenta of a collection of N particles has

F=Sj=1N (XjPyj - YjPx)),
and the corresponding operator is
F=-ih Sj=1,n (X 1/1y; - y;1711%;).

The x-component of the dipole moment for a collection of N particles



has
F=Sj=1,n Zjex;j, and
F=Sj=1N Zj&X; ,

where Zje isthe charge on the jth particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates.
To map aclassical function F, given in terms of curvilinear coordinates (even if they are
orthogonal), into its quantum operator isnot at al straightforward. Interested readers are
referred to Kemble's text on quantum mechanics which deals with this matter in detail. The
mapping can always be done in terms of cartesian coordinates after which a transformation
of the resulting coordinates and differential operatorsto a curvilinear system can be
performed. The corresponding transformation of the kinetic energy operator to spherical
coordinatesistreated in detail in Appendix A. Thetext by EWK also coversthistopicin
considerable detail.

The relationship of these quantum mechanical operators to experimental
measurement will be made clear later in this chapter. For now, sufficeit to say that these
operators define equations whose solutions determine the values of the corresponding
physical property that can be observed when ameasurement is carried out; only the values
so determined can be observed. This should suggest the origins of quantum mechanics
prediction that some measurements will produce discr ete or quantized values of certain
variables (e.g., energy, angular momentum, etc.).

B. Wavefunctions

The elgenfunctions of a quantum mechanical operator depend on the coordinates
upon which the operator acts; these functions are called wavefunctions

In addition to operators corresponding to each physically measurable quantity,
guantum mechanics describes the state of the system in terms of awavefunction Y thatisa
function of the coordinates { gj} and of timet. The function [Y (qj,t)|2= Y *Y givesthe
probability density for observing the coordinates at the values g; at timet. For amany-
particle system such as the HoO molecule, the wavefunction depends on many coordinates.
For the HoO example, it depends on the x, y, and z (or r,g, and f) coordinates of the ten



electrons and the x, y, and z (or r,q, and f) coordinates of the oxygen nucleus and of the
two protons; atotal of thirty-nine coordinates appear in'Y .

In classical mechanics, the coordinates gj and their corresponding momenta p;j are
functions of time. The state of the system is then described by specifying g;(t) and gi(t). In
quantum mechanics, the concept that g is known as afunction of time is replaced by the
concept of the probability density for finding ¢ at aparticular value at aparticular timet:

Y (gj,)[2. Knowledge of the corresponding momenta as functions of timeisalso
relinquished in quantum mechanics; again, only knowledge of the probability density for
finding p with any particular value a a particular time t remains.

C. The Schrodinger Equation

This equation is an eigenvalue equation for the energy or Hamiltonian operator; its
eigenvalues provide the energy levels of the system

1. The Time-Dependent Equation

If the Hamiltonian operator contains the time variable explicitly, one must solve the
time-dependent Schrodinger equation

How to extract from Y (gj,t) knowledge about momentais treated below in Sec. 111,
A, where the structure of quantum mechanics, the use of operators and wavefunctionsto
make predictions and interpretations about experimental measurements, and the origin of
‘uncertainty relations such as the well known Heisenberg uncertainty condition dealing
with measurements of coordinates and momenta are also treated.

Before moving deeper into understanding what quantum mechanics'means, itis
useful to learn how the wavefunctions Y are found by applying the basic equation of
guantum mechanics, the Schrodinger equation, to afew exactly soluble model problems.
Knowing the solutions to these 'easy’ yet chemically very relevant models will then
facilitate learning more of the details about the structure of quantum mechanics because
these model cases can be used as 'concrete examples.

The Schrodinger equation is a differential equation depending on time and on all of
the spatial coordinates necessary to describe the system at hand (thirty-nine for the H,O

example cited above). It isusualy written

HY =ih Y/t



where'Y (gj,t) is the unknown wavefunction and H isthe operator corresponding to the
total energy physical property of the system. This operator is called the Hamiltonian and is
formed, as stated above, by first writing down the classical mechanical expression for the
total energy (kinetic plus potential) in cartesian coordinates and momenta and then replacing
al classicd momenta p; by their quantum mechanical operators pj = - iR{/1g; .

For the H2O example used above, the classical mechanica energy of al thirteen
particlesis

E=Si{ piZ2me+ 12 Sj €2lrjj - SaZ£2ri 2}
+ Sa{pa/2ma+ 12 Sp ZaZne2lrap }
wheretheindicesi and j are used to label the ten electrons whose thirty cartesian
coordinates are {gj} and aand b label the three nuclel whose charges are denoted { Z3}, and
whose nine cartesian coordinates are { gg} . The electron and nuclear masses are denoted me
and {mg}, respectively.
The corresponding Hamiltonian operator is
H = S;i{ - (h2/2mg) 12/70i2 + /2 Sj €/ri j - SaZ£2lria}
+ Sa{ - (h%12my) T12/g2+ U2 Sp ZaZp2lrap } -
Noticethat H isasecond order differential operator in the space of the thirty-nine cartesian
coordinates that describe the positions of the ten el ectrons and three nuclei. It is a second
order operator becatise the momenta appear in the kinetic energy aspj2 and ps2, and the
quantum mechanical operator for each momentum p = -if §/9lq is of first order.
The Schrodinger equation for the HoO example at hand then reads
Si{ - (h&2mg) 1212 + U2 Sj €2lrij - SaZ£ria} Y
+ Sa{ - (h%2my) T12/ge2+ U2 Sp ZaZp2lrap} Y

=ihTY /Nt

2. The Time-Independent Equation



If the Hamiltonian operator does not contain the time variable explicitly, one can
solve the time-independent Schrodinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not
contain terms that are explicitly time dependent (e.g., interactions with time varying
external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be
used to reduce the Schrédinger equation to a time-independent equation.

In such cases, H isnot explicitly time dependent, so one can assumethat Y (g;,t) is

of theform
Y (05,0 = Y (q) F(D).

Substituting this ‘ansatz' into the time-dependent Schrodinger equation gives
Y (g) ihFTt=H Y (q)) F() .

Dividing by Y (g;) F(t) then gives
FLiRTFM) =Y-1(H Y(q)).

Since F(t) isonly afunction of timet, and Y (q;) isonly afunction of the spatial
coordinates { g}, and because the | eft hand and right hand sides must be equal for all
values of t and of { g}, both the |eft and right hand sides must equal a constant. If this
constant iscalled E, thetwo equationsthat are embodied in this separated Schrodinger
equation read as follows:

H Y (q)=EY(q),
i h TR/t = ih dF(L)/dt = E ().

Thefirst of these equationsis called the time-independent Schrodinger equation; it
isaso-caled eigenvalue equation in which one is asked to find functions that yield a
constant multiple of themselves when acted on by the Hamiltonian operator. Such functions
are caled eigenfunctions of H and the corresponding constants are called eigenvalues of H.



For example, if H were of the form - h2/2M 12/1f 2 = H , then functions of the form exp(i
mf ) would be elgenfunctions because

{ - h2/2M 2/ 2} exp(i mf) ={ m2h2/2M } exp(i mf).

In this case, { m2 k2 /2M } isthe eigenvalue.

When the Schrédinger equation can be separated to generate a time-independent
equation describing the spatial coordinate dependence of the wavefunction, the eigenvalue
E must be returned to the equation determining F(t) to find the time dependent part of the
wavefunction. By solving

i dF(t)/dt = E F(t)
once E is known, one obtains
F(t) = exp( -i Et/ h),
and the full wavefunction can be written as
Y (g;,t) = Y (qj) exp (-i Et/ h).
For the above example, the time dependence is expressed by

F(t) =exp (-i t{ mh2/2M }/ h).

Having been introduced to the concepts of operators, wavefunctions, the
Hamiltonian and its Schrédinger equation, it isimportant to now consider several examples
of the applications of these concepts. The examples treated below were chosen to provide
the learner with valuable experience in solving the Schrodinger equation; they were also
chosen because the models they embody form the most e ementary chemical models of
electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and
vibrations of chemical bonds.

I1. Examples of Solving the Schrédinger Equation

A. Free-Particle Motion in Two Dimensions



The number of dimensions depends on the number of particles and the number of
gpatial (and other) dimensions needed to characterize the position and motion of each

particle
1. The Schrédinger Equation

Consider an electron of mass m and charge e moving on atwo-dimensional surface
that defines the x,y plane (perhaps the electron is constrained to the surface of asolid by a
potential that bindsit tightly to anarrow region in the z-direction), and assume that the
electron experiences a constant potential Vg at al pointsin this plane (on any real atomic or
molecular surface, the electron would experience a potential that varies with positionin a
manner that reflects the periodic structure of the surface). The pertinent time independent
Schrédinger equation is:

- h2/2m (T2111x2 +92/y2)y (x.y) +V oy (x.y) = E Y (X,Y).
Because there are no termsin this equation that couplemotion in the x and y directions
(e.g., no terms of the form x&b or §/9x /1y or x1/1ly), separation of variables can be used

towritey asaproducty (x,y)=A(X)B(y). Substitution of this form into the Schrédinger
equation, followed by collecting together al x-dependent and all y-dependent terms, gives;

- R2/2m A-192A 1x2 - h2/2m B-192B/1ly2 =E- V.
Since the first term contains no y-dependence and the second contains no x-dependence,
both must actually be constant (these two constants are denoted Ex and Ey, respectively),
which allows two separate Schrodinger equations to be written:

- h2/2m A-192AMx2 =Ey, and

- h2/2m B-12B/1y2 =E.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as
Ex + Ey =E-V(. Solutionsto the x- and y- Schrodinger equations are easily seen to be:

A(X) = exp(ix(2mEx/h2)V2) and exp(-ix(2mEx/h2)1/2) ,



B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)V/2).

Two independent solutions are obtained for each equation because the x- and y-space
Schrédinger equations are both second order differential equations.

2. Boundary Conditions

The boundary conditions, not the Schrédinger equation, determine whether the
eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the X,y plane, the energies Ex and Ey
can assume any value; this means that the experimenter can 'inject’ the electron onto the x,y
plane with any total energy E and any components Ex and Ey along the two axes aslong as
Ex + Ey = E. In such asituation, one speaks of the energies along both coordinates as
being 'in the continuum’ or 'not quantized'.

In contrast, if the electron is constrained to remain within afixed areain the X,y
plane (e.g., arectangular or circular region), then the situation is qualitatively different.
Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions.

These constraints can arise, for example, if the potential Vo(X,y) becomes very large for
X,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the
molecular structure of the solid surface changes outside the enclosed region in away that is
highly repulsive to the electron.

For example, if motion is constrained to take place within arectangular region
defined by O£ X £ Ly; O£ y £ Ly, then the continuity property that all wavefunctions must
obey (because of their interpretation as probability densities, which must be continuous)
causes A(x) tovanish at O and at L. Likewise, B(y) must vanishatOand at Ly. To
implement these congtraints for A(x), one must linearly combine the above two solutions
exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h?)L/2) to achieve a function that vanishes at x=0:

A(X) = exp(iX(2mEx/h2)12) - exp(-ix(2mEx/h2)1/2).

Oneisallowed to linearly combine solutions of the Schrédinger equation that have the same
energy (i.e., are degenerate) because Schrodinger equations are linear differential



equations. An analogous process must be applied to B(y) to achieve afunction that
vanishes at y=0:

B(y) = exp(iy(2mEy/h2)1/2) - exp(-iy(2mEyHh2)1/2).

Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives
equations that can be obeyed only if Ex and E, assume particular values:

exp(iLx(2mEx/h2)V2) - exp(-iLx(2mEx/R2)12) = 0, and

exp(iLy(2mE,H2)2) - exp(-iLy(2mEy/Hh2)1/2) = 0.
These equations are equivalent to

sin(Lx(2mEx/A2)12) = sin(Ly(2mE,/H2)12) = 0.
Knowing that sin(q) vanishes at g=np, for n=1,2,3,..., (although the sin(np) function
vanishes for n=0, this function vanishesfor al x or y, and is therefore unacceptable
because it represents zero probability density at al pointsin space) one concludes that the
energies Ex and Ey can assume only values that obey:

Lx(2mEx/h2) Y2 =n,p,

Ly(2mEy/R2) 12 =nyp, or

Ex = Nx?p2 h2/(2mLy?), and

Ey = ny2p2 h%/(2mLy2), withny and ny =1,2,3, ...
It isimportant to stress that it is the imposition of boundary conditions, expressing the fact
that the electron is spatially constrained, that gives rise to quantized energies. In the absence
of spatial confinement, or with confinement only at x =0 or Ly or only
at'y =0 or Ly, quantized energies would not be realized.

In this example, confinement of the electron to afinite interval along both the x and

y coordinates yields energies that are quantized along both axes. If the electron were
confined along one coordinate (e.g., between 0 £ x £ Ly) but not along the other (i.e., B(y)



is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total energy E
liesin the continuum,; its Ex component is quantized but Ey is not. Such cases arise, for
example, when alinear triatomic molecule has more than enough energy in one of its bonds
to rupture it but not much energy in the other bond; the first bond's energy liesin the
continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation
energy isexcited to alevel that is not enough to break it but that isin excess of the
dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the
strong bond having high internal energy and the weak bond having low energy (y 1), and
ii. the strong bond having little energy and the weak bond having more than enough energy
to ruptureit (y 2). Although an experiment may prepare the moleculein a state that contains
only the former component (i.e., y = C1y 1 + Coy 2 with C1>>C>), coupling between the
two degenerate functions (induced by termsin the Hamiltonian H that have been ignored in
definingy 1 andy 2) usually causes the true wavefunction Y = exp(-itH/h) y to acquire a
component of the second function as time evolves. In such a case, one speaks of internal
vibrational energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States

For discrete energy levels, the energies are specified functions the depend on
guantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the
resultant total energies and wavefunctions (obtained by inserting the quantum energy levels
into the expressions for
A(X) B(y) are asfollows:

Ex = Ny?p2 h2/(2mLy?), and

Ey = ny2p2 h2/(2mLy2),

E=Ex+Ey,

y (X,y) = (/2L x) V2 (1/2Ly) V2 exp(ingpx/Ly) -exp(-inypx/Lx)]

[exp(inypy/Ly) -exp(-inypy/Ly)], withny and ny =1,2,3, ... .



The two (1/2L)Y2 factors are included to guarantee that y is normalized:
oly (x,y)|2 dx dy = 1.

Normalization allows |y (x,y)|? to be properly identified as a probability density for finding
the electron at apoint X, y.

4. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levelsand is especially
straightforward to use for systems whose Schrédinger equations are separable. The so-
caled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate g; at initia timet; to afina coordinate gs at timet; is defined

by:

astf
s= 8 p-dq .
di.t;

Here, the momentum vector p contains the momenta aong all coordinates of the system,
and the coordinate vector q likewise contains the coordinates along all such degrees of
freedom. For example, in the two-dimensional particle in abox problem considered above,
g = (X, y) hastwo components as does p = (Px, py),

and the action integral is:.

X,V b
S= 8 (px dx + pydy) .
Xi,Yisti

In computing such actions, it is essentia to keep in mind the sign of the momentum as the
particle moves fromitsinitia to itsfinal positions. An example will help clarify these
matters.

For systems such as the above particle in a box example for which the Hamiltonian
is separable, the action integral decomposed into a sum of such integrals, one for each
degree of freedom. In thistwo-dimensional example, the additivity of H:



H =Hyx + Hy =px2/2m + py22m + V(x) + V(y)
= - h2/2m 12/1x2 + V/(X) - h2/2m 12/y2 + V(y)

means that py and py can be independently solved for in terms of the potentials V(x) and
V(y) aswell asthe energies Ex and Ey associated with each separate degree of freedom:

Px = £ V2m(Ex - V(X))

Py == 2m(Ey - V(y)) ;

the signs on py and py must be chosen to properly reflect the motion that the particleis
actually undergoing. Substituting these expressions into the action integral yields:

S=S¢+Sy

Xtk Y1
= 8 #2mE-V(X)dx + 8 +/2mE - V() dy .
Xj i Yisti

The relationship between these classical action integrals and existence of quantized
energy levels has been show to involve equating the classical action for motion on a closed
path (i.e., apath that starts and ends at the same place after undergoing motion away from
the starting point but eventually returning to the starting coordinate at alater time) to an
integral multiple of Planck’s constant:

qr=qist
Sdosed= 8p-dg =nh. (n=1,23,4,..)
Qisti

Applied to each of the independent coordinates of the two-dimensional particle in abox
problem, this expression reads.

X:LX x=0

nch= 8 \2m(Ex - V(X)) dx + B -\/2m(Ex - V(X)) dx
x=0 X=Lx




y=Ly y=0
nyh= 8 \2m(E - V(y)) dy + 8 -\2m(E - V(y)) dy .
y=0 y=Ly

Notice that the sign of the momenta are positive in each of thefirst integrals appearing
above (because the particleis moving from x = 0 to X = Ly, and analogously for y-motion,
and thus has positive momentum) and negative in each of the second integrals (because the
motionisfrom x = Ly to x = 0 (and analogously for y-motion) and thus with negative
momentum). Within the region bounded by 0£ X £ Lx; O£ y £ Ly, the potential vanishes,
so V(x) = V(y) = 0. Using this fact, and reversing the upper and lower limits, and thus the
sign, in the second integrals above, one obtains:

X:LX

nch=2 8 \2mEg dx =2+2mEx Ly
x=0
y=Ly

nyh=2 8 \2mE, dy =2+2mg Ly,
y=0

Solving for Ex and Ey, one finds:

_ (nxh)?
8mLy2

X

Ey:(_nﬂ2 )

8mL2

These are the same quantized energy levels that arose when the wavefunction boundary
conditionswere matched at x =0, x =Ly andy = 0,y = Ly. Inthis case, one says that the

Bohr-Sommerfeld quantization condition:

af=qi;t
nh= 8p-dq
Qi;t



has been used to obtain the result.

B. Other Model Problems
1. Particlesin Boxes

The particle-in-a-box problem provides an important model for several relevant
chemical situations

The above 'particle in abox' model for motion in two dimensions can obviously be
extended to three dimensions or to one.

For two and three dimensions, it provides a crude but useful picture for electronic states on
surfaces or in crystals, respectively. Free motion within a spherical volume givesrise to
eigenfunctions that are used in nuclear physics to describe the motions of neutrons and
protonsin nuclei. In the so-called shell model of nuclel, the neutrons and protonsfill
separate s, p, d, etc orbitals with each type of nucleon forced to obey the Pauli principle.
These orbitals are not the samein their radial 'shapes asthe s, p, d, etc orbitals of atoms
because, in atoms, there is an additional radial potential V/(r) = -Ze2/r present. However,
their angular shapes are the same as in atomic structure because, in both cases, the potential
isindependent of g and f . This same spherical box model has been used to describe the
orbitals of valence el ectrons in clusters of mono-vaent metal atoms such as Cs,, Cup, Nap
and their positive and negative ions. Because of the metallic nature of these species, their
valence electrons are sufficiently delocalized to render this simple model rather effective
(seeT. P. Martin, T. Bergmann, H. Gohlich, and T. Lange, J. Phys. Chem. 95, 6421
(1991)).

One-dimensiond free particle motion provides a qualitatively correct picture for p-
electron motion along the py, orbitals of a delocalized polyene. The one cartesian dimension
then corresponds to motion along the delocalized chain. In such a model, the box length L
isrelated to the carbon-carbon bond length R and the number N of carbon centers involved
in the delocalized network L=(N-1)R. Below, such a conjugated network involving nine
centersis depicted. In this example, the box length would be eight times the C-C bond
length.



Conjugated p Network with 9 Centers Involved

The eigengtates y n(X) and their energies E, represent orbitals into which electrons are
placed. In the example casg, if nine p electrons are present (e.g., asin the 1,3,5,7-

nonatetraene radical), the ground el ectronic state would be represented by atotal
wavefunction consisting of a product in which the lowest four y 's are doubly occupied and
thefifthy issingly occupied:

Y =yjay 1by cay oby zay 3by say 4by sa.

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic
plus potential energies of nine electrons. To the extent that this total energy can be
represented as the sum of nine separate energies, one for each electron, the Hamiltonian
allows a separation of variables

H @S; H(j)

in which each H(j) describes the kinetic and potential energy of an individual electron. This
(approximate) additivity of H impliesthat solutionsof HY =EY are products of solutions

toH () y(rj) =g y(rj.
The two lowest p-excited states would correspond to states of the form

*=yijayibyoayobyszaysbysaysbysa,and
Y* =yjayjibyraysbyzaysbysaysbyea,

where the spin-orbitals (orbitals multiplied by a or b) appearing in the above products
depend on the coordinates of the various electrons. For example,



yiayibyzayobyzaysbysaysbysa
denotes
yia(ry) yib (ro) yoa (ra) y2b (r4) ysa (rs) ysb (re) y4a (r7) ysb
(re) ysa (ro).
The electronic excitation energies within this model would be
DE* =p2h2/2m[ 52/L2 - 42/L.2] and

DE"™* = p2h2/2m [ 62/L2 - 52/L2], for the two excited-state functions described
above. It turns out that this simple model of p-electron energies provides a qualitatively
correct picture of such excitation energies.

This ssimple particle-in-a-box model does not yield orbital energiesthat relate to
ionization energies unless the potentia 'inside the box' is specified. Choosing the value of
this potential Vg such that Vg + p2 h2/2m [ 52/L2] is equal to minus the lowest ionization
energy of the 1,3,5,7-nonatetraene radical, gives energy levels (assE = Vg + p2h2/2m|[
n2/L.2]) which then are approximations to ionization energies.

Theindividua p-molecular orbitals

Y n = (2/L)Y2 sin(npx/L)

are depicted in the figure below for amodel of the 1,3,5 hexatriene p-orbital system for
which the 'box length' L isfive times the distance Rcc between neighboring pairs of
Carbon atoms.



2/L)"? sin(npx/L): L = 5 x Rge

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is
shown by the darkened spheres; the magnitude of the kth C-atom centered atomic orbital in
the nth p-molecular orbital is given by (2/L)Y2 sin(npkRcc/L).

Thissmple model allows one to estimate spin densities at each carbon center and
provides insight into which centers should be most amenable to electrophilic or nucleophilic
attack. For example, radica attack at the Cs carbon of the nine-atom system described
earlier would be morefacile for the ground state Y than for either Y * or Y '*. In the
former, the unpaired spin density resides in y 5, which has non-zero amplitude at the Cs
stex=L/2;inY* and Y *, the unpaired density isiny 4 and y g, respectively, both of
which have zero density at Cs. These densities reflect the values (2/L)Y2 sin(npkRcc/L) of
the amplitudes for this case in which L =8 x Rcc for n =5, 4, and 6, respectively.

2. One Electron Moving About a Nucleus



The Hydrogenic atom problem forms the basis of much of our thinking about
atomic structure. To solve the corresponding Schrodinger equation requires separation of
ther, g, andf variables

[Suggested Extra Reading- Appendix B: The Hydrogen Atom Orbital s

The Schrodinger equation for asingle particle of mass mmoving in a central
potential (one that depends only on the radia coordinate r) can be written as

9 2 2 2 . ..
hzad” 97 ﬂ—gy + VRIx2y2422 y = Ey.
2méx2  y2  172%g

This equation is not separable in cartesian coordinates (X,y,z) because of the way x,y, and
Z appear together in the square root. However, it is separablein spherical coordinates

h2 o e, Tydo 1 Ty, Ivo
—_— [¢ —=— + —_— ng —=
22 & & raw rZSinqﬂqg f Tag
1 1%
— +V =By .
¥ r2Sin2q 9f 2 HVy =B

2
Subtracting V(r)y from both sides of the equation and multiplying by - 2 then moving
h2
the derivatives with respect to r to the right-hand side, one obtains

1 Ty Ivo, 1 T2y
—— —Sing == + —
Sing 1q & qﬂqz Sin%q f 2

Ty s

_2m2 Te
= EVOY g

Notice that the right-hand side of this equation isafunction of r only; it containsno q or f
dependence. Let'scal the entire right hand side F(r) to emphasize this fact.

To further separate the g and f dependence, we multiply by Sin2g and subtract the
g derivative terms from both sidesto obtain
T2y . T Tye
2L = F(r)y SinZq - Sing — gsing —-2.
2 & fao
Now we have separated thef dependence from the g and r dependence. If we now
substitutey = F (f) Q(r,q) and divideby F Q, we obtain



F 92 Q?(r)sm Q- Sing 1q E%mq 190

Now all of thef dependenceisisolated on the left hand side; the right hand side contains

only r and q dependence.
Whenever one has isolated the entire dependence on one variable as we have done

abovefor thef dependence, one can easily see that the left and right hand sides of the
eguation must equal aconstant. For the above example, the left hand side containsno r or

g dependence and the right hand side containsno f dependence. Because the two sides are

equal, they both must actually containnor, g, or f dependence; that is, they are constant.
For the above example, we therefore can set both sides equal to a so-called

separation constant that we call -m2 . It will become clear shortly why we have chosen to
express the constant in this form.
a. The F Equation
Theresulting F equation reads
F"+m2F =0
which has asits most genera solution
F =Admf + Bgimf
We must require the function F to be single-valued, which means that
Ff)=F(2p +f) or,
Aemf (1 - e2imp) + Beimf (1 - e2imp) =,
Thisis satisfied only when the separation constant is equal to aninteger m=0, £1, + 2, ...

. and provides another example of the rule that quantization comes from the boundary
conditions on the wavefunction. Here misrestricted to certain discrete values because the

wavefunction must be such that when you rotate through 2p about the z-axis, you must get
back what you started with.

b. The Q Equation

Now returning to the equation in which the f dependence wasisolated from ther
and g dependence.and rearranging the q termsto the left-hand side, we have

1 ag ﬂQomQ

: =F(r
Sing ‘Hqg qg Sing (NQ



In this equation we have separated q and r variations so we can further decompose the
wavefunction by introducing Q = Q(q) R(r) , which yields

1 1 ﬂa§l s m _F(MR _

— 'n - -
QSnqg & " fqs Sng R

where a second separation constant, -l , has been introduced once the r and g dependent
terms have been separated onto the right and left hand sides, respectively.

We now can write the g equation as
1 T gy TQ0 m Q _
Sing 1q g fqg SinZg

where misthe integer introduced earlier. To solvethis equation for Q , we make the
substitutions z = Cosg and P(z) = Q(q) , so \/ 1-z2 = Sinq , and
T _9%z2% _ S 1

fa 919z {1z

Therange of valuesforqwasO£ q<p, sotherangefor zis
-1<z<1. Theequation for Q , when expressed in terms of P and z, becomes

d—zgl-Z) Eg-ﬁ +1P=0.

Now we can look for polynomial solutionsfor P, because z is restricted to be less than
unity in magnitude. If m =0, wefirst let

¥
P= dac,
k=0

and substitute into the differential equation to obtain

¥ ¥ ¥
A (k+2)(k+1) aks2 ZK - @ (k+1) k ak +1 §azk =0.
k=0 k=0 k=0

Equating like powers of z gives

_ a(k(k+1)-1)
K+2 = &) K+D)



Note that for large values of k

k2§+%‘g
&2 o -1,

& k2@_+§@_+1‘0
g ke kg

Since the coefficients do not decrease with k for large k, this serieswill divergeforz=+ 1
unless it truncates at finite order. This truncation only happensiif the separation constant |

obeys| =I(I+1), wherel isan integer. So, once again, we see that a boundary condition
(i.e., that the wavefunction be normalizable in this case) give rise to quantization. Inthis

case, thevalues of | arerestricted to I(I1+1); before, we saw that misrestrictedto 0, £1,

2, ...

Sincethis recursion relation links every other coefficient, we can choose to solve
for the even and odd functions separately. Choosing ag and then determining al of the
even g interms of this ag, followed by rescaling all of these & to make the function
normalized generates an even solution. Choosing a; and determining all of the odd & in
like manner, generates an odd solution.

For 1= 0, the series truncates after one term and resultsin Pg(z) = 1. For I= 1 the

same thing appliesand P1(z) = z. Forl=2,a=-6 8—20 = -3a, , SO one obtains Py = 372-1,

and so on. These polynomials are called L egendre polynomials.
For the more general casewherem® 0, one can proceed as above to generate a
polynomial solution for the Q function. Doing so, resultsin the following solutions:

- m o™ P (2)
P2 =(1-2) g

These functions are called Associated Legendre polynomials, and they constitute the

solutions to the Q problem for non-zero m values.

The above P and éMmf functions, when re-expressed in terms of g and f, yield the
full angular part of the wavefunction for any centrosymmetric potential. These solutions
1

areusualy writtenas Y| m(q.f) = Prln(Cosq) (2p)_5 exp(imf ), and are called spherical
harmonics. They provide the angular solution of ther,q, f Schrédinger equation for any
problem in which the potential depends only on the radial coordinate. Such situations

include all one-electron atoms and ions (e.g., H, He™, Li** , etc.), the rotational motion of
adiatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occursin the shell model of nuclei), and the
scattering of two atoms (where the potential depends only on interatomic distance).

c. The R Equation



Let us now turn our attention to the radial equation, which isthe only place that the
explicit form of the potential appears. Using our derived results and specifying V(r) to be
the coulomb potential appropriate for an electron in the field of anucleus of charge +Ze,
yields:

1 d g4, dRy . @m 785 I(1 + 1)0
Soe Oy +éc;h—2§%+7g' > gR 0.

We can simplify things considerably if we choose rescaled length and energy units because

doing so removes the factors that depend on mh , and e. We introduce a new radial
coordinater and aquantity s asfollows:

1

%mzéé ,_ M2t
r = ‘e r, and s¢=- )
e h2 4 2Eh?2

Noticethat if E isnegative, asit will be for bound states (i.e., those states with energy

below that of afree eectron infinitely far from the nucleus and with zero kinetic energy), r
isreal. On the other hand, if E is poditive, asit will be for statesthat lie in the continuum,

r will beimaginary. Thesetwo caseswill giveriseto qualitatively different behavior in the
solutions of the radial equation devel oped below.

We now define afunction S such that S(r ) = R(r) and substitute Sfor R to obtain:

1d opdSy, el I+,
6?2 = —S 0.
r2dr e drz 4 2 r g

The differential operator terms can be recast in several ways using

10505, S 205 1 o

r2dré drg dr2 rdr rdr2
It isuseful to keep in mind these three embodiments of the derivatives that enter into the
radial kinetic energy; in various contextsit will be useful to employ various of these.
The strategy that we now follow is characteristic of solving second order

differential equations. We will examine the equation for Sat largeand small r values.

Having found solutions at these limits, we will use apower seriesinr to "interpolate”
between these two limits.

L et us begin by examining the solution of the above equation at small valuesof r to

see how theradial functions behave at small r. Asr® 0, the second term in the brackets
will dominate. Neglecting the other two terms in the brackets, we find that, for small

values of r (or r), the solution should behave liker L and because the function must be
normalizable, we must have L 3 0. Since L can be any non-negative integer, this suggests
the following more general form for S(r) :

S(r)y»rLed,



Thisform will insure that the functionisnormalizablesinceS(r) ® Oasr® ¥ foral L,

aslong asr isared quantity. If r isimaginary, such aform may not be normalized (see
below for further consequences).

Turning now to the behavior of Sfor larger , we make the substitution of S(r ) into

the above equation and keep only the terms with the largest power of r (e.g., first termin
brackets). Upon so doing, we obtain the equation

&rled :%r rleda |

which leads us to conclude that the exponent in the large-r behavior of Sisa= % :

Having found the small- and large-r behaviors of S(r ), we can take S to have the
following form to interpolate between large and small r -values:

r
S(r)=rle? P(r),
where the function L is expanded in an infinite power seriesinr asP(r) = é_ a rk. Agan
Substituting this expression for Sinto the above equation we obtain
P'r + P(2L+2-r) + P(s-L-I) =0,

and then substituting the power series expansion of P and solving for the ac's we arrive at:

_ (k-s+L+I) a
A+ = A D (kF2L+2) -

For large k, the ratio of expansion coefficients reaches the limit a;:l -1 , Which

has the same behavior as the power series expansion of €. Because the power series
expansion of P describes afunction that behaveslike € for larger , the resulting S(r )

r
function would not be normalizable becausethe e 2 factor would be overwhelmed by this
€ dependence. Hence, the series expansion of P must truncate in order to achieve a

normalizable Sfunction. Noticethat if r isimaginary, asit will beif E isin the continuum,
the argument that the series must truncate to avoid an exponentialy diverging function no

longer applies. Thus, we see akey difference between bound (with r real) and continuum

(withr imaginary) states. In the former case, the boundary condition of non-divergence
arises; in the latter, it does not.

To truncate at a polynomial of order n', we must haven'-s + L+1=0. This

impliesthat the quantity s introduced previoudly isrestrictedtos =n'+ L + 1, whichis
certainly an integer; let us call thisinteger n. If we label statesin order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the



P(r ) polynomial n' = 0,1,2,... after which the [-value can run from | = O, in steps of unity
up toL = n-1.

Substituting the integer n for s , we find that the energy levels are quantized
becauses is quantized (equal to n):

2
E=- %t andr :A.
2h2n2 &N
. . @ ph20
Here, the length a, isthe so called Bohr radius ¢ap = Eﬁ it appears once the above E-
e o

expression is substituted into the equation for r . Using the recursion equation to solve for
the polynomial's coefficients a¢ for any choice of n and | quantum numbers generates a so-

called Laguerre polynomial; Pp- -1(r ). They contain powersof r from zero through n-I-1.
This energy quantization does not arise for states lying in the continuum because the

condition that the expansion of P(r ) terminate does not arise. The solutions of the radial
equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of anucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full r,q,f
Schrédinger equation for one electron moving about a nucleus of chargeZ. Theq and f

solutions are the spherical harmonics Y| m (q,f). The bound-state radial solutions
r

Rl () =S(r)=rle2 P )

depend on the n and | quantum numbers and are given in terms of the Laguerre polynomials
(see EWK for tabulations of these polynomials).

d. Summary

To summarize, the quantum numbers | and m arise through boundary conditions
requiring that y (q) be normalizable (i.e., not diverge) andy (f) = y (f +2p). In the texts by
Atkins, EWK, and McQuarrie the differential equations obeyed by theq andf components
of Y| m are solved in more detail and properties of the solutions are discussed. This
differential equation involves the three-dimensional Schrodinger equation’s angular kinetic
energy operator. That is, the angular part of the above Hamiltonian is equal to h2L2/2mr2,
where L2 is the square of the total angular momentum for the electron.

Theradia equation, which isthe only place the potential energy enters, isfound to
possess both bound-states (i.e., states whose energies lie below the asymptote at which the
potentia vanishes and the kinetic energy is zero) and continuum states lying energetically
above this asymptote. The resulting hydrogenic wavefunctions (angular and radia) and



energies are summarized in Appendix B for principal quantum numbers n ranging from 1
to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrédinger equation
for the attractive coulomb potential because, at energies below the asymptote the potential
confines the particle between r=0 and an outer turning point, whereas at energies above the
asymptote, the particleis no longer confined by an outer turning point (see the figure
below).
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The solutions of this one-electron problem form the qualitative basis for much of
atomic and molecular orbital theory. For this reason, the reader is encouraged to use
Appendix B to gain afirmer understanding of the nature of the radial and angular parts of
these wavefunctions. The orbitals that result are labeled by n, |, and m quantum numbers
for the bound states and by | and m quantum numbers and the energy E for the continuum
states. Much as the particle-in-a-box orbitals are used to qualitatively describe p- eectrons
in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative
descriptions of orbitals of atoms with more than a single el ectron. By introducing the
concept of screening as away to represent the repulsive interactions among the el ectrons of
an atom, an effective nuclear charge Zg can be used in place of Z inthey n | m and Ep | to
generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For



example, in the crudest approximation of a carbon atom, the two 1s el ectrons experience
the full nuclear attraction so Zg=6 for them, whereas the 2s and 2p el ectrons are screened
by the two 1s electrons, so Zgt= 4 for them. Within this approximation, one then occupies
two 1s orbitals with Z=6, two 2s orbitals with Z=4 and two 2p orbitals with Z=4in
forming the full six-electron wavefunction of the lowest-energy state of carbon.

3. Rotational Motion For aRigid Diatomic Molecule
This Schrodinger equation relates to the rotation of diatomic and linear polyatomic
molecules. It also arises when treating the angular motions of electronsin any spherically

symmetric potential

A diatomic molecule with fixed bond length R rotating in the absence of any
external potential is described by the following Schrédinger equation:

h2/2m{ (R2sinq)-19/1q (sing 1Mq) + (R%sin2q) 1 12/9f2} y =Ey
or
L2y /2nR2=EYy.

Theanglesq and f describe the orientation of the diatomic moleculé's axisrelative to a
laboratory-fixed coordinate system, and mis the reduced mass of the diatomic molecule
memymy/(mMy+my). The differential operators can be seen to be exactly the same as those
that arose in the hydrogen-like-atom case, and, as discussed above, these g and f
differential operators are identical to the L2 angular momentum operator whose general
properties are analyzed in Appendix G. Therefore, the same spherical harmonics that
served as the angular parts of the wavefunction in the earlier case now serve asthe entire
wavefunction for the so-called rigid rotor: y =Y 3m(q,f). Asdetailed later in thistext, the
eigenvalues corresponding to each such eigenfunction are given as.

Ej=h2 J(J+1)/(2nR2) = B J(J+1)
and are independent of M. Thus each energy level islabeled by Jand is 23+1-fold

degenerate (because M ranges from -Jto J). The so-called rotational constant B (defined as
h2/2nR2) depends on the molecule's bond length and reduced mass. Spacings between



successive rotational levels (which are of spectroscopic relevance because angular
momentum selection rules often restrict DJ to 1,0, and -1) are given by

DE = B (J+1)(3+2) - B JJ+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probesthe
rotational energy levels of molecules.

Therigid rotor provides the most commonly employed approximation to the
rotational energies and wavefunctions of linear molecules. As presented above, the model
restricts the bond length to be fixed. Vibrational motion of the molecule givesriseto
changesin R which are then reflected in changes in the rotational energy levels. The
coupling between rotational and vibrational motion givesriseto rotational B constants that
depend on vibrational state aswell as dynamical couplings,called centrifugal distortions,
that cause the total ro-vibrationa energy of the molecule to depend on rotational and
vibrational quantum numbers in a non-separable manner.

4. Harmonic Vibrational Motion
This Schrodinger equation forms the basis for our thinking about bond stretching and angle
bending vibrations as well as collective phonon motionsin solids

Theradia motion of adiatomic moleculeinitslowest (J=0) rotational level can be
described by the following Schrédinger equation:

- R22mr-20/r (r29Mr)y +V(r)y =Ey,

where mis the reduced mass m= mymy/(mg+my) of the two atoms.
By substituting y = F(r)/r into this equation, one obtains an equation for F(r) in which the
differential operators appear to be less complicated:

- R2/2md2F/dr2 + V(r) F=E F.

This equation is exactly the same as the equation seen above for the radia motion of the
electron in the hydrogen-like atoms except that the reduced mass mreplaces the electron

mass m and the potential V(r) is not the coulomb potential.



If the potential is approximated as a quadratic function of the bond displacement x =
r-re expanded about the point at which 'V is minimum:

V = 12 k(r-re)?,

the resulting harmonic-oscillator equation can be solved exactly. Because the potentia V

grows without bound as x approaches
¥ or -¥, only bound-state solutions exist for this model problem; that is, the motion is
confined by the nature of the potential, so no continuum states exist.
In solving theradial differential equation for this potential (see Chapter 5 of
McQuarrie), the large-r behavior isfirst examined. For large-r, the equation reads:
d2F/dx2 = 1/2 k x2 (2mk?) F,

where x = r-reisthe bond displacement away from equilibrium. Defining x= (k/h2)Y/4 x
asanew scaled radia coordinate allows the solution of the large-r equation to be written as:

Flager = exp(-x2/2).
The general solution to the radial equation is then taken to be of the form:

¥
F=exp(-x2/2) & xM Cp,
n=0

where the G, are coefficients to be determined. Substituting this expression into the full
radial equation generates a set of recursion equations for the C,, amplitudes. Asin the
solution of the hydrogen-like radial equation, the series described by these coefficientsis
divergent unless the energy E happens to equal specific values. It isthis requirement that
the wavefunction not diverge so it can be normalized that yields energy quantization. The
energies of the states that arise are given by:

En=h (km¥2 (n+1/2),

and the eigenfunctions are given in terms of the so-called Hermite polynomias Hp(y) as
follows:



yn(x) = (n! 2)-12 (a/p) 14 exp(-ax?/2) Hh(al/2 x),

wherea =(knh?)L/2, Within this harmonic approximation to the potential, the vibrational
energy levels are evenly spaced:

DE = En+1 - En=h (kkmV/2,

In experimental data such evenly spaced energy level patterns are seldom seen; most
commonly, one finds spacings En+1 - En that decrease as the quantum number n increases.
In such cases, one says that the progression of vibrational levels displays anharmonicity.

Because the H, are odd or even functions of x (depending on whether nisodd or
even), the wavefunctionsy n(x) are odd or even. This splitting of the solutions into two
distinct classes is an example of the effect of symmetry; in this case, the symmetry is
caused by the symmetry of the harmonic potential with respect to reflection through the
origin along the x-axis. Throughout this text, many symmetries will arise; in each case,
symmetry properties of the potentia will cause the solutions of the Schrodinger equation to
be decomposed into various symmetry groupings. Such symmetry decompositions are of
great use because they provide additional quantum numbers (i.e., symmetry labels) by
which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest
reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often
characterized in terms of individual bond-stretching and angle-bending motions each of
whichis, in turn, approximated harmonically. Thisresultsin atotal vibrational
wavefunction that iswritten as a product of functions one for each of the vibrationa
coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of
anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,
result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x=>¥ ), the major
shortcomings of the harmonic oscillator picture can be overcome. The so-called Morse
potential (see the figure below)

V(r) = De (1-exp(-a(r-1e)))2,

is often used in this regard.



Energy

Internuclear distance

Here, Deisthe bond dissociation energy, reis the equilibrium bond length, and aisa
constant that characterizes the 'steepness of the potential and determines the vibrational
frequencies. The advantage of using the Morse potential to improve upon harmonic-
oscillator-level predictionsisthat its energy levels and wavefunctions are aso known
exactly. The energies are given in terms of the parameters of the potential asfollows:

En = A(k/MY2 { (n+1/2) - (n+1/2)2 h(k/MY2/4De },

where the force constant k is k=2De &. The Morse potential supports both bound states
(those lying below the dissociation threshold for which vibration is confined by an outer
turning point) and continuum states lying above the dissociation threshold. Its degree of
anharmonicity is governed by the ratio of the harmonic energy h(k/m)Y/2 to the dissociation
energy De

[11. The Physical Relevance of Wavefunctions, Operators and Eigenvalues



Having gained experience on the application of the Schrodinger equation to several
of the more important model problems of chemistry, it istimeto return to the issue of how
the wavefunctions, operators, and energies relate to experimental reality.

In mastering the sections that follow the reader should keep in mind that :

i. Itisthe molecular system that possesses a set of characteristic wavefunctions and energy
levels, but

ii. Itisthe experimental measurement that determines the nature by which these energy
levels and wavefunctions are probed.

This separation between the 'system’ with itsintrinsic set of energy levels and
‘observation’ or ‘experiment’ with its characteristic interaction with the system forms an
important point of view used by quantum mechanics. It gives rise to apoint of view in
which the measurement itself can 'prepare’ the system in awavefunction Y that need not be
any single eigenstate but can still be represented as a combination of the complete set of
eigengtates. For the beginning student of quantum mechanics, these aspects of quantum
mechanics are among the more confusing. If it helps, one should rest assured that all of the
mathematical and 'rul€’ structure of this subject was created to permit the predictions of
guantum mechanicsto replicate what has been observed in laboratory experiments.

Note to the Reader :

Before moving on to the next section, it would be very useful to work some of the
Exercises and Problems. In particular, Exercises 3, 5, and 12 aswell as problems 6, 8, and
11 provide insight that would help when the material of the next section is studied. The
solution to Problem 11 is used throughout this section to help illustrate the concepts
introduced here.

A. The Basic Rules and Relation to Experimental Measurement

Quantum mechanics has a set of 'rules’ that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the ruleswere
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to




understand usually reflects the presence of experimental observations that do not fit in with
our common experience base.

[Suggested Extra Reading- Appendix C: Quantum Mechanical Operators and Commutation]

The structure of quantum mechanics (QM) relates the wavefunction Y and
operators F to the 'real world' in which experimental measurements are performed through
aset of rules (Dirac'stext is an excellent source of reading concerning the historical
development of these fundamentals). Some of these rules have already been introduced
above. Here, they are presented in total asfollows:

1. Thetime evolution of the wavefunction Y is determined by solving the time-dependent
Schrédinger equation (see pp 23-25 of EWK for arationalization of how the Schrédinger
equation arises from the classical equation governing waves, Einstein's E=hn, and
deBrogli€'s postulate that | =h/p)

HRTY fit=HY,

where H isthe Hamiltonian operator corresponding to the total (kinetic plus potential)
energy of the system. For an isolated system (e.g., an atom or molecule not in contact with
any external fields), H consists of the kinetic and potential energies of the particles
comprising the system. To describe interactions with an external field (e.g., an
electromagnetic field, astatic electric field, or the 'crystal field' caused by surrounding
ligands), additional terms are added to H to properly account for the system-field
interactions.

If H contains no explicit time dependence, then separation of space and time
variables can be performed on the above Schrddinger equation Y =y exp(-itE/R) to give

Hy=Ey.

In such a case, the time dependence of the stateis carried in the phase factor exp(-itE/R); the
spatial dependence appearsiny (q;).

The so called time independent Schrodinger equation Hy =Ey must be solved to
determine the physically measurable energies Ex and wavefunctionsy i of the system. The
most general solution to the full Schrodinger equation iRYY /it = HY isthen given by
applying exp(-iH t/h) to the wavefunction at someinitia time (t=0) Y =Sk Cky k to obtain



Y (t)=Sk Cky k exp(-itEx/). The relative amplitudes Cy are determined by knowledge of
the state at the initial time; this depends on how the system has been prepared in an earlier
experiment. Just as Newton's laws of motion do not fully determine the time evolution of a
classical system (i.e., the coordinates and momenta must be known at someinitia time),
the Schrédinger equation must be accompanied by initial conditionsto fully determine

Y (qj,t).

Example:

Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of N2 in
itsv=0 vibrational stateto generate No* produces a vibrational wavefunction

1
V4 ax2i2 = 353333A 2 o (244.83A2)(1-1.09760AY

Yo=§g

that was created by the fast ionization of N,. Subsequent to ionization, this N2 functionis
not an eigenfunction of the new vibrational Schrodinger equation appropriateto Not. Asa
result, this function will time evolve under the influence of the No* Hamiltonian.

The time evolved wavefunction, according to thisfirst rule, can be expressed in terms of
the vibrational functions{Y \} and energies {E,} of the No* ion as

Y (t) = SV C\/ Yy eXp(-I Ey t/h)

The amplitudes Cy, which reflect the manner in which the wavefunction is prepared (at
t=0), are determined by determining the component of each Y y in the function Y at t=0. To
do this, one uses

s

BY " Y (t=0)dt =Cy,

which is easily obtained by multiplying the above summation by Y *\ integrating, and
using the orthonormality of the{Y } functions.

For the case at hand, this results shows that by forming integrals involving
products of the N2 v=0 function Y (t=0)



1
V4 ax2i2 = 353333A 2 (244.83A2)(1-L.0760AY

Yo=§g

and various Not vibrational functionsY y,, one can determine how Y will evolve in time
and the amplitudes of all {Y } that it will contain. For example, the N, v=0 function, upon
ionization, contains the following amount of the No* v=0 function:

Co=8 Yg*(N2*) Yo(Np) dt

¥

= 83.47522 e-229.113(1-1.11642)23 53333e-244.83(r-1.09769)2r
-¥

As demonstrated in Problem 11, thisintegral reducesto 0.959. This means that the N> v=0
State, subsequent to sudden ionization, can be represented as containing [0.959|2 = 0.92
fraction of the v=0 state of the N>* ion.

This example relates to the well known Franck-Condon principal of spectroscopy in
which squares of ‘overlaps between the initial electronic state's vibrational wavefunction
and thefinal electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition toinitial conditions, solutions to the Schrédinger equation must obey
certain other constraints in form. They must be continuous functions of all of their spatial
coordinates and must be single valued; these propertiesallow Y * Y to beinterpreted asa
probability density (i.e., the probability of finding a particle at some position can not be
multivalued nor can it be 'jerky’ or discontinuous). The derivative of the wavefunction
must a so be continuous except at points where the potential function undergoes an infinite
jump (e.g., at thewall of aninfinitely high and steep potential barrier). This condition
relates to the fact that the momentum must be continuous except at infinitely 'steep’
potential barriers where the momentum undergoes a 'sudden’ reversal.

2. An experimental measurement of any quantity (whose corresponding operator is F) must
result in one of the eigenvalues f; of the operator F. These eigenva ues are obtained by

solving



Ffj =fj fj,

where thef j are the eigenfunctions of F. Once the measurement of F is made, for that sub-
population of the experimental sample found to have the particular eigenvaluef;, the
wavefunction becomesf;.

The equation Hy k=Exy k isbut aspecia case; it isan especially important case
because much of the machinery of modern experimental chemistry is directed at placing the
system in aparticular energy quantum state by detecting its energy (e.g., by spectroscopic
means).

The reader is strongly urged to also study Appendix C to gain amore detailed and
illustrated treatment of this and subsequent rules of quantum mechanics.

3. The operators F corresponding to all physically measurable quantities are Hermitian; this
means that their matrix representations obey (see Appendix C for adescription of the 'bra
| > and 'ket' < | notation used below):

<Cj|[Flck> = <cklF[cj>*= <Fcjlck>

inany basis{cj} of functions appropriate for the action of F (i.e., functions of the
variables on which F operates). As expressed through equality of thefirst and third
elements above, Hermitian operators are often said to ‘obey the turn-over rul€'. This means
that F can be allowed to operate on the function to itsright or on the function to itsleft if F
is Hermitian.

Hermiticity assures that the eigenvaues {fj} areall red, that eigenfunctions{cj}
having different eigenvalues are orthogona and can be normalized <cjlck>=d; k, and that
eigenfunctions having the same eigenval ues can be made orthonormal (these statements are
proven in Appendix C).

4. Once aparticular vauef; is observed in ameasurement of F, this same value will be

observed in al subsequent measurements of F as long as the system remains undisturbed
by measurements of other properties or by interactions with external fields. In fact, once f;

has been observed, the state of the system becomes an eigenstate of F (if it dready was, it
remains unchanged):

FY =fY.



This means that the measurement process itself may interfere with the state of the system
and even determines what that state will be once the measurement has been made.

Example:

Again consider the v=0 Ny ionization treated in Problem 11 of this chapter. If,
subsequent to ionization, the N2>t ions produced wer e probed to determine their internal
vibrational state, a fraction of the sample equal to [<Y (N2; v=0) | Y (N2*; v=0)>|2 = 0.92
would be detected in the v=0 state of the No* ion. For this sub-sample, the vibrational
wavefunction becomes, and remains from then on,

Y (=Y (N2"; v=0) exp(-i t E*\=0/ h),

where Et\=q isthe energy of the No* ioninitsv=0 state. If, at some later time, this sub-
sampleisagain probed, all specieswill be found to be in the v=0 state.

5. The probability B of observing a particular value fx when F is measured, given that the
system wavefunctionis'Y prior to the measurement, is given by expanding Y in terms of
the complete set of normalized eigenstates of F

Y =S; rfj> <fj|Y>

and then computing Py =|<f k|Y >|2 . For the special casein whichY isalready one of the
eigenstates of F (i.e., Y =f), the probability of observing fj reducesto B =d; k. The set
of numbers C; = <f|Y > are called the expansion coefficients of Y in the basis of the {f j} .
These coefficients, when collected together in all possible products as

;i = Ci* Cj form the so-called density matrix Dj; of the wavefunction Y within the {f}
basis.

Example:

If F isthe operator for momentumin the x-direction and Y (x,t) is the wave

function for x as a function of time t, then the above expansion corresponds to a Fourier
transformof Y



Y (x,t) = 1/2p dexp(ikx) oexp(-ik<) Y (x',t) dx' dk.

Here (1/2p) Y2 exp(ikx) is the normalized eigenfunction of F =-ik{/fx corresponding to
momentum e genval ue hk. These momentum eigenfunctions are orthonormal:

1/2p dexp(-ikx) exp(ik'x) dx = d(k-k'),
and they form a complete set of functionsin x-space
1/2p oexp(-ikx) exp(ikx') dk = d(x-X")
because F isa Hermitian operator. The function 0exp(-ikx') Y (x',t) dx' is called the

momentum-space transform of Y (x,t) and is denoted Y (k,t); it gives, when used as
Y *(kt)Y (k,t), the probability density for observing momentum values bk at timet.

Another Example:
Taketheinitial y to be a superposition state of the form
y =a(2po+ 2p.1-2p1) + b (3po- 3p-1),

where the a and b ar amplitudes that describe the admixture of 2p and 3p functionsin this
wavefunction. Then:

a. If L2 were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =
1, since all of thefunctionsiny are p-type orbitals. After said measurement, the
wavefunction would still be thissamey becausethisentirey isan eigenfunction of L 2.
b. If L, were measured for this

y =a(2po+ 2p-1-2p1) + b (3po - 3p-1),
the values Oh, 1k, and -1h would be observed (because these are the only functions with

non-zero Cn, coefficients for the L, operator) with respective probabilities| a2+ | b2, | -a
P,and| a2+ |-b|2.



c. After L, were measured, if the sub-population for which -1k had been detected were
subjected to measurement of L2 the value 2h2 would certainly be found because the new
wavefunction

y'={- a2p.1-b3p.g} (a2 + [b)12
istill an eigenfunction of L2 with this eigenvalue.

d. Again after L ; were measured, if the sub-population for which -1k
had been observed and for which the wavefunction is now

y'={- a2p.1- b3p.1} (|a]2+ b]2)-1/2

wer e subjected to measurement of the energy (through the Hamiltonian operator), two
values would be found. With probability

| -a|2 (ja]2 + |b|2) 1 the energy of the 2p.1 orbital would be observed; with probability | -b |2
(a2 + |b]2)-1, the energy of the 3p.1 orbital would be observed.

If Y isafunction of severa variables (e.g., whenY describes more than one
particlein acomposite system), and if F isaproperty that depends on a subset of these
variables (e.g., when F is a property of one of the particles in the composite system), then
the expansion Y =S; [f j> <f;|Y > isviewed asrelating only to Y 's dependence on the
subset of variablesrelated to F. In this case, the integrals <f k|Y > are carried out over only
these variables; thus the probabilities Pk =|<f k|Y >|2 depend parametrically on the remaining
variables.

Example:

Suppose that Y (r,q) describestheradial (r) and angular (q) motion of a diatomic
molecule constrained to move on a planar surface. If an experiment were performed to
measur e the component of the rotational angular momentum of the diatomic molecule
perpendicular to the surface (L = -ih 1/91q), only values equal to mh (m=0,1,-1,2,-2,3,-
3,...) could be observed, because these are the eigenvaluesof L ; :

L, fm=-ih 141G f m = mhf m, where

fm = (U2p)Y/2 exp(imq).



The quantization of L ; arises because the eigenfunctionsf j(q) must be periodicin g:
f(a+2p) =1(q).

Such quantization (i.e., constraints on the values that physical properties can realize) will
be seen to occur whenever the pertinent wavefunction is constrained to obey a so-called
boundary condition (in this case, the boundary condition isf (q+2p) = f (q)).

Expanding the g-dependence of Y in terms of thef 1y,

Y =Sm<fmlY>fm(q)

allows one to write the probability that mh is observed if the angular momentum Lz is
measured as follows:

Pm=[<fmlY>P=]d m*(a) Y (r,0) dq |2

If oneisinterested in the probability that mh be observed when L, is measured regardless
of what bond length r isinvolved, then it is appropriate to integrate this expression over the
r-variable about which one does not care. This, in effect, sums contributions fromall r-
values to obtain a result that isindependent of the r variable. As a result, the probability
reducesto:

Pm=o0f*(q") {0Y*(r,q") Y(r,q) rdr}f(q) dg’ da,

which is simply the above result integrated over r with a volume element r dr for the two-
dimensional motion treated here.

If, on the other hand, one were able to measure L, values when r is equal to some specified
bond length (thisis only a hypothetical example; there is no known way to perform such a
measurement), then the probability would equal:

Pmrdr=rdrof m*(q)Y*(r,g)Y (r,q)f m(q)dg' dg = |<f m|Y>]r dr.

6. Two or more properties F,G, Jwhose corresponding Hermitian operatorsF, G, J
commute



FG-GF=FJ-JF=GJ-JG=0

have complete sets of simultaneous eigenfunctions (the proof of thisistreated in
Appendix C). Thismeans that the set of functionsthat are eigenfunctions of one of the
operators can be formed into a set of functions that are aso eigenfunctions of the others:

Ffj=fjfj ==> Gfj=gjf; ==> Jf;=jjf;.

Example:

The px, py and p; orbitals are eigenfunctions of the L 2 angular momentum oper ator
with eigenvalues equal to L(L+1) h2 = 2h2. Snce L2 and L , commute and act on the same
(angle) coordinates, they possess a complete set of simultaneous eigenfunctions.

Although the px, py and p; orbitalsarenot eigenfunctions of L, , they can be
combined to formthree new orbitals: pg = pz,
p1= 2V2[p +ipy], and p.1= 2V2[p, - i py] that are still eigenfunctions of L2 but are
now eigenfunctions of L ; also (with eigenvalues ORh, 1k, and -14, respectively).

It should be mentioned that if two operators do not commute, they may still have
some eigenfunctions in common, but they will not have a complete set of simultaneous
eigenfunctions. For example, the Lz and Ly components of the angular momentum operator
do not commute; however, awavefunction with L=0 (i.e., an S-state) is an eigenfunction
of both operators.

The fact that two operators commute is of great importance. It means that once a
measurement of one of the propertiesis carried out, subsequent measurement of that
property or of any of the other properties corresponding to mutually commuting operators
can be made without altering the system’s value of the properties measured earlier. Only
subsequent measurement of another property whose operator does not commute with F,
G, or J will destroy precise knowledge of the values of the properties measured earlier.

Example:



Assume that an experiment has been carried out on an atomto measure its total
angular momentum L2. According to quantum mechanics, only values equal to L(L+1) h2
will be observed. Further assume, for the particular experimental sample subjected to
observation, that values of L2 equal to 2h2 and 0+ were detected in relative amounts of
64 % and 36 % , respectively. This means that the atom's original wavefunctiony could be
represented as.

y=08P+06S

where P and Srepresent the P-state and S-state components of y . The squares of the
amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular
momentum along the lab-fixed z-axisis to be measured for that sub-population of the
original sample found to bein the P-state. For that population, the wavefunction is now a
pure P-function:

y'=P.

However, at this stage we have no information about how much of thisy ' isof m= 1, 0,

or -1, nor do we know how much 2p, 3p, 4p, ... np components this state contains.
Because the property corresponding to the operator L, is about to be measured, we
expressthe abovey ' in terms of the eigenfunctions of L ,:

y'=P=Sm=10-1C'mPm.

When the measurement of L, is made, the values 1 h, 0 k, and -1 h will be observed with
probabilities given by |C'12, |C'ol2, and |C'-1J2, respectively. For that sub-population found
to have, for example, L, equal to-1H, the wavefunction then becomes

y" = P.1.

At this stage, we do not know how much of 2p_1, 3p-1, 4p-1, ... np-1 this wavefunction
contains. To probe this question another subsequent measurement of the energy

(corresponding to the H operator) could be made. Doing so would allow the amplitudesin
the expansion of the abovey "= P_1



y"=P1=SnC"nnPq

to be found.

The kind of experiment outlined above allows one to find the content of each
particular component of an initial sample's wavefunction. For example, the original
wavefunction has
0.64 |C"nJ2 |C'ml2 fractional content of the various nPyy, functions. It is analogous to the
other examples considered above because all of the operators whose propertiesare
measured commute.

Another Example:

Let us consider an experiment in which we begin with a sample (with wavefunction
y) that isfirst subjected to measurement of L, and then subjected to measurement of L2 and

then of the energy. In this order, one would first find specific values (integer multiples of
h) of Lz and one would expressy as

Y =SmDmym.

At this stage, the nature of each y i, is unknown (e.g., the y 1 function can contain npj,
n'dy, n''f1, etc. components); all that isknownisthaty ,, hasmh asitsL; value.

Taking that sub-population (|Dmf? fraction) with a particular mh value for L, and
subjecting it to subsequent measurement of L2 requires the current wavefunctiony m, to be
expressed as

Ym=SLDL,mYL,m

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm, | [2, and
the wavefunction for that particular sub-population will become

y'=yLm
At this stage, we know the value of L and of m, but we do not know the energy of the

state. For example, we may know that the present sub-population has L=1, m=-1, but we
have no knowledge (yet) of how much 2p.1, 3p-1, ... np-1 the system contains.



To further probe the sample, the above sub-population with L=1 and m=-1 can be
subjected to measurement of the energy. In this case, the functiony 1 -1 must be expressed

as
Y1,-1=SnDn" nP_1.

When the energy measurement is made, the state nP_, will be found |Dp'"'|2 fraction of the
time.

Thefactthat L, , L2, and H al commute with one another (i.e., are mutually
commutative) makes the series of measurements described in the above examples more
straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed usto
expand the 64 % probable L 2 eigenstate with L=1 in terms of functions that were
eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of L2. That is, because L2 and L, can have
simultaneous eigenfunctions, the L = 1 function can be expanded in terms of functions that
are eigenfunctions of both L2 and L ,. Thisin turn, allowed us to find experimentally the
sub-population that had, for example -1 h asits value of L, while retaining knowledge that

the state remainsan eigenstate of L2 (the state at thistime had L = 1 and m = -1 and was
denoted P.1). Then, when this P-1 state was subjected to energy measurement, knowledge
of the energy of the sub-population could be gained without giving up knowledge of the L2
and L, information; upon carrying out said measurement, the state became nP-1.

We therefore conclude that the act of carrying out an experimental measurement
disturbs the system in that it causes the system's wavefunction to become an eigenfunction
of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy
knowledge of thefirst property's value gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and
G) do not commute, the second measurement destroys knowledge of the first property's
value. After the first measurement, Y isan eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators
properties are measured in the opposite order, the wavefunction first is an eigenfunction of
G, and subsequently becomes an eigenfunction of F.

It isthus often said that 'measurements for operators that do not commute interfere
with one another'. The simultaneous measurement of the position and momentum aong the



same axis provides an example of two measurements that are incompatible. The fact that x
=x and px = -ih 1/9Ix do not commute is straightforward to demonstrate:

{XCRTMX) ¢ - (IR Tx )x ¢} =ihct 0.

Operators that commute with the Hamiltonian and with one another form a
particularly important class because each such operator permits each of the energy
eigenstates of the system to be labelled with a corresponding quantum number. These
operators are called symmetry operators. Aswill be seen later, they include angular
momenta (e.g., L2,L,, S2, S, for atoms) and point group symmetries (e.g., planes and
rotations about axes). Every operator that qualifies as a symmetry operator provides a
guantum number with which the energy levels of the system can be labeled.

7. If aproperty F ismeasured for alarge number of systemsall described by the same 'Y,
the average value <F> of F for such a set of measurements can be computed as

<F>= <Y F|Y >.

ExpandingY interms of the complete set of eigenstates of F allows <F> to be rewritten as
follows:

<F>=S;fj [<fjlY >]2,

which clearly expresses <F> as the product of the probability P, of obtaining the particular
value fj when the property F is measured and the value fj.of the property in such a
measurement. This same result can be expressed in terms of the density matrix D j of the
stateY defined above as:

<F>=§;jj <Y [fi> <fi[F[fj> <fjlY > = Sj; Ci* <fi[F[f;>C;

=Sjj Dj,i <filF(fj>=Tr (DF).
Here, DF represents the matrix product of the density matrix D;; and the matrix

representation F; j = <fi|F[f ;> of the F operator, both taken inthe {f;} basis, and Tr
represents the matrix trace operation.



As mentioned at the beginning of this Section, this set of rules and their
relationships to experimental measurements can be quite perplexing. The structure of
guantum mechanics embodied in the above rules was developed in light of new scientific
observations (e.g., the photoel ectric effect, diffraction of electrons) that could not be
interpreted within the conventional pictures of classical mechanics. Throughout its
development, these and other experimental observations placed severe constraints on the
structure of the equations of the new quantum mechanics as well as on their interpretations.
For example, the observation of discrete linesin the emission spectra of atoms gaveriseto
the idea that the atom's electrons could exist with only certain discrete energies and that
light of specific frequencies would be given off as transitions among these quantized
energy states took place.

Even with the assurance that quantum mechanics has firm underpinningsin
experimental observations, students learning this subject for the first time often encounter
difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrédinger equation can be exactly solved and to learn how the above rules apply to
such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and
Problems serve as useful models for chemically important phenomena: electronic motion in
polyenes, in solids, and in atoms as well as vibrational and rotational motions. Their study
thus far has served two purposes; it alowed the reader to gain some familiarity with
applications of quantum mechanics and it introduced modelsthat play centra rolesin much
of chemistry. Their study now is designed to illustrate how the above seven rules of
guantum mechanics relate to experimental redlity.

B. An Example lllustrating Several of the Fundamental Rules

The physica significance of the time independent wavefunctions and energies
treated in Section |1 aswell as the meaning of the seven fundamental points given above
can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to ny =1, ny =2, its
total energy would be

E=p2hZ2m[ 12/Ly2 + 22/Ly2].



If the energy were experimentally measured, this and only this value would be observed,
and this same result would hold for all time aslong as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along
the y-axis, according to the second postulate above, only values equal to the eigenvalues of
-ihf/ly could be observed. The p, eigenfunctions (i.e., functions that obey py F =
-iRY/y F = cF) are of theform

(ULy)V2 expliky v),

where the momentum hky, can achieve any value; the (1/Ly) V2 factor is used to normalize
the eigenfunctions over therange O£ y £ Ly. It is useful to note that the y-dependence of y
as expressed above [exp(i2py/Ly) -exp(-iZpy/Ly)] is already written in terms of two such
eigenstates of -ih/1ly:

-y exp(iZpy/Ly) = 2h/Ly exp(i2py/Ly) , and
-ihT/Mly exp(-i2py/Ly) = -2h/Ly exp(-i2py/Ly) .

Thus, the expansion of y in terms of eigenstates of the property being measured dictated by
the fifth postul ate above is already accomplished. The only two termsin this expansion
correspond to momenta along the y-axis of 2h/Ly and -2h/Ly ; the probabilities of
observing these two momenta are given by the squares of the expansion coefficientsof y in
terms of the normalized eigenfunctions of -iRf/fly. The functions (1/ Ly)lf 2 exp(i2py/Ly)
and
(VLy) V2 exp(-i2py/ Ly) are such normalized eigenfunctions; the expansion coefficients of
these functionsiny are 21/2 and -2-1/2 | respectively. Thus the momentum 2h/Ly will be
observed with probability (2-1/2)2 = 1/2 and -2h/Ly will be observed with probability (-2-
12)2 = 1/2. If the momentum along the x-axis were experimentally measured, again only
two values 1h/Ly and -1h/Ly would be found, each with a probability of 1/2.

The average value of the momentum along the x-axis can be computed either as the
sum of the probabilities multiplied by the momentum values:

<py> = 1/2 [1/Ly -1h/Ly ] =0,

or as the so-called expectation value integral shown in the seventh postul ate:




<px>= 00y * (-ihfy /9x) dx dy.

Inserting the full expression for y (x,y) and integrating over x and y from0to Ly and Ly,

respectively, thisintegral is seen to vanish. This means that the result of alarge number of
measurements of py on electrons each described by the samey will yield zero net
momentum aong the x-axis.; half of the measurements will yield positive momenta and
half will yield negative momenta of the same magnitude.

The time evolution of the full wavefunction given above for the ny=1, ny=2 state is
easy to express because thisy isan energy eigenstate:

Y (X,y,t) =y (Xy) exp(-iIEtH).
If, on the other hand, the electron had been prepared in astate y (X,y) that is not a pure
eigendtate (i.e., cannot be expressed as a single energy eigenfunction), then the time
evolution is more complicated. For example, if at t=0y were of the form

y = (2/Lx)V2 (2/Ly)V2 [asin(2px/Ly) sin(1py/Ly)

+ b sin(1px/Lyx) sin(2py/Ly) 1,

with aand b both real numbers whose squares give the probabilities of finding the system
in the respective states, then the time evol ution operator exp(-iH t/h) applied toy would
yield the following time dependent function:

Y = (2Lx) V2 (2/Ly)V2 [aexp(-iEp 1 t/) sin(2px/Ly)

sin(1py/Ly) + b exp(-iE1 2 t/h) sin(1px/Lx) sin(2py/Ly) |,

where
Ex1=p2h22m[ 22/L,2 + 12/Ly2], and

E12 = p2h%2m|[ 12/L,2 + 22/Ly2].
The probability of finding Ep 1 if an experiment were carried out to measure energy would

be [aexp(-iEz 1 t/)]2 = [ap; the probability for finding E1 » would be |b|2. The spatial
probability distribution for finding the electron at points x,y will, in this case, be given by:



IY P =1aPly 21P + [bP Y 127 + 2 aby 21y 1,2 cos(DEA),
where DEisEp 1 - Ej 2,

y 2,1 =(2/Lx) V2 (2/Ly) V2 sin(2px/Ly) sSin(1py/Ly),
and

Y 12 =(2/Lx) V2 (2/Ly) V2 sin(1px/Ly) Sin(2py/Ly).

This spatial distribution is not stationary but evolvesin time. So in this case, one hasa
wavefunction that is not a pure elgenstate of the Hamiltonian (onesaysthat Y isa
superposition state or a non-stationary state) whose average energy remains constant
(E=Ez 1 |a? + E1 2 |bP) but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed
to prepare the system in an eigenstate (e.g., by focusing on the sample light whose
frequency matches that of a particular transition), such need not be the case. For example,
if very short laser pulses are employed, the Heisenberg uncertainty broadening (DEDt 3 h)
causes the light impinging on the sample to be very non-monochromatic (e.g., apulse time
of 1 x10-12 sec corresponds to a frequency spread of approximately 5 cml). This, in turn,
removes any possibility of preparing the system in aparticular quantum state with a
resolution of better than 30 cmr1 because the system experiences time oscillating
electromagnetic fields whose frequencies range over at least 5 cmrl).

Essentially all of the model problems that have been introduced in this Chapter to
illustrate the application of quantum mechanics constitute widely used, highly successful
‘starting-point’ models for important chemical phenomena. As such, it isimportant that
students retain working knowl edge of the energy levels, wavefunctions, and symmetries
that pertain to these models.

Thusfar, exactly soluble model problems that represent one or more aspects of an
atom or molecul€e's quantum-state structure have been introduced and solved. For example,
electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic oscillator
and rigid rotor were introduced to model vibrational and rotational motion of a diatomic
molecule.



As chemists, we are used to thinking of electronic, vibrational, rotational, and
trandational energy levels as being (at least approximately) separable. On the other hand,
we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occursin radiationless
relaxation and vibration-rotation couplings are important in molecular spectroscopy). Itis
important to understand how the simplifications that allow us to focus on electronic or
vibrational or rotational motion arise, how they can be obtained from afirst-principles
derivation, and what their limitations and range of accuracy are.



Chapter 2
Approximation Methods Can be Used When Exact Solutions to the Schrédinger Equation
Can Not be Found.

In applying quantum mechanicsto 'real’ chemical problems, oneis usualy faced
with a Schrédinger differential equation for which, to date, no one has found an analytical
solution. Thisisequally true for electronic and nuclear-motion problems. It has therefore
proven essentia to develop and efficiently implement mathematical methods which can
provide approximate solutions to such eigenval ue equations. Two methods are widely used
in this context- the variational method and perturbation theory. These tools, whose use
permeates virtually all areas of theoretical chemistry, are briefly outlined here, and the
details of perturbation theory are amplified in Appendix D.

|. The Variationa Method

For the kind of potentialsthat arise in atomic and molecular structure, the
Hamiltonian H is a Hermitian operator that is bounded from below (i.e., it has alowest
eigenvalue). BecauseitisHermitian, it possesses a complete set of orthonormal
eigenfunctions{yj}. Any functionF that depends on the same spatial and spin variables
on which H operates and obeys the same boundary conditionsthat the{y j} obey can be
expanded in this complete set

F=5 Gyj.

The expectation value of the Hamiltonian for any such function can be expressed in
terms of its G coefficients and the exact energy levels Ej of H asfollows:

<FHIF>=S;jj GiC;j <yilHlyj> = SjIGF §;.

If the function F is normalized, the sum S;j |Gj2 is equal to unity. BecauseH is bounded
from below, all of the Ej must be greater than or equal to the lowest energy Eg. Combining
the latter two observations allows the energy expectation value of F to be used to produce a
very important inequality:

<FHFF>3 Eo.



The equality can hold only if F isequal toy g; if F contains components along any of the
othery, the energy of F will exceed Ep.

This upper-bound property forms the basis of the so-called variational method in
which 'trial wavefunctions F are constructed:

i. Toguaranteethat F obeysall of the boundary conditionsthat the exact y j do and
that F is of the proper spin and space symmetry and is afunction of the same spatial and
spin coordinates asthey j;

ii. With parameters embedded in F whose ‘optimal’ values are to be determined by
making <F |H|F > a minimum.

It is perfectly acceptable to vary any parametersin F to attain the lowest possible
value for <F |H|F > because the proof outlined above constrains this expectation value to be
above the true lowest eigenstate's energy Eg for any F. The philosophy then isthat the F
that gives the lowest <F |H|F > is the best because its expectation valueis closes to the exact
energy.

Quite often atria wavefunction is expanded as alinear combination of other
functions

F=S;CjF.,

In these cases, one saysthat a'linear variational’ calculation is being performed. The set of
functions {F 3} are usually constructed to obey all of the boundary conditions that the exact
stateY obeys, to be functions of the the same coordinatesas'Y , and to be of the same
gpatial and spin symmetry as'Y . Beyond these conditions, the {F 5} are nothing more than
members of a set of functions that are convenient to deal with (e.g., convenient to evaluate
Hamiltonian matrix elements <F ||H|F ;>) and that can, in principle, be made complete if
more and more such functions are included.

For such atrial wavefunction, the energy depends quadratically on the 'linear

variational' Cj coefficients:

<F|H|F>=S;3CCy<F, HIF 5.

Minimization of this energy with the constraint that F remain normalized (KF|F>=1=S);
C|Cj<F|F 5) givesrise to a so-called secular or eigenval ue-eigenvector problem:



Sj[<F|HF »>-E<F||F5>] C3=S3[H13- ESJCy=0.

If the functions {F 3} are orthonormal, then the overlap matrix S reducesto the unit

matrix and the above generalized eigenval ue problem reduces to the more familiar form:
SjH|3C3=EC,.

The secular problem, in either form, has as many eigenvalues E; and eigenvectors
{Cij} asthedimension of the H;ymatrix asF . It can also be shown that between
successive pairs of the eigenvalues obtained by solving the secular problem at least one
exact eigenvalue must occur (i.e., Ej+1 > Eexact > Ej, for al i). Thisobservationis
referred to as 'the bracketing theorem'.

Variationa methods, in particular the linear variational method, are the most widely
used approximation techniques in quantum chemistry. To implement such amethod one
needs to know the Hamiltonian H whose energy levels are sought and one needs to
construct atrial wavefunction in which some ‘'flexibility’ exists (e.g., asin the linear
variational method where the C; coefficients can be varied). In Section 6 thistool will be
used to develop several of the most commonly used and powerful molecular orbital
methods in chemistry.

I1. Perturbation Theory
[Suggested Extra Reading- Appendix D; Time Independent Perturbation Theory]

Perturbation theory is the second most widely used approximation method in
guantum chemistry. It allows one to estimate the splittings and shiftsin energy levels and
changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or afield that is due to a surrounding set of 'ligands- a crystal field) or afield arising
when a previously-ignored term in the Hamiltonian is applied to a species whose
‘unperturbed' states are known. These 'perturbations’ in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions F i and energies Ex° belonging to the
unperturbed Hamiltonian HO are known

HOF = EOFk,



and given that one wishes to find eigenstates (y k and Ex) of the perturbed Hamiltonian
H=HO+l V,

perturbation theory expressesy i and Ex as power seriesin the perturbation strength | :

¥

yk=a Inygm
n=0
¥

Ec=a | nEM.
n=0

The systematic development of the equations needed to determine the Ex(N and they k(M is
presented in Appendix D. Here, we simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of
the unperturbed problem asfollows:

y k(o) =Fg and Ek(o) = EkO_

This smply means that one must be willing to identify one of the unperturbed states asthe
'best’ approximation to the state being sought. This, of course, impliesthat one must
therefore strive to find an unperturbed model problem, characterized by HO that represents
the true system as accurately as possible, so that one of the F  will be as close as possible
toyk.

Thefirst-order energy correction is given in terms of the zeroth-order (i.e.,
unperturbed) wavefunction as:

EcD =<FylV |Fi>,
which isidentified as the average va ue of the perturbation taken with respect to the
unperturbed function F k. The so-calledfirst-order wavefunction y (1) expressed in terms
of the complete set of unperturbed functions{F 3} is:

y k@ = é <Fj|V | F>l[EO-EOQ] |Fj> .
jik



The second-order energy correction is expressed as follows:

E@= QI<Fj| V | FieRIL BO - EO]
jk

and the second-order correction to the wavefunction is expressed as
yk(z) = Sjl k| Eko - E]'O]'l S|1 k{<Fj| V|F> 'dj,l Ek(l)}
<FIIV|F>[EL-EOILIFj>.

An essential point about perturbation theory is that the energy corrections Ex (" and
wavefunction correctionsy k() are expressed in terms of integrals over the unperturbed
wavefunctionsF  involving the perturbation (i.e., <F;[V|F|>) and the unperturbed
energies Ej0. Perturbation theory is most useful when one has, in hand, the solutions to an
unperturbed Schrédinger equation that is reasonably 'close' to the full Schrédinger
equation whose solutions are being sought. In such acase, it islikely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It isimportant to stress that although the solutions to the full "perturbed’
Schrédinger equation are expressed, as above, in terms of sums over al states of the
unperturbed Schrodinger equation, it isimproper to speak of the perturbation as creating
excited-state species. For example, the polarization of the 1s orbital of the Hydrogen atom
caused by the application of a static external electric field of strength E along the z-axisis
described, in first-order perturbation theory, through the sum

Sn:2’¥ f npO <f npo | Eer CcoYg | 1s> [ E].S - Enpo ]_1

over all pz = po orbitaslabeled by principal quantum number n. The coefficient multiplying

each pp orbital depends on the energy gap corresponding to the 1s-to-np 'excitation’ as well
asthe eectric dipoleintegral <f npg | E ercosq | 1s> between the 1s orbital and the npg

orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have
po symmetry; by combining an s orbital and pg orbitals, one can form a'hybrid-like' orbital
that is nothing but a distorted 1s orbital. The appearance of the excited npg orbitals has



nothing to do with forming excited states; these npg orbitals simply provide a set of

functions that can describe the response of the 1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational
method, as applied to studies of the electronic structure of atoms and molecules, are
discussed in Section 6.



Chapter 3

The Application of the Schrédinger Equation to the Motions of Electrons and Nuclei in a
Molecule Lead to the Chemists' Picture of Electronic Energy Surfaces on Which Vibration
and Rotation Occurs and Among Which Transitions Take Place.

|. The Born-Oppenheimer Separation of Electronic and Nuclear Motions

Many elements of chemists pictures of molecular structure hinge on the point of
view that separates the electronic motions from the vibrational/rotational motions and treats
couplings between these (approximately) separated motions as 'perturbations. It is
essential to understand the origins and limitations of this separated-motions picture.

To develop aframework in terms of which to understand when such separability is
valid, one thinks of an atom or molecule as consisting of a collection of N electrons and M
nuclei each of which possesses kinetic energy and among which coulombic potential
energies of interaction arise. To properly describe the motions of all these particles, one
needs to consider the full Schrodinger equation HY = EY , in which the Hamiltonian H
contains the sum (denoted Hg) of the kinetic energies of all N electrons and the coulomb
potentia energies among the N electrons and the M nuclei aswell asthe kinetic energy T of
the M nucle

T=Sa1m (-h2/2mg) N2,

H=He+T

He=Sj{ (- h%2me) Nj2- SaZ£2/ja} + Sj<k €21k
+ Sa<b ZaZp €Ryp.

Here, maisthe mass of the nucleus a, Zg2 isits charge, and N£ isthe Laplacian with
respect to the three cartesian coordinates of this nucleus (this operator N2 isgivenin
spherica polar coordinatesin Appendix A); 1j a isthe distance between the jth electron and
the &N nucleus, rj i is the distance between the jth and kih electrons, me is the electron’s
mass, and R, is the distance from nucleus ato nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic

coordinates (denoted r as a shorthand) and the 3M nuclear coordinates (denoted R as a
shorthand). In contrast, the electronic Hamiltonian He isaHermitian differential operator in



r-space but not in R-space. Although He isindeed afunction of the R-variables, it isnot a
differentia operator involving them.
Because He isaHermitian operator in r-space, its eigenfunctions Y i (r|R) obey
HeYi (rIR) =E (R) Yi (rR)

for any values of the R-variables, and form a complete set of functions of r for any values
of R. These eigenfunctions and their eigenvalues E;j (R) depend on R only because the
potentials appearing in He depend on R. The Y and E are the €l ectronic wavefunctions

and electronic energies whose evaluations are treated in the next three Chapters.

Thefact that the set of {Y i} is, in principle, complete in r-space allows the full
(electronic and nuclear) wavefunction Y to have its r-dependence expanded in terms of the
Yi.

Y (R =Si Y (rR) X (R) .

The X;(R) functions, carry the remaining R-dependence of Y and are determined by
insstingthat Y as expressed here obey the full Schrédinger equation:

(HetT-E)Si Y (rR) Xi (R) =0.

Projecting this equation against <Y j (r|R)| (integrating only over the electronic coordinates
becausethe Y j are orthonormal only when so integrated) gives:

[ER-BX (R +TX(R)]=-Si{<Yj|T[Yi>(R)Xi(R)
+ Sa=1m (- R2/my) <Y INalYi>R) - NaXi(R) },

wherethe (R) notationin<Y; | T|Y; > (R) and <Y |Na| Y >(R) has been used to
remind one that the integrals < ...> are carried out only over the r coordinates and, asa
result, still depend on the R coordinates.

IntheBorn-Oppenheimer (BO) approximation, one neglects the so-called non-
adiabatic or non-BO couplings on the right-hand side of the above equation. Doing so
yields the following equations for the Xj(R) functions:

[(B(R)-E)X°(R)+ T X;%R)] =0,



where the superscript in XjO(R) is used to indicate that these functions are solutions within
the BO approximation only.

These BO equations can be recognized as the equations for the trand ational
rotational, and vibrational motion of the nuclei on the 'potential energy surface' Ej (R).
That is, within the BO picture, the electronic energies Ej(R), considered as functions of the

nuclear positions R, provide the potentials on which the nuclei move. The el ectronic and
nuclear-motion aspects of the Schrodinger equation are thereby separated.

A. Time Scale Separation

The physical parametersthat determine under what circumstances the BO
approximation is accurate relate to the motional time scales of the electronic and
vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the
differencesin time scales that relate to electronic motions and nuclear motions under
ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclel at
speeds much in excess of even the fastest nuclear motions (the vibrations). As aresult, the
electrons can adjust ‘quickly’ to the slow motions of the nuclei. Thismeansit should be
possible to develop amodel in which the electrons 'follow' smoothly as the nuclei vibrate
and rotate.

This pictureisthat described by the BO approximation. Of course, one should
expect large corrections to such amodel for electronic states in which 'loosely held'
electrons exist. For example, in molecular Rydberg states and in anions, where the outer
valence electrons are bound by afraction of an electron volt, the natural orbit frequencies of
these electrons are not much faster (if at all) than vibrational frequencies. In such cases,
significant breakdown of the BO picture isto be expected.

B. Vibration/Rotation States for Each Electronic Surface

The BO picture iswhat givesrise to the concept of a manifold of potential energy
surfaces on which vibrational/rotational motions occur.

Even within the BO approximation, motion of the nuclel on the various electronic
energy surfacesis different because the nature of the chemical bonding differs from surface
to surface. That is, the vibrational/rotational motion on the ground-state surfaceis certainly



not the same as on one of the excited-state surfaces. However, there are a complete set of
wavefunctions X9 m (R) and energy levels EQ i, for each surface Ej(R) because T + Ej(R)
isaHermitian operator in R-space for each surface (labelled j):

[T+E(R]X%m(R)=E%m XOGm.

The eigenvalues EGj m must be labelled by the electronic surface (j) on which the motion
occurs as well asto denote the particular state (m) on that surface.

Il. Rotation and Vibration of Diatomic Molecules

For a diatomic species, the vibration-rotation (V/R) kinetic energy operator can be
expressed as followsin terms of the bond length R and the anglesq and f that describe the

orientation of the bond axis relative to alaboratory-fixed coordinate system:
Tv/R = - R22m{ R2MR(R2 JMR) - R2h2L.2},

where the square of the rotational angular momentum of the diatomic speciesis
L2=h2{ (sing)1 1Mq ((sina) 1/a ) + (sina)-2 12/ 2} .

Because the potential Ej (R) depends on R but not onq or f, the V/R function X9 m can be

written as a product of an angular part and an R-dependent part; moreover, because L2
contains the full angle-dependence of Ty/r, Xoj,n can be written as

X% n=Yam (a.f) Fjav (R).

The general subscript n, which had represented the state in the full set of 3M-3 R-space
coordinates, is replaced by the three quantum numbers J,M, and v (i.e., once one focuses
on the three specific coordinates R,q, and f , atotal of three quantum numbers arisein

place of the symbol n).
Substituting this product form for X9; , into the V/R equation gives:

- B22m{ R2 MR R2 1MR) - R2h2J(3+1) } Fj 5y (R)



+ Ej(R) l:j,J,v (R) = on INAY; l:j,J,v

asthe equation for the vibrational (i.e., R-dependent) wavefunction within electronic state |
and with the species rotating with J(J+1) h2 as the square of the total angular momentum
and a projection along the laboratory-fixed Z-axis of Mh. The fact that the Fj 5 functions
do not depend on the M quantum number derives from the fact that the Ty/r kinetic energy
operator does not explicitly contain Jz; only 2 appearsin Ty/r.

The solutions for which J=0 correspond to vibrational statesin which the species
has no rotational energy; they obey

- R2/2m{ R2MR(R211R) } Fjov (R)
+Ej(R) Fjov (R) = Eoj,O,v Fov-

The differential-operator parts of this equation can be smplified somewhat by substituting
F= R-1c and thus obtaining the following equation for the new function c:
- h2/2m ﬂ/ﬂR ﬂ/ﬂR Cj,O,V (R) + EJ (R) Cj,O,V (R) = EOj,O,V Cj,O,V .

Solutions for which J* 0 require the vibrational wavefunction and energy to respond to the
presence of the 'centrifugal potential' given by b2 J(J+1)/(2nR?); these solutions obey the
full coupled V/R equations given above.

A. Separation of Vibration and Rotation

It is common, in developing the working equations of diatomic-molecule
rotational/vibrational spectroscopy, to treat the coupling between the two degrees of
freedom using perturbation theory as developed later in this chapter. In particular, one can
expand the centrifugal coupling h2J(3+1)/(2nmR2) around the equilibrium geometry Re
(which depends, of course, onj):

R2J(H1)/(2nR2) = h2Y(H+1)/(2n{R2 (1+DR)?))
= h2 JH1)/2nRA [1-2DR + ... ],

and treat the terms containing powers of the bond length displacement DRK as
perturbations. The zeroth-order equations read:



- 22m{ R2TMR(R21MR) } F9,3v (R) + E(R) Fav (R)
+h2 J(IH1)/(2nRA) FY 3v =EY v FY av

and have solutions whose energies separate
on Jv= h2 J(J+1)/(2nR) + Ejv

and whose wavefunctions are independent of J (because the coupling is not R-dependent in
zeroth order)

F90v (R) =Fjv (R).

Perturbation theory is then used to express the corrections to these zeroth order solutions as
indicated in Appendix D.

B. The Rigid Rotor and Harmonic Oscillator

Treatment of the rotational motion at the zeroth-order level described above
introduces the so-called 'rigid rotor' energy levels and wavefunctions. Ej = k2
J(FH1)/(2nRA) and Yy (q,f); these same quantities arise when the diatomic moleculeis
treated as arigid rod of length Re. The spacings between successive rotational levels within
this approximation are

DEj+1,0 = 2hcB(J+1),

where the so-called rotational constant B isgivenincmlas
B = h/(8p2 cnRe?) .

Therotationa level Jis (231)-fold degenerate because the energy E;j isindependent of the
M guantum number of which there are (2J+1) valuesfor each J. M= -J, -J+1, -JH+2, ... J-2,
J1,J

The explicit form of the zeroth-order vibrational wavefunctions and energy levels,
FO;,v and EY; v, depends on the description used for the electronic potential energy surface



Ej(R). In the crudest useful approximation, E;j(R) is taken to be a so-called harmonic
potential

E(R) » U2kj (R-R9?;
as a consequence, the wavefunctions and energy levels reduce to
EY v = Ej (R +h O/m( v +1/2), and
FOv (R) =[2V V! ]-Y2 (a/p)V4 exp(-a(R-R9?/2) Hy (22 (R-Ry)),

wherea = (K; mY2/h and Hy (y) denotes the Hermite polynomial defined by:
Hy (y) = (-1)V exp(y?) dv/dy exp(-y?).

The solution of the vibrational differential equation
- R22m{ R2IMR(R21MR) } Fjv (R) + Ei(R) Fjv (R)=Ejy Fjv

istreated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no
anharmonicity) that persist for al v. It is, of course, known that molecular vibrations
display anharmonicity (i.e., the energy levels move closer together as one moves to higher
v) and that quantized vibrational motion ceases once the bond dissociation energy is
reached.

C. The Morse Oscillator

The Morse oscillator model is often used to go beyond the harmonic oscillator
approximation. In this model, the potential Ej(R) is expressed in terms of the bond
dissociation energy De and a parameter arelated to the second derivative k of Ej(R) at Re
k = ( d2Ej/dR2) = 2a2De as follows:

Ei(R) - Ej(R)) = De{ 1- exp(-a(R-Re)) }2.

The Morse oscillator energy levels are given by



EQy = Ej(Re) + h Ckim(v+1/2) - h2/4 (KinDg) (v+1/2)2;

the corresponding eigenfunctions are a so known analytically in terms of hypergeometric
functions (see, for example, Handbook of Mathematical Functions, M. Abramowitz and 1.
A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions display
anharmonicity as reflected in the negative term proportional to (v+1/2)2 .

D. Perturbative Treatment of Vibration-Rotation Coupling
I11. Rotation of Polyatomic Molecules

To describe the orientations of a diatomic or linear polyatomic molecule requires
only two angles (usually termed q andf ). For any non-linear molecule, three angles
(usually a, b, and g) are needed. Hence the rotational Schrodinger equation for a non-
linear moleculeis a differential equation in three-dimensions.

There are 3M-6 vibrations of anon-linear molecule containing M atoms; alinear
molecule has 3M-5 vibrations. The linear molecule requires two angular coordinates to
describe its orientation with respect to a laboratory-fixed axis system; a non-linear molecule
requires three angles.

A. Linear Molecules

The rotational motion of alinear polyatomic molecule can be treated as an extension
of the diatomic molecule case. One obtainsthe Y v (q.,f) as rotational wavefunctions and,
within the approximation in which the centrifugal potential is approximated at the
equilibrium geometry of the molecule (Re), the energy levels are:

E0; = J(J+1) h2/(2!) .

Here the total moment of inertial of the molecule takes the place of nR¢? in the diatomic
molecule case

| = Sama (Ra- RCofM)Z;



Mg is the mass of atom a whose distance from the center of mass of the moleculeis (Rj-
Rcofm). Therotational level with quantum number Jis (231)-fold degenerate again
because there are (23+1)

M- values.

B. Non-Linear Molecules

For anon-linear polyatomic molecule, again with the centrifugal couplingsto the
vibrations evaluated at the equilibrium geometry, the following terms form the rotational
part of the nuclear-motion kinetic energy:

Trot = Si=ab,c (Ji2/2|i)-
Here, | isthe eigenvalue of the moment of inertia tensor:

lxx = Sama[ (ReRcofm)? -(Xa - Xcofm )4

Ixy = Samal[ (Xa- XcofM) (Ya-Ycoim) |
expressed originally in terms of the cartesian coordinates of the nuclel () and of the center
of massin an arbitrary molecule-fixed coordinate system (and similarly for Iz, lyy , Ixz
and ly 7). The operator J corresponds to the component of the total rotational angular
momentum J aong the direction belonging to the ith eigenvector of the moment of inertia

tensor.
Moleculesfor which all three principal moments of inertia (the l;'s) are equal are

called 'spherical tops. For these species, the rotational Hamiltonian can be expressed in
terms of the square of the total rotational angular momentum J :

Trot = J2 /2l )
as a conseguence of which the rotational energies once again become

Ej=h2 J(J+1)/2l.



However, the Y 3 are not the corresponding eigenfunctions because the operator J now
contains contributions from rotations about three (no longer two) axes (i.e., the three
principal axes). The proper rotational eigenfunctions arethe Dy k (a,b,g) functions
known as 'rotation matrices (see Sections 3.5 and 3.6 of Zare's book on angular
momentum) these functions depend on three angles (the three Euler angles needed to
describe the orientation of the molecule in space) and three quantum numbers- J M, and K.
The quantum number M |abels the projection of the total angular momentum (as Mh) along
the laboratory-fixed z-axis; Kh is the projection along one of the internal principa axes (in
a spherical top molecule, al three axes are equivaent, so it does not matter which axisis
chosen).

The energy levels of spherical top molecules are (23+1)2 -fold degenerate. Both the
M and K quantum numbers run from -J, in steps of unity, to J; because the energy is
independent of M and of K, the degeneracy is (23+1)2.

Molecules for which two of the three principal moments of inertiaare equal are
called symmetric top molecules. Prolate symmetric tops have I13< I = I ¢ ; oblate symmetric
tops have I3 = Ip < I¢ (itisconvention to order the momentsof inertiaaslg£ Ip £ I¢).

The rotational Hamiltonian can now be written in terms of 2 and the component of J
along the unigue moment of inertia's axis as:

Trot = Jaz ( 1/2|a' 1/2|b ) + J2 /2|b
for prolate tops, and
Trot = JCZ ( 1/2'0 - 1/2|b) + J2/2|b

for oblate tops. Again, the Dy k (a,b,g) are the eigenfunctions, where the quantum
number K describes the component of the rotational angular momentum J along the unique
molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy levelsare
now given in terms of Jand K asfollows:

Ejk =h2J(IH1)/2lp +h2 K2 (1/25- 1/2lp)
for prolate tops, and

Ejk =h2)(3+1)/2lp +h2K2 (12l - 1/2lp)
for oblate tops.



Because the rotational energies now depend on K (aswell ason J), the
degeneracies are lower than for spherical tops. In particular, because the energies do not
depend on M and depend on the square of K, the degeneracies are (23+1) for states with
K=0and 2(2J+1) for states with |K| > O; the extrafactor of 2 arisesfor |K| > 0 states
because pairs of stateswith K = |[K| and K = |-K| are degenerate.

V. Summary

This Chapter has shown how the solution of the Schrédinger equation governing
the motions and interparticle potential energies of the nuclei and electrons of an atom or
molecule (or ion) can be decomposed into two distinct problems: (i) solution of the
electronic Schrédinger equation for the electronic wavefunctions and energies, both of
which depend on the nuclear geometry and (i) solution of the vibration/rotation
Schrédinger equation for the motion of the nuclel on any one of the electronic energy
surfaces. This decomposition into approximately separable electronic and nuclear-
motion problems remains an important point of view in chemistry. It formsthe basis of
many of our models of molecular structure and our interpretation of molecular
spectroscopy. It also establishes how we approach the computational simulation of the
energy levels of atoms and molecules; we first compute electronic energy levelsat a'grid'
of different positions of the nuclei, and we then solve for the motion of the nuclei on a
particular energy surface using this grid of data.

The treatment of electronic motion istreated in detail in Sections 2, 3, and 6
where molecular orbitals and configurations and their computer evaluation is covered. The
vibration/rotation motion of molecules on BO surfaces isintroduced above, but should be
treated in more detail in a subsequent course in molecular spectroscopy .

Section SUmmary

This Introductory Section was intended to provide the reader with an overview of
the structure of quantum mechanics and to illustrate its application to severa exactly
solvable model problems. The model problems analyzed play especialy important rolesin
chemistry because they form the basis upon which more sophisticated descriptions of the
electronic structure and rotational-vibrational motions of molecules are built. The variational
method and perturbation theory constitute the tools needed to make use of solutions of



simpler model problems as starting points in the treatment of Schrédinger equations that are
impossible to solve analyticaly.

In Sections 2, 3, and 6 of thistext, the electronic structures of polyatomic
molecules, linear molecules, and atoms are examined in some detail. Symmetry, angular
momentum methods, wavefunction antisymmetry, and other tools are introduced as needed
throughout the text. The application of modern computational chemistry methods to the
treatment of molecular eectronic structure isincluded. Given knowledge of the electronic
energy surfaces as functions of the internal geometrical coordinates of the molecule, it is
possible to treat vibrational-rotational motion on these surfaces. Exercises, problems, and
solutions are provided for each Chapter. Readers are strongly encouraged to work these
exercises and problems because new material that is used in other Chaptersis often
developed within this context.



Section 1 Exercises, Problems, and Solutions

Review Exercises

1. Transform (using the coordinate system provided below) the following functions
accordingly:

Z

a. from cartesian to spherical polar coordinates
X+y-4z=12

b. from cartesian to cylindrical coordinates
y2 + 22 = 9

c. from spherica polar to cartesan coordinates
r =2 Sing Cosf

2. Perform a separation of variables and indicate the general solution for the following
expressions:
a o+ 16yﬂ =0
Ix
b. 2y + Ty +6=0
qx

3. Find the eigenvalues and corresponding eigenvectors of the following matrices:
L1 2.
ag o 28
é 2 0 O
bh.e 0 -1 2
e o 2 2

[ N atl



4. For the hermitian matrix in review exercise 3a show that the elgenfunctions can be
normalized and that they are orthogonal .

5. For the hermitian matrix in review exercise 3b show that the pair of degenerate
eigenvalues can be made to have orthonormal eigenfunctions.

6. Solve the following second order linear differential equation subject to the specified
"boundary conditions’:

d2x

— —0) = dx(t=0)
2 1 k2 =)
% k2x(t) =0, wherex(t=0) = L, and —

=0.

Exercises

1. Replace the following classical mechanical expressions with their corresponding
guantum mechanical operators.

_mv2 . : :
a K.E. = - in three-dimensional space.

b. p = mv, athree-dimensional cartesian vector.
C. y-component of angular momentum: Ly = zpx - Xpz.

2. Transform the following operators into the specified coordinates:

a Ly —2: y I. z 1y from cartesian to spherical polar coordinates.
T~ 1z Ty %
b.L,= T 1;}1 from spherical polar to cartesian coordinates.

3. Match the eigenfunctions in column B to their operatorsin column A. What isthe
eigenvalue for each eigenfunction?

Column A Column B
d2
i. (1x2)—-xdc:( 4x4-12x2+ 3
. d2
i, — 5x4
dx2
iii. X d—ci( e3X + g3X
. d? d >
|v.@-2x& X&-4x + 2
d? d
= - 3.
V'XdX2+(1X)& 4x5S - 3
4. Show that the following operators are hermitian.
a. Py
b. Ly

5. For the following basis of functions (Y 2p " Y 2pg; and Y 210+1)’ construct the matrix
representation of the L x operator (use the ladder operator representation of Ly). Verify that



the matrix is hermitian. Find the eigenvalues and corresponding eigenvectors. Normalize
the eigenfunctions and verify that they are orthogonal .

1 &85 apacing eif
szl 8p1/2eafa re Sing e

1 a6 apa
Y 2p, = 012 55 rez2a Cosq

1 6&0 zrl2a G if
ngl 8p1/2 e re- Sing €

6. Using the set of eigenstates (with corresponding eigenvalues) from the preceding
problem, determine the probability for observing

a z-component of angular momentum equal to 1h if the state is given by the L x eigenstate
with Oh Ly eigenvalue.

7. Use the following definitions of the angular momentum

operators:
h . hi
LX:Tiyl_zlu'Ly:Tizl_ lu
L TP IR
Lz=?% x . y T8 and 2= L2 +|_2 +L2,
oy
and the relationships:

[x,pxl =ih , [y,pyl =ih , and [z,p,] =
to demonstrate the following operator identities:

a[LxLyl=ih Lz
b. [Ly,LZ-I =ih Lx,
c.[LaLd =ih Ly,

d.[Ly,L2] =0,
e.[Ly,Lq =0,
f.[LnLg =0

8. In exercise 7 above you determined whether or not many of the angular momentum
operators commute. Now, examine the operators below along with an appropriate given
function. Determineif the given function is simultaneoudly an eigenfunction of both
operators. Isthiswhat you expected?

a Lz, L2 with function: Y9(q,f) =—=

@.
=

c. Lz L2 with function: Y(l)(q,f) :\/43 Cosq.
Y

b. Ly, Lz, with function: Yo(q.f) =



d. Ly, Lz, with function: Y3(q.f) =\/4E Cosq.
p

9. For a"particlein abox" constrained along two axes, the wavefunction Y (x,y) as given
inthe text was :

n 1 ) 1 € inypx -inypx Qg inypy -inypy ()
_el el &L, oL L oL Y

with ny and ny = 1,2,3, .... Show that this wavefunction is normalized.

10. Using the same wavefunction, Y (x,y), given in exercise 9 show that the expectation
value of pyx vanishes.

11. Cdlculate the expectation value of the x2 operator for the first two states of the
harmonic oscillator. Use the v=0 and v=1 harmonic oscillator wavefunctions given below

+¥
which are normalized such that 8Y (x)2dx = 1. Remember that Y o = g+ eax“Zandy 1
R, a
ada3p

14
%—+ X
P o

12. For each of the one-dimensional potential energy graphs shown below, determine:
a. whether you expect symmetry to lead to a separation into odd and even solutions,
b. whether you expect the energy will be quantized, continuous, or both, and

c. the boundary conditions that apply at each boundary (merely stating that Y

gax2l2,

Y . . : :
and/or 1‘1”— iscontinuousis al that is necessary).
X



]
w=0 L
ii.
Y
0 0
W= L
E«
iji. o o
a
—Wo e B0
=Wy
13. Consider a particle of mass m moving in the potential :
V(X) =¥ for x<0 Region |
V(x)=0 for  OEXEL Region 11
V(X)=V(V>0) for X>L Region 111

a. Write the general solution to the Schrodinger equation for theregions|, I1, 111,

assuming a solution with energy E <V (i.e. abound state).
b. Write down the wavefunction matching conditions at the interface between
regions| and Il and between |1 and I11.

c. Write down the boundary conditionsonY for x ® +¥.
d. Use your answersto a. - . to obtain an algebraic equation which must be
satisfied for the bound state energies, E.



e. Demonstrate that inthelimit V ® ¥, the equation you obtained for the bound

2h2p2

state energiesin d. givesthe energies of aparticlein an infinite box; En = n2h Lp2 ; n=
m

1,2,3,...

Problems

1. A particle of mass m movesin aone-dimensiona box of length L, with boundaries at x
=0andx=L. Thus, V(x)=0for O£ x£ L, and V(x) =¥ elsewhere. The normalized

: : N : . _&RoY2 o npx
eigenfunctions of the Hamiltonian for this system are given by Y n(x) = e Sin—, with

n2p2h2
~ 2mL2
a. Assuming that the particle isin an eigenstate, Y (X), calculate the probability that
the particleisfound somewhereintheregion O£ x £ % . Show how this probability

depends on n.
b. For what value of n istherethe largest probability of finding the particlein 0 £ x

n , Where the quantum number n can take on the values n=1,2,3,....

th
A
N

c. Now assumethat Y isasuperposition of two eigenstates,
Y =a¥p+bYm atimet=0. WhatisY attimet? What energy expectation value does

Y haveat timet and how doesthisrelateto itsvalueat t = 0?
d. For an experimental measurement which is capable of distinguishing systemsin

stateY  from those in'Y y,, what fraction of alarge number of systems each described by

Y will be observed to bein'Y n? What energies will these experimental measurements find
and with what probabilities?

e. For those systems originally inY = aY  + bY ,, which were observed to bein

Y na timet, what state (Y n, Y m, or whatever) will they be found in if a second
experimental measurement ismade at atimet' later than t?

f. Suppose by some method (which need not concern us at this time) the system has
been prepared in a nonstationary state (that is, it is not an eigenfunction of H). At thetime
of ameasurement of the particle's energy, this state is specified by the normalized

, 12
wavefunction Y = gé_—go X(L-x) for OE X £ L,and Y =0 elsewhere. What isthe
/%]

n2p2h2
2mL2

probability that a measurement of the energy of the particle will givethevaue E, =

for any given value of n?
0. What is the expectation value of H, i.e. the average energy of the system, for the

wavefunction Y givenin part f?

2. Show that for a system in anon-stationary state,



o]
Y = a Cije"Ei vh , the average value of the energy does not vary with time but the

J
expectation values of other properties do vary with time.

3. A particleis confined to a one-dimensional box of length L having infinitely high walls
and isin itslowest quantum state. Calculate: <x>, <x2>, <p>, and <p?>. Using the
definition DA = (<AZ> - <A>2)V2 1o define the uncertainty , DA, calculate Dx and Dp.

Verify the Helsenberg uncertainty principle that DxDp 3 h /2.

4. It has been claimed that as the quantum number n increases, the motion of aparticlein a
box becomes more classical. In this problem you will have an oportunity to convince
yourself of thisfact.

a. For a particle of mass m moving in aone-dimensional box of length L, with ends
of the box located at x = 0 and x = L, the classical probability density can be shown to be

independent of x and given by P(x)dx = % regardless of the energy of the particle. Using
this probability density, evaluate the probability that the particle will be found within the
interval from x = 0 to x :% :

b. Now consider the quantum mechanical particle-in-a-box system. Evaluate the

probability of finding the particlein the interval from x = 0 to x :% for the system inits

nth quantum state.

c. Take the limit of the result you obtained inpartbasn® ¥. How does your
result compare to the classical result you obtained in part a?

5. According to the rules of quantum mechanics as we have developed them, if Y isthe
state function, and f , are the eigenfunctions of alinear, Hermitian operator, A, with
eigenvalues a,, Af n = anf n, then we can expand Y in terms of the compl ete set of

eigenfunctionsof A accordingtoY = é Cnf n, Wherech = Bf n'Y dt . Furthermore, the

n
probability of making a measurement of the property corresponding to A and obtaining a

value a, is given by Ucy(?, provided both Y and f ,, are properly normalized. Thus, P(an) =

Ucn(P. These rules are perfectly valid for operators which take on a discrete set of
eigenvalues, but must be generalized for operators which can have a continuum of
eigenvalues. An example of thislatter type of operator isthe momentum operator, px,

which has eigenfunctions given by f p(x) = AdPXh where p isthe eigenvalue of the py
operator and A is anormalization constant. Here p can take on any value, so we have a
continuous spectrum of eigenvalues of px. The obvious generalization to the equation for

Y isto convert the sum over discrete states to an integral over the continuous spectrum of
states:

+¥ +¥
Y (x) = BCE)f px)dp = BC(p)AdPdihdp
¥ ¥



Theinterpretation of C(p) is now the desired generalization of the equation for the
probability P(p)dp = UC(p)Rdp. This equation states that the probability of measuring the
momentum and finding it in the range from p to p+dp is given by (1C(p)(dp. Accordingly,
the probability of measuring p and finding it in the range from p; to py is given by

p2 P2

8P(p)dp = éC(p)*C(p)dp . C(p) isthus the probability amplitude for finding the particle

p1 P1
with momentum between p and p+dp. Thisisthe momentum representation of the

+¥

wavefunction. Clearly we must require C(p) to be normalized, so that éC(p)* C(p)dp =1.
-¥

With this restriction we can derive the normalization constant A = 1 , giving adirect

\Jop

relationship between the wavefunction in coordinate space, Y (x), and the wavefunction in
momentum space, C(p):

+¥
L 8 C(p)ei px/hdp ’

\Jopn ¢

and by the fourier integral theorem:

Y (x)=

+¥
— L 8v (x)amdhax .

\[2pn ¥

L ets use these ideas to solve some problems focusing our attention on the harmonic
oscillator; a particle of mass m moving in aone-dimensional potential described by V(x) =
ko

2 .

C(p) =

a. Write down the Schrodinger equation in the coordinate representation.
b. Now lets proceed by attempting to write the Schrodinger equation in the
momentum representation. |dentifying the kinetic energy operator T, in the momentum
2
representation is quite straightforward T = STn =-
Error!. Writing the potential, V(x), in the momentum representation is not quite as
straightforward. The relationship between position and momentum is realized in their

commutation relation [x,p] =ih, or (xp - px) =ih
This commutation relation is easily verified in the coordinate representation leaving x

untouched (X = x-) and using the above definition for p. In the momentum representation

we want to leave p untouched (p = p-) and define the operator x in such a manner that the
commutation relation is still satisfied. Write the operator x in the momentum
representation. Write the full Hamiltonian in the momentum representation and hence the
Schrédinger equation in the momentum representation.

c. Verify that Y asgiven below isan eigenfunction of the Hamiltonian in the
coordinate representation. What is the energy of the system when it isin this state?



Determine the normalization constant C, and write down the normalized ground state
wavefunction in coordinate space.

Y (%) = C exp (k22 ).
2h

d. Now consider Y in the momentum representation. Assuming that an
eigenfunction of the Hamiltonian may be found of the form Y (p) = C exp (-ap?),
substitute thisform of Y into the Schroédinger equation in the momentum representation to
find the value of a which makes this an eigenfunction of H having the same energy as
Y (xX) had. Show that thisY (p) isthe proper fourier transform of Y (x). The following
integral may be useful:

+¥

8 evx2Cosbxdx = Vﬁ eb?/4b,
-¥ b

Since this Hamiltonian has no degenerate states, you may conclude that Y (x) and Y (p)
represent the same state of the system if they have the same energy.

6. The energy states and wavefunctions for a particle in a 3-dimensional box whose lengths
arely, Lo,and L3 are given by

L R, @88

E(n1,n2,n3) = 8m eel_]_g eL2g él3g

&02 &02 &02 . aﬁleO Sj aaZpyo . 83pz0

Y (nyn2.n3) = dlig elog & 3g 8 L1 o 8 Lo gsm L3 o
These wavefunctions and energy levels are sometimes used to model the motion of
electronsin acentral metal atom (or ion) which is surrounded by six ligands.

a. Show that the lowest energy level is nondegenerate and the second energy level
istriply degenerateif L1 = L2 = L3. What values of ny, np, and n3 characterize the states
belonging to the triply degenerate level?

b. For abox of volumeV = L1LoL 3, show that for three electronsin the box (two
in the nondegenerate lowest "orbital”, and one in the next), alower total energy will result

if the box undergoes a rectangular distortion (L1 = Lo * L3). which preservesthe total

and

[ N atl

volumethan if the box remains undistorted (hint: if V/ isfixed and Ly = Lo, then L3 = Liz
1
and L1 istheonly "variable").

c. Show that the degree of distortion (ratio of L3 to L1) which will minimize the

total energy isL3 =1/2 L1. How does this problem relate to Jahn-Teller distortions? Why
(in terms of the property of the central atom or ion) do we do the calculation with fixed
volume?

d. By how much (in eV) will distortion lower the energy (from its value for a cube,

Li=Ly=Lg)ifV=8A3and Qm =6.01x 1027 ergcn?. 1eV =1.6x 102 erg

7. ThewavefunctionY = AedX| isan exact eigenfunction of some one-dimensional
Schrédinger equation in which x variesfrom -¥ to +¥ . Thevaueof ais: a= (2A)1. For



2
now, the potential V(x) in the Hamiltonian (H = % dd_2 + V(X)) for which Y (x) isan
X
eigenfunction is unknown.
a Find avalue of A which makesY (x) normalized. Isthisvalue unique? What

unitsdoes Y (x) have?
b. Sketch the wavefunction for positive and negative values of x, being careful to
show the behavior of its Slope near x = 0. Recall that |x| is defined as:
K| = xifx>0
-x if x <0
c. Show that the derivative of Y (x) undergoes adiscontinuity of magnitude 2(a)3/2
as x goes through x = 0. What does thisfact tell you about the potential V (x)?
d. Calculate the expectation value of |x| for the above normalized wavefunction

(obtain anumerical value and give its units). What does this expectation value give a
measure of ?

e. The potential V(X) appearing in the Schrédinger equation for which Y = Aedxl is
2
an exact solution isgiven by V(x) = h_ma d(x). Using this potential, compute the

2
expectation value of the Hamiltonian (H = %n % + V(X)) for your normalized

X
wavefunction. IsV(x) an attractive or repulsive potentia? Does your wavefunction

correspond to abound state? |s <H> negative or positive? What does the sign of <H> tell

2
you? To obtain anumerical value for <H> useg—m =6.06 x 10028 erg cm? and 1eV = 1.6

x 10 -12 erg.

f. Transform the wavefunction, Y = Aedx| , from coordinate space to momentum
Space.

0. What istheratio of the probability of observing amomentum equal to 2ah to the
probability of observing amomentum equal to -ah ?

8. The p-orbitals of benzene, CsHg may be modeled very crudely using the wavefunctions
and energies of aparticleon aring. Letsfirst treat the particle on aring problem and then
extend it to the benzene system.

a. Suppose that a particle of mass m is constrained to move on acircle (of radiusr)
in the xy plane. Further assume that the particle's potential energy is constant (zeroisa
good choice). Write down the Schrodinger equation in the normal cartesian coordinate
representation. Transform this Schrodinger equation to cylindrical coordinates where x =

rcosf,y =rsinf, and z=z (z=0in this case).
Taking r to be held constant, write down the general solution, F (f), to this Schrodinger

equation. The "boundary” conditions for this problem requirethat F (f) = F (f + 2p).
Apply this boundary condition to the general solution. Thisresultsin the quantization of
the energy levels of this system. Write down the final expression for the normalized
wavefunction and quantized energies. What isthe physical significance of these quantum



numbers which can have both positive and negative values? Draw an energy diagram
representing the first five energy levels.

b. Treat the six p-electrons of benzene as particles free to move on aring of radius
1.40 A, and calculate the energy of the lowest electronic transition. Make sure the Pauli
principleis satisfied! What wavel ength does this transition correspond to? Suggest some
reasons why this differs from the wavelength of the lowest observed transition in benzene,
whichis 2600 A.

9. A diatomic molecule constrained to rotate on aflat surface can be modeled as a planar

rigid rotor (with eigenfunctions, F (f ), analogous to those of the particle on aring) with
fixed bond length r. Att =0, the rotational (orientational) probability distributionis

observed to be described by awavefunction Y (f,0) = \/31 Cos?f . What values, and with
Y

what probabilities, of the rotational angular momentum, ?‘hﬂifg , could be observed in this
4]

system? Explain whether these probabilities would be time dependent as Y (f ,0) evolves
intoY (f,t).

10. A particle of mass m movesin a potential given by

2

Vixy2) =502 +y2+22) =5

a. Write down the time-independent Schrodinger equation for this system.

b. Make the substitution Y (x,y,z) = X(X)Y (y)Z(z) and separate the variables for
this system.

c. What are the solutions to the resulting equations for X(x), Y (y), and Z(2)?

d. What isthe genera expression for the quantized energy levels of this system, in
terms of the quantum numbers ny, ny, and nz, which correspond to X(x), Y (y), and Z(2)?

e. What isthe degree of degeneracy of a state of energy

E= 5.5h\/rKn for this system?
f. An aternative solution may be found by making the substitution Y (r,q,f ) =

F(r)G(q,f). Inthissubstitution, what are the solutions for G(q,f)?
g. Write down the differential equation for F(r) which is obtained when the

substitution Y (r,q,f) = F(r)G(q,f) ismade. Do not solve this equation.

11. Consider an N2 molecule, in the ground vibrational level of the ground electronic state,
which is bombarded by 100 eV electrons. Thisleadsto ionization of the N> moleculeto

form Nsz . Inthis problem we will attempt to calculate the vibrational distribution of the

newly-formed N; ions, using a somewhat simplified approach.

a. Calculate (according to classical mechanics) the velocity (in cm/sec) of a 100 eV
electron, ignoring any relativistic effects. Also calculate the amount of time required for a
100 eV electron to pass an N, molecule, which you may estimate as having alength of 2A.

b. Theradial Schrodinger equation for a diatomic molecule treating vibration as a
harmonic oscillator can be written as:



L 39’;00 Ko cy2
zngg o (I’ e) Y =EY ,

Substituting Y (r) = ﬁ , this equation can be rewritten as:

h2 {2
— — F(r) + 5(r - re) 2F(r) = EF(r
2 (n) ( e “F( =EFI) .
The vibrational Hamiltonian for the ground el ectronic state of the N2 molecule within this
approximation is given by:
h2 d2

KN
H(N2) = i Tz(f -INp) 2,

where ry, and kn, have been measured experimentally to be:

Ny = 1.09769 A; ki, = 2.294 x 106 -

SEC
The vibrational Hamiltonian for the N>* ion , however, isgiven by :
k +
h2 d?2 >
H(N2) = ol —(f- ’NG) <

where ry,* and kn,* have been measured experimentally to be:
g =1.11642 A; knj = 2.000 x 106 —

sec2

In both systems the reduced massis m= 1.1624 x 10-23 g. Use the above information to
write out the ground state vibrational wavefunctions of the N» and NJZf molecules, giving

explicit values for any constants which appear in them. Note: For this problem use the
"normal™ expression for the ground state wavefunction of a harmonic oscillator. Y ou need
not solve the differential equation for this system.

c. During the time scale of the ionization event (which you calculated in part a), the
vibrational wavefunction of the N> molecule has effectively no time to change. Asaresult,

the newly-formed N; ion findsitself in avibrational state which is not an eigenfunction of
the new vibrational Hamiltonian, H (NJZr ). Assuming that the N> molecule was originally

initsv=0 vibrationa state, calculate the probability that the N; ion will be produced inits
v=0 vibrationa state.

12. The force constant, k, of the C-O bond in carbon monoxide is 1.87 x 106 g/sec?.

Assume that the vibrational motion of CO is purely harmonic and use the reduced mass m=
6.857 amu.
a. Calculate the spacing between vibrational energy levelsin thismolecule, in units

of ergsand cnrl,
b. Calculate the uncertainty in the internuclear distance in this molecule, assuming it

isinitsground vibrational level. Use the ground state vibrational wavefunction (Y y=q),
and calculate <x>, <x2>, and Dx = (<x2> - <x>2)1/2,



c¢. Under what circumstances (i.e. large or small values of k; large or small values

of m) isthe uncertainty in internuclear distance large? Can you think of any relationship
between this observation and the fact that helium remains aliquid down to absolute zero?

13. Suppose you are given atrial wavefunction of the form:

3 _ R
fole exp? eroexpaez—‘ 26

pa)3 e g e g

to represent the electronic structure of atwo-electron ion of nuclear charge Z and suppose
that you were a so lucky enough to be given the variational integral, W, (instead of asking
you to deriveit!):

e2
> (O
W = 32e2 2zze+82 o

a. Find the optimum vaI ue of the variational parameter Ze for an arbitrary nuclear
charge Z by setting g\zN = 0. Find both the optimal value of Ze and the resulting value of
W.

b. Thetotal energies of some two-electron atoms and ions have been experimentally
determined to be:

z=1 H- -14.35eV
z=2 He -78.98 eV
z=3 Li+ -198.02 eV
z=4 Bet2 -3715eV
z=5 B+3 -599.3 eV
z=6 CHl -881.6 eV
z=7 N+5 -1218.3 eV
z=8 O*6 -1609.5 eV

Using your optimized expression for W, calculate the estimated total energy of each of
these atoms and ions. Also calculate the percent error in your estimate for each ion. What
physical reason explains the decrease in percentage error as Z increases?

c. In 1928, when quantum mechanics was quite young, it was not known whether

the isolated, gas-phase hydride ion, H-, was stable with respect to dissociation into a

hydrogen atom and an electron. Compare your estimated total energy for H- to the ground
state energy of a hydrogen atom and an isolated electron (system energy = -13.60 eV), and

show that this ssimple variational calculation erroneoudly predicts H- to be unstable. (More

complicated variational treatments give a ground state energy of H- of -14.35 €V, in
agreement with experiment.)

2 g2
14. A particle of mass m movesin aone-dimensiona potentia givenby H = gm dd >
X
ax| , where the absolute value function isdefined by x| = x if x 3 Oand |x| =-x if X £ O.
_ _ _ 2be -bx2 _
a. Usethe normalized trial wavefunctionf = 8&~06* e to estimate the energy of

ep o
the ground state of this system, using the variational principle to evaluate W(b).



b. Optimize b to obtain the best approximation to the ground state energy of this

system, using atria function of the form of f, as given above. The numerically calculated
2 1 2

exact ground state energy is 0.808616 h5 m 3 a_5 . What is the percent error in your
vaue?

15. The harmonic oscillator is specified by the Hamiltonian:

_h@ 1,
H—-Tn@+§kx.

Suppose the ground state solution to this problem were unknown, and that you wish to
approximate it using the variational theorem. Choose as your trial wavefunction,
5

f = /%—2 a_E(aZ-xz) for-a<x<a

f=0 for x|® a
where ais an arbitrary parameter which specifies the range of the wavefunction. Note that
f isproperly normalized as given.

+¥
a Caculate 8f*Hf dx and show it to be given by:
¥
+¥
Q. * 5 h2 ka2
Bf *Hfdx =3 — + 5.
_¥ Aoz 14
+¥ )
Qr* @]20]- .
b. Caculate 8f *Hf dx fora= b%—-“ with b = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0,
¥ %]

2.5, 3.0, 4.0, and 5.0, and plot the result.
c. Tofind the best approximation to the true wavefunction and its energy, find the

+¥ +¥
minimum of 8f*Hfdx by settingdﬂaéf *Hf dx =0 and solving for a Substitute this value
-¥ -¥
into the expression for
+¥
8f*Hf dx givenin part a. to obtain the best approximation for the energy of the ground
-¥

state of the harmonic oscillator.

d. What is the percent error in your calculated energy of part c. ?
16. Einstein told us that the (relativistic) expression for the energy of a particle having rest
mass m and momentum p is E2 = m2c4 + p2c2.

a Derive an expression for the relativistic kinetic energy operator which contains
p2

terms correct through one higher order than the "ordinary" E = mc2 + >m



b. Using the first order correction as a perturbation, compute the first-order
perturbation theory estimate of the energy for the 1slevel of ahydrogen-like atom (genera
Z). Show the Z dependence of the resullt.

2 E— Z2met
Note: Y ()15 = Ee 3&02 e? andE, =- m
€30 &po ° 2h2

c. For what value of Z does thisfirst-order relativistic correction amount to 10% of
the unperturbed (non-relativistic) 1s energy?

17. Consider an electron constrained to move on the surface of a sphere of radiusr. The

Hamiltonian for such motion consists of akinetic energy term only Hg =

2

, Where L
2mdo?
isthe orbital angular momentum operator involving derivatives with respect to the spherical

0
polar coordinates (q,f). Hg hasthe complete set of eigenfunctionsY |(n1 =Y1m(q,f).

a. Compute the zeroth order energy levels of this system.

b. A uniform electric field is applied along the z-axis, introducing a perturbation V
= -eez = -eergCosq , where eisthe strength of thefield. Evaluate the correction to the
energy of the lowest level through second order in perturbation theory, using the identity

Cosq Yim(@.) =\ iy YisLm(at) +

(I+m)(l-m)
\ @@ Y-m@f).
Note that thisidentity enables you to utilize the orthonormality of the spherical harmonics.
c. The électric polarizability a gives the response of a molecule to an externally

2E .
applied electric field, and is defined by a = JE ;
ﬂ2e i e=0

of thefield and eisthe strength of thefield. Calculate a for this system.

d. Use this problem as amodel to estimate the polarizability of a hydrogen atom,
whererg = a9 = 0.529 A, and a cesium atom, which has a single 6s e ectron with rg » 2.60
A. The corresponding experimental values are ay = 0.6668 A3 and a.cs = 59.6 A3.

where E isthe energy in the presence

18. An electron moving in aconjugated bond framework can be viewed as aparticlein a
box. An externally applied electric field of strength e interacts with the electron in afashion

described by the perturbation V = eegﬁ - %g , Where x isthe position of the electron in the

box, eisthe electron's charge, and L is the length of the box.
a. Compute the first order correction to the energy of the n=1 state and the first
order wavefunction for the n=1 state. In the wavefunction calculation, you need only

compute the contribution to Y ¢ made by Y ) . Make arough (no cal culation needed)

sketch of Y@ + Y@ asafunction of x and physically interpret the graph.
b. Using your answer to part a. compute the induced dipole moment caused by the

polarization of the electron density due to the electric field effect Mnduced = - ng *29 - %BY dx

. 'Y ou may neglect the term proportiona to €2 ; merely obtain theterm linear ine.



c¢. Compute the polarizability, a, of the electron in the n=1 state of the box, and
explain physically why a should depend as it does upon the length of the box L.
Remember that a = Jm ::: :
feie=0
Solutions

Review Exercises

1. The general relationships are as follows:
Z

X =r Sinq Cosf r2=x2+y2+ 22
\fx2 2
y =r Sing Sinf Sing = X1y
'\’X2+ y2+ 72
z=r Cosq Cosq = Z
'\,X2+ y2+ 72
=Y
Tanf—x

a X+y-4z=12
3(rSinqCosf ) + rSinqSinf - 4(rCosq) = 12
r(3sinqCosf + SingSinf - 4Cosq) = 12
b. X = rCosf r2=x2 +y2
y =rSinf Tanf = %
z=z



y2+72=9
r2Sin2f +z2=9

C. r = 2SinqCosf

r = 2%0
elg
r2 =2x

X2 +y2 + 72 = 2x
X2-2x+y2+72=0
X2-2x+1+y2+272=1
(x-1)2+y2+272=1

2. a Ox + 16ym =0
x
16ydy = -9xdx
16 ,_ 9
FRAR I
16y2 = -9x2 + ¢'

y2  x2 . :
5 +t1g =C (general equation for an ellipse)

b. 2y+m +6=0

2+¢

-2x=In(y +3)+c
ceX=y+3
y=ce?X-3

3. a. First determine the eigenvalues:
detg'l - 2
g 2 2 -1
(-1-1)2-1)-22=0
2+ -2 +12-4=0
12-1 -6=0
(I -3)(1 +2)=0
| =3 or | =-2
Next, determine the eigenvectors. First, the eigenvector associated with eigenvalue -2:
-1 2 36Ci1y_ ,6Cu1y
82 28scna~?ecaa

U
(=0
u



-C11+2C21=-2C11
C11 =-2C»; (Note: The second row offers no new information, e.g. 2C11
+2C21 =-2C2)

C112 + C212 =1 (from normalization)
(-2C21)2+ Cp12=1
4Cxn2+Cx2=1

5C»12=1

C212=0.2

Co1 =1/0.2, and therefore C11 =-24/0.2 .
For the e genvector associ ated with eigenvalue 3:

§” He Ci2 y _ 5 € C12 v

2 2 UgCx 0~ e C22 0

-C12+2C2»=3Cy12

-4C12=-2C2

C12 =0.5C9, (again the second row offers no new information)

C122 + C»2 =1 (from normaization)
(0.5C2)2 + Cx2=1

0.25C222 + Cop2=1

1.25C»2=1

C222=0.8

C2 =1/0.8 = 20/0.2, and therefore C12 =1/0.2 .

Therefore the eigenvector matrix becomes:

8-2\/0.2 V0.2 H
é V0.2 202 Q

b. First determine the eilgenvalues:

é-2-1 0 0
dt@ 0 -1-1 2 =0
e o 2 2-110

I 2

2 2 - |
From 3a, the solutions then become -2, -2, and 3. Next, determine the eigenvectors. First
the eigenvector associated with eigenvalue 3 (the third root):

62 0 0,6Cuy  gCuy

e 0 -1 23eCay —3eC21 G

€0 2 2UgCua &Caa

-2 C13=3C13 (row one)

Ci3=0

-Co3z + 2C33 = 3Co3 (row two)

2C33=4C23

Ca3 = 2C23 (again the third row offers no new information)

C132 + C232 + C332 =1 (from normdization)

0+ Cp32+(2C23)2=1

det[2-|]detel =0

O/



5Co32=1

C3=1/0.2, and therefore C33 = 2/0.2 .
Next, find the pair of eilgenvectors associated with the degenerate eigenvalue of -2. First,
root one eigenvector one:

-2C11 =-2C11 (no new information from row one)

-Co1 + 2C31 =-2C21 (row two)

C21 =-2C31 (again the third row offers no new information)

C112 + C212 + C312 =1 (from normalization)

C112+(-2C31)? + C312 =1

C112+5Cz12=1
Ci1=

\[ 1 - 5C312 (Note: There are now two eguations with three unknowns.)
Second, root two eigenvector two:
-2C12 =-2C12 (no new information from row one)
-Co2 + 2C32 =-2C2 (row two)
Co2 =-2C3» (again the third row offers no new information)
C122 + C2 + C322 =1 (from normaization)
C122 + (-2C32)2 + Cz2=1

C122+5C32=1
Ci2=

\[ 1 - 5C32 (Note: Again there are now two equations with three unknowns)
C11C12 + C21Coo + C31C32 = 0 (from orthogonalization)
Now there are five equations with six unknowns.
Arbitrarily choose C11 =0

C11=0="\/1- 5C332

5C312=1
C31=v0.2
Co1=-20/0.2

C11C12 + C21Cx + C31C32 = 0 (from orthogonalization)

0+-24/0.2(-2C3p) +1/0.2C32=0

5C32=0

C32=0,Cx»=0,andC1p=1
Therefore the eigenvector matrix becomes:

g -2/02 0 o2 U

é V0.2 0 2/02 H

4. Show: <f 1f 1> = 1, <f off > = 1, and <f 1ff 2> = 0
<f1lf 1> z 1
(202 )2+ (02 )22 1
40.2) + 0.2 2



?
08+02=1
1=1

?
<foff o>=1

2
(\f0.2)2+(2/0.2)2= 1
?
0.2+4(02) =1
?
02+08=1
1=1

?
<fqiffo>=<foff 1>=0

-2/0.2+/0.2 +1/0.2 2\/0.23 0
?
-2(0.2) + 2g>o.2) =0

-04+04=0
0=0
5. Show (for the degenerate eigenvalue; | = -2): <f 1f 1> =1, <f off 2> =1, and <f 1ff o> =
0
?
<fif1>=1

o+(-2\/o_.2)§+(\/o_.2)22 1
4(02)+0.2= 1
?

08+02=1
1=1
?
<foff >=1
?
12+0+0=1
1=1

?
<fqiffo>=<foff 1>=0

5
(()og(g +(-21/0.2)(0) + (f0.2)(0)= 0

6. Suppose the solution is of the form x(t) = eat, with a unknown. Inserting thistrial
solution into the differential equation resultsin the following:
2

d_ @t k2eat=0

dt2

azet+k2eat=0

(@a2+kd)x()=0

(a2 + k2) =0

a2 = _k2



a =\-k2
a=zxik
\ Solutions are of the form elkt, e-ikt, or a combination of both: x(t) = C1ekt + Coelkt,

Euler's formula also states that: etid = Cosq + iSing, so the previous equation for x(t) can
also be written as:
X(t) = C1{ Cos(kt) + iSin(kt)} + Co{ Cos(kt) - iSin(kt)}
X(t) = (C1 + C2)Cos(kt) + (Cq + Cp)iSin(kt), or alternatively
X(t) = C3Cos(kt) + C4Sin(kt).
We can determine these coefficients by making use of the "boundary conditions".
at=0,x(0)=L
X(0) = C3Cos(0) + C4Sin(0) =L
Cs3=L

at=0, =0

ax(0)
dt

gt X() = % (C3Cos(kt) + C4Sin(kt))

gf X(t) = -C3kSin(kt) + C4kCos(kt)

gt x(0) = 0 = -C3kSin(0) + C4kCos(0)

Csk=0
Cs=0
\ The solution is of the form: x(t) = L Cos(kt)

Exercises

1
K.E. = 5=(px? + py2 + p)

113F|'H°2+ 3?11102 aﬁﬂozu
2My &1 I eﬂyro' 'ﬂzzb
-h?; LGS GRS G

2miqx2 g2 @%

b. p=mv=ipx+jpy+kp;

190 RO aﬁﬂw

K.E. =

KEE. =5=

pP=ligr—++ jg
TéXg & 'ﬂyz ‘ﬂzq)
wherei, j, and k are unit vectorsalong thex,y, and z axes.
C. Ly = zpx - Xpz
% 10 aﬁﬂo
Ly:Zg" -

e Txg e 'zg
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2. First derive the genera formulasfor — , — , — intermsof r,q, and f, and —
ix My 1z I
and‘nlf interms of x,y, and z. The general relationships are as follows:
X =r Sinq Cosf r2=x2+y2+ 72
Jx2 2
y =r Sing Sinf Sing = X1y
Jx2 + y2 + z2
z=r Cosq Cosg = Z
JIx2 + y2 + 72
=Y
Tanf =X
First1 1 ,and1 from the chain rule:
ix Ty 1z

T _&r6 9 a&qO 1 ﬂfo il
I Sxoyz it SMxoyelq  Mxeyzdl
T _ao0 1 a&qO 1 ﬂfo il
1\ ﬂygxzﬂr %ﬂ_ygxzﬂq gyzxzﬂf ’
T _H6 9 a&qO 1 ﬂfo 1

Tz Szoxy It SMzoxyTa | Szoxy T
Evaluation of the many "coefficients' givesthe following:

aé[r'_c:') - Sing Cosf ’aﬁq'g' Cosq Cosf 8fo S|.nf ’
IXay,z Qéﬂfayz g_gyz r Sing
aé[r'_c:') - Sing SInf a8q0 Cosq Sinf a&fg _ C(?sf |
gyﬂxz ?zxz gﬂ_ygx,z r Sing
Ao _ oo 0sq | #ao  _ qu q A6 _,
SNy 'Szoxy gﬂxy
Upon substitution of these " coefficients':
Ak :Sinqusfl +Coquosfl ) S|.nf Al ,
X 1 r g r Sing f
I - Sing Sinf Al Cosq Sinf Al Cosf Al an
Ty qr r 1q r Sing 1f
Ak =Cosq1 __S|rnq I +01.
1z fIr )[[¢ qif
Next1 ,l ,and1 from the chain rule:
fr 19 qif

‘IT _axe 1 £y0 Ak a&Zo 1

gzqf fix g_ﬂqf Ty g_ﬂqf i

\l

’ﬂq )



T ke T, ys T,z 1 .
0 Saprt % ozt Ty Sant 12

‘H _oxo ¥  o8yo T  a8z0 T

g_zr q Tx (é_ﬂr q iy g_;ar qfz

Agan eval uation of the the many "coefficients’ resultsin:

Ao Ayo  _ y

Sroar m Mol o2ryze sz’

Az6 ;X6 _ xz Aqyo _ yz
gfaqf \/m é_mf \/m é_mf \/Xny2
a4z6 Axo _  dllyo Mz6

9 «/2 2 =y, - =x,and =0
gqrarf Ty %zrq Y gﬁfar,q o %farq

Upon substitution of these " coefficients':
1 _ X il

Al X, y Al
r '\’XZ + y2 + 72X '\’XZ + y2 + 22y

+ z_ 1
’\’XZ + y2 + 72 9z

l: X Z 1-}- yZ 1_\’Xz+y21

19 \/Xz + y2Tx JIx2 + y2 1Ty 1z

1 = _y 1 + X 1 + 0 1 .

it ix My 9z
Note, these many "coefficients' are the e ements which make up the Jacobian matrix used
whenever one wishes to transform a function from one coordinate representation to
another. One very familiar result should be in transforming the volume element dxdydz to

r2Sinqdrdqdf . For example:

8f(x,y,2)dxdydz =
O I gﬁmf gqﬂ‘f gﬂql
A - Alyo dllyo dlyo
f ,0.9),y(r,q,f),z(r,q,f xs xs drdgdf
Q (x(r,g,f),y(r,q,f),z(r,q )).I. ot Samr S o | drdg
Q l. H20  ofzo 2o I
O | Sror &t oo |
_hi 1 1 0
a Ly==~j{y —-2z —
T T Y
h a T Snqg T
Ly =~ ¢rSingSinf osqq — - — —=—=
=T g gtsq T T 9w



B(v.) isan e|genfunct|on of A(i.):
(1x2)—2 -x ~ B(v.) =

(1-x2) (24x) - X (12x2 -3)

24X - 24x3 - 12x3 + 3x

-36x3 + 27x

-9(4x3 -3x) (eigenvalueis-9)
B(iii.) isan eigenfunction of A(ii.):

a2 ...

o B(iii.) =

9(e3X + e3X) (eigenvalueis9)
B(ii.) isan eigenfunction of A(iii.):
d piiy=
X 3x @ii.) =
X (20x3)
20x4

4(5x4) (eigenvalueis4)
B(i.) isan eigenfunction of A(vi.):

d? d .\ _

—2 - 2X & B(I) =

(48x2 - 24) - 2x (16x3 - 24x)
48X2 - 24 - 32x4 + 48x2
-32x4 + 96x2 - 24

-8(4x4 - 12x2 + 3) (eigenvalueis-8)
B(iv.) isan eigenfunction of A(v.):

H aerCosq a%inqSinf all + _Cosquf Al + Cosf 1%
I & g qIr r 99 rSing Tf
Lx ? Sinf i+ CotqCosf — 1 9
g 19 " o
b. LZ = nl |h 1
I qf qf
h ae 1 106
Ly=mc-y — + X — 2
2o 8 ix WV o
3. B B' B"
i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24
ii. 5x4 20x3 60x2
i, e+ e 3 -e¥) 9+ e
iv. X2 -4X + 2 2X - 4 2
V. 4x3 - 3x 12x2-3 24x



d2 d o, \_
x@ +(1—x)& B(iv.) =

X (2) + (1-x) (2x - 4)

2X + 2X - 4 - 22 + 4X
-2x2+8x -4

-2(x2 - 4x +2) (eigenvalueis-2)

4. Show that: 8f*Agdt = Bg(Af)*dt

a. Suppose f and g are functions of x and evaluate the integral on the left hand side
by "integration by parts’:

Qe T
f -ih— d
G100 (in 000
let dv .l g(x)dx and u=-ihf(x)"
X
v =g(x) du= -ih1 f(x)"dx
x

Now, Budv =uv - Bvdu |,

8f(x)*(-ih1)g(x)dx =-ih f(x)"g(x) + ih((f)')g(x)1 f(x)"dx .
0 ix 0 x

Note that in, principle, it isimpossible to prove hermiticity unless you are given knowledge
of the type of function on which the operator is acting. Hermiticity requires (as can be seen

in this example) that the term -ih f(x)"g(x) vanish when evaluated at the integral limits.
This, in general, will occur for the "well behaved" functions (e.g., in bound state quantum
chemistry, the wavefunctions will vanish as the distances among particles approaches
infinity). So, in proving the hermiticity of an operator, one must be careful to specify the
behavior of the functions on which the operator is considered to act. This meansthat an
operator may be hermitian for one class of functions and non-hermitian for another class of
functions. If we assume that f and g vanish at the boundaries, then we have

0. . .1 Q ». 1,6
f -ih— dx = h—f(x)= d
Q (X)"(-i 'ﬂx)g(x) X 89(X)gl T (X)ra X

b. Supposef and g are functions of y and z and evauate the integral on the left hand
Side by "integration by parts' asin the previous exercise:

s

[elle)e]

« e 1 160
fly,2)"{-ihey — - z —= ,Z)dydz
(v,2) I gy = ﬂy%g(y )dy

7

[elle)e]

. Q .
f(y,2) ?m?é?/ ﬂlzé—.zg(y,z)dydz - 01(y.2) fgemgi ﬂ—‘ll/é—.zg(y,z)dydz

For the first integral, 81(2)* Eihy—-0g(2)dz ,
0 g za



let dv il 9(2)dz u=-ih yf(2)*
Nz

V=02 du =-ih yﬂ f(2)"dz

(elle) o

f(Z) (- Ihy—)g(Z)dZ =-ihyf(2)"g(@) + ih y09(2)—f(2) dz

>O

og(z)glhy—f(z) dz .

Ol

For the second integral, of(y)*?hzlgg(y)dy ,

let dv = g(y)dy u = -ih zf(y)"
Ty

v=gy)  du=-ih zﬂ—“yf(w*dy

(elle) o

f(y) (- th—)g(y)dy = -ih zf(y)"g(y) + ih Z§ g(y)1 f(y)"dy

>O

og(y)glhz—f(y) dy

Oz

[elle) e

(.2} mgy ﬂl -z —%g(y 2)dydz

OzO>O

g(Z)glhy—f(Z) iz - Og(y)glhz—f(y) dy

lO)O

(y z)glhgy— - z—_f(y z) dydz .
Again we have had to assume that the functlonsf and g vanish at the boundary.

L.=Lx-iLy, SO

Ly+L.=2Ly,o0r LX:%(LJ, +L)

Le Vim=VI0 + D) -m(m + 1) h Y| m+1

LY m=VI(l+1)-m(m-1)h Y m1
Using these relationships:

L-Yop, =0, LYoy =\/2h Yop, L-Yop,, =\/2h Y 2pq




L+Y2p-1 :\/_Zh szo |L+Y2p0 :\/_Zh Y2p+1 ,|_+ Y2p+1 :O’andthe
following Ly matrix elements can be eva uated:

Ly(1,1) = <Y2p_1 foLs + L_)'13Y2p_1> =0
Ly(1,2) = <Y2|O_1 '13%(L+ + L_)'11Y2p0> :\/7_2h
Lx(1,3) = Y 204 '1:%(|_+ + L_)'11Y2p+1> =0
Ly(2,1) = <Y2p0 5Ly + L_)'13Y2p_1> =\/7_2h
Lx(2,2) = LY 20 AL+ + LYY ZIDO>

Ly(2,3) = <Y2p '1:%(|_+ + LY 5p, 1> =\/—2_2h
Lx(3,1) = <Y2p (|_+ + LYo, > =0

1x32) = Y g, THLs + LY 5> =
Lu(3,3) =0

é07
e

U
u
This matrix: e\/7_2h 0 \/Eh LU . can now be diagonalized:
9
u

D>

0 \/T_Zh 0- I
o Yz, 1 i V2. V2 i
I 0- | Al i | Tzh 72h 1 a5 6
; AP . §ng =0
| \L_Z 0-1 | | 0 0-1 1

2
Expanding these determinants yields:

1 2- ey - Y2 E2E o



-| (|2_h2):0
4@ -h)l +h)=0

with roots: 0,h , and -h
Next, determine the corresponding elgenvectors:

Forl =0:

o

\Lzhot:l

2 4 Cu1
ue
0 \/_Zh Ug Ca1

(] any e e

Ue
\/7_2h o U Ca1

h Co1 =0 (row one)

Cy =0

\/7_2h C11+\/—2_2h C31 =0 (row two)

C11+C31=0

C11=-Ca1

C112 + C212 + C312 =1 (normalization)
C12+(-C11)2=1

2C112=1

1
011:\/——2

Forl =1h:

o

NS (DD CD<>. (DXD~
NS
=0

,C21:0,<’:1r10|031:-i

V2

V2 )

Y, o ()

2 '012
ue

o

0 \/_zh ue C22

S5
=
b ey ) e
Il
=
0

V2 . He Ca2

h Co2=h Cq2 (row one)

o

NS (DD (D> (DD

Q)
N
|
N
0O
N

\/_ hCipo+-—+5 \/_ h C32=h Cp (row two)

\/_2\/_2 \/_2

C2+5 C32=Cz2

2
§ Coz2+ \/7_ Ca2=C22

M: (D> (D>~
O O O
N

(] eny e e

] ey e ey



2 1
\/7_ Cx2=5 C22
2
Ca2= \/7_ C22
C122 + C02 + C322 =1 (normalization)
&2 62_ 4

62 2
e VA szz +Cop2 + Eedz_sz

§ C22? + C2? +§ Cp?=1

2Co2=1

_\?
C2=%
012=% ,sz:\/—z_2 ,andC32=5
Vd \/_2 N
e o == o U . ]
e 2 Ué Ci3 U g013
é\Lzh 0 \/_zh ue Czs U=-1n € cz
& (6cs 0 &

eC33 u € Cs3

e o \/2_2h o U

N

i h Coz3=-h C13 (row one)
2
Ci3= \/7_ Ca3
?2 h Ciz+ \/—_2 h Cz3=-h Cy3 (row two)

\/__223_9\/__2(:0\/_
2e?2

23, + 5 C33=-Cz3

1 2
- Co3+ \/7_ Ca3=-C23

2 1
\/7_ Ca3=-5 C23
2
Ca3= \/7_ Ca3
C132 + Cp32 + C332 =1 (normalization)
a2 62

62 2
& Czsg +Cp3? + a?\l—z_Czs =1

:_2L Ca3? + Co3? +% Coz?=1

2Co32=1

(o] ex Y ex e’



Co3=

N

[ —

2 1
Ciz=-5 ,C23=\/7_ ,and C33 = -5

Show: <fgff 1> =1, <foff > =1, <f gf 3> = 1, <f 1ff 2> = 0, <f 1/f 3> =0, and <f off 3> =
0.

?
<fiff1>=1
a2? , , @3P2 |
e2g e2fa_
1 1”
2%t2=1
1=1
2
<foff2>=1
éoz.{.id;_zéz.péozzl
g €29 &
1.1 .17
z%t2%3° 1
1=1
?
<fsffz>=1
gl |, 2P | gl
e 2g e2g e2@
1.1 .17
z%t2%3°1
1=1
?
<fiff o>=<foff 1>= 0
&/ 20 (O)a’_Zo 39\/_206!%0 0
é22@2g €290 e2 &2
a20 267 0
&d4g &dg”
0=0
2
<fiff3>=<f3ff1>=0
a’__Zoa;)lo (O)QI_ZO 89\/_206e10 0
€2 @ 2g €20 €2 2y
a2 , 267 0
YA Y YR
0=0
?

<folfg>=<f3f2>= 0

sdteelo | /26826 , adoeelo

&2 2g eZ@ZQ eZ@Zg



&4y é2ra e 4g
0=0

)
| oh |
Pap, < 2p+1 yo >..

YOh —
Ly \/_2 2|°1 \/‘2 Fopsy

2 1
| == 0,
Pop,y = \/_2 <fap,, Fop,, > (or 50%)

2

7. Itisuseful here to use some of the general commutator relations found in Appendix
C.V.
a [Lx.Ly] = [Ypz- zpy, Zpx - XpZ]
=[yPz zpx] - [yPz XP2l - [zPy, Zpx] + [zpy, XPZ]
= [y.Zlpxpz + z[y.pxIpz + Y[PzZlPx + YZ[PzPx]
- [y X]pz0z - X[Y.PzlPz - Y[PzX]Pz - YX[PzP7]
- [2Z]pxPy - Z[Z,Px]Py - Z[Py.Z]Px - ZZ[Py,Px]
+ [2X]pzPy + X[Z,pZ] Py * Z[py.X]Pz + ZX[Py.P2]

As can be easily ascertained, the only non-zero terms are: [Lx.Ly]l = Y[PzZ]lpx +
X[z,pz]py

=y(-ih )px + x(ih )py

= ih(-ypx * xpy)

=ih L,

b. [Ly.L 2] =[zpx - Xpz, Xpy - YPx]
=[zpx, XPy | - [2Px, YPx] - [XPz XPy | + [XPz, YPx]
= [zX]pypx + X[Z,py]pPx *+ Z[px,X]Py + ZX[px,p2]
- [2,Y]PxPx - Y[Z,Px]Px - Z[Px,Y]Px - Zy[Px:Px]
- [X:X]pyPz - X[X,Py]Pz - X[Pz.X] Py - XX[Pz:Py]
_ + [XY]pxPz + YIX,Px]Pz + X[PzY]Px + XY[Pz.Px]
Again, as can be easily ascertained, the only non-zero
terms are
[Ly.LZ] =2Z[px.X]py + Y[X,Px]Pz
=z(-ih )py +y(ih )pz
=ih(-zpy + ypz)
=ih I—X
c. [LzLx] = [XPy - YPx, YPz - Zpy]
= [Xpy, YPz] - [XPy, ZPy] - [yPx, YPz] + [yPx, Zpy]
= [X,y]pzpy + Y[X,pZPy + X[py,y]Pz + Xy[py,p]
- [X,Z]pyPy - Z[X,py]Py - X[Py,Z]py - XZ[py,py]
- [y,Y1pzPx - YLY.PzlPx - YIPx:Y1Pz - YY[Px.PZ
_ +[y.zlpypx + Z[y.PylPx * YIPx.ZIPy + yZ[px.Py]
Again, as can be easily ascertained, the only non-zero
terms are
[LzLx] = X[py,yIpz + Z[y,Py]Px



=X(-ih)pz + z(ih )px
=ih(-xpz + zpx)
=ihLy
d. [Lx,L2] = [Ly,Lx2 + Ly2 + LA
= [LyLx + [Lx,Ly?] +[LxL A

= [Lx,Ly?] +[Lx,L A
=[Lx,LylLy + Ly[Lx,Ly] +[Lx,LZLz+ LALx,L2]

= (ih LoLy + Ly(ih Ly) + (-ih Ly)Lz + L(-ih Ly)
= (ih )(Laly + LyLy- LyLz- Loly)
= (iN)(LzLy] +[Ly.Ld) =0

e. [Ly,L2] =[Ly,Lx2+Ly2+ LA
=[Ly,Lx?] + [Ly,Lyd] +[Ly,LA]

= [Ly,Lx?] +[Ly,LA]
=[Ly,Lx]Lx + Lx[Ly,Lx] + [Ly,LZLz + LLy,L]

= (-ih L)Ly + Lx(-ih L) + (ih Ly)Lz + LAih Ly)
=(ih )(-Lzlx - LxLz+ LxLz + Lzl x)
=(ih)([Lx,L +[LzLx]) =0

. (Lol =Lyl + L2+ L2
=[LzLx? +[LzLy? +[LzLA]

=[LzLx? +[LzLy?]
= [LzLx]lx + Lx[LzLx] + [LzLy]lLy + Ly[LzLy]

= (ih Ly)Lx + Lx(ih Ly) + (-ih L)Ly + Ly(-ih L)
= (ih )(LyLx + LxLy - LxLy - LyLy)
=(ih)([Ly,bx] + [Lx,Ly]) =0
8. Use the general angular momentum rel ationships:
Fj,m>=h 2 (j(j+1))|j, >

Jj,m>=h m|j,m>,
and the information used in exercise 5, namely that:

1
Lx=5(L++L.)

Ly Yim=VT0 + 1) -m(m+ 1) h Y|ms1

L-Yim=VI(l+1)-m(m-1)h Y m1
Given that:

1
Yo0(q,f) =—= =10,0>

Ny




Y1o(af) = { Cosq = [L,0>.

L,0,0>=0
L20,0>=0

Since L2 and L, commute you would expect |0,0> to be simultaneous eigenfunctions of
both.

b.  Ly0,0>=0
L,0,0>=0

Ly and Lz do not commute. It is unexpected to find a s multaneous eigenfunction (|0,0>) of
both ... for sure these operators do not have the same full set of eigenfunctions.

c.  LA1,0>=0
L2]1,0> = 2h 2|1,0>

Again since L2 and L, commute you would expect |1,0> to be simultaneous eigenfunctions
of both.

d LyL0> _\/_ h|1,-1> +\/_ h|1,1>

L1,0>= O
Again, Ly and L do not commute. Thereforeit isexpected to find differing sets of
eigenfunctions for both.

9. For:
1
Y (xy) = 2%_&)(322%_0289' nxpxlLy _ orimPXlLypgdngpyily - o-inypylLyg
9

<Y (XY (x, y)> =1
Let: a = p ,and ay = and using Euler's formula, expand the exponentialsinto Sin
and Cos terms

n 1 1
Y (xy) = g%rgzg%gz [Cos(axx) + iSin(axx) - Cos(axx) +

1Sin(ax)] [COS(ayy) +iSin(ayy) - Cos(ayy) +iSin(ay)]
1

Y (xy) = ZEZTOQZEZTOZ 2iSin(ax) 2iSin(ayy)

Y (xy) = aﬁ‘igﬁz—gz Sin(ax) Sin(ayy)

Oz

<Y (XYY (X,y)>= 09-35_2—32337;023 n(axx) Si n(ayy)ozdxdy

:&%Oa%O@' in2 in2
Lol Sinc(axx) Sin<(ayy) dxdy
Using theintegrd:



L

0 _. npx L
GSH']LL dx :§ ,
0
<Y (Y (xy)> = FOFROBOHO =y
10.
Ly L,X
L 50 LT
<Y (X, Y (X, >=§°2-—°@s|2 d?ez—o S -ih—)Si d
XY)lpxlY (x,y) Lyon n“(ay) Yol N(axx)(-i ﬂx) n(axx)dx
0
L
Eih2ay

('j X
= gL—ng Sin(ayx)Cos(axx)dx
0
But theintegral:
Lx
8 Cos(ayx)Sin(axx)dx =0,
0
\ <Y (xY)lpxlY (xy)>=0

+¥
11. <Y ox?Y o> = gg& B &&axi2f) x2) rax?2x
o
-¥

1 ¥
= 8695 2 8x2eax%dyx
o 0
Using theintegrd:
+¥ .
3 _13-@n-lep 6

2n a-bx2 by
(8))( e%dx o+l ghontly

1 1
_ad o &
<Y olxqY o> = (éF_EE 2 ael_gj

<Y oik2Y o> = &
e2ag

+¥

1
<Y 1x2Y 1> = 22 B &eax?/2f x2) Reax?/2fx
&p o




+¥
e gﬁicg 2 8x4e-a X2/2dX
4]
Using the previoudly defined mtegral

343(5 aeg_ CE
<Y 1X2lY 1> =
1x4lY 1 g—pz 3

<Y K2 > = &0

e2ag

12.



Thete are symimnetry will brealk
continuum states. solutions, and theres
are no bound states.

H:'b\/L

O are continuous.

i1. There are both bound Svmmetry will break
atid continnuin states. v ¥

solutions.
e
o 0
H= /L
E«¥ - :
iii. oo 0 Y, and ¥ are continuous.
Thete are both bound and continuous
states. a
There is
no syinmetry.
-4

1]

K ¥is continuous.

¥ iz not continuous.



I1

Vi) =W

Yi(x)=0

i 2mEM2 x "\ 2mEM2 x

Y (x) = Ae +Be

i\/2m(V-E)/h2 X B -i\/2m(V-E)/h2 X
+ B'e

Yin(x) =A'e
|« I
Y1(0) = Y n(0)
-\/ 2 _-\/ 2
Y1(00=0=Y(0) = AeI 2me/M*= (0) + BeI 2mEM*(0)
0=A+B
B=-A
Y 1(0) =Y }4(0) (this gives no useful information since
Y '|(x) does not exist at x = 0)
I« I
YuL) =Ymn(L)

i\ 2mEmM2 L S\ 2mEM?2 L
Ae + Be

5 -i\/2m(V-E)/h2 L
+ B'e

Y 'n(L) =Y (L)

- 2 K 2
e e B
i/ _EVh2
- aizmv-pm2ye ¥ MY EMEL

N, _EVh2
Bemv-pm2ye AV ERSL

asx® -¥,Y (x)=0
asx® +¥, Y (x)=0\ A'=

R i 2m(V-E)/h2 L
=AE€



d. Rewrite the equationsfor Y (0) = Y 1(0), Y (L) = Y (L), and Y (L) =
Y 111(L) using the information in 13c:

B=-A(egn. 1)

i\/ 2mEMh?2 L -i\/ 2mEMh?2 L -i\/ 2m(V-E)/h2 L
Ae + Be =B'e
(ean. 2)

. 2 i 2
A ,—ZmE/hz)el\IZmE/’n L B ,_ZmE/hZ)el\lsz/h L
_'\/ -E)/h2
:-B'(i‘\/2m(V-E)/h2)eI S (eqn. 3)

substituting (egn. 1) into (egn. 2):

A i\ 2mEM2 L A -\ 2mEm2 L o -\ 2m(V-E)h2 L
e - A€ =be

A(Cos(\ 2mEM2 L) +iSin(\ 2mEM2 L))
- A(Cos(\ 2mE/M2 L) - iSin(\ 2mE/h2 L))
) B,e-i\/ om(V-E)/h2 L

\[ 2
SAISIN( '_Zm 2 1)=8 | 2m(V-E)/h= L
. _\/ -EYh2
Sin( ’_ZmE/hZ )= % el 2m(V-E)/h4 L (

eqn. 4)
substituting (egn. 1) into (eqn. 3):

A\ 2mEM?2)e N 2mEm +A(i\/2mE/h2)e'i /2mEfE L

_\/ -EV/h2
_ B'(im)el 2m(V-E)/h2 L
A\ 2mEM2 )(Cos(\ 2mEM2 L) +iSin(\ 2mE/2 L))
+ AN 2mEM2 )(Cos(\ 2mE/M2 L) - iSin(\ 2mEM2 L))
_'\/ -EY/h2
- B[\ 2mv-B)h2)e 2m(V-Eyhe L
2AN\ 2mEM2 Cos(\ 2mEM2 L)
_'\/ -EY/h2
- B 2mv-Eyh2 o 2m(V-Eyhe L

' - - 2
Cos( rmw L) =- B |\/2m(v-E)/h2 el\/2m(V BE)/h< L
2AIN\ 2mE/M?2

2
Cog( \/Zm 2 L)= BZA\{\/;E |\/m L

(ean. 5)



Dividing (egn. 4) by (egn. 5):

- - 2
Sin(\mEm? L) B oaE e.\lzm(v E)/h2 L

Cos(\| 2mEM2 L) oA B'\/V‘Ee-i\/ 2m(V-E)h2 L

.1/2
Tan(\/2mEM?2 L) :'ZVL?EE
e. AsV® +¥, Tan(\N2mEM2 L) ® 0
So, V2mEM2 L =np
_ n2p2h2
2mL2

n

Problems

1
1L a Yn(x):g%ZZ Sin-

P()dx = | Y p| 2(x) dx
The probability that the particleliesin theinterval O£ x £ % isgiven by:
L

4

»ir-

) <0 . aBpXo
Pn=8Pn(X)dx = ?&L SinZgT—gfiX
0 2

npx

Thisintegral can be integrated to give (using integral equation 10 with q :T):
fp
4
=230 . ,38PX0O aBPX0
Py = s P20 2P X0,2PX
n énpxzﬁl—@% eL e L o
np
58 ;
P = &—0%£08 5in2qd
n énprael-ﬂo qaq
ge Z:Z@f_j
2C 1. ql4~
Ph=—¢ 79n29 + 5 | =+
"Thpg BT 2405
2& 1. 2np np o
€ 27 D@e



1 1 . aBpo
1 5 2620

agpo _ 21
é7ﬂ—oandpn—— .

b. If niseven, Sin 7

. B . a8pod _
If nisodd and n=1,5,9,13, ... Slné7g =1
1 1

andPn=Z -Z_pn

a8po _

If nisodd and n = 3,7,11,15, ... Siné7g =-1

andpy=d + L
4 2pn

1

+ —

2p3

ENE

The higher Byiswhenn=3. Then P, =

Ph=% +-- =0.303

c.Y()=en [a¥n+ bYm] =a¥ne n +bYme h
HY =a¥YnEne +bYmEme h

i(En-Emt
<Y |H|Y > = |a|2En + |b|2Em + a* be h <Y anlY m>

Ci(En-Ent
+Db*ae h <Y mlHlY n>

Since <Y pHIY m> and <Y m|H|Y h> are zero,
<Y H|Y > =|aPEn + |bPEM (note the time independence)

d. The fraction of systems observed in Y pis|a2. The possible energies measured
are E, and Eq,. The probabilities of measuring each of these energiesis [a2 and [bj2.

e. Oncethe systemisobserved in Y , it staysin Y p.
. .2
f.P(En) =1<YnlY>t = lcnl?

L
0 [2.. aBpxd (30
cnza\/ESmé%g L—5x(L-x)dx
0
L

600 . aBpXo
= V&g X(L-X)Si né%gdx



L A Y
O S aElpxo . 38pX0 H
g_ e 0 Sme s
0 0 §
These integrals can be evaluated from integral equations 14 and 16 to give:
\// g ®L2 . aBpx6  Lx. aspxesl Y
gzp N T o- np eL “S‘O y

60S@xL2 . aBpxo a@2p2x2 O3 (2OPXE L
_\/lg]zp ST - 8 12 2m3p3 0SsT ﬂao

{ { ——(Sin(np) - Sin(0))

-—(LCos(np) - 0Cos0) )

(e e\ end

( (LS| n(np) - 0Sin(0))
- <n2p2 - 2) % Cos(np)

+§e2p|_22(0) oL Cs(O))}

3
Cn=L-3/ 0{ - — Cos(np) + (n?p2 - 2)"— Cos(np)
np n3p3

3
R

n3p3
o= VO - (1)1 + (2 - 2) () + 20
n3p3g
Ch= \/_oaae_ + 1. Lo(_l)n + LO
énp np n3p3g n3p3g

=200 1y + 1)
n-p

_ 4(60) na 1y 2
lonf? = —5 6 (- + 1)

If niseventhench, =0
(4604 _
nBp® n6p6
The probability of making a measurement of the energy and obtaining one of the
eigenvalues, given by:
" omL2
P(En) =0if niseven

If nisoddthenc, =

is:




P(En) = ﬂ if nisodd
nbp6
L

o 1 .. 1
2 20,5 ®h2 ¢20.30.>
LY HY > = 088%02 (1 oo 9% %30, (1 x)dx
g <YM be5p ~RM G sy )

0
L

X Sl 2
e|_5$2_26 (L- x)g -(xL X#) dx

= ée;a; —@x(L X)(-2)dx

L

_ 580n% —@xL x20x
L52p
380h20% x2 x3g; L

gmL5rae 2 3d| 0
530?‘12%3 L3y

_ 380h201 15
" EmL2e? 30
_30h2 _ 5h2
Teml2 mL2
iEit At
2.<YHY>=8 Cep <YiHNY;>eph G
i
Since<Y{[H|Y ;> = Ejdij
i(Ej-E)t
<YHY> =4 C'CEe
j
<YH|Y > = 4 G"CjEj (not time dependent)
For other properties: J
it At
<YIAY> =8 C'ep <YiAN¥;>ep C
J
but, <Y {|AlY ;> does not necessarily = gdij.



Thisisonly trueif [A,H] =
(—J)—t<Y AN >
ij
Therefore, in general, other properties are time dependent.

3. For aparticlein abox in its lowest quantum state:
X0
Y= \/_ SNgT g

<X> = GY XY dx
0
L

é .
= oxsin?g i
0
Using integral equation 18:
23&2 xL aépxt') L2 a@pxao L
—Sin - Cos; )

Lg_ (Cos(2p) Cos(O))-

__$_20
" Lédg

11
— NI

<x2> =BY *x2Y dx
0
L

_ 20 BBXO
= [oX°SInPg g
0
Using integral equation 19:
2a@3 a2l L3o. 88pxd0 xL2. a@pxooi

=1CE - - ~Sing - Cos =)
L@ §4p 8p3g €L O gp2 €L 7

L? (LCOS(ZIO) (0) COS(O))—

_2ak3 '-_39
L2 L2



L
<p> =8Y *pY dx

2h apxo BXO
LI%SmeLﬂ @deLfa

Using integral equation 15 (with g = % ):

_oher ., (PO _
=g ocos (Q).:. 0o 0

<p2> =BY *p2Y dx

L
_gQ &2 8, X6
_Lg %h dXZQ eL@dX
0

- 0 o 23PX0

= 3 %Sm ST X
L

2ph20Sl X0 dapxo

ng eLﬂ eL o

Using integral equation 10 (withq = % ):

_ 2phZ2ae1 qd P
a L2 e4SI (2 ) + _qo

L2 2 L2




1
_hap? 45,
T2€12 T 29

L/4 .
4, a BP(X)dx = gtdx =X
0 0

Pclassical :%,r (for interval 0 - L/4)

b. Thiswas accomplished in problem la. to give:

1 1 L a8pod
Pn_4 an Sin eZﬂ
(for interva O - L/4)
aBpoo
C. Lé@m}lét Pquantum = leltg an Slnezg-

Limit P,
n® ¥ quantum = 4

Therefore as n becomes large the classical limit is approached.



5. a. The Schrodinger equation for a Harmonic Oscillator in 1-dimensional coordinate

representation, H Y (x) = Ex Y (X), with the Hamiltonian defined as: H = Zld— +5 L kx?2
m gx2 2
becomes:
&h2 d2 1 2
b. The transformation of the Kinetic energy term to the momentum representation is
trivid : T = Fz))r(n In order to maintain the commutation relation [x px] =ih and keep the p

operator unchanged the coordinate operator must become x = iha@ . The Schrédinger

equation for aHarmonic Oscillator in 1-dimensional momentum representation, H Y (px) =

Ep, Y (px), with the Hamiltonian defined as: H = %n Px? - %2 dcj_p; becomes:
Z%pxz - % ddTiZ = Y (p) =Ep, Y (p).
c. For the wavefunctionY (x) = C exp (-\/H(;(_:] ),
leta=—— Vimk , and hence Y (x) = C exp (-ax2). Evaluating the derivatives of this expression
gives. n
d_o)l( Y (x) = d_o)l( C exp (-ax?) = -2axC exp (-ax2)
a2

2
— Y(x):d— Cexp (-ax?) = d . ~2axC exp (- ax?)
dx2 dx2

= (-2axC) (-2ax exp (-axz)) + (-2aC) (exp (-ax?))
= (4a2x2 - 2a) Cexp (-ax?).
H Y (x) = Ex Y (X) then becomes:

H Y (x) = %(4&\&2 - 2a) + %ka% Y (%).

Clearly the energy (eigenvalue) expression must be independent of x and the two terms
containing x2 terms must cancel upon insertion of a

-h2eeamke? ,  ,Vmks |, 1
2ME & oh o oh @
_-h2 agmkx?s | h? 2 mk
ng 2 20 o

h\/_k ! Lo

Ex=5=

+3 kx2

2

2



_ h/mk
- 2m

Normalization of Y (x) to determine the constant C yields the equation:
+¥

5 2
c2 Sexp (+vVmk 2 dx=1.
0 h

-¥
Using integral equation (1) gives:

1

Co a§/mkd;,
=
eph g

1
— 5
Therefore, Y (x) = Qﬂkg‘-‘ exp (A/mk == ) .
d. Proceeding analogous to part ¢, for awavefunction in momentum space Y (p) =
C exp (-ap?), evaluating the derivatives of this expression gives:
d d
dp Y () =gp Cexp(-ap?) =-2apCexp (-ap?)
d? d? d
—Y == -apd) = — -2 -ap?
2 VP47 Con(ap) =g -2apCen (apd)
= (-2apC) (-2ap exp (-ap?) + (-2aC) (exp (-ap?))
= (4a2p? - 2a) Cexp (-ap?).
H Y (p) = Ep Y (p) then becomes:

1, kh2
H Y (p) = 5 p? - —— (4a2p2- 2a) Y (p)

Once again the energy (eigenvalue) expression corresponding to Ep must be independent of
p and the two terms containing p2 terms must cancel with the appropriate choice of a. We
also desire our choice of a to give us the same energy we found in part ¢ (in coordinate
space).

1
2m P
Therefore we can find a either of two ways:

kh2
Ep: 2-7(4612[32- 2a)



1 2_kh

D zmp 4a2p? | or
kh2 hyvmk
2 > 2a = -

Both equationsyield a = &h/ mkg1 .
Normalization of Y (p) to determine the constant C yields the equation:
+¥
C2 Bexp (-2ap?) dp=1.
-¥
Using integral equation (1) gives:

C225\p (2a) % =1

1

c2\Jp BRhVmKG 2 =1

1
c2\[p BWmki? = 1

1

c2 BhvmkR =1

1
C2 = Bhymkj 2

1
C = @hVmkj 4

1
Therefore, Y (p) = ®hvmk@4 exp (-p2/(2hvmk ).
Showing that Y (p) is the proper fourier transform of Y (x) suggests that the fourier integral
theorem should hold for the two wavefunctions Y (x) and Y (p) we have obtained, e.g.
+¥

Y (p) = —=— 8 (x)édhax |, for

Voo ¥

v<>-f"”—k w—k—> and

ephﬂ

Y (p) = Bhy/mk§ : exp (-p(2m/mK ).

So, verify that:

1
BhvVmkG 4 exp (-p2/(2h/mk )



+¥

-1 Oa Mk, exp(\/_k—)e'PX/hdx.

A/ 2ph oeIOh o 2h

-¥
Working with the right-hand side of the equation:
+¥
:L —3?1 aexp (-Vmk X2 ) a%05‘5‘?—0+ |S|n89—°°dx ,
\/ 2p hg 6 2h g gh o gh oz

the Sintermis odd and theintegra will therefore vanish. The remaining integral can be
evaluated using the given expression:

+¥

8eb®Cosbxdx = \/E eb?/4b
-¥ b

= 5 exp (-@ x2) Cos® x9dx

’\/2phephﬂ 9 2h & o

+¥
2 o
g o2ph 3 (A)expaeaeo 2h

“\[2oné ph s £ ehagh/mk

-¥

+¥

1 1 .

B [ S N

Eph 5 &/mke 6 & ohy/mko
¥

+¥
A 2 .
8 & _pPc o

Crkphss 0" & oh/miks
¥

+¥

o) ® o)
= &pVmkga gexp & = =Y (p)Q.ED.
6 &ohy/mke

%
=
Qi

-¥



6. a. Thelowest energy level for aparticlein a3-dimensional box iswhenng =1, np
=1,and n3=1. Thetota energy (withLq, =Lo=L3) will be:
2 3h2
24+ N2 + Nad) ==
8mL2( meF N2t Ny 8mL?2
Notethat n = 0isnot possible. The next lowest energy level is when one of the three
guantum numbers equals 2 and the other two equal 1.
n=1n=1n3=2
nm=1n=2n3=1
nm=2,n=1n3=1.
Each of these three states have the same energy:

Etotal =

6h?

Etotal = 2+ nz2 + ng?) =——

° 8mL2( ) 8mL?2

Note that these three states are only degenerateif Ly = Lo =La3.
b. Y% Y %Y %aYa odistortion, %Y YaYa
¥ Y
E7EIA A

Li=Lo=L3 L3t L1=L>o

ForLi=Lz=L3 V=Lilol3= L3,
Etotal(L1) = 2e1 + €2
_ 2h2ee1? 12 126 . 1h2eel? 12 220
= = + — 4+ /= + == + — 4+ ==
8mgi 12 L2 L2y 8mgi 12 L2 L2y
2 2 2
28 5 1006 5 P2y
8mé|_12ﬂ 8mé|_12ﬂ Smél_lzﬂ
ForL3® L1=Lp V=L1loL3= L12L3, L3 =V/L1?
Etotal(L1) = 261 + €2
_2hte2 12 126 1heel? | 12 220
Smgi 12 L2 L32g Smgi 12 L2 L32g
2 2
22 15,1002 4,
8mé|_12 L32g 8mé|_12 L32g
2 ..
:&az_ + i + i + LO
8My 12 12 L2 La2

In comparing the total energy at constant volume of the undistorted box (L1 =L2=L3)
versus the distorted box (L3 * L1 = L) it can be seen that:

h?_6 6 . _ h2 22 ..

a=— + —O0 £ o— O aslongasl3s L1
8mé|_12 L32g 8mé|_12g d

c. In order to minimize the total energy expression, take the derivative of the energy
Etotal _

with respect to L1 and set it equal to zero. o =
1



2
a6, 64
Iy BN 2 L20p
But sinceV = LjLoL3=L12L3, then L3 =V/L;2. Thissubstitution gives:
T ah?ae6 6L14g 0
Ly By 2
a2 a62)6 (4)6L1
L3 V'
*x12 + 24L13(j _
§Li3 V25
3..
V2 g él13p
24116 = 12Vv2
1 1 1
|_16:§Vz (|_12|_3) :_|_14|_3

L2= %L3

L3=V2L
d. Calculate energy upon distortion:

1
cube: V=013, L1=Lo=L3=(V)3
distorted: V=L12l3=L1&/2L1 =213
1 1

L3= \/_2‘33—03 1Ly =Ly= L
&2e e\/_Zﬂ
DE = Eotal(L1 = L2=L3) - Etotal(L3* L1=1L2)
2 2
_h ael_('j - h ae_ + io
8me|_12ﬂ 8mel_1 L32z
_h2e12 613 | 6(2V3%
T 8mgy23 23 2\V/2/3
_ h2aa2 - 9(2)¥3%

8m§ Vv2/3 o
2
SinceV =8A3, V23 =4A2=4x 1016 cn?, and h— = 6.01 x 1027 erg crm:

DE = 6.01 x 10-27 erg P2 918 0
& x 10-16 cm2g

DE = 6.01 x 10-27 erg cmpee 0.66
&4 x 10716 cm2g

DE=0.99x 10-11 erg
leVv

DE=0.99x 10-1lergee 0
é1.6 x 1012 ergg




DE =6.19eV

+¥
7. a BY*(X)Y (x) dx=1.
-¥
+¥
A2 Be2dxl gx = 1.
-¥
0 +¥
A28e2ax dx + A2 Be2ax dx = 1
Y 0
Making use of integral equation (4) this becomes:
sad , 1l _2A°
A a2a * 28g ~ 2a =1
AZ2=a

=+\/a , therefore A isnot unique.
Y (X) = Ae—Xm = i\/_aedxl

1
Since a has units of A-1, Y (x) must have unitsof A 2.
1 xif x3 00
b K=] y
I-xif x £ O%
] e if x 3 0
Y (x
0 =Va o i £0D

Sketching thiswavefunctlon with respect to x (keeping constant afixed; a= 1) gives.

dy (x) 1 -ae & if x 3 0
¢ dx \/_I 2™ if x £0 D
dY(X)1/2 _a\/—a
O+e
aY®) 1z _
Tdx /2 —a\/a

The magnitude of dlscontlnuity isa/a +a/a = 2a/a asx goesthrough x = 0. Thisalso
indicates that the potential V undergoes adiscontinuity of ¥ magnitude at x = 0.
+¥
d <> = BY (KXY (X) dx
-¥



0 +¥
= (Va)28e2(-x) dx + (Va)2 8e2a(x) dx
v 0
¥
= 2B e2(x) dx
0

Making use of integral equation (4) again this becomes:
_ 1 1

NG,

<xl> =1A
o This expectation value is ameasure of the average distance (x|) from the
origin.
1 eajif x 3 00
: Y
© ()= \/_Aeaxlfx£0%
dY(x) \/-1 -ae & jf x 3 00
| aeXif x £0 ]
d2Y(x) ] aZeif x 3 0
=a2Y
dx2 A e it x £0% *)
< &Eh £ hZa O
<H> = me dx2 T m d(x)a
+¥ +¥
_ &h d20 8y h2 . 0
<H> = ~Y (x )g?n o0 Y () dx- §Y (x)gﬁ d(x)gY (x) dx
¥ -¥
+¥ +¥
ha2
QY XY (%) dx-—@Y ()(d(x)) Y (x) dx
-¥ -y

Using the integral equation:
b

) ] _ if(xp) if a<xp<hbl
gf(x)d(x xo)dx = ~1'0 otherwise

s =2y DAy 2= I

=-3(6.06 x 1028 erg cmz) (2 x 108 cm)-2

=-455x 1012 erg
=-2.84¢eV.

f. In problem 5 the relationship between Y (p) and Y (x) was derived:



ny,
Y (p) = —=— 8Y (x)eirhd .

\Jaon ¢

+¥

Y (p) = _1 8\/_aealx|eipx/hdx _
2ph -¥
0 +¥

Y (p) = 1 8\/aexeipxihax + 8\/aeeipxingy

1
\Joph -+ \Joph ©

_ [Ee1 , 1

o
2p héarip/h atiph B
_a 2a fo)
2p h&2+p2h2y
. fv p=zehf” T U(e@+(@ah)2h?)] 2
Y (pman)i > T U(e+(-an2d)i
| 1/(a2+4a2)|
| 1(+ad) I
| 1/(5a2)|
T 1/(2a2)|

_i2i2

=0.16 = 16%

_h27 T2 2
8. a H= 2h lﬂ— ¢ 20 (cartesian coordinates)
M { g2 ‘Hy%

Finding s and1 from the chain rule gives:

> Ty
o _oAro 1 86 §1 T _afro T 8o 1

" Sxay Tr g‘l&zy Tm" Ty g‘ﬂ_yzx Ir g‘ﬂ_yro'x il

Evaluation of the "coefficients’ givesthe following:

Ao _ oy MO _ Snf
Sxay ' Sxay r
Aro ﬂfo Cosf

= =38inf,
Hyox " Sy

Upon substitution of these "coefficients':



T Sinf | Sinf

T cost L ST _ SN fixedr.
x r T of roqf
T gy L ST _Co T fixedr.
Ty ™ T oaf Fooqf

Al 339_”1083 S'”f To
me & ek ' o
:Slnzf‘ﬂ_z +S|nfCosf q

;atfixedr.
r2 ﬂfz r2
12 _o€ost foeCost 16
2 &' &' ffo
2f €2 -
:Cosf Bl _CosfSInf Al et fixedr.
2 qf2 2 qf
G 112 Sin’f 2. +Sinf Cosf 1 Coszf §? Cosfsinf 1
x2 ‘ﬂy2 r2 qf2 r2  qf 2 2 2 ff
2
i1 ; at fixedr.
T2 ‘ﬂf2
-h2 {2
So, H=——— (cyllndrlcal coordinates, fixed r)
2mr2 §f 2
_-h2 {2
VIR
The Schrodinger equation for a particle on aring then becomes:
HY =EY
_h2 92
%E =EF
ﬂf2
- 25
ﬂf2 ghz

The generd solution to this equation is the now familiar expression:

F(f) = Cieimf + Coemf ,wheremzaﬁzﬂ72

&h2 g
Application of the cyclic boundary condition, F (f) = F (f +2p), resultsin the quantization
2h 2
of the energy expression: E_m2|h wherem =0, 1, £2, +3, ... It can be seen that the

+m values correspond to angular momentum of the same magnitude but opposite

directions. Normalization of the wavefunction (over the region 0 to 2p) corresponding to +
1

or - mwill result in avalue of 23%;2 for the normalization constant.



1
\ F(f)=a&ko2 gmf
e2pg

(£4)2h2
o
(£3)2h2
o
(£2)2h2
o
(+1)2h2
o

YaYa YaYa
YaYa YaYa
YaYa YaVa
Y. %%

o (0)2h2
W

h2 _ 28
b. 5~ =6.06x 1028 erg cné

h2 _6.06 x 10-28 erg cm?
omr2 (1.4 x 10-8 cm)2
=3.09 x 102 erg
DE = (22- 12) 3.09 x 10-12erg = 9.27 x 10-12 erg
but DE = hn = hcll So| =hc/DE
| = (663X 10-27 erg sec)(3.00 x 1010 cm sec-?)
9.27 x 1012 erg

=214x105cm=214x 103 A
Sources of error in this calculation include:
i. The attractive force of the carbon nucle is not included in the Hamiltonian.

ii. Therepulsive force of the other p-electronsis not included in the Hamiltonian.
iii. Benzeneisnot aring.

iv. Electrons move in three dimensions not one.

v. Etc.

9.Y(f,0 = \/z Cos?f .
3p

This wavefunction needs to be expanded in terms of the eigenfunctions of the angular
momentum operator, glhﬂlf: Thisis most easily accomplished by an exponential

expansion of the Cos function.

f if i f if =
Y (f,0) = \fw +e'oael +eI

_ @ [ it 4 o2 0)if
o 3p(e2' + e2f + 2e(0)if)




The wavefunction is now written in terms of the elgenfunctions of the angular momentum

operator, glhﬂlf; but they need to include their normalization constant, L

.
Y (f 0)_6!%0{\/_&_321‘ + Lezf + ZL e(O)IfO

8 2p 2p 2p g
. 1 : 1 o
?5’\/: 2if 4 e-2f + 2= (0)if §
6 € =
SN 2p » o

Once the wavefunction is written in thisform (in terms of the normalized eigenfunctions of
the angular momentum operator having mh  as eigenval ues) the probabilities for observing

angular momentums of Oh , 2h , and -2h can be easily identified as the square of the
coefficients of the corresponding ei genfunctions.

5 12 _ 1
2h = a\/Bg 6
P = 1 _1
2h —a\|6g ~6
12

s 812 2 2

qer_rﬁoa?l(z + ﬂﬂ—yz 1}12 Y (X,Y,2) + 5 k(x2+y2+22)Y(xyz)
=EY(X)y,2) .

b. Let Y (x,y,2) = X(X)Y (Y)Z(2)

?22_12;&.2‘”_; oL LZ*X(X)Y(WZ(Z)* K02 +y2 + X ()Y ()2(2)

10.

Ty2
=E X(X)Y(y)Z(Z)
20
Y 2T + X 02z S Y(y) O vy o
20X (x)Y(y>Z(z) +3 ky2X (Y ()Z(2) +§ kzZZX ()Y (y)Z(2)
=EX()Y(y)Z(2) . |
Dividing by X(x)Y(y)Z(z) you obtal n:
3n20 112X (%) g2y W , &n 20 ‘HZZ(Z) _
e o *2 2+ Gt 2 2+ Gt d o t3kR=E

Now you have each variable isolated:

F(x) + G(y) + H(z) = constant
So,

%;;X%x)zﬂ;ig—x) +5kx2=Ey b EZT_]ZZHZX W .3 k 2X(x) = ExX(x),



2n20, 1 &12Y(y) (Y)
meeY(y)g w2 2 k =&P 82_;21 k YY) =EY (),

1 1°2(z) 1, 5 6n 20712 Z(z) )
mmZ(zig 1‘[22 ? kz< = EZD Mg 1-[ 2 *t5 k Z(Z) EZZ(Z)
andE=Ex+Ey + E,
c. All three of t%@e equations are one-dimensiona harmonic oscillator equations
and thus each have one-dimensional harmonic oscillator solutions which taken from the text

are:

. 1 1 a8ax2y 1
Xn(x) = 2L 02B% L2 Oy (32,
enl2ng

1 ed T,
Y 2= 22AE 2 B (a2y) and
)= oy gg n(@<y),
1 1 aeAaz%y 1
Zn(2) = ael—ozaa" €2 0, (a27),
enl2ng
.1
aknoé
wherea =
eh?g
d. EnX'ny,nZ:En +En +En

3ﬁ2k321-.3ﬁx 10+ aﬁy+ 10+ 8?12 qv)

em z'e
2
e. Suppose E = 5.5€ﬁ—k—:2
eMg
205
—g—laﬁ +ny+ng+
e m '] ie X y Z 2%
_ 3
5.5—2?1X + Ny + ng+ 23
So, nk + ny + nz=4. Thisgivesriseto adegeneracy of 15. They are:

States 1-3 States 4-6 States 7-9

Nx Ny ng Nx Ny ng Nx Ny ng
4 0 0 3 1 0 0 3 1
0 4 0 3 0 1 1 0 3
0 0 4 1 3 0 0 1 3

States 10-12 States 13-15
Nx Ny Nz Nx Ny Nz
2 2 0 2 1 1
2 0 2 1 2 1
0 2 2 1 1 2




f. Suppose V = % kr2 (independent of g and f)
The solutions G(q,f ) are the spherical harmonics Y| m(q,f).
_h_zadT ae,)‘ﬂYoo 1 ‘Hagl Yo
¥ om2&r € trw 2Snga& . fqw
1 1%
r2Sin2q 1 2
If Y (r,q,f) isreplaced by F(r)G(q,f):
h? & &,IFNG(a.N)s | RN LagmqﬂG(q,f)g
om2 & & fr @ r2Sing g8 Ta o
F(n_1°G(a,f)
r2Sin2q  if 2
and the angle dependence is recognized as the L2 angular momentum operator. Division by
G(q,f) further reduces the equation to:
h2 & ae)‘HF(r)oo J(J+1)h
ZmZEﬁ " g  2mé

+§(r-re)2Y =EY,

+ +5 (r re) 2F(nG(q,f) = E F(r)G(q,f) ,

F(r) + (- 19 2F(0) = E F()

a.602 x 102 ergp
leVv [}

_ %2)1.602 x 10-19 ergd
9.109 x 10-8y g

v = 0.593 x 109 cm/sec

The length of the N2 moleculeis 2A = 2 x 10-8 cm.
d

V:T

-8
=4 = 2x107Cem 547, 90176
V' 0.593 x 109 cm/sec
b. The normalized ground state harmonic oscillator can be written (from both in the

text and in exercise 11) as.

11. a %va 100 eV

aapl/4
Yo=22" eax?2 wherea andXx=r-re
&0

%"0 %
s

Calculating constants;

an _ 92.294 x 106 g sec?)(1.1624 x 10-23 g)(g
27 % (1.0546 x 10-27 erg sec)? @

= 0.48966 x 1019 cnr2 = 489.66 A-2
1

For No: Y o(r) = 3.53333A 2 e(244.83A9)(-1.097694)2




!
+_ %2.009 x 105 g sec?)(1.1624 x 10-23 95
(1.0546 x 10-27 erg sec)2 2

= 0.45823 x 1019 cmr2 = 458.23 A-2
1

For No*t: Y o(f) = 3.47522R 2 ¢(229.113A°9)(r-1.116424)2

a|\|2

G PV=0) = | <Y ueolNo Y veoN >}

Let P(v=0) = 12 where | =integral:

+¥

) 2

|= 0(3.47522A 2e(229.113A'2)(r-1.11642A)2) .
-¥
2
(3.53333A 2 €(244.830/-\'2)(r-1.09769/1\)2)dr
1 1

Let Cp=347522A 2, C,=353333A 2,

A1 =229.113A-2 Ao = 244.830A-2,
ry=1.11642A, rp = 1.09769A,

+¥

| =C1Co 8eAUrZgAolD? g
-¥
Focusing on the exponential:
-A1(r-r1)2-An(r-rp)2 = -Aq(r2 - 2r1r + r12) - Ap(r2 - 2ror + r2)

= -(A1+ AQr2 + (2A1r1 + 2A2r)r - Ar12 - Agrp?
Lt A=Ap+Ay
B = 2A1r1 + 2A0or2,
C=C1Cy, and

D=A1r12+ Aro2 .
+¥

|=Cc 8egAP +Br-D 4
-¥
+¥

-C 8 A2 + D' 4o
-¥
where -A(r-rg)2+D'=-Ar2+Br-D

-A(r2-2rrg+1rg?) + D'=-Ar2+Br-D
such that, 2Ar0=B

-Ar2+D'=-D



and, ro= %

B2 B2
2 el —_
D'=Arg¢-D = A4A -D= aA -D.
+¥
l=C 8 e—A(r-rO)2 +D' g
-¥
+¥
= ced' 86 ay
-¥
= CeD’

Now back substituting all of these constants:

— p F2A1r1 + 2A 2I'2)2 ) 29
| =CICN AR, G aA T Ay AT AXY

| = (3.47522)(3.53333)V (229113) s (244.830)

a62(229.113)(1.11642) + 2(244.830)(1.09769))2%5

Xpg X((229.113) + (244.830)) o
Cexp( - (229.113)(1.11642)2 - (244.830)(1.09769)2)
| =0.959
P(v=0) = 12 = 0.92
P20 1
. = —2% + 30
12. a En= gé?;a H %
DE = En+1 - En
(!_0]; +1+1‘_n_1uzﬁ9
eMgl 2 % eMg
_ 21.0546 x 1027 erg sec)?(1.87 x 106 g sec- 2)05
& 6.857 g/ 6.02 x 1023 o
=4.27 x 1013 erg
hc

DE:I—

c _(6.626 x 1027 erg sec)(3.00 x 1010 cm sec'])

" DE 4.27 x 1013 erg
=4.66 x 10-4cm



Il =2150 cmrl
b. Y0: al_(?]me-alez
o

<X> = <Y y=g"xY y=0>
+¥
BY o XY gdx
-¥
+¥
A . 2
88621/ xe@X2dx
(0} (éFg
-¥

+¥
Qaea 6Y2 _ »

=0 = eax“d(-ax?
8azpg © )
-¥

. ]_/2

:%19 e-aX21/2+¥ =0
Se'a_pro' - ¥

<X2> = <Y V:OI/XZ]/ZY V:O>
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Using integral equation (4) this becomes:
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The smaller k and mbecome, the larger the uncertainty in the internuclear distance becomes.

Helium has a small mand small force between atoms. Thisresultsin avery large Dx. This
impliesthat it is extremely difficult for He atoms to "vibrate" with small displacement asa
solid even as absolute zero is approached
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Ze=2Z- 156 =Z-0.3125 (Notethisisthe shielding factor of one 1s
electron to the other).
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=-(Z-0.3125)2(27.21) eV
b. Using the above result for W and the percent error as calculated below we obtain

the following:
(Experimental-Theoretica)

%error = Experimenta 100
Z Atom Experimental Calculated % Error
Z=1 H- -14.35eV -12.86 eV 10.38%
Z=2 He -78.98 eV -77.46 eV 1.92%
Z=3 Li+ -198.02 eV -196.46 eV 0.79%
Z=4 Bet2 -371.5eV -369.86 eV 0.44%




Z=5 B+3 -599.3 eV -597.66 eV 0.27%
Z=6 C+4 -881.6 eV -879.86 eV 0.19%
Z=7 N+5 -1218.3 eV -1216.48 eV 0.15%
Z=8 o6 -1609.5 eV -1607.46 eV 0.13%

Theignored electron correlation effects are essentially constant over the range of Z, but this
correlation effect isalarger percentage error at small Z. At large Z the dominant interaction
is electron attraction to the nucleus completely overwhelming the ignored electron
correlation and hence reducing the overall percent error.

c. Since-12.86 eV (H-) isgreater than -13.6 eV (H + €)
this simple variational calculation erroneoudly predicts H- to be unstable.
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Making this substitution results in the following three integrals.
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Using integra equatlons (1) (2), and (3) this becomes
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and, b= g\/_—03 Substituting this value of b into the expression for W gives:
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b. Substituting a= bj%%-:4 into the above expression for E we obtain:
_ 5h2 kb23$12 01

1
Ch2m2®@h2s L 20
=h k¢ m é4b +14b pe

Plotting this expression for the energy with respect to b having values of 0.2, 0.4, 0.6,
0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0 gives:
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Substituting p = -ih N, dt = r2dr Sinqdq df , and pulling out constants gives:
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Theintegrals over the angles are easy, 8df =2p and8Sinqdg = 2.
0 0

Thework remaining isin evaluating the integral over r. Substituting
fe=13 o1

we obtain:
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Using integral equation (4) thesei ntegrals can easily be evaluated:
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b. V = -eez = -eergCosq
1)
Eoo = <YoolV[Yoo> = <Yqol-eergCosqlY po=>

= -eero<Yoo|Cosq|Y 00>
Using the given identity this becomes:
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The spherical harmonics are orthonormal, thus <Yoo[Y10> = <YoolY-10> =0,and Egg = 0.
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Thisindicates that the only term contributing to the sum in the expression for Eéo) iswhen
Im =10 (I=1, and m=0), otherwise

<YimlV[Yoo> vanishes (from orthonormality). In quantum chemistry when using
orthonormal functionsit istypical to writetheterm <Y |m|Y10> asadeltafunction, for

example dim,10 , which only hasvalues of 1 or O; djj =1 wheni =jand Owheni? j. This
delta function when inserted into the sum then eliminates the sum by "picking out" the non-
zero component. For example,
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Thefirst integral can be evaluated using integral equation (18) with a:%:
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The two integrals in the numerator need to be eval uated:
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Using trigonometric identity (20), the integral 8 xCos(ax)dx = aiZ Cos(ax) + g Sin(ax), and

theintegral  Cos(ax)dx = % Sin(ax), we obtain the following:
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Crudely sketchng,g )1 + er )1 gives:

Note that the electron density has been pulled to the |eft side of the box by the external
field!
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Thefirst integral is zero (see the evaluation of thisintegral for E(l) aboveinparta) The

fourth integral is neglected sinceit is proportional to €2. The second and third integrals are
the same and are combined:
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These integrals are familiar from part a

L3 .. 26
e = - ZC32m eeg%oaeBL 2
27h2p4 &2 9p2g
mL4e2e 210
Mnduced = 5
h2p6 3

_ofme _mL4e2210
C. a=¢c—= = —
gﬂe;aezo h2p6 3P

The larger the box (molecule), the more polarizable the electron density.




Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is devel oped.
Applications are presented and problems are given and solved within qualitative and semi-
empirical models of electronic structure. Ab Initio approaches to these same matters, whose
solutions require the use of digital computers, are treated later in Section 6. Semi-
empirical methods, most of which aso require access to a computer, are treated in this
section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, thistext
treats polyatomic molecules before linear mol ecules before atoms. The finite point-group
symmetry (Appendix E provides an introduction to the use of point group symmetry) that
characterizes the orbitals and el ectronic states of non-linear polyatomicsis more
straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,
which belong to an axial rotation group, possess fewer degeneracies (e.g., p orbitals or
states are no more degenerate than d, f, or gorbitals or states; al are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-
fold, etc.). Increased orbital degeneracy, in turn, givesrise to more states that can arise
from agiven orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen
states, the p2 configuration of the NH molecule yields six, and the pp* configuration of
ethylene gives four states). For these reasons, it is more straightforward to treat low-
symmetry cases (i.e., non-linear polyatomic molecules) first and atoms | ast.

It is recommended that the reader become familiar with the point-group symmetry
tools developed in Appendix E before proceeding with this section. In particular, it is
important to know how to label atomic orbitals as well as the various hybrids that can be
formed from them according to the irreducible representations of the molecul€e's point
group and how to construct symmetry adapted combinations of atomic, hybrid, and
molecular orbitals using projection operator methods. If additional material on group theory
is needed, Cotton's book on this subject is very good and provides many excellent
chemical applications.

Chapter 4
Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding
and Antibonding Molecular Orbitals

|. Atomic Orbitals



In Section 1 the Schrédinger equation for the motion of asingle electron moving
about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to
an electron infinitely far from the nucleus with zero kinetic energy were found to depend
strongly on Z and on the principa quantum number n, as were the radial "sizes' of these
hydrogenic orbitals. Closed analytical expressionsfor ther,q, and f dependence of these
orbitals are given in Appendix B. The reader is advised to also review this materia before
undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional
bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these
orbitals may be unoccupied in the atom's low energy states, but they are till present and
able to accept electron density if some physical process (e.g., photon absorption, electron
attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen
atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve
1s2s, 2p?, 3s2, 3p>2, etc. orbital occupancy. Moreover, when an H atom is placed in an
externa electronic field, its charge density polarizes in the direction of thefield. This
polarization can be described in terms of the orbitals of the isolated atom being combined to
yield distorted orbitals (e.g., the 1sand 2p orbitals can "mix" or combineto yield sp hybrid
orbitals, one directed toward increasing field and the other directed in the opposite
direction). Thusin many situationsit isimportant to keep in mind that each atom has afulll
set of orbitals available to it even if some of these orbitals are not occupied in the lowest-
energy state of the atom.

B. Directions

Atomic orhital directions also determine what directional bonds an atomwill form.

Each set of p orbitals has three distinct directions or three different angular
momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals has
five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they
are sphericaly symmetric, and have only m = 0. Note that the degeneracy of an orbital
(21+1), which isthe number of distinct spatial orientations or the number of m-values,



grows with the angular momentum quantum number | of the orbital without bound.

It is because of the energy degeneracy within a set of orbitals, that these distinct
directional orbitals (e.g., X, y, z for p orbitals) may be combined to give new orbitals
which no longer possess specific spatia directions but which have specified angular
momentum characteristics. The act of combining these degenerate orbitals does not change
their energies. For example, the 2-Y/2(py +ipy) and
2-12(p, -ipy) combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular
momentum eigenfunctions can be seen by noting that the x and y orbitals contain f
dependences of cos(f ) and sin(f ), respectively. Thus the above combinations contain
exp(if ) and exp(-if ), respectively. The sizes, shapes, and directionsof afew s, p, and d
orbitals are illustrated below (the light and dark areas represent positive and negative
values, respectively).

1s

p orbitals d orbitals

C. Sizesand Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron
binding energies (i.e., low energiesrelative to a detached electron). For orbitals on



neighboring atoms to have large (and hence favorable to bond formation) overlap, the two
orbitals should be of comparable size and hence of smilar eectron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic
nucleusto the electron) of an atomic orbital is determined primarily by its principal quantum
number n and by the strength of the potential attracting an electron in this orbital to the
atomic center (which has some I-dependence too). The energy (with negative energies
corresponding to bound states in which the electron is attached to the atom with positive
binding energy and positive energies corresponding to unbound scattering states) is aso
determined by n and by the el ectrostatic potential produced by the nucleus and by the other
electrons. Each atom has an infinite set of orbitals of each | quantum number ranging from
those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrédinger equation in which an
electron movesin a potential energy field provided by the nucleus and all the other
electrons. Such one-electron Schrodinger equations are discussed, as they pertain to
qualitative and semi-empirical models of electronic structure in Appendix F. The spherical
symmetry of the one-electron potential appropriate to atoms and atomic ions iswhat makes
sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the
extent of degeneracy islower because the molecul€e's nuclear coulomb and el ectrostatic
potential energy has lower symmetry than in the atomic case. Aswill be seen, itisthe
symmetry of the potential experienced by an electron moving in the orbital that determines
the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the
potential and kinetic energies are not changed if one applies such an operator R to the
coordinates and momenta of all the electrons in the system. Because symmetry operations
involve reflections through planes, rotations about axes, or inversions through points, the
application of such an operation to a product such asHYy givesthe product of the operation
applied to each term in the original product. Hence, one can write:

R(Hy)=(RH) (Ry).

Now using the fact that H isinvariant to R, which meansthat (RH) = H, thisresult
reduces to:

R(HY)=H (Ry),



which saysthat R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions
that are eigenstates of H can be labeled by the symmetry of the point group of the molecule
(i.e., those operators that leaveH invariant). It isfor this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.

[1. Molecular Orhitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the
constituent atoms. This is one of the most important and widely used ideas in quantum
chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity
is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,
and Rydberg molecular orbitals can result. Themosf i are usually expressed in terms of
the congtituent atomic orbitals ¢ 5 in the linear-combination-of-atomic-orbital-molecul ar-

orbital (LCAO-MO) manner:
f| = SaCiaCa.

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a
hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.
However, those on one atom are not orthogonal to those on another atom because they are
eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).
Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve
maximum identity of each primitive orbital in the resultant orthonormalized orbitals before
they can be used in the LCAO-MO process. Thisis both computationally expedient and
conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to
consist of such orthonormalized primitive orbitals once the nuclei are brought into regions
where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal
functionsin many ways. One technique that is especially attractive when the original
functions are orthonormal in the absence of "interactions' (e.g., at large interatomic



distancesin the case of atomic basis orbitals) is the so-called symmetric orthonormalization
(SO) method. In this method, one first forms the so-called overlap matrix

Sm = <Cnlch>

for al functions cmto be orthonormalized. In the atomic-orbital case, these functions
include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the
overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of
individual atomic orbitals. For example, when a carbon and oxygen atom, with their core
1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Syyn matrix will
have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon
and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left
quadrants. The latter block represents the overlaps <cC {c On> among carbon and oxygen
atomic orbitals.

After forming the overlap matrix, the new orthonormal functionsc' yare defined as
follows:

C'm=Sn(SY)men.

As shown in Appendix A, the matrix S-Y2 isformed by finding the eigenvalues{l i} and
eigenvectors{Vin} of the Smatrix and then constructing:

(SY2)ym = Si VimVin (1 i)V2.

The new functions{c'n} have the characteristic that they evolve into the original functions
asthe "coupling", as represented in the Syn matrix's off-diagonal blocks, disappears.
Valence orbitals on neighboring atoms are coupled by changes in the electrostatic
potential due to the other atoms (coulomb attraction to the other nuclel and repulsions from
electrons on the other atoms). These coupling potentials vanish when the atoms are far
apart and become significant only when the valence orbitals overlap one another. In the
most qualitative picture, such interactions are described in terms of off-diagonal
Hamiltonian matrix elements (hay; see below and in Appendix F) between pairs of atomic
orbitals which interact (the diagonal elements ha; represent the energies of the various
orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the
ionization energy of the orbital). Such amatrix embodiment of the molecular orbital



problem arises, as developed below and in Appendix F, by using the above LCAO-MO
expansion in avariationa treatment of the one-electron Schrédinger equation appropriate to
themos{fi}.

In the ssimplest two-center, two-valence-orbital case (which could relate, for
example, to the Li> moleculestwo 2s orbitals), this givesrise to a 2x2 matrix eigenvalue
problem (hy1,h12,h22) with alow-energy mo (E=(hi1+hy2)/2-1/2[(hy1-hpo)2 +4h215]1/2)
and a higher energy mo (E=(hq1+h2)/2+1/2[(h11-h2o)2 +4h212]Y2) corresponding to
bonding and antibonding orbitals (because their energies lie below and above the lowest
and highest interacting atomic orbital energies, respectively). The mosthemselves are
expressedf j = S Cjz cawherethe LCAO-MO coefficients Cja are obtained from the
normalized eigenvectors of the hgp matrix. Note that the bonding-antibonding orbital energy
splitting depends on hgy? and on the energy difference (hazhpb); the best bonding (and
worst antibonding) occur when two orbitals couple strongly (have large hap) and are similar

in energy (Mea @hpp)-
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In both the homonuclear and heteronuclear cases depicted above, the energy
ordering of the resultant mos depends upon the energy ordering of the constituent aos as
well as the strength of the bonding-antibonding interactions among the aos. For example, if
the 2s-2p atomic orbital energy splitting islarge compared with the interaction matrix
elements coupling orbitals on neighboring atoms hys 25 and hop 2p , then the ordering
shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and
two 2p orbitals can all participate in the formation of the four s mos. Inthiscaseg, it is
useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom
having one hybrid directed toward the other atom and one hybrid directed away from the
other atom. The resultant pattern of four s mos will involve one bonding orbital (i.e., an
in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away
from the other atom) and one antibonding orbital (an out-of-phase combination of two sp
hybrids). Their energies will be ordered as shown in the Figure below.

S*

2p Sn

2p

Sn
P

2s

S

Here s, is used to denote the non-bonding s-type orbitalsand s, s*, p, and p* areused to
denote bonding and antibonding s- and p-type orbitals.

Notice that the total number of s orbitals arising from the interaction of the 2s and
2p orhitalsis equal to the number of aosthat take part in their formation. Notice a so that
thisistrue regardless of whether one thinks of the interactions involving bare 2s and 2p



atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that
they permit one to foresee the fact that two of the four mos must be non-bonding because
two of the four hybrids are directed away from all other valence orbitals and hence can not
form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there
are of any given symmetry) will not depend on whether one thinks of the interactions
involving atomic or hybrid orbitals. However, it is often easier to "guess' the bonding,
non-bonding, and antibonding nature of the resultant mos when thought of as formed from
hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess ‘excited' orbitals that may
become involved in bond formation if one or more electrons occupies these orbitals.
Whenever aos with principal quantum number one or more unit higher than that of the
conventional aos becomes involved in bond formation, Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers
higher than the atoms' valence orbitals) can arise in molecules just asthey do in atoms.
They do not usually give rise to bonding and antibonding orbitals because the valence-
orbital interactions bring the atomic centers so close together that the Rydberg orbital's of
each atom subsume both atoms. Therefore as the atoms are brought together, the atomic
Rydberg orbitals usually pass through the internuclear distance region where they
experience (weak) bonding-antibonding interactions al the way to much shorter distances
at which they have essentially reached their united-atom limits. As aresult, molecular
Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding
character. They are usually labeled with principa quantum numbers beginning one higher
than the highest n value of the constituent atomic valence orbitals, although they are
sometimes labeled by the n quantum number to which they correlate in the united-atom
limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p
orbitals are the valence orbitals and of the evolution of these orbitals into united-atom
orbitalsis given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that
involve amplitudes on three or more atomic centers can be formed. Such mos are termed
delocalized or multicenter mos.

Situationsin which more than apair of orbitals interact can, of course, occur.
Three-center bonding occurs in Boron hydrides and in carbony! bridge bonding in
transition metal complexes aswell asin delocalized conjugated p orbitals commonin
unsaturated organic hydrocarbons. The three pp orbitals on the alyl radical (considered in
the absence of the underlying s orhitals) can be described qualitatively in terms of three pp
aos on the three carbon atoms. The couplings h12 and hy3 are equal (because the two CC
bond Iengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far
away to interact. Theresult isa 3x3 secular matrix (see below and in Appendix F):

h 11 h 12 0
h21h 22h 23
O h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the
LCAO-MO coefficients Ci5 .

This 3x3 matrix givesrise to a bonding, a non-bonding and an antibonding orbital
(see the Figure below). Since al of the hggare equa and hy2 = hog, the resultant orbital
energiesare: hyq + 62 hia, hig, and hy1-C2 hy,, and the respective LCAO-MO coefficients
Ciaare (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that
the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals
interact constructively, whereas for the antibonding orbital they interact out of phase. For
the nonbonding orbital, there are no interactions because the central C orbital has zero
amplitude in this orbital and only h12 and hp3 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well
defined directional character and to then form mos by combining these hybrid orbitals. This
recombination of aosto form hybridsis never necessary and never provides any
information that could be achieved in its absence. However, forming hybrids often allows
one to focus on those interactions among directed orbitals on neighboring atomsthat are
most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as
being constructed as linear combinations of the constituent atomic orbitals. Thisclearly is
the only reasonable picture when each atom contributes only one orbital to the particular
interactions being considered (e.g., as each Li atom doesin Li and as each C atom doesin
the p orbital aspect of the allyl system). However, when an atom uses more than one of its
valence orbitals within particular bonding, non-bonding, or antibonding interactions, it is
sometimes useful to combine the congtituent atomic orbitals into hybrids and to then use the
hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid
orbitals often makes it more straightforward to "guess' the bonding, non-bonding, and
antibonding nature of the resultant mos. It should be stressed, however, that exactly the
same quantitative results are obtained if one forms mos from primitive aos or from hybrid
orbitals; the hybrids span exactly the same space as the origina aos and can therefore
contain no additional information. This point isillustrated below when the HoO and N,
molecules are treated in both the primitive ao and hybrid orbital bases.



Chapter 5
Molecular Orbitals Possess Soecific Topology, Symmetry, and Energy-Level Patterns

In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals
aretreated. It isimportant to keep in mind that both symmetry and characteristics of orbital
energetics and bonding "topology”, as embodied in the orbital energies themselves and the
interactions (i.e., hj k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in aparticular molecule.

|. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed’ by using qualitative information
about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which moswill have low
(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all
energies viewed relative to those of the constituent atomic orbitals. The gener al patterns
that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum
number are small, hybridization can easily occur to produce hybrid orbitals that are directed
toward (and perhaps away from) the other atomsin the molecule. In the first-row elements
(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In
contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is
larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those
directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given
molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain
more than one ao in their valence shell. Only those aos that are not involved in p-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a s-interaction manner toward other
aos or hybrids on neighboring atoms can be involved in p-interactions or in nonbonding
interactions.



iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another
interact to produce bonding and antibonding orbitals. The more the bonding orbital lies
below the lower-energy ao or hybrid orbital involved in its formation, the higher the
antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H,CO, one forms sp2 hybrids on the C atom; on
the O atom, either sp hybrids (with one p orbital "reserved” for usein forming the p and p*
orbitals and another p orbital to be used as a non-bonding orbita lying in the plane of the
molecule) or sp? hybrids (with the remaining p orbital reserved for the p and p* orbitals)
can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.
The C atom clearly usesits sp? hybrids to form two CH and one CO s bonding-
antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO s bond and antibond.
When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms alone
pair orbital directed away from the CO bond axis; one of the atomic p orbitalsisinvolved in
the CO p and p* orbitals, while the other forms an in-plane non-bonding orbital.
Alternatively, when sp2 hybrids are used, the two sp? hybrids that do not interact with the
C-atom sp? orbital form the two non-bonding orbital's. Hence, the final picture of bonding,
non-bonding, and antibonding orbitals does not depend on which hybrids one uses as
intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N> can be
formed into pairs of sp hybrids on each N atom plus a pair of pp atomic orbitals on each N
atom. The sp hybrids directed
toward the other N atom give riseto bonding s and antibonding s* orbitals, and the sp
hybrids directed away from the other N atom yield nonbonding s orbitals. The p, orbitals,
which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,
produce bonding p and antibonding p* orbitals.

v. In general, s interactionsfor agiven pair of atoms interacting are stronger than p
interactions (which, in turn, are stronger than d interactions, etc.) for any given sets (i.e.,
principal quantum number) of aos that interact. Hence, s bonding orbitals (originating from
agiven set of aos) lie below p bonding orbitals, and s* orbitals lie above p* orbitals that
arise from the same sets of aos. In the N2 example, the s bonding orbital formed from the
two sp hybrids lies below the p bonding orbital, but the p* orbital lies below the s*

orbital. In the H,CO example, the two CH and the one CO bonding orbitals have low
energy; the CO p bonding orbital has the next lowest energy; the two O-atom non-bonding



orbitals have intermediate energy; the CO p* orbital has somewhat higher energy; and the
two CH and one CO antibonding orbitals have the highest energies.

vi. If agiven ao or hybrid orbital interacts with or is coupled to orbitals on more than a
single neighboring atom, multicenter bonding can occur. For example, in the alyl radical
the central carbon atom's p, orbital is coupled to the p, orbitals on both neighboring atoms;
inlinear Liz, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cug, the 2s orbitals on each Cu atom couple to each of the other two
atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., asin
conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides) gives rise to mo energy patternsin
which there are N/2 (if N iseven) or N/2 -1 non-degenerate bonding orbitals and the same
number of antibonding orbitals (if N isodd, thereis also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., asin cyclic
conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides and the entire net forms a closed
cycle) givesriseto mo energy patterns in which there is alowest non-degenerate orbital and
then a progression of doubly degenerate orbitals. If N isodd, this progression includes (N-
1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and afinal non-
degenerate highest orbital. These patterns and those that appear in linear multicenter
bonding are summarized in the Figures shown below.
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iX. In extended systems such as solids, atom-based orbitals combine as above to form so-
called 'bands of molecular orbitals. These bands are continuous rather than discrete asin
the above cases involving small polyenes. The energy 'spread’ within a band depends on
the overlap among the atom-based orbitals that form the band; large overlap givesriseto a
large band width, while small overlap produces a narrow band. As one moves from the
bottom (i.e., the lower energy part) of a band to the top, the number of nodesin the
corresponding band orbital increases, as aresult of which its bonding nature decreases. In
the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is
illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not
overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals
overlap to agreater extent. The d-band issplitinto s, p, and d components corresponding
to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,



the p-band issplitintos and p components. The widths of the s components of each band
are larger than those of the p components because the corresponding s overlap interactions
are stronger. The intensities of the bands at energy E measure the densities of states at that
E. Thetotal integrated intensity under agiven band is a measure of the total number of
atomic orbitals that form the band.
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[1. Orbital Symmetry

Symmetry provides additional quantum numbers or labelsto use in describing the
mos. Each such quantum number further sub-divides the collection of all mosinto sets that

have vanishing Hamiltonian matrix elements among member s belonging to different sets.



Orhital interaction "topology" as discussed above plays a most- important role in
determining the orbital energy level patterns of amolecule. Symmetry also comesinto play
but in a different manner. Symmetry can be used to characterize the core, bonding, non-
bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this
can be carried out in a systematic manner. Once the various mos have been |abeled
according to symmetry, it may be possible to recognize additional degeneracies that may
not have been apparent on the basis of orbital-interaction considerations aone. Thus,
topology provides the basic energy ordering pattern and then symmetry enters to identify
additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitalsin NH3,
when symmetry adapted within the Cgy point group, cluster into & and e mos as shown in
the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s
core orbital also belong to a symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and
antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O a so cluster
into & and e orbitals as shown below. In these cases, point group symmetry allows one to
identify degeneraciesthat may not have been apparent from the structure of the orbital
interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those
obtained without symmetry above. The three LCAO-MO coefficients, now expressing the
mos in terms of the symmetry adapted orbitals are Cjs = ( 0.707, 0.707, 0.0) for the
bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for
the antibonding orbital. These coefficients, when combined with the symmetry adaptation
coefficients Cs given earlier, express the three mosin terms of the three aos asf j= SgCis
CsCa; the sum Sg Cis Cs5 givesthe LCAO-MO coefficients Cijz which, for example, for
the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found
earlier without using symmetry.

The low energy orbitals of the H>O molecule can be used to illustrate the use of
symmetry within the primitive ao basisaswell asin terms of hybrid orbitals. The 1s orbital
on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its
three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of
symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By
combining the two Hydrogen 1s orbitals into 0.707(1s_ + 1sR) and 0.707(1s. - 1sR)
symmetry adapted orbitals (labeled a; and by within the Cp,, point group; see the Figure
below), and recognizing that the Oxygen 2s and 2p; orbitals belong to &g symmetry (the z
axisistaken as the C; rotation axis and the x axisis taken to be perpendicular to the plane
in which the three nuclei lie) while the 2py orbital is by and the 2p, orbital isby , allows the
6x6 problem to be decomposed into a 3x3 ( ap) secular problem, a2x2 ( by) secular
problem and a 1x1 ( by ) problem. These decompositions allow one to conclude that there
is one nonbonding by orbital (the Oxygen 2py orbital), bonding and antibonding by orbitals
( the O-H bond and antibond formed by the Oxygen 2py, orbital interacting with 0.707(1s.
- 1sR)), and, finaly, a set of bonding, nonbonding, and antibonding a; orbitals (the O-H
bond and antibond formed by the Oxygen 2s and 2p; orbitals interacting with 0.707(1s_. +
1sRr) and the nonbonding orbital formed by the Oxygen 2s and 2p; orbitals combining to
form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the HoO molecule in terms of hybrid orbitals, onefirst
combines the Oxygen 2s, 2p;, 2px and 2py orbitals to form four sp3 hybrid orbitals. The
valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.
Gillespie and R. S. Nyholm, Quart. Rev. 11, 339 (1957) and R. J. Gillespie, J. Chem.
Educ. 40, 295 (1963)) directs oneto involve al of the Oxygen valence orbitalsin the
hybridization because four s-bond or nonbonding e ectron pairs need to be accommodated
about the Oxygen center; no p orbital interactions are involved, of course. Having formed
the four sp3 hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry



adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above
to form 0.707(1s_ + 1sg) and 0.707(1s_ - 1sR). The two sp3 hybridswhich liein the
plane of theH and O nuclei ( 1abel them L and R) are combined to give symmetry adapted
hybrids: 0.707(L+R) and 0.707(L-R), which are of a; and by symmetry, respectively ( see
the Figure below). Thetwo sp3 hybridsthat lie above and below the plane of the three
nuclei (label them T and B) are a'so symmetry adapted to form 0.707(T+ B) and 0.707(T-
B), which are of & and by symmetry, respectively. Once again, one has broken the 6x6
secular problem into a 3x3 & block, a 2x2 by block and a 1x1 by block. Although the
resulting bonding, nonbonding and antibonding a; orbitals, the bonding and antibonding
b, orbitals and the nonbonding b; orbital are now viewed as formed from symmetry
adapted Hydrogen orbitals and four Oxygen sp3 orbitals, they are, of course, exactly the
samemolecular orbitals as were obtained earlier in terms of the symmetry adapted primitive
aos. The formation of hybrid orbitals was an intermediate step which could not alter the
final outcome.
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That no degenerate molecular orbitals arose in the above examplesis aresult of the
fact that the Cop, point group to which H>O and the allyl system belong (and certainly the



Cs subgroup which was used above in the alyl case) has no degenerate representations.
Molecules with higher symmetry such as NH3 , CHg4, and benzene have energetically
degenerate orbitals because their molecular point groups have degenerate representations.

B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry isintermediate
in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the
nuclei and the other electronsis described by either the Cyy or Dy group. The essential
difference between these symmetry groups and the finite point groups which characterize
the non-linear molecules liesin the fact that the el ectrostatic potential which an electron feels
isinvariant to rotations of any amount about the molecular axis (i.e., V(g+dg) =V(g), for
any angle increment dg). This means that the operator Cyg which generates arotation of the
electron’'s azimuthal angle g by an amount dg about the molecular axis commutes with the
Hamiltonian [h, Cqg ] =0. Cgg can be written in terms of the quantum mechanical operator
Lz = -ih Y/9lgdescribing the orbital angular momentum of the el ectron about the molecular
(2) axis:

Cdg = exp(idg L k).

Because Cyg commutes with the Hamiltonian and Cqgg can be writtenintermsof L, L,
must commute with the Hamiltonian. As aresult, the molecular orbitalsf of alinear
molecule must be eigenfunctions of the z-component of angular momentum L

- /Mgf =mhf.
The electrostatic potentia is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do not commute with the
Hamiltonian. Therefore, only Lz provides a"good quantum number" in the sense that the
operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of alinear molecule can be labeled by their m
guantum number, which plays the same role as the point group labels did for non-linear
polyatomic molecules, and which gives the eigenvalue of the angular momentum of the
orbital about the molecule's symmetry axis. Because the kinetic energy part of the



Hamiltonian contains (h2/2me r2) 12/9¢? , whereas the potential energy part is independent
of g, the energies of the molecular orbitals depend on the square of the m quantum
number. Thus, pairs of orbitalswith m=+ 1 are energetically degenerate; pairs with m=+
2 are degenerate, and so on. The absolute value of m, which iswhat the energy depends
on, iscalled thel quantum number. Molecular orbitalswith| =0 arecalled s orbitals;
thosewith| =1 arep orbitals, and thosewith| =2 ared orbitals.

Just asin the non-linear polyatomic-molecule case, the atomic orbitals which
condtitute a given molecular orbital must have the same symmetry as that of the molecular
orbital. Thismeansthat s,p, and d molecular orbitals are formed, viaLCAO-MO, from
m=0, m= % 1, and m= + 2 atomic orbitals, respectively. In the diatomic N> molecule, for
example, the core orbitals are of s symmetry as are the molecular orbitals formed from the
2s and 2p, atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals
formed from the atomic 2p.1 =(2px- i 2py) and the 2p.1 =(2px + i 2py ) orbitals are of p
symmetry and havem =-1and +1.



For homonuclear diatomic molecules and other linear molecules which have a center
of symmetry, the inversion operation (in which an electron's coordinates are inverted
through the center of symmetry of the molecule) is aso asymmetry operation. Each
resultant molecular orbital can then also be labeled by a quantum number denoting its parity
with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)
are used for thislabel. Again for N2, the core orbitals are of sg and s, symmetry, and the
bonding and antibonding s orbitals formed from the 2s and 2ps orbitals on the two
Nitrogen atoms are of sg and s, symmetry.
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The bonding p molecular orbital pair (with m = +1 and -1) is of py Symmetry whereas the
corresponding antibonding orbital is of pg symmetry. Examples of such molecular orbital
symmetries are shown above.

The use of hybrid orbitals can beillustrated in the linear-molecul e case by
considering the N2 molecule. Because two p bonding and antibonding molecular orbital
pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to
form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2p, (which is also the 2p
orbital with m = 0) orbitals. Ignoring the core orbitals, which are of sg and s, symmetry as
noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build
one s orbital involving a bonding interaction between two sp hybrids pointed toward one
another, an antibonding s, orbital involving the same pair of sp orbitals but coupled with
opposite signs, a nonbonding s g orbital composed of two sp hybrids pointed away from
the interatomic region combined with like sign, and a nonbonding s, orbital made of the
latter two sp hybrids combined with opposite signs. The two 2pyy, orbitals (m= +1 and -1)
on each Nitrogen atom are then symmetry adapted to produce a pair of bonding py, orbitals
(withm = +1 and -1) and a pair of antibonding pg orbitals (with m = +1 and -1). This
hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which
would be 10x10 if the core orbitals were included) into a 2x2 s g problem (one bonding and
one nonbonding), a2x2 s, problem (one bonding and one nonbonding), an identical pair
of 1x1 py problems (bonding), and an identical pair of 1x1 pg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points
of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and
O, one obtains a picture in which there are: two core s orbitals corresponding to the O-atom
1sand C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding
orbitals arising from the four sp hybrids; apair of bonding and a pair of antibonding p
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,
using sp2 hybrids on both C and O, one obtains: the two core s orbitals as above; aCO
bonding and antibonding orbital pair formed from the sp? hybrids that are directed along
the CO bond; and asingle p bonding and antibonding p* orbital set. The remaining two
sp2 orbitals on C and the two on O can then be symmetry adapted by forming +
combinations within each pair to yield: an & non-bonding orbital (from the + combination)
on each of C and O directed away from the CO bond axis; and a py orbital on each of C and
O that can subsequently overlap to form the second p bonding and p* antibonding orbital
pair.

It should be clear from the above examples, that no matter what particular hybrid



orbitals one chooses to utilize in conceptualizing a molecul€'s orbital interactions,
symmetry ultimately returns to force one to form proper symmetry adapted combinations
which, in turn, renders the various points of view equivalent. In the above examplesand in
several earlier examples, symmetry adaptation of, for example, sp? orbital pairs (e.g., sp. 2
+ spr2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid
orbitals in this manner amounts to forming other hybrid orbitals. For example, the above +
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis
generate anew sp hybrid directed along the bond axis but opposite to the sp? hybrid used
to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the
CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and
C and pp orbitalson O and C.

C. Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry
analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In
particular, the potential field experienced by an electron in an orbital becomes invariant to
rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule casg, it is
invariant only to rotations of the electron's position about the molecule's symmetry axis
(the z axis). These invariances are, of course, caused by the spherical symmetry of the
potentia of any atom. This additional symmetry of the potential causes the Hamiltonian to
commute with al three components of the electron’'s angular momentum: [Ly , H] =0, [Ly ,
H] =0, and [L z, H] =0. It is straightforward to show that H also commutes with the
operator L2=Ly2 + Ly2 + L2, defined as the sum of the squares of the three individual
components of the angular momentum. Because Ly, Ly, and L, do not commute with one
another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of
all three angular momentum operators. Because Ly, Ly, and L, do commutewith L2,
orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L ;
it is convention to select L, as the operator which, along with H and L2 , form amutually
commutative operator set of which the orbitals are smultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both | and m quantum numbers,
which play the role that point group labels did for non-linear moleculesand | did for linear
molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly
contains L2/2mg2 , (ii) the Hamiltonian does not contain additional L, , Ly, or Ly factors,



and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and
commutes with L2 and L), the energies of atomic orbitals depend upon the | quantum
number and are independent of the m quantum number. Thisis the source of the 21+1- fold
degeneracy of atomic orbitals.

The angular part of the atomic orbitalsis described in terms of the spherical
harmonics Y| m ; that is, each atomic orbital f can be expressed as

fnlm=Yim(d ] ) Rny ().

The explicit solutions for the Y| m and for the radial wavefunctions R | are givenin
Appendix B. Thevariablesr,q,j givethe position of the electron in the orbital in
spherical coordinates. These angular functions are, as discussed earlier, related to the
cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the
orbitals with [=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy
and d; orbitals. Either set of orbitalsis acceptable in the sense that each orbital isan
eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the
Hamiltonian- eigenfunction feature. The orbital set labeled with | and m quantum numbers
ismost useful when one is dealing with isolated atoms (which have spherical symmetry),
because m isthen avalid symmetry label, or with an atom in aloca environment whichis
axially symmetric (e.g., in alinear molecule) where the m quantum number remains a
useful symmetry label. The cartesian orbitals are preferred for describing an atom in alocal
environment which displays lower than axial symmetry (e.g., an atom interacting with a
diatomic molecule in Cpy Symmetry).

Theradia part of the orbital Ry | (r) aswell asthe orbital energy e, depend on |
because the Hamiltonian itsalf contains I(1+1)Yh2/2mgr2; they are independent of m because
the Hamiltonian has no m-dependence. For bound orbitals, R |(r) decays exponentially for
large r (as exp(-2rC2ey | )), and for unbound (scattering) orbitals, it is oscillatory at large r
with an oscillation period related to the deBroglie wavel ength of the electron. In R (1)
there are (n-1-1) radia nodes lying between r=0 and r=¥ . These nodes provide differential
stabilization of low-I orbitals over high-I orbitals of the same principal quantum number n.
That is, penetration of outer shellsis greater for low-| orbitals because they have more
radial nodes; as aresult, they have larger amplitude near the atomic nucleus and thus
experience enhanced attraction to the positive nuclear charge. The average size (e.g.,
average value of r; <r>=R?, r r2 dr) of an orbital depends strongly on n, weakly on |
and isindependent of m; it also depends strongly on the nuclear charge and on the potential
produced by the other electrons. This potential is often characterized qualitatively in terms



of an effective nuclear charge Zgf which isthe true nuclear charge of the atom Z minus a
screening component Zg: which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for agiven n, low-| orbitals penetrate
closer to the nucleus than do high-I orbitals, they have higher Zg+ values (i.e., smaller Zg

values) and correspondingly smaller average sizes and larger binding energies.






Chapter 6

Along "Reaction Paths’, Orbitals Can be Connected One-to-One According to Their
Symmetries and Energies. Thisisthe Origin of the Woodwar d-Hoffmann Rules

|. Reduction in Symmetry

As fragments are brought together to form a larger molecule, the symmetry of the
nuclear framework (recall the symmetry of the coulombic potential experienced by electrons
depends on the locations of the nuclel) changes. However, in some cases, certain
symmetry elements persist throughout the path connecting the fragments and the product
molecule. These preserved symmetry elements can be used to label the orbitals throughout
the 'reaction'.

The point-group, axial- and full-rotation group symmetries which arise in non-
linear molecules, linear molecules, and atoms, respectively, are seen to provide quantum
numbers or symmetry labels which can be used to characterize the orbitals appropriate for
each such species. In aphysical event such as interaction with an external electric or
magnetic field or a chemical process such as collision or reaction with another species, the
atom or molecule can experience a change in environment which causes the el ectrostatic
potentia which its orbitals experience to be of lower symmetry than that of the isolated
atom or molecule. For example, when an atom interacts with another atom to form a
diatomic molecule or smply to exchange energy during a collision, each atom's
environment changes from being spherically symmetric to being axialy symmetric. When
the formal dehyde mol ecul e undergoes unimol ecular decomposition to produce CO + Ha
along a path that preserves Cp, symmetry, the orbitals of the CO moiety evolve from Cp,
symmetry to axial symmetry.

It isimportant, therefore to be able to label the orbitals of atoms, linear, and non-
linear moleculesin terms of their full symmetries as well in terms of the groups appropriate
to lower-symmetry situations. This can be done by knowing how the representations of a
higher symmetry group decompose into representations of alower group. For example, the
Y| m functions appropriate for spherical symmetry, which belong to a2l+1 fold degenerate
set in this higher symmetry, decompose into doubly degenerate pairs of functions Y|, Y| -
I; Yil-1, Yi-1+1. €tc, plusasingle non-degenerate function Y| o , in axial symmetry.
Moreover, because L2 no longer commutes with the Hamiltonian whereas L, does, orbitals
with different |-values but the same m-values can be coupled. Asthe N> moleculeisformed
from two N atoms, the 2s and 2p, orbitals, both of which belong to the same (s) symmetry
in the axid rotation group but which are of different symmetry in the isolated-atom



spherical symmetry, can mix to form the sg bonding orbital, the s, antibonding, aswell as
thesg and s, nonbonding lone-pair orbitals. The fact that 2s and 2p have different |-values
no longer uncouples these orhitals asit did for the isolated atoms, because | isno longer a
"good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as
H20 fragmentsinto OH and H. The s bonding orbitals (a; and by) and in-plane lone pair
(&) and thes™ antibonding (&, and by) of H2O become a orbitals (see the Figure below);
the out-of-plane by lone pair orbital becomes a” (in Appendix IV of Electronic Spectraand

Electronic Structureof Polyatomic Molecules, G. Herzberg, Van Nostrand Reinhold Co.,
New York, N.Y. (1966) tables are given which alow one to determine how particular
symmetries of ahigher group evolve into symmetries of alower group).

ShoX 4 -

a; s bonding a; s* antibonding
orbital orbital
b, s bonding b, s* antibonding
orbital orbital

To further illustrate these points dealing with orbital symmetry, consider the
insertion of CO into Hy along a path which preserves Cy, symmetry. Astheinsertion
occurs, the degenerate p bonding orbitals of CO become by and by orbitals. The
antibonding p* orbitals of CO also become by and by. The Sg bonding orbital of H>
becomes a; , and the s, antibonding Hy orbital becomes by. The orbitals of the reactant



H2CO are energy-ordered and |abeled according to Cp, symmetry in the Figure shown
below as are the orbitals of the product H, + CO.
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H,CO =—>H, + CO Orbital Correlation Diagram in C,,, Symmetry

When these orbitals are connected according to their symmetries as shown above,
one reactant orbital to one product orbita starting with the low-energy orbitals and working
to increasing energy, an orbital correlation diagram (OCD) is formed. These diagrams play
essential rolesin analyzing whether reactions will have symmetry-imposed energy barriers
on their potential energy surfaces along the reaction path considered in the symmetry
analysis. The essence of thisanalysis, which is covered in detail in Chapter 12, can be
understood by noticing that the sixteen electrons of ground-state HoCO do not occupy their
orbitals with the same occupancy pattern, symmetry-by-symmetry, as do the sixteen
electrons of ground-state Hy + CO. In particular, HoCO places a pair of electronsin the
second by orbital while H> + CO does not; on the other hand, Ho + CO places two
dectronsin the sixth a; orbital while HoCO does not. The mismatch of the orbitals near the
5ay, 6a;, and 2by orbitals is the source of the mismatch in the electronic configurations of
the ground-states of HoCO and Hy + CO. These mismatches give rise, as shown in



Chapter 12, to symmetry-caused energy barriers on the HoCO ==> Hj + CO reaction
potential energy surface.

[1. Orbital Correlation Diagrams

Connecting the energy-ordered orbitals of reactants to those of products according
to symmetry elements that are preserved throughout the reaction produces an orbital
correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or
atom approached and interacted with another species. The "path” aong which this approach
was thought to occur was characterized by symmetry in the sense that it preserved certain
symmetry elements while destroying others. For example, the collision of two Nitrogen
atoms to produce N2 clearly occursin away which destroys spherical symmetry but
preserves axial symmetry. In the other example used above, the formal dehyde molecule
was postul ated to decompose along a path which preserves Cp, symmetry while destroying
the axial symmetries of CO and Ho. The actual decomposition of formal dehyde may occur
along some other path, but if it were to occur along the proposed path, then the symmetry
analysis presented above would be useful.

The symmetry reduction analysis outlined above alows one to see new orbital
interactions that arise (e.g., the 2s and 2p; interactionsin the N + N ==> N example) as
the interaction increases. It also alows one to construct orbital correlation diagrams
(OCD's) inwhich the orbitals of the "reactants’ and "products” are energy ordered and
labeled by the symmetries which are preserved throughout the "path”, and the orbitals are
then correlated by drawing lines connecting the orbitals of a given symmetry, one-by-one
in increasing energy, from the reactants side of the diagram to the products side. As noted
above, such orbital correlation diagrams play a central role in using symmetry to predict
whether photochemical and thermal chemical reactionswill experience activation barriers
along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the p orbitals of 1,3-
butadiene as the molecule undergoes disrotatory closing (notice that thisiswhere a
particular path is postulated; the actual reaction may or may not occur along such a path) to
form cyclobutene. Along this path, the plane of symmetry which bisectsand is
perpendicular to the Cp-C3 bond is preserved, so the orbitals of the reactant and product are
labeled as being even-e or odd-o under reflection through this plane. It is not proper to label
the orbitals with respect to their symmetry under the plane containing the four C atoms;



although this plane isindeed a symmetry operation for the reactants and products, it does
not remain avalid symmetry throughout the reaction path.
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The four p orbitals of 1,3-butadiene are of the following symmetries under the
preserved plane (see the orbitalsin the Figure above): p1 =€, p2 =0, p3 =€, pa4=0. Thep
andp® and's and s™ orbitals of cyclobutane which evolve from the four active orbitals of
the 1,3-butadiene are of the following symmetry and energy order:s = e, p=¢, p* =0, s”
= 0. Connecting these orbitals by symmetry, starting with the lowest energy orbital and
going through the highest energy orbital, gives the following OCD:

S
/
e
S

The fact that the lowest two orbitals of the reactants, which are those occupied by the four
p electrons of the reactant, do not correlate to the lowest two orbitals of the products,
which are the orbitals occupied by thetwo s and two p electrons of the products, will be
shown later in Chapter 12 to be the origin of the activation barrier for the thermal
disrotatory rearrangement (in which the four active e ectrons occupy these lowest two
orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state
having orbital occupancy p12p2Lp3t, then reaction along the path considered would not
have any symmetry-imposed barrier because this singly excited configuration correlatesto a

singly-excited configuration s2plp* 1 of the products. The fact that the reactant and product
configurations are of equivalent excitation level causes there to be no symmetry constraints



on the photochemically induced reaction of 1,3-butadiene to produce cyclobutene. In
contrast, the thermal reaction considered first above has a symmetry-imposed barrier
because the orbital occupancy is forced to rearrange (by the occupancy of two electrons)
from the ground-state wavefunction of the reactant to smoothly evolveinto that of the
product.

It should be stressed that athough these symmetry considerations may allow one to
anticipate barriers on reaction potential energy surfaces, they have nothing to do with the
thermodynamic energy differences of such reactions. Symmetry says whether there will be
symmetry-imposed barriers above and beyond any thermodynamic energy differences. The
enthalpies of formation of reactants and products contain the information about the
reaction's overall energy balance.

As another example of an OCD, consider the N + N ==> N2 recombination reaction
mentioned above. The orbitals of the atoms must first be labeled according to the axial
rotation group (including the inversion operation because this is a homonuclear molecule).
The core 1s orbitals are symmetry adapted to produce 1sg and 1s, orbitals (the number 1is
used to indicate that these are the lowest energy orbitals of their respective symmetries); the
2s orhital's generate 2s g and 2s orbitals; the 2p orbitals combineto yield 3sg | apair of
1py orbitals, apair of 1pg orbitals, and the 3s, orbital, whose bonding, nonbonding, and
antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two
orbitals derived from the 2s atomic orbitals are degenerate, and the six orbitals derived from
the Nitrogen atoms 2p orbitals are degenerate. At the equilibrium geometry of the N2
molecule, these degeneracies are lifted, Only the degeneracies of the 1py and 1pg orbitals,
which are dictated by the degeneracy of +m and -m orbitals within the axial rotation group,
remain.

As one proceeds inward past the equilibrium bond length of N2, toward the united-
atom limit in which the two Nitrogen nuclei are fused to produce a Silicon nucleus, the
energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according
to the axial rotation group, onefindsthe 1sissq, the 2sissg | the 2p orbitalsare s, and
Pu,the 3sorhita issg, the 3p orhitalsare s, and py, and the 3d orhitalsaresg, pg,
and dg. The following OCD is obtained when one connects the orbitals of the two separated
Nitrogen atoms (properly symmetry adapted) to those of the N, molecule and eventualy to
those of the Silicon atom.
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Thefact that the separated-atom and united-atom limits involve several crossingsin the
OCD can be used to explain barriersin the potential energy curves of such diatomic
molecules which occur at short internuclear distances. It should be noted that the Silicon

atom's 3p orbitals of py symmetry and its 3d orbitals of sg and dg symmetry correlate with

higher energy orbitals of N2 not with the valence orbitals of this molecule, and that the 3s,
antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in particular, its
4p orbital).



Chapter 7
The Most Elementary Molecular Orbital Models Contain Symmetry, Nodal Pattern, and
Approximate Energy Information

I. The LCAO-MO Expansion and the Orbital-Level Schrodinger Equation

In the smplest picture of chemical bonding, the valence molecular orbitalsf; are
constructed as linear combinations of vaence atomic orbitals ¢ maccording to the LCAO-
MO formula

fi=SmCimCm

The core electrons are not explicitly included in such atreatment, although their effects are
felt through an el ectrostatic potential
V that has the following properties:

i. V contains contributions from all of the nuclei in the molecule exerting coulombic
attractions on the electron, as well as coulombic repulsions and exchange interactions
exerted by the other electrons on this electron;

ii. Asaresult of the (assumed) cancellation of attractions from distant nuclel and
repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that
surround these distant nuclei, the effect of V on any particular mo fj depends primarily on
the atomic charges and local bond polarities of the atoms over which f; isdelocalized.

Asaresult of these assumptions, qualitative molecular orbital models can be
developed in which one assumes that each mo f | obeys a one-electron Schrodinger

equation
hfi=gfj.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron
and the potential V mentioned above:

[-h2/2mel<|2+V]fi:qfi.



Expanding the mo f j in the LCAO-MO manner, substituting this expansion into the above
Schrédinger equation, multiplying on the left by ¢*p, and integrating over the coordinates
of the electron generates the following orbital-level eigenvalue problem:

Sm<cnl-R22meN2 + Ve Cim= & Sm<cniCn Cim

If the constituent atomic orbitals{c} have been orthonormalized as discussed earlier in
this chapter, the overlap integrals <cn|c > reduce to dmn.

[1. Determining the Effective Potential V

In the most elementary models of orbital structure, the quantities that explicitly
define the potential V are not computed from first principles asthey arein so-called ab initio
methods (see Section 6). Rather, either experimental data or results of ab initio
calculations are used to determine the parameters in terms of which V is expressed. The
resulting empirical or semi-empirical methods discussed below differ in the sophistication
used to include electron-electron interactions as well asin the manner experimental data or
ab initio computational results are used to specify V.

If experimental datais used to parameterize a semi-empirical model, then the model
should not be extended beyond the level at which it has been parameterized. For example,
experimental bond energies, excitation energies, and ionization energies may be used to
determine molecular orbital energieswhich, in turn, are summed to compute total energies.
In such a parameterization it would be incorrect to subsequently use these mosto form a
wavefunction, asin Sections 3 and 6, that goes beyond the ssmple 'product of orbitals
description. To do so would be inconsistent because the more sophisticated wavefunction
would duplicate what using the experimental data (which already contains mother nature's
electronic correlations) to determine the parameters had accomplished.

Alternatively, if results of ab initio theory at the single-configuration orbital-product
wavefunction level are used to define the parameters of a semi-empirical mode, it would
then be proper to use the semi-empirical orbitalsin a subsequent higher-level treatment of
electronic structure asdone in Section 6.

A. The Hickd Parameterization of V

In the most smplified embodiment of the above orbital-level model, the following
additional approximations are introduced:



1. Thediagonal values <c - 2 /2me N2 + Vic >, which are usually denoted a
are taken to be equal to the energy of an electron in the atomic orbital cyand, as such, are
evauated in terms of atomic ionization energies (IP's) and electron affinities (EA'S):

<cnl-H2meN2+V L = -IP,
for atomic orbitals that are occupied in the atom, and
<cpl-F2meN2+V Enp = -EAm

for atomic orbitals that are not occupied in the atom.
These approximations assume that contributionsin V arising from coulombic
attraction to nuclei other than the one on which ¢y islocated, and repulsions from the core,

lone-pair, and valence electron clouds surrounding these other nuclel cancel to an extent

that
<cnlV | ¢y contains only potentials from the atom on which ¢y, Sits.

It should be noted that the IP's and EA's of valence-state orbitals are not identical
to the experimentally measured IP's and EA's of the corresponding atom, but can be
obtained from such information. For example, the 2p valence-state |P (V SIP) for a Carbon
atom isthe energy difference associated with the hypothetical process

C(1s22s2py2py2p;) ==> C*(1s2252px2py) .
If the energy differences for the "promotion” of C

C(1s22s22py2py) ==> C(152252py2py2p;) ; DEC
and for the promotion of C*

C*(1s22s22py) ==> C*(1s22s2px2py) ; DEC+
are known, the desired VSIP is given by:

IPap = IPc + DEc+ - DEC .



The EA of the 2p orbital is obtained from the
C(1s22s22py2py) ==> C~(1522522px2py2p;)

energy gap, which means that EAzpZ = EAC . Some common |P's of valence 2p orbitalsin
eV areasfollows: C (11.16), N (14.12), N* (28.71), O (17.70), O* (31.42), F* (37.28).

2. The off-diagona elements <c |- h22me N2 + V [c are
taken as zero if ¢y, and ¢, belong to the same atom because the atomic orbitals are

assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to
an electron moving in that atom. They are set equal to a parameter denoted b if cmand
Cn reside on neighboring atoms that are chemically bonded. If cand ¢y, reside on atoms

that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the by parameters is often approximated by
assuming that bmn is proportional to the overlap Sy between the corresponding atomic
orbitals:

bmn = bomn Smn .

Here b°myn isaconstant (having energy units) characteristic of the bonding interaction
betweency, and cp; itsvaueisusualy determined by forcing the molecular orbital
energies obtained from such a qualitative orbital treatment to yield experimentally correct
ionization potentials, bond dissociation energies, or e ectronic transition energies.

The particular approach described thus far forms the basis of the so-called Hiickel
model. Itsimplementation requires knowledge of the atomic amand b0y, values, which
are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of thebmn 's (e.9., some method for computing overlap matrices

Smn )-
B. The Extended Hiickdl Method

It iswell known that bonding and antibonding orbitals are formed when a pair of
atomic orbitals from neighboring atoms interact. The energy splitting between the bonding



and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,
the energy of the antibonding orbital lies higher above the arithmetic mean Ege= Ea + Ep
of the energies of the constituent atomic orbitals (Ea and Eg) than the bonding orbital lies
below Egyve . If overlap isignored, asin conventional Hiickel theory (except in
parameterizing the geometry dependence of bmn), the differential destabilization of
antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elementsin the following
overlap-dependent manner:

hn'm: <Cn|‘h2/2rne NZ +V |Cn'P =05K (hmm+ hn’n) Smn ,

and explicitly treating the overlaps among the constituent atomic orbitals{cn} in solving
the orbital-level Schrodinger equation

Sm<cnl-H2/2meN2 + Vich> Cim= & Sm<cnCn™ Cim

Hoffmann introduced the so-called extended Hiickel method. He found that a value for K=
1.75 gave optimal results when using Slater-type orbitals as abasis (and for calculating the
Smn)- The diagonal hyymelements are given, asin the conventional Hiickel method, in

terms of valence-state IP's and EA's. Cusachs |ater proposed a variant of this
parameterization of the off-diagona €lements:

hn,m= 0.5 K (hmm+* hn,n) Smn (2-|Smn))-

For first- and second-row atoms, the 1sor (2s, 2p) or (3s,3p, 3d) valence-state ionization
energies (ams), the number of valence electrons (#Elec.) aswell asthe orbital exponents
(s, ep and &j) of Slater-type orbitals used to calculate the overlap matrix elements Syn
corresponding are given below.



Atom # Elec. 65=€p & agevV) apev) aqev)

H 1 13 -13.6

Li 1 0.650 -54 -35

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -85

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

O 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0
Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

S 4 1.383 1.383 -17.3 -9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 -7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hiuckel or extended Hiickel methods no explicit reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and

henceinto the amand by parameters of Hiickel theory or the hmmand hyn parameters of
extended Hickel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsionsin various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists alarge family of semi-empirical methods that permit explicit
treatment of electronic interactions, some of the more commonly used approaches are

discussed in Appendix F.




Section 2 Exercises, Problems, and Solutions

Review Exercises:

1. Draw qualitative shapes of the (1) s, (3) p and (5) d "tangent sphere" atomic orbitals
(note that these orbitals represent only the angular portion and do not contain the radial
portion of the hydrogen like atomic wavefunctions) Indicate with + the relative signs of the
wavefunctions and the position(s) (if any) of any nodes.

2. Define the symmetry adapted "core" and "valence” orbitals of the following systems:
i. NH3 in the Czy point group,

ii. H2O in the Cyy point group,

iii. HoOp (cis) in the Cy point group,

iv. N in Dy, D2p, Cpy, and Cs point groups,

V. N2 in Dyn, D2, Coy, and Cs point groups.
3. Plot the radial portions of the 4s, 4p, 4d, and 4f hydrogen like atomic wavefunctions.
4. Plot the radia portions of the 1s, 2s, 2p, 3s, and 3p hydrogen like atomic wavefunctions
for the Si atom using screening concepts for any inner el ectrons.

Exercises:

1. In quantum chemistry it is quite common to use combinations of more familiar and easy-
to-handle "basis functions" to approximate atomic orbitals. Two common types of basis
functions are the Slater type orbitals (STO's) and gaussian type orbitals (GTQO's). STO's
have the normalized form:
o1 1 20

Rz el & n1 dao @

880(/1 2Ny -1 e€ Y1m(q.f),
whereas GTO's have the form:

(-zr?)

Nrle Y1 m(a,f).
Orthogonalize (using Lowdin (symmetric) orthogonalization) the following 1s (core), 2s
(valence), and 3s (Rydberg) STO'sfor the Li atom given:

Lizs z= 2.6906
Lips z= 0.6396

Lizs z= 0.1503.
Express the three resultant orthonormal orbitals as linear combinations of these three
normalized STO's.
2. Calculate the expectation value of r for each of the orthogonalized 1s, 2s, and 3s Li
orbitalsfound in Exercise 1.

3. Draw aplot of theradial probability density (e.g., rZ[Rni(r)]2 with R referring to the
radial portion of the STO) versusr for each of the orthonormal Li sorbitalsfound in
Exercise 1.

Problems:
1. Given the following orbital energies (in hartrees) for the N atom and the coupling

elements between two like atoms (these coupling elements are the Fock matrix el ements
from standard ab-initio minimum-basis SCF cal culations), calcul ate the molecular orbital



energy levels and 1-electron wavefunctions. Draw the orbital correlation diagram for
formation of the N2 molecule. Indicate the symmetry of each atomic and molecular orbital.
Designate each of the molecular orbitals as bonding, non-bonding, or antibonding.

Nis = -15.31*
Nog = -0.86"
NZp = '0.48*

N2 sg Fock matrix”
5 -6.52 N
§-6.22 -7.06 0

€ 361 400 -392u
N2 pg Fock matrix”

[0.28]

N> s, Fock matrix*
. 1.02 N
&.0.60 -7.59 ¥
€ 002 742 -853u
N2 py Fock matrix*
[-0.58]

*The Fock matrices (and orbital energies) were generated using standard STO3G minimum
basis set SCF calculations. The Fock matrices are in the orthogonal basis formed from
these orbitals.

2. Given the following valence orbital energiesfor the C atom and H, molecule draw the
orbital correlation diagram for formation of the CH, molecule (viaa Cyy insertion of Cinto
H> resulting in bent CH»). Designate the symmetry of each atomic and molecular orbital in
both their highest point group symmetry and in that of the reaction path (Cyy).

C1s=-10.91" Hpsq=-0.58"
Cas = -0.60" Hosy=0.67"
Cop = -0.33"

*The orbital energies were generated using standard STO3G minimum basis set SCF
caculations.

3. Using the empirical parameters given below for C and H (taken from Appendix F and
"The HMO Modd and its Applications’ by E. Heillbronner and H. Bock, Wiley-
Interscience, NY, 1976), apply the Hiickel model to ethylene in order to determine the
valence electronic structure of this system. Note that you will be obtaining the 1-electron
energies and wavefunctions by solving the secular equation (as you alwayswill when the
energy is dependent upon a set of linear parameters like the MO coefficientsin the LCAO-
MO approach) using the definitions for the matrix elements found in Appendix F.

Ca =-114¢eV
2pp

Ca_o, =-147¢eV
p

Ha_ = -13.6 eV

c-Cb =126V
2pp-2pp €




C-Cb 2.2 = -50eVv
SPp=-gp

CHb , =-40eV
SP=-S

a. Determine the C=C (2pp) 1-electron molecular orbital energies and
wavefunctions. Calculatethep ® p* transition energy for ethylene within this model.

b. Determine the C-C (sp2) 1-electron molecular orbital energies and
wavefunctions.

c. Determine the C-H (sp2-s) 1-electron molecular orbital energies and
wavefunctions (note that appropriate choice of symmetry will reduce this 8x8 matrix down
to 4 2x2 matrices, that is, you are encouraged to symmetry adapt the atomic orbitals before
starting the Hiickel calculation). Draw a quditative orbital energy diagram using the HMO
energies you have calculated.

4. Using the empirical parameters given below for B and H (taken from Appendix F and
"The HMO Modd and its Applications’ by E. Heillbronner and H. Bock, Wiley-
Interscience, NY, 1976), apply the Hiickel model to borane (BH3) in order to determine the
valence electronic structure of this system.

B a, = -85eVv
pp
Ba_, =-10.7¢eV
Y
H aS =-13.6eV
B-Hb_, =-35eV
Sp4-s

Determine the symmetries of the resultant molecular orbitalsin the D3p, point group. Draw
aqualitative orbital energy diagram using the HM O energies you have calcul ated.

5. Qualitatively analyze the electronic structure (orbital energies and 1-electron
wavefunctions) of PFs. Analyze only the 3s and 3p electrons of P and the one 2p bonding
electron of each F. Proceed with a Dz analysisin the following manner:

a. Symmetry adapt the top and bottom F atomic orbitals.

b. Symmetry adapt the three (trigonal) F atomic orbitals.

c. Symmetry adapt the P 3s and 3p atomic orbitals.

d. Allow these three sets of D3y, orbitalsto interact and draw the resultant orbital
energy diagram. Symmetry label each of these molecular energy levels. Fill this energy
diagram with 10
"valence" electrons.

Solutions

Review Exercises

1.




Ao
A
o

2. i.Inammoniathe only "core" orbital isthe N 1s and this becomes an a; orbital in
Cay symmetry. The N 2s orbitals and 3 H 1s orbitals become 2 a; and an e set of orbitals.
Theremaining N 2p orbitals al'so become 1 &g and a set of e orbitals. The total valence
orbitalsin Cz, symmetry are 3ay and 2e orbitals.

2. ii. In water the only core orbital isthe O 1s and this becomes an & orbital in Cyy,
symmetry. Placing the moleculein the yz plane allows usto further analyze the remaining
valence orhitals as: O 2p; = a1, O 2py asbp, and O 2py asb;. TheH 1s+H 1s
combination isan a; whereasthe H 1s- H 1s combination is a bo.

=2. iii. Placing the oxygens of HoO» in the yz plane (z bisecting the oxygens) and the
(cis) hydrogens distorted dlightly in +x and -x directions alows us to analyze the orbitals as
follows. Thecore O 1s+ O 1scombinationisan aorbital whereasthe O 1s- O 1s
combinationisab orbital. Thevaenceorbitalsare: O2s+02s=3, 02s-02s=b,O
2px + O 2px=b,02px-02px=a,02py+O02py=3 02py-02p =b,02p,+02p,
=b,02p,-02p,=a, H1s+H 1s=4a and finaly theH 1s- H 1s=Dh.

2. iv. For the next two problems we will use the convention of choosing the z axis as
principa axisfor the Dy, D2p, and Coy, point groups and the xy plane as the horizonta
reflection planein Cs symmetry.

Dxh D2h Cov Cs
N 1s Sg ay a a
N 2s Sg ay a a



N 2px Pxu b3y by a

N 2py pyu bay b2 a
N 2pz Sy b1y a a"
2. v. The Nitrogen moleculeisin the yz plane for al point groups except the Csin
which caseit is placed in the xy plane.
Dyn Don Cov Cs
N1ls+N1s sg ay a a
N1s-N1s sy b1y by a
N2s+N2s sg &y a a
N2s-N2s sy b1y by a
N 2px + N 2px Pxu bay b1 a
N 2pyx - N 2px pxg bag & a
N 2py + N 2pypyy boy a a
N 2py - N 2py pyg b3g 07) a
N 2pz + N 2pz sy b1y b a’
N 2pz- N 2pz sg &y a1 a"
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Si 2s
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Exercises

1. Two Slater type orbitals, i and j, centered on the same point results in the following
overlap integrals:



2p

8 Y
A ¥

U 86 . . zird

05RO L1 5 (n-1) €D g
Su—Qgggg'a Ty e Pigmi(ah)

0

0

1 1 g I’g
RzON*t>_ 1 5 (- Q¢
2471 22 Lo (nj-1) By, .
e e e Yij,m;(a.f)

r2sinqdrdgdf .
For these sorbitals| =m=0and Yo,0(q,f) = L . Performing the integrations over q and

Ny

f yields 4p which then cancelswith these Y terms. The integral then reducesto:

¥
I 2(zi+2)r0

o1 Lo 1

Sicfny mMigsay  &2Wig g
¥
_RziNMoe 1 R2 MM 1 o5, () e D gy

"y Mgy d2n)g g
Using integral equation (4) the integral then reducesto:
Rz 5 1 GRZNY e Jith+l
S0y o2 e Srzg
We then substitute in the values for each of these constants:
fori=1; n=1, I=m=0, and z= 2.6906
fori=2; n=2, I=m=0, and z= 0.6396

for i=3; n=3, I=m=0, and z= 0.1503.
Evaluating each of these matrix elements we obtain:
Si1 = (12.482992)(0.707107)(12.482992)
(0.707107)(2.000000)(0.006417)
= 1.000000
Sp1=S12=(1.850743)(0.204124)(12.482992)
(0.707107)(6.000000)(0.008131)
0.162673
(1.850743)(0.204124)(1.850743)
(0.204124)(24.000000)(0.291950)
1.000000

Sij =

1
1 =
%gz(ni+nj) !

S22



Sa1=S13= (0.014892)(0.037268)(12.482992)
(0.707107)(24.000000)(0.005404)
= 0.000635
Sap=Sy3= (0.014892)(0.037268)(1.850743)
(0.204124)(120.000000)(4.116872)
0.103582

S33 (0.014892)(0.037268)(0.014892)
(0.037268)(720.000000)(4508.968136)
= 1.000000
»1.000000 N
€ U
s = ©o0162673 1.000000 E
€ 0.000635 0.103582 1.000000 U
We now solve the matrix eigenvalue problem SU =1 U.
The eigenvalues, | , of this overlap matrix are:
[ 0.807436 0.999424  1.193139 ] ,
and the corresponding eigenvectors, U, are:
é 0.596540 -0.537104 -0.596372 l:l
2-0.707634 10.001394 -0.706578 3
€ 0378675 0843515 -0.380005 U
1
Thel 2 matrix becomes:
» 1112874 0.000000 0.000000 -
1 & U
| 2 = g0.000000 1.000288 0.000000 H
€ 0000000 0000000 0915492 U

1
Back transforming into the original eigenbasisgivesS 2, e.g.

1 2
S2 =yl 2UT
, 1.010194

1

S?2= g -0.083258 1.014330

o el e anrz

€ 0006170 -0.052991 1.004129
The old ap matrix can be written as;
e 1.000000 0.000000  0.000000

b ey -

C= g 0.000000 1.000000 0.000000

€ 0000000 0.000000 1.000000 U
The new a0 matrix (which now gives each ao asalinear combination of the original aos)
then becomes:



- 1010194 -0.083258 0.006170
1 & y

c=s2cC= g -0.083258 1.014330 -0.052991 H

€ 0006170 -0.052991 1.004129 U

These new aos have been constructed to meet the orthonormalization requirement CTSC' =
1 since:
el or 1 1 1
852 Cg SS?2C=CTs?2ss?2cCc=Clc=1.
But, it isalways good to check our result and indeed:
é 1.000000 0.000000 0.000000

ey .

C'TsC' = g 0.000000 1.000000  0.000000

€ 0.000000 0.000000 1.000000 U
2. The least time consuming route hereis to evaluate each of the needed integralsfirst.

These are evauated analogous to exercise 1, letting ¢; denote each of the individua Sater
Type Orbitals.
¥

8ci r cjr2dr = <r>jj
0
¥
a2z 0N +> 2Rz, ONj+= 10 etz
_%zi% o 1 _%2i%0 e 1 _tog (injr) £ O gy
S0y Mgy &2)g g
Once again using integral equation (4) the integral reducesto:

- 1 .1 1
G += =507 0Ni+= = i+Ni+2
= ?ﬁg‘l 2?31—.|02§2le] 2?91—.,02(ni+nj+1) ! 2% En' ) .
g &2n)gdng &2M)g +Zig
Again, upon substituting in the values for each of these constants, evaluation of these
expectation values yields:
<r>11 = (12.482992)(0.707107)(12.482992)

(0.707107)(6.000000)(0.001193)
0.557496

<I>p1 =<r>1p = 1.850743)(0.204124)(12.482992)
(

(0.707107)(24.000000)(0.002441)
= 0195391

<> = (1.850743)(0.204124)(1.850743)
(0.204124)(120.000000)(0.228228)
= 3.908693
<r>;=<r>13=  (0.014892)(0.037268)(12.482992)
(0.707107)(120.000000)(0.001902)
= 0001118
(0.014892)(0.037268)(1.850743)
(0.204124)(720.000000)(5.211889)

<r>32 = <r>23



= 0.786798

<r>a3 = (0.014892)(0.037268)(0.014892)
(0.037268)(5040.000000)(14999.893999)
= 23.286760
y , 0.557496 .
e U
8c, r c;r2dr = <r>jj = € 0195301 3.908603 u
0 & Y
€ 0.001118 0786798 23.286760 U

Using these integrals one then proceeds to eval uate the expectation values of each of the
orthogonalized aos, c' n, 8.

¥
, 3 3
gc',rc'r2dr =8 & C'hCp<ryjj.
0 =1 j=1
Thisresults in the following expectation values (in atomic units):
¥
§c' g T C'y2dr = 0.563240 bohr
0
¥
8¢’ o I C'oar2dr =3.973199 bohr
0
¥
§C' 5 I C'ag?dr = 23.406622 bohr
0

3. Theradia density for each orthogonalized orbital, ¢’ ,, assuming integrations over q and
f have already been performed can be written as:

¥ ¥
. 3 3 .
gc'c'yrldr = & & C'nC'nBRiRjradr, where Rj and Rj aretheradial portions
0 i=1 j=1 0

of theindividual Slater Type Orbitals, e.g.,

oo o1 1 o o1 mg
RN 1 22Nl & i) o o
f0g 2Mgeny &20)g
Thergforega plot of the radia probability for a given orthogonalized atomic orbital, n, will
be:d & C'niC'njRiRjr2 vs.r.
i=1 j=1

R le‘z =

Plot of the orthogonalized 1s orbital probability density vsr; note there are no nodes.
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Plot of the orthogonalized 2s orbital probability density vsr; note there is one node.

0.3

2s probability density

(0] 2 4 6 8 10
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Plot of the orthogonalized 3s orbital probability density vsr; note there are two nodesin the
0-5 bohr region but they are not distinguishable as such. A duplicate plot with this nodal
region expanded follows.
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The above diagram indicates how the SALC-AOs are formed from the 1s,2s, and 2p N

atomic orbitals. It can be seen that there are 3s g, 3sy, 1pux, 1Puy, 1Pgx. ahd 1pgy SALC-
AOs. The Hamiltonian matrices (Fock matrices) are given. Each of these can be
diagonalized to give the following MO energies:

3sg; -15.52, -1.45, and -0.54 (hartrees)
3sy; -15.52, -0.72, and 1.13
1pyx; -0.58
1pyy; -0.58
1pgx; 0.28
1pgy; 0.28
It can be seen that the 3s 4 orbitals are bonding, the 3s, orbitals are antibonding, the 1pyx

and 1pyy orbitals are bonding, and the 1pgx and 1pgy orbitals are antibonding. The
eigenvectors one obtains are in the orthogonal basis and therefore pretty meaningless.

Back transformation into the original basiswill generate the expected results for the 1e
M Os (expected combinations of SALC-AQs).
2. Using these approximate energies we can draw the following MO diagram:
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ThisMO diagram is not an orbital correlation diagram but can be used to help generate one.
The energy levels on each side (C and Hy) can be "superimposed" to generate the left side
of the orbital correlation diagram and the center CH> levels can be used to form the right
side. Ignoring the core levels this generates the following orbital correlation diagram.

Orbital-correlation diagram for thereaction C + H, ----- > CH,, (bent)
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e

Using Do, symmetry and Iabellng the orbitals (f1-f 12) as shown above proceed by using
the orbitals to define a reducibl e representation.which may be subsequently reduced to its
irreducible components. Use projectorsto find the SALC-AQOs for these irreps.
3. a. The 2P orbitals on each carbon form the following reducible representation:
Don E C(2) Cay) Co(x) i s(xy) s(xz) s(yz)
Gp2 2 0 000 2 -2
The number of irreducible representations may be found by using the following formula:

1 (o]
Nirrep = ga Cred(R)Cirrep(R) )

R
where g = the order of the point group (8 for Dop).

N = 28l GonRIAG(R)
R
= % {M)+2M)+HO)(D)+HO)(D+
N O@O)+O)M)+)(D)+(-2)(1)} =0

Similarly,

NB1g = 0

NBpg = 1

NB3g = 0

na,=0

ngy, =0

Ny, =0

Nz, =1
Projectors using the formula:



o)
Pirrep= a Cirrep(R)R ,

R
may be used to find the SALC-AOs for these irreducible representations.

[}

R
PBog f1= (DEf1 + (-1)C2(2) f1 + (1)Ca(y) f1 + (-1)Ca(x) f1 +

(Dify + (-1)s(xy) f1 + (D)s(x2) f1 + (-1)s(y2) f1

=) f1+ (-1 -f1+ (D -fa+ (-1) fo+
(D) f2+(-1) fo+ (1) f1 + (-1) -f1

=f1+f1-fo-fo-fo-fo+f1+f1

= 4f1 - 4f>

Normalization of this SALC-AO (and representing the SALC-AOswith f) yields:

BN(f1 - foN(fg - fo)dt =1

NZBifafidt - Bfsfot - Bfxfidt + éfzfzdtg =1

N2(1 +1) =1
2N2=1

N =

V2
1
fabpg = \/_—Z(fl -f2) .

The B3y SALC-AO may befound in asimilar fashion:
Peg, f1=(2) f1 + (-1) -f1 + (-1) -f2 + (1) f2 +
(-1)-fa+ (@) f2+ (1) f1+(-1)-F1
=f1+fr+fo+fo+fo+fo+fi+1fq
= 4fq + 4fo
Normalization of this SALC-AQ yields.

1
f1bg, = \/_—Z(fl +f2) .
Since there are only two SALC-AOs and both are of different symmetry types these SALC-
AOs are MOs and the 2x2 Hamiltonian matrix reduces to 2 1x1 matrices.
4 1 1
H = 0=(fy - fo)H-=(f1 - fo)dt
1bpg1b2g = & \/—2( 1-f2) \/—2( 1-f2)

8

1 . .
:Egélefldt - 28f1Hfadt + BfHfxdt )

1 .
=5 - 2b + a
28 20p 2pp-2pp 2pp 8

~3omp b2pp-2pp
=-11.4-(-1.2) =-10.2

1 Lty + fo)t



=5Bi1Hf 1ot + 26f1Hfxdt + BfaHf oS

1 .
=5 + +
28 2pp 2 b2pp-2pp 22003

“820p * Papp-20p
=-11.4+(-1.2)=-12.6
Thisresultsinap -> p* splitting of 2.4 eV.

3. b. The sp? orbitals forming the C-C bond generate the following reducible
representation:
Don E C(2) Caly) Cax) i s(xy) s(xz) s(y2)
G2 2 2 0 000 2 2
This reducible representation reduces to 1Ag and 1B1y
irreducibl e representations.
Projectors are used to find the SALC-AOs for these irreducible representations.
Pag fa= (DEf3+ (1)C2(2) f3 + (1)Ca(y) f3 + (1)Ca(x) f3 +
(Di f3+ (Ds(xy) f3 + (1)s(x2) f3 + (1)s(yz) f3
=) fa+ (D) fa+ (1) fa+ (1) fa+
(D fa+ (1) fa+(1)f3+(1)f3
=Af3 + 4fy
Normalization of this SALC-AQ yields:

1
f1a,=—=(f3+fs) .
lag \/—2( 3tfy)
The By SALC-AO may be found in asimilar fashion:
Py, f3= (1) fa+ (1) fa+ (-1) fa+ (-1)fa+
(Dfa+(-1)fa+ (D) f3+(D)f3
= 4f3 - 4fy
Normalization of this SALC-AQ yields:
f 10gy = -=(fa - f4)
3u \/—2 '
Again since there are only two SALC-AOs and both are of different symmetry types these
SALC-AOs are MOs and the 2x2 Hamiltonian matrix reducesto 2 1x1 matrices.
5 1 1
H =0 =(f3 + fa)H-=(f3 + f4)dt
lag,1ag = & \/—2( 3+ fg) \/—2( 3+ fa)
= 2BfaHisdt + 28f3Hdt + B1sHTsct0

=1§. 2o+ 2b_ o> -+ a 28
22" sp SpA-sp sp
=ag2 tbop
=-14.7 + (-5.0) = -19.7
-1 1
Hibyybgy = 8\/——20‘3 - f4)H\/——2(f3 - f4)at

= 3BfaHfadt - 26faHTadt + BfaH4tC



1 3y

=22 2bgp oo A of

=ag2 "bep 0

=-14.7- (-5.0) =-9.7
3. c. The C sp2 orbitals and the H s orbitals forming the C-H bonds generate the
following reducible representation:

Don  E Cx(2) Cay) Cax) i s(xy) s(x2) s(yz)
28 0 0 00O 0 8

This reducible representation reduces to 2Ag, 2B 34, 2B 1y and 2By
irreducible representations.
Projectors are used to find the SALC-AOs for these irreducible representations.
Pagfe = (DEfs + (1)C2(2) fe + (1)Ca(y) f6 + (1)C2(x) f6 +
()i fe + (1)s(xy) fe + (1)s(x2) f6 + (1)s(y2) fe
=D fe+ (1) fs+ (D) f7+(1)fa+
D fs+ (1) f7+ (1) fs+(1)fe
= 2fg + 2fg + 2f7 + 2fg
Normalization yields: fzag = %(f5 +fg+fz+1fg) .
Pag f10 = (DE f10 + (1)C2(2) f10 + (1)Ca(y) f10 + (DC2(x) f10 +
()i f10 + (1)s(xy) f10 + (1)s(x2) f10 + (1)s(y2) f10
=(2) fr0+ (1) fo+ (1) f11 + () a2 +
(1) f12+ (1) f11 + (1) fo + (1) f10
=2fg+ 2f10 + 2f11 + 212
Normalization yields: f 3y = 5(fo + f10+ f11+f12) .

Peagfe= (1) fe+ (-1) fs + (-1) f7+ (1) fg +
(Dfg+(-D)f7+(-1)fs+ (1) fe
=-2fg + 2fg - 2f7 + 2fg
Normalizetion yields: f 1bg, = A5+ - f7+g) .

Peagf10=(1) fio+ (-1) fo + (-1) far + (1) f12 +
(1) fi2 + (-1) f11 + (-1) fo + (1) f10
=-2fg+ 2f10- 2f11 + 212
Normalization yields: f abgy = 5(-fo + f10- f11 +f12) -

Pey, f6 = (1) fe + (1) f5 + (-1) f7 + (-1) fg +
(-Dfs+(-1) f7+ (1) f5+(2)fe
= 2fg + 2fg - 2f7 - 2fg
Normalizationyields: fop,, = %(f5 +fg-f7-1g) .

Py, f10=(2) fio+ (1) fo + (-1) f11 + (-1) fa2 +
(-1) f12 + (-1) f11 + (1) fo + (1) f10
=2fg + 2f10 - 2f11 - 2f12
Normalization yields: f 3oy, = 5(fo + f10- f11 - f12) -

Peoyfe= (1) fe+ (-1) fs+ (1) f7+ (-1) fg +
(Dfg+ (D) f7+(-Dfs+(Dfe



= -2fg + 2fg + 2f7 - 2fg
Normalizationyields: f 1p,, = %(-f5 +fg+f7-fg) .

Py, f10=(2) faio + (-1) fo + (1) f11 + (-1) f12 +
(-1) f12+ (1) f12 + (-1) fo + (1) f10
=-2fg+ 2f10 + 2f11 - 2f12

Normalizationyields: f 2, = %(-fg +fi0+f11-112) .

Each of these four 2x2 symmetry blocks generate identical Hamiltonian matrices. Thiswill
be demonstrated for the B3g symmetry, the others proceed analogously:

51 1
Hibggibsg = g5(-fs + f6 - f7 + feH5(fs + fg - f7 + fo)dt
=2 { BfcHfsdt - BfsHfect +BfcHfat - BfsHrec -
BfgHfsdt + BfgHfgdt - BfgHf7dt + BfgHfgdt +
Bf/Hfsdt - 8f/Hfgdt + Bf/Hf7dt - Bf/Hfgdt -
BfgHfsat + BfgHfedt - BfgHfzdt + BfgHfgalt }
1
== -0+0-0-
4{aSIDZ 0+0-0
O+a_,-0+0+
S
0-0+ag, -0-

0+0-0+a -a

51 1
Hibgg2bag = 85(-f5 + f6 - f7+ fe)Hx(-fg + f10- f11 + fro)c
= %1{ éf5Hf9dt - éf5Hf10dt + éf5Hf11dt - éf5Hf12dt -
BfgHfgdt + BfgHf1gdt - BfgHf1q0t + BfgHf1odt +
Bf/Hfgdt - Bf7Hf1odt + Bf7Hfq1dt - Bf7Hf o0t -
BfgHfodt + BfgHf1odt - BfgHfysdt + BfgHfiodt }
1
‘Z{bspZ-s -0+0-0-
O+b_, -0+0+
p-s

0-0+b_, -0-
p4-s
0+0-0+ bspz_s} =b s

51 1
H2034,2b34 = 82(-1‘9 + f10- f11 + f1)H5(Ho + f10 - f11 + fro)dt



2%1{ éngfgdt - éngf]_odt + éngflldt - éngflzdt -
éflongdt +éf10Hf10dt -éflonlldt +éf10Hf12dt +
éfj_]_Hfgdt -éfllelodt +éf11Hf11dt -éfllej_Zdt -

éflefgdt + éfleflodt - éfleflldt + éfleflzdt }
_1
=7{a_-0+0-0-
0+ a - 0+0+
0-0+a_-0-
S
0+0-0+a_} =a_
This matrix eigenval ue problem then becomes:
foe2 e b2 s }
.. . =0
| byps 8- |
[ -147-e <40
.I. .I. - O

i -4.0 -136-e 1
Solving thisyields eigenval ues of :
| -18.19 -10.11 |

and corresponding eigenvectors:
i -0.7537 -0.6572 j
i i
i -0.6572 0.7537 i
Thisresultsin an orbital energy diagram:



-9.70 C-C (antibonding)

-10.12 . C-H (antibonding)
-10.20 — %

P
-12.60 —
-18.19 . C-H (bonding)
-19.70 — C-C (bonding)

For the ground state of ethylene you would fill the bottom 3 levels (the C-C, C-H, and p
bonding orbitals), with 12 electrons.

4,

1
Using the hybrid atomic orbitals as |abeled above (functions f1-f7) and the D3, point group
symmetry it is easiest to construct three sets of reducible representations:
i. the B 2p; orbital (labeled function 1)

ii. the 3 B sp2 hybrids (labeled functions 2 - 4)
iii. the 3 H 1sorbitals (labeled functions 5 - 7).
i. The B 2p; orbital generates the following irreducible representation:

D3n  E 2C3 3C2 sp 2S3 3sy
Gp, 1 1 -1 -1-11
Thisirreducible representation is A" and isitsown SALC-AOQ.



ii. The B sp? orbitals generate the following reducible representation:
D3y E 2C3 3Co sp 253 3sy
> 30 1 3 0 1

This reducible representation reducesto 1A' and 1E'
irreducible representations.
Projectors are used to find the SALC-AOs for these irreducible representations.
Define:C3 = 120 degree rotation, C3' = 240 degree rotation,
Co =rotation around f4, C2' = rotation around f», and
Co =rotation around f3. Sz and Sg' are defined analogous
to C3z and C3' with accompanying horizonta reflection.

sy = areflection plane through 4, s' = areflection plane
through fo, and s\" = areflection plane through f3

Pag fo= (DEf2+ (DC3zfr+ (1)C3' f2 +
(DCafa+ (DC2 f2+ (C2" fo+
(Dsnf2+ (1)S3f2+(1)S3 f2
(Dsyfo+(D)sy' f2+(Dsy" f2

= (Df2+ (Dfz+ (Dfg +
(Dfs+ (D2 + (Dfa +
(Df2+ (Dfs+ (Dfs+
(Dfz + (Df2 + (D)sfa
= Afo + Af 3 + 4fy
Normalization yields: f 1" = v—lé(fz Fi3+fy) .

Pg fo= (QEfy+ (-1)C3fo+ (-1)C3' fo +
(0)Caf2+ (0)C2 f2 + (0)C2" f2o +
(Dshf2+(-1)Szf2+(-1)S3" f2
(Q)sy f2+ (0)sy' f2 + (0)sy" 2

= (f2+ (-Dfz+ (-Dfa +
(Af2+ (-Dfz+ (-Dfg +
= 4f5 - 2f3- 2f4

_— . 1

Normalizationyidds. f1g = —=(2f2-f3-14) .
y 1€ \/6( 2-f3-1y)

To find the second €' (orthogonal to the first), projection on f3 yields (2f3 - f2 - f4) and
projection on f4 yields (2f4 - f2 - f3). Neither of these functions are orthogonal to the first,
but a combination of thetwo (2f3 - f2 - f4) - (2f4 - f2 - f3) yields afunction which is
orthogonal to thefirst.

Normalization yields: f2e-=\/—1_2(f3-f4) .

iii. The H 1sorbitals generate the following reducible representation:
D3n E 2C3 3Cy sp 2S3 3sy
2 30 1 3 0 1

This reducible representation reducesto 1A' and 1E'
irreducible representations.exactly like part ii. and in addition the projectors used to find the
SALC-AOsfor theseirreducible representations.is exactly analogous to part ii.



1
foy' = \/_é(fS +fg+17)

1
—(2f5-fg-17) .

fae=
3¢e \/_6
1
fae=—(fg-7) .
4¢ \/—2(6 7)

So, there are 1A5", 2A 1" and 2E' orbitals. Solving the Hamiltonian matrix for each
symmetry block yields:

A>" Block:

Hiay 1ap = élefldt

=a =-85
2pp
A1 Block:

iag tay = §=lfo + 3+ TaH (2 + 15 + f4a
=5{BfaHfadt +BfoHfadt +BfoHfact +
BfsHfodt + BfgHfadt + BfgHfdt +
Bf4Hf o0t + BfqHfadt +Bf4Hf4dt }
:%{a$2+0+0+
O+a_p +0+
O+0+asp2} :aspz
Haay 2oy = §(f2 + T3 + TH(ls + o + Tt

NE
= %{ éfZHdet + észfedt + észf7dt +

BfsHfsdt + BfsHfedt + BfsHfdt +
BfsHfsot + BfgHfedt + Bf4HT7dt }

_1
—§{bsp2_s+0+0+
O+b 2 +0+
p4-s
0+0+ bspz_s} :bspZ-s
H =0t + g+ fr)H-(fs + g + fp)t
2a1-,2a1-—6\/_§(5 6+ f7) \/_3(5 6+ f7)
:%{Q%Hkﬂ + BfsHfgdt + BfsHf7dt +

BfgHfsdt + BfgHfedt + BfgHf7dt +



Bf/Hfsdt +BfHfedt + Bf7Hf7dt }
:%{aS +0+0+
0+ as +0+

0+0+ as} =ag
This matrix eigenval ue problem then becomes:

:|: ag2- e bspz_s 1

. . =0

| bopy .- e 1

i -10.7 - e -35

i -35 -136-e 1
Solving thisyields eigenvalues of :

| -15.94 -8.36 |

and corresponding eigenvectors:
i -0.5555 -0.8315 j
: :
i -0.8315 0.5555 i

E' Block:
This 4x4 symmetry block factors to two 2x2 blocks: where one 2x2 block includes the
SALC-AOs

fe':

1
—(2f>-f3-f
\/E;( 2-f3-fg)

1
fe=—(2f5-fg-f7),
e \/6( 5-fe-7)
and the other includes the SALC-AOs

V—lz(fs -14)
(fe-f7) .

1
V2

Both of these 2x2 matrices areidentical to the A1’ 2x2 array and therefore yield identical

energies and MO coefficients.

Thisresultsin an orbital energy diagram:

fe':

fe':



-8.36 a;',e'

-8.5

-15.94 a,'e'

For the ground state of BHz you would fill the bottom level (B-H bonding), a1' and €'
orbitals, with 6 electrons.

5.

5. a Thetwo F p orbitals (top and bottom) generate the following reducible
representation:

D3n E 2C3 3C2 sp 2S3 3sy
2 2 0 0 0 2

This reducible representation reducesto 1A1" and 1A "'
irreducibl e representations.
Projectors may be used to find the SALC-AQOs for these irreducible representations.

1
fag = —2(f1 -f2)

T
foor =—(f1 +f
a ‘\/E( 1 2)
5. b. The threetrigona F p orbitals generate the following reducible representation:
D3n  E 2C3 3C2 sp 2S3 3sy

30 1 3 0 1

This reducible representation reducesto 1A1' and 1E'
irreducible representations.



Projectors may be used to find the SALC-AOs for these irreducibl e representations (but
they are exactly analogous to the previous few problems):

1
fo = \/—é(fs +f4+f5)

1
foe=—(2f3-fg-f
e \/6( 3-f4-15)

1
fe=—(fs-f1s5).

5. c. The 3 P sp? orbitals generate the following reducible representation:
D3y E 2C3 3Co sp 2S3 3sy
2 30 1 3 0 1

This reducible representation reducesto 1A' and 1E'
irreducible representations. Again, projectors may be used to find the SALC-AOs for these
irreducible representations.(but again they are exactly analogous to the previous few
problems):
1
fa=—=(fe+tf7+f
a \/é( 6+ f7+fg)

1
fe= —6(2f6 -f7-1g)

NG
fo=—=(f7-fo)
(S} \/—2 .
The leftover P p; orbital generate the following irreducible representation:
D3y E 2C3 3Co sp 2S3 3sy
, 111111
Thisirreducible representationisan A"’

f o = fo.
Drawing an energy level diagram using these SALC-AOswould result in the following:
& 1*



Section 3 Electronic Configurations, Term Symbols, and
States

Introductory Remar ks- The Orbital, Configuration, and State Pictures of Electronic
Structure

One of the goals of quantum chemistry isto allow practicing chemists to use
knowl edge of the electronic states of fragments (atoms, radicals, ions, or molecules) to
predict and understand the behavior (i.e., electronic energy levels, geometries, and
reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were
introduced to connect the orbitals of the fragments along a 'reaction path’ leading to the
orbitals of the products. In this Section, analogous connections are made among the
fragment and product electronic states, again labeled by appropriate symmetries. To realize
such connections, one must first write down N-electron wavefunctions that possess the
appropriate symmetry; this task requires combining symmetries of the occupied orbitals to
obtain the symmetries of the resulting states.

Chapter 8

Electrons are Placed into Orbitals to Form Configurations, Each of Which Can be Labeled
by its Symmetry. The Configurations May "Interact” Strongly if They Have Smilar
Energies.

I. Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons
Must Be Specified

Knowing the orbitals of a particular species provides one information about the
sizes, shapes, directions, symmetries, and energies of those regions of space that are
available to the electrons (i.e., the complete set of orbitals that are available). This
knowledge does not determine into which orbital s the electrons are placed. It is by
describing the electronic configurations (i.e., orbital occupancies such as 1s22s22p2 or
1s22522p13sl) appropriate to the energy range under study that one focuses on how the
electrons occupy the orbitals. Moreover, a given configuration may give rise to several
energy levels whose energies differ by chemically important amounts. for example, the
1s22s522p2 configuration of the Carbon atom produces nine degenerate 3P states, five
degenerate 1D states, and asingle 1S state. These three energy levels differ in energy by
1.5eV and 1.2 eV, respectively.



[1. Even N-Electron Configurations Are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure
(e.g., 1s22s22p? for the Oxygen atom) do not provide fully correct or highly accurate
representations of the respective el ectronic wavefunctions. Aswill be shown in this
Section and in more detail in Section 6, the picture of N electrons occupying orbitals to
form aconfiguration is based on a so-called "mean field" description of the coulomb
interactions among electrons. In such models, an electron at r is viewed as interacting with
an "averaged" charge density arising from the N-1 remaining electrons:

Vimean fied = 81 _4(r") €2/f-r'| dr’ .

Herer ') represents the probability density for finding electronsat r', and e2/[r-r'| is

n-1(
the mutual coulomb repulsion between electron density at r and r'. Analogous mean-field
models arise in many areas of chemistry and physics, including electrolyte theory (e.g., the
Debye-Huickel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer
cluster expansion is used to improve the ideal-gas mean field model), and chemical
dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one
attempts to build afully correct theory by effecting systematic corrections (e.g., using
perturbation theory) to the mean-field model. The ultimate value of any particular mean-
field model isrelated to its accuracy in describing experimental phenomena. If predictions
of the mean-field model are far from the experimental observations, then higher-order
corrections (which are usually difficult to implement) must be employed to improve its
predictions. In such a case, oneis motivated to search for a better model to use as a starting
point so that lower-order perturbative (or other) corrections can be used to achieve chemical
accuracy (e.g., = 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1s22s22p#
description of the Oxygen atom) forms the mean-field starting point; the configuration
interaction (CI) or perturbation theory techniques are then used to systematically improve
thislevel of description.

The single-configuration mean-field theories of electronic structure neglect
correlations among the electrons. That is, in expressing the interaction of an electron at r



with the N-1 other electrons, they use a probability density r N_1(r ") that isindependent of

the fact that another electronresidesat r. In fact, the so-called conditional probability
density for finding one of N-1 electronsat r', given that an electronisat r certainly
dependsonr. Asaresult, the mean-field coulomb potential felt by a 2py orbital's electron
inthe 1522522px2py single-configuration description of the Carbon atomis:

Vimean fidd = 28 [1(r )R €/fr-r'| dr’
+2812(r )R e/f-r'| dr’

+82p,(r)P /r-r'| dr' .

In this example, the density r ") isthe sum of the charge densities of the orbitals

N-1("
occupied by the five other electrons
2|1s(r")2 + 2 25(r ") + [2py(r )2, and is not dependent on the fact that an electron

residesatr.

[Il. Mean-Field Models

The Mean-Field Modédl, Which Forms the Basis of Chemists' Pictures of Electronic
Sructure of Molecules, Is Not Very Accurate

The magnitude and "shape” of such amean-field potential is shown below for the
Beryllium atom. In thisfigure, the nucleusis at the origin, and one electron is placed at a
distance from the nucleus equal to the maximum of the 1s orbital's radial probability
density (near 0.13 A). Theradial coordinate of the second is plotted as the abscissa; this
second electron is arbitrarily constrained to lie on the line connecting the nucleus and the
first electron (along this direction, the inter-electronic interactions are largest). On the
ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field

potential é|1s(r')|2 e/r-r'| dr' , and (ii) the so-called Fluctuation potential (F), whichis
the true coulombic e2/[r-r' | interaction potential minus the SCF potential .
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Asafunction of the inter-electron distance, the fluctuation potential decaysto zero
more rapidly than does the SCF potential. For this reason, approachesin which F is treated
as a perturbation and corrections to the mean-field picture are computed perturbatively
might be expected to be rapidly convergent (whenever perturbations describing long-range

interactions arise, convergence of perturbation theory is expected to be slow or not

successful). However, the magnitude of F is quite large and remains so over an appreciable
range of inter-electron distances.
The resultant corrections to the SCF picture are therefore quite large when measured
in kcal/mole. For example, the differences DE between the true (state-of-the-art quantum
chemical calculation) energies of interaction among the four electronsin Be and the SCF
mean-field estimates of these interactions are given in the table shown below in eV (recall
that 1 eV = 23.06 kcal/mole).

Orb. Pair

1salsb

1sa?sa

1sa2sb

1sh2sa

1sb2sb

2sa2sb

DEineV

1.126

0.022

0.058

0.058

0.022

1.234

To provide further insight why the SCF mean-field model in electronic structure
theory is of limited accuracy, it can be noted that the average value of the kinetic energy
plus the attraction to the Be nucleus plus the SCF interaction potentia for one of the 2s
orbitals of Be with the three remaining electrons in the 1s22s2 configuration is:

< 29 -h22me N2 - 4€2/r + Vscop 25> = -15.4 €V;




the anal ogous quantity for the 2p orbital in the 1522s2p configuration is:
< 2p| -h212me N2 - 4€2ir + V'scF [2p> = -12.28 €V

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The
SCF average coulomb interaction between the two 2s orbitals of 1s22s? Beis:

BJ2s(r) |2s(r )R e2/r-r'| dr dr' =5.95¢eV.

This data clearly shows that corrections to the SCF model (see the above table)
represent significant fractions of the inter-electron interaction energies (e.g., 1.234 eV
compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the inter-
electron interaction energies, in turn, constitute significant fractions of the total energy of
each orbital (e.g., 5.95-1.234 eV = 4.72 €V out of -15.4 eV for a 2s orbital of Be).

Thetask of describing the electronic states of atoms and molecules from first
principles and in achemically accurate manner (£ 1 kcal/mole) is clearly quite formidable.
The orbital picture and its accompanying SCF potential take care of "most” of the
interactions among the N electrons (which interact vialong-range coulomb forces and
whose dynamics requires the application of quantum physics and permutational symmetry).
However, the residual fluctuation potential, although of shorter range than the bare
coulomb potential, islarge enough to cause significant corrections to the mean-field picture.
This, in turn, necessitates the use of more sophisticated and computationally taxing
techniques (e.g., high order perturbation theory or large variational expansion spaces) to
reach the desired chemical accuracy.

Mean-field models are obvioudly approximations whose accuracy must be
determined so scientists can know to what degree they can be "trusted". For electronic
structures of atoms and molecules, they require quite substantia corrections to bring them
into line with experimental fact. Electrons in atoms and molecules undergo dynamical
motions in which their coulomb repulsions cause them to "avoid” one another at every
instant of time, not only in the average-repulsion manner that the mean-field models
embody. The inclusion of instantaneous spatial correlations among electronsis necessary to
achieve amore accurate description of atomic and molecular electronic structure.

IV. Configuration Interaction (Cl) Describes the Correct Electronic States



The most commonly employed tool for introducing such spatia correlations into
electronic wavefunctions is called configuration interaction (Cl); this approach is described
briefly later in this Section and in considerable detail in Section 6.

Briefly, one employs the (in principle, complete as shown by P. O. Loéwdin, Rev.
Mod. Phys. 32, 328 (1960)) set of N-electron configurationsthat (i) can be formed by
placing the N electrons into orbitals of the atom or molecule under study, and that (ii)
possess the spatial, spin, and angular momentum symmetry of the electronic state of
interest. This set of functionsisthen used, in alinear variationa function, to achieve, via
the CI technique, a more accurate and dynamically correct description of the electronic
structure of that state. For example, to describe the ground 1S state of the Be atom, the
1s22s2 configuration (which yields the mean-field description) is augmented by including
other configurations such as 1s23s2 , 1s22p2, 1s23p2, 1522s3s, 352252, 2p22s? , etc., all
of which have overall 1S spin and angular momentum symmetry. The excited 1S states are
also combinations of all such configurations. Of course, the ground-state wavefunction is
dominated by the |1s22s?| and excited states contain dominant contributions from |1s?2s3s|,
etc. configurations. The resultant Cl wavefunctions are formed as shown in Section 6 as
linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to
consider what are found to be the two most important such configurations for the ground
1S state of the Be atom:

Y @Cq [1s%25?] - Cy [|1522py?| +]1522py2?| +172pA ).
As proven in Chapter 13.111, this two-configuration description of Be's electronic structure

is equivalent to a description is which two electrons reside in the 1s orbital (with opposite,
a and b spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly,

polarized orbitals) in amanner that instantaneously correlates their motions:

Y @L/6 Cy |1sX{[(2s-a2py)a (2s+a2px)b - (2s-a2px)b(2s+a2py)a]
+[(2s-a2py)a(2s+a2py)b - (2s-a2py)b(2s+a2py)a]

+[(2s-a2pz)a(2st+a2py)b - (2s-a2pz)b(2s+a2pz)al}],



where a=4/3C,/C; . The so-called polarized orbital pairs

(2s = a2pyy, or z) areformed by mixing into the 2s orbital an amount of the 2py v, or 2
orbital, with the mixing amplitude determined by theratio of C, to C1 . Aswill be detailed
in Section 6, thisratio is proportional to the magnitude of the coupling <|1s22s2
|H|1s22p2| > between the two configurations and inversely proportional to the energy
difference [<|1s22s2|H|1s22s2> - <|1s22p?|H|1s22p2|>] for these configurations. So, in
genera, configurations that have similar energies (Hamiltonian expectation values) and
couple strongly give rise to strongly mixed polarized orbital pairs. The result of forming
such polarized orbital pairs are described pictorially below.

/? 2s - a 2p,
: : : : \ 25+ 2 2p,
2s and 2p,

Polarized Orbital 2s and 2p , Pairs

In each of the three equivalent termsin this wavefunction, one of the valence
electrons movesin a 2s+a2p orhital polarized in one direction while the other valence
electron movesin the 2s-a2p orbital polarized in the opposite direction. For example, the
first term [(2s-a2py)a (2st+a2py)b - (2s-a2px)b(2s+a2py)a] describes one electron
occupying a2s-a2pyx polarized orbital while the other electron occupies the 2s+a2py
orbital. In this picture, the electrons reduce their mutual coulomb repulsion by occupying
different regions of space; in the SCF mean-field picture, both electrons reside in the same
2s region of space. In this particular example, the electrons undergo angular correlation to
"avoid" one another. The fact that equal amounts of X, y, and z orbital polarization appear
inY iswhat preserves the 1S symmetry of the wavefunction.

The fact that the CI wavefunction




Y @Cy [152257 - Cp [|1522px? [+[1522py?] +|1572p2 ]

mixes its two configurations with opposite signis of significance. Aswill be seen later in
Section 6, solution of the Schrodinger equation using the ClI method in which two
configurations (e.g., |1s?2s?| and |12p?|) are employed gives rise to two solutions. One
approximates the ground state wave function; the other approximates an excited state. The
former is the one that mixes the two configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze afunction of
the form

Y' @Cy [1229] + Cp [|1522py?| +|1522py?| +|1572p| ]
in amanner analogous to above. In this case, it can be shown that
Y' @1/6 Cy |14 [(2s-1a2py)a(2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2py)a (2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2pya(2stiazp,)b - (2s-ia2py)b(2stia2pz)all}.

Thereisafundamenta difference, however, between the polarized orbital pairsintroduced
earlier f 4 = (2s £ a2py y or z) and the corresponding functionsf ', = (2s + ia2py y or 2)

appearing here. The probability densities embodied in the former

[f 42 = [2s2 + &2 12px.y,or 2% + 2a(2s 2Px.y,or 2)

describe constructive (for the + case) and destructive (for the - case) superposition of the
probabilities of the 2s and 2p orbitals. The probability densitiesof f' . are

[ 42 = (25 % i82pyy,or 2)" (25 * i82Px.y,or 2)

=252 + &2 |20y, or 2.



These densities are identical to one another and do not describe polarized orbital densities.

Therefore, the Cl wavefunction which mixes the two configurations with like sign, when
analyzed in terms of orbital pairs, placesthe electronsinto orbitalsf' . =(2s + ia2py y or z)

whose densities do not permit the electrons to avoid one another. Rather, both orbitals have
the same spatial density [25]2 + &2
12Px.y,or 2|2 , which gives rise to higher coulombic interaction energy for this state.

V. Summary

In summary, the dynamical interactions among electrons give rise to instantaneous
gpatial correlations that must be handled to arrive at an accurate picture of atomic and
molecular structure. The simple, single-configuration picture provided by the mean-field
model isauseful starting point, but improvements are often needed.

In Section 6, methods for treating electron correlation will be discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper N-
electron wavefunctions by occupying the orbitals available to the system in a manner that
guarantees that the resultant N-electron function is an eigenfunction of those operators that
commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators
(which act on al N electrons) and the spin angular momentum (S2 and S,) of al of the
electrons taken as awhole (thisis true in the absence of spin-orbit coupling which istreated
later as a perturbation). For linear molecules, the point group symmetry operations involve
rotations R, of al N electrons about the principal axis, as aresult of which the total angular
momentum L, of the N electrons (taken as awhole) about this axis commutes with the
Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total
coulombic potential energy unchanged, so Ly and Ly do not commute with H. Hence for a
linear molecule, L, , S2, and S, are the operators that commute with H. For atoms, the
corresponding operatorsare L2, L, S2, and S, (again, in the absence of spin-orbit
coupling) where each operator pertainsto the total orbital or spin angular momentum of the
N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or
orbital angular momentum operators as well as the spin angular momentum operators, one
hasto "coupl€e" the symmetry or angular momentum properties of the individual spin-
orbitals used to construct the N-electrons functions. This coupling involves forming direct
product symmetries in the case of polyatomic molecules that belong to finite point groups,



it involves vector coupling orbital and spin angular momentain the case of atoms, and it
involves vector coupling spin angular momenta and axis coupling orbital angular momenta
when treating linear molecules. Much of this Section is devoted to developing the tools
needed to carry out these couplings.



Chapter 9
Electronic Wavefuntions Must be Constructed to Have Permutational Antisymmetry
Because the N Electrons are Indistinguishable Fermions

|. Electronic Configurations

Atoms, linear molecules, and non-linear molecules have orbitals which can be
labeled either according to the symmetry appropriate for that isolated species or for the
speciesin an environment which produces lower symmetry. These orbitals should be
viewed as regions of space in which electrons can move, with, of course, at most two
electrons (of opposite spin) in each orbital. Specification of a particular occupancy of the
set of orbitals available to the system gives an electronic configuration. For example,
1s22s22p# is an electronic configuration for the Oxygen atom (and for the F*1 ion and the
N-Lion); 1s22s22p33pl is another configuration for O, F*1, or N-1. These configurations
represent situations in which the electrons occupy low-energy orbitals of the system and, as
such, are likely to contribute strongly to the true ground and low-lying excited states and to
the low-energy states of molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular
electronic state of the system. In the above 1s22s22p# example, there are many way's
(fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. Asa
result, there are atotal of fifteen states which cluster into three energetically distinct levels
lying within this single configuration. The 1s22s22p33p! configuration contains thirty-six
states which group into six distinct energy levels (the word level is used to denote one or
more state with the same energy). Not all states which arise from agiven electronic
configuration have the same energy because various states occupy the degenerate (e.g., 2p
and 3p in the above examples) orbitals differently. That is, some states have orbital
occupancies of the form 2p212pp2pl.1 while others have 2p212p2p2p0.1; as aresult, the

states can have quite different coulombic repulsions among the electrons (the state with two
doubly occupied orbitals would lie higher in energy than that with two singly occupied
orbitals). Later in this Section and in Appendix G techniques for constructing
wavefunctions for each state contained within a particular configuration are given in detail.
Mastering these tools is an important aspect of learning the material in thistext.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding,
Rydberg, and antibonding) available to it; occupancy of these orbitalsin a particular manner
givesriseto aconfiguration. If some orbitals are partially occupied in this configuration,



more than one state will arise; these states can differ in energy due to differencesin how the
orbitals are occupied. In particular, if degenerate orbitals are partially occupied, many states
can arise and have energies which differ substantially because of differencesin electron
repulsions arising in these states. Systematic procedures for extracting all states from a
given configuration, for labeling the states according to the appropriate symmetry group,
for writing the wavefunctions corresponding to each state and for evaluating the energies
corresponding to these wavefunctions are needed. Much of Chapters 10 and 11 are
devoted to developing and illustrating these tools.

I1. Antisymmetric Wavefunctions
A. General Concepts
Thetotal electronic Hamiltonian
H =S (- h22me Ni2 -S3 Z4 €2/1i5) +Sisj €2/tij +Sash Za Zn€/ra,

wherei and j label electronsand aand b label the nuclel (whose charges are denoted Z),
commutes with the operators Pjj which permute the names of the electronsi and j. This, in
turn, requires eigenfunctions of H to be eigenfunctions of B;j. In fact, the set of such
permutation operators form agroup called the symmetric group (a good referenceto this
subject is contained in Chapter 7 of Group Theory , M. Hamermesh, Addison-Wesley,
Reading, Mass. (1962)). In the present text, we will not exploit the full group theoretical
nature of these operators; we will focus on the smple fact that all wavefunctions must be
eigenfunctions of the Pjj (additional materia on this subject is contained in Chapter X1V of
Kemble).

Because Rj obeys Pjj = Pjj = 1, the eigenval ues of the P} operators must be +1 or -
1. Electrons are Fermions (i.e., they have half-integral spin), and they have wavefunctions
which are odd under permutation of any pair: Pj Y =-Y . Bosons such as photons or
deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions
which obey Pj Y =+Y.

These permutational symmetries are not only characteristics of the exact
eigenfunctions of H belonging to any atom or molecule containing more than asingle
electron but they are also conditions which must be placed on any acceptable model or tria
wavefunction (e.g., in avariational sense) which one constructs.



In particular, within the orbital model of eectronic structure (which is developed
more systematically in Section 6), one can not construct trial wavefunctions which are
simple spin-orbital products (i.e., an orbital multiplied by ana or b spin function for each
electron) such as 1sa 1sbh2sa2sb2p;a2ppa. Such spin-orbital product functions must be
made permutationally antisymmetric if the N-electron trial function isto be properly
antisymmetric. This can be accomplished for any such product wavefunction by applying
the following antisymmetrizer operator:

A= (GUNDSpsp P,

where N is the number of electrons, P runs over all N! permutations, and spis+1or -1
depending on whether the permutation P contains an even or odd number of pairwise
permutations (e.g., 231 can be reached from 123 by two pairwise permutations-
123==>213==>231, so 231 would have s, =1). The permutation operator Pin A actson a
product wavefunction and permutes the ordering of the spin-orbitals. For example, A

f 1f of 3= (U/OB) [f 1f of 3 - 1f 3f o -f 3f of 1 -f of 1f 3 +f 3f 1 o +f of 3 1], where the
convention isthat electronic coordinatesr, ro, and r3 correspond to the orbitals as they
appear in the product (e.g., the term f 3f of 1 representst 3(rq)f 2(r2)f 1(r3)).

It turns out that the permutations P can be allowed either to act on the "names" or
labels of the electrons, keeping the order of the spin-orbitals fixed, or to act on the spin-
orbitals, keeping the order and identity of the electrons’ |abels fixed. The resultant
wavefunction, which contains N! terms, is exactly the same regardless of how one alows
the permutations to act. Because we wish to use the above convention in which the order of
the electronic labelsremainsfixed as 1, 2, 3, ... N, we choose to think of the permutations
acting on the names of the spin-orbitals.

It should be noted that the effect of A on any spin-orbital product isto produce a
function that isasum of N! terms. In each of these terms the same spin-orbitals appear, but
the order in which they appear differs from term to term. Thus antisymmetrization does not
alter the overall orbital occupancy; it simply "scrambles’ any knowledge of which electron
isin which spin-orbital.

The antisymmetrized orbital product A f 1f of 3 is represented by the short hand |
f 1f of 3 | and isreferred to as a Sater determinant. The origin of this notation can be made
clear by noting that (1/ON!) times the determinant of a matrix whose rows are labeled by
theindex i of the spin-orbital f; and whose columns are labeled by the index j of the
electron a rj isequal to the above function: A f 1f of 3= (/CBY) det(f ; (rj)). The general
structure of such Slater determinantsisillustrated below:




(W/ND)Y? detff (rib= (L/N)?

£ 2(N)F H(N)F o(N)..F i (N)..f (N)

The antisymmetry of many-electron spin-orbital products places constraints on any
acceptable model wavefunction, which give rise to important physical consequences. For
example, it is antisymmetry that makes afunction of theform | 1sa1sa | vanish (thereby
enforcing the Pauli exclusion principle) while | 1sa2sa | does not vanish, except at points
r1 and ro where 1s(r1) = 29(r»), and hence is acceptable. The Pauli principleis embodied
in the fact that if any two or more columns (or rows) of a determinant are identical, the
determinant vanishes. Antisymmetry also enforces indistinguishability of the electronsin
that |1salsb2sa2sb | =
- | 1sa1sb2sb2sa |. That is, two wavefunctions which differ smply by the ordering of
their spin-orbitals are equal to within asign (+/- 1); such an overall sign differencein a
wavefunction has no physical consequence because al physical properties depend on the
product Y * Y , which appears in any expectation value expression.

B. Physical Consequences of Antisymmetry

Once therules for evaluating energies of determinental wavefunctions and for
forming functions which have proper spin and spatial symmetries have been put forth (in
Chapter 11), it will be clear that antisymmetry and el ectron spin considerations, in addition
to orbital occupancies, play substantial roles in determining energies and that it is precisely
these aspects that are responsible for energy splittings among states arising from one
configuration. A single example may help illustrate this point. Consider the plp*1
configuration of ethylene (ignore the other orbitals and focus on the properties of these
two). Aswill be shown below when spin angular momentum istreated in full, the triplet
spin states of this configuration are:

|S=1, Ms=1> = |pap*a]|,

|IS=1, Mg=-1> = |pbp*Db|,



and
|S=1, Ms= 0> = 2-V2[ pap*b| + [pbp*al].

The singlet spin stateis:

S=0, Ms= 0> = 2-Y2[ |pap*b| - pbp*al].

To understand how the three triplet states have the same energy and why the singlet
state has a different energy, and an energy different than the Ms= 0 triplet even though
these two states are composed of the same two determinants, we proceed as follows:

1. We express the bonding p and antibonding p* orbitalsin terms of the atomic p-orbitals
from which they areformed: p=2-Y2[ L + R] andp* =2-V2[ L -R], whereRand L

denote the p-orbitals on the |eft and right carbon atoms, respectively.

2. We substitute these expressions into the Slater determinants that form the singlet and
triplet states and collect terms and throw out terms for which the determinants vanish.

3. Thisthen givesthe singlet and triplet states in terms of atomic-orbital occupancies where
it iseasier to see the energy equivalences and differences.

Let us begin with thetriplet states:
lpap*a|=21/2[ |LaLa|- |RaRa|+ |RalLal- |LaRa]]
=|Rala];
2-V2[ |pap*b| + [pbp*a[] =2Y2 1/2[ |LaLb]| - |RaRb| + |RaLb| -
|LaRb| + |LbLa|- |RbRa| + |RbLa|- |LbRa]|]
=2"V2[ |RaLb| + |RoLal];

Ipbp*b| = 1/2[ |LbLb| - |RbRb| + [RbLb| - |LbRb|]



= |RbLb].
The singlet state can be reduced in like fashion:
2-V2[ |pap*b| - pbp*al] = 2-Y21/2[ |LaLb| - [RaRb| + |RaLb] -
|LaRb|- |LbLa| + |RbRa|- |RbLa| + |LbRa]| ]
=2-V2[ |LaLb|- [RoRal].

Noticethat al threetriplet states involve atomic orbital occupancy in which one electronis
on one atom while the other is on the second carbon atom. In contrast, the singlet state
places both electrons on one carbon (it contains two terms; one with the two electrons on
the left carbon and the other with both electrons on the right carbon).

In a"valence bond" analysis of the physical content of the singlet and triplet plp*1
states, it is clear that the energy of the triplet states will lie below that of the singlet because
the singlet contains " zwitterion” components that can be denoted C*C- and C-C*, while the
three triplet states are purely "covalent”. This case provides an excellent example of how
the spin and permutational symmetries of a state "conspire” to qualitatively affect its energy
and even electronic character as represented in its atomic orbital occupancies.
Understanding this should provide ample motivation for learning how to form proper
antisymmetric spin (and orbital) angular momentum eigenfunctions for atoms and
molecul es.



Chapter 10
Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular
Momentum and Point Group Symmetries

I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

Because the total Hamiltonian of a many-electron atom or molecule forms a
mutually commutative set of operatorswith 2, S, , and A = (C')]JN!)Sp Sp P, the exact
eigenfunctions of H must be eigenfunctions of these operators. Being an eigenfunction of
A forces the eigenstates to be odd under al Pjj. Any acceptable model or trial wavefunction
should be constrained to also be an eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for
atoms, axial rotation symmetry for linear molecules and point group symmetry for non-
linear polyatomics), the trial wavefunctions should also conform to these spatial
symmetries. This Chapter addresses those operators that commute with H, Pjj, S2, and S,
and among one another for atoms, linear, and non-linear molecul es.

Astreated in detail in Appendix G, the full non-relativistic N-electron Hamiltonian
of an atom or molecule

H = Sj(- h2/2m sz - SaZanIrj,a) + Sj<k e2/rj,k
commutes with the following operators:

i. Theinversion operator i and the three components of the total orbital angular momentum
Lz = SjLAj), Ly, Lx, aswell asthe components of the total spin angular momentum S, S,
and S, for atoms (but not the individual electrons’ L(j) , S(j), etc). Hence, L2, L, S2,
S; are the operators we need to form eigenfunctionsof, and L, M, S, and Mg arethe
"good" quantum numbers.

il. Lz = SjLj), aswell asthe N-electron Sy, Sy, and S; for linear molecules (asoi, if
the molecule has a center of symmetry). Hence, L, S2, and S; are the operators we need to
form eigenfunctions of, and M|, S, and Mg are the "good" quantum numbers; L no longer
is!

iii. S, Sy, and Sy aswell asal point group operationsfor non-linear polyatomic
molecules. Hence S2, S, and the point group operations are used to characterize the



functions we need to form. When we include spin-orbit coupling into H (this adds another
term to the potential that involves the spin and orbital angular momenta of the electrons),
L2, Lg S2, S, no longer commute with H. However, J,= S, + Ly and 2 = (L+S)2 now
do commute with H.

A. Electron Spin Angular Momentum

Individual electrons possessintrinsic spin characterized by angular momentum
guantum numbers s and mg ; for electrons, s = 1/2 and mg = 1/2, or -1/2. The mg=1/2 spin
state of the electron is represented by the symbol a and the mg = -1/2 state is represented by
b. These spin functionsobey: S2a = 1/2 (1/2 + 1)R? a,

S;a=12ha, 2b=1/2(1/2+ 1) kb, and S; b =-1/2hb. Thea and b spin functions
are connected vialowering S. and raising Sy operators, which are defined in terms of the x
and y components of S asfollows: Sy = S¢ +iSy, and S. = S« -iSy. In particular Sib =
ha, Sia =0, S.a =Hhb,

and S.b =0. These expressions are examples of the more general relations (these relations
are developed in detail in Appendix G) which al angular momentum operators and their
eigenstates obey:

Ffj,m>=j(+1)h? [j,m>,

Jz [i,m>=mh |j,m>,

I+ [j,m>=h {j(j+1)-m(m+1)}¥2 |j, m+1>, and
J.|j,m> =h {j({i+1)-m(m-1)} Y2 |j,m-1>.

In a many-electron system, one must combine the spin functions of the individual
electrons to generate eigenfunctions of the total S; =S; Sx(i) ( expressions for Sy =S; Sx(i)
and Sy =S; Sy(i) also follow from the fact that the total angular momentum of a collection
of particlesisthe sum of the angular momenta, component-by-component, of the individual
angular momenta) and total S? operators because only these operators commute with the
full Hamiltonian, H, and with the permutation operators P;j. No longer are the individual
S2(i) and S(i) good quantum numbers; these operators do not commute with B;j.

Spin states which are eigenfunctions of the total S? and S; can be formed by using
angular momentum coupling methods or the explicit construction methods detailed in



Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum S; eigenvalue (which is easy to identify as
shown below and which corresponds to a state with S equa to this maximum S
eigenvalue) and then generating states of lower S; values and lower S values using the
angular momentum raising and lowering operators (S. =S; S. (i) and

S+ =Sj Si (i)).

Toillustrate, consider athree-electron example with the configuration 1s2s3s.
Starting with the determinant | 1sa2sa 3sa |, which has the maximum Mg =3/2 and hence
has S=3/2 (this function is denoted [3/2, 3/2>), apply S. in the additive form S. =S; S.(i) to
generate the following combination of three determinants:

h[| 1sb2sa3sa |+ | 1sa2sb3sa | + | 1sa2sa3sb ||,

which, according to the above identities, must equal

h32(372+1)-3/2(3/2-1) -| 3/2, 1/2>.

So the state |3/2, 1/2> with S=3/2 and Mg =1/2 can be solved for in terms of the three
determinantsto give

13/2, 1/2> = 1/QF[ | 1sh2sa3sa | + | 1sa2sb3sa |+ | 1sa2sa3sb |].

The states with S=3/2 and Mg = -1/2 and -3/2 can be obtained by further application of S.to
|3/2, 1/2> (actually, the Ms= -3/2 can be identified as the "spin flipped" image of the state
with Mg =3/2 and the one with Mg =-1/2 can be formed by interchanging all a'sand b'sin
the Mg = 1/2 state).

Of the eight total spin states (each electron can take on either a or b spin and there
are three electrons, so the number of statesis 23), the above process has identified proper
combinations which yield the four states with S= 3/2. Doing so consumed the determinants
with Mg =3/2 and -3/2, one combination of the three determinants with Mg =1/2, and one
combination of the three determinants with Mg =-1/2. There still remain two combinations
of the Mg =1/2 and two combinations of the Mg =-1/2 determinants to deal with. These
functions correspond to two sets of S= 1/2 eigenfunctions having
Ms = 1/2 and -1/2. Combinations of the determinants must be used in forming the S= 1/2
functionsto keep the S = 1/2 eigenfunctions orthogonal to the above S = 3/2 functions
(which is required because S is a hermitian operator whose eigenfunctions belonging to
different eigenvalues must be orthogonal). The two independent S = 1/2, Mg = 1/2 states



can be formed by simply constructing combinations of the above three determinants with
Ms =1/2 which are orthogonal to the S = 3/2 combination given above and orthogonal to

each other. For example,
| 1/2, 1/2> = 1/CP[ | 1sb2sa3sa |- | 1sa2sb3sa |+ 0x | 1sa2sa3sb |],

| 1/2, 1/2> = 1/Oo[ | 1sb2sa3sa |+ | 1sa2sb3sa | -2x | 1sa2sa3sb | ]

are acceptable (as is any combination of these two functions generated by a unitary
transformation ). A pair of independent orthonormal states with S=1/2 and Mg =-1/2 can
be generated by applying S. to each of these two functions ( or by constructing apair of
orthonormal functions which are combinations of the three determinants with Mg = -1/2 and
which are orthogonal to the S=3/2, Mg = -1/2 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin
states are named in terms of their spin degeneracies 25+1) and doubl et states for a
configuration of the form
1s2s3s. Not al three-electron configurations have both quartet and doublet states; for
example, the 12 2s configuration only supports one doublet state. The methods used
aboveto generate S= 3/2 and
S=1/2 statesare valid for any three-electron situation; however, some of the determinental
functions vanish if doubly occupied orbitals occur asfor 1s22s. In particular, the |
lsalsa2sa | and
| 1sb1sb2sb |[Mg=3/2, -3/2 and | 1salsa2sb | and | 1db1sb2sa |[Mg=1/2, -1/2
determinants vanish because they violate the Pauli principle; only | 1salsb2sa | and |
1sa1sb?2sb | do not vanish. These two remaining determinants form the S = 1/2, Mg = 1/2,
-1/2 doublet spin functions which pertain to the 1s22s configuration. It should be noted that
all closed-shell components of a configuration (e.g., the 12 part of 122s or the 152252 2p6
part of 1s22s2 2p63s13pl ) must involve a and b spin functions for each doubly occupied
orbital and, as such, can contribute nothing to the total Mg value; only the open-shell
components need to be treated with the angular momentum operator toolsto arrive at proper
total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric
(i.e., determinental) wavefunctions as demonstrated above because the totdl S2 and total S,
remain valid symmetry operators for many-electron systems. Doing so results in the spin-
adapted wavefunctions being expressed as combinations of determinants with coefficients
determined via spin angular momentum techniques as demonstrated above. In



configurations with closed-shell components, not all spin functions are possible because of
the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve ab
spin pairings for each of the doubly occupied orbitals, and, as such, contribute zero to the
totd Ms.

B. Vector Coupling of Angular Momenta

Given two angular momenta (of any kind) L 1 and L 2, when one generates states
that are eigengtates of their vector sum L= L 1+L 5,
one can obtain L valuesof L1+Lo, L1+L2-1, ...|L1-L2|. Thiscan apply to two electrons for
which the total spin Scan be 1 or 0 asillustrated in detail above, or to ap and ad orbital for
which the total orbital angular momentum L can be 3, 2, or 1. Thus for a pld! eectronic
configuration, 3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding
wavefunctions) arise. Here the term symbols are specified as the spin degeneracy (25+1)
and the | etter that is associated with the L-value. If spin-orbit coupling is present, the 3F
level further splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F».

This simple "vector coupling” method applies to any angular momenta. However, if
the angular momenta are "equivalent” in the sense that they involve indistinguishable
particles that occupy the same orbital shell (e.g., 2p3 involves 3 equivalent electrons;
2p13pl4pl involves 3 non-equivalent electrons; 2p23pl involves 2 equivalent eectrons and
one non-equivalent electron), the Pauli principle eliminates some of the expected term
symbols (i.e., when the corresponding wavefunctions are formed, some vanish because
their Slater determinants vanish). Later in this section, techniques for dealing with the
equivalent-angular momenta case are introduced. These techniques involve using the above
toolsto obtain alist of candidate term symbols after which Pauli-violating term symbols are
eliminated.

C. Non-Vector Coupling of Angular Momenta

For linear molecules, one does not vector couple the orbital angular momenta of the
individual electrons (because only L, not L2 commutes with H), but one does vector couple
the electrons spin angular momenta. Coupling of the electrons orbital angular momenta
involves simply considering the various L ; eigenvalues that can arise from adding the L,
values of the individual electrons. For example, coupling two p orbitals (each of which can
have m =+1) cangive M =1+1, 1-1, -1+1, and -1-1, or 2, 0, O, and -2. The level with
My = x2iscalled aD state (much like an orbital with m = +2 iscalled ad orbital), and the



two stateswith M = O arecalled S states. States with L, eigenvaluesof M|_ and - M_ are
degenerate because the total energy isindependent of which direction the electrons are
moving about the linear molecul€e's axis (just ap+1 and p-1 orbitals are degenerate).

Again, if the two electrons are non-equivalent, al possible couplings arise (e.g., a
plp'l configuration yields 3D, 3S, 3S, 1D, 1S, and 1S states). In contrast, if the two
electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques
for dealing with such cases are treated later in this Chapter.

D. Direct Products for Non-Linear Molecules

For non-linear polyatomic molecules, one vector couples the electrons spin angular
momenta but their orbital angular momenta are not even considered. Instead, their point
group symmetries must be combined, by forming direct products, to determine the
symmetries of the resultant spin-orbital product states. For example, the by byl
configuration in Cp, Ssymmetry gives rise to 3A, and 1A, term symbols. The ele'l
configuration in Cz, symmetry gives 3E, 3A,, 3A1, 1E, 1A,, and 1A; term symbols. For
two equivalent electrons such as in the €2 configuration, certain of the 3€, 3Ao, 3A1, 1E,
1A5, and 1A, term symbols are Pauli forbidden. Once again, the methods needed to
identify which term symbols arise in the equivalent-electron case are treated | ater.

One needsto learn how to tell which term symbolswill be Pauli excluded, and to
learn how to write the spin-orbit product wavefunctions corresponding to each term symbol
and to evaluate the corresponding term symbols' energies.

[1. Atomic Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular
momenta or two orbital angular momenta of non-equivalent electrons), one vector couples
using the fact that the coupled angular momenta range from the sum of the two individua
angular momenta to the absolute value of their difference. For example, when coupling the
spins of two electrons, the total spin S can be 1 or 0; when coupling ap and ad orbital, the
total orbital angular momentum can be 3, 2, or 1. Thus for a pld? electronic configuration,
3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding wavefunctions) arise. The
energy differences among these levels has to do with the different el ectron-electron
repulsions that occur in these levels; that is, their wavefunctionsinvolve different



occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit
coupling is present, the L and S angular momenta are further vector coupled. For example,
the 3F level splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F». The

energy differences among these Jlevels are caused by spin-orbit interactions.
B. Equivalent Orbital Term Symbols

If equivalent angular momenta are coupled (e.g., to couple the orbital angular
momenta of ap? or d3 configuration), one must use the "box" method to determine which
of the term symbols, that would be expected to arise if the angular momenta were non-
equivalent, violate the Pauli principle. To carry out this step, one forms all possible unique
(determinental) product states with non-negative M| and Mg values and arranges them into
groups according to their M| and Mg values. For example, the boxes appropriate to the p?
orbital occupancy are shown below:



Ms 1 Ip1apoa Ip1ap-1a|
0 lp1ap1b| Ip1apabl, [poapib|  [p1ap-1bl,

|p-1api1b,

|poa pob|

There is no need to form the corresponding states with negative M or negative Mg values
because they are ssimply "mirror images' of those listed above. For example, the state with
M_=-1and Mg = -1 is|p.1bpgb|, which can be obtained fromthe M| =1, Mg =1 state
lp1apoa| by replacing a by b and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying
the following procedure over and over until all entries have been accounted for:

1. Oneidentifiesthe highest Mg value (this gives avalue of the total spin quantum number
that arises, S) in the box. For the above example, the answer isS= 1.

2. For al product states of this Mg value, one identifies the highest M value (thisgivesa
value of the total orbital angular momentum, L, that can arisefor this S). For the above
example, the highest M| within the Mg =1 statesisM = 1 (not M = 2), hence L=1.

3. Knowing an S, L combination, one knows the first term symbol that arises from this
configuration. In the p2 example, thisis3P.

4. Because the level with thisL and S quantum numbers contains (2L+1)(2S+1) states with
ML and Ms quantum numbers running from -L to L and from -Sto S, respectively, one
must remove from the original box this number of product states. To do so, one simply
erases from the box one entry with each such M. and Mg value. Actually, since the box
need only show those entries with non-negative M| and Mg values, only these entries need
be explicitly deleted. In the 3P example, this amounts to deleting nine product states with
M., Msvaluesof 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For
the p? example, the box after deleting the first nine product states looks as follows (those
that appear in italics should be viewed as already cancelled in counting all of the 3P states):



Ms 1 Ip1apoal Imap-1a|

0 lp1ap1b| Iprapobl, [poapib|  |pap-1bl,
Ip-1ap1bl,
Ipoa pob|

It should be emphasized that the process of deleting or crossing off entriesin various M,
Ms boxes involves only counting how many states there are; by no means do we identify
the particular L,S,M_,M s wavefunctions when we cross out any particular entry in a box.
For example, when the |p1a pob| product is deleted from the M = 1, Ms=0 box in
accounting for the statesin the 3P level, we do not claim that |p1a pgb| itself is amember of
the 3P level; the |pga p1b| product state could just as well been eliminated when accounting
for the 3P states. Aswill be shown later, the3P state with M= 1, Ms=0 will be a
combination of |piapob| and |poa p1b.

Returning to the p2 example at hand, after the 3P term symbol's states have been
accounted for, the highest Mg value is O (hence there is an S=0 state), and withinthisMg
value, the highest M|_ valueis 2 (hence thereis an L=2 state). This meansthereisalD
level with five states having M| = 2,1,0,-1,-2. Deleting five appropriate entries from the
above box (again denoting deletions by italics) leaves the following box:



Ms 1 Ip1a poa | Iprap-1al
0 Ip1apib| Iprapobl, [poapib|  |pap-1bl,
lp.1apibl,
Ipoa pob|

The only remaining entry, which thus has the highest Ms and M| values, has Ms = 0 and
Mg = 0. Thusthereisaso alSleve inthe p2 configuration.

Thus, unlike the non-equivalent 2pl3pl case, in which 3P, 1P, 3D, 1D, 3S, and 1S
levels arise, only the 3P, 1D, and 1S arise in the p? situation. This "box method" is
necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possible couplings of the equivalent angular momenta using this method and
then use the smpler vector coupling method to add the non-equivalent angular momentato
each of these coupled angular momenta. For example, the p2d! configuration can be
handled by vector coupling (using the straightforward non-equivalent procedure) L=2 (the
d orbital) and S=1/2 (the third electron's spin) to each of 3P, 1D, and 1S. The result is 4F,
4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

C. Atomic Configuration Wavefunctions

To express, in terms of Slater determinants, the wavefunctions corresponding to
each of the states in each of the levels, one proceeds as follows:

1. For each Mg, M. combination for which one can write down only one product function
(i.e., in the non-equivaent angular momentum situation, for each case where only one
product function sits at a given box row and column point), that product function itself is
one of the desired states. For the p2 example, the [p1apoa| and |p1ap-1a| (aswell astheir
four other M and Ms "mirror images') are members of the 3P level (since they have Mg =
+1) and [prap1b| and its M mirror image are members of the 1D level (since they have M
=+2).



2. After identifying as many such states as possible by inspection, oneuses L+ and St to

generate states that bel ong to the same term symbols as those aready identified but which
have higher or lower M. and/or Mg values.

3. If, after applying the above process, there are term symbols for which states have not yet
been formed, one may have to construct such states by forming linear combinations that are
orthogonal to al those states that have thus far been found.

Toillustrate the use of raising and lowering operators to find the states that can not
be identified by inspection, |et us again focus on the p2 case. Beginning with three of the
3P states that are easy to recognize, [p1apoa|, |p1ap-1al, and |p-.1apoal, we apply S. to
obtain the Ms=0 functions:

S.3P(ML=1, Ms=1) = [S(1) + S(2)] lprapoal

= h(1(2)-1(0)Y2 3p(M_=1, Ms=0)

= h(1/2(3/2)-1/2(-1/2))Y2 |p1bpoa | +h(1)1/2 |pra pobl,
S0,

3P(ML=1, Ms=0) = 2-Y2 [|n1bpoa| + [p1a pobl].
The same process applied to |p1ap-1a| and [p-1apoa | gives
1/C2[|lprap-1b| + |pibp-1a[] and 1/C2[|Ip.1a pob| + [p-1bpoall,
respectively.

The3P(M_=1, Ms=0) = 2-Y2[|p1bpoa| + [prapob| function can be acted on with
L. to generate 3P(M| =0, M g=0):

L. 3P(ML=1, Ms=0) =[L.(2) + L(2)] 2V [|p1bpoa| + [p1a pobl]

=h(1(2)-1(0)Y2 3p(M_ =0, M s=0)

=h(1(2)-1(0))V2 2-Y2 [|ngbpoa | + [poapobl]

+h (1(2)-0(-1))V2 2-V2 [|p;bp.1a| + |prap-1b|],

SO,
3P(M_=0, Ms=0) = 2-V2[|psbp.1a| + |map-1b[].



The 1D term symbol is handled in like fashion. Beginning with the M| = 2 state
lp1ap1b|, one appliesL. to generatethe M. = 1 state:

L. ID(ML=2, Ms=0) = [L(1) + L(2)] [p1ap1b|
=h(2(3)-2(1))V2 ID(M_=1, Ms=0)
= h(1(2)-1(0)Y2 [Ipoap1b] + Ipra pobll,
S0,
IDM_=1, Mg=0) = 2-Y2[|pgap1b| + [P pob].
Applying L. once more generates the 1D(M_=0, M s=0) state:
L. ID(ML=1, Ms=0) = [L(1) + L(2)] 2°Y2[|ppap1b]| + |pra pobl]
=h(2(3)-1(0)V2 ID(M_=0, Ms=0)
=h(1(2)-0(-1))V2 2 Y2 [|p.1apab| + |p1ap-1b]]
+R(1(2)-1(0)Y2 2-V2[|poa pob| + [poapobl],
S0,

1D(M(=0, M s=0) = 6-V2[ 2|ppapob| + [p.12p1b| + [p1ap-1b]].

Notice that the M =0, M g=0 states of 3P and of 1D are given in terms of the three
determinants that appear in the "center" of the p2 box diagram:

1D(M_=0, Ms=0) = 6-Y7[ 2Jpoapob| + [p-1a p1b] + [p1ap-1bl],
3P(ML=0, Ms=0) = 2-V2 [|p1bp.1a| + [map-1b[]
=2-12[ -|p.1apsb| + [p1ap-1bl.
The only state that has eluded us thus far isthe 1S state, which also has M =0 and Mg=0.

To construct this state, which must also be some combination of the three determinants
with M_=0 and Ms=0, we use the fact that the 1S wavefunction must be orthogonal to the



3P and 1D functions because 1S, 3P, and 1D are eigenfunctions of the hermitian operator L2
having different eigenvalues. The state that is normalized and is a combination of ppa pgb|,
|p-1ap1b|, and |p1ap-1b| isgiven asfollows:

1S=3-VY2[ |pgapob| - [p-1ap1b| - [prap-1b].

The procedure used here to form the 1S state il lustrates point 3 in the above prescription for
determining wavefunctions. Additional examplesfor constructing wavefunctions for atoms
are provided later in this chapter and in Appendix G.

D. Inversion Symmetry

One more quantum number, that relating to the inversion (i) symmetry operator can
be used in atomic cases because the total potential energy V is unchanged when all of the
electrons have their position vectors subjected to inversion (i r = -r). This quantum number
is straightforward to determine. Becauseeach L, S, M, M s, H state discussed above
consist of afew (or, in the case of configuration interaction several) symmetry adapted
combinations of Slater determinant functions, the effect of the inversion operator on such a
wavefunction Y can be determined by:

(i) applying i to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, d, g, i, etc orbitals; -1 for p, f, h, j, etc orbitals),

(i) multiplying these £+ 1 factors to produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y istermed "even" and itsterm symbol is
appended with an "€" superscript (e.g., the 3P level of the O atom, which has

1s22s22p# occupancy is labeled 3P€); if the signisnegative Y iscalled "odd" and the term
symbol is so amended (e.g., the 3P level of 122s12pl B+ ionislabeled 3P0).

E. Review of Atomic Cases

The orbitals of an atom are labeled by | and m quantum numbers; the orbitals
belonging to a given energy and | value are 2|+1- fold degenerate. The many-electron
Hamiltonian, H, of an atom and the antisymmetrizer operator A = ((")]JN!)Sp sp P
commute with total Ly =S; Lz (i) , asin the linear-molecule case. The additional symmetry
present in the spherical atom reflectsitself in the fact that L, and Ly now also commute
with H and A . However, since L, does not commute with Ly or Ly, new quantum



numbers can not be introduced as symmetry labels for these other components of L. A new
symmetry label doesarisewhen L2 = L2 + Ly2 + Ly2 isintroduced; L2 commutes with H,
A, and L 2, so proper eigenstates (and trial wavefunctions) can be labeled with L, M|, S,
Ms, and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct
properly symmetry-adapted determinental wave functions corresponding to these
symmetries, one must employ L and M. and S and Mg angular momentum tools. Onefirst
identifies those determinants with maximum Mg (this then defines the maximum S value
that occurs); within that set of determinants, one then identifies the determinant(s) with
maximum M__ (thisidentifies the highest L value). This determinant has Sand L equal to its
Ms and My values (this can be verified, for example for L, by acting on this determinant
with L2 in the form

L2=L.L++LA+AhL,

and redlizing that L+ acting on the state must vanish); other members of thisL,S energy
level can be constructed by sequential applicationof S and L. = S; L.(i) . Having
exhausted a set of (2L+1)(2S+1) combinations of the determinants belonging to the given
configuration, one proceeds to apply the same procedure to the remaining determinants (or
combinations thereof). One identifies the maximum Mg and, within it, the maximum

ML which thereby specifies another S, L label and a new "maximum" state. The
determinental functions corresponding to these L,S (and various M, M) values can be
constructed by applying S. and L. to this "maximum” state. This processis continued until
all of the states and their determinental wave functions are obtained.

Asillustrated above, any p2 configuration gives rise to 3P€, 1D€, and 1S€levels
which contain nine, five, and one state respectively. The use of L and S angular momentum
algebratools alows one to identify the wavefunctions corresponding to these states. As
shown in detail in Appendix G, in the event that spin-orbit coupling causes the
Hamiltonian, H, not to commute with L or with S but only with their vector sumJ=L +
S, then these L2 S2 L, S; eigenfunctions must be coupled (i.e., recombined) to generate 2
J; eigenstates. The steps needed to effect this coupling are developed and illustrated for the
above p? configuration casein Appendix G.

In the case of a pair of non-equivalent p orbitals (e.g., in a 2p13p! configuration),
even more states would arise. They can aso be found using the tools provided above.
Their symmetry labels can be obtained by vector coupling (see Appendix G) the spin and
orbital angular momenta of the two subsystems. The orbital angular momentum coupling



withl =1andl=1givesL =2, 1, and 0 or D, P, and S states. The spin angular
momentum coupling with s=1/2 and s= 1/2 givesS=1 and O, or triplet and singlet states.
So, vector coupling leads to the prediction that 3D€, 1De€, 3Pe, 1pe 3Se and 1Se gtates can
be formed from a pair of non-equivalent p orbitals. It is seen that more states arise when
non-equivaent orbitals are involved; for equivalent orbitals, some determinants vanish,
thereby decreasing the total number of states that arise.

[11. Linear Molecule Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

Equivalent angular momenta arising in linear molecules also require use of
specialized angular momentum coupling. Their spin angular momenta are coupled exactly
as in the atomic case because both for atoms and linear molecules, S2 and S, commute with
H. However, unlike atoms, linear molecules no longer permit L2 to be used as an operator
that commutes with H; L still does, but L2 does not. As aresult, when coupling non-
equivaent linear molecule angular momenta, one vector couples the el ectron spins as
before. However, in place of vector coupling the individual orbital angular momenta, one
adds theindividual L, valuesto obtain the L, values of the coupled system. For example,
theplp'1 configuration givesrise to S=1 and S=0 spin states. The individual m; values of
the two pi-orbitals can be added to give M| = 1+1, 1-1, -1+1, and -1-1, or 2, O, O, and -2.
The M| =2 and -2 cases are degenerate (just asthe m= 2 and -2 d orbitals are and the m|=
1 and -1 p orbitals are) and are denoted by the term symbol D; there are two distinct M =0
States that are denoted S. Hence, the p1p' 1 configuration yields 3D, 3S, 3S, 1D, 1S, and
1S term symbols.

B. Equivaent-Orbital Term Symbols

To treat the equivalent-orbital case p2, one forms abox diagram as in the atom case:

Ms 1 lp1ap-1a|

0 lp1apib| lp1ap-1b|,



Ip-12p1b|

The processisvery smilar to that used for atoms. One first identifies the highest
Ms value (and hence an S vaue that occurs) and withinthat Mg, the highest My .
However, the highest M does not specify an L-value, because L isno longer a"good
quantum number" because L2 no longer commutes with H. Instead, we simply take the
highest M value (and minus this value) as specifying aS, P, D, F, G etc. term symbol.
In the above example, the highest Mg valueisMg = 1, so thereisan S= 1 level. Within
Mg = 1, the highest M = 0; hence, thereisa3S level.

After deleting from the box diagram entries corresponding to Mg values ranging
from -Sto Sand M valuesof M| and - M, one has (again using italics to denote the
deleted entries):

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1b|,
Ip-1ap1b|

Among the remaining entries, the highest Mg valueisMgs = 0, and within this Mg the
highest M_ isM|_ = 2. Thus, thereis a 1D state. Deleting entrieswith Mg =0 and M| = 2
and -2, one has |eft the following box diagram:

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1bl,
Ip-1ap1b|

There till remains an entry with Ms = 0 and My = 0; hence, thereisaso alS level.
Recall that the non-equivalent p1p' ! caseyielded 3D, 3S, 3S, 1D, 1S, and 1S term
symbols. The equivalent p2 caseyieldsonly 3S, 1D, and 1S term symbols. Again,



whenever oneis faced with equivalent angular momentain alinear-molecule case, one must
use the box method to determine the allowed term symbols. If one has a mixture of
equivaent and non-equivalent angular momenta, it is possible to treat the equivalent angular
momenta using boxes and to then add in the non-equivalent angular momenta using the
more straightforward technique. For example, the p2d! configuration can be treated by
coupling the p2 as above to generate 3S, 1D, and 1S and then vector coupling the spin of
the third electron and additively coupling them; = 2 and -2 of the third orbital. The
resulting term symbols are 4D, 2D, 2G, 2S, 2S, and 2D (e.g., for the 1D intermediate state,
adding the d orbital's m| values givestotal M valuesof M| = 2+2, 2-2, -2+2, and
-2-2,0r 4,0,0, and -4).

C. Linear-Molecule Configuration Wavefunctions

Procedures analogous to those used for atoms can be applied to linear molecules.
However, in this case only S: can be used; L+ no longer applies because L isno longer a
good guantum number. One begins asin the atom case by identifying determinental
functions for which M_ and Mg are unique. In the p2 example considered above, these
statesinclude [piap-1a|, [p1ap1b|, and their mirror images. These states are members of
the3S and 1D levels, respectively, because the first has Ms=1 and because the latter has
ML = 2.

Applying S to this3S state with Ms=1 produces the 3S state with Mg = 0:

S.3S(ML=0, Ms=1) =[S.(1) + S.(2)] [p1ap-12|
=h(1(2)-1(0))V235(M__=0, Ms=0)

=h ()Y2[|p1bp-1a| + p1ap-1b[l,
SO,

35(ML=0, Ms=0) = 2-12[|p1bp.1a| + [p1ap-1b]].
The only other state that can have M =0 and Ms=0 is the 1S state, which must itself be a
combination of the two determinants, [p1bp-1a|and |p1ap-1b|, with M| =0 and Ms=0.
Because the 1S state hasto be orthogonal to the 3S state, the combination must be

1S = 2-12[|psbp-1a| - p1ap-1b[).



Aswith the atomic systems, additional examples are provided later in this chapter and in
Appendix G.

D. Inversion Symmetry and s, Reflection Symmetry

For homonuclear molecules (e.g., Oy, N2, etc.) the inversion operator i (where
inversion of al electrons now takes place through the center of mass of the nuclei rather
than through an individual nucleus asin the atomic case) isaso avalid symmetry, so
wavefunctionsY may also be labeled as even or odd. The former functions are referred to
as ger ade (g) and the latter asunger ade (u) (derived from the German words for even
and odd). The g or u character of aterm symbol is straightforward to determine. Again one

(i) appliesi to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, p*, d, f*, etc orbitals; -1 for s*, p, d*, f, etc orbitals),

(i) multiplying these £+ 1 factorsto produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y isgerade and itsterm symbol is
appended with a"g" subscript (e.g., the 3S level of the O, molecule, which has
pu*pg*2 occupancy islabeled 3Sy); if the signisnegative, Y isungerade and the term
symbol is so amended (e.g., the 3P level of the 1s 4215225 gl1p,! configuration of the
Li»> moleculeislabeled 3P ).

Finaly, for linear moleculesin S states, the wavefunctions can be labeled by one
additional quantum number that relatesto their symmetry under reflection of all electrons
through as,, plane passing through the molecule's Cy axis. If Y iseven, a+ signis
appended as a superscript to the term symbol; if Y isodd, a- sign is added.

To determinethe sy symmetry of Y, onefirst appliess,, to each orbital in'Y .
Doing so replaces the azimutha anglef of the electron in that orbital by 2p-f ; because
orbitals of linear molecules depend onf as exp(imf ), this changes the orbital into exp(im(-
f)) exp(2pim) = exp(-imf ). In effect, sy applied to Y changesthe signs of al of them
values of the orbitalsin Y . One then determines whether the resultant s Y isequal to or
oppositein sign from the original Y by inspection. For example, the 3Sg ground state of
Oo, which has a Sater determinant function

IS=1, Ms=1> = |p*1ap* 14|

=212 p*y(ry)as p*-a(rz)az - p*a(rz)az p*-a(ri)as .



Recognizing that sy p*1 = p*.1 and sy p*.1= p*1, then gives
Sy |S=1, Ms=1> = |p*1ap*.1a|
=212 p* 4(r1)az p*a(r2)az - p*-a(r2)az p*a(ri)as]
=(-1) 2V2[ p*y(r1)a1 p*-a(ra)az - p*a(rz)az p*-a(ri)as ],
so thiswavefunction is odd under sy which iswritten as 3Sg'.

E. Review of Linear Molecule Cases

Moleculeswith axial symmetry have orbitalsof s, p, d, f, etc symmetry; these
orbitals carry angular momentum about the z-axisin amounts (in units of k) 0, +1 and -1,
+2 and -2, +3 and -3, etc. The axial point-group symmetries of configurations formed by
occupying such orbitals can be obtained by adding, in al possible ways, the angular
momenta contributed by each orbital to arrive at a set of possible total angular momenta.
The eigenvalue of total L, = Sj L(i) isavalid quantum number because total L, commutes
with the Hamiltonian and with P;j; one obtains the eigenvalues of total L by adding the
individual spin-orbitals' m eigenval ues because of the additive form of the L, operator. L2
no longer commutes with the Hamiltonian, so it is no longer appropriate to construct N-
electron functions that are eigenfunctions of L2. Spin symmetry istreated as usual viathe
spin angular momentum methods described in the preceding sections and in Appendix G.
For molecules with centers of symmetry (e.g., for homonuclear diatomics or ABA linear
triatomics), the many-electron spin-orbital product inversion symmetry, which isequal to
the product of the individual spin-orbital inversion symmetries, provides another quantum
number with which the states can be labeled. Finally the s, symmetry of S states can be
determined by changing the m values of al orbitalsin'Y and then determining whether the
resultant functionisequal toY orto-Y.

If, instead of ap2 configuration like that treated above, one had a d2 configuration,
the above anaysiswould yield 1G, 1S and 3S symmetries (because the two d orbitals m
values could be combinedas2 + 2,2- 2, -2 + 2, and -2 -2); the wavefunctions would be
identical to those given above with the p1 orbitals replaced by dy orbitals and p-; replaced
by d.o. Likewise, f 2 givesrisetoll, 1S, and 3S symmetries.



For aplp'l configuration in which two non-equivalent p orbitals (i.e., orbitals
which are of p symmetry but which are not both members of the same degenerate set; an
example would bethe p and p* orbitalsin the B, molecule) are occupied, the above
analysis must be expanded by including determinants of the form: [p1ap’ia|,

Ip-1ap'-1al, [p1bp’ 1b], |p-1bp' -1b]. Such determinants were excluded inthep 2 case
because they violated the Pauli principle (i.e., they vanish identically when p' = p).
Determinants of the form [p*1ap-1a|, [p"1@p1bl, [p'-1ap-1b], [p* 1bp- 1b], [p"12p- 10|, and
Ip' 1bp-1a| are now distinct and must be included as must the determinants [piap'-1a|,
Ip1ap’ 1bl, [p-1a2p’-1b|, [p1bp’- 10|, [paap’- 1b|, and [p1bp’-1a|, which are analogous to
those used above. The result is that there are more possible determinants in the case of non-
equivalent orbitals. However, the techniques for identifying space-spin symmetries and
creating proper determinental wavefunctions are the same as in the equivalent-orbital case.

For any p2 configuration, one finds1D, 1S, and 3S wavefunctions as detailed
earlier; for theplp'l case, onefinds 3D, 1D, 3S, 1S, 3S, and 1S wavefunctions by
starting with the determinants with the maximum Mg value, identifying states by their M| |
values, and using spin angular momentum algebra and orthogonality to generate states with
lower Mg and, subsequently, lower S values. Because L2 is not an operator of relevancein
such cases, raising and lowering operators relating to L are not used to generate states with
lower L values. States with specific L values are formed by occupying the orbitalsin al
possible manners and ssmply computing L as the absolute value of the sum of the
individual orbitals m-values.

If acenter of symmetry is present, all of the states arising from p2 are gerade;
however, the states arising from plp'1 can be geradeif p and p' are both g or both u or
ungeradeif p and p' are of opposite inversion symmetry.

The state symmetries appropriate to the non-equivalent p1p' 1 case can,
alternatively, be identified by "coupling" the spin and L, angular momenta of two
"independent" subsystems-the p system which givesriseto 2P symmetry (with M| =1
and -1 and S=1/2) and the p' 1 system which also give 2P symmetry. The coupling gives
riseto triplet and singlet spins (whenever two full vector angular momenta | j,m> and |
j';m'> are coupled, one can obtain total angular momentum values of J=j+j', j+j'-1, j+j'-
2,... i-]']; see Appendix G for details) and to M|_ values of 1+1=2, -1-1=-2, 1-1=0 and -
1+1=0(i.e., to D, S, and S states). The L, angular momentum coupling is not carried out
in the full vector coupling scheme used for the electron spins because, unlike the spin case
where oneis forming eigenfunctions of total 2 and S, oneis only forming L, eigenstates

(i.e., L2isnot avalid quantum label). In the case of axial angular momentum coupling, the
various possible M| values of each subsystem are added to those of the other subsystem to



arrive a the total M value. This angular momentum coupling approach gives the same set
of symmetry labels (3D, 1D, 3S, 1S, 3S, and 1S) as are obtained by considering al of the
determinants of the composite system as treated above.

IV. Non-Linear Molecule Term Symbols and Wavefunctions
A. Term Symbols for Non-Degenerate Point Group Symmetries

The point group symmetry labels of the individual orbitals which are occupied in
any determinental wave function can be used to determine the overall spatia symmetry of
the determinant. When a point group symmetry operation is applied to adeterminant, it acts
on al of the electronsin the determinant; for example, sy [f 1f of 3| = |suf 1Suf 2S\f 3. If
each of the spin-orbitalsf; belong to non-degenerate representations of the point group,
svf i will yield the character cj(sy) appropriate to that spin-orbital multiplyingfi. Asa
result, sy |f 1f of 3| will equal the product of the three characters ( one for each spin-orbital)
Pi ci(sy) times|f 1f of 3|. This gives an example of how the symmetry of a spin-orbital
product (or an antisymmetrized product) is given as the direct product of the symmetries of
theindividua spin-orbitalsin the product; the point group symmetry operator, because of
its product nature, passes through or commutes with the antisymmetrizer. 1t should be
noted that any closed-shell parts of the determinant (e.g.,1a122a121b2 in the configuration
1a122a21b2 1b11) contribute unity to the direct product because the squares of the
characters of any non-degenerate point group for any group operation equals unity.
Therefore, only the open-shell parts need to be considered further in the symmetry
analysis. For abrief introduction to point group symmetry and the use of direct productsin
this context, see Appendix E.

An examplewill help illustrate these ideas. Consider the formal dehyde molecule
H2CO in Cyp, symmetry. The configuration which dominates the ground-state
wavefunction has doubly occupied O and C 1sorbitals, two CH bonds, aCO s bond, a
CO p bond, and two O-centered lone pairs; this configuration is described in terms of
symmetry adapted orbitals as follows: (1ag22a123a21by?
4an21b125:22y2) and is of 1A, symmetry becauseit is entirely closed-shell (note that
lower case |etters are used to denote the symmetries of orbitals and capital letters are used
for many-electron functions symmetries).

The lowest-lying n=>p* states correspond to a configuration (only those orbitals
whose occupancies differ from those of the ground state are listed) of the form 2by12b41,
which givesriseto 1A, and 3A; wavefunctions (the direct product of the open-shell spin



orbitalsis used to obtain the symmetry of the product wavefunction: Ao =bj x bp). The p
=> p” excited configuration 1b112b;1 gives 1A; and 3A; states because by x by = Ax.

The only angular momentum coupling that occursin non-linear moleculesinvolves
the electron spin angular momenta, which are treated in a vector coupling manner. For
example, in the lowest-energy state of formaldehyde, the orbitals are occupied in the
configuration 1a22a123a21bp24321b125322b,2. This configuration has only asingle
entry inits"box". Its highest Mg vaueisMs = 0, so thereisasinglet S= 0 state. The
gpatial symmetry of thissinglet stateis totally symmetric A1 because thisis aclosed-shell
configuration.

The lowest-energy np* excited configuration of formaldehyde has a
1aq22an 23812102481 210b125a122b»12b1 1 configuration, which has atotal of four entriesin
its "box" diagram:

Mg=1 |2byla 2byla|,
Ms=0 I2bpa 2by b,
Ms=0 2bplb2bytal,
Mg = -1 2b,1b2by D).

The highest Ms valueisMgs = 1, so thereisan S = 1 state. After deleting one entry each
withMs =1, 0, and -1, there is one entry left with Mg = 0. Thus, thereisan S = 0 state
also.

Asillustrated above, the spatial symmetries of thesefour S=1 and S= 0 states are
obtained by forming the direct product of the "open-shell” orbitals that appear in this
configuration: by x by = Ao.

All four states have this spatial symmetry. In summary, the above configuration yields 3A,
and 1A, term symbols. The plp*1 configuration 1a;22aq23a;21bp24an 21b1 152 22bp22b4 1
produces 3A; and 1A; term symbols (because by x by = Ay).

B. Wavefunctions for Non-Degenerate Non-Linear Point Molecules

The techniques used earlier for linear molecules extend easily to non-linear
molecules. One begins with those states that can be straightforwardly identified as unique
entries within the box diagram. For polyatomic molecules with no degenerate
representations, the spatial symmetry of each box entry isidentical and is given asthe direct
product of the open-shell orbitals. For the formal dehyde example considered earlier, the
spatial symmetries of the np* and pp* stateswere Ao and A1, respectively.



After the unique entries of the box have been identified, one uses S. operations to
find the other functions. For example, the wavefunctions of the 3A, and 1A, states of the
np* lay22a123a 21243211253 22by12b41 configuration of formal dehyde are formed by
first identifying the Ms = £1 components of the S = 1 state as |2bpa 2bja | and [2bob2b1b|
(@l of the closed-shell components of the determinants are not explicitly given). Then,
applying S to the Mg = 1 state, one obtains the Ms = 0 component (1/2)V2 [|2bsb2bia | +
|2bpa 2b1b| ]. The singlet state is then constructed as the combination of the two
determinants appearing inthe S= 1, Mg = 0 state that is orthogonal to thistriplet state. The
result is (1/2)Y2 [|2byb2ba | - [2bya2bib] ].

The results of applying these rulesto the np™ and pp* states are as follows:

3Ao (Ms= 1) =[1;alagb2aa2ab3xa3ablbya lbob4aadablbialbib
S5aga5ab2boa 2bial,
3Ao (Mg =0) = 1/Q2 [|2bpa 2b1b| + |2pb2bsal],

3A2 (Ms = -1) = [2bpb2bs b,
1A, = 1/¢2 [[20pa2b1b] - [2bpb2bsal].

The lowest pp* states of triplet and singlet spin involve the following:
3A1 (Ms=1) = [1bja2bsal,
1A; = 12 [|1bia2bib]| - [1gb2bsal]].

In summary, forming spatial- and spin- adapted determinental functions for
molecules whose point groups have no degenerate representations is straightforward. The
direct product of all of the open-shell spin orbitals gives the point-group symmetry of the
determinant. The spin symmetry is handled using the spin angular momentum methods
introduced and illustrated earlier.

C. Extension to Degenerate Representations for Non-Linear Molecules

Point groups in which degenerate orbital symmetries appear can betreated in like
fashion but require more analysis because a symmetry operation R acting on a degenerate



orbital generaly yields alinear combination of the degenerate orbitals rather than amultiple
of the original orbital (i.e., Rfj =cj(R) fj isnolonger valid). For example, when a pair of
degenerate orbitals (denoted e; and e ) are involved, one has

R =5j Rij g,

where Rjj isthe 2x2 matrix representation of the effect of R on the two orbitals. The effect
of R on aproduct of orbitals can be expressed as.

R &g =Sk, Rik Rjl &8 .

The matrix Rjj kI = Rik Rj| representsthe effect of R on the orbital products in the same
way Rjk represents the effect of R on the orbitals. One saysthat the orbital products also
form a basis for a representation of the point group. The character (i.e., the trace) of the
representation matrix Rjj kI appropriate to the orbital product basisis seen to equal the
product of the characters of the matrix Rjk appropriate to the orbital basis. cZ(R) =
cdR)c«R), whichis, of course, why the term "direct product” is used to describe this
relationship.

For point groups which contain no degenerate representations, the direct product of
one symmetry with another is equal to a unique symmetry; that is, the characters ¢ (R)
obtained as ¢ y(R)cp(R) belong to a pure symmetry and can be immediately identified in a
point-group character table. However, for point groups in which degenerate representations
occur, such is not the case. The direct product characters will, in general, not correspond to
the characters of a single representation; they will contain contributions from more than one
representation and these contributions will have to be sorted out using the tools provided
below.

A concrete example will help clarify these concepts. In Czy symmetry, thep
orbitals of the cyclopropenyl anion transform according to a; and e symmetries

e 1



and can be expressed as LCAO-MO'sin terms of theindividual pj orbitals as follows:
a =1/OB[ p1+p2 +p3], 1= V[ p1 - p3],
and

e2=1UC6[ 2 pz-p1-Pg]-
For the anion's lowest energy configuration, the orbital occupancy a;2e2 must be
considered, and hence the spatial and spin symmetries arising from the e2 configuration are
of interest. The character table shown below

allows one to compute the characters appropriate to the direct product (e x €) asc(E) = 2x2
=4, c(sy) = 0x0 =0, c(C3) = (-1)x(-1) =1.

This reducible representation (the occupancy of two e orbitalsin the anion givesrise to
more than one state, so the direct product e x e contains more than one symmetry
component) can be decomposed into pure symmetry components (labels Gare used to
denote the irreducible symmetries) by using the decomposition formula given in Appendix
E:

n(G =1/g Sg c(R)cR).



Here g isthe order of the group (the number of symmetry operationsin the group- 6 in this
case) and c(R) isthe character for the particular symmetry Gwhose component in the
direct product is being calculated.

For the case given above, onefinds n(ap) =1, n(az) = 1, and n(e) =1; so within the
configuration e2 there is one A1 wavefunction, one Ao wavefunction and a pair of E
wavefunctions (where the symmetry labels now refer to the symmetries of the
determinental wavefunctions). This analysistells one how many different wavefunctions of
various spatial symmetries are contained in a configuration in which degenerate orbitals are
fractionally occupied. Considerations of spin symmetry and the construction of proper
determinental wavefunctions, as developed earlier in this Section, still need to be applied to
each spatial symmetry case.

To generate the proper A1, A2, and E wavefunctions of singlet and triplet spin
symmetry (thusfar, it is not clear which spin can arise for each of the three above spatia
symmetries; however, only singlet and triplet spin functions can arise for this two-electron
example), one can apply the following (un-normalized) symmetry projection operators (see
Appendix E where these projectors are introduced) to al determinental wavefunctions
arising from the e2 configuration:

Pc=SrcagR)R .
Here, cqR) isthe character belonging to symmetry Gfor the symmetry operation R .
Applying this projector to a determinental function of the form [f f j| generates a sum of
determinants with coefficients determined by the matrix representations Rj:

Pglfifj| = Sr Ski caR) RikR;l fkfil.

For example, in the €2 case, one can apply the projector to the determinant with the
maximum Mg value to obtain

Pcleiaexa| = Sr cR) [R11R22 [e1aezal + Ri2R21 [eaesal]
= SR cdR) [R11R22 -R12R21 | [e1aezal,
or to the other two members of this triplet manifold, thereby obtaining

Pgleibeob| = Sk cqR) [R11R22 -R12R21 ] |erbenb|



and
Pc U/ [|lejaexb| +lebera[] = Sr cq(R) [R11R22 -R12R21 ]

1/C2[leraexb| +letbesal] .

The other (singlet) determinants can be symmetry analyzed in like fashion and result in the
following:

PG |eiaeib| = Sg cgR){ R11R11|e1aeib| +R12R12 |eaesb| +R11R12
[leraebl-lerbecall},

PG |exaeb| = Sr ca(R){ R22R22 |e2aezb| + R21R21|e1aerb| + R22R21
[lexaerbl|-leberal]},
and
P U(2[leaezb| - letbezal] = Sk cd(R) { 2 RuiRzleiaerb|
+(2 RooRyoleaeph| + ( R11R22 +R12R21) [|eraepb| -lerbeyal]} .

To make further progress, one needs to evaluate the Rjk matrix elementsfor the
particular orbitals given above and to then use these explicit values in the above equations.
The matrix representations for the two e orbitals can easily be formed and are as follows:

1 0 <-1 o> <-1/2 c'je/z>
0 0 1 o872 1/2

E Sy s’y

172 -CB/2 <-1/2 oe/2><-__1/2 -c‘je/2>
<-os/2 1/2> ~(8/2 -1/2) \B/2 -1/2
s" Cs C's

\"

Turning first to the three triplet functions, one notes that the effect of the symmetry
projector acting on each of these three was the following multiple of the respective function:
Sr cdR) [R11R22



-R12R21 ]. Evaluating this sum for each of the three symmetries G= A1, Ao, and E, one
obtainsvalues of 0, 2, and O, respectively. That is, the projection of the each of the
origina triplet determinants gives zero except for Az symmetry. Thisalows oneto
conclude that thereareno A or E triplet functionsin this case; the triplet functions are of
pure 3A, symmetry.

Using the explicit values for Rjx matrix e ements in the expressions given above for
the projection of each of the singlet determinental functions, one finds only the following
non-vanishing contributions:

(i) For Ay symmetry- P lejaerb| = 3] leaeb| + [aexbl] = P eaeb,

(i) For Ao symmetry- all projections vanish,

(iii) For E symmetry- P |gjaeib| = 3/2 [lejaelb| - |epaeob|] = -P |exaexb|
and PL/C2[leaezb| - [erbeyal] = 3 U2 le1aezb| - lebezall.

Remembering that the projection process does not |ead to a normalized function, although it
does generate a function of pure symmetry, one can finally write down the normalized
symmetry-adapted singlet functions as:

(i) *A1= VC2[leaenb| + [exaezbl],

(i) 1E = { VC2[leaeb| - [exaezbl], and Y[ leraezb| - fesbeall }.
The triplet functions given above are:

(iii) 3A2 = { leraezal, VC2[le1aezb| +lebezall, and lerbeb } .

In summary, whenever one has partially occupied degenerate orbitals, the
characters corresponding to the direct product of the open-shell orbitals (as always, closed-
shells contribute nothing to the symmetry analysis and can be ignored, although their
presence must, of course, be specified when one finally writes down complete symmetry-
adapted wavefunctions) must be reduced to identify the spatial symmetry components of
the configuration. Given knowledge of the various spatial symmetries, one must then form
determinental wavefunctions of each possible space and spin symmetry. In doing so, one



starts with the maximum Mg function and uses spin angular momentum algebra and
orthogonality to form proper spin eigenfunctions, and then employs point group projection
operators (which require the formation of the Rjk representation matrices). Antisymmetry,
as embodied in the determinants, causes some space-spin symmetry combinations to vanish
(e.g., 3A1 and 3E and 1A, in the above exampl€) thereby enforcing the Pauli principle. This
procedure, although tedious, is guaranteed to generate all space- and spin-symmetry
adapted determinants for any configuration involving degenerate orbitals. The results of
certain such combined spin and spatial symmetry analyses have been tabulated. For
example, in Appendix 11 of Atkins such information is given in the form of tables of direct
products for several common point groups.

For cases in which one has a non-equivalent set of degenerate orbitals (e.g., for a
configuration whose open-shell part is ele'l), the procedure is exactly the same as above
except that the determination of the possible space-spin symmetriesis more
straightforward. In this case, singlet and triplet functions exist for al three space
symmetries- A1, Ao, and E, because the Pauli principle does not exclude determinants of

theform |ejae'1a| or |exbe’ob|, whereas the equivalent determinants (Jeraeja| or |ecbexb|)
vanish when the degenerate orbitals belong to the same set (in which case, one says that the
orbitals are equivalent).

For al point, axial rotation, and full rotation group symmetries, this observation
holds: if the orbitals are equivalent, certain space-spin symmetry combinations will vanish
due to antisymmetry; if the orbitals are not equivalent, al space-spin symmetry
combinations consistent with the content of the direct product analysis are possible. In
either case, one must proceed through the construction of determinental wavefunctions as
outlined above.

V. Summary

The ability to identify all term symbols and to construct al determinental
wavefunctions that arise from a given electronic configuration isimportant. This
knowledge allows one to understand and predict the changes (i.e., physical couplings due
to external fields or due to collisions with other species and chemical couplings due to
interactions with orbitals and electrons of a'ligand’ or another species) that each state
experiences when the atom or molecule is subjected to some interaction. Such
understanding plays central roles in interpreting the results of experiments in spectroscopy
and chemical reaction dynamics.



The essence of this analysisinvolves being able to write each wavefunction asa
combination of determinants each of which involves occupancy of particular spin-orbitals.
Because different spin-orbitals interact differently with, for example, a colliding molecule,
the various determinants will interact differently. These differencesthus give rise to
different interaction potential energy surfaces.

For example, the Carbon-atom 3P(M| =1, Ms=0) = 2-V2 [|p1bpoa | + |prapgb]] and
3P(M =0, Ms=0) = 2-V2[|pibp.1a| + |pmap.1b]] statesinteract quite differently ina
collision with aclosed-shell Ne atom. The M| = 1 state's two determinants both have an
electron in an orbita directed toward the Ne atom (the 2pg orbital) aswell asan electronin
an orbital directed perpendicular to the C-Ne internuclear axis (the 2p; orbitd); theM_ =0
state's two determinants have both electronsin orbitals directed perpendicular to the C-Ne
axis. Because Ne is a closed-shell species, any electron density directed toward it will
produce a"repulsive” antibonding interaction. As aresult, we expect the M| = 1 state to
undergo a more repulsive interaction with the Ne atom than the M = 0 state.

Although one may be tempted to 'guess how the various 3P(M| ) states interact
with aNe atom by making an analogy between the three M| states within the 3P level and
the three orbitals that comprise a set of p-orbitals, such analogies are not generally valid.
The wavefunctions that correspond to term symbols are N-electron functions; they describe
how N spin-orbitals are occupied and, therefore, how N spin-orbitals will be affected by
interaction with an approaching 'ligand' such as a Ne atom. The net effect of the ligand will
depend on the occupancy of al N spin-orbitals.

Toillustrate this point, consider how the 1S state of Carbon would be expected to
interact with an approaching Ne atom. This term symbol's wavefunction 1S = 3-12
Ipoa pob| - [p1a pibl
- |p12p-1b[] contains three determinants, each with a 1/3 probability factor. The first,
lpoa pob|, produces a repulsive interaction with the closed-shell Ne; the second and third,
|p-1ap1b]| and |p1ap-1b|, produce attractive interactions because they allow the Carbon's
vacant pg orbital to servein aLewis acid capacity and accept electron density from Ne. The
net effect islikely to be an attractive interaction because of the equal weighting of these
three determinantsin the 1S wavefunction. This result could not have been 'guessed’ by
making making analogy with how an s-orbital interacts with a Ne atom; the 1S state and an
s-orbital are distinctly different in this respect.



Chapter 11

One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N-
Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in
Particular. The Sater-Condon Rules Provide this Capability

|. CSFs Are Used to Express the Full N-Electron Wavefunction

It has been demonstrated that a given el ectronic configuration can yield several
space- and spin- adapted determinental wavefunctions; such functions are referred to as
configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are ssimply functions which
possess the space, spin, and permutational symmetry of the exact elgenstates. As such,
they comprise an acceptable set of functionsto usein, for example, alinear variationa
trestment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction
Y isexpanded as asum over all CSFs that possess the desired spatial and spin symmetry:

Y =53;C3F3.

Here, the F jrepresent the CSFsthat are of the correct symmetry, and the Cj are their
expansion coefficients to be determined in the variational calculation. If the spin-orbitals
used to form the determinants, that in turn form the CSFs {F 3}, are orthonormal one-
electron functions (i.e., <f i | fj> = d j), then the CSFs can be shown to be orthonormal
functions of N electrons

<Fj|Fk>=djk.

In fact, the Slater determinants themselves also are orthonormal functions of N electrons
whenever orthonormal spin-orbitals are used to form the determinants.

The above expansion of the full N-electron wavefunction istermed a
"configuration-interaction” (Cl) expansion. It is, in principle, amathematically rigorous
approach to expressing Y because the set of all determinants that can be formed from a
complete set of spin-orbitals can be shown to be complete. In practice, oneislimited to the
number of orbitalsthat can be used and in the number of CSFsthat can be included in the
Cl expansion. Nevertheless, the Cl expansion method forms the basis of the most
commonly used techniques in quantum chemistry.



In general, the optimal variational (or perturbative) wavefunction for any (i.e., the
ground or excited) state will include contributions from spin-and space-symmetry adapted
determinants derived from all possible configurations. For example, although the
determinant with L =1, S=1, M =1, Mg =1 arising from the 1s22s22p2 configuration
may contribute strongly to the true ground electronic state of the Carbon atom, there will be
contributions from all configurations which can providethese L, S, M, and Mg values
(e.g., the 1s22s22p13pl and 2s22p# configurations will also contribute, although the
1s22522p13s! and 1s22s12p23pt will not because the latter two configurations are odd
under inversion symmetry whereas the state under study is even).

The mixing of CSFsfrom many configurations to produce an optimal description of
the true electronic states is referred to as configuration interaction (Cl). Strong Cl (i.e.,
mixing of CSFswith large amplitudes appearing for more than one dominant CSF) can
occur, for example, when two CSFs from different electronic configurations have nearly
the same Hamiltonian expectation value. For example, the 1s22s2 and 1s?2p2 1S
configurations of Be and the analogous ns? and np2 configurations of al akaline earth
atoms are close in energy because the ns-np orbital energy splitting is small for these
elements; the p2 and p*2 configurations of ethylene become equal in energy, and thus
undergo strong Cl mixing, as the CCp bond is twisted by 90° in which case the p and p*
orbitals become degenerate.

Within avariationa treatment, the relative contributions of the spin-and space-
symmetry adapted CSFs are determined by solving a secular problem for the eigenvalues
(Ej) and eigenvectors (Cj) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

SLHk,L GiL=E Cik.
The eigenvalue E; givesthe variational estimate for the energy of the ith state, and the
entriesin the corresponding eigenvector C; k give the contribution of the Kth CSF to the ith
wavefunction Y j in the sense that

Yi=Sk Cik Fk,

whereF g isthe Kth CSF.

[1. The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among
the CSFs



To form the Hk | matrix, one uses the so-called Slater-Condon rules which express

all non-vanishing determinental matrix elements involving either one- or two- electron
operators (one-electron operators are additive and appear as

F=Si f(i);
two-€electron operators are pairwise additive and appear as
G = Sjj 9(i.j))-

Because the CSFs are smple linear combinations of determinants with coefficients
determined by space and spin symmetry, the H; y matrix in terms of determinants can be
used to generate the Hk | matrix over CSFs.

The Sater-Condon rules give the matrix elements between two determinants

|>=1[f1f of 3... TN
and

|'>=|f"1f"of "3...T"N]|

for any quantum mechanical operator that isasum of one- and two- electron operators (F +
G). It expresses these matrix elementsin terms of one-and two-€lectron integralsinvolving
the spin-orbitals that appear in | > and | > and the operators f and g.

Asafirst step in applying these rules, one must examine | > and | "> and determine
by how many (if any) spin-orbitals| > and | > differ. In so doing, one may have to
reorder the spin-orbitalsin one of the determinants to achieve maximal coincidence with
those in the other determinant; it is essential to keep track of the number of permutations (
Np) that one makesin achieving maximal coincidence. The results of the Sater-Condon
rules given below are then multiplied by (-1)Np to obtain the matrix elements between the
origina | >and | ">. Thefina result does not depend on whether one chooses to permute |
>or | ">,

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules
provide the following prescriptions for evaluating the matrix elements of any operator F +
G containing aone-electron part F = S; f(i) and atwo-€lectron part G = Sjj o(i,j) (the
Hamiltonian is, of course, a specific example of such an operator; the electric dipole



operator Sj erj and the electronic kinetic energy - h2/2meSjN;2 are examples of one-electron
operators (for which one takes g = 0); the electron-electron coulomb interaction Si>j €2/rjj
is atwo-electron operator (for which one takesf = 0)):



The Slater-Condon Rules

() If | >and | > areidentical, then
<|F+G|>=Sj<fj|f[fi>+Sj5 [<fifj|g|fifj>-<fifj|g|fjfi>],
where the sumsover i and j run over al spin-orbitalsin | >;

(ii) If | > and | "> differ by asingle spin-orbital mismatch (fp? f'p),
<|F+G|>=<fp|f[f'p>+Sj[<fpfj|g|f'pfj>-<fofjlglfjf'p>],
where the sum over j runsover all spin-orbitalsin | > except f ;

(i) If | > and | "> differ by two spin-orbitals (fp* f'pandfq? f'g),
<|F+G|>=<fpfqlg|f'pf'g>-<fpfqglg|f'qf'p>
(note that the F contribution vanishesin this case);

(iv) If | > and | > differ by three or more spin orbitals, then
<|F+G|'>=0;

(v) For the identity operator I, the matrix elements< |1 |"™>=0if | > and | "> differ by one
or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals

are).

Recall that each of these results is subject to multiplication by afactor of (-1)Np to
account for possible ordering differencesin the spin-orbitalsin | > and | ">.
In these expressions,

<fi[f[fj>

is used to denote the one-electron integral
of "i(r) f(r) f;(r) dr

and

<fifj | g|f«f1> (orin short hand notation <i j| k | >)
represents the two-electron integral



of "i(r) £7(r") g(r,r") fk(nf(r') drdr".

The notation <i j | k I> introduced above gives the two-electron integrals for the
g(r,r") operator in the so-called Dirac notation, in which thei and k indices label the spin-
orbitals that refer to the coordinates r and the j and | indices label the spin-orbitals referring
to coordinatesr'. Ther and r' denoter,q,f,s and r',q",f",s' (with s and s’ being the a or
b spin functions). The fact that r and r* are integrated and hence represent ‘dummy’
variablesintroduces index permutational symmetry into thislist of integrals. For example,

<ijlkl>=<ji|lk>=<kl|ij>* =<Ik]|]i>*;

the final two equivalences are results of the Hermitian nature of g(r,r).
It is also common to represent these same two-electron integralsin anotation
referred to as Mulliken notation in which:

of "i(Nf*j(r) g(r,r) f()fi(r) drdr' = (i k [j I).

Here, theindicesi and k, which label the spin-orbital having variablesr are grouped
together, and j and |, which label spin-orbitals referring to the r' variables appear together.
The above permutational symmetries, when expressed in terms of the Mulliken integral list
read:

(k{i=0T1ik)=&il)=q0j1ki)*.

If the operators f and g do not contain any electron spin operators, then the spin
integrationsimplicit in theseintegrals (all of thef are spin-orbitals, so eachf is
accompanied by ana or b spin function and each f * involves the adjoint of one of thea or
b spin functions) can be carried out as<ala> =1, <alb> =0, <bja> =0, <bjp> =1,
thereby yielding integrals over spatial orbitals. These spin integration results follow
immediately from the general properties of angular momentum eigenfunctions detailed in
Appendix G; in particular, because a and b are eigenfunctions of S; with different
eigenvalues, they must be orthogonal <a |b> = <bfa> = 0.

The essentia results of the Sater-Condon rules are:



1. Thefull N! termsthat arise in the N-electron Slater determinants do not have to be
treated explicitly, nor do the N!(N! + 1)/2 Hamiltonian matrix elements among the N! terms
of one Slater determinant and the N! terms of the same or another Siater determinant.

2. All such matrix elements, for any one- and/or two-€lectron operator can be expressed in
terms of one- or two-electron integrals over the spin-orbitals that appear in the
determinants.

3. Theintegrals over orbitals are three or six dimensional integrals, regardless of how
many electrons N there are.

4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be
expressed in terms of one- and two-electron integrals over the primitive atomic orbitals. It
isonly these ao-based integrals that can be evaluated explicitly (on high speed computers
for al but the smallest systems).

[11. Examples of Applying the Slater-Condon Rules

It iswiseto gain some experience using the SC rules, so let us consider afew
illustrative example problems.

1. What is the contribution to the total energy of the 3P level of Carbon made by the two 2p
orbitals alone? Of course, the two 1s and two 2s spin-orbitals contribute to the total energy,
but we artificially ignore al such contributions in this example to smplify the problem.

Because all nine of the 3P states have the same energy, we can calculate the energy
of any one of them; it istherefore prudent to choose an "easy" one

3P(ML=1Ms=1) = |mapoal .
The energy of thisstateis< |p1apoa| H |p1apoa| >. The SC rulestell usthis equals:

12p; + 12pg + <2P12po| 2p12p0> - <2p12po| 2po2p1>,
where the short hand notation |j = <j| f [j> isintroduced.

If the contributions from the two 1s and two 2s spin-orbitals are now taken into
account, one obtains atotal energy that also contains 2115 + 2l o5 + <1sls|1s1s> +
4<1829|182s> - 2 <1825|251s>+ <2529|2525> + 2<1S2p1|1s2p1> - <1s2p1|2p11s> +
2<1s2po|1s2po> - <1s2p|2ppls> + 2<2S2p1|252p1> - <2S2p1|2p12S> + 2<2S2p0|2S2p0> -
<2s2po|2po2s>.



2. Isthe energy of another 3P state equal to the above state's energy? Of course, but it may
prove informative to prove this.

Consider the Ms=0, M =1 state whose energy is:
2-Y2<[|papob| + [pibpoall| H [<[Ip1a pob| + [pibpoal]>2-12
=1/2{12p, + l2py + <2P12Pol 2P12p0> + I 2p; + 12py + <2P12P0| 2P12p0>}
+ 12 { - <2p12pol2po2p1> - <2p12po|2po2p1>}
= lopq + l2pg + <2p12po| 2p12po> - <2p12po| 2P02p1>.
Which is, indeed, the same as the other 3P energy obtained above.
3. What energy would the singlet state 2-Y/2<[|p1a pgb| - |pibpoa || have?

The 3P Ms=0 example can be used (changing the sign on the two determinants) to
give

E = l2p; + 12py + <2p12po| 2p12p0> + <2p12po| 2po2p1>.
Note, thisis the M =1 component of the 1D state; it is, of course, not a 1P state because no
such state exists for two equivalent p electrons.
4. What isthe Cl matrix element coupling |1s22s2| and |1s23s2|?
These two determinants differ by two spin-orbitals, so
<|1salsb2sa2sb| H |1salsb3sa3sh|> = <2s25|3s3s> = <2s35|3s25>
(note, thisis an exchange-typeintegral).

5. What isthe CI matrix element coupling [papb|and |p*ap*b|?

These two determinants differ by two spin-orbitals, so



<[papb| Hjp*ap*b|> = <pp|p*p*> = <pp*[p*p>
(note, again thisis an exchange-type integral).

6. What is the Hamiltonian matrix element coupling |papb| and
2°V2[ jpap*b| - pbp*a[]?

The first determinant differs from the p2 determinant by one spin-orbital, as does
the second (after it is placed into maximal coincidence by making one permutation), so

<|papb|H| 2Y2[ |pap*b| - pbp*al]>
= 2V2[<pffjp*> + <pp|p*p>] -(-1) 212 <plfjp*> + <pp|p*p>]

= 2V2[<plf|p*> + <pp|p*p>].
7. What is the dement coupling |papb| and 2V2[ jpap*b| + |pbp*a[]?

<lpapb|H| 2Y2[ jpap*b]| + pbp*a[>
= 212 <plfp*> + <pp|p*p>] +(-1) 2V <plfjp*> + <pp|p*p>] = 0.

This result should not surprise you because [papb| is an S=0 singlet state while 2-1/2 [
lpap*b| + |pbp*a|] isthe Ms=0 component of the S=1 triplet state.

8. What isther = Sjer;j electric dipole matrix €l ement between [piap1b| and 2V2[|mapgb|
+ |poap1b|]? Isthe second function asinglet or triplet? It isasinglet in disguise; by
interchanging the ppa and p1b and thus introducing a (-1), this function is clearly identified
as 2-V2[|prapgb| - |pibpoal] which isasinglet.

Thefirst determinant differs from the latter two by one spin orbital in each case, so

<|prapiblr[2V2[|pmapob| + |poapibl]> =

2-V2[<pq|r|po> + <p1lrlpo>] = 2V/2 <pq|r|po>.



9. What isthe electric dipole matrix elements between the
1D = |piap1b| state and the 1S = 2-V2[|pjap.1b| +|p-1ap1b[] state?

<2"V2[|p1ap-1b| +jp-1ap1b[] Ilp1apibl>
= 2-V2[<p_q|r|p1> + <p-1lr[p1>]
=212 <p_q|rjp1>.

10. As another example of the use of the SC rules, consider the configuration interaction
which occurs between the 12252 and 1s22p? 1S CSFsin the Be atom.

The CSFs corresponding to these two configurations are as follows:

F1=|1salsb2sa2sb|

and

Fo=1/G3[ |1sa1sb2pga2pgb| - |1sa 1sb2pia2p.1b|

- |1sa1sb2p.1a2p1b]].
The determinental Hamiltonian matrix el ements needed to evaluate the 2x2 Hy | matrix
appropriate to these two CSFs are evaluated via the SC rules. Thefirst such matrix element
is:

< |lsalsb2sa2sb|H |1salsb2sa2sb| >

= 2h1s + 2hps + J1s1s + A1s.2s + J2s.25 - 2K 1525,
where

hj = <fj |- h22me N2 -4e2/r [fi>

Ji,j :<fifj |e2/r12 rfifj> ,



and
Kij = <fifj | e/r1o ffifi>

arethe orbital-level one-electron, coulomb, and exchange integrals, respectively.

Coulomb integrals Jj describe the coulombic interaction of one charge density ( 2
above) with another charge density (f j2 above); exchange integrals Kij describe the
interaction of an overlap charge density (i.e., adensity of the form fif ;) with itself ( ff;
with fif; in the above).

The spin functionsa and b which accompany each orbital in |1sa1sb2sa2sb| have

been eliminated by carrying out the spin integrations as discussed above. Because H
contains no spin operators, this is straightforward and amounts to keeping integrals
<fj|f|fj>onlyiff;andf; areof the same spin and integrals
<fifj|glfkf|>onlyiff;jandfg areof thesame spinand f; and f| are of the same spin.
The physical content of the above energy (i.e., Hamiltonian expectation value) of the
|1sa 1sh2sa 2sb| determinant is clear: 2h;s + 2hys isthe sum of the expectation val ues of
the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the
Hamiltonian for the four occupied spin-orbitals; Jis 1s + 4J1s2s + J2s 25 - 2K 1525 contains
the coulombic repulsions among all pairs of occupied spin-orbitals minus the exchange
interactions among pairs of spin-orbitals with like spin.

The determinental matrix elementslinking F 1 and F » are asfollows:

<|1salsb2sa2sb| H |1salsb2ppa2pob| > = < 2s2s | 2po2po>,
< |1lsalsb2sa2sb|H |lsalsh2pia2p.1ib|> =< 2s2s| 2p12p-1>,
<|1salsb2sa2sb| H |1salsb2p.ja2pib| > = < 2s2s| 2p.12p;>,
where the Dirac convention has been introduced as a shorthand notation for the two-
electron integrals (e.g., < 2s2s | 2pp2po> represents 02s*(r1)2s" (r2) €2/r12 2po(r1) 2po(r2)
drq dro).

The three integrals shown above can be seen to be equal and to be of the exchange-
integral form by expressing the integrals in terms of integrals over cartesian functions and

recognizing identities due to the equiva ence of the 2py, 2py, and 2p; orbitals. For example,

< 2825 | 2p12p.1> = (1) < 2525 | [2py +i 2py] [2px -i 2py] >} =



12{<2S2S|XX>+<2s2S|yy>+i<2s2s|yXx>-i<2s2s|xy>} =

<2s2s|xx>=Kosx
(here the two imaginary terms cancel and the two remaining real integrals are equal);

<252s82pp2pp>=<282s|22>=<2525|XxX>=Kpsx

(thisis because Kosz = Kosx = Kosy);

<2s2s|2p.12p1 > = U2 {<2s2s|[2px -i 2py] [2px +i 2py] >} =
<2s2s|x X >= 02s"(r1) 25" (r2) €2/r12 2px(r1) 2px(r2) drq dro = Kosx.
These integrals are clearly of the exchange type because they involve the coulombic
interaction of the 2s 2py y or z Overlap charge density with itself.
Moving on, the matrix elements among the three determinantsin F , are given as
follows:
< |1sa1shb2ppa2pgb| H |1sa 1sb2pga 2pgb| >
= 2hys + 2hop + J1s1s + Jopz,2pz + A1s,2p - 2K1s2p
(J1s,2p and K15 2p are independent of whether the 2p orbital is 2py, 2py, or 2p);
< |1salsb2pia2p.1b| H |1salsb2pia2p.1b| >

= 2hys + 2hop + 1515 + A1s2p - 2K1s2p + <2P12p-112p12p-1>;

< |1salsb2p.i1a2pib| H |1salsb2p.ja2p;ib| >
2hys + 2hop + J1s1s + AJ1s2p - 2K1s2p + <2p-12P112p-12p1>;

< |1salsh2ppa2pgb| H [1salsb2pia2p.1b| > = < 2po2po | 2p12p-1 >



< |1salsh2ppa2pgb| H [1salsb2p.ja2pib| > = < 2po2po | 2p-12p1 >
< |1salsh2pia2p.1b| H |1salsb2p.ja2pib| > =< 2p12p.1 | 2p-12p1 >.

Certain of these integrals can be recast in terms of cartesian integrals for which
equivalences are easier to identify asfollows:

< 2po2p0 | 2P12p-1>=<2pp2Po | 2p-12p1>=<ZzZ| XX >=Kzx;

<2P12p.1]2p-12p1 > =<XX|yy >+ V2[<XX|XX>-<XYy|XYy>]
=Kxy +U2[ Jx - Iyl
<2p12p.12p12p.1> = <2p-12p1|2p-12p1> = V2(Ix x + Ixy)-

Finally, the 2x2 CI matrix corresponding to the CSFs F 1 and F 2 can be formed
from the above determinental matrix e ements; thisresultsin:

H11 = 2hgs+ 2hps + J1s1s + 4J15,25 + 25,25 - 2K 15,25 ;
H1o=-Kosx /OB
Hoo = 2h1s + 2hpp + J1g1s + AJ1s2p - 2K1s2p + 72 - 2/3 Ky x.

The lowest eigenvalue of this matrix provides this Cl calculation's estimate of the ground-
state 1S energy of Be; its eigenvector provides the Cl amplitudesfor F 1 and F 2 in this
ground-state wavefunction. The other root of the 2x2 secular problem gives an
approximation to another 1S state of higher energy, in particular, a state dominated by the
3V2[|1sa1sh2pga2pgb | - [1salsb2pia2p.ib |- |1salsb2p.ia2pib ]

CSF.

11. Asanother example, consider the matrix elements which arisein electric dipole
trangitions between two singlet electronic states:

<Y1 |EXS;er|Y 2> Here E- Sj erj isthe one-electron operator describing the interaction
of an electric field of magnitude and polarization E with the instantaneous dipole moment



of the electrons (the contribution to the dipole operator arising from the nuclear charges- Sz
Z£2 R does not contribute because, when placed between Y 1 and Y 2, this zero-electron
operator yields avanishing integral because Y 1 and Y 2 are orthogonal).

When the states Y 1 and Y 2 are described as linear combinations of CSFs as
introduced earlier (Y i = Sk CikF k), these matrix elements can be expressed in terms of
CSF-based matrix elements< F g | Sj erj |F L >. Thefact that the electric dipole operator is
aone-electron operator, in combination with the SC rules, guarantees that only states for
which the dominant determinants differ by at most a single spin-orbital (i.e., those which
are"singly excited") can be connected via electric dipole transitions through first order
(i.e., in aone-photon transition to which the <Y 1 |S; erj [Y 2 > matrix elements pertain). It
isfor thisreason that light with energy adequate to ionize or excite deep core electronsin
atoms or molecules usually causes such ionization or excitation rather than double
ionization or excitation of valence-level eectrons; the latter are two-electron events.

In, for example, thep => p* excitation of an olefin, the ground and excited states
are dominated by CSFs of the form (where all but the "active" p and p* orbitals are not
explicitly written) :

F1=] ...papb]|
and
Fo=1C2[| ..pap*b|-| ..pbp*al].

The electric dipole matrix element between these two CSFs can be found, using the SC
rules, to be

d@[<plrp*>+<p|rp”>]=Qe<p]|rp*>.

Notice that in evaluating the second determinental integral

<| ...papb|e | ..pbp*a|>, asignchange occurs when one puts the two determinants
into maximum coincidence; this sign change then makesthe minussignin F o yield a
positive sign in the final result.

V. Summary



In all of the above examples, the SC rules were used to reduce matrix elements of
one- or two- electron operators between determinental functionsto one- or two- electron
integrals over the orbitals which appear in the determinants. In any ab initio electronic
structure computer program there must exist the capability to form symmetry-adapted CSFs
and to evaluate, using these SC rules, the Hamiltonian and other operators matrix elements
among these CSFsin terms of integrals over the mos that appear in the CSFs. The SC rules
provide not only the tools to compute quantitative matrix elements; they allow oneto
understand in qualitative terms the strengths of interactions among CSFs. In the following
section, the SC rules are used to explain why chemical reactions in which the reactants and
products have dominant CSFsthat differ by two spin-orbital occupancies often display
activation energies that exceed the reaction endoergicity.



Chapter 12
Along "reaction paths’, configurations can be connected one-to-one according to their
symmetries and energies. Thisis another part of the Woodwar d-Hoffmann rules

I. Concepts of Configuration and State Energies
A. Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular el ectronic state of an atom or molecule has been
expressed in terms of Hamiltonian matrix elements, using the SC rules, over the various
spin-and spatialy-
adapted determinants or CSFs which enter into the state wavefunction.

E:S|,J< Fi |H|FJ>C| Cy.

The diagona matrix elements of H in the CSF basis multiplied by the appropriate CI
amplitudes<F| |H |F| > C C; represent the energy of the Ith CSF weighted by the
strength ( G2) of that CSF in the wavefunction. The off-diagonal elements represent the
effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have
nearly thesameenergy (i.e,<F||H|F>@<Fj| H|F3>)

and thereis strong coupling (i.e,, < F||H |F 3> islarge). Whenever the

CSFs are widely separated in energy, each wavefunction is dominated by asingle CSF.

B. CSFsInteract and Couple to Produce States and State Correlation Diagrams

Just as orbital energies connected according to their symmetries and plotted as
functions of geometry constitute an orbital correlation diagram, plots of the diagonal CSF
energies connected according to symmetry, constitute a configuration correlation diagram (
CCD ). If, near regions where energies of CSFs of the same symmetry cross (according to
the direct product rule of group theory discussed in Appendix E, only CSFs of the same
symmetry mix because only they have non-vanishing < F | H | F 3> matrix elements), Cl

mixing is allowed to couple the CSFsto giverise to "avoided crossings’, then the CCD is
converted into a so-called state correlation diagram ( SCD ).

C. CSFsthat Differ by Two Spin-Orbitals Interact Less Strongly than CSFsthat Differ by
One Spin-Orbital



The strengths of the couplings between pairs of CSFs whose energies cross are
evauated through the SC rules. CSFsthat differ by more than two spin-orbital occupancies
do not couple; the SC rules give vanishing Hamiltonian matrix elements for such pairs.
Pairsthat differ by two spin-orbitals (e.g. |.. fa... fp...] vS|.. f5... fp...]) have interaction
strengths determined by the two-€electron integrals
<ab|ab' >-<ab|ba>. Parsthat differ by asingle spin-orbital (e.g. |.. fa.. ... | vs|..
fa......|) are coupled by the one- and two- electron partsof H: <a|f |b>+ Sj [< g | bj> -
<@g |jb>]. Usudly, couplings among CSFs that differ by two spin-orbitals are much
weaker than those among CSFsthat differ by one spin-orbital. In the latter case, the full
strength of H is brought to bear, whereas in the former, only the electron-electron coulomb
potential is operative.

D. State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature
as reflected in the C; coefficients changes as one passes through geometries where
crossingsin the CCD occur. The SCD isthe ultimate product of an orbital and
configuration symmetry and energy analysis and gives one the most useful information
about whether reactionswill or will not encounter barriers on the ground and excited state
surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory
closing of 1,3-butadiene to produce cyclobutene. The OCD given earlier for this proposed
reaction path is reproduced below.
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Recall that the symmetry labels e and o refer to the symmetries of the orbitals under
reflection through the one Cy, plane that is preserved throughout the proposed disrotatory

closing. Low-energy configurations (assuming one is interested in the thermal or low-lying
photochemically excited-state reactivity of this system) for the reactant molecule and their
overall space and spin symmetry are as follows:

(i) p12p22 = 1€2102, 1Even

(i) p12p2lpst = 1e21012el, 30dd and 1Odd.

For the product molecule, on the other hand, the low-lying states are
(iii) s2p2 = 1e22¢2, 1Even

(iv) s2plp*l=1e22el10!, 30dd, 1Odd.

Notice that although the lowest energy configuration at the reactant geometry p12p22 =
1e2102 and the lowest energy configuration at the product geometry s2p2 = 1e22¢e? are
both of 1Even symmetry, they are not the same configurations; they involve occupancy of
different symmetry orbitals.



In constructing the CCD, one must trace the energies of all four of the above CSFs
(actually there are more because the singlet and triplet excited CSFs must be treated
independently) along the proposed reaction path. In doing so, one must realize that the
12102 CSF has low energy on the reactant side of the CCD because it corresponds to
p12p22 orbital occupancy, but on the product side, it corresponds to s2p*2 orbital
occupancy and is thus of very high energy. Likewise, the 1e22e2 CSF has low energy on
the product side whereitiss2p2 but high energy on the reactant side where it corresponds
to p12p32 . The low-lying singly excited CSFs are 1e22el10! at both reactant and product
geometries; in the former case, they correspond to p12p2lp3l occupancy and at the latter to
s2p1p*1 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path
resultsin the CCD shown below.

1e22e2

1e2102

2, 2
le 2e
If the two 1Even CSFs which cross are allowed to interact (the SC rules give their

interaction strength in terms of the exchange integral
<|1e2102 | H | |1e22€2 | > = < 1010 | 2e2e > = K 1 2¢ ) to produce states which are

combinations of the two 1Even CSFs, the following SCD resuilts:
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This SCD predicts that the thermal (i.e., on the ground electronic surface)
disrotatory rearrangement of 1,3-butadiene to produce cyclobutene will experience a
symmety-imposed barrier which arises because of the avoided crossing of the two 1Even
configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the
configuration) which is best for the ground state of the reactant is not identical to that of the
product molecule. The SCD & so predicts that there should be no symmetry-imposed barrier
for the singlet or triplet excited-state rearrangement, athough the reaction leading from
excited 1,3-butadiene to excited cyclobutene may be endothermic on the grounds of bond
strengths alone.

It isaso possible to infer from the SCD that excitation of the lowest singlet pp*
state of 1,3-butadiene would involve alow quantum yield for producing cyclobutene and
would, in fact, produce ground-state butadiene. As the reaction proceeds along the singlet
pp” surface this1Odd state intersects the ground 1Even surface on the reactant side of the
diagram; internal conversion (i.e., quenching from the 10dd to the 1Even surfaces induced
by using a vibration of odd symmetry to "digest” the excess energy (much like vibronic
borrowing in spectroscopy) can lead to production of ground-state reactant molecul es.
Some fraction of such events will lead to the system remaining on the 10dd surface until,
further along the reaction path, the 10dd surface again intersects the 1Even surface on the
product sideat which time quenching to produce ground-state products can occur.




Although, in principle, it is possible for some fraction of the eventsto follow the 1Odd
surface beyond this second intersection and to thus lead to 10dd product molecules that
might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a resullt,
reactions which are chemiluminescent are rare. An appropriate introduction to the use of
OCD's, CCD's, and SCD's as well as the radiationless processes that can occur in thermal
and photochemical reactionsis given in the text Energetic Principles of Chemical Reactions
, J. Simons, Jones and Bartlett, Boston (1983).

[1. Mixing of Covalent and lonic Configurations

As chemists, much of our intuition concerning chemical bondsis built on simple
models introduced in undergraduate chemistry courses. The detailed examination of the Ho
molecule via the valence bond and molecular orbital approaches formsthe basis of our
thinking about bonding when confronted with new systems. Let us examine this model
system in further detail to explore the electronic states that arise by occupying two orbitals
(derived from the two 1s orbitals on the two hydrogen atoms) with two electrons.

In total, there exist six eectronic states for all such two-orbital, two-electron
systems. The heterolytic fragments X +Y: and X: +Y producetwo singlet states; the
homolytic fragments X- + Y- produce one singlet state and a set of threetriplet states
having Ms =1, 0, and -1. Understanding the relative energies of these six states, their
bonding and antibonding characters, and which molecular state dissociates to which
asymptote are important.

Before proceeding, it isimportant to clarify the notation (e.g., X-, Y-, X, Y: ,
etc.), which is designed to be applicable to neutral aswell as charged species. In al cases
considered here, only two electrons play active rolesin the bond formation. These electrons
are represented by the dots. The symbols X and Y- are used to denote speciesin which a
single electron is attached to the respective fragment. By X: , we mean that both electrons
are attached to the X- fragment; Y means that neither electron resides on the Y - fragment.

L et us now examine the various bonding situations that can occur; these examples will help
illustrate and further clarify this notation.

A. The H Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-€electron single bond formation case can be
more complex than often thought, let us consider the H, system in more detail. Inthe
molecular orbital description of Hp, both bonding s g and antibonding s, mos appear.



There are two electrons that can both occupy the s g mo to yield the ground €lectronic state
Ho(1S4*, sg?); however, they can also occupy both orhitals to yield 3Sy*(s¢1s 1) and
ISy (sglsyd), or both can occupy the sy mo to givethe 1Sg*(s 2) state. As
demonstrated explicitly below, these latter two states dissociate heterolyticallyto X +Y @ =
H* + H-, and are sufficiently high in energy relativeto X + Ye = H + H that we ordinarily
can ignore them. However, their presence and character are important in the development

of afull treatment of the molecular orbital model for Ho and are essential to a proper
treatment of casesin which heterolytic bond cleavage is favored.

B. Casesin Which Heterolytic Bond Cleavage is Favored

For some systems one or both of the heterolytic bond dissociation asymptotes
(e.g., X+Y: orX: +Y)may belower in energy than the homolytic bond dissociation
asymptote. Thus, the states that are analogues of the 1S *(s¢1s 1) and 1S4*(s2) states of
H2 can no longer beignored in understanding the valence states of the XY molecules. This
situation arises quite naturally in systems involving transition metals, where interactions
between empty metal or metal ion orbitals and 2-electron donor ligands are ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies
lower than the homolytic products. The first involves transition metal dimer cations, Mo*.
Especially for metals to the right side of the periodic table, such cations can be considered
to have ground-state el ectron configurations with s2d"d"*1 character, where the d electrons
are not heavily involved in the bonding and the s bond is formed primarily from the metal
atom sorbitals. If thes bond is homolytically broken, oneforms X- + Y. =M (sld"1)
+ M* (sldn). For most metals, this dissociation asymptote lies higher in energy than the
heterolytic products X: +Y =M (d") + M+ (s0dn+1), since the latter electron
configurations correspond to the ground states for the neutrals and ions, respectively. A
prototypical specieswhich fits this bonding picture is Nio*.

The second type of system in which heterolytic cleavage isfavored ariseswith a
metal-ligand complex having an atomic metal ion (with asd"*1 configuration) and atwo
electron donor, L : . A prototypeis(Ag CgHg)* which was observed to photodissociate
toform X- + Y- = Ag(4S, sld10) + CgHg*(2B1) rather than the lower energy
(heterolytically cleaved) dissociation limit Y + X: =
AgH(1S, sPd19) + CgHg (1A1).

C. Anaysis of Two-Electron, Two-Orbital, Single-Bond Formation



1. Orbitals, Configurations and States
Theresultant family of six electronic states can be described in terms of the six

configuration state functions (CSFs) that arise when one occupies the pair of bonding s
and antibonding s* molecular orbitals with two electrons. The CSFs are combinations of

Slater determinants formed to generate proper spin- and spatial symmetry- functions.

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs
can be formed from one or more Slater determinants. For example, to describe the singlet
CSF corresponding to the closed-shell s2 orbital occupancy, asingle Slater determinant

1S (0) = |sa sb| = (2)VY2{ sa(1)sb(2) - sb(l)sa(2) }
suffices. An analogous expression for the (s*)2 CSF is given by

1S*™ (0) = |s*as*b| = (2 V2{ s*a (1)s*b (2)-s*a (2) s*b (1) }.

Also, the Mg = 1 component of the triplet state having ss* orbital occupancy can be
written as asingle Slater determinant:

38" (1) = |sas*al = (2V2{ sa(l)s* a(2)- s* a(l)sa(?) },
ascan the Mg = -1 component of thetriplet state
3S*(-l) = |sbs*b| = (2)'Y2{ sb(1) s* b(2) - s* b(1)sb(2) }.

However, to describe the singlet CSF and Mg = O triplet CSF belonging to the ss*
occupancy, two Slater determinants are needed:

15* (0) = — [Vsas*bYs- Ysbs*alj

V2

isthe singlet CSF and

*
3S (0) = \/—1_2[1/5as*b1/2 + Ysbs*alj



isthetriplet CSF. In each case, the spin quantum number S, its z-axis projection Ms , and
theL quantum number are given in the conventional 2S+1L (Mg) notation.

2. Orbital, CSF, and State Correlation Diagrams

i. Orbital Diagrams
The two orbitas of the constituent atoms or functional groups (denoted s, and sy

for convenience and in anticipation of considering groups X and Y that possess valence s
orbitals) combine to form abonding s = sg molecular orbital and an antibonding s* = sy

molecular orbital (mo). Asthe distance R between the X and Y fragmentsis changed from
near its equilibrium value of Re and approaches infinity, the energies of thes and s*

orbitals vary in amanner well known to chemists as depicted below.

Energies of the bonding s and antibonding s* orbitals as functions of interfragment
distance; Re denotes a distance near the equilibrium bond length for XY'.

In the heteronuclear case, the sy and sy orhitals till combine to form abonding s
and an antibonding s* orbital, athough these orbitals no longer belong to g and u
symmetry. The energies of these orbitals, for R values ranging from near Reto R® ¥, are

depicted below.



J

Energies of the bonding s and antibonding s* orbitals as functions of internuclear distance.
Here, X ismore electronegativethan Y.

For the homonuclear case, as R approaches ¥, the energies of thesg and s
orbitals become degenerate. Moreover, asR ® 0, the orbital energies approach those of the
united atom. In the heteronuclear situation, as R approaches ¥, the energy of thes orbita
approaches the energy of the s, orbital, and the s* orbital convergesto the s, orbital
energy. Unlike the homonuclear case, thes and s* orbitals are not degenerate as R® ¥ .
The energy "gap" betweenthe s and s* orbitalsat R =¥ depends on the electronegativity
difference between the groups X and Y. If thisgapissmall, it is expected that the behavior
of this (dightly) heteronuclear system should approach that of the homonuclear X2 and Y2
systems. Such similarities are demonstrated in the next section.

ii. Configuration and State Diagrams

The energy variation in these orbital energies givesriseto variationsin the energies
of the six CSFs and of the six electronic states that arise as combinations of these CSFs.
The three singlet (1S (0),1S™ (0), and 1S™* (0) ) and threetriplet (3™ (1), 3S™ (0) and
35*(-1)) CSFsare, by no means, the true electronic eigenstates of the system; they are
simply spin and spatial angular momentum adapted antisymmetric spin-orbital products. In
principle, the set of CSFsF | of the same symmetry must be combined to form the proper
electronic eigenstates Y i of the system:



YK=|S CKF.

Within the approximation that the valence el ectronic states can be described adequately as
combinations of the above valence CSFs, thethree 1S, 1S* | and 1S** CSFs must be
combined to form the three lowest energy valence electronic states of 1S symmetry. For
the homonuclear case, the 1S™ CSF does not couple with the other two because it is of
ungerade symmetry, while the other CSFs 1S and1S** have gerade symmetry and do
combine.

The relative amplitudes C/K of the CSFs F | within each state Y k are determined by
solving the configuration-interaction (Cl) secular problem:

S éF|1/Hl/2FJﬁc'§ = Ex c‘f
J

for the state energies Ex  and state ClI coefficient vectors C'f . Here, H isthe electronic

Hamiltonian of the molecule.

To understand the extent to which the 1S and 1S** (and 1S* for heteronuclear
cases) CSFs couple, it is useful to examine the energies
& | YHYzF iof these CSFsfor the range of internuclear distances of interest Re<R<¥ .
Near Rg, Where the energy of the s orbital is substantially below that of the s* orbital, the
s21S CSF lies significantly below thess* 1S* CSF which, in turn lies below thes™*?
1S** CSF; the large energy splittings among these three CSFs simply reflecting the large
gap betweenthes ands™ orbitals. The3S* CSF generally lies below the corresponding
1S* CSF by an amount related to the exchange energy between thes ands™ orbitals.

AsSR® ¥, the CSF energies & | YHYF jfiare more difficult to "intuit" because the
s and s* orbitals become degenerate (in the homonuclear case) or nearly so. To pursue this
point and arrive at an energy ordering for the CSFsthat is appropriatetothe R® ¥ region,
itisuseful to express each of the above CSFsin terms of the atomic orbitals s; and sy that
comprises and s*. To do so, the LCAO-MO expressionsfor s and s*,

s=C[sx+zs)]
and
s*=C*[zsx - 5],



are substituted into the Slater determinant definitions of the CSFs. Here C and C* are the
normalization constants. The parameter z is 1.0 in the homonuclear case and deviates from
1.0inrelation to the s, and s, orbital energy difference (if s liesbelow s, then z < 1.0; if
sx liesabovesy, z > 1.0).

To smplify the analysis of the above CSFs, the familiar homonuclear case in which
z=1.0will be examined first. The process of substituting the above expressionsfor s and
s* into the Slater determinants that define the singlet and triplet CSFs can beillustrated as
follows:

1S(0) = ¥sa sh¥s= C2¥x(sy + sy) a(sx + sy) b'%
= C2[Ysy a sx b¥a+ Vsy a sy bYa+ Vs, a sy b+ sy a sy b'g

Thefirst two of these atomic-orbital-based Slater determinants (Ysx a sy b%2and sy a sy
b3 are denoted "ionic" because they describe atomic orbital occupancies, which are
appropriatetothe R® ¥ region, that correspondto X: +Y and X +Y : vaence bond
structures, while¥sy a sy b%2and ¥sy a sy b'zare called "covalent” because they
correspond to X- + Y- structures.

In similar fashion, the remaining five CSFs may be expressed in terms of atomic-
orbital-based Slater determinants. In so doing, use is made of the antisymmetry of the
Slater determinants
|f1fof3|= -|f1f3f2], whichimpliesthat any determinant in which two or more spin-
orbitalsareidentical vanishes|f1fofo|= -|f1f2f2|=0. Theresult of decomposing the
mo-based CSFsinto their atomic orbital componentsis as follows:

1S** (0) = V¥s*a s*bY
=C*2[ Ysy a s bYa+Ysya sy bz
- Y8ca sy b%- Ysya sy b'j
1S* (0) :\/—1_2[1/£a s*bY%- Ysb s*alj
= CC* V2 [Vsx a sx b¥s- Ysya sy b¥j

3S* (1) =VYsa s'a¥
=CC" 2¥sy a s als



3S* (0) = \/—1_2[1/£a s*bY%+ Ysb s*aq

=CC" 2 [¥5, a s b¥s- Ysca sy bYj

3S* (-1) =V¥sa s"al
= CC* 2Ysy b s¢ b¥s

These decompositions of the six valence CSFsinto atomic-orbital or valence bond
components allow the R =¥ energies of the CSFsto be specified. For example, the fact
that both 1S and 1S** contain 50% ionic and 50% covalent structuresimpliesthat, as R ®
¥ , both of their energies will approach the average of the covalent and ionic atomic
energies/2[E (X-) +E(Y:) +E(Y)+E(X: )]. The1S* CSF energy approachesthe
purely ionicvalue E (Y)+ E (X: ) asR® ¥. Theenergiesof 3S*(0), 35*(1) and 3S*(-1)
all approach the purely covalent valueE (X-) + E(Y-) asR® ¥.

The behaviors of the energies of the six valence CSFs as R varies are depicted
below for situations in which the homolytic bond cleavage is energetically favored (i.e., for
which E(X-)+E(Y-) < E(Y)+tE(X:)).



E(Y) +E(X)

U2 [E(Xs) +E(Ye) + E(Y) +E(X3)]

E(Xe) +E(Ye)

Configuration correlation diagram for homonuclear case in which homolytic bond cleavage
isenergetically favored.

When heterolytic bond cleavage is favored, the configuration energies as functions of
internuclear distance vary as shown below.



e}

E(Xe) + E(Y?)

1/2 [E(X#) + E(Ye) + E(Y) + E(X2)]

E(Y) + E(X)

R —»

Configuration correlation diagram for a homonuclear case in which heterolytic bond
cleavageis energetically favored.

It is essentia to realize that the energies & | YHYF |fiof the CSFs do not represent
the energies of the true el ectronic states Ex ; the CSFs are simply spin- and spatial-
symmetry adapted antisymmetric functions that form abasis in terms of which to expand
the true electronic states. For R-values at which the CSF energies are separated widely, the
true Ex are rather well approximated by individua & | YHY# i values; such isthe case
near Re

For the homonuclear example, the 1S and 1S** CSFsundergo CI coupling to form
apair of states of 1S symmetry (the 1S* CSF cannot partake in this CI mixing becauseit is
of ungerade symmetry; the 3S* states can not mix because they are of triplet spin
symmetry). The Cl mixing of the 1S and 1S** CSFsis described in terms of a 2x2 secular

problem



O CNC
]
m
: (D> M
i

The diagonal entries are the CSF energies depicted in the above two figures. Using the
Slater-Condon rules, the off-diagonal coupling can be expressed in terms of an exchange
integral betweenthe s and s* orbitas:

ASYHYAS**fi= d/sa shy¥HY3/s*a s*b¥4i= Easl/%i—z Yos*s*fi= Kgg*

AtR® ¥, wherethelS and 1S** CSFs are degenerate, the two solutions to the above Cl
secular problem are:

E =U2[ E(X-)+E(Y:) +E(Y)*E(X:)] - éssl/zﬁlz 14s* S*f
+

with respective amplitudes for the 1S and 1S** CSFs given by

A. =+ B. :;i_
2

The first solution thus has

Y. = L [Ysa sbY%.- Ys*a s*bhY]

V2

which, when decomposed into atomic valence bond components, yields

1
Y. == [ VYs.a syb¥e- ¥s.b syaq.
NG [ Yaxa sy sxb sya’q
The other root has
1
Y == [Ysa sbhla+VYs*a s*b?
+ 73 [ /3
1 1
== Usa Syble+ Vs, a s,byg.
NG [ Y8xa sx sya syb%]

Clearly, 1S and 1S**, which both contain 50% ionic and 50% covalent parts, combine to
produceY _ whichispurely covalent and Y 4+ which is purely ionic.



The above strong Cl mixing of 1S and 1S** asR® ¥ quditatively dtersthe
configuration correlation diagrams shown above. Descriptions of the resulting valence
snglet and triplet S statesare given below for homonuclear situations in which covalent
products lie below and above ionic products, respectively. Note that in both cases, there
exists asingle attractive curve and five (n.b., the triplet state has three curves superposed)
repulsive curves.

E(Y) + E(X))

el

E(Xs) + E(Y+)

R —»

State correlation diagram for homonuclear case in which homolytic bond cleavageis
energetically favored.



E(Xe) + E(Y?)

e}

E(X:) + E(Y)

R —»

State correlation diagram for homonuclear case in which heterolytic bond cleavageis
energetically favored.

If the energies of the s, and sy orbitals do not differ significantly (compared to the
coulombic interactions between electron pairs), it is expected that the essence of the
findings described above for homonuclear species will persist even for heteronuclear
systems. A decomposition of the six CSFs listed above, using the heteronuclear molecular
orbitals introduced earlier yields:

1S(0) = C2[ ¥sxa sb¥e+z2 Vsya sybVs
+Z Ysa syb¥e+zYsya sb'j

1S**(0) = C*2[22 Ysxa sbY2e+ Ysya syblz
-ZY/s¢a sybYe-z Ysya s

cc*
V2

+(Z2- 1)Vsya sib¥et (22 - 1) Ysxa syb¥4

1s*(0) = [ 2ZY/sxa sxb¥2-2zYsya syb'z



35*(0) = % (2+1) [Yaya sb¥e- Vaa s,bvg

35%(1) = CC* (22 + 1) Yosya sxa¥
35" (-1) = CC* (22 + 1) ¥s,b sxb¥s

Clearly, thethree 3S* CSFsretain purely covalent R® ¥ character eveninthe
heteronuclear case. The 1S, 1S**, and 1S* (all three of which can undergo CI mixing
now) possess one covalent and two ionic components of the form ¥sya syb'2+ ¥sya
sxb¥%; ¥sxa sxb¥s and ¥sya syb'z Thethree singlet CSFs therefore can be combined to
produce asinglet covalent product function ¥/sca syb%2+ Vsya scb%2aswell asboth X +Y

and X : + Y ionic product wavefunctions
Ysya syb%2and ¥sca sxb¥; respectively. In most situations, the energy ordering of the
homolytic and heterolytic dissociation productswill beeither E(X-) +E(Y-)<E(X: ) +
E(Y)<EX)+E(Y:)orE(XX:)+E(Y)<EX:-)+E(Y-)<E(X)+E(Y:).

The extensions of the state correlation diagrams given above to the heteronuclear
situations are described below.



E(X) + E(Y:)

M ——

E(X) + E(Y)

E(Xe) + E(Y?)

State correlation diagram for heteronuclear case in which homolytic bond
cleavage is energetically favored.



E 3¢ E(X) + E(Y3)

E(Xe) + E(Y?)
E(X) + E(Y)

R_>

State correlation diagram for heteronuclear case in which heterolytic
bond cleavage to one product is energetically favored but homolytic
cleavage lies below the second heterolytic asymptote.
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E E(Xe) + E(Y*)
1g *

E(X) + E(Y:)
E(X:) + E(Y)

State correlation diagram for heteronuclear case in which both heterolytic bond cleavage
products are energetically favored relative to homolytic cleavage.

Again note that only one curveisattractive and five arerepulsivein al cases. In
these heteronuclear cases, it isthe mixing of the 1S, 1S*, and 1S** CSFs, which varies

with R, that determines which molecular state connects to which asymptote. As the energy
ordering of the asymptotes varies, so do these correlations.

3. Summary



Even for the relatively simple two-electron, two-orbital single-bond interactions
between a pair of atoms or functional groups, the correlations among energy-ordered
molecular states and energy-ordered asymptotic states is complex enough to warrant
considerations beyond what is taught in most undergraduate and beginning graduate
inorganic and physical chemistry classes. In particular, the correlations that arise when one
(or both) of the heterolytic bond dissociation aysmptotes lies below the homolytic cleavage
products are important to realize and keep in mind.

In all casestreated here, the three singlet states that arise produce one and only one
attractive (bonding) potential energy curve; the other two singlet surfaces are repulsive. The
three triplet surfaces are also repulsive. Of course, in arriving at these conclusions, we have
considered only contributions to the inter-fragment interactions that arise from valence-
orbital couplings, no consideration has been made of attractive or repulsive forces that
result from one or both of the X- and Y - fragments possessing net charge. In the latter
case, one must, of course, add to the qualitative potential surfaces described here any
coulombic, charge-dipole, or charge-induced-dipole energies. Such additional factors can
lead to attractive long-range interactions in typical ion-molecule complexes.

The necessity of the analysis devel oped above becomes evident when considering
dissociation of diatomic transition metal ions. Most transition metal atoms have ground
states with electron configurations of theform s2d (for first-row metals, exceptions
include Cr (sld®), Cu (std0), and the sld® state of Ni is basically isoenergetic with the
s2d8 ground state). The corresponding positive ions have ground states with stdn (Sc, Ti,
Mn, Fe) or s0d*1 (V, Cr, Co, Ni, Cu) electron configurations. For each of these
elements, the aternate electron configuration leads to low-lying excited states.

One can imagine forming aM 2" metal dimer ion with a configuration described as
sg? d2+1  where the s¢ bonding orbital isformed primarily from the metal s orbitals and
the d orbitals are largely nonbonding (as is particularly appropriate towards the right hand
side of the periodic table). Cleavage of such as bond tends to occur heterolytically since
this forms lower energy species, M(s2d") + M*(s0dn+1), than homolytic cleavage to
M(stdn*1) + M+(sld"). For example, Cos * dissociates to Co(d’) + Cot(s0d8) rather
than to Co(std8) + Co*(sld”),2 which lies 0.85 eV higher in energy.

Quialitative aspects of the above analysis for homonuclear transition metal dimer
ionswill persist for heteronuclear ions. For example, the ground-state dissociation
asymptote for CoNi* isthe heterolytic cleavage products Co(s?d”) + Ni*(s0d®). The
aternative heterolytic cleavage to form Co*(s%d8) + Ni(s2d8) is 0.23 eV higher in energy,
while homolytic cleavage can lead to Co*(sld’) + Ni(s1d9), 0.45 eV higher, or Co(sld8) +
Ni*(sld8), 1.47 eV higher. Thisisthe situation illustrated in the last figure above.



[11. Various Types of Configuration Mixing
A. Essential ClI

The above examples of the use of CCD's show that, as motion takes place along the
proposed reaction path, geometries may be encountered at which it is essential to describe
the electronic wavefunction in terms of alinear combination of more than one CSF:

Y=5CFy,

where theF | are the CSFs which are undergoing the avoided crossing. Such essential
configuration mixing is often referred to as treating "essential Cl".

B. Dynamical Cl

To achieve reasonable chemical accuracy (e.g., + 5 kcal/mole) in electronic
structure calculationsit is necessary to use a multiconfigurational Y even in situations

where no obvious strong configuration mixing (e.g., crossings of CSF energies) is
present. For example, in describing the p2 bonding electron pair of an olefin or the ns?

electron pair in alkaline earth atoms, it isimportant to mix in doubly excited CSFs of the
form (p*)2 and np? , respectively. The reasons for introducing such a Cl-level treatment
were treated for an akaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by
using the identity:

Cy1|.fafb.|]-Co|..f'laf'b.|

=Cq2{|..(f-xtYa (f +xfYb..|-|..(f -xf)b (f +xf)a..|},
where

x = (Co/Cp)V2,

This allows one to interpret the combination of two CSFswhich differ from one another by
adouble excitation from one orbital (f ) to another (f ') as equivalent to a singlet coupling of



two different (non-orthogonal) orbitals (f - xf') and (f + xf'). Thispictureis closely
related to the so-called generalized vaence bond (GVB) model that W. A. Goddard and his
co-workers have developed (see, for example, W. A. Goddard and L. B. Harding, Annu.
Rev. Phys. Chem. 29, 363 (1978)). In the simplest embodiment of the GVB model, each
electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron
pair is"doubly excited" to a correlating orbital. The direct product of all such pair
correlations generates the GV B-type wavefunction. In the GVB approach, these electron
correlations are not specified in terms of double excitations involving CSFs formed from
orthonormal spin orhitals; instead, explicitly non-orthogonal GVB orbitals are used as
described above, but the result is the same as one would obtain using the direct product of
doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital
pairs' involve mixing the p and p* orbitals to produce two left-right polarized orbitals as
depicted below:

e

In this case, one says that the p2 electron pair undergoes left-right correlation when the
(p*)2 CSF is mixed into the Cl wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the nsand
np orhitals (actually, one must mix in equal amounts of p1, p-1, and pg orbitalsto preserve

p+Xp p-Xp
left polarized right polarized

overall 1S symmetry in this case), and give rise to angular correlation of the electron pair.
Use of an (n+1)s2 CSF for the alkaline earth calculation would contribute in-out or radial
correlation because, in this case, the polarized orbital pair formed from the nsand (n+1)s
orbitals would be radially polarized.

The use of doubly excited CSFsis thus seen as a mechanism by which Y can place
electron pairs, which in the single-configuration picture occupy the same orbital, into



different regions of space (i.e., one into amember of the polarized orbital pair) thereby
lowering their mutual coulombic repulsions. Such electron correlation effects are referred to
as "dynamical electron correlation”; they are extremely important to include if one expects
to achieve chemically meaningful accuracy (i.e., + 5 kcal/mole).




Section 3 Exercises, Problems, and Solutions

Review Exercises

1. For the given orbital occupations (configurations) of the following systems, determine
all possible states (all possible allowed combinations of spin and space states). Thereisno
need to form the determinental wavefunctions simply label each state with its proper term
symbol. One method commonly used is Harry Grays "box method" found in Electrons
and Chemical Bonding.

a) CH» 13223 21by23 11by 1
b.) B2 1s421s225¢22s21p12pyt

c.) Oo 1542152254225 21p*3s ¢21pg2
d) Ti 1s22s22p63s23p64s23d14dl

e) Ti 1522522p63523p64523d2

Exercises

1. Show that the configuration (determinant) corresponding to the Lit 1s(a)ls(a) state
vanishes.

2. Construct the 3 triplet and 1 singlet wavefunctions for the Li+ 1s12s! configuration.
Show that each state is a proper eigenfunction of 2 and S; (use raising and lowering

operators for &)
3. Construct wavefunctions for each of the following states of CH>:

a) 1B1 (1a122321by235111b11)

b.) 3B1(1ay22821b2238111b11)

c.) A1 (1812222102235 2)
4. Construct wavefunctions for each state of the 1s22s23s21p2 configuration of NH.
5. Construct wavefunctions for each state of the 1s12s13sl configuration of Li.

6. Determine all term symbols that arise from the 1s22s22p23d1 configuration of the excited
N atom.

7. Caculate the energy (using Slater Condon rules) associated with the 2p valence electrons
for the following states of the C atom.

i. 3P(M =1,Mg=1),

ii. 3P(M_=0,M s=0),
iii. 1S(M_=0,M s=0), and
iv. 1D(M =0,M 5=0).

8. Calculate the energy (using Slater Condon rules) associated with the p valence e ectrons
for the following states of the NH molecule.

i. ID(M_=2, Mg=0),
ii. 1S (M_=0, M s=0), and
iii. 3S (M_=0, Mg=0).

Problems



1. Let usinvestigate the reactions:
i CH2(tA7) ® H2+C,and
ii. CH2(3B1) ® Hy+C,
under an assumed Cyy, reaction pathway utilizing the following information:

29.2 kcal/mole 32.7 kcal/mole
C atom: 3P 33%%%%%%0® DNYLYLYLL%L%LY® 1S

CBP)+Ho ® CH»(3B1) DE=-78.8 kca/mole

C(ID) +Hy, ® CHy(1A;) DE =-97.0 kcal/mole

IP (H2) > IP (2s carbon).

a Write down (first in terms of 2p, , ; orbitalsand then in terms of 2p, vz

orbitals) the:
I. three Slater determinant (SD) wavefunctions belonging to

the 3P state all of which have Mg = 1,
i. five 1D SD wavefunctions, and
iii. one 1S SD wavefunction.
b. Using the coordinate system shown below, label the hydrogen orbitalssg, sy
and the carbon 2s, 2py, 2py, 2pz, orbitals as a, b1(x), b2(y), or ao. Do the samefor thes,
s, s”, s", n, and pp orhitals of CHy.

P

c. Draw an orhital correlation diagram for the CHo, ® Hy + Creactions. Try to
represent the relative energy orderings of the orbitals correctly.

d. Draw (on graph paper) a configuration correlation diagram for CH»(3B1) ® Ho
+ C showing all configurations which arise from the C(3P) + H2 products. Y ou can
assume that doubly excited configurations lie much (~100 kcal/mole) above their parent
configurations.

e. Repeat step d. for CHx(tA;) ® Ha + C again showing all configurations which
arise from the C(1D) + Ho products.

f. Do you expect the reaction C(3P) + Ho ® CHo to have alarge activation
barrier? About how large? What state of CH> is produced in this reaction? Would

distortions away from Cp, symmetry be expected to raise of lower the activation barrier?
Show how one could estimate where along the reaction path the barrier top occurs.

g. Would C(1D) + H» ® CH> be expected to have alarger or smaller barrier than

you found for the 3P C reaction?
2. The decomposition of the ground-state singlet carbene,



to produce acetylene and 1D carbon is known to occur with an activation energy equal to
the reaction endothermicity. However, when triplet carbene decomposes to acetylene and
ground-state (triplet) carbon, the activation energy exceeds this reaction’'s endothermicity.
Construct orbital, configuration, and state correlation diagrams which permit you to explain
the above observations. Indicate whether single configuration or configuration interaction
wavefunctions would be required to describe the above singlet and triplet decomposition
processes.

3. We want to carry out a configuration interaction calculation on Hy at R=1.40 au. A

minimal basis consisting of normalized 1s Slater orbitalswith z=1.0 givesrise to the
following overlap (S), one-electron (h), and two-electron atomic integrals:

<1sallsg> =0.753° S,
<1salh|llsa> =-1.110, <1sglh|lsa> =-0.968,

<1splsalhjlisalsa> =0.625° <AAJAAS

<AABB> = 0.323, <AB|AB> =0.504, and
<AAJAB> = 0.426.

a. The normalized and orthogonal molecular orbitals we will use for this minimal
basiswill be determined purely by symmetry:
1

Sq=(2+25) 2(1sa + 1sg) , and
1
Su=(2+2S) ?(1sa - 1sp) .
Show that these orbitals are indeed orthogonal .

b. Evaluate (using the one- and two- electron atomic integrals given above) the
unique one- and two- electron integrals over this molecular orbital basis (thisiscaled a

transformation from the ao to the mo basis). For example, evaluate <ujh|us , <uujuus ,
<gujgus , €tc.

c. Using thetwo 1S? configurations s g2, and s 2, show that the elements of the

2x2 configuration interaction Hamiltonian matrix are -1.805, 0.140, and -0.568.

d. Using this configuration interaction matrix, find the configuration interaction
(CI) approximation to the ground and excited state energies and wavefunctions.

e. Evaluate and make arough sketch of the polarized orbitals which result from the

above ground state s g2 and s ;2 Cl wavefunction.

Solutions
Review Exercises

1 a. For non-degenerate point groups one can simply multiply the representations
(since only one representation will be obtained):

a1 A by=by
Constructing a"box" in this case is unnecessary since it would only contain asingle row.
Two unpaired electrons will result in asinglet (S=0, Ms=0), and three triplets (S=1,

Ms=1; S=1, Ms=0; S=1, Mg=-1). The gtateswill be: 3B1(Mg=1), 3B1(Ms=0), 3B1(Ms=-
1), and 1B1(Mg=0).



1 b. Remember that when coupling non-equivalent linear molecule angular momenta,
one simple adds the individual L, values and vector couples the electron spin. So, in this

case (1py12p 1), we have M| values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2). The
term symbol D is used to denote the spatially doubly degenerate level (M| =+2) and there

aretwo digtinct spatially non-degenerate levels denoted by the term symbol S (M =0)
Again, two unpaired electrons will result in asinglet (S=0, Ms=0), and three triplets (S=1,
Ms=1;S=1, M s=0;S=1, Ms=-1). The states generated are then:

1D (M_=2); one state (Ms=0),

1D (M =-2); one state (Ms=0),

3D (M =2); three states (Ms=1,0, and -1),

3D (M =-2); three states (Ms=1,0, and -1),

1S (M_=0); one state (Ms=0),

1S (M_=0); one state (Ms=0),

3S (M =0); three states (Ms=1,0, and -1), and
3S (M =0); three states (Ms=1,0, and -1).

1 c. Constructing the "box" for two equivalent p electrons one obtains:
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From this"box" one