
-I -I~i AI e I

Alb

000-=,,I; i
=z = J

Ad r

Data
Structures

&Their
Algorithms

4 I

Data
Structures

0&Their
Algorithms

Harry R. Lewis
Harvard University

Larry Denenberg
Harvard University

m HarperCollinsPublisbers

Unix is a registered trademark of AT&T.
Let's Make a Deal! is a registered trademark of Hatos-Hall Productions.
Tetris is a trademark of AcademySoft-ELORG.
Rubik's Cube is a registered trademark of Seven Towns Limited, London.
Ada is a registered trademark of the United States Government.
IBM is a registered trademark of International Business Machines Corporation.

Sponsoring Editor: Don Childress
Project Editor: Janet Tilden
Art Direction: Julie Anderson
Cover Design: Matthew J. Doherty
Production Administrator: Beth Maglione
Printer and Binder: R. R. Donnelley & Sons Company
Cover Printer: Phoenix Color Corp.

Data Structures and Their Algorithms

Copyright (1991 by Harry R. Lewis and Larry Denenberg

All rights reserved. Printed in the United States of America. No part of this book
may be used or reproduced in any manner whatsoever without written permis-
sion, except in the case of brief quotations embodied in critical articles and
reviews. For information address HarperCollins Publishers Inc., 10 East 53rd
Street, New York, NY 10022.

Library of Congress Cataloging-in-Publication Data

Lewis, Harry R.
Data structures and their algorithms / Harry R. Lewis, Larry Denenberg.

p. cm.
Includes bibliographical references and index.
ISBN 0-673-39736-X
1. Data structures (Computer science) 2. Algorithms.
I. Denenberg, Larry. II. Title.
QA76.9.D35L475 1991
005.7'3--dc2O 90-23290

CIP

90 91 92 93 9 8 7 6 5 4 3 2 1

To Eunice and Norman Denenberg, and to Elizabeth and Anne Lewis

Contents

Preface xiii

I INTRODUCTION

1.1 Programming as an Engineering Activity 1

1.2 Computer Science Background 3
Memory and Data in Von Neumann Computers
Notation for Programs
Locatives
Abstract Data Types

1.3 Mathematical Background 17
Finite and Infinite Series
Logarithms, Powers, and Exponentials
Order Notation
Recurrence Relations
Naive Probability Theory

Problems 36
References 44

ALGORITHM ANALYSIS 46

2.1 Properties of an Algorithm 46
Effectiveness
Correctness
Termination
Efficiency
Program Complexity

2.2 Exact vs. Growth-Rate Analysis 49
Principles of Mathematical Analysis
Expected-Case and Amortized Analysis

vii

Viii CONTENTS

2.3 Algorithm Paradigms 59
Brute-Force and Exhaustive Search
Greedy Algorithms
Dynamic Programming
NP-Completeness

Problems 65
References 71

LISTS

List Operations 73

Basic List Representations 75
Stack Representation in Contiguous Memory
Queue Representation in Contiguous Memory
Stack Representation in Linked Memory
Queue Representation in Linked Memory

Stacks and Recursion 79

List Representations for Traversals 84

3.5 Doubly Linked Lists 87
Problems 90
References 94

TREES

4.1 Basic Definitions 96

4.2 Special Kinds of Trees 100

4.3 Tree Operations and Traversals 103

4.4 Tree Implementations 108
Representation of Binary Trees
Representation of Ordered Trees
Representation of Complete Binary Trees

4.5 Implementing Tree Traversals and Scans 112
Stack-Based Traversals
Link-Inversion Traversal
Scanning a Tree in Constant Space
Threaded Trees
Implementing Level-Order Traversal
Summary

Problems 125
References 129

LI[
3.1

3.2

3.3

3.4

73

96

CONTENTS ix

ARRAYS AND STRINGS 130

5.1 Arrays as Abstract Data Types 130
Multidimensional Arrays

5.2 Contiguous Representation of Arrays 133
Constant-Time Initialization

5.3 Sparse Arrays 138
List Representations
Hierarchical Tables
Arrays with Special Shapes

5.4 Representations of Strings 143
Huffman Encoding
Lempel-Ziv Encoding

5.5 String Searching 154
The Knuth-Morris-Pratt Algorithm
The Boyer-Moore Algorithm
Fingerprinting and the Karp-Rabin Algorithm

Problems 165

References 173

LIST AND TREE IMPLEMENTATIONS OF SETS 175

6.1 Sets and Dictionaries as Abstract Data Types 175

6.2 Unordered Lists 177

6.3 Ordered Lists 181
Binary Search
Interpolation Search
Skip Lists

6.4 Binary Search Trees 193
Insertion
Deletion

6.5 Static Binary Search Trees 200
Optimal Trees
Probability-Balanced Trees
Median Split Trees

Problems 208

References 216

X CONTENTS

I IJTREE STRUCTURES FOR DYNAMIC DICTIONARIES 219

7.1 AVL Trees 219
Insertion
Deletion

7.2 2-3 Trees and B-Trees 229
2-3 Trees
Red-Black Trees
(a, b)-Trees and B-Trees

7.3 Self-Adjusting Binary Search Trees 243

Problems 251

References 256

I SETS OF DIGITAL DATA 257

8.1 Bit Vectors 257

8.2 Tries and Digital Search Trees 260

8.3 Hashing Techniques 265
Chaining Strategies
Open Addressing Strategies
Deletions

8.4 Extendible Hashing 280

8.5 Hashing Functions 284
Hashing by Division
Hashing by Multiplication
Perfect Hashing of Static Data
Universal Classes of Hash Functions

Problems 291

References 296

SETS WITH SPECIAL OPERATIONS 298

9.1 Priority Queues 298
Balanced Tree Implementations
Heaps
Leftist Trees

CONTENTS Xi

9.2 Disjoint Sets with Union 307
Up-Trees
Path Compression

9.3 Range Searching 317
k-d-Trees for Multidimensional Searching
Quad Trees
Grid Files

Problems 331

References 338

MEMORY MANAGEMENT 341

10.1 The Problem of Memory Management 341

10.2 Records of a Single Size 344
Reference Counts
Mark and Sweep Garbage Collection
Collecting by Copying
Final Cautions on Garbage Collection

10.3 Compaction of Records of Various Sizes 355

10.4 Managing a Pool of Blocks of Various Sizes 357
Allocation Strategies
Data Structures for Freeing

10.5 Buddy Systems 367

Problems 372

References 377

SORTING 379

11.1 Kinds of Sorting Algorithms 379

11.2 Insertion and Shell Sort 381

11.3 Selection and Heap Sort 386

11.4 Quick Sort 389

11.5 The Information-Theoretic Lower Bound 393

11.6 Digital Sorting 396
Bucket Sort
Radix Sort
Radix Exchange Sort

Xii CONTENTS

11.7 External Sorting 402
Merge Sorts
Polyphase Merge Sort
Generating the Initial Runs

11.8 Finding the Median 411

Problems 414

References 421

1 GRAPHS 424

12.1 Graphs and Their Representations 424
Trees

12.2 Graph Searching 432
Breadth-First Search
Depth-First Search

12.3 Greedy Algorithms on Graphs 442
Minimum Spanning Trees
Single-Source Least-Cost Paths

12.4 All Pairs Least-Cost Paths 450

12.5 Network Flow 452
Finding Maximum Flows
Implementing the Max Flow Algorithm
Applications of Max Flow

Problems 464

References 471

1 ENGINEERING WITH DATA STRUCTURES 474

Problems 490

References 490

LOCATIVES 492

Problems 496

Index 497

Preface

Like all engineering activities, computer programming is both craft and science.
Building a bridge or a computer program requires familiarity with the known
techniques for the overall design of similar artifacts. And making intelligent
choices among the available techniques and designs requires understanding of
the mathematical principles governing their performance and economy. This
book is about methods for organizing, reorganizing, moving, exploring, and
retrieving data in digital computers, and the mathematical analysis of those
techniques. This subject is a theoretical foundation of the useful art of computer
programming in the same way that the statics and dynamics of physical systems
lie at the heart of mechanical engineering.

A few simple principles have governed our choice of topics. First, we
have chosen only practically useful techniques. We omit treatment of some
theoretically excellent algorithms that are not practical for data sets of reasonable
size. Second, we have included both classical and recently discovered methods,
relying on inherent simplicity, wide applicability, and potential usefulness as the
criteria for inclusion rather than any preconceived exhaustive catalogue. For
example, Chapter 6, List and Tree Implementations of Sets, includes both the
classical algorithm for construction of optimal binary search trees on static data,
and the newer skip list structures for dynamic data. In other chapters there are
sections on splay trees, extendible hashing, grid files, and other elegant newly
developed methods. Third, we have included an analysis of almost every method
we describe. One of our major objectives has been to present analyses that
are relatively brief and nontechnical but illuminate the important performance
characteristics of the algorithms. As in mechanical engineering, one of the
crucial lessons to be taught is about scalability: a method that is satisfactory for
a structure of one size may be unsuitable for a structure ten times as large.

We omit unnecessary syntactic detail from the presentations. Our subject
matter is algorithms, not the expression of algorithms in the syntax of particular
programming languages, so we have adopted a pseudocode notation that is
readily understandable to programmers but has a simple syntax. It is assumed
that the reader will have had a first course in computer programming in a

xiii

Xiv PREFACE

language like Pascal or C, and will therefore be able to translate our pseudocode
into such a language without difficulty, by introducing appropriate identifier
declarations, begin-end blocking, and the like. To simplify one of the messiest
coding problems in dynamic tree algorithms-how to alter pointers that have
already been traversed during a search process-we have introduced locatives,
a new programming device. We have been able to present precise and complete
pseudocode throughout, using no more than one page per algorithm.

In the same way, we give detailed analyses of the algorithms, but avoid
mathematical techniques that are likely to be inaccessible to college sopho-
mores. Logarithms, exponential, and sums of geometric series play a central
role in many analyses, so we give some elementary examples of these topics in
Chapter 1. NaYve probabilistic reasoning is also essential, and the book has a
self-contained introduction. On the other hand the differential calculus is used
in only a few spots (the integral calculus not at all), and precalculus readers can
simply skip to the conclusion of those arguments.

Each chapter ends with problems and references. The problems are split
up into sections that correspond to the main sections of the text of that chapter.
Within those sections the problems range from straightforward simulations of
the algorithms on small data sets, to requests for completion of arguments whose
details were omitted in the text, to the design and analysis of new or extended
data structures and algorithms. The references cite publications that are of
historical significance or present good summaries of a particular set of topics.

Chapter 13 is a collection of synthetic and open-ended exercises in data
structure design and analysis. Some of these problems are amenable to paper-
and-pencil answers of a page or two; others to programming projects that might
take a semester to do properly. What they have in common is that they are
phrased not as problems about particular data structures, but as problems about
computational situations where there can be more than one approach to the
design of data structures and it may not be possible to make a selection on
the basis of a clean mathematical analysis. It is our hope that through these
exercises students will get realistic experience with the engineering of efficient
computational methods.

Acknowledgements We want to thank the many people who have given us
advice and corrections over the years this book has been in preparation. Paul
Bamberg, Mihaly Gereb, Victor Milenkovic, Bernard Moret, and Henry Shapiro
have taught courses using drafts of the book and have given us valuable feed-
back. Our thanks to Danny Krizanc for pointing out an error in the analysis of
Quick Sort, and to Bob Sedgewick for his advice on fixing it. Marty Tompa
gave a late draft of the book a careful reading and helped remove many errors.
Mike Karr provided a very helpful critique of locatives. Bill Gasarch and Vic-
tor Milenkovic supplied a great many problems and references that have been
incorporated into the text. David Johnson helped us with a problem on memory

PREFACE XV

management. Stephen Gildea was our dance consultant. BBN Communications
provided a supportive environment for the second author while this work was
in progress. This book emerged from a course taught at Harvard, Computer
Science 124 (originally Applied Mathematics 119); a large number of talented
teaching assistants have contributed over the years to our understanding of how
to present the material, as well as to our inventory of exercises. Among those
teaching fellows are David Albert, Jeff Baron, Mark Berman, Marshall Brinn,
David Frankel, Adam Gottlieb, Abdelsalam Heddaya, Kevin Knight, Joe Marks,
Mike Massimilla, Marios Mavronicolas, Ted Nesson, Julia Shaffner, Ra'ad Siraj,
Dan Winkler, and Michael Yampol; thanks to all. Alex Lewin deserves spe-
cial thanks for his detailed proofreading. One anonymous reviewer provided
valuable improvements to several of our analyses.

Marlyn McGrath Lewis provided boundless encouragement and support as
this project dragged on, and sage advice about how to get it finished.

This book was typeset using Donald Knuth's TEX; we want to thank him
for having made possible so much of its form as well as its substance.

1

Introduction

1.1 PROGRAMMING AS AN ENGINEERING ACTIVITY

A program is a solution to a problem. The problem might be very specific
and well-defined-for example, to calculate the square roots of the integers
from I to 100 to ten decimal places. Or the problem might be vast and vague-
for example, to develop a system for printing books by computer. Large, ill-
defined problems are, however, best solved by breaking them down into smaller
and more specific problems. As a part of the problem of printing books by
computer, for example, we might need to determine the places where a word
could be hyphenated if it had to be split across two lines. Our subject matter
is programming problems that are specific enough that we can describe them in
a few words and can judge readily what is a solution and what isn't, but are
common enough that they come up over and over again in the solution of larger
programming problems.

Even for problems that can be described very exactly in a few words,
however, there can be many possible solutions. Of course one can always get
different programs by changing variable names, translating from FORTRAN to
Pascal, and the like. But there can be solutions that differ in more fundamental
ways, that use quite different approaches or methods to solve a problem. Con-
sider, for example, the problem of finding a word K in a sorted table of words.
Here are three approaches.

A. Start at the beginning of the table and go through it, comparing K to each
word in the table, until you find K or reach the end of the table.

Of course that way doesn't take advantage of the fact that the table is sorted.
Here's a slightly more intelligent variation:

B. Start at the beginning of the table and go through it as in (A), stopping
when you find K or another word that should come after K in the table,
or when you reach the end of the table.

Changing the stopping condition in this way eliminates some unnecessary
work done by method (A). If we're looking for aardvark, for example, chances

1

2 INTRODUCTION

are we won't have to look long if we use method (B). But there is a better way
yet.

C. Start in the middle of the table. If K is the middle word in the table, you're
done. Otherwise, decide by looking at that middle word whether K would
be in the first half of the table or the second, and repeat the same process on
one half of the table. On subsequent iterations search a quarter, an eighth,
... of the table in the same way. Stop when you find K or have shrunk to
nothing the size of the table you're searching.

Method (C) is called binary search and is generally the fastest of the
three. (It's also the trickiest to program correctly. Actually, this description
leaves out a lot of important details; for example, which element is in the
"middle" of a table of length 10?) We'll get to a detailed account of binary
search in Chapter 6, but for now there are a few morals to be drawn from
the example. First, (A), (B), and (C) are different algorithms for the same
problem. None of them is a program, since the language used to describe them
isn't a programming language. But any programmer would understand these
descriptions, and would understand that FORTRAN and Pascal implementations
of (C) embody the same algorithm, whereas Pascal implementations of (A)
and (C) embody utterly different algorithms.

An algorithm is a computational method used for solving a problem. The
goals of this book are to teach you some of the most important algorithms for
solving problems that come up over and over again in computer programming,
and to teach you how to decide which algorithm to use when you have a choice
(as you almost always do).

We might choose one algorithm over another becauses it is always faster, or
because it is usually faster, or because it uses less memory. Or we might choose
an algorithm because it is easier to program, or because it is more general and
we want to anticipate the possibility that the problem we are solving might
change in the future. For our purposes in this book, however, we will mostly
be looking at the speed of algorithms, and how much memory they use.

Of course we are not going to determine the speed of an algorithm by
writing a program and then timing it. The numbers obtained in this way would
depend too much on the quality of the programmer and the speed of the particular
computer to be of general interest or applicability. Instead, we'll try to think in
more abstract, mathematical terms. If the table has length n, then method (A)
takes time proportional to n; double the size of the table and the algorithm
will take roughly twice as long. Method (C), on the other hand, takes time
proportional to the base 2 logarithm of n at worst (since that is the number of
times you can divide a table of length n in half before it is reduced to a single
element).

We'll spend a good deal of time in Chapter 2 on this business of algorithm
analysis, but again a few simple morals will suffice for now. We want to use

1.2 COMPUTER SCIENCE BACKGROUND

mathematical tools for analyzing the algorithms we consider, since the right
mathematical tools will give us conclusions that hold for all implementations.
To develop those mathematical tools, we have to come up with mathematical
models for the situations we are trying to understand. For example, to conclude
that method (A) takes time proportional to the length of the table, we need
assume only that it always takes the same amount of time to get from any element
of the table to the next. That is true for a great many ways of implementing
tables, so from a weak assumption we can draw a conclusion of quite general
applicability.

Programming is an engineering activity. It isn't pure science, or pure math-
ematics either; when we write programs, we can't ignore annoying details of
practical importance, and we're not working in an environment where there's
only one right answer. Engineers make design decisions based on an under-
standing of the consequences of alternative choices. That understanding comes
from a knowledge of laws, usually stated in mathematical terms, that cover a
broad variety of situations. An engineer decides what kind of bridge to build
to span a river at a particular spot by sizing up the parameters of the situation
(how long? how much weight to be borne?) and applying the general laws that
characterize the behavior of various kinds of bridges. An engineer will also
bring to bear the wisdom of experience accumulated by witnessing the con-
struction of the things that have been designed. Programmers should think the
same way; they need both an understanding of the general laws that govern the
performance of algorithms, and the practical wisdom that comes from having
attempted to implement them.

1.2 COMPUTER SCIENCE BACKGROUND

Memory and Data in Von Neumann Computers
The computers we are thinking about when we discuss our algorithms are called
"von Neumann" machines.* Such a computer has a single processor, which
is connected to a large block of memory. This memory is binary, that is, it
ultimately consists of single bits, but those bits are organized into larger units or
cells. A cell might contain a single integer, character, floating-point number, or
element of some other basic data type; in our terminology the size of a cell can
depend on the kind of data stored in it, so a cell need not correspond to a byte,
word, etc. Indeed, contiguous cells can be grouped together to store several

* Virtually all digital computers that have been built to date are von Neumann machines. In the last
few years a number of machines that are not of the von Neumann type have for the first time begun
to appear; for example, machines with dozens or even thousands of processors, scattered through
the memory and interconnected in complicated ways. Programming such machines requires a new
style of algorithmic thinking (see the references at the end of this chapter).

3

4 INTRODUCTION

4 4 bytes -*

1240
1244

1248
1252

1256
1260
1264

1268
1272

1276

G

g

W

0
0

e
e

a
n
n

0

67 4

1 150

h

FirstName

LastName

- Height
- Weight

1280

Figure 1.1 Layout of a data record in memory. The record has four fields, of
16, 16, 4, and 4 bytes.

data items as a single record, which is really just a memory cell containing a
logically structured object. In this case the individual components of a record
are called its fields. For example, a record designed to contain the first and last
name and the height and weight of an individual might look as illustrated in
Figure 1.1; it contains two 16-byte fields for the first and last names, and two
four-byte integer fields for the height (in inches) and weight (in pounds), so the
whole record is 40 bytes in length.

Each individual memory cell has a numerical address; when a datum is to
be brought to the processor, it must be referred to by the address where it is
stored. These addresses are typically in units of the smallest possible cell size,
such as the eight-bit byte. For example, in the example of Figure 1.1, the record
begins at byte address 1240; the first address after the end of the record is 1280.

A series of memory cells of the same type can be packed together at equal
intervals in a contiguous block of memory. Such a memory organization we call
a table: the addresses of the individual memory cells Co, C1, . . . , C. . 1 differ
by a fixed amount, which is the size of the cell (Figure 1.2). Hence if X is the
memory address of the beginning of the table and c is the size of a single cell,
then cell Ci is located at address X + c * i. For example, in Figure 1.2, c = 40
and X = 1240, so Ci is at address 1240 + 40 * i.

Within records of a given type, the fields are defined by their sizes and their
distances from the beginning of the record. For example, in the record structure
of Figure 1.1, if a record is located at address X,

* the FirstName field is 16 bytes long and begins at address X;
* the LastName field is 16 bytes long and begins at address X + 16, right

after the end of the FirstName field;
* the Height field is four bytes long and begins at address X + 32; and
* the Weight field is four bytes long and begins at address X + 36.

1.2 COMPUTER SCIENCE BACKGROUND

4 40 No

1240

1280

1320

1360

1 Ann

1240+40i Ci
1280+40i

1240+(n-l)i | cn-1l

1240+n i

Figure 1.2 Layout of a table in memory.

124

236

(a) (b)

Figure 1.3 Addresses and pointers. (a) The situation inside the computer:
the cell at address 124 contains the number 236. (b) A logical representa-
tion: regarded as containing an address, the cell at 124 points to the cell
at 236.

To refer to the various fields of a particular record located at address X, we
use the notations such as FirstName(X), LastName(X), and the like. We can
also give a name to the record type as a whole-Person, say, in the present
example.

The memory is random-access, which means for our purposes that it takes
the same amount of time to retrieve from, or to store into, any address in
memory, independent of the address (though it may, of course, take longer to
read or store a larger datum or record than a smaller one). This means in
particular that given a table of records Co, C1, . . ., C,- I as in the example just
given, the time required to access the ith record is constant, independent of i.

Addresses, being mere numbers, can themselves be stored in memory cells.
A cell containing the address of another cell acts as a reference or pointer to
that cell, and we use an arrow to illustrate the connection between the cell where
an address is stored and the cell whose address it contains (Figure 1.3).

5

6 INTRODUCTION

Info Next

000

232

224

222

P

412 l(b)
412 28

(a)

Figure 1.4 Linked lists. (a) Internal representation; (b) graphic illustration.
In this example A is represented by address 000 in memory in the left-
hand illustration, and by a diagonal line through a pointer field on the
right. The cell named P on the right is a pointer variable, located at
address 412 and pointing to the beginning of the linked list, which is at
address 228.

This creates the opportunity to build structures in memory with complex
patterns of internal references between records. For example, Figure 1.4 shows
a memory structure known as a singly linked list. Each record of a singly
linked list has one or more fields for storing arbitrary data (the Info field of
Figure 1.4), and a Next field which contains an address. The record structure
as a whole is usually called a Node. Although the actual numerical addresses
of the records in a linked list may fall into no pattern whatsoever, the nodes
are logically organized as a sequential list, since we can start from one node,
move to the node whose address is in its Next field, then to the node whose
address is in its Next field, and so on. The end of such a list is indicated by a
distinguished address A in the Next field; this is depicted in our illustrations by
drawing a diagonal line through that field. A solid black circle at the tail of an
arrow represents another pointer value. In Figure 1.4(b) there are cells of two
kinds: linked list records consisting of an Info field (shown here as containing
a letter A, B, C, D) and a pointer variable P (shown here as pointing to the
beginning of the linked list).

A singly linked list, like a table, can be used to represent a sequence of
data items of the same type. The representation is less economical in memory
usage, since every node must bear the overhead of a pointer field to link it to
the next node in the list. And it does not enjoy the pleasant property of tables
that referring to a cell by its index in the sequence takes time independent of
that index; in general, to find a node in a singly linked list, one must trace

222

224

226

228

230

232

234

D

B

A

C

1.2 COMPUTER SCIENCE BACKGROUND

through all of the preceding nodes from the beginning of the list. On the other
hand certain operations, such as inserting a record in the middle of the sequence
or removing a record from the sequence, would require major shuffling of data
in a table but can be achieved with only a couple of pointer movements in
a linked list. It is because linked structures so readily support such dynamic
structural reorganizations that they are at the heart of many efficient algorithms.
Another major advantage to linked lists is that they can be used when the
amount of memory to be required is not known in advance, whereas tables must
be preallocated at their maximum size.

We write p for the number of bits needed to store a pointer; thus a singly
linked list has an overhead of p bits per cell. In many cases it is not necessary
to store a full machine address to achieve the effect of a link or pointer field.
If all the records in the data structure are in a table of length n beginning at a
known address, then to refer to any one of those cells it is enough to store an
index in the range from 0 to n- 1, and this may well require many fewer bits
than would be needed for a general pointer. Gains achieved in this way are,
however, somewhat offset by the need to perform an arithmetic calculation to
determine the machine address of a cell from its index, and by the need to take
into account the base address of the particular table in which a record is located
when following its link field.

As a general matter, the design of data structures often involves such com-
promises or tradeoffs: we would like a data structure that is superior in several
different ways that cannot all be realized simultaneously, so we accept somewhat
poorer characteristics of some kinds in order to achieve better characteristics of
other kinds. For example, using table indices instead of pointers into a table
trades speed for memory usage, and using tables instead of linked lists trades
memory usage for speed of insertion or deletion.

Notation for Programs
Today most programs are written in higher-level programming languages. Such
languages offer a number of advantages over lower-level machine and assem-
bly languages for the description of algorithms. Higher-level programming
languages provide mechanisms for talking about data aggregates as wholes,
without reference to how they are represented in memory. For example, the
Pascal two-dimensional array A: array[.10,1 . .10] of real consists of 100
reals distributed somehow in memory. As Pascal programmers we do not need
to know how; we need only be assured that each time we refer to, say, A[5, 7],
we get the same element, though not necessarily the same value. If we want
to consider in detail the performance of an algorithm, however, we may need
to have tighter control over the organization of memory than the semantics
of higher-level languages allow us to assume. For this reason we distinguish
sharply between a data type, which is a programming-language notion, and a
data structure, which is a logical organization of computer memory, generally
exploiting patterns of addresses of memory cells.

7

8 INTRODUCTION

procedure SinglyLinkedlnsert(pointer P, Q):
{Insert the cell to which P points just after the cell to which Q points}

Next(P) Next(Q)
Next(Q) P

Algorithm 1.1 Insertion of node in a singly linked list.

With the increase in expressiveness provided by higher-level languages
come a few other disadvantages. Languages such as Pascal have "strong types,"
meaning that every variable and every data object has a data type, and a value
can be assigned to a variable only if both are of the same type. Some algo-
rithms, which manipulate data representations at a lower level or use the same
memory cells at different times for different kinds of data objects, cannot be
implemented efficiently in languages like Pascal. Another problem comes with
the manipulation of addresses by algorithms. Some languages do not have ad-
dress or "pointer" data types at all; others have such types but enforce strong
typing with respect to the type of the datum pointed to (so that a pointer to a
record and a pointer to its first component must be objects of different types,
even though they correspond to the same machine address).

We use a sort of compromise notation in describing algorithms. We write
T[a. . b] to denote a table with indices running from a to b (both integers). T[i]
stands for the ith element of the table T, provided that a < i < b. Tables
are assumed to occupy contiguous memory. Arrays, which are indexed in the
same way as tables and are discussed at length in Chapter 5, come with no such
guarantees about how the entries are stored, or how much time it takes to access
an element.

We also use higher-level notation for record types and their fields, and freely
use the assignment operator (a-) between any variable or field of a variable and
a value of the appropriate type. If P is a pointer to a record which has a field by
the name of F, we write F(P) for the F field of the record pointed to by P. For
example, Algorithm 1.1 inserts the node to which P points in a singly linked
list immediately after the node to which Q points (Figure 1.5).

As an extension to the assignment notation, we use a "column vector"
notation to denote the simultaneous assignment of several values to several
variables. For example, the notation

(Z) (X)

represents "rotating" to the left the values of the three variables X, Y, and Z;
X gets the old value of Y, Y gets the old value of Z, and Z gets the old value

1.2 COMPUTER SCIENCE BACKGROUND

Q a

P

(a) (b)

Figure 1.5 Inserting the node to which P points in a singly linked list just
after the node to which Q points.

of X. We abbreviate the commonly used form (-(X) by X -Y.

that is, exchange the values of X and Y. In most programming languages,
these assignments could not be written without introducing a wholly extraneous
"temporary" variable whose only purpose is to permit time sequencing of the
two or more individual assignments.

Other notations will be introduced from time to time as they are convenient.
However, we attempt to get by with the minimum of necessary notation; if it is
easier to say something in English than to invent a special notation for it, we are
apt to say it in English, trusting that as an experienced programmer you are able
to imagine how it could be rendered in the syntax of your chosen programming
language.

For the control part of our algorithms we adapt the "if ... then ... " and
"if ... then ... else ... " constructions from languages such as Pascal, and
also the "while ... do ... " and "for ... do ... " loops. A loop of the form
"repeat forever . . . " causes its body to be repeated indefinitely; the body should
contain some statement, such as one that returns from a subroutine, that will
eventually cause an exit from the loop. We dispense with Pascal's begins and
ends, preferring to use indentation to indicate grouping of statements. Also, we
regard each subprogram as either a procedure (a subroutine executed solely for
its effect on memory or on the input-output behavior of a program) or a function
(a subroutine executed in order to obtain a value). We use the construct return
to cause a procedure to return immediately, and return x to return the value x
immediately as the value of a function. If the subprogram is to be called from
elsewhere, we give it a name and list its parameters in an informative way in
the first lines, together with one of the terms "procedure" or "function." At
the end of the first line of a function definition, we also list the type of the
value it returns. Explanatory comments are enclosed in {braces like these}.
For example, Algorithm 1.2 is a more formalized version of algorithm (A) on
page 1.

9

10 INTRODUCTION

function SequentialSearch(table T[O. . n -1], key K): integer
{Return position of K in table T, if it is present, otherwise -1}

for i from 0 to n - 1 do
if T[i] = K then return i

return -1

Algorithm 1.2 Search sequentially in table T[0. . n -1] for key K.

Our algorithms deal with the common atomic data types, such as integers
and booleans, and tables of these types. Values of type pointer are addresses.
Occasionally (as above), when the details of a type are unimportant, we use a
generic name such as key. In some higher-level languages (such as Pascal) key
would have to be a particular data type, such as integer; in other languages
it might be possible to code SequentialSearch as a generic function that works
for any data type. In our notation we aim to convey just enough information
to enable an experienced programmer to translate the algorithm into a program,
but we do not attempt to be so explicit that the translation could be done auto-
matically.

A boolean expression of the form "Condition] and Condition2" is true
in case both Condition] and Condition2 are true. However, evaluation of the
second condition is short-circuited: if Conditionl is false, we are guaranteed
that Condition2 will not be evaluated. Thus we can write a conditional such as
"if P : A and F(P) $ A then ... ," confident that no attempt will be made to
find the F field of P if P is actually A. (The C and Lisp languages use short-
circuited evaluation of boolean expressions, but Pascal does not.) Similarly, in
"Condition] or Condition2," if Conditionl is true then Condition2 will not be
evaluated.

A subprogram can call itself; such a call is said to be recursive. The
recursive style of programming often contributes greatly to expository clarity,
and many highly efficient algorithms are best described recursively. However,
there are some hidden costs in implementing recursive programs. In particular,
a stack is used to keep track of the values of variables and parameters during
recursive calls; since this data structure is not apparent to the programmer,
who makes no reference to it in the source code, it is easy to forget that it may
occupy significant amounts of memory when the program is run. We shall return
to this point on page 79. Algorithm 1.3 is another example of our notation for
programs, this time a recursive description of binary search (algorithm (C) on
page 2).

We have changed the calling conventions a bit from our description of the
sequential search algorithm. Since we wish to specify arbitrary lower and upper
bounds a and b on the index of the table that is passed as an argument, we

1.2 COMPUTER SCIENCE BACKGROUND

function BinarySearch(table T[a. . b], key K): integer
{Return position of K in sorted table T, if it is present, otherwise -1}

if a > b then return -1
middle +- [(a + b)/2j
if K = T[middle] then

return middle
else if K < T[middle] then

return BinarySearch(T[a . . middle - 1], K)
else {K > T[middle]}

return BinarySearch(T[middle + 1 . . b], K)

Algorithm 1.3 Binary search to locate key K in sorted table T[a. . b].

include those bounds as part of the description of the table. (Since a returned
value of -1 is used to indicate that the search has failed, a and b should be
nonnegative.) It is even possible for the lower index to exceed the upper index,
in which case the table has no elements at all. Indeed, if the item sought is not in
the table, then eventually BinarySearch is called to search a table T[a. . a - 1],
and it is this case that causes the recursion to terminate.

We have also introduced a useful notation Lx], the floor of x, which stands
for the largest integer that is less than or equal to x; for example, [3.4] = 3,
[3] = 3, and [-3.4] = -4.* This resolves the question we asked earlier, about
what is the "middle" element of a table T[O. . 9]; according to the algorithm, it
is element L(0+9)/2j, that is, element 4. If K is not found as T[4] then Binary-
Search is called recursively, with either T[O. . 3] or T[5. . 9] as an argument.

A data structure is said to be dynamic if it is possible to increase or decrease
the amount of data it represents after the structure has been created; it is said
to be static if the amount of data cannot be changed without recreating the
structure from scratch. Thus linked lists are dynamic structures, while tables
must generally be regarded as static. For dealing with dynamic structures like
linked lists we assume the existence of a routine NewCell that magically delivers
on demand a new cell of any desired type. The type desired is specified as
the argument; thus NewCell(Node) returns the address of a block of memory
the right size to hold a Node. The memory management component of the
support environment for many programming languages provides just such a
routine (e.g., Pascal's new and C's malloc). In practice, these routines parcel
out chunks of a finite "storage pool," which definitely can become exhausted.
Though we ignore that possibility in describing our algorithms, we do study in
Chapter 10 the storage allocation problem itself in some detail.

*This notation has a sister [xl, the ceiling of x, which is the smallest integer that is greater than
or equal to x; for example, [3.41 = 4, [31 = 3, and [-3.41 = -3.

11

12 INTRODUCTION

function NewNode(key K, pointer P): pointer
{Return address of a new cell of type Node containing key K and pointer P}

Q +- NewCell(Node)
Key(Q) *- K
Next(Q) 4- P
return Q

Algorithm 1.4 Create a new linked list cell of type Node and initialize its two
fields.

Locatives
Many algorithms that alter linked structures must deal with the inconvenient
reality that once a pointer has been followed, it is too late to change the value
of the pointer itself; one can change only the value in the cell to which the
pointer points. To illustrate the problem, let us return to the example of inserting
an item in a linked list. The difficulty can be described by saying that "you
can't insert before an item in a linked list, only after an item." To be concrete,
assume that our records have two fields, a Key field that contains values of
some linearly ordered data type like numbers or strings, and a Next field that
contains the address of the next record in the list. The routine NewNode(K, P)
(Algorithm 1.4) creates a new record of type Node and sets its Key and Next
fields to K and P. respectively.

In the linked list insertion algorithm itself, the variable list points to the
first record in the list; if the list is empty, list = A. We wish to keep the list
in order (so that search time is reduced), and we want a function LLlnsert that
takes a key value K as its argument and modifies the list by adding a list cell
containing that key value. If such a cell is already in the list when the function
is called, the function does nothing; otherwise it creates a new linked list cell
by calling NewNode and splices it into its appropriate position in the list so that
the list nodes remain ordered by their key values. The naive approach is to
search the list using a pointer P to access successive list cells; if P eventually
points to a record with key K, then the function returns. But if K is not in the
list then this is discovered only when P becomes A or points to a record whose
Key value comes after K. To insert the new record for K we need, in effect,
the value of P one iteration earlier, and the usual approach is to use a second
variable S to save P's previous value (Algorithm 1.5).

Quite aside from the inelegance of using two variables where it would
seem that one should do, the coding of Algorithm 1.5 is unpleasant for two
other reasons. First, the final if statement has different code for two cases
that are really quite parallel; it is annoying to have to make a special check
on each insertion just to cover the case in which K becomes the first key in
the list. Second, the code contains a reference to the global variable list; this

1.2 COMPUTER SCIENCE BACKGROUND

procedure LLlnsert(key K):
{Insert a cell containing key K in list if none exists already}

S A
P list
while P $t A and Key(P) < K do

S P
P Next(P)

if P # A and Key(P) = K then return
if S = A then {Put K at the beginning of the list}

list +- NewNode(K, list)
else {Insert K after some key already in the list}

Next(S) -- NewNode(K, P)

Algorithm 1.5 Insertion of a key value in an ordered linked list. The global
list contains the address of the first cell in the list.

variable cannot be passed as a parameter because its value may have to be
changed.* Consequently, a program that uses several linked lists either has to
have a separate insertion routine for each list, or else must have a single insertion
routine that uses a variable of the awkward type "pointer to a pointer to a list
element."

Two other approaches to this problem are commonly seen. A "dummy" or
"header" node can be created; this node contains no key value but its Next field
points to the true beginning of the list. Thus a list containing no keys consists of
just the header node. Under this approach the two branches of the if statement at
the end of Algorithm 1.5 can be coded identically. But it is still necessary to use
two pointers that move in step with each other, or to have an equally clumsy
proliferation of field references. Alternatively, if the programming language
supports it, the algorithm can be recoded to handle explicitly the address of the
list variable and the address of the Next field of a record. This is impossible
in Pascal; it can be done in C using the "address-of' (&) and "dereference" (*)
operators, though the code becomes rather tangled.

In this book we use a new data type locative to make the coding of such
algorithms smoother. A locative behaves exactly like an ordinary variable in
most contexts; if P is a locative that points to a linked list node, for exam-
ple, then we can extract the Key and Next fields using Key(P) and Next(P).
However, when a locative is given a value by an assignment statement, it re-
members not only the value but the place in memory where that value came
from. For example, suppose that P is a locative whose current value is 1000,

* In Pascal, list could be passed as a var parameter.

13

14 INTRODUCTION

procedure LLlnsert(key K, locative P):
{Insert a cell containing key K in list P if none exists already}

while P #? A and Key(P) < K do
P +- Next(P)

if P 5$ A and Key(P) = K then return
P <- NewNode(K, P)

Algorithm 1.6 Insertion of a key value in an ordered linked list, using a
locative. The variable list that points to the beginning of the linked list is
passed to the procedure as its second parameter.

which is the address of a linked list node; and suppose that the Next field of
this node is at address 1002 and contains the value 400. Then the assignment
P +- Next(P) assigns the value 400 to P, but also remembers that this value
came from address 1002. We call this secondary piece of information associated
with P its locative value; in this example, P's ordinary value is 400 and P's
locative value is 1002.

Only one construct uses the locative value. An assignment P e'• Q, where
P is a locative, assigns the value of Q to the place in memory that is the locative
value of P. To see how useful this is, consider Algorithm 1.6, which recodes
Algorithm 1.5 using a locative. In essence, Algorithm 1.6 proceeds by running
P through the list as though it were responsible only for searching, and not for
inserting as well. When the time comes to insert, however, the locative value
of P is used to alter the appropriate cell.

Note that in Algorithm 1.6 the address of the beginning of the list is re-
ceived as a parameter, rather than being retrieved from a global variable. This
illustrates another characteristic of a locative: when a call is made to a func-
tion or procedure that has a locative as its formal parameter, the locative value
as well as the ordinary value is established as though an ordinary assignment
had been made from the actual parameter to the formal parameter. For ex-
ample, if Algorithm 1.6 were called by LLlnsert(K, list), the effect would be
the same as if the body of the algorithm began with the assignment P + list;
that is, P's ordinary value becomes the value of list, while P's locative value
becomes the address of the variable list. In this way the final assignment
P ¢= Q produces the correct effect, whether the locative value of P is the
address of the variable list or the address of the Next field of one of the list
cells.

Three more notes complete the description of locatives. First, if one locative
is assigned to another, or passed to a subroutine that has a locative as its formal
parameter, then both the ordinary value and the locative value are transferred
from one to the other. Second, any assignment of the form P <= Q, where P is

1.2 COMPUTER SCIENCE BACKGROUND

a locative, changes the ordinary value of P to that of Q.* Finally, the locative
assignment operator <= acts like the ordinary assignment operator +- if the thing
being assigned to is not a locative.

Although locatives may seem unfamiliar, programs using them can easily
be translated into conventional higher-level programming languages. Appendix
A discusses the semantics and implementation of locatives in detail.

Abstract Data Types
A fundamental principle of programming is to understand clearly what you
are trying to accomplish before you set about to accomplish it. A common
instance of this rule has to do with the selection of data representations: figure
out what are the operations to be performed on your data before you choose a
representation for the data.

To take an example, we began this chapter with three algorithms for finding
an entry in a sorted table. These might have been, for instance, alternative
implementations of a program module in our hypothetical publication system-
a module that tries to find a word in a lexicon to see if it is a word known to
some part of the system. These algorithms are among the most plausible for
this purpose-if it is assumed that the lexicon is to be stored as a sorted table.
Whether that is the most reasonable implementation of the lexicon depends,
however, on what other operations the lexicon module must support. If, for
example, the system were required to support insertions into the lexicon as well
as searches of the lexicon, a tree representation might be superior; on the other
hand, if the lexicon doesn't change at all, the table in contiguous memory might
be the most appropriate representation.

Stepping back even a bit further, we realize that most of the algorithms
that come to mind for searching a table are essentially the same, whether we
are looking up a word in a lexicon, or finding a number in a set of numbers,
or searching for data of any other variety. For algorithms (A)-(C) or any of a
variety of other data structures and algorithms to work, we need make only the
following assumptions:

1. The data we are dealing with are of some data type key. Data of type key
are linearly ordered, that is, there is an ordering relation < on data of type
key such that for any two elements u and v of type key, either u < v, or
v < u, or u = v.

2. We have a set S of data of type key, and we want to be able to answer
questions of the form, is u E S?

A sorted table and any of algorithms (A)-(C) constitute a correct imple-
mentation of (1) and (2). Many other implementations are possible as well, and
might be preferred if we were required to implement additional operations, such
as

* It would also change the ordinary value of any other locative that shares the same locative value
with P. However, this situation does not arise in any of algorithms we present.

15

16 INTRODUCTION

3. In addition to answering questions of type (2), we want to be able to add
an element u to S if u is not already in S.

A set of specifications such as (1) and (2), or (1), (2), and (3), make up an
abstract data type. An abstract data type consists of two parts.

* One or more domains, that is, classes of mathematical objects. In the
example we have a class key of objects with a linear order, and the class
of finite sets of keys.

* One or more mathematical operations on elements from the domains. In
the example, one operation is to provide a true or false answer to a question
of the form "u E S," where u E key and S is a finite set of keys. Another
could be to construct S U {u} from S and u.

An abstract data type is neither a data structure (though an abstract data type
can be implemented by means of a data structure), nor a data type (though in an
implementation of an abstract data type in a particular programming language
the domains may become data types).

By thinking in terms of abstract data types, attention can be focussed as
long as possible on the essential features of the situation to be captured, and
away from characteristics that might be suggested by a particular implemen-
tation. As long as a program refers only to abstract operations-and not
lower-level operations on the particular data structure that happens to have
been chosen to implement the abstract data type-the implementation of the
abstract data type can be changed without affecting the correctness of the pro-
gram.

To see how "higher-level" programs can be written in terms of abstract
operations, consider the abstract data type which we shall call a priority queue.
(Priority queues are discussed at some length in Chapter 9.) The domains
for this abstract data type are the same as those in the example just given: a
priority queue is a set of items drawn from a linearly ordered data type key.
But in a priority queue the general set-membership operation "u E ST' is
not supported; instead only these four operations are available for a priority
queue S:

1. Create 0 (the empty set).
2. Determine whether S = 0.
3. Given any u E key, add u to S.
4. Remove and return the smallest element of S.

There are a great many ways to implement priority queues, from simple lists
in contiguous memory to complicated tree structures. But any priority queue
implementation automatically gives rise to a sorting algorithm. The following
procedure outputs the elements of the set X in sorted order by using the priority
queue operations (1)-(4).

1.3 MATHEMATICAL BACKGROUND

procedure PriorityQueueSort(set X):
S - 0
foreach x E X

add x to S
while S # 0

remove and output the smallest element of S.

We shall see that certain efficient implementations of the priority queue opera-
tions give rise to very efficient sorting methods.

We have described the elements of abstract data types as mathematical
objects-linearly ordered sets and the like-but in one respect they are not, at
least in the way we are using them. Mathematical objects are timeless and do
not change; if I say that S - {1, 2, 3}, then in mathematics I can't say a little
later that 1 should be removed from S so that S becomes {2, 3}. (Though of
course I can define a new set S' = S - {1} = {2, 3}.) But in mathematics we
don't have to store objects in memory and pay for what it costs to manipulate
those representations, while in computer science we do. So when we say that
S is a particular abstract data type (a priority queue, let's say), we really mean
that S is a representation of such an abstract object; then it makes sense to talk
about changing S, since we are really changing S so that it represents something
else.

How should the behavior of abstract operations be specified? We follow
the practice of appealing, whenever possible, to familiar mathematical notions
to describe abstract operations. For example, we assume you are familiar with
the mathematical notion of a set, so nothing more needs to be said to explain
what it means for an object to be a member of a set, or to form a new set
by adding an object to another set, or the like. An alternative approach is to
describe the abstract operations axiomatically, that is, in terms of how they
interact with each other. For example, if S is formed by adding x to an existing
set, then "x E S" must be true. With a sufficiently complete collection of such
axioms, the relevant behavior of the abstract operations can be characterized
completely, and the correctness of an implementation of the abstract data type
can be verified formally. As our objective is expository rather than formalistic,
we shall content ourselves with more informal accounts of the effect of the
operations of an abstract data type.

1.3 MATHEMATICAL BACKGROUND

The level of mathematical maturity needed to read this book is not high. A few
facts from the calculus are useful, but even with a solid high-school mathematics
background you should be able to follow most of the arguments given here. The
next few pages bring together most of the basic facts that are needed.

1 7

18 INTRODUCTION

Finite and Infinite Series
We shall need several times to compute the value of sums of the form al + a2 +
.. + ak, where the terms ai follow some regular pattern. For example, what is
1 + 2 + 4 + 8+*** + 2n, where each term is twice the preceding term? What about
+2 + 4 + + 2-n, where each term is half the preceding term? Any sum of

successive powers of some constant is called a geometric series; its value can
be calculated using the following formulas:

* THEOREM (Geometric Series) For any real number c and any inte-
gers k and 1 such that k < 1,

I __k___ -___________

E {ci = c i if ' ; (1)

i=k -k + , if c= 1.

Also, if Ici < 1, then
1o ck(2

ECs -C (2)
i=k

In particular, EZ-0 ci = 1/(I - c).

PROOF The second case of Equation (1) is obvious, since if c = I
then Z-k c" is just the sum of 1 - k + 1 copies of 1. To prove the first
case, let S represent the sum on the left-hand side. Multiplying it by c and
subtracting,

S =c k+ Ck+ +. + c

cs = ck+1 + + c +c1 +1

S-cS = ck - C

Since c $ 1 we can divide both sides by 1 - c and Equation (1) follows.
Equation (2) can be established by similar reasoning (though a bit of care
is required when handling infinite series). D

To wrap up the examples with which we started,

n I - 2n+1 +

1+2+4+8+ *+2 n = 2z 1 -2 = 2 1
i=O

and

1 1 n /1 1 2-(n+l)
+ +- + * + 2 2-2-n

2 4
20 2

1.3 MATHEMATICAL BACKGROUND

Note also the infinite version of the second example:

11 1

Another sum that comes up all the time is I + 2 + 3 + n, whose value is

n n(n + 1)
= 2

i=o

To see this, add two copies of the sum together, one in ascending order and the
other in descending order:

S = 1 + 2 + + n
S = n + n-i + + 1

2S = (n+ 1) + (n+1) + + (n+1) = n(n+1),
so

n(n+ 1)
2

Logarithms, Powers, and Exponentials
Let b be any real number greater than 1, and let x be any real number greater
than 0. Then the logarithm to the base b of x, denoted logb X, is defined to be
that number y such that

bY = X.

Thus logb 1 = 0 (since bo = 1 for any b), logb X > 0 if X > 1, og0b b = 1, and
logb X < 0 if 0 < X < 1. We call any function from reals to reals of the form
f(X) = logb x a logarithmic function, or a function that is logarithmic in X.
Any logarithmic function is a monotone increasing function of its argument,
that is, logb x > log bX2 provided that xI > X2 . For example, doubling the
argument increases the base 2 logarithm by 1, that is, lg 2 2x = 1og 2 X + 1, since

210x2 X+l = 2 1og2 x . 2 = 2x.

More generally,

logb(XI X2) = og6b XI + og6b X2,

logb(Xl/X2) = log121 - logb 22, and

1°gb Xc = c lgxb X

Suppose a and b are both greater than 1; what is the relation of loga X to
logb X? Since x = alog

logb X = logb(alo X)

= loga X * logb a.

19

20 INTRODUCTION

Thus any two logarithmic functions differ only by a constant factor.
For the most part we'll be using logarithms to only two bases: loge, where

e = 2.71828..., the so-called natural logarithm; and log2 , the binary loga-
rithm. We write In x for loge x and Ig x for log2 x. For example, the number
of bits in the usual binary notation for the positive integer n is Ilg nJ + 1. We'll
also have occasion to write simply log x, but we'll do that only when it doesn't
matter what the base is (for example, "log x is an increasing function of x").

Any function from reals to reals of the form g(x) = xa, for some constant
a > 0, is called a simple power. Thus any simple power is also an increasing
function of its argument (we are excluding negative powers to ensure this).
An exponential function is one of the form h(x) = cx for some constant
c > 1 (again, we want to consider only increasing functions, so we exclude
c < 1). Thus x92, 23, and a = x I/ 2 are simple powers, while 2Z and 100l are
exponential functions of x.

These three classes of functions-logarithms, powers, and exponentials-
will come up repeatedly. Though all are increasing functions, logarithms in-
crease "less rapidly" than powers, and powers increase "less rapidly" than ex-
ponentials. This intuition can be formalized as follows. Let f and g be functions
from reals to reals. Then f dominates g if the ratio f (n)/g(n) increases without
bound as n increases without bound; that is, if for any c > 0 there is an no > 0
such that f (n) > cg(n) for all n > no.

For example, the function f(n) = n2 dominates the function g(n) = 2n
since for any c, n2 > c 2n whenever n > 2c. But f(n) = lOn does not
dominate g(n) = 2n since the ratio f(n)/g(n) is never larger than 5. The
general rule relating functions of these kinds is given by the following Theorem
(see Problem 18 for the proof).

* THEOREM (Exponentials, Powers, and Logarithms) Any exponen-
tial function dominates any simple power, and any simple power domi-
nates any logarithmic function. E

Some functions dominate all the exponential functions. For example, 22
dominates all the exponential functions; and even this function is dominated
by 22". A function intermediate between the exponentials and 22 is the
factorial function

n! = I1 *2 -3 .. n;

according to a formula called Stirling's approximation, n! is roughly

e n = rn , e(n+i) In n-n

The factorial function of n is the number of permutations of n distinct objects,
where a permutation is an arrangement of objects in a particular order. For
example, the six permutations of {1, 2, 3} are 123, 132, 213, 231, 312, and 321.

1.3 MATHEMATICAL BACKGROUND

More generally, if we know that (n - 1)! is the number of permutations of n - 1
objects, then n * (n - 1)! = n! must be the number of permutations of n objects,
since there are n possibilities for the first object and for each of these n choices
the remaining n - 1 objects can be arranged in (n - 1)! different ways.

To close our discussion of logarithms and powers, let us look at the sum of
another series in which logarithms arise rather unexpectedly. What is the sum
of successive reciprocals of the integers? That is, we want to know the value of

Hn = I + I + I + +2 3 n

H,, is called the no harmonic number. Although the values of the Hr increase
more slowly as n increases, the series does not converge; any fixed bound x
is exceeded by all harmonic numbers from some point on (Problem 19). In
fact, H,, grows with n in a logarithmic fashion; to be precise Hn I. n n + aY,
where -y = 0.577... is a number called Euler's constant. The quality of this
approximation gets better as n gets larger.

Order Notation
The notion of domination is too strong a way of comparing functions for some
purposes. For example, we would like to be able to say in some precise way
that two functions are "roughly equal" to each other, but need not be exactly
equal for all values of their argument. This would be the case, for example, if
neither dominates the other, but the difference between them is always in the
range between 1 and +1, or they are always within 10% of each other. Even
when the ratio of one function to another is very far from 1, we may consider the
two functions to be more similar than they are different. Consider, for example,
for n > 1960,

f (n) = the cost, in dollars, of a can of tuna fish in year n

g(n) = the cost, in cents, of a can of tuna fish in year n.

Then the difference g(n) -f(n) might become arbitrarily large, but the two
functions tell the same story about the trend in the cost of tuna fish over time
because their ratio is bounded. It is this notion of the growth rate of functions
in which we are particularly interested.

The comparison of growth rates of functions can be made precise by means
of "big-O notation." Let N be the set of nonnegative integers {0, 1,... }, let R
be the set of real numbers, and let R* be the set of nonnegative real numbers.
Let g be a function from N to R*. Then 0(g) is the set of all functions f
from N to R* such that, for some constants c > 0 and no > 0,

f(n) < cg(n) for all n > no.

In other words, f is in 0(g) if the value of f is bounded from above by a fixed
multiple of the value of g for all sufficiently large values of the argument.

21

22 INTRODUCTION

For any f it is the case that f E 0(f). Indeed any constant multiple of f
is in 0(f), as is the sum of f and any constant. For example, the function
f(n) = 13n + 7 is in 0(n), since 13n + 7 < 14n whenever n > 7 (so the
definition is satisfied with c = 14, no = 7). Likewise lOOOn E 0(0.0001n2),
since we can take c = 107 and no = 0 in the definition of O().

On the other hand 10-4n 2 ¢ 0(103 n). For suppose 10- 4 n2 < C. 103 n for
some constant c and for all n > no. Then n < 107c for all n > no, which is
impossible since c is a constant.

We have used in this example a notation that is extremely convenient. We
use any expression containing the variable n to stand for the function from
natural numbers to reals that has the value indicated by the expression for any
value of n. That is, when we write "lOOOn E 0(0.0001n 2)," the "n" does
not refer to any particular number, but to the independent variable in a formula
defining a function. If we wanted to be excruciatingly proper, we would say
instead, "Let f(n) = lOOOn for all n E N and g(n) = 0.0001n2 for all n E N;
then f E 0(g)."

The definition of f E 0(g) requires that f and g be defined and nonnegative
for all n E N, but it is convenient to relax this requirement a bit. If f (n) or g(n)
is negative or undefined for certain n < no, but only for such n, then it still
makes sense to say that f E 0(g) provided that there is some constant c > 0
such that f (n) < cg(n) for all n > no. In this way we can talk, for example,
about the class 0(logn), or a big-0 class containing logn, even though the
function logn is undefined for n = 0. To recapitulate, the notation f E 0(g)
makes sense provided that f(n) and g(n) are defined and nonnegative for all
but a finite number of nonnegative integers n.

Another point of usage: we sometimes say "f is 0(g)," rather than "f is
in 0(g)." This permits us to say things like, "the sum of two 0(n 2) terms is
also 0(n 2)." (See the references at the end of this chapter for more discussion
of big-0 notation.)

Related to the big-0 classes are the little-o classes: for any function g, o(g)
is the set of all functions that are dominated by g, that is, the set of all f such
that for each constant c > 0 there is an n, > 0 such that

f (n) < cg(n) for all n > n,.

For example, if g is any simple power then o(g) contains all the logarithmic func-
tions. More generally, the following Theorem summarizes the important little-o
and big-0 properties of the exponential, power, and logarithmic functions:

* THEOREM (Growth Rates)
1. The power n0 is in 0(nO) if and only if a < / (a, /3 > 0); and n' is

in o(n3) if and only if a < 3.
2. 1ogb n C o(n') for any b and a.
3. n" C o(cn) for any a > 0 and c > 1.

1.3 MATHEMATICAL BACKGROUND

4. loga n E O(logb n) for any a and b.
5. cn E 0(dn) if and only if c < d, and C' E o(dn) if and only if c < d.
6. Any constant function f(n) = c is in 0(1).

PROOF These follow either directly or from the Exponentials, Pow-
ers, and Logarithms Theorem; we prove just part (1) by way of example.
If a < 0 then n' < I -nO for all n > 0, so n' E 0(nf3); and if a > 3 then
for any c, na > cn3 whenever n > cl/(a-3), so n' V O(n). As for the
little-o relations, if a < / then for any c, n' < cnO whenever n > c 3 - ;
but if a > 3 then n' > 1 -nO for all n > 0, so n' V o(nO). This completes
the proof of part (1).

Also, part (6) deserves some comment. We are treating I as the
function that has the value 1 for all n. Since f(n) = c < c. 1 for all n,
f e 0(1). n

Big-0 notation and little-o notation are transitive; for example, if f E 0(g)
and g e 0(h), then f C 0(h). Big-O notation behaves rather like "<," since
0() is reflexive (that is, f E 0(f) for any f). On the other hand o() is not
reflexive, so little-o notation behaves more like "<."

The following Theorem summarizes a variety of general facts about big-0
notation. The proof is left as an exercise (Problem 26).

* THEOREM (Big-0) For any functions f, f', g, and g',
1. o(f) C O(f);
2. if f E o(g), then 0(f) C o(g);
3. if f E 0(g), then o(f) C o(g);
4. if f E 0(g), then f(n) + g(n) is also in 0(g);
5. if f E 0(f') and g E 0(g'), then f(n) . g(n) E 0(f'(n) g'(n));
6. kf(n) + c E 0(f) for any constants k and c, provided that there are

some d > 0 and some integer no > 0 such that f(n) > d for all n
greater than or equal to no. D

Parts (4) and (6) in particular are valuable because they permit us to discard
distracting information. For example, to see that 0.001n2 + 32n + 17 E 0(n 2),
take f(n) = 32n + 17 and g(n) = 0.001n2 in (4) to get 0.001n 2 + 32n + 17 E
0(0.001n2); clearly 0.001n2 E O(n2) by (6); then use the transitivity of big-0.

More generally, let us define a polynomial of degree d, where d is a
nonnegative integer, to be any function of the form

d

f(n) =E aini
i=O

where the ai are reals and ad > 0. Then it follows from (4) and (6) that any
polynomial of degree d is in 0(nd).

23

24 INTRODUCTION

A linear function is a polynomial of degree 1, that is, a function of the
form f(n) = ao + aIn for some ao and some a, > 0; this function is said to be
linear in n. A quadratic function is a polynomial of degree 2, and a constant
function is a polynomial of degree 0.

Big-O notation provides only an upper bound on the growth rate of a
function. For example, it is true that 17n2 e 0(n 2), but it is also true that
17n2 e 0(n3 7) and 17n2 e 0(2 n). In order to talk about the "tightest bound" g
such that f E 0(g), we need a complementary notation for lower bounds on
the growth rate of functions. So let g be a function from N to R*. Then Q(g)
is the set of all functions f from N to R* such that, for some constants c > 0
and no > 0, f(n) > cg(n) for all n > no.

Thus big-f2 notation is exactly the converse of big-0 notation; f E Q(g)
if and only if g E 0(f). (As mentioned for big-O notation, it is convenient
here as well to allow the functions to be undefined or negative for a finite
number of argument values.) Just as f E 0(g) implies that f grows at most
as quickly as g, so f e Q(g) implies that f grows at least as quickly as g.
Finally, we have a third notation to indicate that two functions are big-0 of
each other: ((f) = 0(f) n Q(f). We say that the set of functions @(f) is
the order of f. For example, n3 + 135n + 100 e E/(77n3) and, of course,
77n3 E e9(n 3 + 135n+ 100). More generally, all polynomials of the same degree
have the same order.

Let us apply these notions to generalize the fact that ZnL= i = n(n + 1)/2.
What is the sum of n consecutive squares or cubes? Exact formulas can be
derived with some ingenuity, but if we are willing to be content with establishing
the growth rate of such a sum, as a function of n, the task is much easier.

* THEOREM (Sum of Successive kth Powers) For any k > 0,

n
Eik E e(n k+I).

For example, the sum of the first n squares is in E)(n 3). (The exact formula
turns out to be EIn I i2

= n(n + 1)(2n + 1)/6.) Note that since n is regarded
as a variable and k as a constant in the statement of this Theorem, the constant
implicit in /3-notation can depend on k.

PROOF Let k be fixed, and let Sk(n) = En I ik To get an upper
bound on Sk(n), note that each term in the sum is less than or equal to nk,

so

n n

Sk(n) = ik < -nk = n nk = nk+

i=l i=l

1.3 MATHEMATICAL BACKGROUND

so Sk(n) E 0(nk+l). To get a lower bound on Sk(n) we add together two
copies as was done on page 18 for the k = 1 case. Then

n n

2Sk(n) = E ik + >(n-i +)k
i=- i=1

n

= Z(ik + (n - i + I)k)

i=1

> E (2) since either i or n - i + 1 is at least -2 2'
i-i

so

Sk(n) - 1k+n 1E Q(n k+)

Then Sk(n) C -E(nk+l) since Sk(n) is in both 0(nk+l) and Q(nk+l). D

Recurrence Relations
A recurrence relation is an equation or inequality that relates the value of a
function to values of the same function for smaller arguments. For example, the
sum of the first n integers can be described recursively as the sum of the first
n - 1 integers, plus n. So if we let f(n) be the sum of the first n integers, then
the following is a simple recurrence relation for f:

4 f~) 1 I, if ni = 1;
{ f(n - 1) +n, if n > 1.

The first clause defines the value of the function for the smallest value of the
argument n; the second clause describes how the value can be calculated for
larger n, given that the values have been determined for smaller n. This pair
of conditions-the first is called the base case, while the second is called the
recursive case-uniquely determine the value of the function for all n. In
this particular example it is easy to work out a nonrecursive formula for the
function f:

f(n) =f(n - 1)+ n

==f(n-2)+(n- 1) + n

= f(1) + 2 + + (n - 1) + n

- n(n+ 1)
= . 2

25

26 INTRODUCTION

We call such an explicit, nonrecursive formula a solution of the recurrence
relation. In general, recurrence relations are not as easy to solve as this one. In
this section we describe some techniques that will be useful in solving a variety
of cases that come up in practice.

A simple recurrence relation with an exponential solution is

T(O) = I

T(n) = 2T(n -1), if n > O,

which has the solution T(n) = 2T(n - 1) = 4T(n - 2) = = 2nT(O) = 2n.
Sometimes a recurrence cannot be "expanded" as easily as these to infer a closed
formula for the solution, but it is still possible to derive a reasonable estimate
of the solution. A good example is the recurrence for the Fibonacci numbers,
each of which is the sum of the previous two:

F(O) = 0

F(l) = 1

F(n) =F(n- 1)+F(n-2), if n > 2.

This sequence of numbers (usually we write Fn instead of F(n)) begins 0, 1, 1,
2, 3, 5, 8, 13, 21, ... ; it has many beautiful properties and surprising applica-
tions, some of which will be encountered in this book. For our purposes it will
suffice to derive big-O and big-Q estimates of the function's behavior. Certainly
it is easy to show by induction that F(n) is a monotone nondecreasing* func-
tion of n; therefore, for all n > 2, it follows that F(n) = F(n-1) + F(n -2) <
2F(n - 1). Since F(1) = 1, it follows from the example just given that F(n) <
2n-1 E 0(2n). By the same token F(n) = F(n - 1) + F(n -2) > 2F(n - 2),
from which it follows (since F(1) = F(2) = 1) that F(2n + 1) > 2n and
F(2n + 2) > 2n for all n. Therefore

F(n) > 2 (n-)/2 for odd n > 0

F(n) > 2(n-2)/2 for even n > 0.

Hence in any case

F(n) E 2(2n/2) = Q((/)n)

Because F(n) E Q((Xj)n) n 0(2n) we might guess that there is a number S,
somewhere between v2 = 1.414... and 2, such that F(n) C E)(on); in fact
such a number exists, though methods beyond those presented here are needed

*That is, F(m) < F(n) provided that m < n.

1.3 MATHEMATICAL BACKGROUND

1 1/o=0-l

A
Figure 1.6 The golden ratio 0 is the length of the whole rectangle, if its

height is 1. The small shaded rectangle, formed by removing a 1 by 1
square, has the same proportions as the whole; the whole is 1 high and 0
long, while the shaded rectangle is I - 1 wide and 1 high, so Q satisfies
1/0= (O- 1)/1.

to discover it. It turns out that if we let

= 1.6180 ...
2

=-0.6180....
2

then

Fn 1 (on _ >n) E E(On).

The number o is the golden ratio of ancient Greek mathematics; a o by 1
rectangle has the same proportions as the rectangle that is left when a unit
square is removed (Figure 1.6). Consequently o satisfies the identity

1=1,

which leads to a quadratic equation with the solution as stated (the negative
number X is the other solution).

Divide-and-Conquer Recurrences Recurrence relations arise naturally when
we attempt to determine the running time of a recursive algorithm. For example,
let us consider the behavior of Algorithm 1.3 on page 11. The algorithm does a
small initial calculation, and returns quickly if the table is empty; it then carries
out a slightly longer calculation, and returns if the search is successful at this
point; then on the basis of a comparison, it calls itself recursively on either a
lower or an upper subtable. Roughly speaking, each of the possible recursive
calls searches about half the table. To get a sharper picture of the behavior of the
algorithm, let n denote the size of the table to be searched (that is, n = b- a+ 1),

27

28 INTRODUCTION

and for simplicity assume that n is 1 less than a power of 2, for example, 1, 3,
7, or 15. If we let n = 2k-1, then b = 2 k - 2 + a and on the first recursive
call

middle = L(a + b)/2J = L(a + 2k - 2 + a)/2J = a + 2 k-1 - 1.

Therefore the first recursive call is on a table of length middle 1 - a + 1 =
2k- -1, and the second recursive call is on a table of length b - middle =
n+a - (a + 2k-1-1) = 2k - 1 - 2 k-1 = 2 k-1 - 1. Therefore the two
alternative recursive calls are on subtables of the same size. Now let us imagine
what is the largest amount of time this algorithm might take when called to
search a table of fixed size; the worst-case scenario is when the table does not
contain the key and the algorithm calls itself recursively until it is called on
an empty table. If we let T(n) be the maximum possible running time of the
algorithm on a table of length n, we therefore have that for some constants
c and d,

ck [, if k =0;
d + T(2k 1), if k > 0.

Here c is the time simply to execute the first line of the algorithm, while d
is the time to execute the body of the algorithm, except for a recursive call;
T(2k- -1) is the time to execute either of the recursive calls. Then for any k,

T(2k -1) = d+T(2k-1 -1)

= 2d + T(2k-21)

= kd + T(O)

= kd+c.

If n = 2 k _1 then k = log2(n + 1) and hence T(n) = dlg(n + 1) + c when n is
1 less than a power of 2.

This takes care of analyzing the complexity of the algorithm in case n is
one less than a power of 2, but of course n might actually be any nonnegative
integer. The analysis in the general case is only slightly more complicated. The
two recursive calls in Algorithm 1.3 on page 11 split a table of length n into
two tables, one of length L(n - 1)/2j and one of length n- I -L(n -)/2] =
[(n -1)/21. Therefore

T(n) = , if nT[(n-=)/2)) (3)
(n + max(T([(n -1)/2J)T(r(n-1)/21)), if n > 0.

This recurrence relation is awkward to analyze exactly because of the "floor" and
"ceiling" functions, but for practical purposes we need only an upper bound on
the value of T(n), not an exact formula. First, it is easily shown by induction
on n that T(n) is a monotone nondecreasing function, that is, that T(n) <

1.3 MATHEMATICAL BACKGROUND

procedure MergeSort(table T[a. . b]):
{Recursively sort T so that T[i] < T[i + 1] for a < i < b}

if a > b then return
middle ~ L(a + b)/2J
MergeSort(T[a.. middle])
MergeSort(T[middle + 1 b])
Merge(T[a. . middle], T[middle + I.. b])

Algorithm 1.7 Merge Sort algorithm. The Merge procedure merges two con-
tiguous sorted tables into the space they collectively occupy. In general it is
necessary to copy one of the arguments into an auxiliary table before carrying
out the merge, but Merge can be implemented in time proportional to the size
of its arguments. (See also Problem 15 of Chapter 11.)

T(n + 1) for all n (Problem 35). It follows that T(n) cannot exceed T(u(n)),
where u(n) < 2n is the next number of the form 2 k - 1 that is greater than
or equal to n. But we already have an exact formula for T(u(n)), namely,
T(u(n)) = d lg(u(n) + 1) + c. Therefore for all n,

T(n) < T(u(n))

= d lg(u(n) + 1) + c

< dlg(2n+ 1)+c.

In particular, T(n) G Q(log n).
This example is a special case of a more general class of recurrence relations

that arise commonly in the analysis of recursive algorithms. In the general case
of a so-called divide-and-conquer algorithm, a problem of size n is reduced
to a > 1 similar problems, each of which is roughly the same size n/b. The
subproblems are solved recursively using the same method, unless they are so
small that they can be solved directly. The solutions to the subproblems are or
can be combined to yield the solution to the larger problem. For example, in
the case of Algorithm 1.3 on page 11, b = 2 (the table is split in half, more or
less) and a = 1 (only one of the two halves is searched recursively). Another
familiar example is Merge Sort (Algorithm 1.7), which sorts a list by splitting
it in half, sorting the two halves recursively, and then merging the two sorted
sublists into one. In Merge Sort a = 2 (two sublists to sort) and b = 2 (each
half as long as the original); in addition the analysis must take into account the
cost of merging.

To get a handle on the approximate behavior of this kind of algorithm, we
model its behavior by the recurrence relation

T(n) = c, if n - 14
aT(n/b) + d(n), if n > 1,(4

29

30 INTRODUCTION

which defines a value for T(n) provided that n is an exact power of b. Here
d(n) is a function of n that represents the time required to split the problem
into its subproblems and to combine the solutions to those subproblems back
together to yield the solution to the larger problem. In case of binary search,
d(n) is a constant, denoted by d in the analysis above; in the case of Merge
Sort, d(n) is a linear function of n, since it takes time proportional to the sum
of the lengths of two sorted lists to merge them together. If n = bk, then the
recursive case of this recurrence relation expands into

T(n) = aT(n/b) + d(n)

= a(aT((n/b)/b) + d(n/b)) + d(n)

= a2 T(n/b2) + ad(n/b) + d(n)

= a3 T(n/b3) + a2 d(n/b2) + ad(n/b) + d(n)

k-i

= akT(n/bk) + E ajd(n/bj)
j=0

k-i

= cak+ E aid(bkij).
j=0

The first term represents the cost of solving the smallest subproblems; there are
ak of them, and each takes time c to solve. Since n = bk, this term can be
written as

cak = calogb n = Cnlob a E 0(nlogb a)

that is, a polynomial in n of degree 1ogb a. For example, if a = b, then this
term is cn-there are n smallest subproblems, each of which costs c to solve.
The other term (the extended summation) represents the time required for all
the splitting and combining of subproblems. To simplify this summation, let us
assume that d(n) is polynomial in n, in fact that d(n) = c'ne for some constants
c' and e. (In the binary search example, e = 0 and c' = d; in the Merge Sort
example, e = 1.) Then

k-I k-I k-I j

E aid(bk-j) = c' E ajbe(k-j A 3 ek E ()a
j=O j=O j=Ob

which is the sum of a geometric series. Depending on the relation between
a and be, there are three cases to distinguish.

1. a < be, that is, e > logb a. Then

(cb) = bek -bek - O(bek) =Q(e)k1I (ab)/ 1 -(a/be)

1.3 MATHEMATICAL BACKGROUND

Recursion Level _ _ _ _ n _ _ _

0

2

3

Ig

Figure 1.7 Illustration of the total time taken by a divide-and-conquer algo-
rithm in case a = b = 2 and e = I (Merge Sort is like this). On
the outermost call there is only one block of data and the time taken
(aside from the recursive calls) is proportional to its size n. There are
two first-level recursive calls, each on half as much data, and each takes
time proportional to the size of its argument, so the total time for the
nonrecursive processing at the first level is again proportional to n. The
same holds at each subsequent level of recursion. After Ig n levels the
argument is small enough that the algorithm solves the problem directly
within a constant time bound rather than making a further recursive call,
so the total time for all levels is proportional to n log n.

so T(n) E 0(nflogb a + ne) = O(ne). In this case the cost of splitting and
combining exceeds the cost of solving the smallest subproblems.

2. a > be, that is, e < logb a. Then

(*) = a' -b E O(ak) = 0(nflogb a)
(a/be) -1

In this case the cost of solving the smallest subproblems is of the same
order as the cost of splitting and combining, and T(n) e 0(nlOgb a).

3. a = be, that is, e = log5 a. Then

(*) = c bek k = c logb n,

so T(n) E 0(nflgb a + ne logb n) = 0(ne log n). This is the case that applies
to Merge Sort, with a = b = 2 and e = 1, so Merge Sort runs in time
O(n log n) on lists of length n. In this case each level of recursion has the
same total cost (Figure 1.7).

If n is not an exact multiple of b then Equation (4) on page 29 does not really
represent the behavior of a divide-and-conquer algorithm, since the quantity
n/b is not an integer. Thus the recurrence relation must be modified to reflect
accurately the effect of an "uneven division" when an algorithm splits a problem
into subproblems of nearly but not exactly equal sizes. A related difficulty
in applying Equation (4) is that we have characterized a divide-and-conquer
algorithm as one that calls itself recursively until the argument is of size 1;
only the size I arguments are solved by a nonrecursive method. The byproduct
of this view is that Equation (4) has the base case n = 1. In practice it may

31

32 INTRODUCTION

well make sense to use an alternative, nonrecursive algorithm if the size of the
argument is "small" but larger than 1. For example, the Merge Sort algorithm
(Algorithm 1.7) works more efficiently if tables of five or ten items are sorted
by another method, even a method that for larger n would require time quadratic
in n. The problem, intuitively, is that the time required to split up and rearrange
small amounts of data and the overhead for recursive subroutine calls might
well be significant for small n.

To accommodate algorithms that do "uneven splitting" of problems into
subproblems and stop their recursion on arguments of size at most no, which
may be greater that 1, the following more general version of Equation (4) is
often more useful:

T(n) < c, if n < no;

T(n) < aT(Fn/bl + n') + d(n), if n > no.

Equation (5) differs from Equation (4) in three respects. First, the equalities
in both the base and the recursive cases have been replaced by inequalities, to
reflect the fact that each expression on the right-hand side represents only an
upper bound on the running time of the algorithm, not an exact time. Second,
the cut-off point at which the algorithm switches from a recursive to a non-
recursive method may be any size no, not necessarily 1. Finally, the sizes of
the subproblems need not be n/b exactly, but anything up to Fn/bl + no; that
is, about l/b of the original size, rounded up, and possibly larger than that by
a small additive constant n'. (For this recurrence relation to make sense as a
model for the behavior of an algorithm, n' must be small relative to no; other-
wise repeatedly dividing n by b and adding no might never reduce the value
of n below no. See Problem 40.) Then by reasoning like that used in the special
case of binary search (page 29), T(n) falls in one of the three big-O classes as
just analyzed for the case in which n = bk (Problem 41). In sum, we have the
following:

* THEOREM (Divide-and-Conquer Recurrences) For any integer con-
stants a > 1, b > 2, c > 0 c' > 0 e > 0 no > 1, and no > 0 such that
n < L((b - 1)no - I)/bJ, the recurrence relation

T(n)<c, if n<no;

T(n) < aT(fn/bl + n') + c/ne, if n > no

has the solution

f O(ne), if e > logb a;
T(n) E O(nelogn), if e = logba;

Q 0(nlogb a), if e < Iogb a. F

1.3 MATHEMATICAL BACKGROUND

Algorithm 1.7 can easily be adapted to stop the recursion before the argu-
ment is of size 1; we need simply replace the first line, which currently reads
"if a > b then return", by

if b - a < no then NonRecursiveSort(T[a . .b]),

where NonRecursiveSort is some direct sorting algorithm to be used in case the
argument is of size less than or equal to no. For example, NonRecursiveSort
might be Insertion Sort or some other algorithm whose time complexity increases
more rapidly with n than does Merge Sort, but which is more efficient for
small n. Then by choosing the cut-off value no appropriately, the efficiency of
the algorithm as a whole can be improved (Problem 44).

Naive Probability Theory
We are interested in assessing the expected behavior of certain sequences of
events that individually cannot be predicted with certainty. Such a desire is not
unique to computer science; gamblers want to do this all the time. To get some
of the basic notions out, let us consider a gambling situation.

The Computer Science Department runs a raffle to raise money for student
scholarships. One thousand tickets are sold for $1 each, and each ticket bears a
different number between 1 and 1000. At the drawing the department chairman
draws 100 tickets out of a bin containing 1000 similarly numbered tickets. To
the holders of the first ninety numbers drawn go prizes of $5; to the holders
of the next nine numbers drawn go prizes of $10; and to the holder of the last
number drawn goes a prize of $100. The others who bought tickets get nothing,
except the satisfaction of knowing they have supported a worthy cause.

A few things about this situation are certain. It is certain that the department
will take in $1000 from ticket sales, and pay out 90. $5 +9 * $10+ 1. $100 or a
total of $450+$90+$100 = $640. (It will therefore be able to contribute $360 to
its scholarship fund.) The situation of a ticket buyer is, of course, not so clear.
A person who buys one ticket can win a maximum of $100, and a minimum
of nothing; to go beyond this level of analysis we need to use the language of
probability. Since 100 of the 1000 tickets will win something, we say that the
probability of holding a winning ticket is l°oo, or .1. The probability of holding
a $5 ticket is 90 , or .09; of holding a $10 ticket, 1, or .009; and of holding
the unique $100 ticket, 1000, or .001. And, of course, the probability of holding
a losing ticket is 1000, or .9. In general,

* Let El, ... , Ek be events, one of which must occur, and no two of which
can both occur. If PI, --, Pk are the probabilities of these events, then
0 < pi < 1 for each i, and Xk I Pi = 1. The probability that one of
several of the events occurs is the sum of their individual probabilities;
thus in particular the probability of an event that is certain to occur is 1.

33

34 INTRODUCTION

In our example, the four "events" are holding a $5 ticket, holding a $10
ticket, holding a $100 ticket, and holding a losing ticket; they have probability
.09, .009, .001, and .9, respectively, and these numbers sum to 1. The probability
of holding a winning ticket (that is, a ticket that wins $5, $10, or $100) is
.09 +.009 + .001 = .1.

A probability distribution assigns probabilities to individual events that
are mutually exclusive and together exhaust all possibilities. We have just used
a distribution whose domain is a set of four events. At another level, this lottery
situation can be modelled by a distribution that assigns a probability of 0.001
to each of the 1000 tickets. Such a distribution is said to be uniform, that is,
there are k possible events for some k > 0 and each has probability l/k. To
take another case of uniform distribution, it is usually fair to assume that the
events of rolling the different faces of a single die have uniform distribution,
that is, each has probability 1. Of course the 11 possible totals when two dice
are rolled do not have uniform distribution (Problem 47).

Returning to the lottery example, suppose now that a similar lottery is held
the next day, and I buy tickets both days. What is the probability that I will
hold winning tickets both days? Neither day? At least one of the two days?

There are 1000. 1000 combinations of tickets I might buy on the two days.
Of these, 100. 100 are pairs that consist of a winning ticket on the first day,
and a winning ticket on the second day. So the probability of holding winning
tickets for both lotteries is 10°°1°0 or .01. But this result can be derived more
directly from the probability of winning a single lottery.

* If El and E2 are independent events (that is, neither affects or influences
the other) of probability p1 and P2 respectively, then the probability that
both El and E2 occur is p1 * P2-

So in our example, the probability of winning a single lottery is .1, and the
outcome of one lottery does not affect the other, so the probability of winning
both lotteries is .1 .1 = .01. Similarly, the probability of losing on the first day
and losing again on the second is .9- .9 = .81.

Since I win on at least one day just in case I don't lose on both days, the
probability of winning on at least one day must be 1 - .81 = .19. This too can
be derived more directly.

* Let El and E2 be independent events of probability pi and P2, respectively.
Then the probability that at least one occurs is PI + P2 -P * P2, that is, the
sum of the probabilities of the events minus the probability that both occur.

The reason for subtracting the probability that both events occur from the
sum of the individual probabilities is that in the sum PI + P2 the possibility that
both El and E2 occur is in effect being counted twice, once as part of pi and
once as part of P2-

1.3 MATHEMATICAL BACKGROUND

In our example, the probability of winning on at least one day is determined
in this way from the two events of "winning on the first day" and "winning on
the second day" as .1 + .1 - (.1 . .1) = .19.

The most important probabilistic notion for us is that of expected value. If
we had to assign a single dollar value to our lottery ticket (before the drawing,
of course), what would it be? We know that it might be worth $100, or (more
likely) it might be worth $0; so the actual value ought at least to be somewhere
in between. The value we are looking for is the amount that a perfectly rational
gambler would be willing to pay for the ticket. That value is $0.64, a figure
that can be arrived at in either of two ways. First, we know that a total of $640
is to be distributed to ticket holders, and there are 1000 tickets, so each must
be worth $640 or $0.64. Equivalently, we can take each possible value a ticket
might have, multiply that value by the probability that a ticket has exactly that
value, and add these "weighted values" together to obtain the expected value.
That is,

Expected value of ticket = $0 * probability ticket is worth $0

+ $5 * probability ticket is worth $5

+ $10 * probability ticket is worth $10

+ $100 * probability ticket is worth $100

=$0-0.9+$5 0.09+$10-0.009+$100-0.001

= $0 + $0.45 + $0.09 + $0. 10

= $0.64.

In general,

* Let Q be a quantity that has value vl with probability pi, ... , and value Vk

with probability Pk. Then the expected value of Q is Z=1 Pi vN.

Notice that the "expected value" of something does not need to be any of
its possible actual values. There are no lottery tickets that pay off $0.64, yet
this is exactly the expected payoff from a ticket. Those new to probabilistic
reasoning sometimes are distressed by this apparent anomaly, particularly when
the "quantity" is something for which noninteger values would be meaningless.
Suppose we watch cars going by on the highway in an effort to determine the
expected number of occupants of a vehicle. After long observation, we conclude
that a car has one occupant with probability 4, two occupants with probability 3,

three with probability 4, and four with probability 8. Then the expected number
of occupants is

1 4 + 2 + 3. + 4 + 4 + 2 4

35

36 INTRODUCTION

The fact that there aren't any quarters of people is irrelevant; if we give a dollar
to each person that is in a car, then after n cars have gone by we expect to have
given out about n * 24 dollars.

One further example illustrates how expected values can be computed even
over an infinite set of possible outcomes. Suppose I flip an ordinary coin until
it comes up heads, and I am paid k dollars if it comes up heads for the first time
on the kth toss. How much money should I expect to win? The probability of
getting heads on the first toss is 2; the probability of not getting heads on the
first toss, but getting heads on the second toss, is 1, or 4; the probability of
getting tails on each of the first two tosses, and then heads on the third toss, is
2 ' 2 I or -; and in general the probability of getting heads for the first time
on the kth toss is 1/2 k. My expected winnings are therefore

1 . + 2 1 + 3. + 4.1 + *-- + k 21 +2 4 8 16 2 +

+ + 8 + 16 + + 2 +

1 + 8 + I + + 2I ++ 4 8 16 2

+ + 11 + *'+ -I +..

816 1F

+ I + + 1I16 2 +

But the first row sums to 1, and each subsequent row is half the preceding row,
sothesumofalltherowsis I +4+ + -+--=2.

Problems

1.1 1. The table search in algorithm (A) terminates when either K is found
in the table or the end of the table is reached. Each of these conditions
must be checked every time around the loop. (In Algorithm 1.2 on
page 10, the more formal description of algorithm (A), the first test
is T[i] = K and the second test is implicit in the for loop, where we
must always check whether i < n - 1.) Find a simple improvement
to algorithm (A) that avoids testing whether the end of the table has
been reached. (You may assume that table position T[n] is available
for your use.)

2. We said that algorithm (B) is slightly more intelligent than algo-
rithm (A). For exactly which words K does algorithm (B) compare
fewer pairs of words than algorithm (A)?

1.2 3. Suppose that T[O. . n - 1] is a table of records with the structure
shown in Figure 1.1 on page 4. If T begins at address X, what is the
address of Weight(T[i])?

PROBLEMS 37

4. A Frob is an object that is available in three different sizes, and has
front, middle, and back parts, each of which (independently) can be
painted any of ten colors, or can be left unpainted.

a. Design a record structure with four fields that can be used for
representing Frobs. What is the minimum number of bits for
each field, and for the entire record structure?

b. It is possible to represent a Frob uniquely by using only 12 bits.
Explain how to encode the size and three color values to produce
the encoded representation of a Frob, and how to decode the
representation of a Frob to extract its size and three color values.

5. There are two basic kinds of Froobs, fragrant and frumious. Fragrant
Froobs come in 35 varieties, each of which can be found in four
different colors; frumious Froobs come in another 17 varieties, each
of which can be found in fifteen different colors. Devise an encoding
of Froobs in as few bits as possible so that it is easy to tell, by
using ordinary computer operations, whether a Froob is fragrant or
frumious, and what its variety and color are.

6. Write the procedure SinglyLinkedDelete that complements procedure
SinglyLinkedlnsert of Algorithm 1.1 on page 8. It should take as its
argument a pointer P and should delete the cell just after the one to
which P points. Be sure to handle the possible error condition in
some appropriate way.

7. a. Write a procedure Append that adds a new element to the end
of a linked list represented as in Figure 1.4 on page 6. The call
Append(K, list) should create a new record with key value K and
add it just after the last element in list. You may use the procedure
NewNode of Algorithm 1.4 on page 12, and use of a locative will
be handy.

b. Write the same procedure without locatives. Append should now
take only one argument, and may refer to list as a global variable
(in case list has no elements).

8. Suppose T is a table of ten numbers with T[i] = i for 0 < i < 9.
What are the values of a, b, and middle on successive calls to Binary-
Search (Algorithm 1.3) starting with BinarySearch(T[O . .9], 3)?

9. Write a routine LLMember(K, P), which takes a key K and a linked
list P and returns true or false, depending on whether K is in the
list. You should assume that the list has been constructed using Algo-
rithm 1.5 or 1.6, so that the keys are in order in the list.

10. This problem concerns the notation for simultaneous assignment, for

example (X) -(W)-

38 INTRODUCTION

a. We abbreviated the special case (X) - (X) by X - Y.

Write code for this swap using only simple assignment statements
and a temporary variable T.

b. Generalizing part (a), suppose we want to rotate the values of n
variables XI, ... , Xn as follows:

vX1 (Xj
Write code for this operation using only simple assignments and
as few temporary variables as possible.

c. Suppose we need to translate the notation

(Xn) (Yn)

into some programming language that does not provide these si-
multaneous assignments. Translate the general simultaneous as-
signment into code that uses only simple assignments, again using
as few temporary variables as possible.

d. Now suppose that we are working in a language where simulta-
neous assignments are not available, but there is a primitive swap
operation X 4-+ Y that exchanges the values of X and Y. Solve
parts (b) and (c) again.

11. Which of the following are true for any real numbers x and y? Explain
or give a counterexample.

a. Lx + y] > LxJ + LyJ
b. L[xlJ + 1 = FLxJ1

c. LxilJ = I LxJ I

12. Under what conditions on the numbers x, y, and z does the relation-
ship

LX/YJ J = LX/ZJJ
hold? Under what circumstances is the left-hand side of this expres-
sion greater than the right-hand side?

13. Show that if m and n are integers and m ¢ 0 then

[n/ml < (n-l)/m + 1.

PROBLEMS 39

Under what conditions does equality hold? What if m or n is not an
integer?

1.3 14. Evaluate the following sums:

a. Ek= i2

b. Z 0 i2-'

15. Show that for any integer n > 0, the length of the binary notation
for n is Llg nj + 1.

16. How would you convert binary logarithms to natural logarithms?

17. a. What is the relation between logb a and loga b?

b. If a > b > 0, how does log, x compare with logb X?

c. Let c > 0 and b > 1. Show that there is a number d > 0 such
that logb(n + c) < logb n + d for every n > 1.

18. Prove the Exponentials, Powers, and Logarithms Theorem. (Hint: To
show that any exponential function dominates any simple power, let
f(x) = cx and g(x) = xz, where c > 1 and a > 0. Apply L'H6pital's
rule repeatedly.)

19. Show that the harmonic numbers are unbounded; that is, show that
for any x > 0 there is an n such that Hn > x. (Hint: Show that
H2k+ -H2k > 2 for any k.)

20. Show that for any a > 1 and b > 1, logb(nn) E 0(na). On the other
hand, show that logb(nn) 0 0(n).

21. Is it true that if log f(n) E O(log g(n)), then f(n) E O(g(n))? Why
or why not?

22. Which of the following are true and which are false, and why?

a. n E 0(n2)

b. lg(n3) E O(n log n)

c. v/n I g /Hn C O(n)

23. Which of the following are true and which are false, and why?

a. 2/n + 4/n2 e E)(1/n)

b. nloglon C E(nlog2 n)

C. log2 v@n e E(log n)
d. log2 n E e(log n)
e. min(700,n2) e E(1)

24. Prove that if f E 0(g) and g E 0(h) then f E 0(h). What are the no
and c for f and h, in terms of those for f and g, and g and h?

40 INTRODUCTION

25. Show that if f(n) and g(n) are positive for all n, then O(f + g) =
0(f) + 0(g), where the sum of two sets of functions is the set of
functions that can be expressed as the sum of one function from each
set. Does the same hold if addition is replaced by subtraction? Why
or why not?

26. Prove the Big-O Theorem.

27. Some authors prefer the following definition: f E Q(g) if and only
if there is a c such that f (n) > cg(n) for infinitely many n. Show
that this definition amounts to something different from ours, because
there are cases in which f G Q(g) according to this definition but not
according to ours. Also, show that under this definition Q() is not
transitive: there are functions f, g, and h such that f E Q(g) and
g E Q(h) but f 0 P(h). Finally, we prefer our definition because it is
transitive; but show that the alternative definition has the advantage
that for any f and g, either f E o(g) or f E Q(g).

28. Show that f E e(g) if and only if g E e(f). (Thus E) actually
partitions the class of all functions into equivalence classes.)

29. In each case, prove that the statement is true for all functions f and g,
or give a counterexample.

a. f E o(g) if and only if f E 0(g) and f e 8(9).
b. f E e(g) if and only if f E 0(g) and f 0 o(g).

30. Suppose that f and g are functions such that f C o(g). Find a
function h such that f E o(h) and h E o(g). That is, show that
between any two functions that are related by little-o a third can be
interpolated. (Technically, this means that the ordering defined by
little-o is dense.)

31. For any function f, we have defined classes 0(f), o(f), and Q(f).
There ought to be a fourth class w(f) that bears the same relation to
Q(f) that o(f) bears to 0(f). Define w(f), and explain the class in
ordinary English.

32. Find, as a function of k, that constant ck such that
n

ik = Cknkl + fk(n),

where fk(n) E 0(nk).

33. Show that Fn = (G/V)(On- An), where Fn is the nth Fibonacci
number and o and + are as defined on page 27.

34. Show the following facts about the Fibonacci numbers Fn, where
gcd(a, b) denotes the greatest common divisor of a and b:

PROBLEMS 41

a. Fm+n = Fm Fn+ + Fm-IFn
b. F, and Fn+1 have no common factors other than 1

c. gcd(Fm, Fn) = gcd(Fm, Fnm) for n > m

35. Show that the function T(n) defined by Equation (3) on page 28 is
monotone nondecreasing.

36. For each of the following recurrence relations, assume that T(1) = 1,
and find the order of the function T(n). (You may also assume that
n is a power of the divisor, 2 or 3.)

a. T(n) = 3T(n/2) + n

b. T(n) = 3T(n/2) + n2

c. T(n) = 8T(n/2) + n3

d. T(n) = 4T(n/3) + n

e. T(n) = 4T(n/3) + n2

f. T(n) = 9T(n/3) + n2

37. For each recurrence relation in Problem 36, give an exact form for
T(n), including the multiplicative constant and any lower-order terms.

38. Let G(n) be defined by the conditions that G(O) = G(1) = 0,
G(2) = 1, and

G(n) = G(n - 3) + G(n - 2) + G(n - 1)

for all n > 3. Find constants a and /3, as accurately as you can, such
that G(n) E w(an) n Q(f3n).

39. a. Find an exact form and the order of the solution to the recurrence
relation

T(1)= 1

T(n) = 2T(n/2) + n Ig n if n > 2 is a power of 2.

b. Find an exact form and the order of the solution to the recurrence
relation

T(2)= I

T(n) = v/nT('.n) + n if n > 2 is of the form 22k.

40. Explain why the statement of the Divide-and-Conquer Recurrences
Theorem includes the provision that n' < L((b - I)no -)/bj.

41. Complete the proof of the Divide-and-Conquer Recurrences Theorem
by showing that recurrence relation of the Theorem has a solution in
the big-O classes as stated.

42 INTRODUCTION

42. Find the exact solution (in terms of n, c, a, c', and e, not a big-O
answer) to the recurrence relation

T(1) = c

T(n) = aT(n/b) + cn, if n > 1.

(This is a simplified form of the relation of the Divide-and-Conquer
Recurrences Theorem, with inequalities replaced by equalities.) Make
any assumptions you find convenient about the form of n, but state
those assumptions.

43. Consider a recurrence of the form

f~n c, if n < no
-{ I Z= T(LainJ), if n > no,

where no > 0 and the ai are constants in the range 0 < (i < 1.
Show that if rk I ai < 1 then T(n) E 0(n). Is this still true if
"Lain]" in the recurrence is replaced by "[ainl "?

44. This problem explores the choice of the optimal cut-off value no be-
low which Merge Sort should switch to a nonrecursive sorting method,
as proposed on page 33. Suppose that the time complexity of Non-
RecursiveSort is given by the formula T(n) = c2n2 + c1n (all the
commonly used nonrecursive sorting algorithms, such as Insertion
Sort and Bubble Sort, fit this pattern reasonably well). Also assume
that the total time required for k levels of MergeSort, starting with a
table of size n, is dn. k for some constant d (if MergeSort were used
all the way down to subtables of a single element, we would have
k = lgn).
a. Write a formula for the total cost of sorting a table of size n by

using MergeSort recursively until the subtables are of size no,
and then using NonRecursiveSort for tables of that size. (You
may assume that n/no is a power of 2.)

b. By taking the derivative with respect to no of the formula from
part (a), find the value of no that minimizes the total cost.

45. a. A single die is thrown. What is the expected value of the number
that comes up on top?

b. A date between January 1, 1901 and December 31, 2000 is se-
lected at random. What is the expected value of the day of the
month?

46. Assume a uniform distribution on the permutations of {1,...,n}.
What are

a. the probability that a randomly chosen permutation will be mono-
tone increasing or monotone decreasing?

PROBLEMS 43

Figure 1.8 A circular bug lands on a random square of a 9 x 9 square board
and crawls to the center square, traversing 3 rings in the process. (See
Problem 50.)

b. the probability that a randomly chosen permutation will begin
with 1?

c. the probability that a randomly chosen permutation will begin
with an even number?

d. the probability that two randomly chosen permutations will begin
with the same number?

47. When two ordinary dice are rolled the total can be any number from 2
to 12. What is the probability distribution of these eleven possible
events?

48. Suppose that n2 different numbers are distributed at random in an n
by n square. What is the probability that the smallest number is at a
corner or along one of the edges?

49. Lottery tickets cost $1 each. What is the expected profit (or loss) by
the lottery organizers if, of the tickets sold,

90% are losers;
5% win one free ticket;
3.5% win $10;
1.3% win $20;
0.15% win $100;
0.04% win $250;
and 0.01% win $1000?

50. A (2n+ 1) x (2n+ 1) square board is partitioned by a series of concentric
square "rings" around the center square, indicated by the solid lines in
Figure 1.8. A bug lands on a random square of the board and crawls
straight to the center square. What is the expected number of rings
that it crosses? (Count the border of the center square as a ring.)

............ :

.
.

i..

44 INTRODUCTION

51. It is a simple matter to make a fair two-way choice using a fair coin:
assign one choice to "heads" and the other to "tails," and toss the
coin.

a. Show how to make a fair three-way choice using a fair coin.
b. Generalize part (a), finding a procedure for making a fair n-way

choice using a fair coin.

c. Show how to make a fair two-way choice using a coin that is not
known to be fair, that is, where "heads" occurs with unknown
(but fixed) probability. (Hint: It is unnecessary to determine the
probability of "heads.")

d. Prove that none of parts (a)-(c) can be solved by any procedure
that always terminates in a number of steps that can be determined
in advance, except in the case of certain values of n in part (b).

52. You are playing Let's Make a Deal! with Monty Hall. He shows you
three doors respectively labelled A, B, and C. Behind one of the
doors is a new computer worth $65,536, behind another is a slide
rule, and behind the third is a box of punched cards. Only Monty
knows which door conceals each prize. He offers you your choice of
doors, and you pick door A. Monty now opens door C, revealing the
slide rule.

a. Monty now offers you the option of switching your choice to
door B. Should you do it? Does it matter if Monty offers you
$1000 to switch? What if you have to pay Monty $1000 to switch?

b. Suppose that after you pick door A, Monty pulls out a wheel of
fortune with A, B, and C represented equally. He says, "Let's
open a door!" and spins the wheel. While the wheel is spinning,
Monty tells you that if the wheel lands on A you'll get whatever
is behind door A and the game will be over. But the wheel lands
on C, door C is opened, and the slide rule is behind it. Now
Monty offers you the option to switch. Answer part (a) under
these new circumstances.

References

The classic books on data structures, algorithms, and the mathematical analysis of the
efficiency of computer programs are

D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Addison-Wesley Publishing Company, 1968 (First Edition) and 1973 (Second Edi-
tion),

and

D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching,
Addison-Wesley Publishing Company, 1973.

REFERENCES 45

These books contain a wealth of mathematical background and historical references
which we urge the interested reader to consult. Moreover many of the analyses presented
in this textbook have their origins in Knuth's work. Another book that has been extremely
influential is

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Company, 1974.

Two other good sources for information about data structures and their analysis are

T. A. Standish, Data Structure Techniques, Addison-Wesley Publishing Company, 1980,

and

G. H. Gonnet, Handbook of Data Structures and Algorithms, Addison-Wesley Publishing
Company, 1984.

An interesting example of a computer design that is not of the von Neumann variety is
described in

W. D. Hillis, The Connection Machine, MIT Press, 1985.

A very readable presentation of the design and analysis of some algorithms for this type
of parallel computer is given in

W. D. Hillis and G. L. Steele, "Data Parallel Algorithms," Communications of the ACM
29, 12 (1986), pp. 1170-1183.

Big-0 notation and its relatives have a very long history in mathematical writing. Until
recently it has been the universal practice to write "f = 0(g)" instead of "f E 0(g),"
that is, to treat the relation between f and g as a kind of equation, although it is
really more like an inequality or a "one-way" equation (the notation "O(g) = f " being
meaningless). Recently the trend has been to treat 0(g) as a set of functions; not only
is this mathematically precise, but it justifies the use of standard notations like "E" in
association with "O)." But some of the old way of talking is convenient and efficient,
too. For discussions of big-0 notation and its relatives, see

D. E. Knuth, "Big Omicron and Big Omega and Big Theta," SIGACT News 8, 2 (1976),
pp. 18-24

and

G. Brassard, "Crusade for a Better Notation," SIGACT News 17, 1 (1985), pp. 60-64.

We follow Brassard's proposals in this book. A classic but still excellent work on prob-
ability theory is

W. Feller, An Introduction to Probability Theory and its Applications (Third Edition),
John Wiley and Sons, 1968.

2
Algorithm
Analysis

2.1 PROPERTIES OF AN ALGORITHM

An algorithm is a computational method to be used for solving a problem.
Among the important properties of an algorithm are effectiveness, correctness,
termination, efficiency, and program complexity.

Effectiveness
To say that a process is effective is simply to say that it can be rendered as
a computer program-it can be understood without leaps of imagination and
utilizes only operations that can be performed by a computer in some obvious
way. If an algorithm is presented in a conventional programming language, its
effectiveness is guaranteed automatically. But we shall use English a good deal
to describe algorithms, since it is easier to understand than most programming
languages. We must therefore take care that our descriptions are reasonably
unambiguous, and can be translated into concrete code without difficulty.

For example, consider some problems about prime numbers. A number is
prime if it is divisible only by 1 and by itself; for example, 7 is prime but 9
is not. There are many effective ways to tell if a number n is prime, the most
obvious of which is to try dividing it by each number from 2 to n - 1; note
that an effective method does not have to be particularly efficient. Given such a
method for testing primality, the direction "let p be the smallest prime number
greater than n" is reasonably effective, since there is at least one obvious way
to implement it (start counting up from n + 1, testing each number to see if it is
prime). But "let p be the prime number that is closest to a multiple of n" is not
effective; it seems to ask for that prime number p that minimizes lp-m * nj,
over all possible values of m. Since there are infinitely many possible m (as
well as infinitely many possible p), how could we be sure that we have found
one for which m * n is as close as possible to a prime? And what are we
supposed to do if there are two numbers ml and m2 such that ml * n and m2 * n
are equally close to prime numbers p1 and p2? Perhaps these questions can be
resolved by mathematical methods, but as stated the directions for finding p are
insufficiently precise.

46

2.1 PROPERTIES OF AN ALGORITHM

Correctness
An algorithm must not give the wrong answer. Ever.* Thus consider the
following approach to determining whether a number n > 1 in binary notation
is prime. The number n is prime if it is not divisible by any integer less than
or equal to './n, and v/ln has about half as many bits as n. So we might try:

1. A b-bit number is prime if and only if it is not divisible by any number
greater than I with b/2 or fewer bits.

This works for the four-bit number 10012 = 9, which is divisible by the
two-bit number 112 = 3; it also works for the four-bit number 10112 = 11,
which is prime and is not divisible by any of the numbers 102 = 2, 112 3 of
two bits. But it fails for the five-bit number 110012 = 25, which is not prime
and is not divisible by any number with fewer than 5/2 = 2.5 bits. For this
number we must also check at least some of the possible three-bit divisors, such
as 1012 = 5. Thus a correct version of the test would be:

2. A b-bit number is prime if and only if it is not divisible by any number
greater than I with [b/21 or fewer bits.

Perhaps this is what was meant all along; small consolation to the person who
took (1) literally and got the right answer for more than 99%-but not 100%-of
the numbers between I and 1000!

Termination
It is not enough to be confident that the answer is correct, when you get it;
you must be sure to get an answer at all. Some pieces of code that "look
like" algorithms are not known to terminate with all possible inputs; a famous
example is Algorithm 2.1. If this function computes a value on input m, that
value is surely m; but despite the efforts of many mathematicians, we cannot
rule out the possibility that there are some m for which the while loop never
exits!

The assurance that an algorithm terminates is often taken for granted as
part of its correctness, but sometimes it is helpful to treat termination separately.
From the fact that n2 = (n - 1)2 + 2n - I for any integer n we might be tempted
to believe the following recursive algorithm for computing n2 :

sq fo , if n -0;
sqr(n)= {sqr(n -1) + 2n- 1, if n 0.

This gives the correct answer for n > 0, but does not terminate for n < 0, even
though the formula on which it is based is correct for negative n as well.

*We are not considering so-called probabilistic algorithms, which used randomized methods (a
kind of coin-flipping by computer) to produce results that may, with extremely low probability, be
incorrect. Such methods can be practically useful but are beyond the scope of this book.

47

48 ALGORITHM ANALYSIS

function OddEven(integer m): integer
n +- m
while n > 1 do

if n is even then
n72- n/2

else
n72- 3n + 1

return m

Algorithm 2.1 A mysterious "algorithm." Does this piece of code compute
the identity function? Or is there some positive integer m that causes it to go
into an infinite loop?

Efficiency
This is the concept that motivates most of this book. Algorithms that are equally
correct can vary widely in their utilization of computational resources; it is a
critical part of the engineering of complex systems to be able to predict how
they would behave when used under a range of possible conditions. For our
purposes, the relevant resources are time and memory. A program that is too
slow is likely not to be used, and for some applications (for example, where
real-time response is required) may not be suitable at all. A program that de-
mands too much memory may not even be executable on the machines that
are available. Nonetheless, the rapid decline in cost of all kinds of memory
has made memory efficiency less critical in many applications than it once
was. Our main emphasis will therefore be on the time efficiency of algo-
rithms.

The time efficiency of an algorithm will be measured by analyzing how the
running time varies with the size of the input to the algorithm. We naturally
expect that in most situations of practical interest the time to solve a problem
will increase with the size of the problem to be solved; for example, any sorting
algorithm tends to take more time to sort bigger tables. What will be important,
however, is to measure the rate at which the running time increases with the size
of the input-for example, linearly, quadratically, or exponentially. This measure
of the efficiency of an algorithm focuses attention on intrinsic characteristics of
the algorithm, rather than incidental factors such as the speed of the computer
on which the algorithm is running and fine-grained local optimizations of the
code implementing the algorithm.

Program Complexity
Sometimes simple methods are preferred to more ingenious but more complex
methods, even when the more ingenious methods are also more efficient in
their use of machine time. The reason, of course, is that the programmer's

2.2 EXACT VS. GROWTH-RATE ANALYSIS

time is valuable too. Also, no real program is forever static-programs are
regularly repaired and adapted to changed requirements and operating environ-
ments, often by individuals other than the original programmer. Straightforward
design and simple algorithms are valued highly by those who have to make
such changes.

Unlike the other properties of algorithms discussed above, program com-
plexity is entirely qualitative-simplicity is in the eye of the beholder. The
related notion of program size can be characterized formally, but we shall not
be concerned with size alone.

2.2 EXACT VS. GROWTH-RATE ANALYSIS

To introduce techniques for the mathematical analysis of algorithms, in this
section we consider two algorithms to solve the same problem, one of which is
simpler and more familiar but generally slower than the other. We shall derive
formulas for the running times of the algorithms, and then return to draw some
general lessons from this example.

The problem we consider is the familiar one of integer multiplication; from
integers x and y, calculate their product z = x y. As computer programmers
we usually think of this as a "built-in" machine operation, but such computer
instructions work only on numbers of fixed size; here we want to think about
algorithms for multiplying integers of unlimited size. To be precise, we assume
that the numbers x and y are nonnegative integers presented to us in binary
notation, and we wish to produce the binary numeral for their product. (All the
methods discussed below work with little modification if the base is a number
other than 2.) The inputs to the algorithm are two tables X[O. . n - 1] and
Y[O. ..n-1] containing two binary numerals of n bits each, representing x and y.
The length n is part of the input, and the multiplication algorithm must work
correctly for all n > 1. The table entry Xfif is the ih bit of x, where X[O] is
the least significant (rightmost) bit of x and X[n - 1] is the most significant
(leftmost) bit of x; and similarly for y and Y. Thus each entry in X and Y is
o or 1 and

n-l

Z E X[i] .2i
i=O
n-I

y = ZY[i] .2g.
i=o

The largest possible value of x or y is 2' - 1 (when all of the bits are 1), so
the largest possible value of z = x * y is 22n - 2 . 2n + 1; therefore 2n bits are
sufficient (and necessary-see Problem 3) to represent the product z.

49

50 ALGORITHM ANALYSIS

y 11101
X 01011

11101 i=O
11101 i=l

00000 i=2
11101 i=3

00000 i=4

0100111111

j=9876543210

Figure 2.1 Grade school multiplication algorithm for two numbers x and y
of n bits; here n = 5 and the product is 11 x 29 = 319, or, in binary,
01011 x 11101 = 0100111111. The ith partial product is either y or 0,
depending on the ith bit of x (counting from the right), and is shifted left
i bits.

Algorithm 1: Grade School Algorithm The multiplication method we all
learned in grade school for integer multiplication is quite serviceable, and it
becomes even simpler when the factors are represented in binary (Figure 2.1).
To multiply y by x, write down n rows, with the iff row representing the product
y * X[i] shifted left i bit positions. Then, for each column from rightmost to
leftmost, add up the bits in the column to produce a sum S, record S mod 2 as
the next bit of the answer,* and carry [S/2J into the sum of the next column.

In practice it is unnecessary to produce all the products y * X[i] before
adding them up; instead we can calculate any bit of any partial product at the
time we need it while adding up a column. Thus the algorithm (Algorithm 2.2)
is controlled by an outer loop whose index j represents a column number, or
equivalently, a bit position in the result z; thus j runs from 0 to 2n - 1. The
inner loop index i runs through the rows, or equivalently, the bit positions of x.
The bit in the ith row and the jth column is then X[i] * Y[j - il, provided that
0 < j - i < n- 1; otherwise the position in row i and column j is empty. Of
course the multiplication X[i] Y[j -i] is just the product of two bits and is
determined without a recursive call on the multiplication algorithm!

Now let us fix a particular programming language, compiler, and computer,
and derive an expression for the running time of this algorithm as a function of n.
For 1 < i < 8 let Ti be the time required to execute line (i) of Algorithm 2.2
once. (In the case of lines (2) and (3) these are the times required to initialize or
increment the loop index and to test the loop exit condition.) Lines (1) and (8)
are executed once each. Lines (2), (6), and (7) are executed 2n times each. Lines
(3) and (4) are executed n times for each execution of line (2), or n * (2n) times
in all; and line (5) is executed at most n - (2n) times. If we let TGradeschool(n)

*Here a mod b ("a modulo b") is the nonnegative remainder when a is divided by b. Thus
S mod 2 is 0 or 1, depending on whether S is even or odd.

2.2 EXACT VS. GROWTH-RATE ANALYSIS

function GradeSchoolMult(table X[O.. n - 1], Y[O.. n - 1]): table
{Multiplication of two nonnegative binary numerals X and Y of n bits}
{The result Z is a table of length 2n}

S4-O (1)
for j from 0 to 2n - I do (2)

for i from 0 ton-i do (3)
if 0 <j-i <n-I then (4)

S < S + X[i] * Y[j - i] (5)
Z[j] - S mod 2 (6)
S ,-LS/21 (7)

return Z (8)

Algorithm 2.2 Grade school algorithm for multiplication of two nonnegative
integers x and y represented in binary. X and Y are tables containing the bits
of the numbers to be multiplied, with X[0] being the least significant bit of x.

denote the maximum amount of time taken by the grade school algorithm to
multiply any two numbers of n bits each, then by multiplying the time to execute
each line by the number of times that line is executed we have

(T1 + T8) + (T2 + T6 + T7) (2n) + (T3 + T4) . n. (2n)

< TGradeSchool(n)

<(T1 + T8) + (T2 + T6 + T7) (2n) + (T3 + T4 + T5) . n (2n).

It follows that TGradeschool(n) E E(n * (2n)) = E(n2).

Algorithm 2: Simple Block Multiplication Algorithm Can divide-and-conquer
be used as the basis for an integer multiplication algorithm? Split x and y in
half, as nearly as possible, and call XL and XR the left and right halves of x,
and YL and YR the left and right halves of y. To be precise, let m = Fn/21,
and let

Z = ZL * 2 m + ZR

Y = YL *2 + YR,

where XL and YL are numbers with n - m = [n/2j bits, and XR and YR are
numbers with m bits. Then

XY = (XL *2m + XR) * (YL *2m + YR)

= XLYL * 2 2m + (XLYR + XRYL) * 2 m + XRYR- (I)

If we can calculate the four products XLYL, XLYR, XRYL, and XRYR, then
shifting them (to implement multiplication by powers of 2) and adding them

51

52 ALGORITHM ANALYSIS

(by the straightforward algorithm for addition of two integers, Problem 4) can
be done in 0(n) time. Some work might also be required to do the "splitting"
before the numbers are multiplied, but the time for this work is also linear in the
size of the numbers. Let us write TB1mk(n) for the time required, in the worst
case, to multiply two n-bit numbers using this recursive "block multiplication"
algorithm. Since the four products involve numbers with at most m bits each,
if we use the same method recursively to calculate those products, the total
time needed for this algorithm to multiply two n-bit numbers is described by a
recurrence of the form

TBlo~k(n) < c, if n < no

TBIk(n) < 4TBI1k([n/21) + c'n, if n > no,

where no is the "cut-off" value such that a nonrecursive algorithm, such as the
grade school algorithm, is used for numbers of no bits or shorter. To solve
this recurrence we can use the Divide-and-Conquer Recurrences Theorem, with
a = 4, b = 2, and e = 1; by the Theorem, T(n) E 0(n 2), the same bound as
we calculated for the grade school algorithm. So the answer seems to be that
divide-and-conquer is applicable, but does not gain us anything over the simpler
algorithm.

Algorithm 3: Clever Block Multiplication Algorithm We can rewrite Equa-
tion (1) using only three recursive multiplications rather than four by noting
that

XLYR + XRYL = (XL + XR) (YL + YR) - XLYL- XRYR-

That is, if we calculate just the three products

PI = XRYR

P2 = XLYL

P3 = (XL + XR) * (YL + YR),

then the value of XLYR + XRYL = P3 -PI -P2 can be calculated from them by
using subtraction only.

Algorithm 2.3 shows the code for this clever algorithm. The functions Add
and Sub return the sum and difference of two integers represented as tables
of bits; it is assumed that Add returns a table of length one greater than the
length of its longer argument, and Sub returns a table of length equal to that of
its first argument (Problem 4(a,c)). In this algorithm Sub is never called with
arguments that would produce a negative result, so we can avoid specifying
its behavior under such circumstances. Accum(P, Q) is a procedure that adds
its first argument into its second (Problem 4(d)); again, overflow cannot occur
under the conditions of this algorithm.

2.2 EXACT VS. GROWTH-RATE ANALYSIS

function CleverMult(table X[O. n - 1], Y[O. . n -1]): table
{Multiplication of two nonnegative binary numerals X and Y of n bits}
{The result Z is a table of length 2n}
{Tables Pi, P2, and P3 have lengths 2Fn/21, 2Ln/2J, and 2[n/21 + 2}

m ;- [n/21 (0)
if n < 3 then return GradeSchoolMult(X, Y) (1)
PI CleverMult(X[O .. m -l],Y[O.. m - 1]) (2)

P2 CleverMult(X [m . .n - 1], Y[m . n - 1]) (3)
P3 CleverMult(Add(X[O . . m -1], X[m . n -1]),

Add(Y[O. .m-1], Y[m. . 1])) (4)
D Sub(Sub(P3, PI), P2) (5)
Z[O.. 2m - 1] -PI (6)
Z[2m. .2n-I-] P2 (7)
Accum(D[O. . 2m + 1], Z[m. .2n - 1]) (8)
return Z (9)

Algorithm 2.3 Block multiplication algorithm for integers, using only three
recursive multiplications rather than four.

To get this algorithm to work correctly some care must be taken with the
sizes of the tables. The recursive multiplication method can't be used for integers
of three bits, so in line (1) the grade school algorithm is used on integers of that
size or smaller (Problem 8). Each quantity XL + XR and YL + YR is the sum of
an integer of length Ln/2J and an integer of length [n/21, so each sum requires
Fn/21 + 1 = m+ 1 bits in the worst case. Therefore the product table P3 requires
2m + 2 bits; so does the difference - PI - P2, which is stored in the table D
in line (5). Since the product XRYR = PI takes 2m bits and the product XLYL

is to be shifted exactly this many bits, these products are "assembled" into Z
by copying PI into the low 2m bits of Z (line (6)) and copying P2 into the
high 2n -2m bits (line (7)). Then P3 PI - P2, which should be shifted by m
bits in computing the final result, is added in by aligning bit 0 of table D with
bit m of Z-roughly speaking D is aligned with the "middle half" of Z.

Let us once again fix some computer system and investigate Tcever(n), the
time required to execute Algorithm 2.3 on two integers of n bits each. Let
Ti(n) be, for 0 < i < 9, the time required to execute line (i); then TcIever(.n) =

9.= 0 Ti(n). Certain of these functions depend on the time used by the functions
Add, Sub, and Accum. If we let TAdd(h), Tsub(h), and TAccUm(h) denote the time
required for these operations when run on arguments of length at most h bits, we
know (Problem 4) that each of these functions is linear in h. Likewise Tcopy(h),
the time required to copy a table of length h from one place to another, is a
linear function of h. By examining the lengths of the various tables, we find

53

54 ALGORITHM ANALYSIS

the following expressions for the T1(n):

To(n) = co

T1 (n) = cl

T2(n) = TcIever(m)

T3 (n) Tclever(Ln/2J) < Tclever(m)

T4(n) = 2 TAdd(m) + Tciever(m + 1)

T 5(n) = 2TsUb(2m + 1)

T 6 (n) = Tc0 py(2m)

T 7(n) = Tcopy(2n - 2m)

T8(n) = TAccum(2r - m)

T 9(n) = c9.

(Here co is the constant time to divide n by 2, cl is the maximum time to check
the value of n and to run the grade school algorithm on numbers of at most
three bits, and c9 is the time to execute line (9), which does not depend on the
value of n.)

Everything except T2 (n), T3(n), and T4 (n) is bounded by a linear function
of n, and the three recurrences on TClever involve arguments less than or equal
to m + 1. Therefore, for suitable constants c and c', a recurrence correctly
describing Tciever is

Tciever(n) < c, if n < 3

Tclever(n) < 3Tclever(ln/21 + 1) + c'n, if n > 3.

By the Divide-and-Conquer Recurrences Theorem, this recurrence has the solu-
tion Tclever(n) E 0(nl0g2 3) = 0(n 1 5 9)

In sum, we have established that

TGradeSchool(n) E E3(n 2
) (2)

Tclever(n) E 0(nll092 3) (3)

We want to draw the conclusion that the clever algorithm is better, since
log2 3 < 2. But some care and caution is in order.

First of all, in comparing these two algorithms it is crucial that the relation
for TGradeschool(n) involves a lower bound, not merely an upper bound. That is,
the important fact is that TGradeschool(n) E Q(n 2), which is half of what is implied
by Equation (2). This statement implies that there is some sequence of inputs,
at least one pair of inputs for each value of n, such that the time actually used
by the grade school algorithm on these inputs increases quadratically with n.
This phenomenon would be unaffected by efforts to speed up the grade school

2.2 EXACT VS. GROWTH-RATE ANALYSIS

algorithm for certain inputs-for example, by checking if one of the arguments
represents 0 and if so returning the representation of 0 immediately; any such
simple modification would still have running time in Q(n 2).

In fact, merely from knowing two upper bounds-that TGradeSchool(n) E
0(n2

) and Tclever(n) E 0(nflg2 3)-nothing at all would follow about the su-
periority of one algorithm over the other; TGradeSchool(n) might be constant and
Tclever(n) might be linear! But from a lower bound and an upper bound-
TGradeschool(n) E Q(n 2) and TCiever(n) E 0(n'092 3)-we can conclude (Prob-
lem 9) that

TcIever(n) (= O(TGradeSchool(n)), (4)

and this implies that for sufficiently large n the worst-case performance of the
clever algorithm will beat the worst-case behavior of the grade school algorithm.
Indeed, for sufficiently large n the clever algorithm will beat the grade school
algorithm, even if the grade school algorithm is implemented on the world's
fastest computer and the clever algorithm on the world's slowest, and the grade
school algorithm is coded in assembly language by the world's best programmer
and the clever algorithm is coded in a higher-level language by a grade school
student. Such considerations affect only the constants implicit in big-0 notation,
and not the relation between the growth rates of these functions. In other words,
the superiority of the clever algorithm will survive any technological change. It
is this kind of comparison that we want to make when studying algorithms.

Principles of Mathematical Analysis
Let us summarize some of the basic principles that emerged during consideration
of the integer multiplication example.

* Measure resource usage as a function of input size.

In the integer multiplication example, the value of n-the length of the
numbers in bits-is a natural measure of the size of the problem to be solved.
(Generally, the size of a problem is something that measures the amount of
paper it takes to write down the question we want answered; thus in the case
of numerical algorithms, the size is the number of bits, not the actual values of
the numbers in question.) As the size of a problem increases, the amount of
time generally increases as well. There is no point in trying to measure the time
needed to solve a problem on any fixed set of data, since we can always build
a program that works very quickly on those data by table-lookup. For example,
it is pointless to compare integer multiplication algorithms by their performance
on one or two fixed and supposedly "hard" inputs, since we can always "soup
up" any algorithm to work very fast on those particular inputs by building the
answer into the program itself.

Algorithm analysis becomes interesting and profitable only when an algo-
rithm can handle all possible inputs, of potentially unbounded size.

55

56 ALGORITHM ANALYSIS

* Measure the worst-case performance for all inputs up to a given size.

There are variations on the grade school algorithm that work well for certain
inputs, for example, when one input is 0 or a power of 2. In fact in everyday life
we remember and use such tricks to avoid unnecessary labor. But when mea-
suring worst-case performance, whittling away a case here and a case there does
not change our overall assessment of an algorithm's quality, which measures its
performance on all inputs of size less than or equal to a given bound n.

* When measuring time, ignore constant factors.

We have already mentioned the justification for this principle-it means
that variations in coding style, compiler performance, and machine power can
be ignored. Of course all those things are important in practice, but this principle
gives us a way of studying the algorithms themselves in a way that does not
depend on those factors.

All principles have their limitations, and this one is no exception. In the
example of the integer multiplication algorithms, if the running time of the
grade school algorithm on numbers of up to n bits were no more than 10- 1 n2
and the running time of the clever algorithm might be as much as 10 10 n' 5 9 ,
would we really ignore the twenty-order-of-magnitude difference in the constants
because the clever algorithm was guaranteed to be better for extremely large n?
Probably not. In fact in the real world the data on which we run our algorithms
are not of unbounded size, and we must sometimes determine the crossover
point at which a theoretically superior algorithm is really preferable. (If we
never want to multiply numbers bigger than a machine word, we should not use
any of the multiplication algorithms explained here-we should just invoke the
computer's multiplication instruction!) When a computer scientist says that a
certain algorithm is "of only theoretical interest," what is usually meant is that it
is superior to other algorithms in the sense of growth-rate analysis, but because
of the constant factors involved and the size of the inputs that are likely to be
encountered in practice, it is not in fact superior in ordinary use. We shall see
a few of these algorithms in this book, but most of the methods we present are
useful in practice as well as in theory.

This rule is restricted to measurement of time-not memory-because there
is a natural intrinsic unit of memory on a digital computer-the bit-but there
is no correspondingly natural unit of time. Thus if an algorithm uses 3n bits
of memory to process a data set of size n, it can probably be programmed to
use 3n bits on any computer. Questions of word size and the ease with which
fields can be packed and unpacked may have to be considered as well, but in
most cases it does make sense to compare algorithms in terms of exactly how
much memory they use.

* Compare the functions that measure the time complexity of algorithms by
their growth rate; use big-O notation for giving estimates of upper bounds
and big-Q notation for estimates of lower bounds.

2.2 EXACT VS. GROWTH-RATE ANALYSIS

This is more or less a restatement of the previous point. Once constant
factors are ignored, the difference between TGradeSchool and Tclevea is that the one
is in Q(n2), while the other is in 0(nl0g2 3); the latter growth rate is "slower"
since nlog2 3 E o(n2)

Expected-Case and Amortized Analysis
Worst-case analysis is not the only reasonable basis for evaluating the effi-
ciency of an algorithm. A natural alternative is expected-case analysis (or,
as it is often called, average-case analysis). An expected-case analysis would
yield, as a function of the input size n, the time expected to be used by the
algorithm-averaged over all possible inputs of size n. This might be a reason-
able approach to studying a sorting algorithm, for example-there are a great
many possible data sets of size, say, 100, and if the algorithm were slow on
only a few of them we might weigh those bad cases in proportion to their
frequency.

Unfortunately, expected-case analysis has several drawbacks.

1. We must be sure that we are taking the "average" in the same way that
the users of the algorithm would do it. Suppose, for example, that of
the n! permutations of n numbers, our sorting algorithm is fast except on
about 1% of them-the 1% where the numbers are nearly in order already.
And suppose that the algorithm is being used in an environment in which
99% of the data sets that are actually sorted fall in that 1% of cases that
are nearly in order. The algorithm might be fast in theory, but not in
any practical sense. Thus to do an expected-case analysis properly one
must know the distribution of the data on which the algorithm is actually
used.

2. Expected-case analysis is in most cases more difficult mathematically than
worst-case analysis. Thus we shall sometimes avoid it simply because it is
too hard.

3. In some applications expected-case analysis is simply not appropriate. For
example, consider an air-traffic control system that must complete a section
of code that sorts 100 numbers within 1 second in order to avoid causing
a catastrophic collision. It would be small comfort to know that the ex-
pected running time for that code was only 0.1 second, without having any
guarantee about the worst-case running time!

Yet another alternative to worst-case analysis is amortized analysis. Amor-
tized analysis gives guarantees about running time that are less strong than a
worst-case analysis might provide, but stronger than an expected-case analysis.
It provides an absolute guarantee of the total time taken by a sequence of calls
on the algorithm. The bound on the total time for the sequence of calls pro-
vides a bound on the average time for each call in the sequence, but gives no
guarantee about the time required for any individual call; some single calls may

57

58 ALGORITHM ANALYSIS

be very expensive, if there are enough inexpensive calls so that the total time is
within the bound. Of course, in order for amortized analysis to be applicable,
some data must persist from one call to the next, so that information about the
condition of the data at the end of one call helps bound the time needed for a
subsequent call.

As an example, consider the problem of counting in binary: 0000, 0001,
0010, 0011, 0100, Imagine that the bits are stored in separate memory cells,
and we wish to calculate the total number of cells that must be accessed as a
k-bit integer is incremented 2k - 1 times starting from 0 up to the largest k-bit
value 11 ... 1. Consider any point in this process, and let v denote the value
currently in the counter. If v is even, then only the low-order bit is changed,
from 0 to 1. If the two low-order bits of v are 01, then there is a carry and these
two bits are changed to 10. In general, if the I low-order bits are 0 followed by

- 1 bits which are 1, then these I bits, but no others, are changed. Of the 2 k
patterns of k bits, 2k-1 of them have the low-order bit 0, 2 k-2 of them have
the low-order bits 01, and in general 2 k-1 of them have the 1 low-order bits of
the form 011 ... 1. Hence the total number of bit positions changed during a
sequence of 2 k - 1 incrementing operations is

2 k-1I + 2 k-2 2 + 2 k-. 3 + *+ I k.

This sum can be evaluated by methods like those used on page 36; the total is
2 k+1 -k -2 (Problem 13). Thus the average number of bits changed during
a single call in such a sequence of incrementing operations is guaranteed to be
(Problem 14)

2 k+1k - 2
2 k - 1 < 2,

although the worst-case number of bits changed is k (when 011 ... 1 changes to
100 ... 0). If the sequence of operations is viewed as a whole, the cost of such
expensive incrementing operations is spread out, or "amortized," over the more
numerous less expensive calls.

Notice the difference between this analysis and an expected-case analysis.
If we imagine a series of calls of the incrementing algorithm on random k-bit
numbers, then the expected number of bits changed in any single call would
again be a little less than 2. However, the expected-case analysis could not
guarantee that during some unlucky sequences of calls the cost per call might
not be much higher-we might by bad luck get a long sequence of calls to in-
crement the "worst" number 011 ... 1. The conditions for the amortized analysis
rule out this possibility, and therefore make it possible to establish a stronger
result. A worst-case analysis would yield less information yet: all that can
be said in the worst case is that incrementing a k-bit number changes at most
k bits.

2.3 ALGORITHM PARADIGMS 59

2.3 ALGORITHM PARADIGMS
Algorithms that solve very different problems sometimes bear a strong family
resemblance to each other. For example, the general strategy of Divide-and-
Conquer underlies Binary Search, Merge Sort, and the clever integer multipli-
cation algorithm, as well as useful algorithms for many other problems. It is
worth keeping the general idea of Divide-and-Conquer in mind when faced with
new problems to solve. In this section we will give examples of several other
general strategies for the design of algorithms.

Brute-Force and Exhaustive Search
In many algorithmic problems the objective is to find something: the object that
best fits some criterion, or is least costly, or smallest, or largest. Determining
whether a number is prime can be solved by finding a factor, or failing to do so.
In the famous Travelling Salesman Problem, we are given a set of cities and
all the distances between pairs of them, and are asked to design a tour through
all the cities of minimal total length. (By a tour, we mean a trip that visits each
city once and returns at the end to its starting point.)

The strategy of first invention, or last resort, is often to look through all
the candidates until the desired object is found. We call such a strategy brute-
force search or exhaustive search. For example, the most naive algorithm for
determining whether a number n is prime uses a brute-force strategy; it checks
all the numbers from 2 to n - 1 in search of one that divides n. The term
"exhaustive search" suggests a method that searches through all candidates, even
after the right one has been found, because the right one cannot be recognized as
such until all the possibilities have been checked. For example, an exhaustive-
search strategy for the Travelling Salesman Problem would be to calculate the
length of every possible tour through the cities, and choose the ordering of the
cities for which the tour length is the shortest.

Such strategies are, almost by definition, to be avoided if possible; the goal
of algorithm design is often to find ways of reducing the number of candidates
that must be checked, since this number imposes a lower bound on the speed of
any algorithm that searches through them all. For example, in the case of the
Travelling Salesman Problem, there are

(n - 1)! E Q(2n)

possible tours for the travelling salesman through n cities; the exhaustive-search
strategy is prohibitively expensive even for small n.

Exhaustive-search algorithms often take time that is exponential or worse
in the size of the answer being sought. For example, if the answer consists of n
numbers, and there are m possible values for each number, then there are mn
possible answers to check. To get a feel for how quickly an exponential search
would get out of hand, consider Figure 2.2, which shows, for some small values
of n, the values of several functions that commonly arise in algorithm analysis.

60 ALGORITHM ANALYSIS

n 1 2 5 10 20 50

[ig n 0 1 3 4 5 6
[nIgni 0 2 12 34 87 283

n2 1 4 25 100 400 2500
n3 1 8 125 1000 8000 125000
2 2 4 32 1024 1048576 1.13 x 1015
n! 1 2 120 3628800 2.43 x 1018 3.04 x 1064

Figure 2.2 Values of various functions for small values of the argument. By
contrast with the size of the number in the lower right-hand corner of
this table, consider that the number of instructions that could have been
executed on the world's fastest computer is only 102 7 -even if it had
been running continuously since the birth of the universe!

Greedy Algorithms
A greedy algorithm is based on the following simple principle: when called
on to make a sequence of choices to develop a solution to a problem, always
make the choice that has the lowest immediately visible cost; don't try to look
ahead to see if that choice might turn out to be more costly in the long run. The
first thing to note about greedy algorithms is that, for most problems (as in most
real-life situations!), they do not work. For example, a greedy strategy for the
Travelling Salesman Problem would always choose to visit next the unvisited
city that is nearest to the last city visited. It is easy to come up with examples in
which this myopic strategy leads to a decidedly suboptimal tour; optimal tours
often visit a more distant site before returning to a nearer one.

However for certain problems the greedy strategy actually does yield the
correct result. As a first simple example, suppose we are presented with piles of
coins of identical size but different monetary values (for example, some coins
are gold, some silver, some copper, and so on, but all coins have the same
physical dimensions). We also are given a knapsack, which can hold only so
many coins, and are told that we can take away whatever we can carry in the
knapsack. How should we fill the knapsack in order to maximize our winnings?
Clearly a greedy strategy works. We should start by taking as many coins as
we can of the maximum value; if we can fill the knapsack with these we are
done. Otherwise, if we run out of coins of maximum value before we run out
of room in the knapsack, we should follow the same strategy with the next most
valuable coins, and repeat this method with successively lower denominations
until the knapsack is filled.

Any other choice of coins must be suboptimal, since any other choice would
have to include at least one less coin of some value v and omit at least one
more coin of some value u, where u > v. Then simply substituting a coin of
value u for a coin of value v would increase the total value by u - v > 0.

Another example in which the greedy strategy is successful arises in the
domain of "job-shop scheduling." Imagine that n cars arrive at a gas station

2.3 ALGORITHM PARADIGMS 61

simultaneously, but there is only one pump, so the cars must line up and each
car must wait for all the cars ahead of it in line to finish before it can be served.
Suppose that we know in advance the time that is going to be needed by each
car once it actually reaches the pump; say these times are ti, t2 . . ., tn, where
tl < t2 < ... < tn. So the total time that will be required to serve all the cars
is fixed; it is ti + * * * + tn. Still, the service station may be able to increase the
"general happiness" by minimizing the average time per car spent at the service
station. For example, if there are only two cars, and car 1 will need only one
minute but car 2 will need ten, it makes sense to schedule car 1 first, since then
the average waiting time will be (I + l1)/2 = 5.5; in the other order the average
would be (10 + ll)/2 = 10.5. Notice that, since the number n of cars is fixed,
minimizing the average time spent by the cars really amounts to minimizing the
sum of the times spent by all cars.

In general, the best strategy is to serve the cars in order of the time they
will require, from smallest to largest; this is a greedy approach. Once again,
any other ordering would be suboptimal. For in any other approach there would
have to be two successive cars in line, say car A and car B, whose required
service times are t and u, respectively, where t > u even though car A is in
line just before car B. Then swapping those two cars in the ordering would
not affect the time spent by any of the cars before car A or after car B. But it
would reduce the time spent by car B by t while increasing the time spent by
car A by u; since t > u, this is a net reduction of t - u > 0 in the total time
spent by all cars.

Dynamic Programming
A dynamic programming algorithm is based on a strategy of solving limited
subproblems, saving the results, and then reusing those results several times
when the same partial result is needed more than once in solving the main
problem. By means of a dynamic programming strategy it is sometimes possible
to turn a problem that seems to require exponential time into one of more
manageable complexity.

Dynamic programming is often based on a recursive formula for solving
larger problems in terms of smaller problems. A simple example of this strategy
is the calculation of values of the Fibonacci function, defined on page 26 by the
equations

F(O) = 0

F(1) 1

F(n) =F(n - 1) + F(n - 2), if n > 2.

If these equations are used directly to calculate F(n) from larger n to smaller by
recursive substitution, it would take Q(F(n)) = Q(on) time to calculate F(n),

62 ALGORITHM ANALYSIS

since in the end F(n) values of 1 must be added together to get the result. On
the other hand if a table of length n + 1 is set up to hold the values F(O),
F(n), and the values of F(i) are calculated in the order i = 0, 1, ... , then each
value takes constant time to compute and the whole calculation takes time 0(n).

This example illustrates the basic characteristics of all dynamic program-
ming algorithms: problems are solved from smaller to larger, so that the time
taken by the algorithm depends on the number of subproblems and the time
required to compute the answers to larger problems from the answers to the
subproblems. In the case of the Fibonacci function, to compute F(n) requires
solving just n + 1 problems, the first two of which are given-the values of F(0)
and F(1)-and the last n - 1 of which take constant time to determine from
the previously answered subproblems-a single addition of two known values
is needed to determine F(n) from F(n - 1) and F(n - 2).

0-1 Knapsack As a more substantial example, consider the following variation
on the knapsack problem, called the 0-1 Knapsack Problem. Instead of coins
of identical size but differing values, we are presented with a set of objects that
vary in both size and value. What is the maximum value we can carry away,
and how should we fill up our fixed-capacity knapsack in order to achieve
that maximum value? (This is essentially the television "supermarket shopping
spree" problem, in which contestants are allowed to take out of the store as
much as they want that will fit into a shopping cart.)

This version of the Knapsack Problem has characteristics that were not
present in the first version. Using a greedy strategy based on the value of items,
or the value per unit size, does not work; it may be better to leave a valuable
item behind if including it leaves some empty space in the knapsack that is too
small to be used for anything else. A little experimentation with such anomalies
suggests that an exhaustive-search strategy may be the only hope; but exhaustive
search might be very expensive, since there are 2' combinations of n items that
might have to be checked. However, things might not be as bad as that.

Suppose that the n objects have sizes s , ... , s,, and values v1, ... , In,
and that the knapsack has capacity C. We will assume that C and the vi are all
positive integers.

To solve this specific problem we begin by generalizing it. If 0 < i < n
and A < C, let us define V(k, A) to be the maximum value that can be carried
in a knapsack of capacity A, given that we can choose the contents from among
the first k objects. Thus V(n, C) is the maximum value that can be carried in
the original knapsack when we can choose from among all the items; we wish
to determine V(n, C), and how it can be achieved. Then V(k, A) = 0 if k = 0
or A < 0, and for any k the V(k,A) are related to the V(k - 1,A') by the
following recurrence relation:

V(k, A) = max(V(k - 1, A), V(k - 1, A - sk) + Vk). (5)

2.3 ALGORITHM PARADIGMS 63

Equation (5) says that in solving the Knapsack Problem for k objects there are
two choices for object number k; we can include it or leave it out. If we leave it
out we can do the best job possible of filling our capacity of A from among the
first k - 1 items. If we include it we can add its value to the value of the best
set of choices from among the remaining k - objects; but now the knapsack
capacity is reduced to A - Sk. The best that can be done for the first k objects
and capacity A is whichever of these two alternatives is superior.

Unfortunately, if we try to solve for V(n, C) by recursive substitution using
Equation (5), we find that two values of V(n - 1, A) must be determined for
different A, four values of V(n -2, A), and so on; since the number of values
to be determined doubles at each level, it seems that determining V(n, C) will
require S2 (2 f) steps, no improvement over exhaustive search. However, many
of these values are likely to be the same, if C is small by comparison with 21.
So let us try starting from the other end, and calculating all the values of
V(O, A) for A < C, then all the values of V(1, A), and so on. As these values
are calculated, we store them in a table of n + 1 rows and C columns. As
already noted, V(O, A) = 0 for all A; then once V(k - 1, A) is known for
all A, Equation (5) can be used to determine any V(k, A) in constant time. So
the total time to fill in the table is proportional to its size, that is, in O(nC).
When we are done filling in the table we simply check the value of the single
entry V(n, C). Unless we must solve instances of the problem in which C is
exponential in n, this approach will be more efficient than the exhaustive-search
or "top-down recursive" method.

Of course, we wanted to know not only the maximum value that can be put
in the knapsack, but also which objects should be included to achieve that value.
We can retain this information as well by letting Xi(k, A) (where 1 < i < k)
be 1 or 0, depending on whether or not item i is included when the Knapsack
Problem is solved for the first k objects and a knapsack of capacity A. A table of
the values of Xi(k, A) can also be calculated iteratively from the Xi(k- 1, A')
as Equation (5) is used to calculate the V(k, A). The values of Xi(n, C), where
I < i < n, answer the question of which objects to include and which to omit.
(This is why the problem is called the ">-l Knapsack Problem.")

Travelling Salesman Problem It was noted earlier that there are Q((n - 1)!)
tours that would have to be checked in an exhaustive-search attack on the Trav-
elling Salesman Problem; but if each were checked separately there would be
many partial tours that would be rechecked many times. To be specific, let us
number the cities from 1 to n, and (since tours are cyclical) let us consider
just tours that begin and end at city 1. Let us write d(i, j) for the distance
from city i to city j. Then for any b, where 1 < b < n, and for any set
S C {1, ... , n} - {1, b}, let D(b, S) be the length of the shortest path that starts
at city b, then visits all the cities in S in some order, and then ends at city 1.
Thus we want ultimately to determine D(1, {2, ... , n}), and the order of the

64 ALGORITHM ANALYSIS

cities that achieves it. We will calculate the D(b, S) in order of the size of the
set S, utilizing the fact that an optimal path from b through the cities in S to
city 1 must consist, after its first step, of an optimal path from one of the cities
in S, through the remainder of the cities in S, to city 1.

So let us try calculating these optimal paths, and their lengths, from the
"bottom up." The D(b, S) can be determined by the recurrence

D(b, S) = min{d(b, a) + D(a, S - {a})}, (6a)
aES

with the base case

D(b, 0) = d(b, 1). (6b)

That is, if the path is to start from b and visit all the cities in S it must begin
with one of them, call it a; there is a unique value of the optimum length of the
path starting with a, passing through the remainder of the cities, and ending at
city 1, and that optimum does not depend on b.

Equation (6) can be used to calculate all the D(b, S) by induction on the
size of S, starting from the case in which S is empty and proceeding upwards
until S = {2, ... , n}. There are at most nr 2'- values of D(b, S) to determine,
since there are n values of b and S is a subset of a set of size n - 1. Applying
Equation (6a) once takes time that is 0(n) since the minimum of I SI < n values
must be found, and each value can be found in constant time if all the D(b, S)
are stored in a table. Thus the whole procedure takes time

0(n 22n-1) c o(2 (n -1) Ig n),

so the dynamic programming method presents an improvement over exhaustive
search. (Nonetheless, time O(n 22n-1) is too large to permit efficient solution
of the Travelling Salesman Problem for large n.) As in the case of the 0-1
Knapsack Problem, it is easy to modify this method so that it keeps track of the
optimal paths at each stage as well as the lengths of those paths.

NP-Completeness
This book is dedicated to the development of efficient algorithms for a variety
of computational problems; by ingenuity and analysis it is often possible to
pass from an impractically slow algorithm to one that solves a problem with
useful efficiency. But it is important not to hope for too much: there are some
problems for which algorithms exist, but for which we know that no efficient
algorithm can exist. We don't consider an algorithm to be "efficient" unless
it runs in polynomial time, that is, time 0(nk) for some fixed value of k.
Certainly we consider an algorithm to be inefficient if its running time is Q(2n)
on problems of size n, since the running time of such an algorithm would double
or more, in the worst case, every time the input increases in size by adding 1. It
has been mathematically proven (not simply observed as the result of repeated

PROBLEMS 65

failed efforts) that for certain problems, every possible algorithm runs in time
that increases at least exponentially with the size of the input.

Between the problems that admit efficient solution and the problems that
are known to have no efficient algorithms are a variety of mysterious problems
for which no efficient algorithms have been discovered, but for which efficient
algorithms are not known to be impossible. The most famous problems of this
type are the NP-complete problems, a class which includes both the Travelling
Salesman Problem and the 0-1 Knapsack Problem (with no restriction on the
size of the numbers involved, so that the dynamic programming algorithm does
not lead to an efficient method). All NP-complete problems have the common
characteristic that they can be solved by brute-force search through an exponen-
tially large set of candidate solutions. For example, in the case of the Travelling
Salesman Problem the candidate solutions are the tours (there are (n - 1)! of
them), and in the case of the Knapsack Problem the candidate solutions are
selections of items (there are 21 of them). Of course, there are also many
easy problems that can be solved by exhaustive search; what distinguishes the
NP-complete problems is that no essentially better algorithm is known for any
of them. Moreover all of them are in a certain precise sense computationally
equivalent to each other: finding a polynomial-time algorithm for any of them
would imply the existence of polynomial-time algorithms for all of them. As
no such efficient algorithm has been discovered for any NP-complete problem,
all are believed to be computationally intractable. But this has not been proved,
in spite of extensive research, and remains one of the great open problems of
computer science.

Problems

2.1 1. For what numbers less than 1000 does the test (1) on page 47 give
the wrong answer?

2. Find the smallest input m such that the value of n exceeds 100 during
the execution of Algorithm 2.1 on page 48.

2.2 3. a. For what values of n, if any, is it true that every product of two
n-bit integers is an integer of fewer than 2n bits?

b. For what values of m and n, if any, is it true that every product of
an m-bit integer and an n-bit integer is an integer of fewer than
m + n bits?

4. a. Write the grade school algorithm for the addition of two nonneg-
ative integers in binary notation. The algorithm should take as
arguments two tables of bits, not necessarily of the same length,
and return a table of bits one longer than the length of its longer
input.

b. Show that this algorithm runs in time linear in the length of the
longer of its arguments.

66 ALGORITHM ANALYSIS

c. Repeat parts (a) and (b) for subtraction of two integers. Assume
that the value of the first argument is greater than or equal to the
value of the second argument, so that there is no possibility of
producing a negative answer.

d. Write the procedure Accum(A[O .. m -1], B[R.. n - 1]), which
adds the value represented by A into the table B. (You may
assume that n > m and that overflow is impossible.)

5. Rewrite the grade school multiplication algorithm so that it works on
decimal (base 10) integers.

6. Program the grade school and clever integer multiplication algorithms,
and determine empirically for what size integers, if any, the clever
algorithm is in practice faster than the grade school method. Does
the choice of base affect the threshold value?

7. Rewrite the grade school multiplication algorithm so that it takes as
arguments two integers of different sizes, say m and n bits. Try to
make the algorithm as efficient as possible; what is the order of the
time complexity of your version, as a function of m and n?

8. Why does the clever multiplication algorithm switch to a nonrecursive
method to multiply integers of three or fewer bits? What happens if
line (1) is replaced by "if n < 2 ... "?

9. Carefully derive Equation (4) on page 55 from Equations (2) and (3)
and the Big-0 Theorem.

10. Show that if n-bit numbers x and y are split into 3 parts XL, XM, XR

and YL, YM, and YR, the product x * y can be computed with the aid of
the 5 recursive products XL YL, and (XL+e':XM+:XR) (YL+e8YM+YR)

and (XL + e . 2 xM + 4XR) (YL + e 2yM + 4YR) for e = 1. What is
the time complexity of the resulting algorithm?

11. This problem concerns calculation of the greatest common divisor
gcd(m, n) of two positive integers m and n, that is, the largest number
that divides both evenly. For example, gcd(28, 42) = 14. We consider
algorithms that take the numbers m and n themselves as inputs (rather
than tables representing the binary notations of these numbers).

a. The simplest approach to finding the greatest common divisor is
simply to search for it, starting from the smaller of m and n
and counting down. Write this algorithm, and analyze its time
complexity.

b. A better method, called Euclid's algorithm, has been known since
antiquity (Algorithm 2.4). Trace the operation of Euclid's algo-
rithm on inputs 28 and 42; on inputs 200 and 99; and on inputs
111 and 191.

PROBLEMS 67

function Euclid(integer m, n): integer
{Return greatest common divisor of positive integers m and n}

a m
b n
while b :$ 0 do

(b) (a mod b)
return a

Algorithm 2.4 Euclid's algorithm for the common divisor of two positive
integers.

c. Show that if Euclid's algorithm terminates, it must produce the
true greatest common divisor. (Hint: Show that each iteration of
the loop does not change gcd(a, b).)

d. Show that Euclid's algorithm terminates, by showing that the
value of b decreases on each iteration.

e. Part (d) shows that Euclid's algorithm runs in time 0(n), but in
fact it terminates much more quickly than that, as the examples
of part (b) suggest. Show that in fact the algorithm terminates
in time logarithmic in the smaller of its arguments. (Hint: Show
that if ao, bo and a,, b, are the values of a and b on two succes-
sive iterations of the loop and ao > bo, then either a, < 2ao or
bi < Z bo.)

f. Give as exact a formula as you can for the running time of Euclid's
algorithm, in terms of constants representing the time required to
execute each of the five lines of Algorithm 2.4.

12. This problem continues Problem 11 on algorithms for finding the
greatest common divisor. Define a smod b to be the integer r with the
smallest absolute value such that a - r is divisible by b. For example,
10 smod 3 = 1O mod 3 = 1, but 11 smod 3 = -1. Show that if
we replace "mod" with "smod" in Euclid's algorithm, the algorithm
still terminates and correctly computes the greatest common divisor.
Determine the running time of this modified Euclid's algorithm.

13. Show that the sum on page 58 has the value 2 k+1 - k - 2.

14. Show that, for all k > 0,

2k+- k -2
2k- 2.

68 ALGORITHM ANALYSIS

2.3 15. Let T(n) be the running time of Fum(n). Find the order of T (that
is, find a function f(n) such that T E e(f)). (Assume that real
arithmetic is carried out exactly, and is not subject to floating-point
roundoff errors.)

procedure Fum(integer n):
for i from 1 to n do

6 l- 1/i
x- i
while x > 0 do

X 4- X -6

16. Let T(n) be the running time of Foo(n). Find the order of T.

procedure Foo(integer n):
for i from 1 to n do

x +- n
while x > 0 do

X - X -i

17. Let T(n) be the running time of Mystery(n). Find the order of T.

procedure Mystery(integer n):
for i from 1 to n - 1 do

for j from i + 1 to n do
for k from 1 to j do x 4- x +1

18. Let T(n) be the running time of Peculiar(n). Find the order of T.

procedure Peculiar(integer n):
for i +1 to n do

if i is odd then
for j from i to n do x x + 1
for j from 1 to i do y y + 1

19. Let T(n) be the running time of What(n). Find the order of T.

procedure What(integer n):
for i from 1 to LV+/J do

for j from 1 to L[6nJ do
for k from 1 to [L/nj - j + 1 do x - x +

20. Let T(n) be the running time of Puzzle(n). Find the order of T.

procedure Puzzle(integer n):
for i from 1 to n do

for j from 1 to 10 do
for k from n to n +5 do x z- x + 1

21. Devise a simple example in which the greedy strategy for the Travel-
ling Salesman Problem does not work. You don't need to write any

PROBLEMS 69

numbers; it should suffice just to arrange six dots on a piece of paper
and to give an explanation.

22. How much memory is used by the dynamic programming algorithm
for the Travelling Salesman Problem?

23. Explain how the dynamic programming algorithm for the Travelling
Salesman Problem can be modified to return the optimal path as well
as the length of that path.

24. Here is a "divide-and-conquer" style algorithm for the Travelling
Salesman Problem that takes more time, but much less memory, than
the dynamic programming algorithm. (It takes less time than the
brute-force, exhaustive-search method.) Consider some instance of
the Travelling Salesman Problem with n cities and with d(i, j) being
the distance from city i to city j. If n < 3 the problem can be solved
directly, so assume n > 3. If a, b E S, let D(S, a, b) be the minimum
length of a path that starts at a, visits each city in S exactly once,
and ends at b. We calculate the minimal cost of a tour by finding the
minimum value of D({1, , n, 1, j) + d(j, 1) for 2 < j < n. To
find D(S, a, b), where S has more than 3 elements, we proceed as
follows. Let c be any city in S - {a, b} (c will be in the "center" of
the path from a to b), let T = S - {a, b, c}, let A be any subset of T
of size LITI/2J, and let B = T-A. Calculate D(A U {a, c}, a, c) and
D(B U {c, b}, c, b) recursively, and let D(S, a, b) be the minimum of
the sums D(A U {a, c}, a, c) + D(B U {c, b}, c, b), for all such choices
of c and A.

a. Explain why this algorithm always finds the cost of the minimal-
cost tour.

b. If T(n) is the running time of this algorithm on problems with
n cities, show that T(n) E O(nc22n) for some constant c.

c. Show that the amount of memory required by this algorithm is
linear in n. (Hint: This requires explicitly managing the stack
implicit in the recursive description of the algorithm. It also
requires using a bit vector representation of sets such that if
Si C S2 C C Sk = {1,...,n} and each Si is about half
as big as Si+,, then Sk does not need to be represented at all,
Sk-1 is represented as a bit vector of length n, and each Si for
1 < i < k - 1 is represented by a bit vector about half as long as
that representing Si+,.)

25. Consider the problem of multiplying two n x n matrices A and B to
produce an n x n matrix C = AB as the result. The usual algorithm
calculates each entry of C as the dot product of a row of A and a

70 ALGORITHM ANALYSIS

column of B:
n

cij= E aikbkj.

k=1

Since one dot product takes n multiplications, this method uses n3
multiplications in all, and the time complexity of the multiplication
algorithm is therefore 0(n 3). However, if n is even then C can also be
computed by breaking A and B into square quarters and recursively
"block multiplying" those quarters:(All A12 \ (B 11 B12 (CH 1 C12'

A2 1 A 22 , B2 1 B 2 2 J C2 I C 22J'

where Cj = AjBlj + Aj2B2j for 1 < i < 2 and 1 < j < 2.

a. Assume for convenience that n is a power of 2. Show that this
recursive matrix multiplication algorithm takes n3 multiplications.

b. Remarkably, the four quarters of C can be calculated with the
aid of only seven matrix multiplications, instead of the eight that
seem to be required. Let

Ml = (A21 + A22 - A11)(B22 - B12 + B11)

M2 = AjjB

M3 = A12B21

M 4 = (All - A21)(A22 - B 12)

M 5 = (A2 1 - A2 2)(A12 - B11)

M 6 = (A12 - A21 + All -A22)B22

M7 = A22 (B11 + B 22 - B 12 - B21)-

Show that each Cij can be calculated by adding and subtracting
certain of the Mk.

c. Show that using this method, called Strassen's algorithm, mul-
tiplication of n x n matrices can be done in time o(n3).

26. Write a function FastExp such that FastExp(x, n) = xn for any real
number x and for any n E N, using 2 lg n multiplications at most.

27. Suppose that we are given a large supply of quarters, dimes, nickels,
and pennies, and that we wish to assemble exactly $1.42 using the
fewest possible coins. A greedy strategy works: use as many quar-
ters as possible, then as many dimes as possible, then nickels, then
pennies, for a total of 9 coins. But if we also have twenty-cent coins
available then the greedy strategy fails, since it yields the same result
even though there is an 8 coin solution. Characterize the sets of coin
denominations for which the greedy algorithm always succeeds.

REFERENCES 71

References

The "3n + 1 problem" (the question of whether Algorithm 2.1 terminates for all inputs)
has been in circulation at least since the early 1950s, though its exact origin is obscure.
It has stimulated much research, but remains a great puzzle. The mathematician Paul
Erdos commented that "Mathematics is not yet ready for such problems." For a good
survey, see

J. C. Lagarias, "The 3x + I problem and its Generalizations," American Mathematical
Monthly 92 (1985), pp. 3-23.

The integer multiplication algorithm described on page 51 was first presented in

A. Karatsuba and Y. Ofman, "Multiplication of Multidigit Numbers on Automata," Dok-
lady Akademii Nauk SSSR 45 (1962), pp. 293-294.

This method can be extended to produce, for any k, an 0(nlIok(2k-1)) time multiplication
algorithm for n-bit numbers (see Problem 10), and can be extended yet further, by using
the Fast Fourier Transform, to give an algorithm that runs in time O(n log n log log n).
See

A. Schonhage and V. Strassen, "Schnelle Multiplikation Grosser Zahlen," Computing 7
(1971), pp. 281-292.

The dynamic programming algorithm for the Travelling Salesman Problem (page 64)
was first described in

R. Bellman, "Dynamic Programming Treatment of the Travelling Salesman Problem,"
Journal of the ACM 9 (1962), pp. 61-63.

The space-efficient algorithm for the Travelling Salesman Problem given in Problem 24
is from

Y. Gurevich and S. Shelah, "Expected Computation Time for Hamiltonian Path Problem,"
SIAM Journal on Computing 16 (1987), pp. 486-502.

Strassen's matrix multiplication algorithm (Problem 25) is from

V. Strassen, "Gaussian Elimination Is Not Optimal," Numerische Mathematik 13 (1969),
pp. 254-356.

Many improvements in the exponent for matrix multiplication have been made since
Strassen's discovery, and as of this writing the best algorithm has time complexity
O(n2376

). However, the multiplicative constant hidden by the big-O notation is so enor-
mous that the conventional method is superior for calculations of realistic proportions.

A classic of computer science is

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman and Company, 1979.

This book is mainly devoted to the study of the NP-complete problems and contains
very readable sections on their history and characteristics. However, the book also
has some material of a more positive character; for example, it presents in §4.2 the

72 ALGORITHM ANALYSIS

method we describe on page 62 for the 0-1 Knapsack Problem. More information on
the classification of computational problems can be found in

H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-
Hall Publishing Company, 1981.

Problem 27 is from

M. J. Magazine, G. L. Nemhauser, and L. E. Trotter, Jr., "When the Greedy Solution
Solves a Class of Knapsack Problems," Operations Research 23 (1975), pp. 207-
217.

3

Lists

3.1 LIST OPERATIONS

Abstractly, a list L is simply an ordered sequence of elements (x0,, n-0)
The length of the list L is denoted by ILl; thus I(Xo,...,Xn-i)I = n. The
length can be any nonnegative integer, including 0; if the length is 0, L is the
empty list (). We use the notation L[i] for the ith element of list L, provided
that 0 < i < ILl.

We shall discuss representations of lists in general in order to consider
alternative implementations of the abstract data types that can be viewed as lists.
In general, all imaginable operations can be implemented using even the simplest
of list representations. However, the efficiency of some of the operations can
be improved substantially by using more sophisticated representations.

Although we shall not define a single abstract data type of "lists," the
following list operations will be used, in various combinations, to define abstract
data types of special kinds of lists:

Access(L, i): Return L[i]. (An error results if i is out of range, that is, less
than 0 or greater ILI - 1. In general we shall not specify the result
of such illegal operations.)

Length(L): Return ILI.
Concat(LI, L2): Return the result of concatenating LI with L2; that is, if

LI = (XO,..., Xn-1) and L2 (Ye,..,Ymi-), then Concat(LI,L2)
returns the combined list

(XO, ' ' ' 1,Xn-,YO, Ym-1)-

MakeEmptyListo: Return the empty list (.
IsEmptyList(L): Return true if ILI = 0, false otherwise.

Applications requiring all these operators in full generality are unusual.
However, two special types of lists are of great importance. A stack is a list
that can be modified only by adding and removing items at one end; we picture
a stack as a pile of data items, which can be changed only at the top. Adding a

73

74 LISTS

new item to the top of a stack is called pushing the item, and removing the top
item is called popping it. Stacks are also referred to as last-in-first-out (LIFO)
lists, since the item removed at any point is the last item inserted that has not
already been removed. As we shall see, the importance of stacks emanates
from the fact that they are the fundamental data structure used to implement
recursion. Thus a recursive algorithm may require a stack as an implicit data
structure, which may not be visible at first. The abstract operations for the stack
abstract data type are:

Top(L): Return the last element of L; same as Access(L, ILI - 1). (An error
results if L is empty.)

Pop(L): Remove and return the last element of L; that is, return Top(L)
and replace L by (L[O], ... , L[ILI - 2]). (An error results if L is
empty.)

Push(x, L): Add x at the end of L; that is, replace L by Concat(L, (x)).
MakeEmptyStacko: Return the empty list O.
IsEmptyStack(L): Return true if ILI = 0, false otherwise.

The operation Push(x, L) modifies the list L; thus it is not a mathematical
function, like Length or Concat. Likewise, Pop(L) both returns a value and
modifies L as a side-effect. Note that some of these operations are simply re-
namings of general list operations; for example, MakeEmptyStack is a synonym
for MakeEmptyList.

A queue is a list that can be modified only by removing items from one
end (the front) and by adding them to the other end (the back). Queues are
also called first-in-first-out (FIFO) lists, since the item removed at any point
is the earliest item inserted that has not already been removed. The abstract
operations for a queue data structure are:

Enqueue(x, L): Add x at the end of L; that is, replace L by Concat(L, (x)).
Dequeue(L): Remove and return the first element of L; that is, replace L

by (L[l],... , L[ILI - 1]) and return L[O]. (An error results if L is
empty.)

Front(L): Return the first element of L; that is, return L[O]. (An error
results if L is empty.)

MakeEmptyQueueo: Return the empty list (.
IsEmptyQueue(L): Return true if ILI = 0, false otherwise.

By using these abstract operators, programs manipulating stacks and queues
can be written without making reference to whether the "top," "bottom," or
"front" is the end with the small indices or that with large indices, whether the
list is stored in computer memory as a contiguous table or some kind of linked
structure, and the like. Indeed, the internal structure of the stack or queue can
be changed simply by changing the implementations of the abstract operations,
without changing the program that invokes those operations.

3.2 BASIC LIST REPRESENTATIONS

3.2 BASIC LIST REPRESENTATIONS

Two kinds of internal representations are natural for lists and their special va-
rieties: contiguous-memory representations and linked representations. In a
contiguous-memory representation, the list elements are stored in a table
whose size is fixed and greater than or equal to the maximum length of the
list to be represented. Adjacency in the table represents (more or less directly)
adjacency in the list; a fixed amount of additional information (including, for
example, the size of the representation of a single list element) is needed to
specify exactly the correspondence between list positions and table positions.
By contrast, in a linked representation, the list elements can be scattered arbi-
trarily in memory; list elements carry with them pointers to one or both of their
neighbors. Linked representations are more flexible than contiguous-memory
representations, because only the pointers need to be adjusted in order to insert
or delete elements, and because the maximum size of a list is bounded only by
the total memory available, whether or not it forms a single contiguous block;
but contiguous-memory representations are more efficient than linked represen-
tations, in bytes required per list element, because the memory for pointers is
not needed.

Let us look at natural representations of stacks and queues in contiguous
memory. In these and all subsequent algorithms in this chapter, we assume that
the items to be kept in the list are of a data type info; we make no assumptions
about the size, nature, or internals of these objects. The list itself is created
by the functions MakeEmptyStack and MakeEmptyQueue and is passed to the
other routines as a pointer L. Depending on the implementation, this pointer
might point to the first node of a linked list, or to a special record structure that
captures important information about the extent of the list.

Stack Representation in Contiguous Memory
Given a stack L = (xo,..., , x,-,) and a table A[O.. N - 1], we can store xi
in A[i], so that the stack occupies A[O. .n - 1], with the bottom stack element
at A[O] and the top stack element at A[n - 1]. In addition to the table A itself,
we need to keep track of the location of the top of the stack, or equivalently,
the size n of the stack. That is to say, the stack is represented as a record
with two components: the table A = Infos(L) and its current length, an integer
n = Length(L). The stack is empty if n = 0, and is full if n = N. Then
the stack operations can be implemented as shown in Algorithm 3.1. With this
implementation each stack operation uses E(1) time, independent of the size of
the stack, since an operation changes only one or two memory cells.

Queue Representation in Contiguous Memory
Since additions and removals occur at opposite ends of a queue, if the position
of an element remains stationary from the time it is enqueued until it has been
dequeued then the queue as a whole will seem to "crawl" gradually in memory.

75

76 LISTS

function MakeEmptyStacko: pointer
L +- NewCell(Stack)
Length(L) 4- 0
return L

function IsEmptyStack(pointer L): boolean
return Length(L) = 0

function Top(pointer L): info
if IsEmptyStack(L) then error
else return Infos(L)[Length(L) - 1]

function Pop(pointer L): info
if Length(L) = 0 then error
else

x i- Top(L)
Length(L) - Length(L) - I
return x

procedure Push(info x, pointer L):
if Length(L) = N then error
else

Length(L) 4- Length(L) + 1
Infos(L)[Length(L) - 1] +- x

Algorithm 3.1 Contiguous-memory implementation of stack operations. The
stack is represented by a pointer L to a record with two components: a table
Infos(L) and its current length Length(L). The maximum length N is a constant.

We could move the whole queue each time an item is removed to keep one
end anchored against the end of the table, but this would require E(ILI) work
each time an element was dequeued. Instead we picture the table as circular,
with the first element immediately following the last element; such a structure
is sometimes called a ring buffer (Figure 3.1). Again let A[O. . N - 1] be a
table. To keep track of the position of the queue elements in the ring buffer, we
can remember F (for Front), the position in the table of xO, and n = ILI. Thus
X0 , x1 , . . ., Xn-1 are stored in A[F], A[(F + 1) mod N], A[(F + 2) mod N],
... I A[(F + n - 1) mod N]. There are N different representations for the
empty queue, but from the standpoint of our abstract operations this fact is
hidden. The queue itself is a record of the three components A = Infos(L),
F = Front(L), and n = Length(L), and the operations are implemented as
shown in Algorithm 3.2. Each queue operation takes @(1) time in this imple-
mentation.

3.2 BASIC LIST REPRESENTATIONS

N N

FT3F... IX IY| I XI |Ir

0 1 ... F F+1

Figure 3.1 Ring buffer implementation of a queue. The queue currently has
n elements; element xi is located at position (F + i) mod N.

function MakeEmptyQueueo: pointer
L NewCell(Queue)
Front(L) *- 0
Length(L) 0
return L

function IsEmptyQueue(pointer L): boolean
return Length(L) = 0

function Dequeue(pointer L): info
if IsEmptyQueue(L) then error
else

x Infos(L)[Front(L)]
Front(L) (Front(L) + 1) mod N
Length(L) *- Length(L) - 1
return x

procedure Enqueue(info x, pointer L):
if Length(L) = N then error
else

Length(L) <- Length(L) + 1
Infos(L)[(Front(L) + Length(L) - 1) mod N] x

procedure Front(pointer L):
if IsEmptyQueue(L) then error
else return Infos(L)[Front(L)]

Algorithm 3.2 Ring buffer implementation of queue operations. Each Queue
has three components: a table Infos, an integer Front, and an integer Length.

Stack Representation in Linked Memory
A stack can be implemented as a linked list of nodes with a single pointer in
each node; the top of the stack corresponds to the beginning of the linked list
(Figure 3.2). Thus following the pointer chain would correspond to going down
into the stack, and pushing an element corresponds to adding a new node to
the beginning of the list. The linked list nodes have two fields, Next for the

77

78 LISTS

AL

(a)

x 3

(b)

Figure 3.2 Linked list implementation of a stack. (a) Stack containing
X2 , x1, and xO, with X2 on top and xo on bottom; L points to top of
stack. (b) Stack of part (a) after Push(X3 , L).

function MakeEmptyStacko: pointer
return A

function IsEmptyStack(pointer L): boolean
return L = A

function Top(pointer L): info
if IsEmptyStack(L) then error
else return Info(L)

function Pop(locative L): info
if IsEmptyStack(L) then error
else

x +- Top(L)
L 4 Next(L)
return x

procedure Push(info x, locative L):
P +- NewCell(Node)
Info(P) x
Next(P) L
L = P

Algorithm 3.3 Linked list implementation of stack operations. The stack is
represented as a the address of the linked list cell containing the top element of
the stack, or A if the stack is empty.

3.3 STACKS AND RECURSION

Front

Back

L

Figure 3.3 Linked queue representation. The queue is passed as a pointer to
a record of type Queue, which has pointers to both the first and the last
elements in the queue; the queue is empty if both these pointers are A.

pointer and Info for the stack entry itself. The stack operations can then be
implemented as shown in Algorithm 3.3. The variable L points to the first cell
in the linked list, and is A if the list is empty. This variable is passed to certain
of the routines as a locative so that the state of the list can be altered from inside
the routines. A linked list node (with Info and Next fields) is a record of type
Node. We shall follow the convention in the future of always using Node as
the name of the record from which a dynamic data structure is constructed.

Of course one may wonder why a linked representation would ever be used;
since the relative order of items deep in a stack cannot be changed, there would
seem to be no need for the flexibility that a linked representation provides. But
with a linked implementation a stack can be used without knowing its maximum
size in advance. Linked stacks can also be used to help search a data structure
by temporarily altering the data structure itself; Algorithm 4.7 on page 115 and
Algorithm 10.2 on page 348 illustrate this technique.

Queue Representation in Linked Memory
A queue can also be represented by a linked list, but the list header record
is a record with two fields: Front(L) points to the first record in the list and
Back(L) points to the last record in the list (Figure 3.3). If the list is empty
then both are A. An element is dequeued from the front of the list by ordinary
linked list deletion; an element is enqueued at the end of the list, with the Back
pointer advancing to point to the new last element. With this implementation
all operations take constant time (Algorithm 3.4).

3.3 STACKS AND RECURSION

The use of recursion adds considerable expressive power to the language we use
for describing algorithms. It is important to realize, however, that this power
generally does not come without some cost. When recursion is implemented on
a von Neumann computer, a stack is used to do the bookkeeping about how far

79

80 LISTS

function MakeEmptyQueueo: pointer
L - NewCell(Queue)
Front(L) +- Back(L) +- A
return L

function IsEmptyQueue(pointer L): boolean
return Front(L) = A

procedure Enqueue(info x, pointer L):
P +- NewCell(Node)
Info(P) 4- x

Next(P) A
if IsEmptyQueue(L) then Front(L) P
else Next(Back(L)) - P
Back(L) +- P

function Dequeue(pointer L): info
if IsEmptyQueue(L) then error
else

x 4- Info(Front(L))
Front(L) +- Next(Front(L))
if Front(L) = A then Back(L) A
return x

function Front(pointer L): info
if IsEmptyQueue(L) then error
else return Info(Front(L))

Algorithm 3.4 Linked list implementation of queue operations. A Queue
record has two fields, Front and Back, which point to linked list nodes; the
queue is empty when these pointers are both A.

the execution has proceeded and what remains to be completed after the current
invocation of the subprogram is finished. Since the size of the stack increases
with the depth of recursion, algorithm analysis that takes memory usage into
account must remember to measure the size of this "hidden" data structure.

The reason that a stack is the appropriate structure for keeping track of
recursive invocations of subprograms is that subprogram invocations end in the
opposite orderfrom their beginning; that is, at any point in time, if an invocation
of a subprogram finishes, the one that finishes is the last one that began but has
not already finished. This is exactly the "last-in-first-out" property of stacks.

To be more precise, we sketch below how we could transform a recursive
algorithm into a nonrecursive algorithm that uses a stack. (Programming lan-
guage compilers do something like this, though a good deal more cleverly and

3.3 STACKS AND RECURSION

procedure MergeSort:
{Sort T[a. . b] by the merge sort algorithm}
{On entry, T, a, b, and the return address are on the stack}

Leave space on the stack for the local variable middle
if a > b then goto CommonExit
middle - [(a + b)/2j
{First recursive call}
Push(returnl, S); Push(T, S); Push(a, S); Push(middle, S)
goto MergeSort

return 1:
{Second recursive call}
Push(return2, S); Push(T, S); Push(middle + 1, S); Push(b, S)
goto MergeSort

return2:
Merge(T[a. .middle], T[middle + I .. b], T[a. . b])
{This turns into more pushes and a branch to Merge}

CommonExit:
Discard the local variables and arguments from the stack
Pop and branch to the return address

Algorithm 3.5 The Merge Sort algorithm, recorded iteratively by using a stack.

systematically than this sketch suggests.) To take a concrete example, let us fo-
cus on Merge Sort (page 29). The call MergeSort(T[a. . b]) results either in an
immediate return, if a > b, or in two recursive calls, MergeSort(Tf[a. .middle])
and MergeSort(T[middle + 1 . . b]), where middle is the value L(a + b)/2J (fol-
lowed by an implicit return at the end of the algorithm). In general, the text of
a recursive algorithm has certain places where it or other algorithms are called,
and certain places where it returns. To transform the recursive algorithm into an
iterative, stack-based algorithm, both the calls and the returns must be replaced
by stack operations.

Each call is replaced by statements to push a return address onto the stack,
to push the arguments onto the stack, and then to branch to the beginning of
the called algorithm. Conversely, each return is replaced by a statement that
pops the arguments off the stack and discards them, and then pops the return
address off the stack and branches to that return address. Algorithm 3.5 shows
the translation.

Local variables, such as middle in MergeSort, also occupy space on the
stack; this is because if there are several nested invocations of MergeSort that
have not been returned from, then the value of middle associated with each
invocation will be needed later. Space for such variables is allocated on the
stack after the procedure has been entered.

81

82 LISTS

function BinarySearch: integer
{Search T[a.. b] for key K and return its index}
{On entry, T, a, b, and K are on the stack}

Leave room on the stack for middle
if a > b then

Return Value -1

goto CommonExit
middle- L(a + b)/2J
if w = T[middle] then

ReturnValue +- middle
goto CommonExit

if w < T[middle] then
Push(CommonExit, S)
Push(T, S); Push(a, S); Push(middle - 1, S); Push(K, S)
goto BinarySearch

else
Push(CommonExit, S)
Push(T, S); Push(middle + 1, S); Push(b, S); Push(K, S)
goto BinarySearch

CommonExit:
Discard values of local variables and arguments from stack
Pop and branch to the return address

Algorithm 3.6 Binary search algorithm compiled into iterative code using a
stack.

In Algorithm 3.5 there are references to the variables, such as T, a, and
middle, which are actually not stored in fixed locations in memory but instead
exist in multiple versions on the stack. What makes the stack work in this
situation is that the algorithm needs to see only one copy of these variables
at a time, namely, the set that was most recently put on the stack. Therefore
a compiler, knowing where the stack pointer is kept and in what order the
variables have been pushed on the stack, can replace references to the variables
by name ("T", "middle", etc.) with references to the locations where they are
stored relative to the current position of the top of the stack. In our example,
the first five items on the stack are, from the top down, middle, b, a, T, and the
return address.

In a similar way any recursive algorithm can be implemented with the aid
of a stack. However, use of a stack is not always necessary. For example,
Algorithm 3.6 is the result of translating the Binary Search Algorithm (page 11)
into a stack-based algorithm.

3.3 STACKS AND RECURSION

function BinarySearch: integer
{Search T[a.. b] for key K and return its index}

if a > b then
ReturnValue -- -I
goto CommonExit

middle - [(a + b)/2J
if w = T[middlej then

ReturnValue +- middle
goto CommonExit

if w < T[middle] then
b - middle - 1

else
a middle + 1

goto BinarySearch
CommonExit:

Pop and branch to the return address

Algorithm 3.7 Binary search, with tail recursion eliminated.

At a typical point during the execution of Algorithm 3.6, several sets of
arguments, local variables, and the return address will be on the stack, but only
the current set of data will be accessed by the algorithm, exactly as in the case of
MergeSort. However, unlike in the case of MergeSort, all the return addresses
are the same, namely, CommonExit. It follows that once the return value has
been determined, the algorithm will loop through its last four lines until the stack
has been emptied and the original return address-from somewhere outside the
algorithm itself-is uncovered. This phenomenon is traceable in the original,
recursive code for BinarySearch to the fact that the first instruction executed
after returning from the recursive call on BinarySearch is a return. A recursive
call with this property is said to be tail-recursive, and a recursive routine in
which all the recursive calls are tail-recursive is said to be a tail-recursive routine.
Evidently, there is no need to preserve local variables or argument values before
a tail-recursive call, since they will not be needed once that call has completed.
Similarly, there no need to stack the return address; instead of returning only to
carry out another return statement, the Push and the corresponding Pop may
as well both be omitted. When this optimization has been carried out on the
BinarySearch routine, all that is left is the code of Algorithm 3.7; the new values
of the arguments simply replace the old, which do not even need to be on the
stack. (The code beginning at CommonExit is still required, of course, to handle
nonrecursive calls on BinarySearch, from outside.)

Thus in the case of a tail-recursive routine the implicit stack needed to
implement recursion can be dispensed with completely. (The space to hold the

83

84 LISTS

procedure Traverse(pointer P):
{Visit nodes of a singly linked list, beginning with cell that P points to}

while P :A A do
Visit(Key(P))
P +- Next(P)

Algorithm 3.8 Forward traversal from beginning to end of a singly linked list.

single set of arguments does not need to be on a stack; it could be in fixed
memory locations.) Some compilers are clever enough to carry out such a
transformation automatically, in an effort to save stack space at run time; we
shall, in any case, note some cases in which savings could be realized in this
way.

3.4 LIST REPRESENTATIONS FOR TRAVERSALS

The singly linked list representation is useful because it permits insertion or
deletion of the item following any given item in the list in @(1) time. A price
is paid for this added flexibility over the contiguous-memory representation,
however; Access(L,i) cannot be implemented in 0(1) time. It is still true,
however, that given a particular item in the list, the next item in the list can
be found in 0(1) time. For many applications no more is needed, since a list
of length n can then be traversed from the beginning to the end in time @(n)
(Algorithm 3.8). By traversal of a list L, we mean performing a specified
operation Visit on some or all of the elements of L in a specified order. When
we reckon the time to perform a traversal, we omit the time required for carrying
out Visit itself, since Visit is completely arbitrary.

For example, the algorithm on page 14 illustrates a very simple kind of
linked list traversal, used to keep the elements of the list in order by their Key
values. For the purposes of the following illustration, let us assume that the
keys are actually English words and that the order being maintained is the usual
alphabetical order. (Technically, this is called lexicographic order.)

The singly linked list structure can be adapted to a variety of circumstances
for which it might at first seem that a more elaborate structure is needed. In
the context of the list of words in lexicographic order, suppose we want to find,
given a word w, the last word in L that alphabetically precedes w and ends with
the same letter as w. (For example, if

L = (canary, cat, chickadee, coelacanth, collie, corn, cup)

3.4 LIST REPRESENTATIONS FOR TRAVERSALS

function FindLast(pointer L, key w): key
{Find the last word in list L ending with the same letter as w}
{Retum A if there is no such word}

P +-L
Q, A
while P :7 A and Key(P) < w do

if Key(P) ends with the same letter as w then Q +- P
P +- Next(P)

if Q = A then return A else return Key(Q)

Algorithm 3.9 In a linked list, find the last word preceding w that ends with
the same letter as w.

and K = crabapple, then the answer we are looking for is collie.) A "brute-
force" approach to solving this problem would use backward pointers, so that we
could pass in @1(l) time from any list element to its predecessor; we might then
search forward from the beginning of the list to the position where w ought to
occur, and then backward for the first word that ends with the same letter as w.
But it is equally easy (and more efficient) to use a singly linked representation
and to keep a second pointer that always points to the last word that has been
seen that ends with the same letter as w (Algorithm 3.9).

Sometimes this kind of forward-backward condition can be too complicated
to implement by remembering a fixed amount of information during the forward
traversal. Imagine, for example, that a number is stored with each word in the
list; and we want to find, given a word w in the list associated with a number n,
the word that precedes w in the list by n positions. This specification suggests
an algorithm that searches forward in the list for the word w and then backs
up in the list by n positions; we call an algorithm that moves back and forth
in a list like this a zig-zag scan. As long as a zig-zag scan always begins
from the beginning of the list, it can be implemented by stacking pointers
to all the cells during the forward traversal, and popping those pointers to
effect the backward traversal. The stack takes no more memory than storing
extra pointers in the cells themselves, but the memory is used only during the
traversal.

One final and drastic variation on this train of ideas implements a zig-
zag scan of a singly linked list without using any additional memory at all
by a method known as link inversion. The stack of pointers is stored in the
linked list itself, "turning around" the Next pointers of the cells through which
we advance so that they point to the previous cell in the list. This operation
temporarily destroys the linked list. At any point during the scan we need two
pointers, P and Q, to keep track of our whereabouts (Figure 3.4). Q points to
the first unvisited cell in the remainder of the list; following Next fields starting

85

86 LISTS

(a)

P 0

(b)

Figure 3.4 Link inversion of a singly linked list. (a) Before traversal;
(b) after traversing the first three list cells.

with Q will take us in the forward direction, as usual, through the tail end of L
from some point on: xi, xi, 1 -,..., - P, on the other hand, points to the
cell containing xi-, but its Next field has been changed so that it points to
the cell containing Xi-2, and so on. That is, following Next pointers starting
with P essentially takes us down the pointer stack described just above, towards
the front of the list.

The operations of starting a traversal at the beginning of the list, mov-
ing one step forward in the list, and moving one step back in the list (while
undoing the damage done when moving forward) are achieved by these three
routines:

StartTraversal(L):

() _(A)

Forward(P, Q): Back(P, Q):
P Q P Next(P)\
Q Next(Q) Next(P) Q

Next(Q) (P Q P))

This method must be used with extreme caution, where it is applicable at
all. Restoring the list to its original state requires backing out completely. Also,
no other use of the list can be accommodated while this traversal is in progress;
in particular, this method is inapplicable if several concurrent processes require
simultaneous access to a data structure. In spite of its apparent limitations,
this basic idea is at the heart of a number of algorithms to be discussed in
Chapter 10.

3.5 DOUBLY LINKED LISTS 87

(a) A P -

Header

(b)

Header

(c)

Figure 3.5 Doubly linked lists. (a) A single cell; (b) a list of length 4 (plus
a header cell); (c) the same list, with C inserted after the cell pointed to
by Q.

3.5 DOUBLY LINKED LISTS

Sometimes we need to traverse a list freely in both directions starting from
any point. A doubly linked list consists of nodes with two pointer fields,
Next and Prev, which point to the following and preceding nodes in the list,
respectively. The Next field of the last node and the Prev field of the first
node can either be A, or can point to a special header node whose Key field
is unused; the latter representation is generally more convenient, since then
Prev(Next(P)) and Next(Prev(P)) are both always defined for any node P,
and are always equal to P. We therefore assume the latter convention (Fig-
ure 3.5).

With a doubly linked list, traversal in the forward direction, the backward
direction, or any intermixture can be implemented with ease. Moreover it is
easy to perform an insertion either just before or just after an item, given only
the node containing the item itself. This is because it is easy to get from a node
to its predecessor or successor, whichever needs to be changed to insert the new
item. For example, Algorithm 3.10 inserts a node pointed to by P after the cell
pointed to by Q (Figure 3.5(b,c)).

88 LISTS

procedure DoublyLinkedlnsert(pointer P, Q):
{Insert node pointed to by P just after node pointed to by Q}

Prev(P) Q
Next(P) Next(Q)
Next(Q) P

Prev(Next(Q)) P

Algorithm 3.10 Insert a node into a doubly linked list.

procedure DoublyLinkedDelete(pointer P):
{Delete cell P from its doubly linked list}(Next(Prev(P)) (Next(P)

Prev(Next(P)) Prev(P))

Algorithm 3.11 Delete a cell from a doubly linked list.

Inserting before a given node is, of course, symmetrical. A cell can be
deleted from a doubly linked list with only two pointer operations, and only
the address of the node itself need be known (Algorithm 3.11). In fact, one of
the most common reasons for using doubly linked lists is the ability to delete a
node, knowing only the node and not its predecessor.

The disadvantage of doubly linked lists is, of course, that they require two
pointers in each cell, so the "overhead" needed to hold the list together is twice
as great as for a singly linked list of the same length. Surprisingly, there is a
way around this drawback. That is, there is a structure that uses only as much
space per list element as would be needed to hold a single pointer, and yet
supports all of the following in e9(1) time: from any list element x,

* to move forward in the list to the item after x;
* to move backward in the list to the item before x;
* to insert an item before or after x;
* to delete x.

A first inkling that such a list representation might be possible arises when
one notices that in the pointer fields of doubly linked lists every pointer value
appears twice; if X is the address of the list node representing a particular list
element, then X appears as the value of the pointer fields Next(Prev(X)) and
Prev(Next(X)), that is, in the Next field of the node before X and the Prev field
of the node after X. Although there are 2n pointers in a doubly linked list of
length n, there are only n values of those pointers, since every value that occurs
is duplicated at a list position two ahead of or behind its other occurrence. The
"trick" of our representation will be to compress into a single pointer-sized field

3.5 DOUBLY LINKED LISTS 89

|X B 4 X X C | | X3 9A X5 D

xo IAI I X : I I, I X2 1 1 X3 1

Figure 3.6 Exclusive-or coded doubly linked list representing the list
(A, B, C, D) of length n = 4 . X 4 and X5 are the header nodes.

in each node a composite of the addresses of the preceding and succeeding list
nodes, that is, the two pointers that would be within that node in an ordinary
doubly linked list. Although such an amalgam of bits could not be deciphered if
it were encountered in isolation, together with the address of an adjacent node it
can be used to reconstruct the address of the node on the other side. Therefore
this representation can be used instead of storing two pointer fields in each node,
but only if the list is always entered from one end or the other, and nodes in
the middle are reached only by traversing the list from one of the ends; if it
is necessary to be able to enter the list abruptly at any node in the interior, an
ordinary doubly linked representation must be used.

The exclusive-or a e b of two bits a and b is 1 if and only if the two bits are
different; that is, I eo 0 = 0 oD 1 = 1, and 0 oe 0 = 1 E3 1 = 0. The exclusive-or of
two bit strings is computed bitwise, that is, al a2 . .. ak E bl b2 ... bk = clC2 . . .Ck,

where ci = ai bi for 1 < i < k. The important properties of e3 for our purposes
are two:

1. G is commutative and associative; that is, a e b = b Ef a and (a E b) E3 c -

a E (b ED c), so it does not matter in what order bit strings are combined
with (D.

2. For any bit string a, a E a = 0 (that is, the bit string of all O's), and
a Eo 0 = a. Together with (1), this means that in any exclusive-or of several
bit strings in which the same term appears twice, two occurrences can be
dropped without changing the value.

Now we can explain the representation of list L = (X0, X2,.. . -, x,-1). Each
node has a Key field and a single additional field, called Link, which is the same
size as a pointer field. Let the addresses of the cells containing L0, 21, . . ., xn-I
be Xo, Xi, . . . , X,. I, and let X, and X,+1 be the addresses of two additional
nodes to be used as headers. Then the Link field of each node in the list contains
the exclusive-or of the addresses of the nodes before and after it in the list, with
the header nodes deemed to be before Xo and after Xn-1 (Figure 3.6). That is,

Link(Xi) = X(i-1)mod(n+2) E X(i+l)mod(n+2).

To traverse a list represented in this way, we need pointers P and Q to
two adjacent nodes Xi and X(i+1)mod(n+2). If P and Q have this property, then

90 LISTS

the operations of moving both pointers forward and backward in the list can be
implemented as follows:

Forward(P, Q): Back(P, Q):
PA Q A PA Link(P) QA

(P) tP EDLi nk(Q)Q VQJ P)

To see why these routines work, recall that P and Q point to successive nodes
in the list. Let N be the cell before P and R the cell after Q. Then Link(Q) =

P E R and Link(P) = N e Q. Therefore

P E Link(Q) = P E (P E R) = (P G P) (R = R

and

Link(P) E Q = (N E Q) eD Q = N.

Finally, to insert a new node pointed to by C between those pointed to by P
and Q,

Link(P) (Link(P) E3 Q ED C
Link(Q) Link(Q) ED P e C
Link(C) P E Q

Initially Link(P) = N E Q, where N is the address of the node before P in the
list. Consequently Link(P) E Q ED C = N e C, which is what Link(P) should
become when P is between N and C.

This representation is both economical of memory and easy to manipulate,
but the operations on the Link fields are so low-level that they are likely to be
impossible in some strongly typed higher-level programming languages. That
is, even if manipulation and storage of pointers to cells are supported by the
language, the operation of forming the exclusive-or of two pointers may be im-
possible, even though almost every computer could support such an operation at
the machine-language level. However, these "bitwise" operations are possible in
the C programming language, and even the strongly typed languages Modula-2
and Ada leave loopholes that may make such operations possible.

Problems

3.1 1. Using abstract operations only, write a routine that takes as its argu-
ment a list of lists and returns the concatenation of all the component
lists.

3.2 2. A run in a list L = (xo,. .. , x,-l) is a pair of indices (i, j), i < j,
such that xi = xi+, = *-- = xj. A run-length encoding of L
represents L as a table A[O..k - 1] of records with two fields, Count
and Value; if (ioic - 1), (il,i 2 -1), ... , (ik-l,ik - 1) are runs

PROBLEMS 91

of L, with io = 0 and ik = n, then L is represented by setting
Count(A[j]) = ij~j - ij and Value(ALj]) = xi, for 0 < j < k.
a. Give an algorithm for Access(L, i) with this representation.

b. Give necessary and sufficient conditions for this representation to
use less memory than the ordinary contiguous-memory represen-
tation of L. (Assume that the Count field is C bits, and the Value
field is V bits.)

3. Describe the implementation of two stacks in a single table, in the
style used on page 75 to describe the implementation of the stack
operations for a single stack in contiguous memory.

4. Susan decides to implement a queue of maximum length N in a table
of size N by keeping track of the positions of the first and last ele-
ments of the queue, rather than the position of the first element and
the length of the queue; she figures this will save her some modu-
lar arithmetic and the code will be clearer. Unfortunately, she can't
seem to get her code to work; why not? What alternatives will work
correctly?

5. A deque (pronounced "deck") or double-ended queue is a list ab-
stract data type such that both additions and deletions can be made at
both ends. Present representations of deques in both contiguous and
linked memory.

6. A pseudo-random number generator is a function of no arguments
that returns, when called repeatedly, a sequence of values that appears
to be random and uniformly distributed over a range {0, . . . , N - 1 }.

(The value of N is typically 2 k, where k is the computer word length
in bits; N = 232, for example.) In particular, a lagged Fibonacci
generator for the range {O,...,N - 1} returns the values x, =

(xn..r + x,-,) mod N, where r and s are integer constants of the
algorithm (0 < r < 9) and the initial "seed" values xo, ... , x,_- are
determined in some other way. (The values r = 5 and s = 17 are
recommended, because they result in a sequence xo, xi, ... that does
not repeat a value for a very long time.) Explain how to implement
a lagged Fibonacci generator using list abstract data types. What
representation would be most appropriate?

7. One difficulty with the linked representation of lists is the space re-
quired; unless the Info field of each record is large compared with the
size of a pointer, each list will have a great deal of memory overhead
for pointers compared to the amount of "real" data. Cdr-coding is
one way of overcoming this problem. The idea is to have two differ-
ent types of list records, say LargeNode and SmallNode. Each has

92 LISTS

Ntype Next Ntype

1 infoM 0 IEn

(a) (b)

(c)

(d)

Figure 3.7 Cdr-coded lists. (a) A LargeNode. (b) A SmallNode. (c) A list
with seven elements. (d) The result of inserting a new element after the
third element of the list in (c).

an Info field as usual plus a one-bit field Ntype that distinguishes one
type from the other. (It is quite often possible to "steal" an otherwise
unused bit from a storage location, especially if the location is known
to contain a pointer.) Each LargeNode contains 1 in its Ntype field
and contains a Next field as usual. Each SmallNode contains 0 in its
Ntype field and has no Next field at all. Instead, the next record in
the list follows immediately in memory, as though in a table; that is,
each SmallNode has an implicit Next pointer that points just beyond
itself in memory. Figure 3.7(c) shows an example of a cdr-coded list.

a. Write the routine Access(Li) that finds the ih element of a cdr-
coded list L. Assume that N + smallnodesize gives the address of
the record immediately succeeding record N in memory when N
is a SmallNode.

b. Write a routine CopyList that makes a copy of a cdr-coded list,
ensuring that the new list is represented as compactly as possible.
Assume that consecutive calls on NewCell are guaranteed to return
nodes that are adjacent in memory.

8. It is not a simple matter to insert a new record into a cdr-coded list,
since if we wish to insert a new record just after a SmallNode there
may be no place to put the relevant information! To obviate this diffi-
culty we create yet another type of node called a ForwardingAddress.
(The Ntype field must now be expanded to two bits; we use F for
the bit sequence identifying a ForwardingAddress.) Other than the
Ntype field, each ForwardingAddress has exactly the same structure
as a SmallNode-in particular, they are necessarily the same size in

PROBLEMS 93

memory. The Info field of a ForwardingAddress N contains a pointer
to another record, which is the record that really should be located
at N's address. Any routine that encounters a pointer to N must
retrieve Info(N) to find the "real" record; foresighted routines will
update pointers to N to point to Info(N), thus speeding up the next
access. Figure 3.7(d) illustrates how to use a ForwardingAddress to
insert into a cdr-coded list.

a. Write insertion and deletion routines for cdr-coded lists.

b. Update the Access and CopyList routines written for Problem 7
to respect forwarding addresses.

c. The Ntype field of each node is now two bits long, but only three
of the four possible values are used. One possibility for a fourth
type of node will permit us to save one more pointer in each
list. Define this new node type and update the list-manipulation
routines as necessary.

3.3 9. Give a version of the clever integer multiplication algorithm (Algo-
rithm 2.3 on page 53) showing explicitly the stack manipulations
needed to implement the recursive calls.

3.4 10. Show that link inversion during list traversal can be avoided com-
pletely, if we know that we never need to look more than K positions
behind the position currently being probed, where K is a constant
fixed before the algorithms are implemented. That is, imagine that the
record structure for a list L has, among others, a component Finger(L)
that points to the item most recently accessed. Given this assumption,
show how to implement the procedures StartTraversal(L), which ini-
tializes the traversal, and Forward(L), which advances one position
in the list, and the function Before(L, k), where k < K, which returns
the Key field of the cell k before Finger(L). What other components
need L have in addition to Finger(L)? What is the time required by
these algorithms, as a function of K?

11. On page 85 we described the problem of finding the word in a singly
linked list that precedes a word w by an associated distance n. The
record for w has fields Key(P) = w and Dist(P) = n, as well as
Next(P). Write algorithms for this problem using

a. two pointers that move only forward in the list;

b. a "zig-zag" scan with a stack of pointers;

c. link inversion.

3.5 12. What is the representation of the empty list when using

a. ordinary doubly linked lists with header cells?

b. exclusive-or coded lists?

94 LISTS

13. Give the algorithm for deleting the cell with address P from an
exclusive-or coded list, given that Q points to the next cell in the
list.

14. Give an algorithm for deleting the ith cell (0 < i < n - 1) from
an exclusive-or encoded list with n cells plus header cells, given the
addresses of the header cells. You should reject as illegal attempts
to delete a cell with index larger than the length of the list (and, of
course, you should not delete the header cells themselves).

15. Show how to represent a doubly linked list with only p extra bits per
cell, using the operations of ordinary addition and subtraction instead
of exclusive-or.

16. Suppose that lists are used to represent sets of items, so that the
order of items in a list is irrelevant. Moreover, suppose that no item
belongs to more than one set. Devise a representation that permits the
following two operations to be implemented: to traverse, from any
item, all of the other items in the same set with it, in time linear in the
number of those items; and to form in constant time, from two items
belonging to different sets, a set consisting of the union of those two
sets.

References

The use of stacks to implement recursion is now so commonplace that we can almost
forget that the idea was ever invented. In fact the relation of stacks to recursion was first
clarified in the context of the development of a compiler for the programming language
ALGOL 60. Like many other important innovations in computer science, this one is due
to Edsger Dijkstra:

E. W. Dijkstra, "Recursive Programming," Numerische Mathematik 2 (1960), pp. 312-
318. In S. Rosen, ed., Programming Systems and Languages, McGraw-Hill Book
Company, 1967.

Any book on programming languages or compilers contains a more complete explanation
of the implementation of recursion than that given in §3.3. Lagged Fibonacci generators
(Problem 6) are discussed in

G. Marsaglia and L.-H. Tsay, "Matrices and the Structure of Random Number Se-
quences," Linear Algebra and its Applications 67 (1985), pp. 147-156.

Cdr-coding (Problem 7) was described in

W. J. Hansen, "Compact List Representation: Definition, Garbage Collection, and System
Implementation," Communications of the ACM 12 (1969), pp. 499-507

and

D. W. Clark, "An Empirical Study of List Structures in Lisp," Communications of the
ACM 20 (1977), pp. 78-87,

REFERENCES 95

and has been implemented in hardware in certain computers called "Lisp machines."
The name "cdr-coding" comes from the name of one of the primitive operators in the
Lisp programming language, which in turn was derived from the name of the machine
instruction ("contents of the decrement part of the register") used to implement that
operator on the IBM 704 computer. For the original (and still highly readable) account
of list processing in Lisp, see

J. McCarthy, "Recursive Functions of Symbolic Expressions and Their Computation by
Machine," Communications of the ACM 3 (1960), pp. 184-195.

4

Trees

4.1 BASIC DEFINITIONS

Whenever information is classified by breaking a whole into parts, and repeat-
edly breaking the parts into subparts, it is natural to represent the classification
by a tree structure. For example, Figure 4.1 shows a small part of the con-
temporary scientific classification of the animal kingdom; structures like this
have been used to analyze the realm of living things at least since Aristotle.
Each category is divided into the subcategories shown below it in the diagram.
Such a diagram is called a tree because this process of subdivision resembles
the branching structure of a living tree. Just as the branches of a living tree
do not grow back together, so each item in a tree structure belongs to only one
category at the next higher level.

Trees are an important object of study in computer science, because so
much of computer science deals with ways of organizing information to make
it easily accessible. Tree structures have long been used to make information
more tractable. For example, library classification systems, such as the Dewey
Decimal system and the Library of Congress system, were designed to make
it easy to find a book quickly given a modest amount of information about its
content (Figure 4.2). Answering a series of questions (is it about Religion?
History? Science?) and subquestions (is it about Botany? Astronomy?) leads
through a series of branching points to the book's exact classification. (Ambi-
guities of classification exist because knowledge is not perfectly tree-structured;
does computer science properly belong under Q, Science, or T, Technology?)
This organization persists even within a book: for example, this book is divided
into chapters, the chapters into sections, most sections into subsections, and so
forth.

All tree structures have the following general characteristics in common. A
tree has a single starting point called the "root" of the tree-"ANIMALIA," in
Figure 4.1. In general an element is related to particular elements at the next
lower level (as a parent is related to children in a family tree; for example,
Metazoa is the parent of Mollusca, Chordata, Annelida, and Arthropoda in

96

4.1 BASIC DEFINITIONS 97

0)

n E
0

0)~ a) a

.E -U2

0) c
, '

Ca

> .c=

co E3

5r-
0)

-o ,,,

'aaEa

0)zO
a =

,- 0

c)

0

C.5

.5

.t
co

0
a)

0

Q

Ca

C.)

0Il

0
C-

c-

zi (�,
< co

E
2 r-
< S

98 TREES

B .. G .. H ... Q R .. T
Philosophy, Geography, Social Science Medicine Technology
Religion An pology sciences

A C K L A K
Mathematics Physics Botany Zoology General Electrical

Engineering Engineering

9 73 76 267 7895
mathematical Slide Electronic Computers, Machine Theory, Special

Logic Rules Computer Science Abstract Machines Computer
Cents

.25 .4 .5 .3 .A5 .M5
Vocational Analog Digital Formal Amplifiers Microprocessors
Guidance Computers Computers Languages

Figure 4.2 Library of Congress classification system, much abridged, show-
ing some of the sections relevant to the study of computers.

Figure 4.1). Some elements have no children. Because the branches do not
merge, from every element of a tree one can trace a unique path back to the
root.

These characteristics can be defined abstractly in the following way. A tree
is composed of nodes and edges. The nodes are any distinguishable objects at
all, for example, the names of the categories in Figure 4.1 and Figure 4.2. In
general nodes will be illustrated in our diagrams as small circles. A distinguished
node-the one that we depict at the top of the tree-is called the root of the
tree. An edge is an ordered pair (u, v) of nodes; it is illustrated by an arrow with
its tail at node u and its head at node v, so we call u the tail and v the head of
the edge (u, v). Specifically, trees are defined by the following recursive rules:

1. A single node, with no edges, is a tree. The root of the tree is its unique
node.

2. Let T,, ... , Tk (k > 1) be trees with no nodes in common, and let rl,

rk be the roots of those trees, respectively. Let r be a new node. Then
there is a tree T consisting of the nodes and edges of T,, ... , Tk, the new
node r, and new edges (r, ri), ... , (r, rk). The root of T is r, and T, .
Tk are called the subtrees of T.

Figure 4.3 illustrates how a tree is constructed via this recursive definition.
The crucial provision in (2) that the trees have no nodes in common ensures that
the composed object really is a tree, and not a structure with loops or multiple
parents for a single node.

IN

I

4.1 BASIC DEFINITIONS 99

rki
Ti Tk

(a)

A
0

B
0

D
0

C

A
A B

(b)

Figure 4.3 Recursive definition of trees. (a) Illustration of the general defini-
tion; (b) construction of a six-node tree in six steps.

In part (2) of this definition, r is called the parent of rl, ... , rk, which are
the children of r and the siblings of each other. Node v is a descendant of
node u if u = v or v is a descendant of a child of u. In terms of our illustrations,
v is a descendant of u if one can get from u to v by following a sequence of
edges down the tree, starting with an edge whose tail is u, ending with an edge
whose head is v, and with the head of each edge but the last being the tail of
the next. Such a sequence of edges is called a path from u to v (Figure 4.4).
Note that every node is a descendant of itself, since the path need not have any
edges at all; when we want the descendants of a node, other than the node itself,
we shall refer to the proper descendants of a node. Node u is an ancestor of
node v just in case v is a descendant of u; of course there are proper ancestors
as well as proper descendants.* A leaf is a node with no children. Any tree
has one more node than edge, since each node, except the root, is the head of
exactly one of the edges.

The height of a node in a tree is the length of the longest path from that

*Tree terminology in computer science is an odd mixture of botanical and genealogical metaphors.
When interpreting the botanical metaphor, remember to turn the tree upside down; the node referred
to as the "root" is invariably drawn at the top of the tree. And when interpreting the genealogical
metaphor, think of a tree of your descendants, not of your ancestors.

E
0

100 TREES

(a) (b)

u has Tree has
height height 4

3 l

(c) (d)

Figure 4.4 (a) A tree with 12 nodes; (b) its root and leaves; (c) a path
from u to v, showing that u is an ancestor of v; (d) height and depth of
nodes.

node to a leaf; thus all the leaves have height 0. The height of the tree itself is
the height of the root. The depth of a node is the length of the path (there is
exactly one) from the root of the tree to the node. Thus the height of a tree can
also be described as the maximum of the depths of its nodes.

4.2 SPECIAL KINDS OF TREES

Several special kinds of trees can be distinguished either because they have
additional structural properties, beyond those possessed by all trees, or because
their shapes are restricted in one way or another.

An ordered tree is a tree with a linear order on the children of each node.
That is, in an ordered tree the children of a node have a designated order: one

rnnt

-

s

4.2 SPECIAL KINDS OF TREES

(a) (b) (c)

Figure 4.5 Binary trees. Note that (b) and (c) are different binary trees; the
root of (b) has only a right child, while the root of (c) has only a left
child.

can refer unambiguously to the first, second, ... , klh child of a node that has k
children. Most of the trees we deal with are ordered trees, but occasionally trees
without an ordering of the children constitute the right model; for emphasis we
refer to them as unordered trees.

A binary tree is an ordered tree with at most two children for each node;
moreover when a node has only one child, that child is distinguished as being
either a left child or a right child. When a node has two children, the first is
also called the left child and the second is called the right child. In our diagrams
a left child is to the southwest of its parent, and a right child is to the southeast
(Figure 4.5). Note that while there is only one ordered tree with two nodes,
there are two different binary trees with two nodes: one consisting of a root and
a left child, and one consisting of a root and a right child.

It turns out to be convenient to extend the notion of a binary tree to include
an empty binary tree which has no nodes; we write A to denote this binary
tree. The definition of a binary tree can then be reformulated more gracefully as
follows: a binary tree is either A; or is a node with left and right subtrees, each
of which is a binary tree. (It is understood that if a subtree is nonempty then
there is an edge joining the root to it.) By this definition the tree of Figure 4.5(b)
consists of a root with an empty left subtree and a right subtree which is a node
with two empty subtrees. (Of course A is not a tree; for example, it violates
the rule about trees having one more node than edge.)

A nonempty binary tree is said to be full if it has no nodes with only one
child; that is, if each node is a leaf or has two children. In a full binary tree
the number of leaves is one more than the number of nonleaves; this is easily
proved by induction (Problem 6).

A perfect binary tree is a full binary tree in which all leaves have the same
depth. A perfect binary tree of height h has 2 h+1 - 1 nodes, of which 2 h are
leaves and 2 h - 1 are nonleaves. These numbers are easily derived by induction
on the height of the tree. In the base case, when h = 0, the perfect height-zero
tree consists of a single node and no edges; thus it has 20+1-I = 1 node,
20 = 1 leaf and 20 -1 = 0 nonleaves. In the inductive case, the subtrees of the
root of a perfect tree of height h + 1 are two perfect trees of height h, so if a
perfect tree of height h has 2 h leaves and 2h - 1 nonleaves, then a perfect tree

101

102 TREES

(a) (b)

(c)

Figure 4.6 Binary trees: (a) full; (b) perfect; (c) complete.

of height h + 1 has 2h + 2h = 2h+1 leaves and (2 h - 1) + (2 h- 1) + 1 = 2 h+ -I

nonleaves.
A complete binary tree is the closest approximation to a perfect binary tree

when the number of nodes is not exactly one less than a power of two. To
be precise, the complete binary trees are defined inductively as follows. A
complete binary tree of height 0 is any tree consisting of a single node; and a
complete binary tree of height 1 is a tree of height 1 with either two children
or a left child only. For h > 2, a complete binary tree of height h is a root
with two subtrees satisfying one of these two conditions: either the left subtree
is perfect of height h - 1 and the right is complete of height h - 1, or the
left is complete of height h - 1 and the right is perfect of height h - 2. More
informally, a complete tree of height h is formed from a perfect tree of height
h - 1 by adding one or more leaves at depth h; these leaves must be filled in at
the leftmost available positions (Figure 4.6). Thus for any n there is only one
complete binary tree with n nodes; the shape is fully determined by the number
of nodes.

Our interest in perfect and complete binary trees arises from the need to
minimize the height of a tree with a given number of nodes; in many contexts
the height of a tree determines the worst-case running time of an algorithm
that follows a path in the tree. Of all binary trees with n nodes, none has
lesser height than the complete binary tree with n nodes. Since the number of

4.3 TREE OPERATIONS AND TRAVERSALS

nodes, n, in a complete binary tree of height h satisfies 2 h <_ n < 2 h+-1 - 1,
the height of the complete binary tree with n nodes is exactly Llgn], which is
therefore the minimum height of any n-node binary tree.

A forest is a finite set of trees. In the case of ordered trees, the trees in the
forest must have a distinguishable order as well. For example, the subtrees of
an ordered tree form an ordered forest.

4.3 TREE OPERATIONS AND TRAVERSALS

Many of the terms defined so far in this chapter are natural candidates for
abstract operations on trees; we mention just a few possibilities here. It will
be convenient to restrict attention to the situation in which a node belongs only
to a single tree; then the node's children and parent in the tree are uniquely
determined by the node itself. We follow this convention and use nodes, rather
than trees, as arguments to the abstract operations.

Parent(v): Return the parent of node v, or A if v is the root.
Children(v): Return the set of children of node v (the empty set, if v is a

leaf).
FirstChild(v): Return the first child of node v, or A if v is a leaf.
RightSibling(v): Return the right sibling of v, or A if v is the root or the

rightmost child of its parent.
LeftSibling(v): Return the left sibling of v, or A if v is the root or the

leftmost child of its parent.
LeftChild(v), RightChild(v): Return the left (right) child of node v (A if v

has no left or right child).
IsLeaf(v): Return true if node v is a leaf, false if v has a child.
Depth(v): Return the depth of node v in the tree.
Height(v): Return the height of node v in the tree.

Some of these operations make sense only for ordered trees, others only
for binary trees. If trees are regarded as belonging to forests-still under the
hypothesis that a node cannot belong to more than one tree-most of these
abstract operations retain their same meanings. But it may make sense, in the
case of an ordered forest, to define the RightSibling and LeftSibling of a root to
be the root of the next or previous tree in the forest.

In practice, trees are often represented by associating with a node a col-
lection of pointers to its children, in a way that mimics exactly the recursive
definition on page 98. In that case a pointer to a node can serve to identify
the subtree rooted at that node, and operations such as LeftChild can be im-
plemented readily as field references to the record addressed by that pointer.
For this reason trees are passed as pointers in the discussion below-trees are
identified with pointers to their roots.

103

104 TREES

A

E

(a) (b)

Figure 4.7 Expression trees. Tree (a) represents the expression (20 - 2) + 3,
while tree (b) represents the expression 20 + (2 + 3). Parentheses are
omitted from these trees, since their structure captures the same informa-
tion.

It will be helpful in discussing the use of these operations to focus on
a specific application of trees: the representation of arithmetic calculations.
The sort of calculation we have in mind are those involving numbers and the
arithmetic operations of addition ("+"), subtraction ("-"), multiplication ("x"),
and division ("- "). In describing these calculations we also use parentheses to
indicate grouping; for example, (20 - 2) + 3 means one thing, but 20 + (2 + 3)
means something quite different. "Mathematical English" has a particular set of
conventions that determine the implied location of parentheses, when they are
omitted; thus 20 2 + 3 means the same as (20 + 2) + 3, since multiplications and
divisions take place before additions and subtractions, if there are no parentheses
to indicate otherwise. Expressions such as 20 + 2 + 3 and 20 + (2 + 3) are called
infix arithmetic expressions; the operators are written in between the things on
which they operate.

The calculations represented by infix arithmetic expressions can be de-
scribed quite naturally by full binary trees, where the leaves are labelled with
numbers and the nonleaves are labelled with the operators (Figure 4.7). If T
has subtrees T1 and T2 , then the implied value of the whole tree T is the result
of combining the values of the subtrees T1 and T2 by means of the operator that
labels the root of T. This is a recursive rule that applies in the same way to the
subtrees of T, and T2 ; and the value of a leaf is the value of the number that
labels the node.

Algorithm 4.1 evaluates such an "expression tree"; it is presented in terms of
suitable abstract operations on the tree. We assume that for any node v, Label(v)
is the number or operator that labels that node, and that ApplyOp(op, x, y), where
x and y are numbers and op is one of "+," "-," "x," and " computes the

sum, difference, product, or quotient of x and y.
Let us trace the evaluation of the tree of Figure 4.7(a); in the trace, the

node names A, B, etc. are used to refer to the entire subtrees rooted at those
nodes. Notice how this graphic illustration of what happens within each call to

4.3 TREE OPERATIONS AND TRAVERSALS

function Evaluate(pointer P): integer
{Return value of the expression represented by the tree with root P}

if IsLeaf(P) then return Label(P)
else

XL - Evaluate(LeftChild(P))
XR - Evaluate(RightChild(P))
op +- Label(P)
return ApplyOp(op, XL, XR)

Algorithm 4.1 Evaluating an expression tree.

procedure Postorder(pointer P): procedure Preorder(pointer P):
foreach child Q of P, in order, do Visit(P)

Postorder(Q) foreach child Q of P, in order, do
Visit(P) Preorder(Q)

Algorithm 4.2(a) Algorithm 4.2(b)

Evaluate reflects the shape of the tree itself.

((Evaluate(C) a. 20
Evaluate(B) Evaluate(D) =t 2

Evaluate(A) I ApplyOp(., 20, 2) =t 10
Evaluate(E) X* 3

I ApplyOp(+, 10, 3) t 13

Any well-defined ordering of the visits to the nodes of a tree is called a
traversal of the tree. In our example, the nodes are visited in the order C,
D, B, E, A, and their labels in this order are 20, 2, -, 3, +. (We count as a
"visit" to a node only an inspection of its Label, not the check of whether it is
a leaf on the descent through the node.) As a general matter, when evaluating
an expression tree it is not necessary to look at the label of a node which is not
a leaf until after its subtrees have been completely visited. This is the defining
characteristic of one of the basic traversals of an ordered tree, the postorder
traversal: a node is considered after its children have been considered. We
shall say that a node is visited at the time when the information in its label is
considered; in a postorder traversal, a node is visited after its children. Schemat-
ically, a postorder traversal which applies the procedure Visit to each node of
the tree has the form shown in Algorithm 4.2(a).

In this algorithm the phrase "foreach child Q of P ... " is a shorthand
for code involving the abstract operation Children(P) and iteration over the
resulting set. A postorder traversal of the tree of Figure 4.7(a) which lists the

105

106 TREES

procedure PostorderEvaluate(ei, .. ,):
for i from 1 to n do

if ei is a number then push it on the stack
else

Pop the top two numbers from the stack
Apply the operator ei to them,

with the right operand being the first one popped
Push the result on the stack.

Algorithm 4.3 Finding the value of a postfix arithmetic expression.

names of the nodes as it visits them produces the list C, D, B, E, A; for the
tree of Figure 4.7(b) the list C, D, E, A, B is produced.

If the labels, rather than the names, of the nodes are listed, a postorder
traversal of Figure 4.7(a) produces 20, 2, +, 3, +, while from Figure 4.7(b) the
list 20, 2, 3, +, - is produced. These enumerations of numbers and operators
can be defined formally as follows: A postfix expression is a number, or the
concatenation, in order, of two postfix expressions and an operator. For example,
since "2" and "3" are postfix expressions, so is "2, 3, +"; and since "20" is also a
postfix expression, so is "20, 2, 3, +, .". Postfix expressions are commonly used
instead of infix expressions as the command language for electronic calculators,
since they represent calculations unambiguously without parentheses, and since
they can be evaluated by the simple stack-based method of Algorithm 4.3. This
algorithm begins with an empty stack and leaves the value of the expression
as the sole item on the stack after processing all the numbers and operators
that make up the expression. The behavior of the stack during evaluation of
a postorder expression is essentially the same as the behavior of a stack that
implements the recursive postorder traversal of the corresponding expression
tree; the values of the local variables XL and XR of Algorithm 4.1, which
are stacked during the recursion on subtrees, correspond directly to the values
pushed on the stack during the execution of Algorithm 4.3.

Dual to the postorder traversal of a tree is the preorder traversal, in which
a node is visited before its subtrees are traversed (Algorithm 4.2(b)). This might
be called "outline order," since an outline of a paper or book is really a way
of representing tree-structured information, and the outline lists the contents of
that tree in preorder. For example, the outline of Figure 4.8(b) is a preorder
traversal of the ordered forest of Figure 4.8(a); the tree shows each subsection
as a descendant of the more major section of which it is a part.

A third type of traversal is relevant only to binary trees. The inorder
traversal of a binary tree visits the root after visiting the left subtree, and
before visiting the right subtree (Algorithm 4.4). Both the binary trees in Fig-
ure 4.7 have the inorder traversal CBDAE or, in terms of the labels instead of

4.3 TREE OPERATIONS AND TRAVERSALS 107

A
B

C2

A B C A B A

A /I 2

1 2 1 2 3 a

A 3
a b B

(a) (b)

Figure 4.8 (a) Structure tree of a book; (b) its preorder traversal, an outline.

procedure Inorder(pointer P):
{P is a pointer to the root of a binary tree}

if P = A then return
else

Inorder(LeftChild(P))

Visit(P)
Inorder(RightChild(P))

Algorithm 4.4 Inorder traversal of a binary tree.

the names, 20 + 2 + 3. Notice that the inorder traversal of an expression tree
yields an infix expression corresponding to that tree-but without the paren-
theses needed to make the expression unambiguous. Thus while the preorder
and postorder traversals of an expression tree uniquely determine preorder and
postorder arithmetic expressions, an inorder traversal of an expression tree does
not in general correspond to a unique inorder expression-parentheses must
be added to represent the structure of the tree. The two trees of Figure 4.7
correspond to two different ways of making the infix expression 20 . 2 + 3
unambiguous by adding parentheses, as (20 . 2) + 3 and as 20. (2 + 3).

Now let us suppose that we wish to use a binary tree structure to represent
some data, and we want to take advantage of some property of the data to help
organize it. A commonly exploited property is linear order. A linear order is
a relation < such that for any x, y, and z,

* If x and y are different then either x < y or y < zx.
* Ifx <y andy < zthenx < z.

108 TREES

For example, the universe of numbers is linearly ordered by ordinary com-
parison of numbers, and the universe of words is linearly ordered by the dic-
tionary or lexicographic ordering (cat < catastrophe < category < cell <
cellophane).

Consider a binary tree in which the nodes are labelled with elements of
some linearly ordered set; for example, a tree with a word attached to each
node. Such a tree is a binary search tree if the inorder traversal of the tree
yields the labels in order. Equivalently, the search tree property can be stated
recursively as follows: the label of each node comes after the labels of all
the nodes in its left subtree and before the labels of all the nodes in its right
subtree. Search trees are useful structures for implementing set abstract data
types because a question of the form "x G ST' can be answered by following
a unique path from the root, moving from a node to its left child if the node's
label is after x and to its right child if the node's label is before x. Search trees
will be studied in detail in Chapters 6 and 7.

In addition to the preorder, inorder, and postorder traversals, a fourth traver-
sal of ordered trees is the level-order or breadth-first traversal, which visits
the nodes in order of increasing depth and, among nodes of the same depth,
in left-to-right order. For example, a level-order traversal of the tree of Fig-
ure 4.7(a) would visit the nodes in the order A, B, E, C, D, while the tree of
Figure 4.7(b) would yield the traversal order B, C, A, D, E.

4.4 TREE IMPLEMENTATIONS

We consider three basic memory representations of special kinds of trees: one
for general binary trees, one for general ordered trees, and one for complete
binary trees. In each case we assume that, in addition to whatever structure is
needed to represent the tree structure itself, an Info field is to be part of each
node to contain information about that node.

Representation of Binary Trees
The obvious representation of binary trees uses two fields for each node, say LC
and RC, to point to the left and right child of the node (Figure 4.9). When
one of these fields has value A, that child is missing; thus A itself acts as
the representation of the empty tree. This representation, which we call the
natural representation of binary trees, directly generalizes the singly linked
representation of lists. Just as a node in a singly linked list acts as a "handle"
to the portion of the list beginning at that node, under this representation a tree
can be identified with its root node. The operation of LeftChild is implemented
simply by selecting the LC field of a node; and similarly for RightChild and RC.

Parent cannot be implemented in 8(l) time with only these fields; however,
a third field can be added to point back to a node's parent, resulting in a sort of

4.4 TREE IMPLEMENTATIONS

ILCIInfo JR_

(a) (b)

Figure 4.9 Representation of binary trees. (a) Fields of a single cell; (b) rep-
resentation of the tree of Figure 4.5(a) on page 101.

"doubly linked tree" structure with 3p bits per node. (Recall that p is the number
of bits needed to represent a pointer.) The parsimoniously minded can devise
a representation with only 2p bits per node in which LeftChild, RightChild,
and Parent all take 1(1) time; the basic idea is to generalize the exclusive-or
coding trick on page 89 by storing in the two fields of node X the quantities
Parent(X) D LeftChild(X) and Parent(X) E RightChild(X) (Problem 16).

Representation of Ordered Trees
Binary trees are easy to represent because each node can have only two children,
so the two fields to point to them can be allocated within each node. A similar
idea would work for "ternary trees," that is, trees with at most three children
at each node, and so on; a node with at most k children could be represented
as a record with k pointer fields, and could be used to construct a k-ary tree
(Problem 7). In essence, each node is then represented as a list of pointers to
its children, and the list of child pointers is represented as a table in contiguous
memory. A different strategy must be adopted for general ordered trees, since
there is no a priori bound on the number of children a node can have. In this
case a different representation must be used for the list of children, one that is
more convenient when lists of different lengths need to be represented. These
considerations lead to the binary tree representation of ordered trees.

A binary tree can be associated with each ordered tree as follows: instead
of regarding the two children of a node as the "left" and "right" children, think
of them as the first child and the right sibling of that node of the ordered tree.
Figure 4.10 shows the ordered tree of Figure 4.4 on page 100, and its rendition
as a binary tree; the "first child" of a node is drawn to its south or southwest, the
"right sibling" of a node to its east. Since each node of the ordered tree has a
child, a right sibling, both, or neither, each node of the corresponding binary tree
has one, both, or neither of the two edges emanating from it. No information
is lost in this correspondence; from a binary tree representing an ordered tree it
is easy to reconstruct the ordered tree. Moreover, the correspondence is one-to-
one; to be precise, each binary tree can be viewed as representing an ordered

109

110 TREES

(a) (b)

Figure 4.10 (a) An ordered tree; (b) its representation as a binary tree.

forest-if the root of the binary tree has a "right sibling," that sibling is the root
of the second tree in the forest. Note that the height of the binary tree can be
much greater than the height of the ordered trees in the forest it represents. For
example, the ordered tree of Figure 4.10(a) has height 4, but the representing
binary tree of Figure 4.10(b) has height 6; the difference arises from the fact
that node B has two right siblings. They do not add height to the original tree,
but they do add height to the binary tree.

When the binary trees representing ordered trees are themselves represented
in memory by means records with two pointer fields, it is helpful to rename the
two fields FirstChild and RightSibling instead of LC and RC (Figure 4.11(a)).
Figure 4.11(b) shows the internal representation of the tree of Figure 4.10 by
this method; in essence, the FirstChild field of a node points to a singly linked
list of its children, linked through their RightSibling fields. A in one field or
the other indicates that a node has no child or right sibling.

Of course, this representation of ordered trees supports 10(1) implementa-
tion of FirstChild and RightSibling operations, and @(k) implementation of the
abstract operation kth-Child(k, v) that finds the kth child of node v; it also per-
mits easy insertion and deletion of subtrees. Without additional fields, it does
not support Parent operations in constant time.

Representation of Complete Binary Trees
Since there is only one complete binary tree with n nodes, in theory there
should be a representation of the tree in n cells of contiguous memory-a table
T[O . n - 1]-without any pointer information at all. Such a representation
(called an implicit representation, since the edges between nodes are not part
of the data structure, but are implied by relations between cell indices) amounts
to a way of numbering the n nodes of the tree, so that node i is stored in T[i].
The trick is to do the numbering so that useful operations on the tree-for
example, finding the root, the leaves, the parent or children of a node-can be
done in E)(1) time by arithmetic on the table indices.

4.4 TREE IMPLEMENTATIONS 111

A

RightSibling

irstChid

(a)

B

E

K

(b)

Figure 4.11 Binary tree representation of an ordered tree. (a) Fields of a
node; (b) representation of the tree of Figure 4.10.

Figure 4.12 Implicit numbering of the nodes of a complete binary tree.

In fact there is such a representation: let the root be node 0 and let the
left and right children of node i be nodes 2i + 1 and 2i + 2, respectively. This
amounts to numbering the nodes in order by depth, and from left to right for
nodes of a given depth; in other words, in level-order (Figure 4.12). The defining
properties of a complete binary tree-that all nodes of depth k must be present
if there are any of depth k + 1, and the nodes of maximal depth must be "at the
left"-ensure that the n nodes are assigned the numbers 0, 1, 2, ... , n - 1 in
this way. Moreover, in this representation a great many useful tree operations
can be implemented by purely arithmetical calculations. We use table indices
as the names of nodes; the root has index 0.

IsLeaf(i): 2i + I > n
LeftChild(i): 2i + 1 (none if 2i + 1 > n)
RightChild(i): 2i + 2 (none if 2i + 2 > n)
LeftSibling(i): i - 1 (none if i = 0 or i is odd)

D

112 TREES

procedure Traverse(pointer P):
{Traverse the binary tree whose root is P}

if P , A then
PreVisit(P)
Traverse(LC(P))
InVisit(P)
Traverse(RC(P))
PostVisit(P)

Algorithm 4.5 Three-in-one traversal of binary tree.

RightSibling(i): i + 1 (none if i = n - 1 or i is even)
Parent(i): [(i - 1)/2J (none if i = 0)
Depth(i): Llg(i + 1)J
Height(i): rlg((n + l)/(i + 1))1 - 1

Finally, note that extending a complete binary tree by adding a node, or
contracting it by deleting a node, involves changes only at the end of the table
that implicitly represents the tree. (In fact, deleting the last node happens auto-
matically when the value of n is decreased.)

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

This section considers the cost-mainly in memory used-of various methods
for visiting the nodes of a tree. The emphasis is on traversals of binary trees.

Stack-Based Traversals
In order to study implementations of the preorder, inorder, and postorder traver-
sals, we consider a single routine that carries out all three kinds of traversals.
Let PreVisit, InVisit, and PostVisit be three arbitrary operations to be applied
to the nodes of a binary tree when they are visited during preorder, inorder,
and postorder traversals. The three traversals can be carried out in the single
recursive routine of Algorithm 4.5. Or, to put it another way, deleting from
Algorithm 4.5 the calls to any two of the three operations PreVisit, InVisit, and
PostVisit yields an ordinary preorder, inorder, or postorder traversal algorithm.

This traversal algorithm takes 0(n) time to traverse a tree with n nodes (not
counting the time taken by the calls to PreVisit, InVisit, and PostVisit). Since it
calls itself recursively on both the left and right subtrees, the height of the stack
used by this recursive traversal algorithm is proportional to the height of the
tree. As the structure to be traversed may be extremely large, the size of the
stack can limit the usefulness of this simple recursive method.

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

procedure Traverse(pointer P):
{Traverse the binary tree whose root is P}

while P 54 A do
PreVisit(P)
Traverse(LC(P))
InVisit(P)
P , RC(P)

Algorithm 4.6 Preorder and inorder traversal of binary tree, with recursion on
left children only.

Notice that in preorder and inorder traversals, one of the recursive calls is
tail-recursive. That is, if the call to PostVisit is eliminated from Algorithm 4.5,
the last statement of Traverse(P) is the recursive call Traverse(RC(P)). This
tail-recursion can be replaced by iteration, the result being an algorithm that
carries out a recursion only on left children (Algorithm 4.6).

If we think of a binary tree as representing an ordered tree as in Figure 4.10,
then the maximum size of the stack required by this algorithm when run on a
binary tree B is proportional to the height of the ordered tree represented by B.
To put it another way, define OrdHt(P) thus if P is a node of a binary tree:

0, if P = A;
OrdHt(P) OrdHt(RC(P)), if LC(P) = A;

max(l + OrdHt(LC(P)), OrdHt(RC(P))), otherwise.

That is, OrdHt(P), where P is the root of a binary tree, is the maximum number
of left child pointers that must be followed from the root to reach any node of
the tree. Then OrdHt(P) is the height of the ordered tree represented by the
binary tree rooted at P, and is the maximum stack height needed to execute
Algorithm 4.6 on this tree. This can be significantly less than the height of that
binary tree. If the binary tree with root P represents the ordered tree T, then
OrdHt(P) is at most the height of T, but the height of the binary tree rooted
at P can be much greater-if T consists of a root with k children, then the
height of T, and OrdHt(P), is 1, but the height of the binary tree rooted at P
is k.

Link-Inversion Traversal
If the tree structure can be altered temporarily during the traversal, the link
inversion method described on page 85 for singly linked lists can be adapted
to provide a traversal technique for binary trees. As the algorithm descends
through a node by following its LC or RC pointer field, this pointer is turned
around to point back to the node's parent. Thus the contents of the stack used
in the recursive algorithm (which consists of pointers to nodes along a path

113

114 TREES

TAG

O/C XRC

(a)

A

P

H

(b) (c)

Figure 4.13 Link inversion traversal. (a) A node of the tree; the Tag field
has value 0 or 1. (b) A binary tree, and a path showing a stage during its
traversal. (c) The internal representation of the tree at this stage of the
traversal; inverted pointers along the path are shown as heavy arrows.

from the root to a node in the tree) is stored in the tree itself as a list linked
through LC and RC pointer fields. As the algorithm uses this list to ascend back
towards the root, it again reverses these pointers to restore them to their original
condition. A complication in the case of binary trees not present in the case of
simple linked lists is that there are two pointer fields in a node, and a pointer
in this chain points to a node, not a field of a node; therefore one additional bit
per node on the implicit stack is needed to indicate whether the LC or RC field
should be followed.* We call this the Tag bit, and add it as a new field of each
node, along with LC and RC (Figure 4.13(a)).

This method, presented in detail as Algorithm 4.7, does not completely
eliminate the memory used by the stack of the recursive algorithm, though it
does reduce it to a single bit per cell. In essence, this bit encodes the same
information as is needed in the recursive version (Algorithm 4.6) to indicate,
when a recursive invocation finishes, which of the two recursive calls in the
body of the program caused that invocation, and hence where in the body of
the program execution should continue.

* Do not be deceived by the illustration into thinking that one can tell which pointer points "up" the
tree; "up" and "down" are drawn this way only for illustrative purposes, and bear no relation to the
relative values of machine addresses. In general, given two machine addresses and the knowledge
that they are the addresses of tree nodes, and that one node is the parent of the other, there is no
way to tell which is the parent and which the child.

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

procedure LinklnversionTraversal(pointer Q):
{Initially Q points to the root of the tree to be traversed}

P- A
repeat forever

{Descend as far as possible to the left (possibly not at all)}
while Q # A do

PreVisit(Q)
Tag(Q) - 0
descend to left

{Ascend as far as possible from the right (possibly not at all)}
while P #& A and Tag(P) = I do

ascend from right
PostVisit(Q)

if P = A then return {If trailing pointer is A then done}
else {Ascend from left, descend to right, and repeat}

ascend from left
InVisit(Q)
Tag(Q) +- 1
descend to right

Algorithm 4.7 Binary tree traversal by link inversion.

Like the linked list version, Algorithm 4.7 uses two variables, P and Q, to
keep track of its position in the structure. Q points to the next untraversed tree
node, and everything that can be reached by following LC and RC pointers start-
ing from Q is unchanged from its appearance in the original tree. P points to the
node that is the parent of the one Q points to. This is the "top" node on the em-
bedded stack; following the appropriate fields of nodes beginning with P (as in-
dicated by their Tag bits) leads back to the root of the tree. Figure 4.13(b) shows
a binary tree, and a path from its root to a leaf; Figure 4.13(c) shows the internal
representation of the tree at the point the algorithm reaches node H. (The tag
bits are shown only for the nodes along the path, since the others are irrelevant.)

To state this algorithm succinctly we have used code fragments to descend
to the left and to the right and to ascend from the left and from the right. These
cause the P-Q pair to move along one edge down or up the tree. On descent,
the direction (left or right) indicates which child pointer to follow, and on ascent
the direction indicates which field of the node to which P points contains the
address of that node's parent. Descending to the left and then immediately
ascending from the left leaves everything as it was; similarly, ascending from
the right inverts the action of descending to the right.

115

116 TREES

decn(~descescndd))(RQ)(Q LCQ(Q)) decn Q) (RC(Q)
to left: LCMQ p to rih: RC(Q) P

ascend L(P) (LCP) from right: P RP))
from left: LC(P) Q) (Q i) (

The Tag bit of a node is 0 during the visit to the node's left subtree, and
is 1 during the visit to the node's right subtree. This bit is used to distinguish,
when Q = A, whether ascent should be through the LC or RC field of P.

A simple refinement of this algorithm is to note that the Tag bits are needed
only for the nodes along the path being traversed. Therefore, instead of adding
a one-bit field to each node of the tree, it suffices to create a stack of bits at the
time the traversal takes place. The size this stack attains is exactly Height(T)
bits; in the worst case this is the same amount of memory as would be used by
allocating a bit field in each node, but the memory is used only during the traver-
sal. In any case, the link inversion method improves the memory utilization of
the simple recursive method by a factor of exactly p.

Scanning a Tree in Constant Space
All the nodes of a binary tree can be visited without using any additional memory
at all, save for a small fixed number of temporary variables, independent of
the size of the tree. While this may seem remarkable, there is a catch: the
algorithm chooses the order, so the method cannot be used to implement any
of the "standard" traversals (preorder, inorder, postorder, or level-order). It is
guaranteed that each node will be visited exactly three times. But there is no
way to distinguish the first visit from the subsequent visits; that would require
additional memory. For this reason, this algorithm is not considered to be a
traversal at all, but rather a scan of the tree.

The scanning order provided by the algorithm gives a clue as to how it
works. Consider once again the binary tree of Figure 4.13(b), but instead of
regarding the edges as walkways that can be perambulated up and back, think
of them as solid walls. The algorithm scans the tree by starting at the root, and
walking around it, keeping the tree nodes and edges always on its left. Each
node is visited three times, once going down from its parent, once going up
from the left, and once going up from the right. The resulting order of visits is
D,B,A,A,A,B,C,C,C,B,D,K,I,F,E,E,E,F,G,G,H,H,H,G,
F, I, J, J, J, I, K, L, L, L, K, D (Figure 4.14). The first visits to each node
form a preorder traversal of the tree, the second visits form an inorder traversal,
and the third visits form a postorder traversal.

The method used can be pictured as a physical mechanism (Figure 4.15).
Imagine each interior node of the tree to be a point where three sections of
tubing are joined together. A ball is inserted in an opening at the root of the
tree, and rolls through the tubing until it ultimately reemerges at the root. There

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

Figure 4.14 Order of visit to nodes during constant-space scanning of bi-
nary tree. The tree is followed as though it were a solid wall that the
algorithm always keeps on its left.

(a)

(c)

(b)

(d)

Figure 4.15 Physical metaphor for the constant-space tree scanning method.
(a) Initially a ball enters from the top and is directed to the left; (b) this
rotates the valve 1200 so that on the return trip the ball is directed to the
right; (c) this in turn rotates the valve so that on the return trip the ball is
directed upwards. (d) The ends of the tubing contain springs so that the
ball returns whence it came.

117

118 TREES

procedure ConstantSpaceScan(pointer Q):
{r is a distinguished value; initially Q points to the root of the tree.}

P+-r
while Q 0 r do

if Q 54 A then
Visit(Q)

P \ (Q(Q 1 LC(Q)
LC(Q) RC(Q)
RC(Q) P

else
P Q

Algorithm 4.8 Binary tree scanning in constant space.

is a valve at each fork in the tubing that controls the direction in which the ball
rolls when it reaches the fork. These valves have three possible orientations.
As the ball passes through a fork it is redirected in the direction indicated by
the valve, and at the same time the valve rotates counterclockwise by 1200.
Thus on the first trip through a fork the ball rolls from the top down to the
left (Figure 4.15(a)); on the second trip it returns from the left and is redirected
down to the right (Figure 4.15(b)); and on the third trip it returns from the right
and is redirected upwards (Figure 4.15(c)). The final trip through the junction
restores the valve to its original orientation. The ball reverses direction when it
reaches a leaf of the tree; we can think of the ends of the tubing as containing
springs that cause the ball to reverse direction by bouncing (Figure 4.15(d)).

A "valve" is implemented by permuting a node's parent, LC, and RC fields;
the LC field always indicates the node to be visited next. Thus initially the LC
field points to the node's true left child, but after the first visit the LC field
points to the node that was originally the right child, and after the second visit
it points to the node's original parent.

The algorithm (Algorithm 4.8) uses two pointers, P and Q, to successive
nodes in this sequence; thus while going down the tree, P and Q follow the
same path as they would during the link-inversion traversal, but while going up
the tree, Q is closer to the root than P. On entering a node, the values of P, Q,
LC(Q), and RC(Q) are permuted in such a way that if the same permutation is
applied three times, the node is restored to its original condition. Thus, like the
link-inversion algorithm, this algorithm alters the tree during descent but repairs
it during ascent. The algorithm starts with Q = Root(T) and with P pointing
to a distinguished node r. Node r need not have any particular values in its
LC and RC fields; the algorithm terminates when the value of Q becomes F.
In fact, r can be any value whatever, except for A or a node of the tree.

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

Q -P

z z -- oC

(a) (b)

0

-�LZ
(c) (d)

a -AIZ

(e) (f)

Figure 4.16 Pointer permutation during the three visits to a node with two
children. (a) Prior to first visit (descent from above); (b) after first visit
(descent to left); (c) prior to second visit (ascent from left); (d) after
second visit (descent to right); (e) prior to third visit (ascent from right);
(f) after third visit (ascent to above).

The crucial point to understand is the effect of the permutation

P Q
(Q LC(Q)

LC(Q) C(Q)
RC(Q) P

on the three successive visits to a node. Figure 4.16 shows how the pointers
change and are eventually restored to their original condition. This effect is
achieved even if one or both of the LC and RC of Q are A.

Figure 4.17 shows the binary tree of Figure 4.13(b) at the time the constant-
space scan reaches node H for the first time.

119

1

120 TREES

D

P

H

4-5 Q

Figure 4.17 Internal representation of binary tree of Figure 4.13(b) at the
time the constant-space scanning algorithm reaches node H.

Threaded Trees
Inorder traversal of part or all of a binary tree is a frequent operation in appli-
cations involving expression trees and search trees. The recursive methods of
Algorithm 4.4 on page 107 and Algorithm 4.6 on page 113 have two principal
disadvantages: they require extra memory to store a stack, and they require
always starting at the root-it is impossible in general to start from an arbitrary
node in the tree and to pass to the node's inorder successor, that is, the node
that would be visited next during an inorder traversal. The following method
stores additional structural information in the tree that makes it easy to find the
inorder successor of any node. Since the tree is not altered during the traversal,
the method is quite flexible and the tree can be stored in read-only memory.
Moreover the method is entirely symmetric, and makes it equally easy to find
the inorder predecessor of a node or to traverse the tree in "reverse inorder."

An observation that suggests how such a representation might be achieved
is that in the natural representation of a binary tree, there are a great many A
pointers. In a binary tree with n nodes there are 2n pointer fields, but n + 1
of these are A. (Each node except the root has a unique parent, so the number
of pointers from parents to children is n - 1; the rest are A.) We make better
use of these pointers by storing as the RC of a node with no right child a
pointer to the node's inorder successor, and storing as the LC of a node with
no left child a pointer to a node's inorder predecessor. These pointers must be
distinguishable from ordinary pointers that point to left and right children, so
one extra bit is required in each pointer field. Pointers of the new type are called
threads. Figure 4.18 shows the tree of Figure 4.13(b) on page 114 with all the

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

D

(a) (b)

Figure 4.18 The tree of Figure 4.13(b) on page 114 as a threaded binary
tree. (a) Logical organization; (b) internal representation.

threads added; rather than showing an extra one-bit field with each pointer, we
draw the threads using heavier lines.*

Given a node N within a threaded tree T, Algorithm 4.9 finds the inorder
successor of the node. It first follows one RC pointer; if this is a thread, it
leads directly to the inorder successor. If it is not a thread, then it leads to the
right child of N, and the inorder successor of N is found by passing through
left children as long as possible (that is, until a thread or A is encountered as
the value of an LC field). The same algorithm will find the first node in the
inorder enumeration of the nodes of T, if it is passed as its argument a "header
node" of which the root of T is the right child. Also, replacing "LO" by "RC"
and vice versa in Algorithm 4.9 yields an algorithm for the inorder predecessor.
(Indeed, if there is no need to be able to find predecessors, then there is no need
to store left threads, and the representation can be simplified somewhat.)

Note that Algorithm 4.9 is not guaranteed to find the inorder successor of
a node in 0(l) time, since there is no bound, except for the height of the tree,
on the number of times the loop which traces through LC pointers might be
executed. On the other hand the amortized cost of visiting a node is a constant;

*In some cases it may be possible to get by without the extra bit entirely. For example, if the tree
is prepared for storage in read-only memory, so that new cells will not be dynamically added to
the tree, then it may be possible to arrange the location of cells in memory so that a parent always
has smaller address than its children. If so, an LC or RC field that points to a cell that is lower in
memory must be a thread.

121

122 TREES

function InorderSuccessor(pointer N): pointer
{Return the inorder successor of node N, or A if N has none}

P - RC(N) {P traces the path from N to its inorder successor}
if P = A then return A
else if P is not a thread then

while LC(P) is not a thread or A do
P +- LC(P)

return P

Algorithm 4.9 Find the inorder successor of a node of a threaded binary tree.

procedure Threadedlnsert(pointer P, Q):
{Make node Q the inorder successor of node P}

RC(P)\ (child)Q
LC(Q) | (thread)P
RC(Q) I \ RC(P) /

if RC(Q) is not a thread
then LC(InorderSuccessor(Q)) +- (thread)Q

Algorithm 4.10 Insertion of a node in a threaded binary tree.

that is, if the algorithm is executed n times to visit all the nodes in inorder, then
the total time spent by the algorithm will be {3(n), so an average of e(l) will
be spent on each node. To see this, note that during those n calls the algorithm
will traverse each pointer (be it a child pointer or a thread) at most once, and
there are only 2n + 2 pointers if there are n nodes in the tree and a header node.

Threaded trees are also not hard to construct and alter. To give just one
example of what is involved, Algorithm 4.10 inserts a node in a threaded binary
tree. Q points to the node to be inserted, and that node is to be inserted as the
inorder successor of the node to which P points. (In presenting this algorithm,
we explicitly refer to the creation of child and thread pointers; when a pointer is
simply copied, its type should be preserved.) Figure 4.19 shows the four pointers
that may be altered by this procedure; of these only the thread modified by the
last step of Algorithm 4.10 is likely to be puzzling (Figure 4.19(a) and (b)). If
P had a right child prior to calling the procedure, that is, if its RC field was
not a thread, then the inorder successor of P was a descendant of P (called R
in the figure) and now becomes a descendant of Q, and its LC field must be
changed from a thread to P (its former inorder predecessor) to a thread to Q
(its new inorder predecessor). Figure 4.19(c) and (d) illustrate the case in which
the inorder successor of P is an ancestor of P; this node becomes the inorder
successor of Q.

4.5 IMPLEMENTING TREE TRAVERSALS AND SCANS

(a) (b) (c) (d)

Figure 4.19 Inserting a node Q as the inorder successor of node P in a
threaded tree. (a) Situation prior to insertion, in case the inorder succes-
sor of P is a descendant of P, that is, in case RC(P) is not a thread.
(b) Situation after insertion in this case. (c) Situation prior to insertion, in
case RC(P) is a thread. (d) Situation after insertion in this case.

function PreorderSuccessor(pointer N): pointer
{Return the preorder successor of N, or A if N has none}

if LC(N) is not a thread and is not A then return LC(N)
else

Pi-N
while RC(P) is a thread do

P +- RC(P)
if RC(P) = A then return A
else return RC(P)

Algorithm 4.11 Find the preorder successor of a node of a threaded binary
tree.

Surprisingly, the threaded representation can also be used to provide efficient
implementation of preorder traversal. The preorder successor of a node N of a
binary tree is

1. the left child of N, if N has one; otherwise
2. the right child of N, if N has one; otherwise
3. the right child of the lowest ancestor of N, call it A, such that A has a right

child and N is in the left subtree of A. (If there is no such ancestor A,
then N is the last node in preorder.)

If a node has a right thread, that thread points to its inorder successor,
which is the lowest ancestor of the node such that the node is in its left subtree.
Right threads can therefore be followed in search of the ancestor A satisfying
condition (3). These considerations yield Algorithm 4.11 for preorder successor.

123

0,

I

124 TREES

procedure LevelOrder(pointer R):
{R is a pointer to the root of the tree}

L +- MakeEmptyQueue()
Enqueue(R, L)
until IsEmpryQueue(L)

P +- Dequeue(L)
Visit(P)
foreach child Q of P, in order, do

Enqueue(Q, L)

Algorithm 4.12 Visit the nodes of a tree in level order. The tree is represented
by a pointer to its root, and each node contains pointers to its children.

Like Algorithm 4.9, Algorithm 4.11 takes E(Height(T)) time in the worst
case to find the preorder successor of a node of tree T. However, if Algo-
rithm 4.11 is called repeatedly to traverse a tree in inorder, each pointer will be
traversed at most once, so the total time used is @(n) for a tree with n nodes;
in the amortized sense, visiting each node takes constant time.

Implementing Level-Order Traversal
None of the recursive or link-following traversal methods are appropriate for
implementing level-order traversal. However, a queue data structure provides
exactly what is needed: after initializing the queue to contain just the root, the
nodes are visited by dequeuing them, and a node's children are enqueued in left-
to-right order as it is visited (Algorithm 4.12). For example, while traversing
the tree of Figure 4.10 on page 110, on successive iterations of the main loop
the queue would contain

A
B,C,D
C,D,E,F
D,E,F
E,F,G
F,G
G,H,I
H,I, J,K
I, J,K
J, K
K, L
L
(empty)

The correctness of this method is easy to see by the following inductive
conditions:

PROBLEMS 125

Algorithm (AIg. #) Visit Order Memory Read Only

Recursive (4.5) Pre, Post, In p * Height(T) Y
Left-Recursive (4.6) Pre, In p - OrdHt(T) Y
Link Inversion (4.7) Pre, Post, In Height(T) N

Constant Space (4.8) Walk Around 6(l) N
Threaded (4.9, 4.11) Pre, In 2n Y

Level-Order (4.12) Level n Y

Figure 4.20 Comparison of tree traversal and scanning methods. All the
algorithms run in @(n) time in the worst case.

1. At any instant the queue contains nodes of at most two successive depths,
say d and d + 1, with all nodes of depth d in the queue preceding all nodes
of depth d + 1;

2. The nodes of depth d are all unvisited nodes of that depth in the tree, in
left-to-right order;

3. The nodes of depth d + 1 are all children of the visited nodes of depth d,
in left-to-right order.

Since these conditions are true at the beginning (when the queue contains
only the root of the tree) and are maintained on each iteration of the main while
loop of the algorithm, they are true throughout the algorithm. Moreover since
the nodes are visited in the order in which they are dequeued, they are visited
in order of increasing depth and left-to-right among nodes of the same depth,
or in other words in level order.

Summary
Figure 4.20 provides a summary comparison of the traversal and scanning meth-
ods discussed in this section. The first column names the algorithm and gives
the number by which it is referred to in the text. "Memory" is the number of
bits required to completely visit a tree T with n nodes, beyond those used for
the natural representation of T. Note that except in the case of the threaded
representation, this memory is not needed when the algorithm is not running;
only in the case of threaded trees is the required memory a permanent part of
the tree structure. The "Read Only" column is "N" if the algorithm changes the
fields of the tree nodes while it is running, so that the method cannot be used
in read-only memory or in applications where several processes may want to
access the tree simultaneously.

Problems

4.1 1. In Figure 4.1 on page 97, consider Mammalia (the mammals). What
are the parent, children, siblings, descendants, ancestors, height, and
depth of this node?

126 TREES

2. What is the length of the longest path on which node v lies, in terms
of its height and depth?

3. Let TI, ... , Tk be trees with heights h1, ... , hk and let T be a new
tree formed from them in accordance with rule (2) on page 98. What
is the height of tree T?

4. The fan-out of a tree node is the number of its children, and the
fan-out of a tree is the maximum fan-out of its nodes. State an upper
bound on the number of nodes in a tree, in terms of its fan-out and
height. Conversely, state a lower bound on the height of a tree, in
terms of its fan-out and the number of nodes it contains.

5. a. Formally define, using tree terminology: X and Y are kth cousins,
where k is a nonnegative integer.

b. Repeat part (a) for the notion of "k« cousins removed r" (for
example, "second cousins twice removed").

c. Write an algorithm that takes as arguments the root of a tree and
two nodes of that tree, and determines numbers k and r such that
the two nodes are kh cousins removed r.

6. Prove that in a full binary tree the number of leaves is one more than
the number of nonleaves.

4.2 7. A k-ary tree, where k > 2, is an ordered tree with at most k children
per node, such that each child is distinguished as being the i h child of
its parent for some i, 1 < i < k. (Thus binary trees are 2-ary trees.)

a. How many k-ary trees are there with two nodes?

b. Explain, using natural generalizations of the ideas for binary trees,
what full, perfect, and complete k-ary trees are.

c. How many nodes does a perfect k-ary tree of height h have, and
why?

d. What are the bounds on the number of nodes of a complete k-ary
tree of height h? Give examples of the two extremes.

e. What is the relation between the number of leaves and the number
of nonleaves in a full k-ary tree? Prove it.

8. Let B(n) denote the number of different binary trees with n nodes.

a. Determine B(n) for n = 1, 2, 3, 4.

b. Find a recurrence relation for B(n).

9. Let H(h) denote the number of different binary trees of height h.

a. Determine H(h) for h = 1, 2, 3, 4.

b. Find a recurrence relation for H(h).

PROBLEMS 127

10. (The terminology introduced in this problem is far from standard.)

a. An almost perfect binary tree is a binary tree in which all leaves
have the same depth. How many almost perfect binary trees of
height h exist?

b. A not so perfect binary tree is a full binary tree in which all
leaves lie at one of only two distinct depths. How many not so
perfect binary trees of height h exist?

4.3 11. a. Not every sequence of numbers and operators is a postfix expres-
sion; for example, "1, +, 1" is not. Show that a sequence of
numbers and operators is a postfix expression if and only if it sat-
isfies the following condition: if we examine the sequence from
the end to the beginning and keep separate counts of numbers and
of operators, the count of numbers exceeds the count of operators
when the first element of the sequence is reached, and not before.
(Thus a postfix expression always has exactly one more number
than it has operators.)

b. Rewrite Algorithm 4.3 on page 106 so that it checks for error
conditions. For example, inputs such as "+, +, +," "1, 2, 3," and
"1, +, 1" should be rejected.

12. Modify the general Inorder algorithm schema, Algorithm 4.4, so that
it produces a fully parenthesized infix expression representing an arith-
metic expression tree. For example, "((20-2)+3)" and "(20-(2+3))"
should be produced from the trees in Figure 4.7 on page 104.

13. A prefix expression is the result of a preorder traversal of an expres-
sion tree. Give an alternative, recursive definition (like that given for
postfix expressions on page 106), and give an algorithm for evaluating
prefix expressions.

14. Let us say that one word is a prefix of another if letters can be ap-
pended to the first to produce the second; for example, cat is a prefix
of catastrophe. (We also count cat as a prefix of cat.) Any finite set
of words can be organized as a forest by the condition that u is an an-
cestor of v in the forest if and only if u is a prefix of v. Show the forest
corresponding to the words need, needle, needless, needlepoint,
negative, neglect, neigh, neighbor, neighborhood, neighborly.

4.4 15. Show that in the implicit representation of a complete binary tree of
n nodes, Height(i) = [lg((n + l)/(i + 1))1 - 1.

16. Explain precisely how to implement tree-walking functions (Par-
ent, LeftChild, and RightChild) starting from the root with only two
pointer-sized fields per tree node, using the exclusive-or of pointers.

128 TREES

17. An alternative solution to the previous problem can be achieved with-
out the need to take the exclusive-or of pointers. If each left child
points to its left child and its right sibling, and each right child points
to its left child and its parent, then the left or right child or parent of
any node can be reached in at most two steps. Explain.

18. a. Write a function that takes a pointer to the root of an ordered tree
represented as a binary tree and returns the number of nodes in
the tree.

b. Write a function that takes a pointer to the root of an ordered tree
represented as a binary tree and returns the height of the tree.

c. Write a function that takes a pointer to the root of an ordered
tree represented as a binary tree and returns the largest fan-out
(number of children) of any node in the tree.

d. Write a function that takes both a pointer to the root of an ordered
tree represented as a binary tree and a node in that tree, and returns
the depth of the node in the tree.

19. Write a procedure ShiftAIlLeft that takes a pointer to the root of an
ordered tree represented as a binary tree, and restructures the tree so
that the leftmost child of each node becomes its rightmost child, and
the other children maintain their order.

20. Generalize the notation of a complete binary tree to a "complete k-ary
tree," for any k > 1. What is the implicit representation of a complete
k-ary tree, and how are the abstract tree operations implemented?

21. Suppose a link inversion traversal of a binary tree is interrupted and
the values of P and Q are lost. Give an algorithm for reconstructing
the original tree. You may assume that the tree has n nodes and that
you have a table T[O. . n - 1] storing a pointer to each node, with
the root in T[O]. Can you solve the same problem in the case of
constant-space traversal?

4.5 22. Give a nonrecursive version of Algorithm 4.6 on page 113 that ma-
nipulates the stack explicitly.

23. For this problem, you may use a routine Output that writes out the
label of a node or a constant string; for example, Output(Label(n))
or Output("(") or Output("newline").

a. Write a procedure that takes a binary tree and outputs a parenthe-
sized expression for that tree, as in the caption of Figure 4.7 on
page 104.

b. Write a procedure that takes a binary tree and outputs the outline
format of Figure 4.8(b) on page 107.

REFERENCES 129

24. Show how to find the parent of a node N of a threaded tree. (Hint:
This would not be hard if you knew that N was the left child of its
parent. So make that assumption and then check that it was correct;
if not, you know that N was the right child of its parent.)

25. Give an algorithm for deleting a node of a threaded tree. The algo-
rithm should move only pointers; it should not copy any data.

26. Design a threaded version of binary trees that makes it possible to find
the preorder successor of any node N in E(1) time in the worst case.
Give algorithms for PreorderSuccessor(N), for Rightlnsert(N, P),
which inserts N as the right child of P (between P and the pre-
vious right child of P, if it had one), and for Leftlnsert(N, P), which
inserts N as the left child of P (between P and the previous left child
of P, if it had one).

27. Consider trees with the property that no node has more than k children.
Design a threaded representation of ordered trees that supports an
O(k) implementation of Parent operations.

28. Define a reverse level order traversal of a tree to be like a level order
traversal, except that the nodes are visited from bottom to top rather
than from top to bottom. For example, a reverse level order traversal
of the tree of Figure 4.10(a) on page 110 would visit the nodes in
the order L, H, I, J, K, E, F, G, B, C, D, A. Explain how to
implement a reverse level order traversal, using only the stack and
queue abstract operations.

References

The link-inversion algorithm (Algorithm 4.7 on page 115) and the constant-space algo-
rithm (Algorithm 4.8 on page 118) for visiting the nodes of binary trees are special cases
of more general algorithms for arbitrary list structures. In its general form, the link-
inversion algorithm is called the Schorr-Deutsch-Waite algorithm, the version that stacks
bits rather than using a reserved Tag field is due to Ben Wegbreit, and the constant-
space algorithm is due to Gary Lindstrom. See the end of Chapter 10 for citations of
the original publications. Threaded trees were first described in

A. J. Perlis and C. Thornton, "Symbol Manipulation by Threaded Lists," Communications
of the ACM 3 (1960), pp. 195-204.

5
Arrays

and Strings

5.1 ARRAYS AS ABSTRACT DATA TYPES

Arrays are the most familiar data structures that we shall study; almost every
programming language provides at least one kind of array! The basic idea
is simple and intuitive: an array is a data structure that stores a sequence of
consecutively numbered objects, and each object can be accessed (a process
sometimes called selection) using its number, which is known as its index. We
now turn to a more formal analysis of the ubiquitous array and its most common
special case: the string.

Given integers 1 and u with u > I-1, the interval 1. . u is defined to be
the set of integers i such that 1 < i < u; when u = 1 - 1 the interval 1. . u is
empty. (In mathematics the term "interval" usually denotes a set of real numbers
and has different notation; our intervals contain integers only.) An array is a
function from any interval, called the index set (or simply the indices) of the
array, to a set called the value set of the array. If X is an array and i is a member
of its index set, we write X[i] to denote the value of X at i. For example, let
C be a function such that C(1) = 10, C(2) = 20, 0(3) = 15, and C(4) = 10.
Then C is an array with indices 1. .4, with C[l] = C[4] 10, C[3] = 15, and
so forth; the expression C[5] is undefined, since 5 is not in the domain of C.
We call the members of the range of X the elements of X. Note that the value
set of an array need not be homogeneous in any way; arrays may contain any
kinds of objects freely mixed. But only integers can be used to index arrays.*

Here are a few simple abstract operations on arrays. In the following
definitions X is an array with index set I = 1 . . u and value set V, and i and v
are respectively members of I and V:

Access(X, i): Return X[i].
Length(X): Return u - 1 + 1, which is the number of elements in I.

*A few programming languages provide more general arrays. For example, the Unix utility awk
permits arbitrary strings as array indices. On the other hand, many languages do not allow the
index set to be an arbitrary interval; in C, for example, the lower bound must always be 0 while in
FORTRAN it must be 1.

130

5.1 ARRAYS AS ABSTRACT DATA TYPES

Assign(X, i, v): Replace array X with a function whose value on i is v (and
whose value on all other arguments is unchanged). We also write this
operation as X[i] +- v.

Initialize(X, v): Assign v to every element of array X.
Iterate(X, F): Apply F to each element of array X in order, from smallest

index to largest index. (Here F is an action on a single array element.)
This operation is often written in the form for i from I to u do
F(X[i]).

One type of array is common enough to deserve special mention: if E is
any finite set, then a string over E is an array whose value set is E and
whose index set is 0. . n - I for some nonnegative n. If w is such a string,
we have Length(w) = n; we frequently write Iwi for the length of a string w.
The set E is called an alphabet and each element of E is called a character.
Often E consists of the letters of the Roman alphabet plus digits, the space, and
common punctuation marks; in this case we write a string over E by typesetting
its elements in THIS FONT. For example, w = CAT is a string of length 3
in which w[0] is the character C, w[l] is the character A, and w[2] is the
character T. The null string is the string whose domain is the empty interval;
it has no elements and is written e.

There are two abstract operations on strings that are not defined for arrays
in general. Let w be a string and let i and m be integers. The operation
Substring(w, i, m) returns the string of length m containing the portion of w that
starts at position i. For example, if w = STRING then Substring(w, 2,3) = RIN
and Substring(w, 5, 0) = e. Formally, Substring(w, i, m) returns a string w' with
indices 0.. m - 1 such that w'[k] = w[i + k] for each k satisfying 0 < k < m.
This definition is meaningful only if 0 < i < IwI and 0 < m < IwI - i; if not,
then Substring(w, i, m) = e by convention. Each string Substring(w, 0, j) for
0 < j < IWI is a prefix of w; similarly, each string Substring(w, j, IWI-j) is a
suffix of w.

If w1 and w2 are two strings, then Concat(wl, w2) is a string of length
Iw II + Iw2 1 whose characters are the characters of wI followed by those of w2
(Problem 1 asks for a more formal definition). For example, if w1 = CONCAT
and W2 = ENATE then Concat(w2 , wI) = ENATECONCAT. Notice that
Concat(w, e) = Concat(e, w) = w for any string w. This operation is anal-
ogous to the Concat operation on lists, defined on page 73.

At first it may seem that there is no difference between arrays and the tables
that we have been using since Chapter 1. But there is an important distinction
between these concepts. A table is a physical organization of memory into
sequential cells. Arrays, on the other hand, constitute an abstract data type with
specific operations such as accessing the ith element and finding the length.
Arrays are frequently implemented using tables, as we shall study in the next
section, but they may be implemented in other ways. For example, in §5.3 we
discuss representations of arrays in which the Access operation is implemented

131

132 ARRAYS AND STRINGS

with a search and requires non-constant time. But finding the ith element of a
table always takes constant time, because (by assumption) the time required to
access a physical memory cell is independent of its address.

Multidimensional Arrays
The arrays considered so far have been linear objects, but often it is important
to model data with structure in two or more dimensions. A multidimensional
array is a function whose range is any set V as before and whose domain is
the Cartesian product of any number of intervals. (The Cartesian product of
the intervals II, 12, ... , Id, written II x 12 x ... x Id, is the set of all d-tuples
(i, i2 ,... id) such that ik E Ik for each k.) If C is a multidimensional array
and if i = (ili2, .. .,id) is in its index set, then C[i, i2 , .. . ,id] denotes the
value of C at i. The dimension of a multidimensional array is the number of
intervals whose Cartesian product makes up the index set (d in this example).
The size of the k' dimension of such an array is the number of elements in Ik;
if we let Sk be the size of the kth dimension of C, then the total number of
elements in C is the product S1S2 ... Sd.

For example, suppose we wish to represent a standard three-by-three playing
field for the game of tic-tac-toe, where each square either is empty or contains
an X or an 0. Let the characters B, X, and 0 respectively denote these three
situations and let V = {B, X, O}. The playing field can then be represented as
an array C with indices (1.. 3) x (1 .. 3) and with value set V. Thus saying that
C[2,2] = B means that the central square is empty, and C[1, 1] +- X places
an X in the lower left square. Each of the two dimensions of C has size 3.
Arrays of three, four, and even more dimensions are frequently useful, although
some languages place a limit on the number of dimensions in a multidimensional
array.

You may have noticed that defining multidimensional arrays separately is
not really necessary. From a formal standpoint it would suffice to make use
of one-dimensional arrays whose elements are themselves arrays, as is actually
done in several programming languages (such as C). The tic-tac-toe board, for
example, would be modelled as an array with three elements each of which
represents a row of the board as another array (also with three elements). But
the structure of the board would be lost, or at least obscured, by taking that point
of view. For example, there are many ways to Iterate over multidimensional
arrays; we may wish to iterate over rows, columns, or even over diagonals.
The necessity of translating algorithms into the language of one-dimensional
arrays would just get in the way when we describe efficient implementations of
these iterations. On the other hand, there are cases where arrays of arrays are
appropriate. For example, a collection of short error messages that are to be
selected by numbers can be represented naturally by an array of strings. In this
case there is no logical connection between characters in the same position of
different strings.

5.2 CONTIGUOUS REPRESENTATION OF ARRAYS

X X+4 X+8 X+12 X+16 X+20

1 1 4 1 9 116 25E 3

X[l] X[2] X[3] X[4] X[5] X[6]

Figure 5.1 A one-dimensional array represented as a table in contiguous
storage. The address of the beginning of the array is X; each element
occupies four memory locations. The index set of this array is 1 . .6 and
X[i] = i2 for each i.

5.2 CONTIGUOUS REPRESENTATION OF ARRAYS

The obvious way to represent an array in memory is to store its elements in
a table, that is, in consecutive cells in memory. For example, consider an
array X consisting of six elements X[1] through X[6], where X[i] = i2 for
each i. Figure 5.1 shows a contiguous representation of X starting at memory
address X, where it is assumed that each integer occupies four memory locations.
The ih element of X begins at address X + 4(i - 1). In general, if X is the
address of the first cell in memory of an array with indices I.. u, and if each
element has size L, then the i' element is stored starting at address X + L . (i -1)
and can be retrieved in constant time.

What about iteration? It would be possible to iterate over the elements of X
by accessing X[l], then X[l + 1], and so forth up to X[u], thus performing the
address calculation Length(X) times. A better method is to start with X (which
is the address of X[l]) and proceed from element to element by adding L on
each iteration. Although this improvement reduces the amount of arithmetic
that is performed, the overhead is still linear in the length of the array.

Of course, L, 1, and u must be available somewhere in order to carry out
these calculations. They can be stored in several places:

* The values L, 1, and u can be stored starting at address X. The formula for
the address of X[i] must then be adjusted slightly to account for the extra
space used.

* In strongly typed languages, some or all of L, 1, and u may be part of the
definition of X and may be stored elsewhere. Furthermore, if the language
does not permit arbitrary lower bounds in indexing then the value I is fixed
and need not be stored anywhere.

* A sentinel value can be stored just after the last element of the array. That
is, memory address X + L. (u -1+1) can contain some bit pattern that never
occurs in the first word of the memory representation of any element of V.
Now u need not be explicitly stored at all and iterations are terminated
by detecting the sentinel value. A disadvantage of this method is that an
iteration is required even to find the length of such an array. Nevertheless,
this representation is often used when L and 1 are fixed. The programming
language C, for example, represents character strings in this way.

133

134 ARRAYS AND STRINGS

X X+P X+2P

Figure 5.2 A three-element array implemented as a table of pointers.

Storage in contiguous memory is less attractive when the elements of the
array have different lengths, because the ith element cannot be found in constant
time by simple arithmetic. To handle this situation we can store the elements
in memory anywhere and keep a table of pointers to the elements. Figure 5.2
shows an example of such an array whose elements in order are the integer 9,
the string ABCD, and an array of two integers. (The latter two arrays are stored
in contiguous memory, not as tables of pointers.) The address of the i h element
is now stored in location X + P * (i - 1) where P is the size of a pointer in
memory. The disadvantages of this implementation are two: an extra pointer
must be followed to perform an Access, and an array of length n uses p * n extra
bits to store pointers in addition to the space needed to store the data. But a
major advantage is that single pointer manipulations suffice to move elements
within the array; for this reason, tables of pointers are often used when the
elements are large (even if they are all of the same size).

A two-dimensional array whose elements all have the same size can also be
represented efficiently in contiguous storage; the only problem is to determine
the order in which the elements should be placed. The two most common
schemes are row major order, in which the rows are placed one after another
in memory, and column major order, in which the columns are placed one
after another. For example, consider the following two arrays, each of which
has indices (1 . .4) x (1 . . 5):

1 2 3 4 5 \1 5 9 13 17
6 7 8 9 10 C l2 6 10 14 18
11 12 13 14 15 C = 3 7 11 15 19
16 17 18 19 20 4 8 12 16 20

The entries in array R suggest the order in which the elements of R are stored
in row major order. First comes R[1, 1], then R[1, 2], and so forth up to R[1, 5]
which is followed by R[2, 1]. In general, entry R[i, j] is stored in memory
at address R + L . (5(i - 1) + (j - 1)), where as usual each element requires
space L and the first element begins at address R. (The subtractions here reflect
the fact that 1 is the first integer in each interval indexing R.) The entries in C
suggest column major order. Again element C[1, 1] is first in memory, but it
is followed by C[2, 1], C[3, 1], C[4, 1] and then C[l,2]. If C is stored in

5.2 CONTIGUOUS REPRESENTATION OF ARRAYS

column major order, entry C[i, j] begins at address C + L . (4(- 1) + (i -1)).
If particular iterations are anticipated-for example, if row-by-row iteration is
more frequent than column-by-column iteration-then one of these layouts may
be more advantageous than the other.

Row and column major order can be generalized to higher dimensions. Let
X be a general d-dimensional array with indices (11 .. u) x ... x (Id . . Ud).

When X is stored in row major order the first element is X[l,, Id], followed
by X[ll, . . ., 1d+1], X[1l, .. ., ld+2], and so forth up to X[ll,.. ., Id- IlUd], after
which the next element is X[l1, ... , ld- + 1, id]. When arrays are represented
in row major order we often say simply that "the last index varies fastest" as
we examine successive elements in memory; each index is incremented only
after all subsequent indices reach their upper bounds. Similarly, to store X in
column major order we store X[l1 , 12, . .., Id], X[l1 + 1,12, .. ., 1d], and so forth
up to X[u1, 12, .. ., Id], and the next element is X[11 , 12 + 1,13, . . ., 1d], so that it
is the first index that "varies fastest."

Now suppose X is an arbitrary d-dimensional array as in the previous para-
graph, that X is stored in row major order starting at address X, and that each
element of X occupies space L. For arbitrary indices j3, . . - id, where in mem-
ory is element X Ul, j2 ,. . . ,id] located? (Of course, the answer is "nowhere"
unless 1k < 1k < Uk for each k. Verifying this condition is called range check-
ing. Not all languages perform range checking; in some, it can be turned on for
debugging and turned off when efficiency is important.)

For each k = 0,..., d, define Mk = Lsk+1* Sd where si = ui-li+ I is the
size of the ith dimension of X. Mk is the amount of memory required to store
each d -k dimensional "subarray" of X in which the first k indices are fixed;
for example, Mk is the number of memory locations from the start of element
X[11,12,---,ld] to the end of element X[11,12,...,1ktUk+1,Uk+2,...,7Ud]. In
particular, Md = L and MO is the size of the entire array X. Therefore, there are
M .(j, -11) cells from X to the beginning of element X[j1 ,12 , .. ., id]. From that
point, there are M2W(j 2 -12) cells to the beginning of element X[jl, j 2 , 13, * * *, Id]-
Continuing in this way, we find that element X[ji, j2, jd] is located at
address

X+M 1 (.h -l)+M2 (a2 -1 2)+ +Md (id-ld)- (1)

To make the Access operation as fast as possible, the values Mk should
be computed in advance, once and for all. Moreover, we should compute and
save the single constant value XO = MI 11 +* * + Mdld, since then we can write
expression (1) as

X-Xo+Mjl+M2 j 2 + +Mdjd

which is faster to evaluate, requiring only approximately 2d operations rather
than 3d operations. Note that once we have the Mk and X0, the 1k and Uk are
unnecessary for Access unless we wish to perform range checking. Problem 6
explores another way that this computation can be arranged.

135

136 ARRAYS AND STRINGS

There is an independent context in which the Mk can be useful: as men-
tioned before, row major representation of X is especially appropriate when
we desire to Iterate over the elements of X with the last index varying fastest.
Suppose that we wish to have a version of the Iterate operation with the indices
changing in some other order. Any such iteration can be implemented effi-
ciently using the fact that the distance in memory between X[j1, , id]

and Xli, .. * , k + 1, .. ,Jd] is exactly Mk.
When the elements of a multidimensional array are of different sizes in

memory, we can extend the scheme of Figure 5.2 by storing pointers to the
elements rather than the elements themselves. Then L is equal to the size of a
pointer, and a pointer must be followed after the address calculation.

All of the methods so far considered for representing multidimensional
arrays permit access to any element of the array in constant time. There is a
subtle point here. You may feel that access to an element of a multidimensional
array cannot be performed in constant time, since the number of arithmetic
operations depends on the number of dimensions. But the "size" of an array
is the total number of its elements; the cost of accessing any element of a
d-dimensional array is independent of the number of elements in the array, al-
though it does depend on d. This convention reflects the fact that the arrays used
in computer programs typically have a fixed number of dimensions, although
they may have more or fewer elements depending on the problem size. Indeed,
few languages support arrays in which d is not fixed for each given array.

Constant-Time Initialization
One of the drawbacks of representing arrays in contiguous memory is the time
required to initialize them; the obvious method of successively setting each
element to its initial value uses time proportional to the number of elements. But
occasionally we encounter an application where it is necessary to clear an array
quickly, or where arrays are initialized extremely often. Some of the techniques
we consider in the next section for handling sparse arrays yield constant-time
initialization at a cost of non-constant access time. But if we are willing to use
enough memory, we can represent arrays in contiguous storage and have both
constant-time access and constant-time initialization.

Suppose M is a one-dimensional array with n = Length(M) elements. In
addition to the array M itself, we maintain an integer Count and two arrays
of integers: array When with the same indices as M, and array Which with
indices 0.. n - 1. All three arrays are represented as tables in contiguous
storage. Count keeps track of the number of different elements of M that have
been modified since the last time M was initialized. The array Which, as its
name implies, remembers which elements of M have been modified; that is,
for 0 < j < Count - 1, we have Which[j] = i if and only if the ith element
of M has been modified since the last initialization. The idea is that if index i
is found among the first Count elements of Which, then M[i] stores some useful

5.2 CONTIGUOUS REPRESENTATION OF ARRAYS

procedure Initialize(pointer M, value v):
{Initialize each element of M to v}

Count(M) - 0
Default(M) - v

function Valid(integer i, pointer M): boolean
{Retum true if M[i] has been modified since the last Initialize}

return 0 < When(M)[i] < Count(M) and Which(M)[When(M)[i]] = i

function Access(integer i, pointer M): value
{Retum M[i]}

if Valid(i, M) then
return Data(M)[i]

else
return Default(M)

procedure Assign(pointer M, integer i, value v):
{Set M[i] +- v}

if not Valid(i, M) then
When(M)[i] +- Count(M)
Which(M)[Count(M)] i
Count(M) *- Count(M) + I

Data(M)[fl v

Algorithm 5.1 Maintaining arrays with constant-time initialization and access.
Array M is represented as a record with five fields: a table of values Data(M),
tables of indices Which(M) and When(M), an integer Count(M), and an initial
value Default(M).

value. But if not, then the ith element of M has never been the target of an
assignment, M[i] contains uninitialized garbage, and Access(M, i) should return
the "default" value to which all of M has been initialized. It is now clear how
to initialize M to a value v: simply remember v as the default value of elements
of M, and set Count to zero.

But we cannot afford to search the first Count elements of the Which array
each time an Access is to be performed, since we wish to retain the ability to
access any element in constant time. So we use a third array When that has
the same indices as M and, for each of these indices i, gives the location in
Which (if any) where i can be found. That is, if When[i] = j, we need only
check that 0 < j < Count and Which[j] = i to determine that the ith element
of M has been modified. Note that both conditions must be checked: we could
have When[i] = j and 0 < j < Count, but if Which[j] 7& i then When[i] has its
value "by accident" and M[i] has never been touched. The When array gets its

137

138 ARRAYS AND STRINGS

0 1 2 3 4 5 6 7 8 9

Which(M)

| 11 " Nk 1|3<. > | | | When(M)

6 3 4 | 9 El Data(M)

Figure 5.3 Array M, with indices O.. 9, after the operations Initialize(M, 7),
M[4] +- 3, M[7] +- 4, M[8] +- 7, M[2] +- 6, and M[8] +- 9. The
fields Count(M) and Default(M) have values 4 and 7. The two-headed
arrow between Which[O] and When[4] indicates that Which[O] = 4 and
When[4] = 0. Shaded cells have undefined value.

name because it tells when each element of M was first modified; for example,
if Count > 0 then Which[O] is the index i of the first element of M to be
modified, and When[i] = 0.

Algorithm 5.1 gives the details of the abstract operations on M using this
method, assuming that the record structure for an array M has fields Which,
When, and Count to store the tables Which and When and the number Count,
plus a field Data containing the table where the values of M are maintained,
and Default which stores the last value to which M was initialized. Figure 5.3
gives an example.

This method provides additional flexibility when we note that the default
values of the elements of M need not be the same. For instance, it is easy to
initialize each MUj] to j in constant time by this method, by changing the last
line of the function Access. Multidimensional arrays can also be accommodated
(Problem 8). Unfortunately, this means of achieving constant time per array
operation vastly increases the storage requirements-by a factor of 3 when
array indices and elements of M are of comparable size.

5.3 SPARSE ARRAYS

The contiguous representation methods of the preceding section allocate storage
for every element of an array. But in many applications the arrays under con-
sideration are only partially filled. Sometimes only a scattering of the elements
of an array have useful values. For example, consider an n by m array that
represents the coefficients of n polynomials each with degree m or less; if each
polynomial has at most a few terms, then such an array has mostly zero entries,
although the nonzero entries may be located anywhere. In other cases the arrays
have a special shape, in the sense that only elements occurring in certain cells
can be nonzero; an example is given by the upper-triangular matrices below.

5.3 SPARSE ARRAYS 139

Figure 5.4 Sparse array represented as a linked list. Each list element con-
tains Index, Value, and Next fields; each Value field stores a character.

A slightly different example is afforded by the Travelling Salesman Problem,
first discussed in Chapter 2: the input to this problem is an n by n distance
matrix M, which gives the distance between each pair of cities. Such a matrix
is symmetric, that is, Mij = Mji for every i and j. There is no need to store
all n2 entries of M in an array since nearly half of the elements are uniquely
determined by the other half.

Arrays in which only a small fraction of the elements are significant in
some way are known as sparse arrays. The "insignificant" elements of sparse
arrays typically have a particular value (as in the polynomial example above
in which most elements are zero), have no relevant value at all, or have value
quickly computable from the other elements. The array elements that do not
need to be stored in memory because their values are known or determined are
called null elements. Depending on the application, accessing a null element
might simply yield the null value (the value of all the null elements, frequently
0 or A), might fetch a different element as in the distance matrix example, or
might be erroneous. We don't always know in advance which elements are
null, and sometimes null elements can become nonnull via assignment of a
significant value. The important point is that sparse arrays can frequently be
implemented using space-efficient representations that do not use any memory
for null elements. In this section we consider several representations for sparse
arrays.

List Representations
Perhaps the most obvious way of dealing with sparse one-dimensional arrays
is to store the nonnull elements in a list. Figure 5.4 shows a simple linked list
representation of an array with indices 0.. 1000 but with only three nonnull
elements. Each list element corresponds to a single array element and contains
the index, the element value, and a pointer to the next list element. To access
an element of such an array given an index, we simply search the list-if
the element is not found, the null value is returned or an error signalled as
appropriate. It is equally simple to add new elements if null elements are allowed
to become nonnull. Of course, the disadvantage to this array representation is
that Access can no longer be implemented in time 0(1); in the worst case, an
access may take time proportional to the length of the array.

Many variations are possible: the list may be maintained in order by index,
list elements may contain pointers to array elements rather than the elements
themselves, the list may be doubly linked to facilitate deletions, and so forth.
Actually, this approach merely treats sparse arrays as a special case of the more
general problem of set representation, to be addressed in the next chapter. In

140 ARRAYS AND STRINGS

1 4 5 8 9

Figure 5.5 Sparse two-dimensional array X represented by lists of doubly
threaded records. The data structure by which the lists themselves are
accessed is not pictured. The first field of each record contains the value
(a character) of the corresponding element of X.

other words, one way to represent a sparse array is to ignore the special structure
of its domain and treat it as a set of ordered pairs that are accessed using the
index values as keys.

Multidimensional arrays may also be stored as lists in much the same way:
we simply store all the indices of each element in its list element. But here
a more interesting method is possible. Suppose X is a two-dimensional array
with indices (11 . . ul) x (12 . . u2). This array can be represented with a table of
linked lists, using a separate list for each value of the first index, or ul - 11 + 1
lists in all. So to access X[5, 3], for example, we would search the list that
contains those elements of X whose first index is 5. Each record on the list
contains Value and Next fields as before, plus an Index field that contains the
second index of this array element-the first index need not be stored, since its
value is implied by membership in the list.

With the representation just discussed, we can easily Iterate over all array
elements with a given first index. However, to iterate over all elements with
a given second index it would be necessary to search all the lists, a process
that might involve examining every element of the array. If iteration in both
dimensions is important, the array elements can also be "threaded" in the second
dimension as in Figure 5.5, which depicts a two-dimensional array with nine
nonnull elements (the two tables of list heads are not pictured). Each record now
contains a value plus two Next fields, one for each dimension. But now each
record must record both indices of its element, since the record may have been
reached by a search along either dimension. This technique easily generalizes
to arrays of higher dimension.

5.3 SPARSE ARRAYS 141

(a) (b)

Figure 5.6 Array representation using hierarchical tables: (a) A two-
dimensional array; (b) a sparse three-dimensional array with two nonnull
elements. (Each value is simply the integer formed by concatenating the
components of the index.)

Hierarchical Tables
In the preceding section we discussed the use of pointers to store arrays whose
elements occupy varying amounts of memory: instead of storing the array ele-
ments contiguously, store a table of pointers to the elements. This scheme can
be extended in a slightly different way to multidimensional arrays. For example,
suppose that M is a two-dimensional array with indices (1 . . 3) x (1 . . 2). We
can regard M as an array of three one-dimensional arrays, each of which has
size 2. We then store M as a table of three pointers, each of which points to
one of these arrays; Figure 5.6(a) illustrates this method. (Note that the one-
dimensional arrays in this example are stored in contiguous memory without
pointers.)

In general, a d-dimensional array with indices (I .. ul) x ... x (id .. Ud)

is represented as a table of sI pointers, each of which points to a table of
s2 pointers, and so forth. (Recall that si = ui -i + 1 is the size of the i h
dimension.) The "bottommost" tables contain 8

d entries, each of which is an
element of the array. We can also describe the representation in a simple way
by using recursion: a one-dimensional array is represented as a table, while a
d-dimensional array with indices (11. . u) x ... x (Id. Ud) is implemented as a
table of pointers to ul - 11 + 1 arrays, each with (d - 1) dimensions and indices
(12 * * u2) x ... x (Id . . ud). (If the array elements have different sizes, then the
one-dimensional arrays at the base of the recursion can be stored as a table of
pointers rather than a table of elements.) The extra memory in bits needed to
store the pointer fields is

P * (51 + 5152 + 15S253 + **+ 8182 * Sd)-

The Access operation is straightforward and can be accomplished in constant
time.

Hierarchical tables of pointers are well-suited to representation of sparse
arrays, because only those tables that are needed to access the nonnull elements

142 ARRAYS AND STRINGS

need be allocated. Figure 5.6(b) shows how a three-dimensional array with
indices (1 . . 3) x (1 .. 4) x (1 .. 2) might be represented when only a single
element is nonnull. Notice that it is the task of the Access operation to handle A;
whenever it encounters A before finding the element in the bottommost table, it
should take the action appropriate to an attempt to access a null element (perhaps
simply returning the null value).

When a d-dimensional array with a single nonnull element is represented
in this way, the overhead for storing pointer tables is only Si + S2 + *.. + Sd

since only a single table need be stored at each level. When there are k nonnull
elements the overhead is at most s + k(s2 + * * * + Sd) since only a single top-level
table need be stored in any case. But the overhead may grow more slowly; for
example, if there are two nonnull elements whose first indices are equal, then the
overhead is only SI + S2 + 2(s3 + *. + Sd) since only a single second-level table is
required. Generally, this representation works well when the nonnull entries of
a sparse array are "clumped" together, minimizing the number of pointer tables.

The method of hierarchical tables also lends itself well to an environment
in which null elements become active dynamically. Suppose, for example, that
all elements of an array M are 0, except for those explicitly changed. We can
represent the initial state of M with a table of size s, containing A everywhere;
the Access operation therefore returns 0 for every element. When we assign
a nonzero value to an element of M the Assign operation creates any new
tables that are necessary. In this way the overhead for M is allocated gradually.
Assign might also detect when 0 is assigned to an element and deallocate tables
if possible, replacing pointers to them by A; the deallocated tables might even
be saved for reuse later. Problems 9 and 10 explore some of the possibilities.
In Chapter 8 we shall encounter tries, an adaptation of hierarchical tables used
for manipulating a small number of objects chosen from a much larger universe
(a "sparse set").

Arrays with Special Shapes
An upper-triangular matrix of order n is a two-dimensional array with indices
(O.. n - 1) x (O.. n- 1) in which every element below the "main diagonal" is
null. That is, if M is an upper-triangular matrix then M[i, j] is null whenever
i > 3. Here is an example with n = 4 and with 0 as the null element:

103 42.2 0 9

M 0 1.0 -9.3 4
M I\0 0 6 18,

0 0 0 1.1

It is obviously wasteful to store upper-triangular matrices in contiguous
memory as in §5.2. An upper-triangle matrix of order n has (at most) n(n+ 1)/2
nonnull elements, but the contiguous representation uses space for n 2 elements.
Thus storage for n(n - 1)/2 elements-just about half-is wasted. One way to
save space is to place nonnull elements consecutively in memory, omitting the

5.4 REPRESENTATIONS OF STRINGS

null elements. Imitating row-major order, we allocate space for the n elements
in row 0, followed by the n - 1 elements in row 1, the n -2 elements in
row 2, and so forth, thus wasting no memory at all. To find element M[i, j] for
0 < i, j < n-1, first check whether i < j. If not, then M[i, j] = 0. Otherwise,
the number of elements preceding M[i, j] in rows 0 through i - is

n n-i

n+(n-l)+(n -2)+ .. +(n -i+1)= k - k
k=1 k=i

n(n + 1) (n-i)(n-i + 1)
2 2

i - i2
2= rn + 2

and j elements precede M[i, j] in row i. So if M is stored starting at address M
and each element has size L, the address of M[i, j] is M+L (ni+(i-i2)/2+j).

This technique can be also used for distance matrices, which are symmetric
(that is, M[i,j] = Mij,i] for all i and j). Now to access M[i,j] when
i > j we just return M[j, i]. Problems 13 through 15 discuss other special
kinds of arrays that can be implemented by allocating contiguous space for
the nonnull elements only; in each case, the problem is to choose the layout in
memory and to determine the access function. When working in a programming
language that provides multidimensional arrays, it is often simpler to arrange
array elements so that the underlying access mechanism performs some of the
necessary arithmetic; see Problem 14.

5.4 REPRESENTATIONS OF STRINGS

The type of array most commonly encountered in practice is the string. Virtu-
ally every interactive computer program uses strings of English characters for
communication with humans. Strings also get much larger; every text file on a
computer's disk system can be thought of as a single long string which is read
into main memory in small chunks. Sometimes the "string" to be stored is so
enormous-for example, the Encyclopxdia Britannica or the complete works of
Shakespeare-that even disk files can get unmanageably large, and the string
must be broken up into multiple files or even onto separate disks. Since disk
space is a finite resource it is important to find space-efficient ways to represent
strings. Compact string representation yields another benefit as well: if a string
is to be transmitted from one location to another, whether from the disk to main
memory or from computer to computer, the time required for the transfer is
shorter when the string is represented with fewer bits.

Throughout this section E denotes the alphabet used for all strings; recall
that an element of E is called a character. When E is very small, compact string

143

144 ARRAYS AND STRINGS

representations can sometimes be achieved using run-length encoding (discussed
in Problem 2 of Chapter 3). But more often we are concerned with English (or
other natural language) text, where E contains a hundred characters or so: the
upper and lower case letters, the digits, a few dozen marks of punctuation,
special characters such as space and tab, and so forth.

The most straightforward way to store strings is in contiguous memory as
in §5.2. We simply assign a distinct bit sequence to each element of E and place
the characters of the string consecutively in memory (or on the external storage
medium). The bit sequence representing a character is called the encoding of
that character.* Since there are only 21 different bit sequences of length n, at
least rIg I|I I bits are required to represent each character. The space required
to store the string, in bits, is therefore equal to [Ig I EI times the length of the
string. In common English-language applications E has 128 or 256 elements,
so seven or eight bits per character are used.

When the strings to be stored are totally random (meaning that every char-
acter of E is equally likely to appear in any position of a string) very little
improvement is possible; in fact, if |JE is exactly a power of two then no rep-
resentation at all is more space-efficient. However, we more frequently deal
with strings whose elements are not at all random. For example, in long strings
of English text the character e appears much more often than the character W,
which in turn appears more often (in general) than a little-used character like @.
This lack of randomness can be exploited to provide much more compact string
representations.

In this section we shall study several such representations. The general
statement of the problem is as follows: given a string w over A, store it using
as few bits as possible in such a way that it can be recovered at will. (We shall
consider only lossless techniques-those that allow w to be recovered exactly.
Noisy or lossy techniques can be even more space-efficient, with the drawback
that the original string can be reconstructed only approximately; such techniques
could be appropriate when storing digitized representations of analog data, such
as digitized voice transmission.) The string w is called the text; it may be
"given" as a file on disk, as a string in memory, or as a stream of characters
produced by a running program or an external communications line. The process
of converting w to compact representation is called encoding or compressing w.
Keep in mind that the length of w is typically tens of thousands or millions of
characters; there is little to be gained by compressing strings that are already
short. Finally, note that we are chiefly interested in the case in which w need
not be modified or accessed randomly once it has been translated to compressed
form; Iterate is the only abstract operation to be implemented in this section.

*By far the most common character encodings in use today are ASCII and EBCDIC, which use
eight-bit sequences to represent all the standard characters plus a multitude of special-purpose
control characters. But the assignments are not identical: uppercase A, for example, is represented
by 01000001 in ASCII and by 11000001 in EBCDIC.

5.4 REPRESENTATIONS OF STRINGS

Huffman Encoding
One source of inefficiency in the straightforward representation of strings is the
fact that just as many bits are used for characters that appear in the text as are
used for characters that never appear. If only the characters in a subset S of E
actually appear in a given string then we can simply choose shorter encodings,
using only [lg IS Il bits for each character. For example, if the text consists only
of digits and spaces then it can be represented with only four bits per element.
The representation of w can begin with a table describing the bit sequence that
encodes each character-the additional space used by the table is negligible
when w is large.

One disadvantage of this method is immediate: the characters of E that
actually appear in w must be known or determined in advance. If w is a disk
file, we can read through the file once to build the table and then again to
translate the characters. But reading w twice may be impossible if it is being
received over a communication link or as program output. A stronger objection
is that the method doesn't work very well in the general case. In fact, it saves
nothing at all unless Flg IS 1 < [lg IEI 1, since each character that appears even
once in w needs its own bit sequence.

We can improve upon this approach by using bit sequences of different
lengths to encode members of A, with short sequences encoding common char-
acters and longer sequences encoding rare characters. The idea is to represent
most of w with a small number of bits per element, and only infrequently to
pay the penalty of a longer bit sequence. If we can use only four or five bits
for each of the most common characters of English text, we can afford to use
ten or twelve bits to represent the rare characters and still come out ahead.

But the use of bit sequences of varying sizes to encode characters gives rise
to another problem: if the bit sequences aren't carefully chosen, we will not be
able to recover the original text. For example, if E is represented by 101, T
by 110, and Q by 101 110, then we cannot distinguish between an encoding of Q
and an encoding of ET. One way to guarantee unambiguous "decodability" is to
ensure that no bit sequence used to encode a character may be the beginning of
the encoding of another character. In other words, if there do not exist distinct
characters cl and c2 such that the encoding of cl is a prefix of the encoding
of c2, then there do not exist strings w, and w2 such that the encoding of w1 is
the same as the encoding of w2 (Problem 16). The problem with the example
in this paragraph is that the encoding of E is a prefix of the encoding of Q.

Binary trees can be used to provide an elegant description of these encod-
ings. Consider a binary tree such as the one in Figure 5.7, in which each leaf
has a field Char that contains a character of E. (In this example, E is a small
alphabet containing only 9 letters plus the space character.) To find the bit
sequence encoding character c we traverse the unique path from the root to the
leaf containing c, writing a 0 every time an LC pointer is followed and a I every
time an RC pointer is followed. For example, the encoding of H is 0110 and

145

146 ARRAYS AND STRINGS

Figure 5.7 Encoding tree for a ten-character alphabet. A box is used to
denote the space character, whose encoding is 110.

the encoding of A is 1 0. In general, each character is encoded by a bit string
whose length is equal to the depth of the leaf in which that character appears.
Since characters appear only in leaves of the tree, no character can be encoded
by a bit string that is a prefix of some other character's encoding. A binary tree
containing an element of E at each leaf, such that every element of E appears
in exactly one leaf, is called an encoding tree for E. We shall assume that all
encoding trees are full; that is, every nonleaf of an encoding tree is assumed to
have two children (but see Problem 17).

It is easy to see how to represent a text w using an encoding tree: just output
the bit sequence that encodes each character. For example, the encoding of the
string AIDA FAN would be 10000001010110111100111. To recover the original
text given the compressed representation w' and the encoding tree as pictured
in Figure 5.7, we proceed as follows. Start at the root of T and walk down the
tree using bits from w' as a guide. When the next bit of w' is a 0, proceed to
the left child of the current node; when the next bit of w' is a 1, proceed to the
right child. Each time we reach a leaf we have recovered a character of w; we
then start again at the root of T reading further bits from w'. Algorithm 5.2
gives the details, using a routine NextBit that fetches the next bit of input from
a source of bits called a bitstream, and a routine OutputChar that is called on
each character as it is recovered. You may have noticed a drawback of this
representation: it is impossible to retrieve substrings of w without starting at
the beginning of the encoded bit string, since there is no way to tell where
characters begin and end.

With these preliminaries out of the way, the most interesting problem is yet
to be solved: how should the tree T be chosen to provide the best encodings?
Suppose that for each character ci we know fi, the number of times that ci
appears in w (we shall explore later how to relax this assumption). We use
the following method to construct T. Create one node for each character of E;
each of these nodes will be a leaf of T. Let each node have a field containing a

5.4 REPRESENTATIONS OF STRINGS

procedure TreeDecode(pointer T, bitstream b):
{Call OutputChar on successive characters encoded in b}
{T is a pointer to the root of the encoding tree}

P +- T {P walks down the tree, guided by bits from b}
until Empty(b) do

if NextBit(b) = 0 then P +- LC(P) else P +- RC(P)
if IsLeaf(P) then

OutputChar(Char(P))
P T

Algorithm 5.2 Decoding with encoding trees.

number called the weight of the node, and for each character ci set the weight
of the leaf containing ci to fi. Now repeatedly perform the following step: pick
two nodes nj and n2 that have the smallest weights (it doesn't matter how ties
are broken; see Problem 21) and replace them with a new node whose children
are n1 and n2 and whose weight is the sum of the weights of n1 and n2. Each
such step replaces two nodes with one, so eventually there is only a single node
left; this node is the root of the tree. The tree constructed by this algorithm is
called a Huffman encoding tree.

Figure 5.8 gives a complete example of the construction of a Huffman
tree for an unspecified text w. This time each character appears underneath its
leaf and its frequency appears inside the circle; for example, the character U
appears twice in w, A appears fifteen times, and the space character appears
seven times. At the beginning only the leaves are present. In the first step
the leaves containing V and I are selected and the internal node with weight
three is created. (Node V was chosen because it has the smallest weight of
any leaf, but M, U, or N could have been chosen in place of I since ties can
be broken arbitrarily. Also notice that V could have been the left child instead
of the right child; the order of the children is unimportant.) In the next step,
M and U were combined to make an internal node with weight 4. Then H and N
were combined to make an internal node with weight 5, two internal nodes were
combined to make an internal node with weight 7, and so forth until the entire
tree was constructed.

As we expect, the characters with higher frequency are placed nearer to
the root of the tree and therefore have shorter codes. As an extreme example,
consider what would happen if there were a sufficiently common character.
Suppose in Figure 5.8 that the frequency of A were 20 instead of 15. Then at
the end of the construction the leaf containing A would be a child of the root
of the encoding tree, and each occurrence of A would be encoded by a single
bit-which, of course, is exactly what we want. Problems 28 and 29 explore

147

148 ARRAYS AND STRINGS

V M U H N

Figure 5.8 Construction of the Huffman encoding tree for the ten-character
alphabet.

further the relationship between the frequency of a character and the length in
bits of its representation.

The remarkable fact about the encoding tree produced by the Huffman
algorithm is that no other encoding tree yields a smaller representation of w. In
order to prove this we need a bit of notation. For any tree T and any node n
in T let DepthT(n) denote the depth of n in T. Let L(T) denote the set of
leaves of T, and suppose that each leaf n E L(T) has been assigned a weight
(or cost) denoted by C(n). Then define WPL(T), the weighted path length
of T, as follows:

WPL(T) = E DepthT(n) *(n).
neL(T)

For example, if T is the encoding tree of Figure 5.8, then

WPL(T)= 1-4+2-4+2 4+2 4+6 3+3 4+24+15 2+7 .3+6.3 = 135.

If w is a string, T is an encoding tree for the alphabet of w, and the weight
assigned to each leaf of T is the frequency of that character in w, then WPL(T)
is exactly the number of bits in the encoding of w using the encoding tree T.

We next need a lemma about trees and weighted path lengths in general:

* LEMMA Let T be any full binary tree with weights assigned to its
leaves. Suppose n1 and n2 are any two leaves of T with smallest weight.
Then we can construct a new tree T' from T such that
1. the leaves of T' are the same as the leaves of T, except that nj and n2

are not leaves of T' and T' has a new leaf n3 ,
2. the weight of n3 in T' is C(n3) = C(n) + C(n2) and the weights of all

other leaves are the same as their weights in T, and
3. WPL(T') < WPL(T) - (n3), with equality if nj and n2 are siblings

in T.

I

5.4 REPRESENTATIONS OF STRINGS

PROOF First, assume that ni and n2 are siblings in T. Then we
can simply delete them; their parent becomes the new leaf n3 to which
we assign weight C(ni) + C(n2). The resulting tree has the correct leaves
and weights, but what is its weighted path length? Let d be the depth
of nj and n2 ; then the depth of n3 is d -1. Thus deleting n, and n2
reduces WPL(T) by d. (C(n1) + C(n2)), and adding n3 increases WPL(T)
by (d - 1) -(n3) = (d - 1) (C(n 1) + 0(n2)). The net change to the
weighted path length is exactly -C(n3) as required.

Now suppose n1 and n2 are not siblings and let sI be the sibling of n,
in T. If the depth of n1 is the same as the depth of n2 , first exchange nodes
n2 and sI. That is, detach n2 and the entire subtree whose root is sl, move
n2 so it is the (new) sibling of nI, and move sI to the place where n2 used
to be. This operation has no effect on WPL(T) since we haven't changed
the depth of any leaf. But since n1 and n2 are now siblings we can finish
the construction as in the first case.

Finally, suppose that ni is deeper than n2 in T. (The case where n2 is
deeper than n1 is handled symmetrically.) Again, we exchange n2 with s1
and compute the change in WPL(T). Moving n2 down to the depth of ni
increases WPL(T) by 0(n2) times DepthT(ni) -DepthT(n2), the difference
in depth. But all of the leaves in the subtree whose root is sI have moved up
the same amount, and each one has weight at least as great as the weight
of n2 (since n2 was a leaf of smallest weight). Therefore this operation
decreases WPL(T) or leaves it unchanged. After this exchange, ni and n2
are siblings and we can continue as in the first case to produce a further
reduction of C(nI) + C(n2) in WPL(T), thus the weight of the final tree is
WPL(T) -(nj) -(n 2) or less. E

This Lemma does most of the work in proving that the Huffman algorithm
does indeed yield the best encoding tree possible. The following Theorem is
the formal statement of that fact.

* THEOREM (Huffman Optimality) Let N be a set of nodes and let
each node n e N be assigned a weight C(n). Let T be the en-
coding tree constructed from the nodes in N by the Huffman algo-
rithm. If X is any other encoding tree with the same leaves, then
WPL(T) < WPL(X).

PROOF By induction on the number of leaves of T. When T has
two leaves the result is trivial. Otherwise, let n1 and n2 be the first two
members of N that are selected by the Huffman algorithm, and apply the
Lemma to T and to X producing T' and X'. Since T was constructed by
the Huffman algorithm, n1 and n2 are necessarily siblings in T, therefore
WPL(T') = WPL(T) -(n) - Q(n2). The Lemma also guarantees that

149

150 ARRAYS AND STRINGS

WPL(X') < WPL(X) - C(ni) - C(n 2). Finally, WPL(T') < WPL(X')
by the induction hypothesis, which applies since T' and X' have the same
leaves and weights and have one less leaf than T, and since T' is equivalent
to the tree that the Huffman algorithm constructs from the leaves of T'.
These three inequalities combine to yield WPL(T) < WPL(X), completing
the proof. D

Once the optimal encoding tree T has been constructed by the Huffman
algorithm, the compressed representation of w consists of a description of T
(Problem 25) followed by the bit sequence that encodes w according to T. The
decoding process consists of building T from its description and then using it
to decode the rest of w. The description of T takes up space in the output, of
course, but this space is negligible if w is very long.

The chief difficulty with the Huffman algorithm is that all character fre-
quencies must be known in advance; typically they must be counted with a
preliminary pass through the text. But it may not be possible or feasible to
read w twice, first to count its character frequencies and again to encode it.
There are at least two simple ways to obviate the need for a second pass. The
first is static Huffman encoding: fix a single encoding tree once and for all
and use it for all texts. Static Huffman encoding works well when texts are
of a similar makeup. For example, when large blocks of English text are to
be compressed we can obtain near-optimal results by constructing a tree that
reflects typical letter frequencies of English and then using that tree for every
text. There is a side benefit: since T is fixed it need not be described in the
encoded representations, saving a small amount of space and program complex-
ity.

A more sophisticated method is adaptive Huffman encoding. Start with
an empty encoding tree T constructed by assigning frequency 0 to each member
of E. Now just after each character of w is processed, update T so that it is an
optimum encoding tree for the portion of w encountered so far. The disadvantage
of this method is that we must in principle perform the Huffman algorithm once
for every character of the text. Fortunately there is a fast way to update an
optimal encoding tree for a given string so that it is optimal for that string plus
any given character; the update can be performed in time proportional to the
length of the encoding of the character to be added. (The details are discussed
in Problem 31 and on page 484.)

Interestingly, adaptive Huffman encoding is like static Huffman encoding
in that the encoding tree T need never be described in the compressed string.
The decoding algorithm simply starts with the same empty tree and updates the
tree in the same way just after each character is recovered. So the two processes
remain synchronized; at each point the decoding program reconstructs the same
tree built by the encoding program.

5.4 REPRESENTATIONS OF STRINGS

Lempel-Ziv Encoding
In many texts certain sequences of characters occur with high frequency. In
English, for example, the word "the" occurs more often than any other sequence
of three letters, with "and", "ion", and "ing" close behind. If we include the
space character, there are other very common sequences, including longer ones
like "of the". Although it is impossible to improve on Huffman encoding with
any method that assigns a fixed encoding to each character, we can do better
by encoding entire sequences of characters with just a few bits. The method of
this section takes advantage of frequently occurring character sequences of any
length. It typically produces an even smaller representation than is possible with
Huffman trees, and unlike basic Huffman encoding it reads through the text only
once and requires no extra space for overhead in the compressed representation.

The algorithm makes use of a "dictionary" that stores character sequences
chosen dynamically from w. With each character sequence the dictionary asso-
ciates a number; if s is a character sequence, we use #(s) to denote the number
assigned to s by the dictionary. The number #(s) is called the code or code
number of s. All codes have the same length in bits; a typical code size is
twelve bits, which permits a maximum dictionary size of 212 = 4096 char-
acter sequences. The dictionary is initialized with all possible one-character
sequences, that is, the elements of E are assigned the code numbers 0 through
El - 1 and all other code numbers are initially unassigned.

The text w is encoded using a greedy heuristic: at each step, determine the
longest prefix p of w that is in the dictionary, output the code number of p, and
remove p from the front of w; call p the current match. At each step we also
modify the dictionary by adding a new string and assigning it the next unused
code number. (We'll consider later the problem of what to do if the dictionary
fills up, leaving no code numbers available.) The string to be added consists of
the current match concatenated to the first character of the remainder of w. It
turns out to be simpler to wait until the next step to add this string; that is, at
each step we determine the current match, then add to the dictionary the match
from the previous step concatenated to the first character of the current match.
No string is added to the dictionary in the very first step.

Figure 5.9 demonstrates this process on the (admittedly contrived) example
string COCOA AND BANANAS. In the first step #(C) is output and nothing
is inserted in the dictionary. In the next step 0 is matched, so #(O) is output
and CO is inserted in the dictionary. In step 3 the sequence CO is found in the
dictionary, so its code is output and OC is inserted in the dictionary. Continuing
in this way, fourteen codes are output to encode the example string. When very
long strings are compressed by this method, longer and longer sequences are
added to the dictionary; eventually, short code numbers can represent very long
strings. Moreover, the dictionary becomes "tailored" to w because of the way
strings are chosen for inclusion. When w consists of English text, for example,
the words and even phrases that appear often in w eventually find their way into
the dictionary and are subsequently encoded as single code numbers.

151

152 ARRAYS AND STRINGS

Step Output Add to Dictionary Step Output Add to Dictionary

1 #(C) - 8 #(D) ND
2 #(O) CO 9 #(0) DO
3 #(CO) 0C 10 #(B) EIB
4 #(A) COA 11 #(AN) BA
5 #(ED AD 12 #(AN) ANA
6 #(A) DA 13 #(A) ANA
7 #(N) AN 14 #(S) AS

Figure 5.9 Lempel-Ziv encoding of COCOA AND BANANAS. The symbol
El denotes the space character, and #(s) is the code number associated
with string s in the dictionary. Note that duplicate strings may be added
to the dictionary.

Decoding is almost the same as encoding. First of all, the compressed
representation consists simply of a sequence of code numbers; it is easy to
retrieve them one by one since the length in bits of a single code number is
fixed. The dictionary is not saved anywhere; as we shall see, the decoding
process reconstructs at each step the same dictionary that the encoding process
used (as in adaptive Huffman encoding). Consider the example of Figure 5.9
from the point of view of the decoder. It first sees the code for C, which is
in the initial dictionary, so it knows that C is the first character of the text. In
the next step, it reads the code for 0; like the encoder, it now adds CO to the
dictionary. The code number assigned to CO will be correct since both encoder
and decoder assign the first unused number to new strings in the dictionary. The
general decoding step is similar to the general encoding step: read a code, look
it up in the dictionary and output the associated character sequence s, then add
to the dictionary the sequence consisting of the previous sequence concatenated
to the first character of s. (The LookUp will always succeed, but see Problem 34
for an interesting variation.) The complete decoder is shown in Algorithm 5.3.

Many implementation details remain to be discussed. For example, what
should we do when the dictionary is full, that is, when all code numbers have
been assigned? There are several possibilities:

* Stop placing new entries in the dictionary, encoding the rest of the text
using the dictionary created so far.

* Clear the dictionary completely (except for the one-character sequences)
and start afresh, allowing new sequences to accumulate.

* Discard infrequently used sequences from the dictionary and reuse their
code numbers. (Of course, this requires keeping some statistical information
during encoding and decoding.)

* Switch to larger code numbers. Adding even a single bit doubles the number
of available codes. This scheme can be repeated until the dictionary grows
too large to be stored in main memory.

5.4 REPRESENTATIONS OF STRINGS

procedure LZDecode(bitstream b):
{Recover the string encoded in b}

{D is a dictionary associated code numbers with strings}
D - MakeEmptySet()
nextcode - 0 {The next code number to be assigned}
{Insert each single-character string into the dictionary}
foreach c E E do

Insert(nextcode, c, D)
nextcode <- nextcode + 1

{Special first step with no dictionary updates}
current +- LookUp(ReadOneCodeNumber(b), D)
Output(current)
{Main loop}
until Empty(b) do

previous +- current
current +- LookUp(ReadOneCodeNumber(b), D)
Insert(nextcode, Concat(previous, current[O]), D)
nextcode +- nextcode + 1
Output(current)

Algorithm 5.3 Lempel-Ziv decoding. The functions MakeEmptySet, Insert,
and LookUp are abstract operations on dictionaries, discussed more fully in
Chapter 6. Output is an unspecified procedure that handles the encoded string
as it is recovered.

(Yet another possibility is discussed on page 484.) The appropriateness of one
method over another depends on the amount of storage and processor power
available, but also on the characteristics of the data being compressed. For
example, it is easy to stop putting new entries in the dictionary, but if the input
is very long and of gradually changing character then clearing the dictionary is
a better idea. Of course, no matter which method is used it is essential that the
encoder and decoder agree on the method so that their dictionaries stay synchro-
nized! A more interesting problem is how best to store the dictionary during
encoding and decoding, to facilitate the special kinds of LookUps performed by
the encoder (Problem 33). The appropriate data structure is the trie, which we
discuss in Chapter 8.

To illustrate the potential savings that can be realized with the techniques of
this section, we give here the results of an experiment using several methods of
encoding. The text was a near-final version of this book (including commands
used for formatting) comprising 1322028 eight-bit characters, for a total of
10576224 bits. A classical two-pass Huffman compression algorithm produced

153

154 ARRAYS AND STRINGS

function SimpleStringSearch(string p, t): integer
{Find p in t; return its location or 1 if p is not a substring of t}

for k from 0 to Length(t) - Length(p) do
i -O
while i < Length(p) and p[i] = t[k + i] do

i +-i+I
if i = Length(p) then return k

return -1

Algorithm 5.4 Straightforward string searching.

an encoded text of 6469752 bits, about 61% of the size of the original. A one-
pass adaptive Huffman algorithm produced 6470800 bits, saving an entire pass
through the text at a cost of only about 1000 bits (although requiring nearly an
order of magnitude more computation time). But a variant of the Lempel-Ziv
method that begins with twelve-bit codes and allows code size to grow yielded
a compressed text of 4493168 bits, about 42.5% of the original size.

5.5 STRING SEARCHING

Retrieval of information from large text files is a very broad and important
problem-numerous techniques have been developed and entire volumes written
on the topic. One simple aspect of this problem is string searching: given two
strings p and t over the same alphabet A, determine whether p occurs as a
substring of t; that is, whether there exists k such that p = Substring(t, k, pl).
The strings p and t are called the pattern and target strings respectively.

The obvious method for string searching appears in Algorithm 5.4. Briefly,
we set k to 0 and attempt to match p against the portion of t beginning at index k
by comparing p[O] to t[j], then p[l] to t[j + 1], and so on until p[pI- 1]
is compared to t[k + p1- 1]. If each of these comparisons succeeds then
the match is successful; otherwise, k is incremented and we start again. (All
of our string searching algorithms return either the smallest k such that p
Substring(t, k, Ipl), or -1 when the search is unsuccessful.)

There is a metaphor for string searching that helps to understand the algo-
rithms of this section. Think of a string as a strip of boxes, each containing
a character. The problem of string searching is then to place the pattern strip
"beneath" the target strip in a location where characters in corresponding boxes
match (Figure 5.10). In terms of this metaphor, Algorithm 5.4 can be restated as
follows. Place the pattern strip at the leftmost edge of the target strip and try to
match the characters in the two strips. If some character fails to match, move the

5.5 STRING SEARCHING 155

t[O] t[1 t[2] t[3] t[4] t[5] t[6] t[7] t[8] t[9] t[l0]

A B C I E I F G A B C DE

p[O] p[l] p[2] p[3]

|A |B | C |D]

A |B |C | E

[A 13 1 C D

|A |B |C|D|

Figure 5.10 String searching metaphor, illustrating the native algorithm:
the initial portion of the target t, three non-matching placements of the
pattern string p, and the final matching placement.

pattern strip one box to the right and try again. Continue until a match is found
or until the rightmost edge of the pattern strip passes the rightmost end of the
target strip. (In Algorithm 5.4, and throughout this section, the variable k stores
the index of the target character that lies "over" the first character of the pattern.)

How much time might be required by Algorithm 5.4? The worst possibility
is an unsuccessful search in which the pattern string always matches completely
except for the last character-for example, when pattern XXXXXY is matched
against a long string of Xs. In this case the outer loop is executed once for
each character of the target string and the inner loop is executed once for each
character of the patternstring; that is, the search requiresE)(pl~l -ltl)time. In many
applications this time is quite acceptable, especially where patterns are short and
most of the time is spent retrieving chunks of the target from an external storage
device. But there are much faster algorithms for string searching. Each of the
next two algorithms that we shall study requires only °(IpJ + Itl) time for string
searching, that is, they run in linear time. And the improvement is not just
theoretical; implementations of these algorithms can be enormously faster than
the native algorithm when the target is very long.

The Knuth-Morris-Pratt Algorithm
Although Algorithm 5.4 is very simple, it will sometimes do lots of superfluous
work. For example, suppose again that the pattern p is ABCD and the target t
begins ABCEFGABCD (Figure 5.10). Algorithm 5.4 aligns the left edge of the
pattern with the left edge of the target and checks the characters of p against
those of t. When p[3] fails to match t[3] the pattern is moved one box to the

156 ARRAYS AND STRINGS

t[O] t[l]It[21 t[31 t[41 t[51 t[61 t[71

Ix Y I Y I x Ic I:~ ..
p[O] p[1] p[2] p[3] p[4]

[X |Y K XI |Z

X I Y I X I Y I ZI

Figure 5.11 An example in which the pattern can be moved only two boxes
to the right after the first mismatch.

right (to the second location pictured in Figure 5.10). The pattern in its new
location is again checked against the target, and this check fails immediately
since p[O] doesn't equal t[l].

But this last mismatch (and many to come) could have been foreseen. A bet-
ter algorithm would realize after the first mismatch that the next three placements
of the pattern are doomed to failure, since the pattern contains no character E.
Therefore, the pattern may as well be moved four boxes to the right without
delay, placing p[O] beneath t[4]. This example illustrates the key idea of the
Knuth-Morris-Pratt string search algorithm: when the pattern fails to match the
current location in the target, slide the pattern rightwards not just one box, but
as many boxes as possible consistent with the requirement that we must never
miss a match.

The example of the previous paragraph is a special case where the pattern
is moved to the right as far as possible, that is, over a distance equal to its
own length. In general, it may not be possible to move the pattern that far.
Consider a more complex example: suppose that p is XYXYZ and that t begins
XYXYXY... (Figure 5.11). We start with p over the leftmost part of t as usual,
and the first four characters match correctly. But when p[4] fails to match t[4]
it would be incorrect to move the pattern five boxes to the right. The algorithm
must recognize that the second XY in t also matches the first XY in p and
therefore that the pattern can be moved only two boxes to the right.

Continuing this example, we see that correct motion of the pattern some-
times depends not only on the location of a mismatch, but also on the mismatch-
ing character itself. Consider the possibilities for t[6] in Figure 5.11. After p[3]
matches t[5], p[4] is compared against t[6]. If t[6] is X then the pattern should
again be moved two boxes to the right, and the algorithm should continue by
comparing p[3 1 with t[7] (since it already knows that p[2] will match t[6]). But
if t[6] is (say) E, then the pattern can be moved five boxes to the right immedi-
ately, and the first character of the pattern should next be compared against t[7].
Of course, if t[6] is Z then the pattern has been found in the target and the
algorithm terminates.

5.5 STRING SEARCHING 157

t[k] t[k+ 1]t[k+i] t[k+m-1]

| i|iL |i~ E| |S|C| | l Ii l... .. | S IC DL .. |<

p[O] pM] p[i-1] p[i] pfi+1] pIm-1]

Figure 5.12 General situation during Knuth-Morris-Pratt string searching.
The pattern begins at index k of the target, m is the length of p, and c
is the mismatching character of t. Blank boxes in the target represent
characters as yet unexamined.

The most general situation is depicted in Figure 5.12. Here the first box
of the pattern lies under box k of the target, characters p[O], p[l], ... , p[i - 1]
have matched characters t[k], t[k + 1], ... , t[k + i -1], but p[iI # t[k + i].
The problem is to determine d, the number of boxes that the pattern should be
moved to the right so that as much of the pattern as possible still matches the
already-encountered portion of the target. That is, we must find d such that
p[0] = t[k + d], p[l] = t[k + d + 1], and so forth up to p[i-d] = t[k + i]. We
require the smallest d that satisfies these conditions, since otherwise we might
miss a match. If no smaller d satisfies the conditions, d = i + 1 always works;
this corresponds to placing p[O] under t[k + i + 1] and continuing from there.

Here is a crucial point: except for the reference to t[k+i], each condition in
the preceding paragraph can be stated in terms of the pattern alone. For example,
the requirement p[O] = t[k + d] is equivalent to requiring that p[O] = p[d] since
we know that p[d] = t[k + d] for the current placement of the pattern. It
follows that the desired value of d depends only on the pattern, on i, and on the
mismatching character t[k + i], which we call c. Thus we can define a function
that yields the correct d in every case; let KMPskip(p, i, c) be the smallest
integer d, with 0 < d < i, such that p[i - d] = c and pL] = p[j + d] for each
0 < j < i - d- 1, and let KMPskip(p, i, c) = i + I if no such d exists. This
function encodes the heart of the algorithm: whenever a mismatch is detected
between p[i] and a character c in the target, we immediately move the pattern
d = KMPskip(p, i, c) boxes to the right.

Now, it is obviously too time-consuming to calculate KMPskip(p, i, c) each
time we have a mismatch! Instead, we calculate the values of KMPskip for
pattern p and all possible i and c once and for all, before we even look at the
target-note again that KMPskip depends only on the pattern, not on the target.
These values are stored in an array KMPskiparray, where KMPskiparray[i, c] =
KMPskip(p, i, c) for each 0 < i < IpI and every character c in the alphabet.* As
the algorithm runs, it can therefore find KMPskip(p, i, c) quickly-in constant

*There is a side benefit here: since KMPskiparray is constructed from the pattern alone, it can be
reused if the same pattern is to be matched against several targets.

158 ARRAYS AND STRINGS

ABCD XYXYZ

A 0 12 3 X 01 03 2
B 1 03 4 Y 1 030 5
C 1 2 04 Z 12 34 0
D 1 2 30 other 12 34 5

other h1 2 3 4

(a) (b)

Figure 5.13 KMPskiparray for patterns (a) ABCD and (b) XYXYZ. The
value of KMPskip(p, i, c) is in column i and the row labelled c, where
each column has been labelled with p[i] instead of with i. The row
labelled "other" is used for all characters c that do not appear in the
pattern. So, for example, we have KMPskiparray(ABCD, 3, B) =
KMPskiparray(XYXYZ, 3, Q) = 4.

time-when a mismatch occurs. Figure 5.13 displays the KMPskiparray for the
patterns of Figures 5.10 and 5.11.

Once the pattern has been moved to the right, where should comparisons
continue? By the way KMPskip has been defined, we know that all of the
characters up to and including t[k + i] match correctly after the move. Therefore
we continue by comparing t[k + i + 1] against the corresponding character in the
new placement of the pattern, which is p[i + 1 - d]. Of course, these operations
are carried out by manipulating the variables in the code: to move the pattern
d boxes to the right we replace k with k + d, and to select the new position in
the pattern we replace i with i + - d. In terms of these new values of k and i
the next comparison is between t[k + i] and p[i], just as before.

The algorithm becomes even more elegant if we use the same mechanism to
handle the case of a correct match between the pattern and the target. Suppose
in Figure 5.12 that t[k + i] does match p[i]. Then the smallest d that satisfies
the conditions of KMPskip is d = 0. That is, the definition of KMPskip implies
that KMPskip(p, i, c) = 0 when p[i] = c, restating the fact that the pattern
should not move at all when it matches the target. With this simplification,
we find that there is no longer any reason to compare t[k + i] with p[i] since
we take the same action whether they match or not: in either case we look up
d = KMPskiparray[i, t[k + i]], replace k with k + d, and replace i with i + 1 - d.
The complete program appears in Algorithm 5.5. (We have not discussed the
termination conditions, but it is easy to see that a match has occurred when i
reaches the length of the pattern and that no match is possible when k gets close
to the end of the target.) Notice how p has all but disappeared from the main
loop of Algorithm 5.5; except for its length, all the necessary information about
the pattern is encoded in KMPskiparray.

How fast is Algorithm 5.5? In the worst case, when no match is found, the
main loop is executed at least Itl - pIJ times and at most Itl times. (To see this,
note that the value k+i starts out 0 and increases by exactly 1 each time through

5.5 STRING SEARCHING 159

function KMPSearch(string p, t): integer
{Find p in t; return its location or -1 if p is not a substring of t}

KMPskiparray ÷- ComputeKMPskiparray(p)
k 0
i 0

while k < Length(t) - Length(p) do
if i = Length(p) then return k
d <- KMPskiparray[i, t[k + i]]
k k + d
i i + 1-d

return -1

Algorithm 5.5 Knuth-Morris-Pratt string searching. The function Compute-
KMPskiparray is discussed in Problems 41 and 42.

the loop. The final value of k is tj - pj and i ranges between 0 and IpIl) Every
action in the main loop can be completed in constant time. So Algorithm 5.5
requires time at most O(jtl) plus the time required to build the KMPskiparray
for p. In fact, this array can be constructed in time O(IPI) (Problems 41 and 42).
Thus the Knuth-Morris-Pratt algorithm accomplishes string searching in linear
time.

The Boyer-Moore Algorithm
The basic idea of the Boyer-Moore algorithm is the same as that of the Knuth-
Morris-Pratt algorithm: the pattern is compared against the target, and on a
mismatch the pattern is moved as far to the right as possible. The only difference
is that the Boyer-Moore algorithm compares the pattern and the target from
right-to-left, rather than from left-to-right. Although this change may seem
unimportant, it results in a startling improvement in performance: in a typical
Boyer-Moore string search, a large number of characters in the target string
are never examined at all! This makes the Boyer-Moore algorithm much faster
than the naive algorithm on long targets even when the pattern is only a few
characters long.

Figure 5.14 illustrates the idea, using the pattern and target of Figure 5.10.
The first comparison tests p[3] against t[3]. Of course these characters do not
match, but more importantly we immediately see that since t[3] is E, and since
there is no occurrence of E in the pattern, the pattern cannot match if any of its
characters lie under t[3]-the pattern can instantly be moved four boxes to the
right, and the first three characters of the target can be ignored. Continuing the
same example, after the pattern has been moved, p[3] is compared against t[7],
a B. Again there is no match, but this time the pattern cannot be moved quite

160 ARRAYS AND STRINGS

t[o] t[l]It[2] t[3] t[4] t[5] t[61 t[7] t[8] t[9] t[l 0]

A B C E F G A B C D I E

p[O] p[1] p[2] p[3]

|A |B |C |D|

A |Be C D |

Figure 5.14 The target and pattern of Figure 5.10 revisited, showing pattern
placements during a Boyer-Moore search. First, the fact that t[3] does
not occur in the pattern permits us to move the pattern four boxes to the
right. Then t[7] doesn't match B, but the pattern can be moved only until
its rightmost B aligns with t[7]. Target characters t[O], t[l], t[2], t[4],
and t[5] are never examined.

so far. Since there is a B in the pattern, we might miss a match if we move p[l]
beyond t[7]. Therefore the pattern can be moved only two boxes to the right,
but even so, characters t[4] and t[5] will never be examined. (If the pattern
contained more than one B, it could be moved only until its rightmost B aligned
with t[7].)

In general the situation is a bit more complex because part of the pattern
may correctly match the target before a mismatch is detected. Let us look at the
general case, depicted in Figure 5.15. Here characters p[m - 1], p[m - 2],
p[i+ 1] have matched characters t[k+m- 1], t[k+m-2], ... , t[k+i+ 1], but p[i]
does not match t[k + i]. (Figure 5.15 is the same as Figure 5.12, but now it is
the characters to the right of p[i] that are known to match the target.) Again the
problem is to determine d, the number of boxes that the pattern can be moved
to the right. Considering all the information now available about the target, we
see that d should be the smallest integer such that t[k + m - 1] = p[m - I -d],

t[k + m - 2] = p[m - 2 - dI, ... , t[k + i] = p[i - d]. As in Knuth-Morris-Pratt
searching, the smallest d must be chosen because otherwise a match might be
missed.

But there is a difficulty here: this statement of the conditions for d is valid
only for d < i. If no such d exists and we try to test d = i + I for compliance;
we "fall off" the left edge of the pattern trying to ensure that t[k + i] = p[-1].
Put another way, if no such small d exists, the pattern will be moved so far
that t[k + i] is above empty space. When this happens we require only that the
pattern match the target down to p[O] (which lies under t[k + d]). Both of these
situations are illustrated in Figure 5.16, where the final three characters match
but t[k + 5] $ p[5]. If t[k + 5] is W then d = 3 is satisfactory and the pattern
should be moved three boxes to the right. But if t[k + 5] is R then the pattern

5.5 STRING SEARCHING 161

t[k] t[k+1] t[k+i] t[k+m-1]

*. I R I G |

.. I S I D I E |...

p[0] p(1] p[i-1] p[i] p[i+1] p[m-1]

Figure 5.15 General situation during Boyer-Moore string searching. The
pattern begins at index k of the target, m is the length of p, and c is the
mismatching character of t. Blank boxes in the target represent characters
as yet unexamined.

t[k] t[k+5] t[k+8]

1 I I I 1 C X Y Z

YI ZI WI XI YI Z X Y Z
p[O] p[1] p[2] p[3] p[4] p[5] p[6] p[7] p[8]

Figure 5.16 An illustration of Boyer-Moore string searching.

should be moved exactly d = 7 boxes to the right since p[O] = t[k + 7] and
p[l] = t[k + 8]. (Of course, if t[k + 5] is Z then we continue by comparing
t[k + 4] to p[4] without moving the pattern at all.)

As in Knuth-Morris-Pratt searching, the next step is to recast the conditions
solely in terms of the pattern and the mismatching character c. Let m = IPI,
and for any character c and any i such that 0 < i < m define BMskip(p, i, c)
to be the amount that the pattern can move to the right when characters i + 1
through m - 1 of the pattern match corresponding characters in the target but
p[i] does not match a character c in the target. Translating the discussion of
the previous paragraph into these terms, we find that BMskip(p, i, c) must be the
smallest d such that

* pUj] = p[j-d] for all j such that max(i + I, d) < j < m-I, and
* p[i-d] =cifd<i.

Since i < m, both conditions are vacuous for d = m; that is, d = m
satisfies the conditions for any i and c and can be used if no smaller d quali-
fies. Of course, d = m corresponds to moving the pattern to the right over its
entire length and is the most desirable value of BMskip from the standpoint of
speed (other than stopping with a successful match!). Figure 5.17 displays the
BMskiparray for the patterns of Figures 5.10 and 5.11. The superiority of the
Boyer-Moore algorithm over the Knuth-Morris-Pratt algorithm is demonstrated
by a comparison of Figure 5.17 with Figure 5.13; the entries in the Boyer-Moore

162 ARRAYS AND STRINGS

A B C D X Y X Y Z

A -44 3 X - 5- 52
B 4 -42 Y 5 -5 1
C 4 4-1 IZ 55 5 5-
D 4 44- other 55 55 5

other 4 4 4 4

(a) (b)

Figure 5.17 BMskiparray for patterns (a) ABCD and (b) XYXYZ, using the
conventions of Figure 5.13.

function BMSearch(string p, t): integer
{Find p in t; return its location or -1 if p is not a substring of t}

BMskiparray +- ComputeBMskiparray(p)
k +-
while k < Length(t) - Length(p) do

i +- Length(p) - 1
while i > 0 and p[i] = t[k + i] do

i -i-1
if i =-1 then return k
k +- k + BMskiparray[i, t[k + i]]

return - 1

Algorithm 5.6 Boyer-Moore string searching.

arrays are generally larger and the pattern will therefore move faster. This is es-
pecially true for pattern ABCD which has the characteristics of patterns typically
encountered, unlike the contrived pattern XYXYZ.

The implementation of Boyer-Moore string searching (Algorithm 5.6) is
quite similar to Knuth-Morris-Pratt string searching. Again we store all the
values of BMskip in an array for rapid access in the main loop-and again,
these values can be computed in time linear in the length of the pattern (Prob-
lem 43). The chief difference is the way that mismatches are handled. In
Boyer-Moore searching comparisons must start afresh from the rightmost edge
of p on any mismatch, since every time p is moved its rightmost edge goes into
"unexplored territory" of t. As a consequence, the cases of matching and mis-
matching characters cannot be combined as they were in the Knuth-Morris-Pratt
algorithm, and BMskiparray is not even consulted on a match. Thus the entries
BMskiparray[i, c] for p[i] = c need not have any particular value; they show as
blanks in Figure 5.17.

5.5 STRING SEARCHING 163

Fingerprinting and the Karp-Rabin Algorithm
A completely different string searching algorithm uses the following approach.
Suppose X is a function that produces from any string w a small number x(w),
called the fingerprint of w. Given a pattern p and target t, let m = IpI and
define fi = X(Substring(t, i, m)); that is, fi is the fingerprint of the m characters
of t starting at index i. The algorithm first computes and compares X(P) and fo.
If X(P) = fo, there may be a match: compare p character by character with the
first m characters of t to see if they agree. But if X(p) 7$ fo then clearly p does
not match the first m characters of t. In any case, if there is no match, continue
by computing fl and comparing it to X(p), and so forth. The idea is that the
fingerprint function gives a quick preliminary test. If the fingerprint of the
pattern is different from fi then the pattern cannot match Substring(t, i, m) and
no further work is necessary for this placement of the pattern. If the fingerprints
are equal, then a character by character comparison is needed because of the
possibility of a correct match. But fingerprints are small numbers that can be
compared in a single operation; the hope is to avoid most of the character
comparisons entirely.*

There are two key ideas to the fingerprint method of string searching. First
of all, the fingerprinting function X should give "false matches" as rarely as pos-
sible. That is, if two strings si and 82 are different then X(si) should be different
from X(s2) with high probability. The reason is that a false match necessitates
up to IpI - 1 character comparisons, which we wish to avoid. (Analogously,
fingerprinting is useful as a method of identification only to the extent that dif-
ferent people are unlikely to have identical fingerprints!) Secondly, the method
saves nothing if successive fingerprints fi take a long time to compute. The
trick is to choose a function X with the property that the fi need not be com-
puted independently; fi~j should be quickly computable from fi and the "new"
character t[i + pj].

Here is a complete but simple example. Let us assume that characters can
be added and subtracted like numbers; formally, we identify each c E E with a
unique integer (typically the integer that represents it in memory). Now let x(w)
be the sum of the characters of w. We then have that fi = X(Substring(t, i, m))
is the sum t[i] + t[i + 1] + * * * + t[i + m - 1]. To compute fi+I from fi it suffices
to "add in" the new character t[i + m] and "take away" the oldest character t[i];
that is, fi~j = fi + t[i + ml - t[i]. Algorithm 5.7 presents the complete string
search procedure for this simple fingerprint function.

The Karp-Rabin algorithm for string searching uses precisely this frame-
work with a more sophisticated fingerprinting function. For simplicity suppose
that E = {O, 1, . .., N - 1}. Then any string w can be interpreted directly as a

*The method of fingerprints is conceptually similar to hashing, which we shall encounter in Chap-
ter 8.

164 ARRAYS AND STRINGS

function FingerprintSearch(string p, t): integer
{Find p in t; return its location or -1 if p is not a substring of t}

m +- Length(p)

{Compute the fingerprint of the pattern}
pattern +- 0
for i from 0 to m - I do

pattern <- pattern + p[i]

{Compute the fingerprint of the first part of the target}
target - 0
for i from 0 to m - 1 do

target -- target + t[i]
{The main loop}
for i from 0 to Length(t) - m do

if pattern = target then
if p = Substring(t, i, m) then return i

if i $? Length(t) - m then
target 4-ftarget + t[i + m] - t[i]

return - 1

Algorithm 5.7 Fingerprint string searching with a simple fingerprint function.

number in base N:
1W I-1

H(w) = Zw[i] .Nlwl-'-i.
i=O

For each positive integer b define a function Hb(w) - H(w) mod b. Each
function Hb is easy to compute because of the identities

(x + y) mod b = ((x mod b) + (y mod b)) mod b, and
(2)

xy mod b = ((x mod b)(y mod b)) mod b.

That is, we can do all computation modulo b and need not worry about integers
larger than we can conveniently handle. Moreover, it is easy to update finger-
prints as the target string is scanned, since with fi = Hb(Substring(t, i, m)) we
have

fj+j = (N * fi + t[i + m] - t[i] . Nm) mod b

where m = IpI as before.
It is possible to show that the fingerprint function Hb performs very well

when b is a prime number. Even so, for any given b there will be combinations
of patterns and targets with many false matches; to guard against repeated bad

PROBLEMS 165

performance (if, say, the same pattern is used several times on similar targets)
the prime b should be chosen afresh each time the algorithm is run. An even
better method is to switch to a different b whenever a false match occurs; with
this procedure, it is not even necessary that b be prime. When the moduli b
are chosen randomly, it can be shown that even an intelligent adversary cannot
construct a pattern and target that will produce many false matches.

The method of fingerprints also applies to more general problems. For
example, it can be used for two-dimensional pattern matching: given two rect-
angular blocks of zeroes and ones (a "pattern" and a "target") determine whether
the pattern occurs within the target. The method generalizes to higher dimen-
sions and even to patterns that are not rectangular.

In this section we have discussed several algorithms for string searching.
But which of them is actually best in practice? Or, perhaps more urgently,
which should be considered when a string searching problem is at hand? In
practice, the fastest algorithm is that of Boyer and Moore, which is frequently
implemented in general-purpose string searching tools that are used on targets of
enormous size-usually with modifications as discussed in Problem 44 to limit
the size of the BMskiparray. However, calculating that array requires some
complex programming (especially if the linear time bound is to be preserved)
which is often not worthwhile for simple, short-lived problems. In these cases,
the Karp-Rabin algorithm can be coded easily, using a very simple fingerprint
function, and will provide satisfactory performance.

Problems

5.1 1. Give a formal definition for the abstract operation Concat on strings.

2. Let n be a fixed positive integer. Find all quadruples (il, i2 ,rml, M2)
of integers such that, for all strings w of length n, it is true that
w = Concat(Substring(w, i 1, ml), Substring(w, i2 , M2))

5.2 3. Suppose M is a k-dimensional array stored in contiguous memory
starting at address M. Element M[1, 12, ... , 1k] of M is located at
address M whether M is stored in row-major or column-major order.
Which other elements of M (if any) have this property?

4. Suppose that a two-dimensional array M with indices (0.. n -1) x
(0. . n - 1) is stored in row-major order in contiguous memory. Write
a program that transforms M so that it is stored in column-major
order. You may not copy M or use auxiliary storage that depends
on n; all you may do is move elements within M.

5. a. Generalize Problem 4 to arrays with indices (0.. n) x (O.. m).

b. Further generalize Problem 4 to k-dimensional arrays with arbi-
trary index sets.

166 ARRAYS AND STRINGS

6. An efficient way of calculating expression (1) on page 135 is sug-
gested by Homer's rule for evaluating polynomial expressions, which
says that

anx- +a,-lxn-+ +alx+ao = ao+x(al+x(a2 ++ *+x(an))..

The same idea can be applied here, yielding

X+L.(id- ld+Sd 'jd-I-1d-1+sd-l.(jd-2-ld-2+. .+S2 j1-1) .. 6) .

as the address of element XU'ihj2 , . , jd]f Show how to arrange
this computation so that Access can be implemented in only about 2d
operations.

7. Implement the abstract operation Iterate for arrays represented as
shown in Figure 5.3 on page 138.

8. Show how to represent multidimensional arrays with constant-time
initialization and access.

5.3 9. Choose a record structure for 3-dimensional arrays represented by hi-
erarchical tables as in Figure 5.6 on page 141, and write appropriate
procedures Initialize, Access, Assign, and Iterate (with the last index
varying fastest). You may use the function New~able(n) which creates
a table of n pointers. Unused tables should eventually be deallocated
so that the storage can be reused (assume a function FreeTable that
returns a table to the storage allocator). Since we require that Access
and Assign use only constant time, and since we want to use a min-
imum of storage overhead, you should check for table deallocation
only during Iterate and Initialize.

10. Solve Problem 9 with the additional requirement that tables are deal-
located as soon as possible, still with constant-time Access and Assign.
(You will have to use slightly more storage overhead.)

11. Let M be an upper-triangular matrix of order n represented as de-
scribed on page 142. Show how to determine i and j given n and
the address in memory of element M[i, j]. (As usual, each element
occupies L physical memory cells and M[O, 0] begins at address M.)

12. Upper-triangular matrices may be generalized to higher dimensions.
A k-dimensional upper-triangular matrix of order n is an array M
with k indices each between 0 and n- 1, where M[il,i2,...,ik] is
zero unless i1 < i2 < ... < ik.

a. How many nonzero elements are contained in a k-dimensional
upper-triangular matrix of order n?

b. Show how to represent k-dimensional upper-triangular matrices
in contiguous memory so that no space is wasted.

PROBLEMS 167

13. Define a tridiagonal matrix of order n to be an array with index set
(O.. n - 1) x (O .n - 1) in which all nonzero entries are on either the
main diagonal or one of the two adjacent, parallel diagonals. That is,
for each i the only possible nonzero elements whose first index is i
are M[i, i -1], M[i, i], and M[i, i + 1].

a. How many nonzero elements are contained in a tridiagonal matrix
of order n?

b. Find a representation for tridiagonal matrices that wastes no stor-
age and such that the address of M[i, j] can be computed from
i and j in as few arithmetic operations as possible. As usual, L
is the length of a single element; operations involving only L, n,
and the starting address of M can be "precomputed" and don't
count.

14. Suppose we wish to implement upper-triangular matrices in a pro-
gramming language that supports multidimensional arrays efficiently.
Devise a space-efficient representation that requires no explicit mul-
tiplications, and generalize your solution to k-dimensional upper-
triangular matrices. (In practice, such techniques are rarely bet-
ter than using one-dimensional arrays since the arithmetic saved is
performed anyway by the underlying implementation of multidimen-
sional arrays.)

15. A checkerboard is a multidimensional array in which the sum of
the indices of each nonnull element is even. Devise a space-efficient
representation for checkerboards in contiguous memory.

5.4 16. Prove the assertion on page 145, that unique decodability is assured if
no character's encoding is the prefix of another character's encoding.
Is the converse true? That is, given an alphabet and a bit sequence
encoding each character, with the property that the encoded version
of any string can be unambiguously decoded, does it follow that no
character's encoding is the prefix of another character's encoding?

17. By definition, every encoding tree is full; that is, each nonleaf has
exactly two children. Show that nothing is lost by this requirement in
the sense that if T is an "encoding tree" that is not full, then there is
always a full encoding tree T' for the same alphabet such that, for any
string w, the encoding of w using T' is no larger than the encoding
of w using T.

18. By definition, the leaves of an encoding tree must contain distinct
characters. Show that nothing is lost by this requirement in the sense
that if T is an "encoding tree" with duplicate characters in its leaves,
then there is always an encoding tree T' for the same alphabet without

168 ARRAYS AND STRINGS

duplications such that, for any string w, the encoding of w using T'
is no larger than the encoding of w using T.

19. Which was the second-to-last internal node created in the example of
Figure 5.8 on page 148?

20. The following data are from Storer (see the references) and give the
number of occurrences (in hundreds) of the lower-case letters in a set
of large text files: e 933, t 675, a 571, o 570, i 556, n 537, s 524,
r 483, h 349, I 295, c 268, d 255, u 211, m 192, p 183, f 170, g 144,
b 120, y 108, w 96, v 71, k 37, x 24, q 11, j 10, z 9. Construct a
Huffman tree for these twenty-six characters.

21. a. Show that tiebreaking is not significant in the Huffman algorithm
in the sense that the total size of the encoded text is the same
regardless of how the tree construction algorithm breaks ties when
selecting nodes of minimum weight.

b. Give a proof or counterexample of the following converse of the
Huffman Optimality Theorem on page 149. Let T be any en-
coding tree for text w such that WPL(T) is a minimum over all
encoding trees for w. Then there is some way of breaking ties in
the Huffman algorithm such that T is constructed.

22. Notwithstanding Problem 21(a), the trees produced by the Huffman
algorithm may differ when different tiebreaking schemes are used. In
particular, for a given text there may be Huffman trees of different
heights. (For example, the string ABCCDD has Huffman trees of
heights 2 and 3.) Find a tiebreaking scheme for the Huffman algorithm
such that the resulting tree has minimum height among all possible
Huffman trees for the given text.

23. a. Find a string of minimum length that could give rise to the Huff-
man encoding tree of Figure 5.7 on page 146.

b. The string w actually used by the authors to construct Figure 5.7
has 15 characters. That fact does not uniquely determine w. Find
w anyway.

24. The Lemma on page 148 applies only to full binary trees. Precisely
where in the proof of the Lemma is this assumption used?

25. When using the Huffman algorithm, the compressed text must begin
with a description of the encoding tree. Suppose that the alphabet E
is fixed and consists of 256 characters, each encoded as a distinct
sequence of eight bits (this is usually the case, as when ASCII or
EBCDIC is the understood alphabet). Devise a scheme for describing
the encoding tree in the encoded text, and write the programs used

PROBLEMS 169

by the encoder to describe the tree and by the decoder to recover the
tree. Of course, your representation should be as space-efficient as
possible!

26. Solve Problem 25 without the assumption of a universal alphabet.
That is, the decoding algorithm must be assumed to know nothing at
all about the size of E.

27. Our discussion of the Huffman algorithm has assumed that encoded
text is represented by a sequence of bits. Generalize this assumption:
suppose that the encoded text is represented by a sequence of charac-
ters from an arbitrary alphabet E which has more than two characters.
Describe the generalized version of the Huffman tree-construction, en-
coding, and decoding algorithms, and state and prove the generalized
optimality theorem.

28. Suppose cj and c2 are two characters of frequencies fl and f2 in
text w, and let dl and d2 be the depths of cl and c2 in a Huffman
encoding tree for w.

a. Show that fl > f2 implies di < d2

b. Show that fl = f2 implies Id -d 2j < 1.

29. We have constructed Huffman trees based on the frequencies fi of
the members of E in the text w. For each character ci of E, define
the probability pi of ci as Pi - cillwj. (Since frequencies and
probabilities differ only by the constant factor 1/twi, the Huffman
algorithm can use either when constructing the encoding tree.) Let T
be a Huffman encoding tree for w. Recall that the Fibonacci sequence
is defined by F0 = 0, F1 = 1, and Fn = F 1-, +Fn- 2 for n > 1.

a. Show that if n is positive and pi > I/Fn+1, then the depth of ci
in T must be less than n.

b. Suppose conversely that pi is known to be less than 1 /Fn+,. What
can be concluded about the depth of ci in T?

30. Determine the worst-case performance of Huffman encoding; that is,
find the maximum possible size in bits of the Huffman encoding of a
string w over an alphabet E, in terms of Length(w) and ZjE.

31. Suppose that T is any binary encoding tree for a string w and assume
that each leaf of T represents a character that occurs at least once
in w. As usual, for each node n of T let C(n) be the weight of n:
the weight of each leaf is the frequency of occurrence of its character
in w, and the weight of each nonleaf is the sum of the weights of its
children.

a. Show that T is an optimal encoding tree for w if and only if it
satisfies the following condition: there is an ordering nl, n2,

170 ARRAYS AND STRINGS

n2lwl-l of the nodes of T such that l(ni) < l(ni+l) for each i,
and moreover each adjacent pair of nodes n2k-1, n2k are siblings
in T.

b. Let T be an optimal encoding tree for w, let an ordering of the
nodes of T be given as in part (a), and let ni be any leaf of T.
Suppose that ni < ni,1 , and moreover suppose that ni, < ni,+1 for
every ancestor ni, of ni. Show that T is an optimal encoding tree
for the string Concat(w, c), where c is the character represented
by ni.

(These results are the crucial facts used in an efficient implementation
of the adaptive Huffman encoding algorithm-see page 484.)

32. Show the operation of the Lempel-Ziv compression algorithm on the
following tercet (from a poem by J. Holobom, as quoted by A. Bierce).
Assume that lines are separated by a single space.

abracadabra, abracadab,
abracada, abracad,
abraca, abrac, abra, ab!

33. Write the procedure LZEncode, the inverse of procedure LZDecode
(Algorithm 5.3 on page 153). LZEncode takes two arguments: a
string to be encoded and a bitstream to receive the encoding. You
may use a subroutine WriteOneCodeNumber(c, b) that outputs an in-
teger c to a bitstream b. LZEncode also uses the same abstract
dictionary operations as the decoder. (For purposes of this exercise,
don't worry about generating a large number of calls on LookUp nor
about dictionary overflow. But see page 484.)

34. In Lempel-Ziv encoding the input string is considered one charac-
ter at a time as we search for the longest match. This process
ends when we encounter the first character such that the string-so-
far is not in the dictionary. At that point, we have in our hands the
string that will be added to the dictionary in the next step, and might
as well add it immediately. For example, consider again the text
COCOA AND BANANAS. In the first step, we would match C, fail
to match CO, and thus output #(C) and add CO to the dictionary. In
the second step, we match 0, fail to match OC, and so output #(O)
and add OC to the dictionary.

a. Show how Figure 5.9 on page 152 would be constructed by this
variation of the encoding algorithm. Warning: it is not sufficient
to advance each entry in the "Add to Dictionary" column!

b. With this variation of the algorithm, it is possible that LookUps
by the decoder might fail! Show how this occurs in the example,

PROBLEMS 171

and explain clearly how the decoder should proceed to resolve the
problem correctly.

c. Compare this version of Lempel-Ziv encoding with that described
in the text. How much difference can there be in the size of the
encoding of a text of length n?

35. For each integer n > 0, let Wn be the string consisting of n character
As, followed by a single character B, followed by n more As. For
example, W3 = AAABAAA and wo = B.

a. What is the length in bits of the Huffman encoding of Wn?

b. What is the length in bits of the Lempel-Ziv encoding of Wn,

under the assumption that each code number has k bits and that
the dictionary never overflows?

c. What is the largest value of n such that the assumption in part (b)
(that the dictionary does not overflow) is valid?

36. Suppose that E = {A, B} and that w is a string of length n over E
containing at least one of each character.

a. If Huffman encoding is used, what are the smallest and largest
possible sizes (in bits) of the compressed representation of w?

b. If Lempel-Ziv encoding is used, what are the smallest and largest
possible sizes (in code numbers) of the compressed representation
of w? (Assume that the dictionary never overflows.)

37. Suppose you have several very large files to store. You may either
concatenate the files into one large file and then compress that file, or
you may compress the files individually. Assuming that you are using
one of the compression algorithms described in this section, does it
make a difference which method you use?

5.5 38. Suppose t = ABCDE and p = e, the unique string of length zero.
According to the definition on page 154, does p occur as a substring
of t, and if so, what should the string searching algorithms of the
section return given p and t? What if t also equals e?

39. Let M: be the alphabet consisting of the uppercase letters. Find both
the KMPskiparray and the BMskiparray associated with the string
ABCABACABCAB.

40. The captions of Figures 5.12 and 5.15 each contain the sentence
"Blank boxes in the target represent characters as yet unexamined."
Explain carefully why this statement is true for only one of these
figures, and not always (but sometimes) true for the other.

41. If w is any string, define Pre]Suf(w) to be the largest j < IwI such that
Substring(w, 0, j) = Substring(w, 1wI-j, j); that is, PrefSuf(w) is the

172 ARRAYS AND STRINGS

function AllPrefSufs(string p): array
{The result ps is an array of integers with the same indices as p}

ps[O] +- 0
for j from I to Length(p) -1 do

ps[j] +- Extend(psj -1], j)
return ps

function Extend(integer i, j): integer
{Chain through ps looking for an extendible value}

if pLj] = p[i] then return i + 1
if i = 0 then return 0
return Extend(ps[i - I], j)

Algorithm 5.8 Compute PrefSuf of each prefix of the input string p.

length of the longest prefix of w (other than w itself) that is also a suf-
fix of w. For example, PrefSuf(ABCAB) = 2, PrefSuf(AAAAA) = 4,
and PrefSuf (ABC) = 0. Given any string p, the function AllPrefSufs
described in Algorithm 5.8 computes an array ps such that ps[i] =
PrefSuf(Substring(p, 0, i)) for each 0 < i < Ip1; that is, ps contains
the value of PrefSuf(p') for each prefix p' of p.

a. Prove that Algorithm 5.8 works as advertised.

b. Prove that Algorithm 5.8 works in linear time; that is, in time

O(IPI).
42. Use the results of Problem 41 to write a linear-time version of the

function ComputeKMPskiparray used in Algorithm 5.5 on page 159,
completing the demonstration that Knuth-Morris-Pratt string searching
requires only linear time. (Hint: KMPskiparray[i, c] can be quickly
computed using ps[i]. Since the alphabet is fixed, a loop of the form
'foreach c in X ... ' introduces only a constant factor into the time
analysis.)

43. Write a linear-time version of the function ComputeBMskiparray used
in Algorithm 5.6 on page 162. (Proving that Boyer-Moore string
searching requires only linear time is not a trivial matter; see the
references.)

44. We have defined BMskip(p, i, c) as the smallest d that satisfies both
conditions displayed on page 161. Most discussions (and implemen-
tations) of Boyer-Moore searching treat these conditions separately,
modifying the second one slightly: let BMskipl (p, i) be the smallest d

REFERENCES 173

that satisfies the first condition, and let BMskip2(p, c) be the small-
est d such that p[m - d - 1] = c, or m if no such d exists. When the
pattern does not match the target we move the pattern rightwards by
the larger of these two values, since no placement of the pattern need
be considered until both conditions are met. The advantage of this
approach is that, since BMskipl does not depend on c and BMskip2
does not depend on i, two small one-dimensional arrays suffice to
store the precomputed values rather than a two-dimensional array as
pictured in Figure 5.17 on page 162.

a. Write routines that compute BMskiplarray and BMskip2array
from a given pattern p in linear time.

b. Find an example in which the pattern moves farther when both
conditions must be satisfied simultaneously.

45. Prove the identities (2) on page 164.

46. Let alphabet E consist of the uppercase letters. Identify A with 1, B
with 2, and so forth, so that characters can be added (e.g. Z+C = 29).
With the simple fingerprint function of §5.5, what is the maximum
possible number of false matches while searching a target of length n?

47. A wildcard in a search pattern is a character that matches any char-
acter from the text. Find an algorithm for string searching when
wildcards are permitted in the pattern.

References

Huffman encoding was first described in

David A. Huffman, "A Method for the Construction of Minimum-Redundancy Codes,"
Proceedings of the IRE 40 (1952), pp. 1098-1101.

Adaptive Huffman encoding is the invention of

R. G. Gallager, "Variations on a Theme by Huffman," IEEE Transactions on Information
Theory IT-24 (1978), pp. 668-674

and was extended in

D. E. Knuth, "Dynamic Huffman Coding," Journal of Algorithms 6 (1985), pp. 163-180,

from which Problem 31 is taken (and which inspired Problem 32). Lempel-Ziv encoding
was first presented in

J. Ziv and A. Lempel, "Compression of Individual Sequences via Variable-Rate Coding,"
IEEE Transactions on Information Theory IT-24 (1978), pp. 530-536.

We have described a simplification of a version of this algorithm that appears in

T. A. Welch, "A Technique for High-Performance Data Compression," Computer 17
(1984), pp. 8-19

174 ARRAYS AND STRINGS

and in Problem 34. (A patent that is claimed to cover Welch's variation has been issued
to Sperry Univac.) A general reference for variants on these methods and many others,
including parallel and lossy techniques, is

J. A. Storer, Data Compression, Computer Science Press, 1988.

The remarkable story of the discovery of the Knuth-Morris-Pratt string searching algo-
rithm is recounted in

D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, "Fast Pattern Matching in Strings," SIAM
Journal on Computing 6 (1977), pp. 323-350

In the same paper Knuth presents a proof of the linearity of the Boyer-Moore algorithm,
which itself is from

R. S. Boyer and J. S. Moore, "A Fast String Searching Algorithm," Communications of
the ACM 20 (1977), pp. 762-772.

Knuth's account of the Boyer-Moore algorithm contains an error, which is corrected in

W. Rytter, "A Correct Preprocessing Algorithm for Boyer-Moore String-Searching,"
SIAM Journal on Computing 9 (1980), pp. 509-512.

Knuth proves that the Boyer-Moore algorithm makes no more than about 7 ItI comparisons
in the worst case. A better bound (of 31tI comparisons) and a matching lower bound are
proved in

R. Cole, "Tight Bounds on the Complexity of the Boyer-Moore Pattern Matching Algo-
rithm," 2nd ACM-SIAM Symposium on Discrete Algorithms, 1991.

The Karp-Rabin algorithm is from

R. M. Karp and M. 0. Rabin, "Efficient Randomized Pattern-Matching Algorithms,"
IBM Journal of Research and Development 31 (1987), pp. 249-260.

But every linear-time string searching algorithm that we have discussed requires either
a source of random numbers or storage space linear in the size of the pattern string plus
the size of the alphabet. A string searching algorithm that requires only constant space
and works in linear time without using arithmetic at all is described in

Z. Galil and J. Seiferas, "Time-Space-Optimal String Matching," Journal of Computer
and System Sciences 26 (1983), pp. 280-294.

A very useful and widely-implemented algorithm for string searching, permitting wild-
cards as in Problem 47 and even more general patterns called regular expressions, is
the work of

K. Thompson, "Regular Expression Search Algorithm," Communications of the ACM 11
(1968), pp. 419-422.

6
List and Tree

Implementations of Sets

6.1 SETS AND DICTIONARIES AS ABSTRACT DATA TYPES

The next four chapters deal with the computer representation of the objects
known in mathematics as sets. In all cases of interest here, the members of
a set are drawn from a single universe. For example, we might have a set of
numbers, or a set of words, or a set of pairs each consisting of a word and a
number. Once the universe of possible members is known, a set is determined
by its members; that is, if S is a set and x is in the universe, either x E S
(x is a member of S) or x ¢ S (x is not a member of S). For our purposes,
sets are always finite, since computers can represent only finite objects; but the
universe from which the set elements are drawn may be infinite, so there is no
a priori bound on the size of a set. Also, sets cannot have duplicate members;
if x E S, then there is only one "copy" of x in S. Nonetheless, several of the
set representations we discuss can also be used to represent multisets, in which
the same element can occur two or more times.

The reason that sets deserve such extensive treatment in a book of this sort
is that a great many computer algorithms employ steps that, abstractly, consist
of answering questions of the form "is x E S?" (For example, "is this identifier
in the compiler's symbol table?" "Is this person in the employee data base?")
As programmed, the subroutine that answers such a question is often a search
procedure: a traversal of part or all of a data structure, comparing x to various
things stored in the data structure. It is important to remember, however, that
search is only a means to an end; sometimes a set representation can be found
that avoids searching entirely, if the universe has a special structure and only a
limited number of set operations need be implemented.

Here are some of the abstract operations that might be useful in applications
involving sets:

Member(x, S): Return the boolean value true if x is a member of the set S,
otherwise false.

Union(S, T): Return S U T, that is, the set consisting of every x that is a
member of either set S or set T or both.

175

176 LIST AND TREE IMPLEMENTATIONS OF SETS

Intersection(S, T): Return S n T, that is, the set consisting of all x that are
members of both sets S and T.

Difference(S, T): Return S - T, that is, the set of all x in set S that are
not in set T.

MakeEmptySeto: Return the empty set 0.
IsEmptySet(S): Return true if S is the empty set, otherwise return false.
Size(S): Return ISj, the number of elements in the set S.
Insert(x, S): Add x to set S, that is, change S to S U {x}. (This has no

effect if x E S already.)
Delete(x, S): Remove x from set S, that is, change S to S - {x}. (This

has no effect if x V S already.)
Equal(S, T): Return true if S = T, that is, if sets S and T have the same

members.
Iterate(S, F): Perform operation F on each member of set S, in some

unspecified order.

These operations make sense for any sets, regardless of the universe. Some
other operations are appropriate in case the universe has special properties. For
example, in the case of a linearly ordered universe, the Min operation may be
useful, where

Min(S): Return the smallest member of set S, that is, that x in S such that
x < y for every other y in S.

Even when no linear order is used by the application that is manipulating
sets, a linear order that is easily computed can be useful in implementing a
representation of sets. For example, when storing sets of words it is useful to
exploit the lexicographic order to reduce search times, even if relations of the
type "is z < y?" are not needed at the abstract level.

An important practical variation on the general abstract model presented
above recognizes that inserting, deleting, and testing membership of elements
of a single universe is often somewhat less than is really desired. To take a
simple example, a telephone book can be viewed abstractly as a set, where the
elements are pairs consisting of a name and a telephone number. It makes sense
to insert a pair such as (Harry Lewis, 495-5840), and perhaps even to delete
such a pair; but instead of asking whether (Harry Lewis, 495-5840) is in the
phone book, we are much more likely to want to know whether Harry Lewis
is in the phone book, in the hope of getting back (Harry Lewis, 495-5840), or
perhaps simply 495-5840, if so.

More generally, we can regard a member of the universe from which a set
is constructed as a pair (K, I) consisting of a key K, which is an element of
a key space, together with certain additional information I of data type info,
which is not further analyzed. We assume that the key value is unique; that
is, there cannot be two different elements of the set with the same key value.
Typically a set will be implemented by storing its elements as records with fields

6.2 UNORDERED LISTS 177

for the key, the additional information, and perhaps pointers or other values used
to implement a data structure. In place of the Member relation, we require a
LookUp operation:

LookUp(K, S): Given a key value K, return an info I such that (K, I) E S;
if there is no such member of set S, then return A.

A call LookUp(K, S) is said to be a successful search if it actually finds
a pair in S with key value K; otherwise (if it returns A) it is said to be
unsuccessful.

In this context the Insert operation takes three arguments K, I, and S, and
is required to add the pair (K, I) to S. If there already is a pair with key K,
insert should replace it with the new pair. The Delete operation takes K and S
as arguments and deletes from S the pair with key K, if there is one; otherwise
it does nothing.

A set abstract data type with just the operations MakeEmptySet, IsEmptySet,
Insert, Delete, and LookUp is called a dictionary. We begin by examining
implementations of the dictionary abstract data type, noting occasionally when
the implementation permits efficient implementation of other set operations. In
Chapter 9 we return to the question of representations specifically designed to
support other set operations.

6.2 UNORDERED LISTS

The simplest implementation of the dictionary abstract data type is to represent
the set as a list of its elements, using any of the internal representations for
lists discussed in Chapter 3-a table in contiguous memory, or a singly or
doubly linked list structure, for example. These representations are also the
most general, in the sense that they apply to sets drawn from any universe,
whether the keys are ordered or not; the list is kept in whatever order results
from the particular sequence of operations that constructed it. The only operation
required on keys is the ability to tell whether or not two are identical. LookUp
is implemented as a simple sequential search, starting from the beginning of the
list and comparing the value being sought to the key of each successive item in
the list. If the dictionary has n elements then the cost of a LookUp is E(n), since
it takes linear time to find the last item in the list or to search for any key that
is not in the list at all. If a linked representation is used then insertions can be
done at any convenient position, but the implementation of the Insert operation
must first check that the key value is not already in the list. Thus an Insert
requires an implicit LookUp and is at least as costly as a LookUp. Similarly, a
Delete requires an implicit LookUp to find the position of the item to be deleted,
but the removal itself takes constant time if a linked representation is in use.
Moving to a contiguous-memory representation saves space but does not make

178 LIST AND TREE IMPLEMENTATIONS OF SETS

the operations any faster; the maximum size of the dictionary must be known
in advance, and deletions become problematical if "holes" are not to be created.
Thus with either a linked-memory or contiguous-memory representation of lists,
each of the dictionary operations take time /3(n) in the worst case if the lists
are unordered.

To get a more precise picture of the time required by the LookUp operation
when the dictionary is represented as a list, we measure the number of key
comparisons "K = K'?" performed during the operation. (It is reasonable to
focus on the situation in which LookUps are much more common than Inserts or
Deletes, so we concentrate on the cost of LookUps.) If a linked representation
is used, then n comparisons are needed to look up the last key in the list, or
any key that is not in the list at all. It seems that this representation has little to
recommend it, unless the size n of the dictionary is so small that even a linear
algorithm is reasonably fast.

The list implementation of dictionaries is more promising when we consider
the expected cost of operations rather than the worst-case cost, and contemplate
strategies that reorganize the list to reduce the expected search time. If the
LookUps have uniform distribution across the keys in the dictionary, that is, if
we are equally likely to do a LookUp on any one of the n keys of the dictio-
nary, then the expected number of comparisons is (EtnI i)/n = (n + 1)/2, so
the expected time for a successful LookUp is @(n), like the worst-case time.
In practice, however, the uniform distribution assumption is often violated dra-
matically; relatively few keys may account for most of the LookUps. Consider,
for example, the symbol table for a compiler, which is used to record informa-
tion about the various identifiers that appear in a program being compiled. If
the program is written in Pascal, there are probably many more occurrences of
begin and end than of any of the variable names invented by the programmer.

To model this situation, let the keys in the dictionary be K 1,..., Kns in
decreasing order of the frequency with which they are the subject of LookUps.
That is, we assume that when a LookUp occurs, its argument is K, with prob-
ability pI, ... , and Kn with probability pO, where p1 > P2 > ... n pn and

i= 1. (For the purposes of the present discussion, we ignore unsuccess-
ful searches, which always take $(n) time.)

Under these circumstances, the expected search time is minimized if the
list is in frequency order, that is, the keys are in the order K 1,..., Kn. In this
case the expected number of comparisons for a successful search is

n
COPT = iPi

i-i

since Ki takes i comparisons to find. To prove formally that no other ordering
of the keys can beat this one, suppose that the ordering with the minimum
expected number of comparisons were Km,, ... , KmnI where m1, . 1, rn is
a permutation of 1, ... , n and that pmn < pm1 for some i < j. Then reversing

6.2 UNORDERED LISTS 179

the positions of Ki, and Kmj in the list would reduce the expected number of
comparisons by ipm, + jPj - iPmj - jPm, = (i)(Pmj - Pm,) > 0. This
is essentially the same argument as was used in establishing the correctness of
the greedy algorithms on page 60.

If the probabilities of accessing the various keys are sufficiently different,
Coyr can be much less than the (n+1)/2 that we expect in the case of the uniform
distribution. To see this, suppose that pi = 2-i for i < n, and Pn = 2-n,1.
(For example, if n = 4, then the probabilities are 1, 1, 1, and 1.) Then the
expected number of comparisons is -L i .2-i + n2-nl, which is less than 2,
independent of n (compare this sum to the one on page 36).

Of course the actual probability distribution is unlikely to be known in
advance, and the dictionary may grow or shrink as it is used. The frequency-
ordered list is therefore useful mostly as a theoretical optimum against which
other orderings can be compared. It is quite reasonable, however, to reorder
the list as a result of searches that actually occur, in the hope of keeping
higher-frequency items closer to the beginning. To this end we consider two
heuristics-rules that result in behavior which may not be exactly predictable,
but which there is reason to believe will be good in general. One intuitively
appealing proposal is the

Move-to-Front Heuristic: After each successful search, move the item that
was sought to the front of the list.

If the list is represented in linked form, the Move-to-Front Heuristic is easy to
implement since it requires only a small number of pointer operations once the
search has been completed. Since high-frequency items are moved regularly to
the front, we expect them rarely to be far from the front; low-frequency items
will occasionally jump to the front, interfering for a while with searches for
more common items, but then they will gradually drift far back in the list as
they fail to be accessed for a long time.

It is not too hard to carry out a precise analysis of the expected number
of comparisons in a list constantly reorganized by means of the Move-to-Front
Heuristic. Let us assume that the process of looking up keys in the dictionary has
continued for a long time, so that all keys have been looked up several times
and the reorganization has reached a kind of steady state. (See Problem 11
for an assessment of the significance of this assumption.) Let p(i, j) be the
probability that Ki precedes Kj in the list; our first task is to find the value of
p(i, j) in terms of the values of pl, ... , p, In order for Ki to be before Kj
in the list, the last LookUp(Ki, S) must have occurred more recently than the
last LookUp(Kj, S). If we consider the last LookUp of a key that is either Ki
or Kj and ignore all other LookUps, then p(i, j) is the probability that of these
two possibilities, that LookUp is for Ki; therefore

p(i, j)= PiPi + Pj

180 LIST AND TREE IMPLEMENTATIONS OF SETS

The expected number of keys preceding Kj in the list is then ij p(i, j), so
the number of comparisons needed to find Kj is one more than this number.
Therefore the expected number of comparisons made in looking up a key is

n

CMTF = EPj (1 + E p(i, j))
j=1 i7&

n n

= Pi + Cup p(i, 3)
j=1 j=1 isj

= 1+ Zpp(i, a)

pipj

isjPi + P
isi

i<j Pi + Pj

How does CMTF compare with CopT? Let

a =E PiPj
i<j Pi + pj
n

=EP E Pi +P:

n

< pjZ(j -1) since Pi < 1 for each i and j

n

=CoP -1 since Gps= 1.
j=1

Therefore

CMTF I + 2=2 < 2.
COPT I + of

That is, the expected number of comparisons when the Move-to-Front Heuristic
is in use is no more than twice the optimum. If the list is stored in linked
form (so that moving an element to the front is cheap) and there is a reasonable
expectation that the probabilities for the various keys differ significantly from
each other, this rule can be recommended for its performance and low overhead.
Moreover, it reaches a "steady state" fairly quickly, and adapts fairly quickly if
the probabilities change over time.

An alternative to the Move-to-Front Heuristic is the

6.3 ORDERED LISTS 181

Transpose Heuristic: If the item sought is not the first in the list, move it
one position forward by exchanging it with the item just before it.

The expected performance of the Transpose Heuristic, once a steady state has
been reached, is even better than that of the Move-to-Front Heuristic. We do
not demonstrate the good performance of the Transpose Heuristic formally, but
the reason is clear intuitively: once a list is in roughly the correct order, an
occasional reference to a low-probability item does not derange the list very
much if the Transpose Heuristic is used; but under the Move-to-Front Heuristic
a low-probability item is moved all the way to the front of the list when it is
accessed and it then gets in the way of searches for high-frequency items until
it eventually settles back into its proper position towards the end of the list.
Although the Transpose Heuristic has good performance in the long run, it tends
to stabilize on a steady state more slowly than the Move-to-Front Heuristic since
it reorders the list less drastically at each step, and is therefore less suitable in
an environment where the probabilities change rapidly over time. For example,
if an element that has had low frequency for a long time, and has therefore
settled near the end of the list, suddenly becomes more frequently accessed, it
will move only gradually towards the front of the list, one position at a time,
and time required for it to reach the front of the list is bounded by the number
of items in the list. Under the Move-to-Front Heuristic an item can leap to the
front of the list in a single bound, no matter how long the list may be.

In Chapter 7 we shall encounter a tree version of the Move-to-Front Heuris-
tic, called "splaying," which leads to efficient implementation of the dictionary
operations.

6.3 ORDERED LISTS

If the key space has a linear order that can be tested easily and dictionary items
are kept in a list ordered by key value, then strategies can be applied to reduce
search times. At a bare minimum, the naive sequential search algorithm can be
"smartened" to recognize an unsuccessful outcome when a value greater than
the key sought is encountered in the list. Provided that the ordering of the key
space is unrelated to the frequency with which keys are sought, this strategy
reduces the expected number of comparisons in an unsuccessful search by 50%,
to n/2, but it has no effect on the time for successful searches.

Binary Search
A more effective approach is to use a tabular representation for the list and
binary search. We assume that the records in the table are ordered by their
Key field. The binary search algorithm has been seen several times before;
we repeat it here in its nonrecursive form as an implementation of the LookUp

182 LIST AND TREE IMPLEMENTATIONS OF SETS

function BinarySearchLookUp(key K, table T[O. . n - 1]): info
{Return information stored with key K in T, or A if K is not in T}

Left +- 0
Right +- n - I
repeat forever

if Right < Left then
return A (1)

else
Middle (Left + Right)/2] (2)
if K = Key(T[Middle]) then return Info(T[Middle])
else if K < Key(T[Middle]) then Right +- Middle - 1
else Left +- Middle + 1

Algorithm 6.1 Binary search of an ordered table.

operation (Algorithm 6.1). The algorithm returns the Info field of a table entry
with key K; if there is no such table entry, it returns A. Of course the loop does
not repeat forever; it eventually ends with execution of one of the two return
statements.

Figure 6.1 shows as a binary tree the sequence of values of Left, Middle,
and Right during all possible executions of the algorithm in case n = 10. The
round nodes show these three values as the algorithm finishes executing line (2);
therefore Middle is always L(Left + Right)/2j in these triples. The rectangular
nodes show the values of Left and Right when the algorithm ends unsuccessfully
at line (1); the value of Middle is omitted. Each path in the tree, starting at
the root, represents a possible execution. Uf the algorithm successfully finds
K as Key(T[i]), then the round node whc I'middle number is i represents its
termination point, and if the algorithm ends unsuccessfully because K is between
Key(T[i]) and Key(T[i + 1]), then the square node labelled "i + 1,, i" represents
its termination point. (The "0,, -1" and " 10,, 9" nodes represent cases in which
K is smaller than Key(T[O]) and larger than Key(T[9]), respectively.)

The tree of Figure 6.1 is a full binary tree constructed from the binary tree
consisting of just the round nodes by attaching a square child wherever a round
node has no child. Call a tree of this type an extended binary tree, and refer to
the round nodes as internal nodes and to the square nodes as external nodes.
In any extended binary tree there is one more external node than internal, for
the same reason that in any full binary tree there is one more leaf than there are
nonleaves (page 101).

We can use the extended binary tree to analyze exactly the performance of
binary search. Let us count one comparison for each distinct item T[i] with
whose key K is compared; this provides an accurate measure of the running

6.3 ORDERED LISTS 183

Figure 6.1 Tree of possible executions of binary search algorithm on a table
of size 10. Each node shows the values of Left, Middle, and Right.

time of the algorithm.* If the algorithm terminates successfully, the number
of comparisons it has made is one more than the depth of the internal node
corresponding to its termination point; if it terminates unsuccessfully, the number
of comparisons is equal to the depth of the corresponding external node.

If the number n of internal nodes is 2 k - 1 for some k, then the internal
nodes form a perfect binary tree of height k -1; this can be proved by induction
(Problem 14). It follows that the maximum depth of an internal node is [lg nJ,
and the maximum depth of an external node is [lg nj + 1; there are also external
nodes at depth [lg n] unless n is one less than a power of two. Consequently,

* THEOREM (Binary Search) The binary search algorithm uses be-
tween 1 and Llg nJ + I comparisons in a successful search of a table of
size n, and either Llgn] or [lgnj + 1 comparisons in an unsuccessful
search ([1g n + 1 exactly, if n is one less than a power of two). D

What about the expected number of comparisons used by the binary search
algorithm? In an unsuccessful search, the expected number must be more than
Llg n] but at most [lg n] + 1, so it is pinned down about as well as we could
hope; but in the case of a successful search, it is not obvious where in the range
from 1 to [lg n] + 1 the expected number lies. Are there enough opportunities
for the algorithm to terminate quickly (that is, at a node close to the root) to
make the expected number of comparisons significantly less than Llgn] + 1?
Intuition suggests not, since the number of internal nodes at depth d drops off
so rapidly as d decreases from Llg n] to 0. This intuition is correct.

*Thus in Algorithm 6.1 we do not count the Right < Left comparison, and we count only a single
comparison in the lines following (2) even if both the equality and inequality comparisons are
executed. Counting more than one comparison per execution of the repeat loop would change the
total number of comparisons by a constant factor of three at most.

184 LIST AND TREE IMPLEMENTATIONS OF SETS

* THEOREM (Expected Binary Search) In a successful binary search
of a table of size n, the expected number of comparisons is between
Llg nj - 1 and [lg nj + 1, provided that searches have uniform distribution
across the n keys.

PROOF If T is an extended binary tree with n nodes having depths
dj, ... , dn, then define the internal path length of T to be the sum of
the depths of all its internal nodes, that is, I = EnU1 di. Similarly, define
the external path length E to be the sum of the depths of all the external
nodes. Then in any extended binary tree with n internal nodes, E = I+2n.
(This is easily proved by induction; see Problem 15.) Now let CEXP denote
the expected number of comparisons in a successful search of a table of
size n, with all elements equally likely to be sought. Since the number of
comparisons used in a successful search is 1 more than the depth of the
corresponding internal node,

InE - 2n E
CEXP = (di + 1) + I= + =--1.

n i=, n n n

Since each of the n + 1 external nodes has depth greater than or equal
to Llg nj, E > (n + l)Llg nJ, and therefore

n + 1
CEXP > Llg nj - 1 > Lgnj -1.

No successful search can take more comparisons than the costliest unsuc-
cessful search; and since an unsuccessful search uses [lg nj + 1 comparisons
at most,

Llg nj-1 < CExp ' Llg nj + 1. C

The performance of binary search is therefore extremely stable; its expected
running times and its worst-case running times, for both successful and unsuc-
cessful searches, are all very close to each other.

Interpolation Search
When I look up a number in a telephone book, I use a strategy that resembles
binary search but differs from it in an important respect. The first page I look
on is not always the same, and not always in the middle of the book; if I am
looking up "Boone," I look first close to the beginning of the book, and if am
looking up "Wilson," I look near the end of the book. I use my knowledge of
the rough percentage of names preceding a given one to estimate a position in
the book where I expect the given one might appear. If I am wrong, I use the
names on the page I do turn to in order to revise my estimate.

This strategy is the basis for the interpolation search algorithm. Note that
it requires a somewhat different model for the possible operations than we have

6.3 ORDERED LISTS 185

function InterpolationSearchLookUp(key K, table T[O. . n - 1]): info
{Return information stored with K in ordered table T, or A if K is not present}
{Table positions T[-1] and T[n] are assumed to be available to the algorithm}

Key(T[-lj) -1
Key(T[n]) N
Left +- 0
Right +- n - 1
repeat forever

if Right < Left then return A
else

K - Key(T[Left - 1])
Key(T[Right + 1]) - Key(T[Left - 1])

Middle - [p * (Right - Left + 1)3 + Left
if K = Key(T[Middle]) then return Info(T[Middle])
else if K < Key(T[Middle]) then Right +- Middle - 1
else Left -- Middle + 1

Algorithm 6.2 Interpolation search.

been using heretofore; we must not only be able to tell whether one key value
precedes or follows another, we must have a measure of how far apart they are.
The simplest situation in which interpolation search can be applied is when the
keys are integers in the range from 0 to some large number N - 1. We assume
that we are to search a table T[O. . n-1], where 0 < Key(T[O]) < Key(T[1]) <
* * < Key(T[n - 1]) < N - 1; moreover the probability distribution of the N
possible keys is uniform. It simplifies the description of the algorithm if we
assume that the table positions just before the first and just after the last can
be used to store key values that are out of range. Algorithm 6.2 presents the
Interpolation Search technique.

The search is confined to the portion of the table between indices Left and
Right inclusive; on each iteration of the main loop the key values residing just
beyond these boundaries are used to calculate the next position to be probed.
More precisely, at the beginning of each iteration of the repeat loop, no key
in the range of indices from Left to Right inclusive has been examined, but the
keys at positions Left - 1 and Right+ 1 have been seen already. The variable p is
a number, strictly greater than 0 and strictly less than 1, describing the fraction
of the distance from position Left to position Right+ 1 where the next probe into
the table should occur; this is calculated as the ratio of the difference between
the key value sought and the value just beyond the left end of the interval, to
the difference in key values just beyond the two ends of the interval. When this
fraction is converted to an index Middle, the result is rounded down to make

186 LIST AND TREE IMPLEMENTATIONS OF SETS

it an integer in the range from Left to Right inclusive. If the key is not found
at this position, one of the two ends of the interval is adjusted, just as in the
binary search algorithm, before the next iteration takes place.

For example, suppose that n = 10, N = 1000, and the table T[-1.. 10]
contains

-1 0 1 2 3 4 5 6 7 8 9 10
-1 11 72 93 260 316 431 788 798 903 910 1000

Here the real data are in T[0..9]; T[-1] and T[10] have been filled as they
would be in the first two steps of the algorithm. Let us trace the steps to find
316 in this table. Initially Left = 0 and Right = 9, so the first calculation of p
is

P -301060 -(-I)) = 0.31668,
1000 -(-I)

whence Middle +- [0.31668(9 - 0 + 1)J + 0 = 3. T[3] = 260, which is too
small, so Left -- 4. On the next iteration

316 -260
p + ~ 2260 = 0.07568,

1000 -26

which yields Middle -- LO.07568(9 - 4 + 1)] + 4 = 4, and indeed T[4] is the
desired element.

The performance characteristics of this algorithm are quite interesting. The
worst-case performance is much worse than for binary search; in fact, one can
concoct sequences of n keys that will force this algorithm to iterate n times
before finding the key or concluding failure. However, these sequences are so
"skewed" that they are extremely unlikely to arise if the distribution of key
choices is truly uniform (Problem 21). On the other hand, the expected-case
performance of this algorithm is astonishingly good: The expected number of
iterations of the loop of the Interpolation Search algorithm is just Ig Ig n plus
a constant less than 1. This means, for example, that the expected number
of comparisons to pinpoint an element of a table of size 23 2 -more than four
billion-is less than 6. The very small number of loop iterations for tables of
feasible size is counterbalanced by the greater complexity of the calculations that
happen within the loop; Algorithm 6.2 uses real arithmetic, while Algorithm 6.1
can be implemented, on many computers, with only addition of small integer
indices and "shift" operations to divide the sum by 2. Nonetheless the algorithm
can sensibly be applied when the cost of testing an element of the table is
relatively large. For example, if the table is stored externally, examining each
element might mean reading a new disk block, so it might be worth calculating
extensively with known data in order to reduce the number of requests for new
data.

The analysis that establishes the O(lglgn) expected performance of this
algorithm requires a bit of probability theory and statistics (see the references
on page 217).

6.3 ORDERED LISTS 187

We mentioned that this algorithm relies on a uniform probability distribution
for its fast operation. If the distribution is known but not uniform, it is (in theory)
easy to fix the interpolation formula to be appropriate. For any key value K, let
F(K) be the probability that a LookUp is for a key value < K. Then change
the interpolation formula in the algorithm so that it uses, instead of key values,
F of those values (Problem 23). Finding a suitable formulation for F may well,
however, be problematical.

Skip Lists
It is, of course, impossible to do binary search, much less interpolation search,
on a linked list. There is simply no way to calculate, from the addresses of two
records, the address of a record with an intermediate key value, since the records
can be scattered in memory arbitrarily. Suppose, however, that an ordered list
were structured so that the second, fourth, sixth, . . . records were linked together
by a separate pointer field, and the fourth, eighth, ... were linked together by
a third pointer field, and so on (Figure 6.2(a)). About Ig n pointers per element
would be needed to fully link a list with n records, but most records would
not need that many pointers; half the records would need just a single pointer
field, and of the remainder, half would need only one extra pointer, and so on.
Let us call the original pointers the level-O pointers, and in general call the
pointers that skip forward 21 records the level-i pointers. A header node would
have an unused key field but would have the initial pointers of all levels. With
this representation the high-level pointers could be used during a search to skip
rapidly through large segments of the list; only when a high-level pointer led to
a record with a key greater than the search key would a lower-level pointer be
followed instead. The search algorithm would be roughly:

Starting with the pointers of the highest level, follow pointers until a record
with key greater than or equal to the search key is encountered. If
the key encountered is equal to the search key, stop-the search has
succeeded; if it is greater than the search key, back up one pointer and
continue following the pointers of the next lower level. If a level-O
pointer leads to a key greater than the search key, stop-the search
has failed.

"Backing up" does not require truly reversing direction, but simply keeping track
of the source of the last pointer followed. For this algorithm to be completely
correct, the A record should have a key value exceeding any possible real key.

If the list were perfectly organized as shown in Figure 6.2(a), any record
could be found (or discovered not to be present) in O(log n) steps, since there
are only Ig n levels and we could follow only two pointers per level before
dropping down to a lower level. In fact the access pattern would be much the
same as for binary search.

While lists with the structure of Figure 6.2(a) would have good performance
characteristics for searching, they would be utterly impractical if the data might

188 LIST AND TREE IMPLEMENTATIONS OF SETS

Level

3
2

1

To

(a)

Level

3

2

1

0

(b)

Figure 6.2 (a) A "perfect" skip list of 8 records. (The specific arrangement
of fields and pointers within records was chosen for visual clarity, not
physical accuracy; the key field would most naturally be the first field
in a record, and all pointers would point to the beginnings of records,
not to the corresponding pointer fields of those records.) The heavier
pointers indicate those that are followed during a search for key value 46.
Starting from the header, first follow the level 3 pointer; it leads to a
record with key 70, so we have gone too far. Drop down to the level 2
pointer; it leads to 22, so we have not gone far enough. Following the
level 2 pointer out of that record again leads to 70, so drop down to
the level 1 pointer. It leads to 48, so we have gone too far. The level 0
pointer leads to 43, and its level 0 pointer leads to 48, so 46 is missing.
(b) A "random" skip list. Records with various numbers of pointers exist
in roughly the same proportions as in (a), but their succession is not
predictable. Once again, however, the search can proceed by using the
pointers in order of decreasing level, dropping down a level whenever a
pointer leads to a record whose key is greater than that of the search key.
The heavier pointers again show those followed during an unsuccessful
search for the key value 46.

change, since inserting even a single item could force the data structure to be
completely reorganized. Let us call a record with i + 1 pointers, having levels 0,
1, . . ., i, a level-i node in the structure. Then inserting a record at the front of the
list-for example, inserting a record with key value 2 in Figure 6.2(a)-would
cause every node already in the list to change levels.

However, the expected performance of the structure will be roughly the same
if, instead of the perfect alternation of levels shown in Figure 6.2(a), the same
general pattern were followed, with the nodes of various levels present in roughly
the same proportions, but scattered randomly through the list (Figure 6.2(b)).
Nodes of higher level are relatively infrequent, and therefore the pointer chains

6.3 ORDERED LISTS 189

of higher levels enable a search to skip rapidly down the list. (We shall analyze
the performance more precisely below.) Now if we do not need to maintain
perfect structure, but need only ensure that nodes of the various levels exist in
the right proportions and are likely to be scattered uniformly through the list,
the insertion problem becomes much simpler. To insert a node, find its proper
position in the list, and generate its level randomly, subject to the condition that
for any i the level should be twice as likely to be i as to be i+ 1 or greater. Most
programming environments have random-number generators that make this an
easy calculation.

It is possible that through bad luck a long sequence of insertions might
occur at level 0, in which case the structure would not resemble Figure 6.2
but would simply be an ordinary linked list with its poor search characteristics.
But this circumstance is highly improbable; for example, the likelihood that a
sequence of 20 insertions would all be at level 0 is only (1/2)20, or less than
one in a million. Moreover these odds do not depend on the key values in any
way; there are no "bad" sequences of key values for this algorithm, only "bad"
sequences of outputs from the random-number generator. If the same keys were
inserted into a new structure using a new sequence of outputs from the random-
number generator, the odds that all 40 insertions would be at level 0 would be
only (1/2)4".

To give the details of the algorithms for these skip lists, we need to fix
a maximum level for the nodes, since there would be no use in having levels
so high that the entire list would be skipped at once. The maximum useful
level is about lg n - 1, since only one node is expected to have a level greater
than this (see Problem 31). For convenience we set MaxLevel = [lg NJ - 1,
where N is the largest anticipated size of the data structure. For example, if
N = 16384, then MaxLevel is 13, corresponding to a structure in which the
nodes have fourteen possible levels.

The skip list itself is a record structure of two fields: Header, which is
dummy node to begin the lists, and Level, which is an integer giving the largest
level of any node currently in the list. A node has, in addition to its Key and Info
fields, a table Forward of pointers; the size of this table depends on the level of
the node, but that number does not need to be stored in the node. Initially the
Level of an empty skip list is 0 and all the pointers point to a A record whose
key value exceeds any possible real key. The search algorithm is then as shown
in Algorithm 6.3.

To insert in a skip list we need first of all a routine to generate appropriate
random level numbers. If we assume that a function Random() is available that
returns a random number x in the range 0 < x < 1, then RandomLevel() does
the trick (Algorithm 6.4).

To insert a record with a new key in a skip list, begin by using the search
algorithm to find its proper location (Algorithm 6.5). During the search process,
a table Update[0. . MaxLevel] is maintained; Update[i] will contain a pointer

190 LIST AND TREE IMPLEMENTATIONS OF SETS

function SkipListLookUp(key K, pointer L): info
{Return information stored with key K in skip list L, or A if K is missing}

P +- Header(L)
for i from Level(L) downto 0 do

while Key(Forward(P)[i]) < K do P +- Forward(P)[i]
P +- Forward(P)[0]
if Key(P) = K then return Info(P)
else return A

Algorithm 6.3 Search in a skip list.

function RandomLevel(): integer
{Produce a random level between 0 and MaxLevel}

v +-O
while Random() < 2 and v < MaxLevel do v -v + 1
return v

Algorithm 6.4 Generate a random level in the range 0, . . ., MaxLevel with ex-
ponentially declining probabilities, by repeated calls on a routine that generates
reals in the range O < x < 1.

to the rightmost node of level i or higher that is to the left of the position
of the insertion. When that position has been located, a node of a randomly
generated level NewLevel is created and is spliced into all the lists of levels up
to NewLevel. The function NewCell(Node, i) returns a skip list cell of level i.

Deletion from a skip list is quite similar to insertion (Problem 28(c)).
We are now ready to demonstrate good performance of skip lists in the

expected case.

* THEOREM (Skip List) When skip lists are used, the dictionary oper-
ations of LookUp, Insert, and Delete all take time O(log n), where n is the
size of the dictionary, and MakeEmptySet and IsEmptySet take constant
time.

PROOF The only hard part is to establish that searching for a node
in a skip list is expected to take logarithmic time; the logarithmic cost of
LookUp, Insert, and Delete all follow from this, and it is easy to see that
MakeEmptySet and IsEmptySet take constant time (Problem 28). A search
starts at the pointer of level Level(L) in the header node and proceeds by
steps of two kinds: following pointers within a level, and dropping down
within a node from a level to the next lower level. When we follow a

6.3 ORDERED LISTS 191

procedure SkipListlnsert(key K, info I, pointer L): pointer
{Insert information I with key K in skip list L}
{If a new node is inserted, Update[i] will point to

the existing node that will precede the new node in the level i list}
P +- Header(L)
for i from Level(L) downto 0 do

while Key(Forward(P)[i]l) < K do P +- Forward(P)[i]
Update[i] +- P

P +- Forward(P)[O]
if Key(P) = K then Info(P) +- I
else

NewLevel +- RandomLevel()
if NewLevel > Level(L) then {A new maximum level for this list}

for i from Level(L) + 1 to NewLevel do
Update[i] +- Header(L) {Link node directly to header}

Level(L) *- NewLevel
P +- NewCell(Node, NewLevel) {Create node of level NewLevel}
Key(P) +- K; Info(P) +- I
for i from 0 to NewLevel do {Splice it into NewLevel + I lists}

Forward(P)[i] <- Forward(Update[fi])[i
Forward(Update[i])[i] - P

Algorithm 6.5 Insertion of a new key in a skip list. If the key is already
present, replace the associated information; otherwise create and insert a new
record.

pointer, its level is always equal to the level of the node to which it points.
We shall calculate the expected length of such a search path, counting either
pointer-following or level-dropping as a step of cost 1.

To calculate the expected length of a path to reach a node of level 0
in the list, we trace the path backwards. More generally, we ask: Suppose
we are tracing a path backwards from a pointer of level i in a node P;
how long should we expect the path to continue before it rises k levels? If
we focus just on node P at the end of the path, there are two possibilities;
either

1. P is a node of level i and the path proceeds backwards one pointer to a
node of level at least i, from which it still must rise k levels, or else

2. the path rises a level in node P and must yet rise k - 1 more levels as
it proceeds backwards from P.

Each of these cases has probability . Therefore, if we let Ck) be
the expected length of a path that rises k levels on its backward trajectory,

192 LIST AND TREE IMPLEMENTATIONS OF SETS

we get the recurrence

C(k) = 2 ' ((cost of going back one pointer at level i) + 0(k))
+ 2 ' ((cost of going up from level i to i + 1) + C(k - 1))

= (1+ C(k)) + 2(+ C(k- 1))

and therefore

C(k) = 2 + C(k- 1),

which leads to the solution C(k) = 2k since C(0), the path length needed
to rise 0 levels, is 0. This analysis is actually a bit pessimistic, since it
assumes that the path does not reach the header node in the course of rising
k levels; once the header node is encountered the path can only rise, not
proceed leftward.

Now we apply this analysis to determine the length of a path from
a node of level 0 all the way back to the pointer of level Level(L) in the
header node. To get from a node of level 0 back to a node of level ig n - I
is expected to take 2(1gn - 1) steps. If this path does not end at the header
node, we need to follow a path through pointers of levels lg n - 1 and
higher back to the header node, but the expected number of leftward steps
in this path is no more than the expected number of nodes of level Ig n - 1
or higher in the entire list. Since the probability that a node has level i or
higher is 1/2 i (Problem 31), among the n nodes the expected number of
level Ig n- 1 or higher is

nm (l) gn = n .- .2 = 2.2 n

If Level(L) > Ign - 1 the path must also rise Level(L) - (Ign - 1) steps,
but the expected value of Level(L) is at most Ig n + 1 (Problem 30), so the
expected rise beyond level 1gn - 1 is at most 2. Therefore the expected
total path length is

2(1gn-1) + 2 + 2 = 2gmn + 2 E O(logn),

and so the dictionary operations LookUp, Insert, and Delete, which take
time linear in the length of the path traversed, have running time O(log n)
in the expected case. D

On the other hand, there is no guarantee about the worst-case performance
of the skip list algorithms, except that it is not much worse than the worst case
for the corresponding linked list algorithms. But the worst case is exceedingly
unlikely, and more importantly is out of the control of the agent supplying the
data. The worst case depends only on the performance of the random-number
generator within the skip list algorithms themselves; the algorithms would be
immune even to attack by a malicious adversary who knew the program code

6.4 BINARY SEARCH TREES 193

and supplied specially chosen sequences of insertion and deletion requests in an
attempt to force the worst-case behavior to occur.

Though skip lists are a relatively recent invention, experimental evidence
suggests that they are competitive in performance with the more sophisticated
balanced-tree dictionary structures discussed in Chapter 7, and are much easier
to program. One useful generalization: there is no need to organize the lists
so that nodes of each level are half as frequent as those of higher levels. The
ratio can be any other fixed number, and because of the overhead of pointer
manipulations it probably makes sense to use a somewhat lower ratio, such as
one-fourth, that will make the pointers somewhat sparser. Problem 33 explores
the impact of choosing a different ratio on the details of the proof of the Skip
List Theorem, which remains true as stated.

6.4 BINARY SEARCH TREES

As described on page 108, a binary search tree is a binary tree having a value
associated with each node, such that the values have a linear order, and at each
node the value is greater than any value in the left subtree and less than any value
in the right subtree. Binary search trees are a natural structure for implementing
dictionaries, since a LookUp is done by following a single path starting at the
root, thus avoiding all nodes not on that path.

Let us assume that the tree nodes have Key and Info fields for storing the
key value and any associated information, as well as the customary LC and RC
fields for the child pointers. Then Algorithm 6.6 presents the implementation of
the LookUp operation; the algorithm simply echoes the recursive definition of
the binary search tree property, following the LC or RC pointer at each node,
depending on the relative order of the key sought and the value stored at the
node.

Algorithm 6.6 is tail-recursive; it is a simple matter to make it iterative by
changing the first if statement to a while and replacing the recursive calls by
assignments to P (Algorithm 6.7).

The maximum height binary tree with n nodes has height n- 1; this happens,
for example, if all the LC pointers are A, so that the tree is really a linked list
with an extra field in each record. The minimum height binary tree with n
nodes has height [lg nj; the tree corresponding to binary search of a table of
size n is one such minimum height binary tree (see Figure 6.1 on page 183).
Hence the worst-case search time, over all possible binary search trees with n
nodes, is @(n); but in the best n-node binary search tree, the worst-case search
time is E(log n).

It is possible to regard binary search in an ordered table (Algorithm 6.1
on page 182) as search of a special kind of binary tree (Figure 6.1), whose
structure is represented implicitly by arithmetic relations among the indices,

194 LIST AND TREE IMPLEMENTATIONS OF SETS

function BinaryTreeLookUp(key K, pointer P): info
{Find key K in tree P, by recursive search, and return its Info}
{Return A if there is no such record}

if P = A then
return A

else if K = Key(P) then
return Info(P)

else if K < Key(P) then
return BinaryTreeLookUp(K, LC(P))

else {Now we know that K > Key(P)}
return BinaryTreeLookUp(K, RC(P))

Algorithm 6.6 Recursive implementation of LookUp for binary tree dictionary.

function BinaryTreeLookUp(key K, pointer P): info
{Find key K in tree P, by iterative search, and return its Info}
{Return A if there is no such record}

while P : A do
if K = Key(P) then

return Info(P)
else if K < Key(P) then

P <- LC(P)
else {Now we know that K > Key(P)}

P +- RC(P)
return A

Algorithm 6.7 Iterative implementation of LookUp for binary tree dictionary.

rather than explicitly by pointers. In this view each subtree consists of the
elements in a subtable T[Left . Right]; its root is the element T[Middle], where
Middle = [(Left+Right)/2j, and the left and right subtrees are those consisting
of T[Left.. Middle -1] and T[Middle + 1 .. Right].

Insertion
Up to this point explicitly represented binary search trees offer no advantages
over ordered tables and binary search; but we have not considered the cost of
insertions. Insertion in a table is expensive, since a "hole" has to be made to
hold the new item; this costs ((n). In a binary search tree, however, insertion
costs E(1) if we are willing always to insert at the leaves, and if the time to
find the insertion point is not counted as part of the cost of the insertion. Let
us scrutinize these provisos a bit more carefully.

6.4 BINARY SEARCH TREES 195

Figure 6.3 A binary search tree, with external nodes added to represent the
ranges of keys on which a search may fail.

Figure 6.3 shows a binary search tree which has been augmented with
external nodes; we might call this an extended binary search tree, by analogy
with the extended binary trees introduced in the discussion of binary search
(Figure 6.1 on page 183). The external nodes in essence represent ranges of
keys between the keys stored in the tree, or less than the smallest key or greater
than the largest. External node 2, for example, represents all keys greater than F
and less than M. Note that the external nodes are not actually new nodes added
to the data structure; instead, they are illustrations of the various occurrences
of A as LC and RC pointers in the binary tree.

Suppose that we search the tree for H; the search fails, and we wish to insert
H in the tree. The simplest insertion strategy is to add a new node in place of
the external node that is reached when the search fails; for example, a node with
key H would be added to this tree in place of external node 2. The modified
tree has one new internal node, for H, which replaces a prior external node; this
new internal node has two new external children. Adding nodes as leaves has
the advantages of minimal work, since only one pointer needs adjustment, and
convenience, since the search routine leads us directly to the insertion point.
Algorithm 6.8 is a modification of Algorithm 6.7 with insertion code added.
This routine should be called with an argument which is a locative that points
to the root of the tree; this makes it possible for the routine to change the pointer
field where the A is eventually discovered if the search is unsuccessful, even if
the tree is initially empty so that the ordinary value of P is A initially.

However, a leaf may not be the best place to add a node. For example, if
the data are sorted before insertion, Algorithm 6.8 will produce a tree that is
nothing more than a linked list, with one child pointer of each node empty. More
generally, data that are approximately in order, either increasing or decreasing,
will produce trees that are "skinny" rather than "bushy," and will in general take
longer to search. We shall study in detail in the next chapter several strategies
for controlling the height of trees when doing insertions.

What is the expected time for a successful search in a binary search tree?

196 LIST AND TREE IMPLEMENTATIONS OF SETS

procedure BinaryTreelnsert(key K, info I, locative P):
{Initially P is a locative that points to the root of the tree}

while P $ A do
if Key(P) = K then

Info(P) -- I
return

else if K < Key(P) then
P LC(P)

else {Now we know that K > Key(P)}
P RC(P)

{Create new node and add it as a leaf}
Q +- NewCell(Node)
Key(Q) +- K; Info(Q) +- I
LC(Q) - RC(Q) - A
P = Q

Algorithm 6.8 Insertion at leaves of binary search tree.

If the leaves all have the same depth, or the depths of the leaves differ by at
most 1, then the tree has a shape similar to that of Figure 6.1 on page 183, and
by the Expected Binary Search Theorem the expected number of comparisons
is between [lg nj -1 and [lg nj + 1. On the other hand, a tree that is essentially
a linear list has a much larger expected number of comparisons-(n+ 1)/2. (As
in the analysis of binary search, we count only a single comparison per iteration
of the while loop of Algorithm 6.8.) If trees are constructed by "random"
insertions at the leaves, is the expected search time logarithmic, or linear, or
perhaps something in between? In other words, if a tree is constructed by random
insertions, are we more likely to wind up with a reasonably well-balanced tree
of logarithmic height, or a stringy tree of linear height?

It turns out that the expected number of comparisons in a successful search
of a randomly constructed tree is only 39% more than the theoretical minimum;
well-balanced trees predominate. This is a gratifyingly low figure, and implies
that a procedure like Algorithm 6.8 may reasonably be used in applications such
as compiler symbol tables where the order of insertions can be expected to be
random.

As with all expected-case analyses, it is important to pin down the assump-
tions about the probability distribution of events. A fair definition of "random
insertion" in this context is the following assumption: Suppose that m keys
K, < K2 < ... < Km have already been inserted in the tree, in some unspec-
ified sequence. Then the next key inserted, say K, is equally likely to belong
in any of the m + 1 possible positions: K < KI, or K1 < K < K2 , ,

6.4 BINARY SEARCH TREES 197

Km-I < K < Km, or Km < K. Another way of stating the same assumption
is that when a tree of size n is constructed, each of the n! permutations of
the key values is equally likely to be the order in which the keys are inserted
(Problem 35).

* THEOREM (Expected Binary Search Tree) Let Sn be the expected
number of comparisons in a successful search of a randomly constructed
n-node binary tree, and let Un be the expected number of comparisons
in an unsuccessful search. Then

Sn=2 (1+-)Hn-3 z 2lInn 1.3861gn, and

U- = 2Hn+l -2 z 1.386 lg(n + 1),

where Hn is the nth harmonic number.

PROOF The crux of the proof is to recognize that it takes one more
comparison to find a key in a successful search than it took to insert the key
in the unsuccessful search that preceded its insertion. Therefore U- 1 + 1
is the expected time to find the key that was inserted ith. Now when an
n-node tree is searched, the key sought is equally likely to be the one that
was inserted first, second, ... , or nth, so

(Uo + 1) + (U + 1) + + (Un-1 + 1) I 1 -E

n i=O

But we have anoth' relation between Sn and Un on the basis of internal and
external path length. The expected number of comparisons in a successful
search is 1 more than the average internal path length, and the expected
number of comparisons in an unsuccessful search is the average external
path length. Letting I,, and En denote the expected internal and external
path length, respectively, we have Sn = I + (In/n) and Un = En/(n + 1)
(since there are n internal nodes but n + 1 external nodes). Furthermore
En = In + 2n as was used in the proof of the Expected Binary Search
Theorem. Together these imply that

En -2n n +lI
Sn = 1 + -= Un - 1. (1)

ni n

Substituting this value for Sn in the previous equation and simplifying
yields

n-I
(n+ 1)Un = 2n+ZUi.

i=O

198 LIST AND TREE IMPLEMENTATIONS OF SETS

Replacing n by n - 1 gives

n-2

nU 1-, = 2n - 2 + Ui,
i=O

and subtracting the left sides and right sides of these two equations yields

(n + l)Un -nUn-I = 2 + Un-,

or in other words
2

Un = +Un-I.

The value of Un-, can be expressed in terms of Un- 2 in the same way,
and after repeated substitutions we have

2 2 2
Un = + -+ ' . + - + U0'

n+1 72 2

and since Uo = 0,

Un = 2H.+1 - 2.

Then by Equation (1),

Sn =- Un _1 = n-1(2Hn+ - 2)- 1
n n

= U(H n + 1-1)- 1 2-1)

Deletion
When a node is deleted from a binary search tree, the inorder traversal of
the remaining nodes must yield the keys in the same order they had before
the deletion. If the node to be deleted is a leaf, it is a simple matter to replace
the appropriate pointer in the node's parent by A. (For example, in Figure 6.4(a)
and (b), deleting node N simply changes the right child of M to A.) Also, if
the node is not a leaf but has only one child, the correct effect is achieved if
the appropriate pointer in the node's parent is replaced by a pointer to the child.
(For example, in Figure 6.4(a) and (c), to delete M we can simply make N
the left child of P.) Difficulties arise only in the case in which the node to be
deleted has two nonempty children. The strategy to be adopted in this case is
to replace the node by its inorder successor, and to delete the inorder successor.
Since the inorder successor of a node that has a right child has no left child,
the operation of deleting the inorder successor in this case is a simple one. For
example, in Figure 6.4(a) and (d) we delete the root node F by replacing F
by M and deleting M.

Algorithm 6.9 gives the precise details. This routine uses a locative P that
points initially to the root of the tree, and ultimately to the node to be deleted,

6.4 BINARY SEARCH TREES 199

(a) (b)

(c) (d)

Figure 6.4 Deletion from a binary search tree. (a) Original tree. (b) Tree
of part (a) after deleting the leaf N. (c) Tree of part (a) after deleting
node M, which has one child N; that child replaces M. (d) Tree of
part (a) after deleting node F, which has two children; F is replaced by
its inorder successor in the tree, node M.

which is discovered by searching for the key value that has been passed as an
argument. If the node to be deleted has no right child, then the node is deleted
by replacing it by its left child (which may or may not be empty); otherwise, it
is replaced by its inorder successor.

This deletion algorithm has an asymmetry-the node deleted is either the
node containing the key or its inorder successor, but never its inorder prede-
cessor. Over time, even a "random" sequence of deletions interspersed with
random insertions can cause the root to migrate towards the right and the tree to
become skewed to the left. Eventually the average search path will have length
E(V/ii), rather than O(log n). This tendency towards increasingly unbalanced
trees when deletions are mixed in with insertions can be combatted by choosing
at random, when a deletion must be performed, between Algorithm 6.9 and
its symmetric counterpart in which inorder predecessors are deleted instead of
inorder successors.

200 LIST AND TREE IMPLEMENTATIONS OF SETS

procedure BinaryTreeDelete(key K, locative P):
{K is the key value of the item to be deleted}
{P is a locative that points to the root of the tree}

while P 5$ A and Key(P) 5$ K do
if K < Key(P) then P + LC(P) else P +- RC(P)

if P = A then return {Key K is not in the tree}
if RC(P) = A then P 4= LC(P)
else {Locative P points to the node to be deleted}

{Find the inorder successor. Q is a locative}
Q +- RC(P)
while LC(Q) $ A do Q +- LC(Q)
{Replace the node P to be deleted by its inorder successor Q.

and delete that node}
P Q
Q RC(Q)

LC(Q) LC(P) |
RC(Q)/ RC(P)I

Algorithm 6.9 Deletion of an item from a binary search tree.

6.5 STATIC BINARY SEARCH TREES

The assumption that LookUps are uniformly distributed across keys is likely
to be inaccurate in many applications, so it is worth considering strategies that
lessen the search time to find the more frequently accessed keys. On page 177
we considered such a strategy for organizing a list implementation of a dic-
tionary, and concluded that the best possible ordering keeps the keys in order
by frequency of access. The analogous line of thought in the case of binary
trees suggests that more frequently accessed keys ought to be kept closer to the
root. This is a plausible principle; it is the essential idea behind Huffman codes
(§5.4). However, this idea cannot be put into effect naively, since the inorder
traversal of the nodes must be maintained (unlike in the case of Huffman cod-
ing). Conflicting objectives can come into play, since the dictionary ordering of
the keys can be at odds with their frequency ordering.

Consider, for example, the keys A, B, and C, and assume that their fre-
quencies are 0.35, 0.3, and 0.35, respectively. There are five possible bi-
nary search trees on these three nodes (Figure 6.5). The symmetric tree (Fig-
ure 6.5(c)), which would clearly minimize the expected search time if all keys
were equiprobable, has the low-frequency key at the root. On the other hand,
if a higher-frequency key is moved to the root then the height of the tree is
increased. As it turns out in this particular case, the symmetric tree is the best;
the expected number of comparisons is

2-0.35 + 1 .0.3+2 -0.35 = 1.7.

6.5 STATIC BINARY SEARCH TREES

A C

(a) (b) (c) (d) (e)

Figure 6.5 The five binary search trees on three keys.

But with other probability distributions the advantage of having a high-frequency
key at the root outweighs the disadvantage of increasing the depth of some nodes
of the tree. For example, if A, B, and C have frequencies 0.45, 0.1, and 0.45,
respectively, then Figure 6.5(b) and (d) are superior to Figure 6.5(c).

Optimal Trees
An optimal binary search tree is one that minimizes the expected search time.
How can we find an optimal tree, given the access frequency of each key? (There
can be more than one optimal tree; for example, in the example just given, the
trees of Figure 6.5(b) and (d) are both optimal.) A brute-force approach that
checks each of the possible binary search trees is impractical, because there are
far too many trees to check. (The number of binary trees on n nodes turns out
to be (2,)/(n + 1), where (m) = m!/n!(m - n)!. The number of binary trees
is therefore in E(4'n- 3/2).) A little planning cuts down the work considerably,
however.

Let the keys be K1 < K2 < ... < Kn in their dictionary order, and let pi
be the probability of accessing Ko. Thus n 1pi = 1. (We omit consideration
of unsuccessful searches; these techniques can be extended to optimize the
tree when the external nodes also have known probabilities, that is, when the
probability of searching for a key between Ki and Ki, 1 is known for each i.)

Now let 1 < j < k < n, and let T be any tree constructed from the keys
Kj, ... , Kk. As on page 148, we define DepthT(Ki), where j < i < k, to be
the depth in T of the node where Ki is stored, and define the cost of T to be

k

C(T) = Zpi(DepthT(Ki) + 1).
i=-

If j = 1 and k = n then the cost is the expected number of comparisons to find
a key in the tree; if T holds only a subset of the keys then C(T) represents the
cost of searching within the tree for only those keys, with searches for other
keys regarded as free. We extend our previous terminology by saying that any
tree T is optimal if its cost is as small as the cost of any other tree with the
same keys.

201

)

202 LIST AND TREE IMPLEMENTATIONS OF SETS

The expression for the cost of a tree is very similar to that on page 148 for
the cost of a Huffman tree. There are two significant differences. First, in the
present case all nodes contribute to the sum since all nodes represent keys (in a
Huffman tree only the leaves represent character codes). Second, the frequency
is multiplied by the depth plus 1, not the depth itself, since even testing the
root requires one comparison (in weighing Huffman trees path length from the
root measures the number of bits, while here the number of nodes encountered
measures the number of comparisons performed).

Thus our objective is to find that tree T on all n keys that minimizes C(T).
The crucial observation in reducing the number of trees to be considered is that
every subtree of an optimal tree is itself optimal. That is, if T is an optimal
tree for Kj, . Kk and its root is KI, then its left subtree must be an optimal
tree for Kj . K,- 1 , and its right subtree must be an optimal tree for K,+1,
... Kk. For if the left and right subtrees of T are TL and TR, then the depth
of each node of TL or TR increases by one when it is viewed as a node of T;
for example,

DepthT(KD) = 1 + DepthTL, (Ki)

for any i such that Ki is in TL. So it follows that if K, is at the root of T then

1-1 k

C(T) = pi + Z pi(DepthT(Ki) + 1) + E pi(DepthT(Ki) + 1)
i=j i=1+1

1-1 k

= pi + opi + C(TL) + Pi + C(TR)
i=j i-L+1

k

E Pi + C(TL) + C(TR). (2)
i=j

Therefore replacing TL or TR by any tree on the same nodes with lower cost
would result in a tree of lower cost than T.

If d > 0 and we know an optimal tree for each set of nodes Kj*, ... , Kk,,
where k' - j' < d, then for any j < n- d we can find an optimal tree for Kj,
. I Kj+d by evaluating the cost (2) for each 1 such that j < 1 < j + d and

choosing the trees TL and TR to be optimal for the keys Kj, ... , K,-, and
Ki+ , .. Kk, respectively. This approach suggests a recursive procedure for
finding optimal subtrees, but implementing this approach directly would lead to
a great deal of repeated computation. Instead the computation can be organized
as a dynamic programming algorithm, so that each optimal subtree is determined
only once.

Let T(j, k) denote an optimal subtree for the keys Kj, ... , Kk, where
k > j-1. There are E3(n 2) of these subtrees T(j, k) in all, and they can be
found by induction on k-j. When k-j =-1, the tree T(j,j -1) contains

6.5 STATIC BINARY SEARCH TREES

procedure OptimalBinarySearchTree(pl,... ,n):

{Construct optimal search tree}
{Here p(j, k) = pj + -+Pk}

for i from 1 to n do
r[i, i] - i
CQi, i - 1] E- O

for d from 1 to n - 1 do
for j from 1 to n - d do

k +-j+d
rU, k] E Minlndex(C, j, k)
C[j, k] - p(j, k) + CU, r[j, k] - 1] + C[rU, k] + 1, k]

Algorithm 6.10 Computation of optimal binary search tree on KI, ... , Kn.
The input to the algorithm is the sequence of probabilities pl, .p-, pn, with
o < pi < 1 for each i and Ein 1 Pi = 1; the arrays r and C are filled
in by the algorithm as explained in the text. The function Minlndex(C, j, k)
returns an index I such that j < 1 < k and C[j,l -1] + Cl + 1, k] is min-
imized; the order in which calls on Minlndex occur in this algorithm ensures
that the necessary entries of C have already been calculated when they are
needed.

no keys and therefore must be A; and when k - j = 0, the tree T(j, j) consists
of the single node with key Kj. For k - j > 0, T(j, k) is, for some 1 such
that j < 1 < k, a tree with KI at the root, T(j, 1 - 1) as the left subtree, and
T(l + 1, k) as the right subtree; and these subtrees have been determined already,
since (1- 1)-j < k-j and k-(l+1) < k-j. When k-j =n -i there is
only one tree to be determined, namely, T(l, n), the optimal tree for the entire
set of keys.

To be specific, Algorithm 6.10 computes CUk] = C(T(j,k)), the cost
of any optimal tree for Kj, ... , Kk, and r[j, k], the root of TQ, k). (There
may be several choices for rU, k] since there may be several for T(j, k); it
does not matter which one the algorithm selects.) The tree can be recov-
ered from the r[j, k], since its root is r[l, n], the root of its left subtree is
r[l, r[l, n] - 1], etc. In the algorithm, we let p(j, k) = E=J pi; these val-
ues can be computed iteratively in the algorithm's doubly nested loop (Prob-
lem 42).

Algorithm 6.10 has much better performance than the brute-force method,
but it is still not fast enough to be useful for large n. If function Minlndex(j, k),
which finds an index 1 between j and k minimizing CU, 1 - 1] + C[l + 1, k],
is implemented simply by searching through all the possibilities j, j + 1, ...-
k, then the total number of different triples j, k, 1 that are considered in the

203

204 LIST AND TREE IMPLEMENTATIONS OF SETS

minimizing step is

n- I n-d n-1

,E (d+ 1) E(n- d)(d+ 1)
d=O j=1 d=O

=n l + (n -1) 2 + + 2 (n - 1)+1I n.

This sum can be rewritten as

n + (n-1) + + 1
+ (n-1) + + 1

+ +1

+1

n n7

= A, k =E j i2
j=1 k=1 j=1

which involves the sum of the first n squares and is therefore in e(n 3) as
follows from the Sum of Successive kth Powers Theorem (page 24). Actually,
the algorithm can be sped up by a factor of n quite easily; it can be shown
(Problem 43) that the 1 that minimizes the cost falls in the range rUj, k - 1] <
r[j, k] C rLj + 1, k], and that restricting the search for rnj, k] to this range
reduces the running time to E(n2).

Probability-Balanced Trees
For larger numbers of nodes, two alternatives can be suggested for the con-
struction of static binary search trees. The first is a balancing heuristic: in the
notation used earlier, it directs that the key at the root K1 be chosen so that

p(l, 1- 1) zap(l +1, n),

and that the roots of successive subtrees be chosen to equalize the probabilities of
access to their subtrees in the same way. Let us call a tree constructed in this way
probability-balanced. Probability-balanced trees are a natural generalization of
optimal search trees for a uniform distribution; there the tree is constructed so
as to have approximately equal numbers of keys in each subtree, and here, with
the access probabilities known, we equalize instead the access probabilities to
the subtrees. This heuristic works well in practice, and typically yields trees
whose expected search times are within a few percent of the optimum; it yields
even better trees if the keys one or two away from the one that balances the
access probabilities are also tried as possible roots. (This refinement attempts to
take advantage of placing a high-frequency key at the root, in case the next or
previous key is a low-frequency key that happens to be the one around which
the probabilities balance.)

6.5 STATIC BINARY SEARCH TREES

The balancing heuristic can be implemented to run in linear time, though
doing so requires some ingenuity. To find the "balancing point" in the interval
(j, k), we need to find that 1 such that j < 1 < k and

p(j, 1- 1)- p(l + 1, k) < 0 < p(j,) - p(l + 2, k);

this will be the point where the probabilities nearly balance. (The same method
will be used, recursively, to find the "balancing points" of the subintervals.) We
will then take the root of the tree to be either K1 or KI+,, depending on whether
lpj, 1 - 1) - p(l + 1, k)l or p(j, 1) - p(l + 2, k) is smaller.

To find that 1, first let wui = Ej= pj for i = 0, ... , n; these can be
calculated in linear time, and once they are known any desired probability p(j, k)
can be calculated quickly as Wk - Wi-I. (In particular, p(j, j - 1) is always 0.)
One approach to finding I is binary search; we could first try I = L(j + k)/2j,
and then depending on the sign of p(, 1 -1) -p(l+ 1, k), search in the upper or
lower half of the possible indices for the balancing point. Finding the balancing
point of the interval (1, n) takes time e(log n), but that point might be very close
to one end or the other of the interval, in which case the problem remaining
to be solved might be almost as large; if the probabilities for K,, ... Kn
were 2, 4, 1, etc., the running time of this method would be proportional to

j= lg i E e(n log n). Instead we use an approach that will find the balancing
point of an interval (j, k) more quickly if it is near one of the endpoints, but will
still take O(log(k - j + 1)) time in the worst case. Using successive increments
d = 1, 2, 4, 8, ... , 2(k-+), we check the points d from each end of the
interval, thatis, I = j+l, k-1, j+2, k-2, j+4, ... , untilwe findadsuch
thatp(j,j+d- 1) -p(j+d+1,k) > Oorp(j,k-d-1) -p(k -d+l,k) <0.
This takes lg d iterations. Once d has been found, the exact point 1 such that
p(j, - 1) - p(l + 1, k) < 0 < p(j, 1)-p(l + 2, k) takes time O(log d) to locate
exactly by binary search, since it must be sought in the interval (j, j + d) or
(k-d, k).

Let B(n) denote the time to construct the "probability-balanced" static
search tree for an interval of length n. Then

B(n) < max {c * (1 + lg min(l, n - I + 1)) + B(l - 1) + B(n - I)},
1<1<n

where c is a constant. The first term represents the time to find the root, the
second and third terms the time needed to construct the left and right subtrees.
It can be shown by induction that B(n) < 2cn (Problem 45), so that this is a
linear-time technique.

How good an approximation to the optimal binary search tree is the tree
constructed by this method? A fairly straightforward argument shows that the
expected search time in such a probability-balanced tree is within a factor of
two of that in the optimal static binary search tree. We need one preliminary
lemma; the cost C(T) of a search tree T is defined as on page 201.

205

206 LIST AND TREE IMPLEMENTATIONS OF SETS

* LEMMA Let Topt be the optimal tree for a set of keys. Consider the
tree T that is formed from the same keys by applying the balancing
heuristic at the root, but finding the optimal search trees for the keys in
the left and right subtrees. Then

C(T) < C(Topt) + -.
2

PROOF If the root of T is the same as the root of Topt then T = Topt

and there is nothing to prove. Otherwise one subtree of T, say the left,

contains a subset of the keys on the same side of Topt, and the right subtree

of T contains a superset of the keys on the right side of Topt. The expected

cost of finding a key that is in the left subtree of T is certainly at less than

the expected cost of finding it in T.,pt, since both left subtrees are optimal

and the left subtree of T has fewer keys. The expected cost of finding a key

in the right subtree of T may be higher than the expected cost of finding

it in Tpt, but it is certainly no more than the whole cost C(T0 pt) plus the

expected cost of descending the one link from the root of T to the root of

its right subtree. Because of the balancing rule the probability that a key is

actually in the right subtree of T is less than so C(T) < C(Topt) + 2 0

* THEOREM (Probability-Balanced Trees) The tree that is constructed
by balancing probabilities has cost at most 2C(T0 pt), where Topt is the

optimal binary search tree with the same keys.

PROOF The proof is by induction on the number of keys. There

is only one possible tree with a single key so in this case the Theorem

follows trivially. If we use the balancing heuristic to construct a tree T'

with subtrees TL and TR, then by the induction hypothesis

C(T') = C(TL) + C(TR) + 1 < 2C(TLZ) + 2C(TR) + 1,

where TZ and TR are the optimal trees with the same keys as TL and TR.
But now the Lemma applies, with T being the tree with the same root as T'

and with TLZ and TR as its subtrees, so it follows that

C(T') < 2C(TLZ) + 2C(TR) + 1 = 2C(T) - 1 < 2C(Topt). D

In fact the upper bound of 2 on the ratio of the search cost in a probability-

balanced tree to the search cost in an optimal tree is conservative. A more

careful analysis (cited at the end of the chapter) reveals that the tree constructed

by balancing probabilities has cost that never exceeds that of the optimal tree

by more than about 44%.

6.5 STATIC BINARY SEARCH TREES

Median Split Trees
A second alternative approach to the construction of high-performance static
search trees is the use of median split trees. In a median split tree each node
contains two keys. One is called the node value; any additional information in
the node (the Info field) is associated with this key. The node value is chosen
to be the key with highest probability in the subtree, in an attempt to keep
search times to a minimum. The other key, called the split value, is used to
direct the search to the left or right subtree, in case the value sought is not
equal to the node value. This key is chosen to equalize the numbers of nodes
in the left and right subtrees, in order to keep the tree well balanced; in other
words, the split value is the median of the keys in the subtree, in their dictionary
order.

At first thought it might appear that the time to search a single node of
a median split tree is greater than that for an ordinary binary search tree,
since two keys must be checked; but in fact the search procedure is nearly
identical. In an ordinary binary search tree one checks K = Key(P), then
K < Key(P), and then concludes that K > Key(P); in a median split tree
one checks K = NodeValue(P), then K < SplitValue(P), and then concludes
that K > SplitValue(P). So the gain in search time by keeping the highest-
frequency key of each subtree at its root is quite real. Moreover the maximum
number of nodes to be searched for any key is bounded by Llg nj + 1, since
all leaves are at depth [lg nJ or Llg n -1. Therefore median split trees com-
bine good expected-case performance and guaranteed logarithmic worst-case
performance.

Median split trees require more memory than ordinary binary search trees
since each node holds two keys. This overhead is, however, partly balanced
by the possibility of using an implicit representation. In a subtree of size n,
instead of choosing the exact median to be the split value, choose the key whose
index is 2 [Ig nJ - 1 or n - 2 Lig nj - whichever is smaller. The result will be
a complete binary tree, which can therefore be stored and searched without the
aid of pointers.

The median split tree on n keys can be constructed in time O(n log n). The
construction algorithm is in fact quite simple: to construct a tree for n keys, it is
necessary to find the smallest of these keys with respect to frequency, to find the
median (or something close to the median, as suggested in the last paragraph)
with respect to the lexicographic ordering, and to construct recursively two
subtrees with about half as many nodes. To find the lexicographic median at
each stage, it suffices to sort the keys on their lexicographic order once at the
beginning of the algorithm, and then the median of any subrange (excluding keys
that should be omitted because they have already been used as node values) can
be found in linear time by a simple scan (Problem 48). The initial sort can be
done in time O(n log n); all other operations except the recursion take linear
time; and the recursive subdivision produces a binary tree that is complete, and
hence has logarithmic depth.

207

208 LIST AND TREE IMPLEMENTATIONS OF SETS

Problems

6.2 1. Consider the following alternative implementation of the dictionary
operations by means of unordered linked lists. Allow multiple nodes
to exist with the same key value, and implement Insert simply by
adding a new node to the front of the list.

a. Give algorithms for the Insert, LookUp, and Delete operations and
analyze their complexity. (Be sure to say what n is.)

b. Under what circumstances (as measured by the relative frequency
of the three kinds of operations) might this implementation make
sense?

2. a. In the notation of this section, what is the value of p(i, i)?

b. Compute p(i, j, k), the probability that key Ki precedes key K3
which in turn precedes key Kk. Can you generalize the result?

3. Suppose that the keys in a list are of two kinds: those accessed
frequently and those accessed rarely. For example, suppose that a list
of 2n keys contains n keys each accessed with probability 0.99/n and
n keys each accessed with probability 0.01/n. (Of course, initially
we don't know which keys are in each class!) What is the expected
search time for an item if the Move-to-Front Heuristic is used for a
long time?

4. Zipf's law for the probability distribution of a set of items states that
the ith most frequently occurring item occurs with probability propor-
tional to 1/i. That is, there is a constant c such that if K1, ... , K.
are the keys in order of decreasing frequency, then the frequency of
Ki is c/i. (This law is a reasonably accurate model for the frequency
of occurrence of words in the English language.) If the keys obey
Zipf's law, what is the expected number of comparisons to find a key
in a list of size n ordered by frequency?

5. Which is more suitable if the list is implemented as a table in contigu-
ous memory, the Move-to-Front Heuristic or the Transpose Heuristic?
Why?

6. This problem explores the use of the Move-to-Front Heuristic with
tables.
a. Suppose that the list is stored as a table K[O .n - 1], that ac-

cessing (reading or storing) any element K[i] takes time a, and
that the number of such accesses is the main determiner of the
speed of the heuristic when implemented for tables. Derive an
expression for the expected time to perform a successful search
if the Move-to-Front Heuristic is in use.

PROBLEMS 209

b. Suppose it is known that every search will be successful; what is
the expected time for a search? (Hint: Some preparation for the
movement to front can take place as the table is searched.)

7. A linked representation, rather than a tabular representation, saves
time when rearranging items if the Move-to-Front Heuristic is used.
But it costs memory; how might the extra memory be better utilized
by a different heuristic?

8. The Move-To-Front and Transpose Heuristics can be blended; for
example, we could devise a "Move-k-Forward" and a "Move-k%-
Forward" Heuristic. State exactly what these might be, and what
advantages or disadvantages they might have by comparison with the
simpler heuristics.

9. Suppose that a demon alters your Move-To-Front algorithm so that it
moves a key to the end of the list each time it is accessed. Express
the expected number of comparisons to find a key under this "Move-
To-End" Heuristic in terms of the access probabilities of the keys in
the list.

10. Suppose that a list of n keys KI, ... , Kn is to be searched, where
the probability of key Ki being sought is pi. Suppose moreover that
key Ki costs ci to read, so that the cost of searching for Km is the
sum Ei ci. Show that the ordering K1, ... , Kn has the minimum
expected search cost provided that the ratios pi/ci are monotone non-
increasing:

Pi > P2 > .. > Pn.
Cl C2 Cn

11. Our analysis of the Move-to-Front Heuristic assumed that the dictio-
nary had been in use for a long time, so that the repeated accesses
had left the list in a "steady state." In this problem we consider how
long it takes for such a "steady state" to be reached. As in the text,
assume there are n items K1 , ... , Kn with access probabilities pl,
.... Pn. Also assume that these items are initially in random order in
the list; that is, all n! orderings are equally likely.

a. Define pt(i, j) to be the probability that Ki precedes Kj at time t
(that is, after t LookUps have occurred). Thus po(i, j) = 2 for all
i and j, and pt(i, j) should be approximately equal to p(i, j) for
large t. Give an exact formula for pt(i, j).

b. The sum Ot = Ei5j(pji, j) - p(i, j)) describes how much more
the tth LookUp is expected to cost than the steady-state cost, due to
the lingering effect of the start-up ordering of the items. Define
the overwork of the heuristic to be E0°°= Ot; this is the total

210 LIST AND TREE IMPLEMENTATIONS OF SETS

number of extra comparisons that are expected to be done over
the long haul due to the ordering of the list at the beginning.
Show that the overwork is at most n(n - 1)/4. (It follows that
once n(n - 1) LookUps have been done, the amortized cost per
LookUp of having started with the list in a random order rather
than in something close to the optimal order is less than 4 of a4
comparison.)

c. Consider the particular probability distribution in which pi = 1
and all the other pi are 0. (Thus K, is the only item that is ever
accessed.) Show that the overwork of the Move-to-Front Heuristic
is (n - 1)/2, but the overwork of the Transpose Heuristic is much
larger, namely, (n2

- 1)/6. (This supports the intuition that the
Transpose Heuristic takes longer to reach "steady state" than the
Move-to-Front Heuristic.)

6.3 12. a. Write the insertion algorithm for a dictionary represented as an
ordered table, that is, the algorithm Insert(K, I, T[O. .n - 1]).
Assume that the maximum length of the table is given by the
constant N, and attempting to exceed this bound is an error con-
dition. Also assume that the current size of the table can be
changed simply by changing the value of n within the algorithm.
What is the order of the time complexity of your algorithm?

b. Under the same assumptions, write the algorithm for deleting an
item from a dictionary represented as an ordered table.

13. Suppose we are given two key values Ki and K2 , where Ki < K2 ,
and an ordered table T[O.. n- 1]. We want to find the range within T
corresponding to the lower and upper limits K1 and K2 , that is, we
want to find the minimum i and maximum j such that K, < T[i] and
T[j] < K2. (It is possible that no such i or j might exist.) According
to the Expected Binary Search Theorem this problem can be solved
by doing binary searches for K, and K2 at an expected cost of about
2 [lg nj comparisons. Devise and analyze a better method.

14. Prove that if an extended binary tree has 2 k - 1 internal nodes, then
the internal nodes form a perfect binary tree of height k - 1.

15. Prove by induction on the number of internal nodes that E = I + 2n
for any extended binary tree with n nodes, where E is the external
path length and I is the internal path length.

16. Using the table of ten numbers on page 186, use the interpolation
search algorithm to find 93.

17. Consider the following sequence of twenty numbers: 71, 147, 175,
182, 270, 290, 303, 335, 356, 379, 508, 525, 559, 590, 591, 610,

PROBLEMS 211

684, 710, 789, 873. Use both binary search and interpolation search
to find each of the numbers 175, 290, 356, 525, 591, and 710. In this
small sample, does interpolation search use fewer comparisons than
binary search?

18. Using the same numbers as in Problem 17, perform an unsuccessful
search for the number 500 using both binary and interpolation search.

19. Suppose you would like to search a list of keys K1, ... , K& whose
probabilities of being sought decrease geometrically: Pi = a * pi-,
for each i such that 1 < i < n, where a is a constant in the range
O<a< 1.

a. Show that p, must be about 1/(1 - a).

b. Under what circumstances, if any, would linear search be prefer-
able to binary search? For example, if we regard a as fixed, is
there a minimum n at which one method becomes preferable to
the other?

20. This problem concerns the (rather fanciful) question of how quickly
one can search an infinite sorted table. Imagine that the infinite table
A[1 .. 00] is sorted, so that A[i] < A[i+ 1] for every i, and we want to
find the unknown position n of an item K = A[n]. The complexity
measure will be the number of comparisons performed. The simplest
imaginable method is the order-0 algorithm: Start at position 1 and
then search positions 2, 3, ... sequentially until reaching A[n] = K.
Clearly this method uses n comparisons.

a. An alternative, called the order-i algorithm, first tries to find the
smallest integer k such that 2k > n, by probing positions 1, 2, 4,
8, When such a k has been determined, the exact value of n
is found by binary search. Show that the order-i algorithm takes
about 21gn comparisons at worst.

b. Notice that the first stage of the order-I algorithm is actually a
search for an unknown value of k by trying k = 0 first, then
k = 1, then k = 2, ... ; in other words, k is located by the order-
0 algorithm. Show that an order-2 algorithm can be defined by
replacing the first stage of the order-i algorithm by a search for k
using the order-i algorithm. How many comparisons does the
order-2 algorithm use?

c. Generalize the method of part (b) as much as possible to reduce
the number of comparisons needed.

21. Describe a set of n key values and a value to be sought that will force
InterpolationSearchLookUp to iterate almost n times.

22. If the worst-case performance of interpolation search is really a con-
cern, it is possible to guarantee O(log n) worst-case performance

212 LIST AND TREE IMPLEMENTATIONS OF SETS

while maintaining O(log log n) expected-case performance by alter-
nating steps of binary and interpolation search. Present an algorithm
that does this gracefully, and justify the time bound.

23. Give the exact formula that should replace the assignment to p in the
interpolation search algorithm (Algorithm 6.2 on page 185) in case the
LookUps are not uniformly distributed but the function F(K) gives
the probability that a LookUp is for a key value less than or equal
to K.

24. Sam needs a data structure for searching 10,000 keys, but he knows
that 80% of the searches for keys that are actually present involve
only 20% of the keys. He decides to separate these 2000 keys into
one ordered table, and keep the other 8000 keys in a separate table.
To find a key he'll look in the small table first, using binary search,
before looking in the big table using the same algorithm.

a. How does Sam's algorithm compare to binary search of a single
table of size 10,000 in the worst case?

b. How does Sam's method compare to searching a single table in
the expected case for successful searches?

c. How do the methods compare in terms of expected performance
on unsuccessful searches?

d. What do you think of Sam's algorithm? Would any change to the
80%-20% division alter your opinion?

25. A padded list is an ordered list stored in a table in contiguous memory
that is somewhat larger than the actual number of elements in the list.
With padded lists, the dictionary operations can all be implemented
in expected time O(loglogn). Let k be an integer greater than 0.
Initially one out of every k + 1 positions in the table is unused; if N is
the length of the table, then an auxiliary table of N bits records which
table positions are in use. (Thus n, the number of elements actually
in the dictionary, is about kN/(k + 1) initially. An "empty" table
position is actually filled with a copy of the next lower list element to
facilitate searching.) As insertions and deletions are performed, this
regular pattern of empty slots is destroyed.

a. Write the LookUp and Delete routines for padded lists.

b. Explain how to insert an element in a padded list, on the assump-
tion that there is an empty slot in the table.

c. The insertion method of part (b) is likely to take a long time
if the table grows through insertions until it is nearly full (that
is, if n N), since relatively few gaps will remain. Like-
wise, searching the table of length N will be too slow if n,

PROBLEMS 213

the actual number of elements, shrinks through deletions to a
value much smaller than N. For these reasons we reinitialize the
table into a new block of memory if the ratio n/N drops below
some fixed threshold a or exceeds some fixed threshold: (where
0 < a < k/(k + 1) < 3 < 1). We assume that a new block of
memory of size N' can be obtained in time O(N'). Show that
under these circumstances, LookUp, Insert, and Delete can all be
implemented to run in expected time O(log log n), including time
for all initializations and reinitializations. (Hint: The only tricky
part is to assess the expected amount of time to find a gap in
which to do an insertion. Without trying to calculate the expected
number of positions that will need to be inspected, argue that this
number depends on the constant parameters of the algorithm [such
as k, a, and yh], but not on the size of the data set on which the
algorithm is run [that is, not on n].)

26. Insert the following keys into an initially empty skip list: 055, 032,
132, 200, 861, 823, 937, 916, 524. Assume that MaxLevel = 3
and that the following sequence of bits is returned by the random-
number generator (that is, the test "Random() < 1/2" is false or true
depending on whether the bit is 0 or 1): 01011100110000111110....

27. How much memory do skip lists take, beyond that needed to store
the data? Find the expected case and the worst case for a dictionary
of n items, in terms of n and the size of a pointer.

28. Write these skip list algorithms:

a. MakeEmptySet;

b. IsEmptySet;

c. Delete.

29. Write an algorithm that merges two skip lists into one.

30. Show that the expected maximum level in a skip list is at most

logj/p n - 1 + 1 /(I - p),

where p < 1 is the ratio with which nodes of successive levels are
expected to occur.

31. Show that in a skip list the probability that a node has level at least i
is pi, where p is defined as in the previous problem.

32. Algorithm 6.3 on page 190 might actually do a bit more work than is
really necessary in the case of a successful search. Where does the
inefficiency arise, and how can it be repaired?

214 LIST AND TREE IMPLEMENTATIONS OF SETS

33. Prove the Skip List Theorem in the case of an arbitrary ratio p < 1.
In particular, show that the expected total path length is

logl/p n + 1 /(1 - p).

6.4 34. Show the result of inserting the following keys into an initially empty
binary search tree: 232, 827, 782, 050, 887, 619, 703, 351, 662, 544.

35. This problem concerns the expected-case analysis of the construction
of binary search trees.

a. Show that if each key is equally likely to stand in any of the m+ 1
possible positions relative to the m keys inserted before it, then
all n! permutations of the keys are equally likely to be the order
in which the keys are inserted.

b. Show that the conditions of part (a) are different from saying that
all the binary search trees are equally probable. This idea can be
refuted by considering the permutations of just three keys.

36. Show that a binary search tree can be reconstructed from its postorder
traversal. That is, show that if the key sequence K1, ... , K1, is the
postorder traversal of a binary search tree, then the structure of the
tree is uniquely determined from this sequence and in fact can be
determined as the sequence is read from left to right. Does the same
hold for the preorder traversal? What about the inorder traversal?

37. Given an ordered table T[O. . n - 1], suppose we search it by a "ran-
dom binary search" strategy. If the range remaining to be searched
is from index Left to Right, instead of probing at position L(Left +
Right)/2], we probe at a position that is randomly chosen, according
to a uniform distribution, from among Left, Left + 1, . . ., Right. What
are the best-case, worst-case, and expected-case performance of this
method?

38. Consider the abstract operation Equal on sets and the abstract op-
eration Subset, where Subset(S, T) returns true if set S is a subset
of set T and false otherwise. Explain how to implement these two
abstract operations for each of these data structures: unordered lists,
ordered lists, and binary search trees. (Try to avoid using a sequence
of LookUps.)

39. Implement the following alternative to Algorithm 6.9 for deletion
from a binary search tree dictionary: once the node to be deleted and
its inorder successor have been located, copy the Key and Info fields
from the latter to the former, and change a single pointer.

6.5 40. a. For each tree in Figure 6.5 on page 201, give a probability distri-
bution on the three keys for which that tree is optimal.

PROBLEMS 215

b. Suppose the probabilities of A, B, and C are p, 1 - 2p, and p,
where 0 < p < 2. For what value of p, if any, are trees (b), (c),
and (d) equally good?

41. Find the optimal binary search tree for the keys A, B, C, D, E, F
with the access probabilities being .20, .16, .08, .22, .21, and .13,
respectively.

42. In Algorithm 6.10 on page 203, where and how should the p(j, k) be
calculated?

43. As in Algorithm 6.10, let KI, ... , Kn be keys to be sought with
probabilities pi, ... , p 2,n where each pi > 0 and Epi = 1. Let
r[j, k], where 1 < j < k < n, be the root of the optimal binary
search tree for the keys Kj, ... , Kk.

a. Show that r[jk -1] < rUj,k] < rU + 1,k] whenever I < j <
k < n. Intuitively, this says that adding a new key at the right
end of a sequence cannot cause the root of the optimal search tree
to move to the left in the sequence, and similarly if the key is
added to the left end of the sequence. (Hint: Use induction on
k-j.)

b. Show that if these bounds are used to limit the search for r[j, k]
in Algorithm 6.10, then for each value of d the time to execute
the "for j ... " loop is 0(n), so that Algorithm 6.10 so modified
runs in time 0(n 2). (Hint: It will not work to get a single bound
for the body of the "for j ... " loop, and then multiply it by n.
Instead, the lengths of the ranges that must be searched for all
values of j must be added together.)

44. Give an example of a distribution for which the probability-balanced
tree is not the optimal binary search tree.

45. Show that the inequality for B(n) given on page 205 implies that the
balancing heuristic runs in linear time.

46. A heuristic for the construction of static search trees that turns out
not to work very well is the "heaviest-first" heuristic: put the node
of highest probability at the root, and then follow the same strategy
recursively for the subtrees of the root.

a. Find an assignment of probabilities to the keys A, B, C for which
this strategy does not yield the optimal tree.

b. Let h > 2, let n = 2h - 1, let el > *-- > en > 0 be any
monotonically decreasing sequence of positive real numbers such
that I 1 nl Ei = 2 -h, and let Pi = 2-h + C, for each i = 1, ... , n.

Show that the cost of the search tree constructed by the heaviest-
first heuristic is Q(n), whereas the cost of the optimal search tree

216 LIST AND TREE IMPLEMENTATIONS OF SETS

is O(log n), so that the heaviest-first heuristic can actually produce
trees that are exponentially more costly than the optimum.

47. A lopsided binary tree is one in which the cost of an edge to a left
child need not equal the cost of an edge to a right child. To be precise,
let a and : be fixed numbers and let T be a binary tree. The cost
of a node N is the sum of the costs of the edges from the root to N,
where edges to left children cost a and edges to right children cost 3.
The cost of the tree as a whole is the maximum cost of any external
node. Show that the minimal-cost lopsided tree on n (internal) leaves
has cost C(n) in the range

logp(n + 1) - 3 < C(n) < logp(n + 1),

where p is that number in the range 1 < p < 2 such that

Pl ++p = 1.

48. Explain how to construct a median split tree in time O(n log n), with
special attention to the problem of finding all the necessary lexico-
graphic medians.

References

A very readable presentation of the Move-to-Front and Transpose Heuristics can be
found in

R. L. Rivest, "On Self-Organizing Sequential Search Heuristics," Communications of the
ACM 19 (1976), pp. 63-67.

The analysis on page 179 that shows that the Move-To-Front Heuristic produces a list
that is within a factor of 2 of optimalfor search efficiency is actually not the best possible.
It turns out that through a mathematically more sophisticated analysis it can be shown
that the number of comparisons needed to search the list produced by the Move-To-Front
Heuristic is no more than ir/2 z 1.57 times the number of comparisons required by the
optimal ordering. See

G. H. Gonnet, J. I. Munro, and H. Suwanda, "Toward Self-Organizing Linear Search,"
Proceedings, 20th Annual IEEE Symposium on Foundations of Computer Science,
1979, pp. 169-174

and

F. R. K. Chung, D. J. Hajela, and P. D. Seymour, "Self-Organizing Sequential Search
and Hilbert's Inequalities," Proceedings, 17th Annual ACM Symposium on Theory
of Computing, 1985, pp. 217-223.

The notion of "overwork" (Problem 11) is from

J. R. Bitner, "Heuristics that Dynamically Organize Data Structures," SIAM Journal on
Computing 8 (1979), pp. 82-110.

REFERENCES 217

Problem 20 on searching an infinite sorted table is from

J. L. Bentley and A. C. Yao, "An Almost Optimal Algorithm for Unbounded Searching,"
Information Processing Letters 5 (1976), pp. 82-87,

and the results of that paper were extended in

R. Beigel, "Unbounded Searching Algorithms," SIAM Journal on Computing 19 (1990),
pp. 522-537.

For the analysis of the interpolation search algorithm, see

A. C. Yao and F. F. Yao, "The Complexity of Searching an Ordered Random Table,"
Proceedings, 17th Annual IEEE Symposium on Foundations of Computer Science,
1976, pp. 173-176;

Y. Perl, A. Itai, and H. Avni, "Interpolation Search-A Log Log N Search," Communi-
cations of the ACM 21 (1978), pp. 550-553;

and

G. H. Gonnet, L. D. Rogers, and J. A. George, "An Algorithmic and Complexity Analysis
of Interpolation Search," Acta Informatica 13 (1980), pp. 39-52.

Problem 22 is addressed in

N. Santoro and J. B. Sidney, "Interpolation-Binary Search," Information Processing Let-
ters 20 (1985), pp. 179-181.

Skip lists were developed by William Pugh in 1987. They are described in

W. Pugh, "Skip Lists: A Probabilistic Alternative to Balanced Trees," Communications
of the ACM 33 (1990), pp. 668-676.

Padded lists (Problem 25) are from

W. R. Franklin, "Padded Lists: Set Operations in Expected 0(log log N) Time," Infor-
mation Processing Letters 9 (1979), pp. 161-166.

The binary tree deletion algorithm (Algorithm 6.9 on page 200) was originally suggested
by

T. N. Hibbard, "Some Combinatorial Properties of Certain Trees with Applications to
Searching and Sorting," Journal of the ACM 9 (1962), pp. 13-28,

but it defied analysis until it was shown to yield trees of nonlogarithmic depth by

J. Culberson, "The Effect of Updates in Binary Search Trees," Proceedings, 15th Annual
ACM Symposium on Theory of Computing, 1985, pp. 205-212.

The number of binary trees on a given number of nodes is calculated on page 54 of the
book by Standish cited on page 45. 0(n 2) algorithms for the construction of optimal
binary search trees were discovered by

T. C. Hu and A. C. Tucker, "Optimal Computer Search Trees and Variable-Length Al-
phabetic Codes," SIAM Journal on Applied Mathematics 21 (1971), pp. 514-532

218 LIST AND TREE IMPLEMENTATIONS OF SETS

and

D. E. Knuth, "Optimum Binary Search Trees," Acta Informatica 1 (1971), pp. 14-25.

The improvement described in Problem 43 from 0(n 3
) to 0(n 2) running time is actually

not a specialfeature of the construction of search trees, but an instance of a more general
fact about dynamic programming that is explained in

F. F. Yao, "Speed-Up in Dynamic Programming," SIAM Journal on Algebraic and Dis-
crete Methods 3 (1982), pp. 532-540.

The algorithm for construction of optimal binary search trees can be improved still
further, so that it runs in time 0(n log n); see pp. 173-180 of the book

T. C. Hu, Combinatorial Algorithms, Addison-Wesley Publishing Company, 1982,

or the paper

A. M. Garsia and M. L. Wachs, "A New Algorithm for Minimum Cost Binary Trees,"
SIAM Journal on Computing 6 (1977), pp. 622-642.

The balancing heuristic for static binary search trees is analyzed in

K. Mehlhorn, "Nearly Optimal Binary Search Trees," Acta Informatica 5 (1975), pp. 287-
295;

this paper is also the source of Problem 46. The behavior of the balancing heuristic is
also treated in

K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searching, Springer-Verlag,
1984.

Median split trees are an invention of

B. A. Shiel, "Median Split Trees," Communications of the ACM 21 (1978), pp. 947-958.

Problem 47 is from

S. Kapoor and E. M. Reingold, "Optimum Lopsided Binary Trees," Journal of the ACM
36 (1989), pp. 573-590.

7
Tree Structures

for Dynamic Dictionaries

7.1 AVL TREES

This chapter deals with further tree implementations of dynamic dictionaries-
that is, dictionaries with insertions and deletions, as well as lookups. The binary
tree implementation analyzed in §6.4 is simple and elegant, but has the serious
disadvantage of a worst-case Q(n) running time for a single operation, because
the height of a tree can be as large as n-1 if the n keys are inserted in increasing
lexicographic order.

Several tree structures have been devised that permit worst-case running
time of O(log n) for insertions, deletions, and lookups. The simplest of these
are the AVL trees, so called after the Russian scientists Adel'son-Vel'skii and
Landis who first studied them.

To understand the special structure of AVL trees, let us define, for any
nonempty binary tree T,

LeftHeight(T) =f0, if LC(T) = A;
I+ 1 Height(LC(T)), otherwise.

RightHeight is defined similarly. Thus a leaf has LeftHeight and RightHeight
both equal to 0, and the height of any node is the maximum of its LeftHeight
and its RightHeight. Also, for any node v of T, define LeftHeight(v) to be the
LeftHeight of the subtree rooted at v, and similarly for RightHeight(v).

The balance of node v is RightHeight(v) - LeftHeight(v). T is an AVL
tree if every node of T has balance -1, 0, or + 1. Figure 7.1 shows some binary
trees with the balance at each node; (a), (b), and (c) are AVL trees, while (d)
and (e) are not.

These trees have the following two characteristics that make them attractive
as data structures for search operations:

* every AVL tree with n nodes has height O(log n); and
* a node can be added to or deleted from an AVL tree with n nodes in time

O(log n), while preserving the AVL property.

219

220 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

1,2 1,2

V I
\ 0,0

(a) (b) (c)

1,3 0,2

0,0 2,1 0,1

0,1 /\0,0 \ 0,0

0,0
0

(d) (e)

Figure 7.1 Binary trees with the LeftHeight, RightHeight, and balance of
each node. The LeftHeight and RightHeight are the italic numerals above
the node. The balance is the number inside the node. Trees (a), (b),
and (c) are AVL trees; (d) and (e) are not.

The first characteristic implies that if a search tree is AVL, then any suc-
cessful or unsuccessful search will take time O(log n). The second characteristic
implies that items can be inserted into or removed from the tree in time O(log n).

The first characteristic is stated more precisely as follows:

* THEOREM (AVL Tree Height) Any AVL tree with n nodes has height
less than 1.44 lg n.

PROOF We want to find an upper bound on the length h of the
longest path in any n-node AVL tree. To turn the question around, fix h,
and ask: what is the smallest n such that there is an AVL tree of height h
with n nodes? Let Wh (for "worst") be the set of all AVL trees of height h
that have as few nodes as possible, and let Wh be the number of nodes in
any one of these trees. Thus wo = 1 and w1 = 2. Let T be any tree in Wh,

where h > 2, and let TL and TR be its left and right subtrees. Since T
has height h, either TL or TR has height h - 1; without loss of generality,
assume that TR has height h -1. Since T is AVL and both subtrees of an
AVL tree are AVL trees, TR is an AVL tree of height h - 1. Moreover,
it must be a worst AVL tree of height h - 1, since otherwise it could be
replaced by a smaller AVL tree of height h - 1 to yield an AVL tree of

1,0

7.1 AVL TREES 221

Figure 7.2 "Worst" AVL trees of heights 0 through 4. In these particular
trees, the balance of each nonleaf is +1. The other members of Wh are
obtained from these trees by swapping left and right subtrees of any
nodes.

height h that is smaller than T. That is, TR E Whl- Similarly, since T is
an AVL tree, TL has height h - 1 or h - 2; but since T is supposed to be
as small as possible, TL must in fact be in Wh-2. Therefore

Wh = 1 + Wh-2 + Wh-1,

and since wo = 1 and w1 = 2, the first few values of Wh are 1, 2, 4, 7, 12,
20, (Figure 7.2 shows a representative member of each Wh for h = 0,
1, 2, 3, 4.) In general, it can be shown by induction (Problem 7(a)) that

Wh = Fh+3 - 1

where Fj is the ith Fibonacci number (see page 26). Since Fj > 0'/5- 1,
where 0 = (1 + v/5)/2 (Problem 7(b)), the number of nodes in an AVL tree
of height h, say n, satisfies n > Wh > h,3/v- 2, or

h < log,(V1 (n + 2)

Therefore h < log, n = lg n/ lg < 1.441g n if V5(n + 2)/X3 < n, or in

other words if n > 2v'-/(O3 -5) = v'5 (Problem 7(c)). This establishes
the Theorem for all n > 3; the n = I and n = 2 cases can be checked
individually. El

It remains to show that insertion or deletion of a node in an n-node AVL
tree can be accomplished in O(log n) time.

Insertion
An AVL tree is represented internally as a standard binary tree, with each node
having LC and RC fields; in addition, each node has a Balance field. Since the
balance of an AVL tree node is either -1, 0, or + 1, two bits are sufficient for

0 % 0,/O\

222 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

the balance field.* Using this data structure, insertion can be accomplished as
follows:

1. Following the standard binary tree insertion method, trace a path from the
root and insert the node as a new leaf. Remember the path traversed.

2. Retrace the path from the new leaf back towards the root, updating the
balances along the way.

3. Should a node be encountered for which the balance becomes ±2, readjust
the subtrees of that node and its descendants-by a method described later.
The result is an equivalent binary search tree (that is, one with the same
keys and still obeying the binary search tree property) with balance -1, 0,
or +1 at each node.

Figure 7.3(a,b) shows the simplest case; a node that was out of balance
becomes perfectly balanced due to an increase in height in one of its subtrees.
In this case there is no need to update the balance of the node's ancestors,
since its height has not changed and only its height affects the balance of its
ancestors. Figure 7.3(c,d) shows a slightly more complicated situation; a node
that had been in balance becomes unbalanced due to an increase in the height
of one of its children. In this case the node's height increases, so the node's
parent (and possibly other ancestors) must be updated as well.

It turns out that there are only two ways that a node with balance out of
range can arise. These two cases, and the transformations to correct them, are
illustrated in Figure 7.4 and Figure 7.5. In Figure 7.4(a) node A of height h + 2
has balance +1 because its left subtree has height h, and its right child C has
two subtrees of height h. When a node is inserted into the right subtree of C in
such a way as to increase the height of that subtree to h + 1, the balance of A
becomes +2 (Figure 7.4(b)). An attempt to restore the balances by (for example)
exchanging the subtrees T1 and T3 will not work since it would rearrange the
positions of the keys in a way that would destroy the search tree property.
However, making A the left child of C and moving the left subtree of C to
become the right subtree of A leaves the balance of both A and C at 0, while
preserving the order in which the keys would be enumerated during an inorder
traversal of the tree. Using a parenthetical notation for the structure of the
tree (like that in Figure 4.7 on page 104), this operation changes the structure
(T1A(T 2CT3)) to ((T1AT2)CT3). This action is called a single left rotation;
note that, once the nodes to be altered have been determined, only three pointer
operations need to be carried out to effect the rotation (one on the appropriate
child pointer of the parent of A). Of course, there is a completely symmetric
case in which the balance of a node changes from -1 to -2 because the height
of the left subtree of its left child increases by one; the operation to correct this
is called a single right rotation.

*Actually, with cleverness all the balance information can be represented in just a single bit per
node-see Problem 6.

7.1 AVL TREES 223

h+2 h+2

h+1 h+1 h+1

(a) (b)

+1. 1.

h I t: h h+1

(c) (d)

Figure 7.3 Simple cases of AVL insertion. (a) and (b) A node becomes
balanced; no change to its height. (c) and (d) A balanced node becomes
unbalanced, but only to -1; since its height increases, its parent's balance
must also be updated.

In the only other case node A again has height h+2 and balance +1 because
its left subtree has height h and its right child has two subtrees of height h
(Figure 7.5(a)). However, in this case the balance of A becomes +2 because
the left child, B, of C increases in height to h + 1 (Figure 7.5(b)). There are
two subcases. We illustrate only that in which the insertion happens in the right
subtree of B; in the other case, in which the insertion happens in the left subtree
of B, the same actions are taken, but the balances of the nodes wind up slightly
different. Nodes are brought back to legal balance by a sequence of maneuvers
that can be pictured as a single right rotation at C (Figure 7.5(c)) followed by
a single left rotation at A (Figure 7.5(d)). Accordingly this rearrangement is
called a double rotation (an RL rotation, in this case). The parenthetical version
of this transformation is to change (T1A((T 2BT3)CT4)) to ((T1AT 2)B(T3CT4)).
Naturally there is a symmetric case in which a double LR rotation is called for.

Let us examine more closely step (2) in the algorithm sketched on page 222,
the updating of balances along the path back from the leaf. Call the first node
reached along this path that has-prior to any changes-balance ± 1 the critical
node. (There may not be any critical node.) Any node between the critical node
(or the root, if there is no critical node) and the new leaf had balance 0, and
acquires balance ± 1: the balance becomes + 1 if the path goes to the node's right

h I

: h

224 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

h h

+
h

+ h+1

h

(c)

Figure 7.4 Single left rotation after insertion in an AVL tree. In actual
practice the middle stage, part (b) of the figure, is skipped, and the tree
is transformed directly from (a) to (c), so there is never a time when a
balance of +2 must be recorded in the tree.

child, and becomes -1 if the path goes to the node's left child. The balance
of the critical node becomes either 0 or +2. If the balance of the critical node
was +1 and the path goes to the node's left child, or if the balance was -1 and
the path goes to the node's right child, then the balance becomes 0. On the
other hand, if the balance of the critical node was +1 and the path goes to the
node's right child, or the balance was -1 and the path goes to the left child,
then the balance becomes ±2 and the situation is one of those illustrated in
Figure 7.4 or 7.5 (or their mirror images, or the variant of the case of Figure 7.5
in which the insertion is in the left subtree of B). Notice that in each of these
cases the height of the critical node does not change, once the rotations have
been carried out, so no rebalancing needs to be done above the critical node.
Consequently, only the portion of the path from the critical node to the leaf
need have its balances readjusted after an insertion; and if a rotation maneuver
(single or double) is needed anywhere, it is needed only at one point, namely,
at the critical node.

It follows from all this that the algorithm implied in (l)-(3) can actually be

i.�
Ali ku)

7.1 AVL TREES 225

h

(a) (b)

(c) (d)

Figure 7.5 Double RL rotation after insertion in an AVL tree. A right
rotation around node C is followed by a left rotation around A.

implemented much more simply. As the path is traced from the root towards the
insertion point, instead of remembering the entire path, simply remember the
critical node; this is the most recently seen node with balance ±1 (any higher
node with balance i1 can be forgotten when a new one is discovered). After
the insertion has been made at a new leaf, trace the path down from the critical
node (or from the root of the tree, if there is no critical node) a second time,
using the key inserted to direct the search as was done during the first search,
and using the rules just described to adjust balances, and perhaps carry out one
rotation maneuver. Since the path has length O(log n), the time required is
O(log n). Instead of remembering the whole path, we remember just one node,
so the memory used is a constant independent of n.

Algorithm 7.1 is the AVL tree insertion algorithm in full detail. Initially,
K is the key value and I is the associated information to be inserted into the

h

226 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

procedure AVLTreelnsert(key K, info I, locative T):
{T is a locative that points to the root of the tree}

P +- T {P is a locative used for tracing the path}
CritNodeFound +- false {No critical node found so far}
while P # A and Key(P) #& K do

if Balance(P) 5$ 0 then
A +- P {Locative A points to critical node}
CritNodeFound +- true {A critical node exists}

if K < Key(P) then P +- LC(P) else P +- RC(P)
if K = Key(P) then {K is already in tree, just update Info}

Info(P) +- I
return

P ¢= NewCell(Node) {Insert new leaf}
Key(P) 4- K; Info(P) +- I; LC(P) +- RC(P) - A; Balance(P) 4- 0
{Rotate and adjust balances at critical node, if any}
{C is a locative that points to a child of the critical node}
if not CritNodeFound then R +- T {No critical node}
else

(di,C) K:: A
if Balance(A) $ d, then {d, $ 0, no rotation necessary}

Balance(A) 4- 0
R P

else {Balance(A) = dl, rotation necessary}
(d2 , B) -K :: C {B is child of C in search direction}
if d2 = d, then {d2 # 0, single rotation}

Balance(A) 0
R B
Rotate(A, -dl)

else {d2 =-di, double rotation}
(d3 , R) K :: B
if d3 = d2 then

Balance(A) 0
Balance(C) d,

else if d3 = -d 2 then Balance(A) -d2

else Balance(A) O- 0 {d 3 = 0, B = R is a leaf}
Rotate(C, -d 2)
Rotate(A, -dl)

{Adjust balances of nodes of balance 0 along the rest of the path}
while Key(R) $ K do (Balance(R), R) - K:: R

Algorithm 7.1 Insertion in an AVL tree.

7.1 AVL TREES 227

if K = Key(P) then
d HO
Q P

else if K < Key(P) then
d -1
Q LC(P)

else
d +1
Q v- RC(P)

Algorithm 7.2 Code to implement the operation (d, Q) - K :: P, which
compares key K to the key stored at node P of a binary tree, and sets Q to P
or its left or right child, depending on whether K is at P or should be sought
in one of P's subtrees. At the same time the number d is set to 0, -1, or +1.
This operation is used in the AVL tree insertion algorithm (Algorithm 7.1).

procedure Rotate(locative P, integer d):
{Rotate around P in direction d = ± I}

if d =-1 then {Rotate left}
P RC(P)

RC(P) (4 LC(RC(P))
LC(RC(P)) P

else {Rotate right}
P LC(P)

LC(P) R=C(LC(P))
RC$(P LC(P)

Algorithm 7.3 Single rotation around a node in a binary tree.

AVL tree, and the locative T points to the root of the tree. In order to treat
various cases uniformly, the numerical values -1 and +1 are used to represent
the left and right directions, respectively. Algorithm 7.1 uses two auxiliaries
K:: P and Rotate. The construction (d, Q) +- K:: P is an abbreviation for the
code of Algorithm 7.2, which assigns to d a number indicating the direction of
search for key K through node P, and assigns to Q the corresponding child
of P. Rotate(P, d) carries out a single rotation in direction d at node P; here
P is passed in as a locative. The details are given in Algorithm 7.3.

In Algorithm 7.1 A is a locative that points to the critical node, if there
is a critical node; the boolean flag CritNodeFound indicates whether a critical
node was discovered, and the value of A is therefore meaningful. If there is
a critical node, the number d, indicates the direction the search path follows

228 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

through the critical node-to its right child if di = +1, and to its left child
if d, = -1. The pointer C points to that child. A rotation is needed if the
balance of the critical node is the same as di. The direction of the search path
through the child C is d2, and the child of C in that direction is B. A single
rotation is required if d2 is the same as di, and a double rotation is needed if
d2 is the opposite direction from di. In the case of a double rotation, d3 is the
direction the search path follows through the grandchild of the critical node.
During rotation, C and B refer to the child and grandchild of the critical node
along the search path. Node R is the first node below the critical node not
involved in the rotation; nodes along the search path from R down to (but not
including) the node inserted have balance 0 before the insertion but wind up
with balance ± 1 after the insertion.

Deletion
To delete a node from an AVL tree, first follow the standard binary tree dele-
tion algorithm (Algorithm 6.9 on page 200), deleting the node itself if it is a
leaf, replacing it by its child if it has only one child, and otherwise replacing
it by its inorder successor and deleting the inorder successor. If the node it-
self is deleted, the balance of the node's parent changes; if the inorder successor
is deleted, the balance of the parent of the inorder successor changes. For ex-
ample, Figure 7.6(b) shows the result of deleting the node with key B from the
AVL tree of Figure 7.6(a); the balance of its parent, F, changes from 0 to +1.
Figure 7.6(c) shows the result of deleting the key at the root, F, from the tree
of part (a); its inorder successor, M, becomes the root and the balance of M's
former parent, P, is changed.

If the balance of the parent changes from 0 to ±1 then the algorithm termi-
nates; this is the case in part (b) of Figure 7.6. On the other hand, if the balance
of the parent changes from ± I to 0, as in parts (c) and (d), then the height of
the parent decreases and the balance of the parent's parent is affected. Similarly,
Figure 7.6(e) and (f) show a case in which the balance of the parent changes
from i1 to ±2, forcing a rotation; when the rotation has been completed, the
height of the subtree has decreased and its parent's balance must be changed.
In sum, if the balance of the parent was ±1, it changes to 0 or ±2 and it is
necessary to repeat the rebalancing process on the grandparent. Indeed, it may
be necessary in the worst case to rebalance, and even rotate at, every node along
the path back to the root; this will happen, for example, if the shallowest leaf
in any one of the three largest trees of Figure 7.2 on page 221 is deleted. Thus
the entire search path must be remembered in case of deletion, and must be
retraced until a node of balance 0 is encountered; the balance of that node be-
comes ± 1, but its height does not change so no further rebalancing is necessary.
Even though Q(log n) rotations may be necessary when deleting a node from
an n-node AVL tree, the total time required is only O(log n) since each rotation
takes constant time.

7.2 2-3 TREES AND B-TREES 229

(a) (b) (c)

U

(d) (e) (f)

Figure 7.6 Deletion from an AVL tree. (a) An AVL tree; (b) the result of
deleting B from the tree of part (a); (c) the result of deleting F from the
tree of part (a); (d) the result of deleting M from the tree of part (a);
(e) and (f) the result of deleting R from the tree of part (a). In the last
case a rotation is needed to restore the AVL property.

7.2 2-3 TREES AND B-TREES

2-3 Trees
AVL tree algorithms try to keep a binary tree well-balanced by keeping the
maximum distance from a node to external leaves in its left and right subtrees
roughly the same-differing by at most 1. Of course, if these distances were
identical at each node then the tree would be perfectly balanced, but then it
would have to have exactly 2h - 1 nodes for some h. 2-3 tree algorithms
achieve a similar effect by a different strategy. In a 2-3 tree a node that is not a
leaf may have either 2 or 3 children. By suitably arranging nodes of both kinds,
it is possible to construct a search tree that is "perfectly balanced"-that is, all
leaves have the same depth-and contains any desired number of leaves.

In a 2-3 tree,

1. All leaves are at the same depth and contain 1 or 2 keys.
2. An interior node (a node that is not a leaf) either

a. contains one key and has two children (a 2-node) or

,1 1
tl - tl

)

A% .

o

))

230 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

Figure 7.7 A 2-3 tree.

b. contains two keys and has three children (a 3-node).
3. A key in an interior node is between (in the dictionary order) the keys in

the subtrees of its adjacent children. If the node is a 2-node, this is just
the binary search tree property; in a 3-node the two keys split the keys in
the subtrees into three ranges, those less than the smaller key value, those
between the two key values, and those greater than the larger key value.

Note that the "2" in "2-node" refers to the number of children, not the number
of keys. It is convenient to refer to leaves, as well as interior nodes, as 2-nodes
or 3-nodes; in essence, they have two or three empty children. Figure 7.7 shows
a 2-3 tree representing a dictionary of 14 keys. The tree has 7 leaves and 4
internal nodes.

Among all 2-3 trees of height h, the one with the fewest nodes is one in
which all interior nodes have one key and two children. Since all leaves must
have the same depth, the tree is perfect and n = 2 h+1 -1; so in this case the
height h = Llg nj. (Here n is the number of nodes or the number of keys, which
are the same.) On the other hand the largest 2-3 tree of height h occurs when
all interior nodes have two keys and three children; in this case the number of
nodes is _i=o 3= (3h+1 - 1)/2. Since there are two keys in each node, the
number of keys is then n = 3h+1 - 1, so that h = [log3 n].

2-3 trees are easy to draw on paper but are awkward to manipulate in
computer programs, because 2-nodes and 3-nodes have to be handled as separate
cases in many algorithms. Programmers in higher-level languages are inclined
to use "variant records" or "union types" to represent nodes, but these can waste
memory by requiring the same storage space for a 2-node as for a 3-node. In
this section we avoid such awkward programming constructs by giving only
outlines of the algorithms, not detailed pseudocode. In the next subsection we
shall outline an elegant but nonobvious concrete implementation of trees like
these.

Since the height of a 2-3 tree with n nodes is at most Llg nJ, it follows
that 2-3 trees can be searched in time O(log n) by an algorithm that is a simple
generalization of search in a binary search tree. (Perhaps 3-nodes take a bit
longer to search through than 2-nodes, but the time to search a single node is
bounded by a constant.)

7.2 2-3 TREES AND B-TREES

Insertion in a 2-3 tree tries to take advantage of the "extra room" that may
exist in a leaf, if it has only one key. Only if this fails is a new node added to
the tree. The following steps constitute a rough outline of the procedure.

1. Search for the leaf where the key belongs. Remember the path that has
been followed.

2. If there is room (that is, if there is only one key in the leaf) add the key to
the leaf and stop. (This is the applicable case if F is added to the tree of
Figure 7.7.)

3. If there is no room in the node (that is, it is already a 3-node) split it into
two 2-nodes-with the first and third keys-and pass the middle key up to
the parent to separate the two keys left behind. That is, one child of the
parent is replaced by two children and an additional key. (Refer to step (5)
if there is no parent node.)

4. If the parent was a 2-node, it has now changed from a 2-node into a 3-node
and the algorithm stops. Otherwise, we are trying to add a third key to a
node that already has two; return to step (3) to split the parent node in the
same way.

5. This process is repeated up the tree until there is room for a key or the root
must be split. In the latter case a new root node is created (a 2-node) and
the height of the tree increases by one.

To illustrate the creation of new nodes, consider the insertion of key 0 in
the tree of Figure 7.7. The search directs us to the leaf containing P and Q
(Figure 7.8(a)). This node is split; the middle key, P, is passed up to the
parent (Figure 7.8(b)). This violates the 2-3 condition since the parent node
now has three keys and four children. This node is split as well, into two 2-
nodes, and the middle key, N, is passed on up to its parent (Figure 7.8(c)). Once
again there is insufficient room for the additional key, so the root is split and a
new root is created (Figure 7.8(d)).

Deletion presents the inverse problems of insertion: nodes can underflow,
in other words be left with no keys. When this happens, we can correct the
situation by moving a key (and possibly a child pointer) out of a sibling, if
some sibling is a 3-node. If each sibling already has but one key, we try to
consolidate two siblings with a key from the parent to reduce by one the number
of children of the parent; however this may cause the parent to underflow and
the process to be repeated. More precisely:

1. If the key to be deleted is in a leaf, then remove it from the leaf. If the key
to be deleted is not in a leaf, then the key's inorder successor is in a leaf;
replace the key by its inorder successor and remove the inorder successor
from the leaf in which it occurs.

2. At this stage a key has been removed from a node N. If N still has one
key, the algorithm ends. Otherwise, if N now has no keys:

231

232 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

B M 0 0 T Z

(a) (b)

H N R.

(c) (d)

Figure 7.8 Stages in the insertion of key 0 into the 2-3 tree of Figure 7.7.
(a) Overflow of a leaf, which causes (b) splitting of the leaf, with key P
passing up to the parent. This key overflows the parent, causing (c) split-
ting of this node, with key N passing up to its parent, the root. The root
overflows as well, causing (d) the root to be split and a new root to be
created, and increasing the height of the tree as a whole. (The overflow-
ing 4-nodes do not actually get created; they are shown only by way of
illustration.)

a. If N is the root, delete it. In this case, if N had no child, the tree
becomes empty; otherwise, if N had a child, the child becomes the root.

b. (We now know that N has at least one sibling.) If N has a sibling N'
that is immediately to its left or right and has two keys, then let S be
the key in the parent of N and N' that separates them. Move S to N,
and replace it in the parent by the key of N' that is adjacent to N. If N
and N' are interior nodes, then also move one child of N' to be a child
of N. N and N' wind up with one key each, instead of 0 and 2. This
completes the algorithm in this case.

c. (We now know that N has a sibling N' immediately to its left or right
that has only one key.) Let P be the parent of N and N', and S the
key in P that separates them. Consolidate S and the one key in N' into
a new 3-node, which replaces both N and N'; this reduces by one both
the number of keys in P and the number of children of P. (If N and N'
are interior nodes, then they have 2 and 1 children, so the new node has
3 children.) Let N - P, and repeat step (2).

For example, if M is deleted from the tree of Figure 7.7, case 2(b) applies;
key N is moved to the leaf, key P replaces N in the parent, and the tree of

7.2 2-3 TREES AND B-TREES 233

(a)

H R

.I L N U

J Mwl P0 T

(b) (c)

Figure 7.9 Deletion from a 2-3 tree. (a) Result of deleting M from the tree
of Figure 7.7. (b) and (c) Stages in the deletion of E from the tree of
Figure 7.7.

Figure 7.9(a) results. On the other hand, if key E is deleted from the tree
of Figure 7.7, then case 2(c) applies on the first iteration; keys B and D are
consolidated into a new node, causing the parent to underflow (Figure 7.9(b)).
On the second iteration case 2(b) applies; a key and a child are borrowed from
the parent's sibling (the node with keys L and N), and the tree of Figure 7.9(c)
results.

Since the work to be performed at each node requires only constant time,
the total time required for a deletion is at worst proportional to the length of the
longest path, and is therefore O(log n).

Red-Black Trees
We mentioned earlier that programs to manipulate 2-3 trees are rather awkward
because of the multiplicity of cases that must be handled. (Indeed, this is
the reason we resorted to a less formal notation for our account of 2-3 tree
algorithms.) In this section we present a binary tree structure that provides a
straightforward implementation of 2-3 trees.

We represent 2-3 trees by means of red-black trees. A red-black tree
is a binary search tree in which the nodes and edges are of two colors, Red
and Black. The color of the root is always black, and the color of any edge
connecting a parent to a child is the same as the color of the child node; in
deference to the difficulties of color printing we use heavy lines to represent

)

234 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

ZAf*
Figure 7.10 A 3-node, and the corresponding substructures of a red-black

tree.

(a) (b)

Figure 7.11 A red-black tree and the corresponding 2-3 tree.

red and lighter lines to represent black. The coloring of nodes and edges of a
red-black tree obeys the following constraints:

1. On any path from the root to a leaf, the number of black edges is the same.
2. A red node that is not a leaf has two black children.
3. A black node that is not a leaf has either

a. two black children; or
b. one red child and one black child; or
c. a single child, which is a red leaf.

If the pairs of nodes of a red-black tree that are connected by red edges
are coalesced into single nodes, the result is a 2-3 tree. Constraints (2) and (3)
ensure that no more than two nodes can be coalesced into one in this way,
and that in the coalesced tree there are no nodes with only one child; and
constraint (1) ensures that all leaves of the resulting tree have the same depth.
Conversely, replacing the 3-nodes of a 2-3 tree by the configurations shown in
Figure 7.10 turns it into a red-black tree. Figure 7.11 shows a red-black tree
and the corresponding 2-3 tree; in the red-black tree all maximal paths contain
two black edges, and the 2-3 tree has height 2.

The height of a red-black tree is at most twice the height of the corre-
sponding 2-3 tree, by constraint (2). Therefore the logarithmic-time operations

7.2 2-3 TREES AND B-TREES 235

on 2-3 trees will be logarithmic-time on the red-black implementations of those
trees, provided that we can develop constant-time implementations of the various
operations on 2-3 tree nodes, such as splitting.

The 2-3 tree LookUp operation is implemented for a red-black tree by
ordinary binary tree search, ignoring colors entirely.

Insertion into the red-black representation of a 2-3 tree follows the outline
presented earlier for insertion into a 2-3 tree. First the tree is searched, starting
from the root, for the A child where the insertion should occur; a stack is used
to record the path. When the frontier of the tree is reached, a new binary node
is created and inserted in the tree, and it is colored red in an effort to make it
part of the same 2-3 tree node as its parent. Two cases then arise, depending
on the color of the node's parent.

If the parent is black, then two subcases must be distinguished. If the
parent's other child is black or empty, then the situation is as shown in Fig-
ure 7.12(a), or its mirror image. A 3-node has been successfully formed,
and the insertion algorithm terminates. (The lowest pointers are shown as
black; they will actually be empty if we are at the frontier of the tree, but
as will be evident in a moment these configurations can also arise higher in
the tree.) But if the parent's other child is red (Figure 7.12(b)), then con-
straint (3) has been violated. In this case we rectify matters simply by recol-
oring the edges as shown, without changing the structure of the tree at all:
change both children from red to black, and change the parent from black
to red. After changing the parent to red, we must check whether the im-
plied coalescence of that node with its parent is legal. Note that the effect
of the recoloring shown in Figure 7.12(b) is to change a node with three keys
into two nodes with one key each, while increasing the size of the parent 2-
3 tree node; in other words, it is a step in the splitting process of 2-3 tree
insertion.

On the other hand, if the parent is red, then it cannot be the root, and the
configuration looks like Figure 7.12(c) or 7.12(d), or their mirror images; the
grandparent itself must be black, since otherwise the grandparent would have
violated constraint (2) even before the insertion. These configurations can be
transformed into that of Figure 7.12(b) by single or double rotations, respec-
tively, exactly the maneuvers used to rebalance AVL tree nodes, and the process
of splitting by recoloring can then continue as before.

Note that none of the transformations shown in Figure 7.12 changes the
number of black edges on a path, so they preserve constraint (1) as well as
(2) and (3). The "black-height" of the tree (the number of black edges on any
path from the root to a leaf, which is the height of the corresponding 2-3 tree)
increases only in the case that transformation of Figure 7.12(b) is applied at
the root. The root remains black by fiat, but an additional black edge has been
added to each path in the tree. This corresponds to splitting the root of the 2-3
tree and thus increasing the tree's height.

236 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

(a) (b)

(c) (d)

Figure 7.12 Possible situations when a node is reddened in a red-black tree.
The node that has just been reddened is indicated by a double-shafted
arrow =>. (a) The parent is black and does not have another red child;
a legal configuration. (b) The parent is black and the sibling is also red;
rectify by recoloring, then examine the effect of reddening the parent.
(c) and (d) The parent is red (but the grandparent is black); transform into
case (b) by a single or double rotation.

Algorithm 7.4 is the complete red-black tree insertion algorithm. Red-black
trees are represented interally by means of records that have, in addition to the
two child fields LC and RC, a one-bit field Color that has two possible values,
Red and Black. While inserting a node, we remember on the stack locatives
that point to the nodes that will have to be changed in case of a rotation.
For convenience the direction of descent through each node is recorded on the
stack as a number together with the node, -I for left and +1 for right. This
algorithm uses the Rotate procedure of Algorithm 7.3 on page 227, as well as
the comparison operation (d, P) - K :: Q used in describing the AVL tree
algorithms.

(a, b)-Trees and B-Trees
The basic idea in the design of the 2-3 trees discussed above is to introduce
some flexibility in the size of individual nodes in order to achieve uniformity in
the depth of the leaves. In an (a, b)-tree we introduce even more flexibility, so
that the size of a node can approximate the size of some naturally determined
storage unit, such as a disk block.

If a > 2 and b > 2a - 1, then an (a, b)-tree is a tree, each of whose nodes
either is a leaf or has c children for some c such that a < c < b; moreover, all

7.2 2-3 TREES AND B-TREES 237

procedure RedBlackTreelnsert(key K, info 1. locative P):
{Initially P points to the root of the tree}

S - MakeEmptyStack() {S is a stack that remembers the search path}
while P 7/ A and Key(P) j K do

Push(P, S)
(d, P) - K:: P
Push(d, S)

if Key(P) = K then
Info(P) +- I
return

P 4= NewCell(Node)

Key(P) <- K; Info(P) 4- I
LC(P) - RC(P) +- A; Color(P) Red
repeat forever

if IsEmptyStack(S) then
Color(P) - Black {Root remains black}

return
{P is red. Q, R are locatives pointing to P's parent and grandparent}
d - Pop(S); Q - Pop(S)

if Color(Q) = Red then
{Q is red, so it is not the root and stack is not empty}
d'- Pop(S); R - Pop(S)

if d = d' then {Single rotation}
Color(P) *- Black

Rotate(R, -d)
else

Color(Q) 4- Black
Rotate(Q, d)
Rotate(R, -d)

P R

{Double rotation}

{Q is black, C -- the other child of P}
if d = +1 then C - LC(Q) else C +- RC(Q)

if C = A or Color(C) = Black then return
Color(C) - Color(P) * Black
Color(Q) Red
P Q

Algorithm 7.4 Insertion into a red-black tree representing a 2-3 tree.

else

238 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

Figure 7.13 A (2,3)-tree, with all keys in external leaves.

leaves have the same depth. The constraint on the number of children of a node
may be violated at the root, which may have anywhere from 2 to b children.*

When a = 2 and b = 3, a (2,3)-tree is very much like what we have
heretofore called a 2-3 tree. However, we make one important change, for
consistency with the way (a, b)-trees are generally used: we regard the keys
and any associated data as stored exclusively in the leaves; the interior nodes
simply provide an index to aid in locating the appropriate leaf. Thus each leaf
contains but a single key (we draw them as squares, to emphasize that they are
external to the tree structure), and the search tree property for internal nodes is

If key value K is stored in an interior node between pointers to subtrees
T and T', then every key in (a leaf of) T is less than or equal to K,
and every key in (a leaf of) T' is greater than K.

Thus a key value in a leaf may occur in an interior node as well, but in
the interior node it appears without any associated data and is used only to
send the search in the right direction. Conversely, the key values appearing in
the interior nodes need not be values that actually occur in the dictionary. For
example, if the greatest dictionary item in one subtree is insect and the smallest
in the adjacent subtree is insert, the separating key value might be insed since
insect < insed < insert in the standard lexicographic order. Figure 7.13 shows
a (2,3)-tree index for the keys in the 2-3 tree of Figure 7.9(a).

The height of an (a, b)-tree that stores n keys is at most Llog0 nj + 1, so
the time to search an (a, b)-tree is logarithmic in its size provided that a and b
are regarded as constants. One may ask, however, what purpose is served by
considering large values of a and b, since the time to search within a node will
be larger when the node itself is larger. The answer is that (a, b)-trees with
large a and b (in the hundreds, say) are useful structures for external storage of
data, on a disk, for example. On such devices it is fairly expensive to access
the device to read or write data, but once an access is made, an entire block
consisting of hundreds or thousands of bytes is read or written at once and can

*Two extreme cases must also be allowed: an empty tree, and a tree consisting of just a single leaf,
are also (a, b)-trees.

7.2 2-3 TREES AND B-TREES

be searched relatively quickly. Blocks are, moreover, of some fixed size, which
is a parameter of the device hardware. In order to take advantage of the "block
transfer" character of access to such an external device, b is chosen as large
as possible so that a b-node will fit in a single block. (Fixed block size also
argues for using the tree as an index, rather than storing the dictionary values
themselves in the interior nodes, since the additional information stored along
with them would take up space and lower the possible value of b.) And to keep
the height of the tree as small as possible (that is, to minimize the number of
accesses required to locate a key) a is chosen as large as possible. A B-tree
of order b is an (a, b)-tree such that b = 2a - 1. To get a rough idea of the
performance that can be achieved with trees of this kind, suppose that a = 100
and b = 199; since logo 106 = 3, any record in a dictionary of a million items
can then be found with only four accesses to the external device (including one
to read the leaf).

The algorithm to insert key K and its associated information in an (a, b)-tree
is then as follows:

Search for the external node where the record with key K belongs. Let P
be the parent node. Create a new leaf node containing K and its associated
information, and add to P a pointer to this new leaf node, together with
an appropriate key value to separate this leaf from its neighbor. If P still
has at most b children, the algorithm terminates.

while P has b + I children do

if P is the root then

Create a new root, Q, whose only child is P

else
Let Q be the parent of P.

Put the last F(b + 1)/2] children of P into a new node P', leaving
the first L(b + 1)/2J children in P. Make P' the right sibling of P
by adding it as a child of Q just to the right of P, using the key
that separated the two groups of children in P as the separator in the
parent. (Figure 7.14(a) illustrates this maneuver, with a = 3 and b = 5
in the example.)

P -Q

The analysis of this algorithm is the same as for the corresponding 2-3 tree
algorithm. The path must be stacked as it is searched and popped in order to
retrace it as splits are required. A node is split if it has b + 1 children, and

a < L(b+ 1)/2J < [(b+ 1)/21 < b

since a > 2 and b > 2a - 1, so the two nodes that are created are of legal
size. (If a new root is created, it has only two children, but a special exception

239

240 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

(a)

(b)

(c)

Figure 7.14 Critical maneuvers in (3,5)-tree algorithms. (a) Splitting an
illegal 6-node that arises during insertion into two 3-nodes. (b) Repairing
an illegal 2-node that arises during deletion by borrowing a child from a
sibling 4-node. (c) Eliminating a 2-node by combining it with a 3-node to
form a 5-node.

covers this case.) Splitting a node takes time 0(b), but this is constant since b
is constant.

As in the case of 2-3 trees, deletion is only slightly more complex. To
delete the leaf with key K from an (a, b)-tree:

Find the leaf where K is located, and let P be its parent. Remove this
child from P. and also remove an adjacent separating key. If P still has at
least a children, or if P is the root, the algorithm terminates. Otherwise,

while P has a - 1 children do

(P is not the root and therefore has a sibling.) If P has a sibling, P',
with more than a children then

(Assume that P' is the right sibling of P; the other case is sym-
metrical.) Move the leftmost child of P' to be the rightmost child
of P; use the key that separates P and P' in their parent to sepa-
rate this new rightmost child of P from its neighbor; and replace
that key in the parent by the key that had separated that child from
its neighbor in P'. Terminate the algorithm (Figure 7.14(b)).

)

__W_

7.2 2-3 TREES AND B-TREES 241

else

Let P' be a sibling of P with only a children, and let Q be the
parent of P and P'. Move all the children of P' to P, and move
the key in Q that separates P and P' to P to separate the two
sets of children. This reduces the number of children of Q by
one (Figure 7.14(c)).

if Q is the root, then

if Q has but one child, then delete it and make that child the
new root.

Terminate the algorithm.

else
P -Q.

The collapsing of two nodes into one results in a legal node, since one has a- I
children, the other has a children, and b > 2a - 1.

We have not specified the exact nature of the data structures by which the
internal nodes and the leaves are organized. The operations we must be able
to perform on internal nodes are the following: insertion and deletion of key
values, finding a key value, or the position between two key values or less than
the smallest key value or greater than the largest key value. A binary search tree,
or a balanced tree structure such as an AVL tree or red-black tree, is a suitable
implementation. It may also be sensible to use an unlinked, contiguous-memory
structure within a node; although changes within a node will then be slower,
there will be more data items per node and hence fewer nodes, so the frequency
of external storage accesses will be reduced on the average.

The leaves, which contain data records, must be grouped into blocks of the
external storage device in some way. The best organization depends on details
of the storage device and the file system, but the following is one reasonable
approach in many cases. Store the data records in the internal nodes at the
bottom level of the tree; but use different values of a and b for these nodes, say
a' and b', depending on the size of the data records. That is, if r is the record
size and k is the block size, then let b' = Lk/rJ, and a' = L(b + 1)/2J, so that
b' records will fit in a single block. When such a node is split, the records are
distributed between two blocks, but only a separating key is passed up to the
parent; the previously described (a, b)-tree algorithms are used to manage the
upper levels of the tree.

As successive dictionary elements generally belong to the same node and
hence to the same disk block, the organization just described also facilitates
sequential (inorder) traversal of the dictionary, which is important in many ap-
plications. The nodes at the lowest level of the tree can be linked together by
a pointer in each block, so the entire dictionary can be processed in order with-
out any reference to the index tree. Such a tree is sometimes called a B*-tree
(Figure 7.15).

242 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

Figure 7.15 A B*-tree for the data for the (2,3)-tree of Figure 7.13, with
leaves organized into blocks of maximum size b' = 7. The leaves are
linked together so that the entire data file can be processed sequentially
without using the index tree.

A significant disadvantage to (a, b)-trees is the possibility of low storage
utilization. Even if the maximum value of a is used for a given value of b,
it is possible for nearly 50% of the storage space to be unused if all nodes
are minimally full. An alternative strategy keeps most nodes at least 66% full:
if a node overflows because of an insertion, shift one child to a neighboring
sibling, if one of them has less than b children. Then splitting is required
only when an adjacent sibling is full. In this case create a new node and
split up the 2b + 1 children (b + 1 in the node that has overflowed, and b in
the adjacent sibling) among them; each of the three nodes will then have at
least 2b/3 children. (The root, and the children of the root, may violate this
condition.)

Another concern arises in environments where the dictionary is used by
several processes concurrently. This is the usual situation in many database
applications, where several client processes wish to read and change the data-
base; insofar as possible, the database system should allow simultaneous access.
Simply reading (that is, performing LookUps) presents no difficulties, but our
insertion algorithm stacks the entire search path. No other process could be
allowed to change any node along that path until the insertion is complete,
for then the stacked path might no longer reflect the actual condition of the
tree. In database terminology, the nodes along the path must be locked during
the insertion. However, locking during insertion can be avoided, at a cost of
somewhat lower storage utilization. Let b = 2a (this method does not work
with b = 2a - 1). When a full node (a b-node) is encountered on the search
down the tree, split it immediately into two a-nodes, even though it is not yet
necessary to do so. Then the parent of every node reached during the search
must be less than full; therefore if the node is split, the parent can absorb
the extra child. Only two nodes need then be locked at any time, the node
being searched and its parent; the search path need not be saved, and as soon
as the search has passed a node's child another process can access or modify
that node.

7.3 SELF-ADJUSTING BINARY SEARCH TREES

7.3 SELF-ADJUSTING BINARY SEARCH TREES

Our final tree implementation of the dictionary abstract data type is in many
respects simpler than the balanced tree structures considered in the previous
sections. The data structure is a pure binary search tree-the nodes have no
balance, color, or other auxiliary fields, only left and right child pointers and
fields for the key itself and any associated data. The structure is distinguished
from a simple binary search tree by the algorithms that are used to implement
the LookUp, Insert, and Delete operations. If the dictionary contains n items,
these algorithms are not guaranteed to operate in O(logn) time in the worst
case. But we do have a guarantee of amortized logarithmic cost: Any sequence
of m of these operations, starting from an empty tree, is guaranteed to take a
total amount of time that is O(m log n). Therefore the average time used by an
operation in the sequence of length m is O(log n), and the amortized cost of an
operation is O(logn). Though the amortized cost of an operation is O(logn),
there may be single operations whose cost is much higher-Q(n), for example-
but this can happen only if those operations have been preceded by many whose
cost is so small that the cost of the entire sequence is O(m log n). For many
applications the guarantee of logarithmic amortized time is quite sufficient, and
the algorithms are sufficiently simpler than AVL tree or red-black tree algorithms
that they are preferable.

The algorithms operate by applying a tree version of the Move-to-Front
Heuristic discussed on page 179; each time a key is the object of a successful
search, its node is moved to the root of the binary tree. (However, the move-
ment must happen in a very particular way, which is described below. And to
reemphasize, unlike the results of the analysis in §6.2, the guarantees on the
performance of these trees do not depend on any assumption about the prob-
ability distribution of the operations on keys.) The critical operation is called
Splay. Given a binary search tree T and a key K, Splay(K, T) modifies T so
that it remains a binary search tree on the same keys. But the new tree has K
at the root, if K is in the tree; if K is not in the tree, then the root contains a
key that would be the inorder predecessor or successor of K, if K were in the
tree (Figure 7.16). We call this "splaying the tree around K," and we refer to
trees that are manipulated using the splay operation as splay trees. (To "splay"
something is to spread it out or flatten it.)

Suppose that we are given an implementation of the Splay operation (we
shall see just below how Splay can be implemented efficiently). Then the
dictionary operations can be implemented as follows:

LookUp(K, T): Execute Splay(K, T), and then examine the root of the tree
to see if it contains K (Figure 7.17).

Insert(K, I, T): Execute Splay(K, T). If K is in fact at the root, then simply
install I in this node. Otherwise create a new node containing K and I
and break one link to make this node the new root (Figure 7.18).

243

244 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

Figure 7.16 Effect of Splay(K, T). If key K is in tree T, it is brought to
the root, otherwise a key in T that would neighbor K in the dictionary
ordering is brought to the root.

Sp ilay(K,T)-A A-

Figure 7.17 Implementation of LookUp(K, T) with the aid of Splay. Splay
the tree around K, then see if K is at the root.

Figure 7.18 Implementation of Insert(K, T) with the aid of Splay. Splay the
tree around K, then make K the root.

Delete(K, T) is implemented with the aid of an operation Concat(TI, T2). If
T. and T2 are binary search trees such that every key in T1 is less than every
key in T2, then Concat(TI, T2) creates a binary search tree containing all keys
in either T1 or T2 . Concat is implemented with the aid of Splay as follows:

Concat(TI, T2): First execute Splay(+oo, T1), where +oo is a key value
greater than any that can occur in a tree. After this has been done,
T1 has no right subtree; attach the root of T2 as the right child of the
root of T1 (Figure 7.19).

7.3 SELF-ADJUSTING BINARY SEARCH TREES

T1

Figure 7.19 Implementation of Concat(TI, T2) with the aid of Splay. Splay
the first tree around +oc, then make the second tree the right subtree of
the root.

Splay(K,T) Concat(Ti, T2)

T2 T2

T, Ti

Figure 7.20 Implementation of Delete(K, T) with the aid of Splay and
Concat. Splay the tree around K, then concatenate the two subtrees of
the root.

Then Delete is implemented thus:

Delete(K, T): Execute Splay(K, T). If the root does not contain K then
there is nothing to do. Otherwise apply Concat to the two subtrees
of the root (Figure 7.20).

Thus to complete the account of the dictionary operations, it remains only
to describe the implementation of the splay operation. To splay T around K,
first search for K in the usual way, remembering the search path by stacking
it.* Let P be the last node inspected; if K is in the tree, then K is in node P,
and otherwise P has an empty child where the search for K terminated. When
the splay has been completed, P will be the new root. Return along the path
from P back to the root, carrying out the following rotations, which move P
up the tree.

*The size of the stack can be Q(n), but link inversion can be used to reduce memory utilization.

245

246 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

fl% p

Figure 7.21 Rotation during splay, Case I: P has no grandparent.

Figure 7.22 Rotation during splay, Case II: P and its parent are both left
children.

Case I. P has no grandparent, that is, Parent(P) is the root. Perform a
single rotation around the parent of P. as illustrated in Figure 7.21 or
its mirror image.

Case II. P and Parent(P) are both left children, or both right chil-
dren. Perform two single rotations in the same direction, first around
the grandparent of P and then around the parent of P. as shown in
Figure 7.22 or its mirror image.

Case III. One of P and Parent(P) is a left child and the other is a right
child. Perform single rotations in opposite directions, first around
the parent of P and then around its grandparent, as illustrated in
Figure 7.23 or its mirror image.

7.3 SELF-ADJUSTING BINARY SEARCH TREES

Figure 7.23 Rotation during splay, Case III: P is a left child and its parent
is a right child.

Ultimately P becomes the root and the splay algorithm is complete.
Note that Cases I and III are AVL tree single and double rotations, but

Case II is special to this algorithm. Figure 7.24 gives an example of splaying.
The effects of the rotations are fairly mysterious; note that they do not neces-
sarily decrease the height of the tree (in fact, they can increase it), nor do they
necessarily make the tree more well-balanced in any evident way. The analysis
of these algorithms is more subtle than those of previous sections, because it
must take into account that the time "saved" while performing low-cost oper-
ations can be "used" later during a time-consuming operation. To capture this
idea, we use a banking metaphor.

(The remainder of this section deals only with the analysis of the algo-
rithms that have already been presented; the numerical quantities discussed
below-"money," for example-play no role in the actual implementation of
the algorithms.)

We regard each node of the tree as a bank account containing a certain
amount of money. The amount of money at a node depends on how many
descendants it has; nodes with more descendants have more money. Thus as
nodes are added to the tree, more money must be added in order to keep enough
money at each node. Also any fixed amount of work-performing a single
rotation at a single node, for example-costs a fixed amount of money. The
essence of the proof is to show that any sequence of m dictionary operations,
starting from an empty tree and with the tree never having more than n nodes,
can be carried out by a total investment of O(m log n) dollars. On any single
operation some of these dollars may come out of the "bank accounts" already
at the nodes of the tree, and some may be "new investment"; and on any single
operation some of these dollars may go to keep the bank accounts up to their
required minimums, and some may go to pay for the work done on the tree.
But in aggregate O(m log n) dollars are enough, so that the amortized cost of
any single operation is only O(log n).

247

[a

248 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

(a) (b)

(c) (d)

Figure 7.24 Splaying a tree around D. (a) Original tree; D is a left child
of a left child, so Case II applies. (b) After applying the rotations of
Figure 7.22 at D, E, and G. D is now a left child of a right child, so
Case III applies. (c) After applying the rotation of Figure 7.23 at D, H,
and C. D now has no grandparent, so Case I applies. (d) After applying
the rotation of Figure 7.21 at D and L.

To be precise about the necessary minimum bank balance at each node, for
any node N let w(N) (the weight of N) be the number of descendants of N
(including N itself), and let r(N) (the rank of N) be Llg w(N)]. Then we insist
that the following condition be maintained:

The Money Invariant: Each node N has r(N) dollars at all times.

Initially the tree is empty, and so there is no money in it. Money gets used in
two ways while a splay is in progress.

1. We must pay for the time used. A fixed amount of time costs a fixed amount
of money (say, $1 per operation).

7.3 SELF-ADJUSTING BINARY SEARCH TREES

2. Since the shape of the tree changes as the splay is carried out, we may
have to add some money to the tree, or redistribute the money already in
the tree, in order to maintain the Money Invariant everywhere.

Money that is spent, either to pay for time or to maintain the invariant, may be
taken out of the tree or may be "new money." The critical fact is this:

* LEMMA (Investment) It costs at most 3L lg nj + 1 new dollars to splay
a tree with n nodes while maintaining the Money Invariant everywhere.

Let us defer the proof of the Investment Lemma for the time being, and
suppose that it is true. The Investment Lemma provides all the information that
is needed to complete the amortized analysis of splay trees.

* THEOREM (Splay Tree) Any sequence of m dictionary operations
on a self-adjusting tree that is initially empty and never has more than
n nodes uses O(mlogn) time.

PROOF Any single dictionary operation on a tree T with at most n
nodes costs O(log n) new dollars:

* LookUp(K, T) costs only what it costs to do the splay, which is O(log n).
* Insert(K, I, T) costs what it costs to do the splay, plus what must be

banked in the new root to maintain the invariant there; this is Llg(n + 1)J
additional dollars, for a total of O(log n). (The new root is the only node
that gains descendants when the new root is inserted.)

* Concat(TI, T2), where T1 and T2 have at most n nodes, costs what it
costs to splay T1, which is O(log n), plus what must be banked in the
root in order to make T2 a subtree, which is at most [lg n], for a total
of O(logn).

* Delete(K, T) costs what it costs to splay T, plus what it costs to con-
catenate the two resulting subtrees, which is again O(log n).

This is the amount of new money required in each case. Nonetheless an
operation may take more than Q(log n) time, since the time can be paid for
with money that had previously been banked in the tree. However, if we
start with an empty tree and do m operations, then the amount of money
in the tree is 0 initially and > 0 at the end, and by the Investment Lemma
at most m(3 ig nJ + 1) dollars are invested in the interim. This must be
enough to pay for all the time used as well as to maintain the invariant, so
the amount of time used must be O(m log n). D

Now we turn to the proof of the Investment Lemma. For this we shall need
two simple observations about the ranks of nodes. Clearly the rank of a node is
greater than or equal to the rank of any of its descendants. Slightly less obvious
is the

249

250 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

* LEMMA (Rank Rule) If a node has two children of equal rank, then
its rank is greater than that of each child.

PROOF Let N be the node and let U and V be its children. By
the definition of rank, w(U) > 2r(U) and w(V) > 2 r(V). If r(U) = r(V),
then w(N) > w(U) + w(V) > 2 r(U)+1. Therefore r(N) = Llgw(N)] >
r(U) + 1. C:

Now consider a single step of a splay operation, that is, a rotation as de-

scribed in Case I, II, or III. We write r'(P) to denote the rank of P after the
rotation has been done, and r(P) to denote its value beforehand.

* LEMMA (Cost of Splay Steps) A splay step involving node P, the
parent of P, and (possibly) the grandparent of P can be done with an
investment of at most 3(r'(P) - r(P)) new dollars, plus one more dollar
if this was the last step in the splay.

Deferring for the moment the proof of this Lemma, we show that it implies

the Investment Lemma. Let us write r(t)(P) for the rank of P after i steps of

the splay operation have been carried out. According to the Lemma, the total

investment of new money needed to carry out the splay is at most

3(r'(P) - r(P))

+ 3(r(2)(P) - r'(P))

+ 3(r(k)(P) -r(k-
1
)(P)) + 1,

where k is the number of steps needed to bring P to the root. But r(k)(P) is

the rank of the original root, since the tree has the same number of nodes after
the splay as before, so r(k)(P) < [lg n]. The middle terms of the sum cancel

out, and the total is 3(r(k)(P) -r(P)) + 1 < 3 Llg nj + 1.

PROOF (of the Cost of Splay Steps Lemma) The three types of

rotation must be treated separately. In each case, let Q be the parent of P,

and R the parent of Q, if it has one.

* Case I. P has no grandparent. This must be the last step. The one extra

dollar pays for the time used to do the rotation. Since r'(P) = r(Q)
(Figure 7.21), the number of new dollars that must be added to the tree is

r'(P) + r'(Q)- (r(P) + r(Q))

=r'(Q) -r(P)

< r'(P) - r(P) since Q becomes a child of P.

This is 1/3 of the amount specified in the Lemma.

PROBLEMS 251

* Case II. Here r'(P) = r(R) (see Figure 7.22; r' refers to the situation
in the rightmost tree, after both rotations have been completed). So the
total amount that ",eds to be added to the tree to maintain the invariant is

r'(P) + r'(Q) + r'(R) - (r(P) + r(Q) + r(R))

- r'(Q) + r'(R) - (r(P) + r(Q))

< 2(r'(P) - r(P)),

which is 2/3 of the available money. If r'(P) > r(P), then a dollar is left
over to pay for the work. So assume for the duration that r'(P) = r(P).
Then also

r'(P) = r(R) (Ila)

(since R is the root of the subtree before the rotations and P is the root
afterwards). If r'(R) were equal to r(P), then by the Rank Rule on the
middle tree of Figure 7.22, r(P) < r'(P), contrary to assumption. Hence

r'(R) < r(P), (JIb)

since r'(R) < r'(P) = r(P). Finally

r'(Q) < r(Q), (IIc)

since r'(Q) < r'(P) = r(P) < r(Q). By (Iha), (lIb), and (Ilc) we can
move R's money to P, P's money to R, and leave Q's money where it
is, maintain the invariant everywhere, and still have a dollar left over to
pay for the work.

* Case III. In this case r'(P) = r(R) and r'(Q) < r(Q) (see Figure 7.23).
So if we move R's money to P and leave some or all of Q's money on Q,
the invariant will remain true at P and Q. To satisfy the invariant on R,
use the money from P plus an additional r'(R) - r(P) < r'(P) - r(P)
dollars, one third of the new dollars available. If r'(P) > r(P), then there
is one dollar left over to pay for the work. Otherwise r'(P) = r(P) =

r(Q) = r(R) and hence either r'(Q) < r'(P) or r'(R) < r'(P) (since
r'(P) = r'(Q) = r'(R) is impossible by the Rank Rule applied to the
right-hand tree in Figure 7.23). So either r'(Q) < r(Q) or r'(R) < r(P)
and there is a dollar left over to pay for the work. E

Problems

7.1 1. a. Show the AVL trees that result from inserting the keys 186, 039,
991, 336, 778, 066, 564, 154, 538, and 645 into an initially empty
tree.

b. Show the result of deleting the key 186 from the tree of part (a).

2. a. Show the results of inserting the keys 1, 2, ... , 10 in ascending
order into an AVL tree.

252 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

b. Show that if an AVL tree is constructed by inserting the keys 1,
2, ... , n in ascending order, then for some d all leaves in the
resulting tree have depth d or d + 1.

3. A "worst" AVL tree is one in which no nonleaf has zero balance
(Figure 7.2 on page 221 shows some worst AVL trees). How many
worst AVL trees of height h exist?

4. Say that a k-AVL tree, where k is a small number, is a binary search
tree in which the balance is allowed to be any number in the range
from -k to +k, for some small number k. (Ordinary AVL trees are
then 1-AVL trees.)

a. Write a recurrence relation for wh , the maximum number of
nodes in a k-AVL tree of height h, and calculate w(h3) for a fewh
small values of h.

b. Estimate, as accurately as you can, the maximum height of any
k-AVL tree with n nodes.

c. How would you do an insertion in a k-AVL tree?

5. Explain carefully why no sequence of single and double rotations of
a binary tree changes the result of an inorder traversal of the tree.

6. There are three possibilities for the balance of an interior node of an
AVL tree: 0, +1, or -1. But leaves always have balance 0. Show
how this fact can be used to provide a representation for AVL trees
in which the balance field of each node is only a single bit.

7. This problem establishes several relations used in the proof of the
AVL Tree Height Theorem.

a. Show that Wh = Fh±3 - 1.

b. Show that Fi > 0/0- 1 for every i.

c. Show that 2vr5/(0 3 - Vr) = Vr.
8. In the proof of the AVL Tree Height Theorem it is implicitly assumed

that Wh increases monotonically with h. Where is this assumption
used, and what justifies it?

9. Write the complete procedure AVLTreeDelete according to the algo-
rithm outlined in this section.

10. a. Describe an implementation of Union(S, T), where S and T are
represented as AVL trees, that runs in time O(ISI + ITI).

b. Show that if every key in S is less than every key in T, then
Union of AVL trees can be computed in time O(log |SI +log ITI).
Estimate the exact number of rotations required in the worst case.

PROBLEMS 253

11. Show that AVL trees can be used to provide an implementation of an
abstract data type "list" with the following operations. Each operation
should take time 6(log Li). (Hint: Store in each node the number of
items in the left subtree of that node.)

a. Access(L, i): Return the ih element of L.

b. Insert(x, L, i): Return the result of inserting x after the ith element
of L.

c. Length(L): Return ILl.
d. Delete(L, i): Return the result of deleting the ith element of L,

thus shortening L by one element.

12. Show that any n-node binary tree can be converted into any other by
means of at most 2n single rotations. (Hint: Show that it takes only
n rotations to covert any binary tree into the tree in which all left
children are empty.)

13. Suppose that S and T are sets of size m and n, where m < n. Choose
a representation that makes it possible to implement Intersection(S, T)
(which returns S n T) in time O((m + n) log m).

7.2 14. Show the result of inserting the keys 1, 2, ... , 10 in ascending order
into a 2-3 tree.

15. a. Suppose that S and T are disjoint sets, and every member of S
is smaller than every member of T. Show that if these sets are
represented by 2-3 trees, then the function Union(S, T) can be
computed in O(1(log SI -log ITI)I) time (the absolute value of
the difference of the logarithms of the sizes of the sets).

b. Find and analyze a 2-3 tree algorithm for the operation Prefix,
where Prefix(S, x) = {fy S.: y < x}.

16. a. Repeat Problem 11 for 2-3 trees.

b. Show that the operations Concat(Li, L2) and Initial(L, i) (which
returns a sublist consisting of the first i elements of L) can also
be implemented in logarithmic time.

17. If the depth of a red-black tree increases as a result of an insertion,
precisely where in Algorithm 7.4 on page 237 does it do so?

18. Present an algorithm to delete a node from the red-black representation
of a 2-3 tree, following the style of Algorithm 7.4.

19. For any n > 0, let Tn be the B-tree of order b = 2a - 1 obtained by
inserting the keys 1, 2, ... , n in ascending order. Find, as a function
of p, the smallest value of n such that Tn has height p.

254 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

20. Suppose that a B-tree of order b grows only through addition of
records (no deletions). What is the expected storage utilization (av-
eraged over all values of n, the number of items in the tree)? What
would be the expected storage utilization if storage is kept at least
66% full by the strategy described on page 242?

21. As in the previous problem, suppose that a B-tree of order b grows
through addition of records only (no deletions). When the tree has n
items, what is the average number of times, per item, that nodes have
been split in two?

22. It was suggested that at least when data records are held in external
storage, it is better to keep all the data records in the leaves of a
B-tree, and to use the interior nodes of the tree strictly as an index to
help find the appropriate leaf page. Donald Dumb favors using only
one node format and keeping data in the interior nodes as well. He
argues that by storing data records in the upper levels of the tree, some
of them will be found quickly, and this effect will compensate for the
fact that it might take more page accesses to reach those data that are
stored lower in the tree. What do you think of Donald's argument?
Analyze the situation on the assumption that an index entry takes 10
bytes and a data record takes 100 bytes, pages are 2000 bytes, nodes
are organized internally as balanced binary trees and searching for an
item within a node takes 100 ns per tree edge, and reading in a new
page takes 100 ms. Does Donald's view of the world make sense for
these or any other values of these parameters?

23. Why does the method of "anticipatory splitting" of B-tree nodes de-
scribed on page 242 not work with b = 2a - 1?

24. Show how a version of red-black trees can be used to implement
(2,4)-trees in such a way that insertions can be done while rebalancing
the tree "on the way down," thus not requiring the insertion path to
be retraced.

7.3 25. Show the result of inserting the keys 1, 2, ... , 10 in ascending order
into a splay tree.

26. a. Show the result of inserting the keys 312, 488, 682, 405, 170,
242, 230, 264, 890 into a splay tree.

b. Show the result of deleting 488 and 170 from the resulting tree.

27. a. You are given a splay tree such that the path from the root to the
key 90 passes through the following keys in order: 10, 20, 30,
40, 50, 60, 70, 80, 90. Show the result of splaying 90 to the top.

b. You are given another tree such that the path to 90 passes through
50, 130, 60, 120, 70, 110, 80, 100. Show the result of splaying
90 to the top.

PROBLEMS 255

c. Assume that before the splaying operation, all the nodes of the
tree of part (a) on the path to 90 had rank k. Show that after
the splay operation of part (a) the ranks of these nodes do not
increase, and the ranks of at least three of them decrease.

d. Under the same hypothesis as in part (c), show that the splay
operation of part (b) causes no increase in ranks, and causes at
least four nodes to decrease in rank.

28. Suppose that sets are represented by splay trees. Give an implemen-
tation of the following operation: Range(S, KI, K2), which changes
S to the set of all its members for which the key value K satisfies
K, < K < K2 . Analyze this implementation.

29. Explain how to implement the operation Prefix defined in Problem 15
if sets are represented by splay trees. If this operation is added to the
repertoire, is it still true that any sequence of m operations involving
at most n items takes time O(m log n)?

30. Here is the lazy man's approach to maintaining a balanced tree rep-
resentation of a set. Use ordinary binary tree insertion and do no
rebalancing at all until the tree gets too badly out of balance; then
completely reconstruct the tree to be as balanced as possible. Vari-
ous criteria can be used to determine when the tree is badly out of
balance; one that works is to keep track of the actual internal path
length in the tree IT and the optimal internal path length OT (which
depends only on the number of nodes), and to restructure whenever
IT > 6 0 T or IT < (1/)OT, where 6 > 1 is a constant parameter of
the algorithm governing how badly out of balance we are willing to
allow the tree to get.

a. Write the restructuring algorithm.

b. How can the quantities IT and OT be determined?

c. Show that the lazy man's method takes linear worst-case time but
logarithmic amortized time for any insertion, deletion, or search.

31. Design an implementation for a set abstract data type with the follow-
ing operations: LookUp(K, S), which locates the record with key K
in set S; and InsertNext(K, I, S), which inserts into S the pair (K, I).
The following special restrictions apply on the use of InsertNext: ei-
ther S is empty, or K is the successor of the key value of the last
operation performed (a LookUp or an InsertNext). For example, the
following sequence of operations is valid: insert 1, 5, 10, 30; find 5;
insert 6, 7; find 30, 1; insert 3; find 7; insert 8, 9. Your algorithm
should perform any sequence of insertions and finds on an initially
empty set in time O(f log n + n), where n is the number of insertions

256 TREE STRUCTURES FOR DYNAMIC DICTIONARIES

and f is the number of finds. (Hint: Use a splay tree, but don't
actually insert the records until a Find is performed; instead save the
insertions in a list and convert the list into a complete binary tree at
the appropriate time.)

References

AVL trees were the invention of

G. M. Adel'son-Vel'skii and E. M. Landis, "An Algorithm for the Organization of Infor-
mation," Soviet Math. Doklady 3 (1962), pp. 1259-1262.

The generalization to k-AVL trees (Problem 4) is from

C. C. Foster, "A Generalization of AVL Trees," Communications of the ACM 16 (1973),
pp. 513-517.

It appears that the reduction in the number of rebalances made possible by letting k > 1
does not compensate for the expected increase in search times. The first (unpublished)
use of 2-3 trees was by John Hopcroft in 1970. Our presentation of the red-black tree
representation of 2-3 trees derives from

L. J. Guibas and R. Sedgewick, "A Dichromatic Framework for Balanced Trees," Pro-
ceedings, 19th Annual IEEE Symposium on Foundations of Computer Science, 1978,
pp. 8-21,

which also contains information about the red-black representation of other types of
balanced trees. The "B" in "B-tree" is not a variable; it stands for either "Bayer," who
was one of the inventors of the method, or "Boeing," where the work was done. B-trees
were described in

R. Bayer and E. M. McCreight, "Organization and Maintenance of Large Ordered In-
dices," Acta Informatica 1 (1972), pp. 173-189.

For a more recent description of B-trees and some of their variations, see

D. Comer, "The Ubiquitous B-Tree," Computing Surveys 11 (1979), pp. 121-137.

Splay trees are the invention of

D. D. Sleator and R. E. Tarjan, "Self-Adjusting Binary Search Trees," Journal of the
ACM 32 (1985), pp. 652-686.

Comparative discussions of some of the tree structures discussed in the last two chapters,
and some other variations on these, may be found in

J. Nievergelt, "Binary Search Trees and File Organization," Computing Surveys 6 (1974),
pp. 195-207;

J.-L. Baer and B. Schwab, "A Comparison of Tree-Balancing Algorithms," Communica-
tions of the ACM 20 (1977), pp. 322-330.

Problem 30 is from

W. A. Martin and D. N. Ness, "Optimizing Binary Trees Grown with a Sorting Algo-
rithm," Communications of the ACM 15 (1972), pp. 88-93.

8
Sets of

Digital Data

8.1 BIT VECTORS

This chapter deals with implementations of sets (both dictionaries and sets with
other operations) that take advantage of the structure of keys. Unlike the set
implementations of Chapters 6 and 7, which perform no operations on keys
except comparisons for order or equality, these implementations treat the key
as an index, or as a string that can be decomposed into characters, or as a
numerical quantity on which arbitrary arithmetic operations can be performed.
Each of these ways of handling keys is of broad but not universal applica-
bility, so we shall point out the limitations as well as the advantages of each
technique.

Let us assume that we are to construct and manipulate sets of elements that
are drawn from a universe U of fixed size N, say U = {u0, ... ,UN-1}. SUP-
pose, moreover, that there is a relatively simple procedure to compute, given
an element u G U, the index i such that u = ui. (One situation fitting this
description is that in which U is exactly a set of integers {O...., N - 1}. An-
other is when U is a set of characters, such as the printing characters in the
ASCII character set, which have character codes in a contiguous interval C,
... I C + N - 1; the translation of a character into its code takes constant time.)
Among the simplest ways of representing a subset S C U is as a bit vector,
that is, a table of N bits Bits[O. N - I] with Bits[i] = 1 if ui E S and
Bits[i] = 0 if ui ¢ S. If determining the index of an element and accessing
that position in the table both take constant time, such a representation permits
implementations of Insert, Delete, and Member in constant time. Depending
on the value of N and the operations available for testing and setting the in-
dividual bits of a machine word, accessing an individual bit may take several
operations, but the number of operations does not vary with the size of the set
represented.

When a bit vector representation is used, a subset of a set of size N takes
N bits of memory to represent, independent of the size of the subset, so such
a representation makes most sense when N is not too large and there is a

257

258 SETS OF DIGITAL DATA

need to represent sets of size comparable to N. Compare the storage efficiency
of this scheme with that of binary trees, for example: a binary tree repre-
sentation of a set of keys of size n takes n(2p + K) bits, where K > Ig N
is the size of the field needed to represent a key value and p is the num-
ber of bits in a pointer; whereas the bit vector representation takes N bits.
Though the bit vector representation is much more compact when n z N, even
if p - K = 32 the tree representation becomes more storage-efficient when
n/N 1%.

For this reason the bit vector representation is useful only when the universe
is relatively small, or the sets are typically fairly large in relation to the size of the
universe. However these conditions are not so uncommon; many algorithms,
for example, manipulate sets of array indices or sets of characters. (Some
implementations of Pascal require that the members of sets be drawn from a
universe of size 128 or 256, evidently for the convenience of the author of the
set package, who can then use a bit vector representation regardless of what the
universe may be.)

Another significant advantage of the bit vector representation is that a num-
ber of other operations have straightforward implementations. In addition to
Insert, Delete, and Member, which as was observed earlier have 0(1) time im-
plementations independent of the size of the universe or the subset, Union and
Intersection can be implemented almost trivially by means of boolean and and
or operations. Not only do these operations take time linear in N, but they may
take less than one machine operation per set element, since an instruction may
operate on an entire word at once. If the word length is, say, 32, then it takes
the same time to compute unions and intersections if the universe has size 30
as if it has size 10.

A disadvantage of the bit vector representation that may balance the benefits
of operating in parallel on all the bits of a word is that on some computers access
to the individual bits of a word may require relatively expensive shifting and
masking operations. Therefore a Member operation may be significantly more
expensive than a Union.

Unfortunately, one indispensable operation takes time Q(N): initialization,
that is, MakeEmptySet. This must be accomplished by zeroing all the bits of
the bit vector. This is in practice a relatively rapid operation, since zeroing
a byte or a word takes little time on most machines, but there is at least a
theoretical interest in knowing whether a representation can be devised that
supports 0(t) time implementation of MakeEmptySet, as well as Insert, Delete,
and Member. In fact all these operations can be implemented in constant time
if the method described in Algorithm 5.1 on page 137 is used to initialize the
bit vector.

Algorithm 8.1 shows the full details. These routines manipulate a single
set S, which is a subset of U represented as a record structure with four com-
ponents:

8.1 BIT VECTORS 259

function BitVectMakeEmptySeto: pointer
{Retum the empty set}

S - NewCell(Set)
Count(S) +- 0
return S

function Valid(integer i, pointer S): boolean
{True if i has ever been inserted in S}

return 0 < When(S)[i] < Count(S) - 1 and Which(S)[When(S)[i]] = i

function BitVectMember(integer i, pointer S): boolean
{True if i E S}

return Valid(i, S) and Bits(S)[i] = 1

procedure BitVectInsert(integer i, pointer S):
{Add i to S}

if not Valid(i, S) then
Count(S) +- Count(S) + 1
When(S)[i] <- Count(S) - I
Which(S)[Count(S) -1] +- i

Bits(S)[i] +- 1

procedure BitVectDelete(integer i, pointer S):
{Remove i from S}

if Valid(i, S) then
Bits(S)[i] +- 0

Algorithm 8.1 Maintaining a set with constant time for each operation. The
set S is represented as a structure with four components: a bit vector Bits(S),
tables of indices Which(S) and When(S), and an integer Count(S).

Bits(S), the bit vector itself;
Count(S), the number m of items that have ever been inserted into the set;
When(S) and Which(S), the tables of indices called Which and When in

the Algorithm 5.1 on page 137.

The universe U is assumed to consist of the N integers 0, ... , N - 1. The

routine Valid is an auxiliary routine that indic tes whether an element has ever
been inserted into the set; position i in the tables Bits(S) and When(S) are
meaningful only when Valid(i, S) is true.

Unfortunately, this means of achieving constant time per set operation in-
creases the storage requirements from one bit per element of the universe to
2p + 1 bits per element of the universe, almost certainly too great a price to pay
in practical situations.

260 SETS OF DIGITAL DATA

8.2 TRIES AND DIGITAL SEARCH TREES

When a binary search tree is searched for a key value, each comparison of the
search key to a key stored in the tree extracts a single bit of information about
the search key (whether it is the same as or different from a stored key, or
whether it is greater than or less than a stored key). But when the search key
can be decomposed into characters, the character values can be used as indices,
and a single indexing operation can extract far more information about the key
since there are as many possible index values as characters.

The simplest structure based on this idea is the trie.* Suppose that there
are k possible character values. A trie is a (k + I)-ary tree with each node
implemented as a table of k + 1 pointers-one for each possible character, and
one for an "end-of-string" indicator A. The root node serves as a "thumb
index" of the keys in the dictionary according to their first characters; each key
beginning with the ith character belongs in the ith subtree. At the second level
of the tree, the indexing is similar, but according to the second character of
the key, and so on. If a key has but m characters, then the search path for
that key ends in a node of depth rn, at the pointer position within that node
corresponding to the A indicator (Figure 8.1). In this simple structure, there is
no need to store the key itself at a leaf of the tree, since the key is completely
determined by the path that has been followed; of course any information to be
associated with the key can be stored at a leaf.

Let n be the number of keys stored in a tried, and let I be the length (in
characters) of the longest key. Also, let s be the number of nodes in the trie. The
principal advantage of the trie structure is access time; a key can be accessed
in time 0(l), independent of n and k. The severe disadvantage of tries as
just described is their storage requirements; a trie takes (k + 1) . s p bits to
represent, independent of n. For example, a trie containing the single word
IMPOSSIBILITY in the Roman alphabet (k = 26) would occupy 13 . 27 - 351
pointers, all but 13 of which would be A. In general, the difficulty is that given
the first few characters cIc2 . .. ci of a word, there are relatively few possibilities
for ci,1 , even though the number of characters in the character set is relatively
large. So except near the root of the tree, the actual branching at a node is
closer to I or 2 than to k.

Just as hierarchical table representation can significantly reduce the storage
required to store a sparse array (§5.3), there are a number of fairly simple ideas
that can significantly reduce storage requirements of tries.

1. Because tries have relatively few nodes but the nodes may have many
children, a k-ary trie with m nodes can be implemented space-efficiently as
a two-dimensional, m by k table with each entry being a number between
I and mn. The table entry corresponding to the jth child of the Ph node is

*Trie is the middle syllable of retrieval, and is a pun on tree; but it is pronounced the same as ty.

8.2 TRIES AND DIGITAL SEARCH TREES

Figure 8.1 A trie on the names MAXWELL, MENDEL, MENDELEEV,
PASTEUR, PAVLOV, PEANO, POINCARE, POISSON, and TURING.
Only cells with nonempty pointers are shown. A cell labelled with A
points to the information record for the character string on the path from
the root to the node.

the index, in the range from 1 to m, that has been assigned to that child
node. Such numbers take only [Ig ml bits to represent, typically much less
than the number of bits to represent a full pointer.

2. Nodes with only one nonempty child can be eliminated by storing with each
node the index of the character position on which that node discriminates.
In essence this compresses the trie by deleting any node with one child,
and labelling each remaining node with a character position, namely, one
more than the node's depth in the original uncompressed trie (Figure 8.2).
If a node is labelled i and the ith character of the search key is character
number j, the search continues by following the jth pointer in the node.
(If the search key has fewer than i characters, it is not in the trie.) A key
is no longer uniquely determined by a search path, so it is necessary to
store the key itself in the leaf. Such a compressed trie is called a Patricia*
tree. In a Patricia tree the branching at each node is at least binary, so the
storage requirements for the interior nodes are at most k * p * Ig n bits; but
additional memory must be used to store the keys themselves. These trees
are especially useful when the keys are very long.

* Practical Algorithm To Retrieve Information Coded In Alphanumeric.

261

262 SETS OF DIGITAL DATA

Figure 8.2 Patricia tree for the keys of Figure 8.1.

3. Instead of using a table to represent a node, a linked list can be used. Each
pointer must be accompanied by an identifying character; a node is really a
linked list of character-pointer pairs. The time to search a single node rises
by comparison with the trie structure, and is no longer independent of the
size of the character set; but for nodes with only a few pointers the savings
in memory is significant. This type of compression can be implemented
with or without also eliminating nodes with one child as described earlier;
if all nodes are represented explicitly, so that the keys are implicit in the
paths, these trees are called de la Briandais trees (Figure 8.3).

It is difficult to provide useful estimates of the expected storage requirements
of de la Briandais trees, and the expected time needed to search them. The
length of the linked list of a node's children is bounded above by the number of
characters in the character set, and so the time to locate a key is proportional to its
length. However, the actual number of children of a node will almost certainly
be much less than the size of the character set; let us suppose that nodes at
all depths have similar numbers of children on average, and let this average
be a. Then the expected time to search a node's children is also proportional
to a, since we expect to search through half the child pointers of a node before
finding the appropriate one. Unfortunately, this assumption about the number
of children of nodes is probably inaccurate; as noted above, nodes closer to
the root tend to have more children, since the subtree rooted at a node of great
depth contains only keys with a long common prefix. (Since the pointers are
identified, there is no need to keep them in alphabetical order; they could be
kept in an order that minimizes expected search time, if such an order can be
determined, or reorganized dynamically using, for example, the Move-to-Front
Heuristic.)

4. If nodes close to the root tend to be "dense" while those of greater depth
tend to be "sparse," it may be possible to use a hybrid tree structure to gain

1

8.2 TRIES AND DIGITAL SEARCH TREES

Figure 8.3 De la Briandais tree for the keys of Figure 8.1. As in Figure 8.1,
we use an explicit "end-of-string" marker A to identify the end of a key;
for example, the L in MENDEL has two children, one for the end of that
key and one for the second E in MENDELEEV.

the speed advantage of a trie structure without paying a heavy penalty in
storage utilization. Trie nodes can be used for the first few levels of the
tree, but a more space-economical structure is used at deeper levels. The
structures used at deeper levels could be de la Briandais trees, or ordinary
binary search trees; in the latter case the keys (or at least the suffixes of
the keys not determined by the search path through the trie nodes) must be
stored in binary search tree nodes.

5. Another approach to economizing in the use of memory while retaining the
speed advantages of the trie structure is to treat keys as bit strings, that
is, strings over an alphabet of size k = 2. Such a digital search tree is
essentially a binary tree, but search is directed to the left or right depending
on whether a particular bit of the search key is 0 or 1. In addition to the
two pointers, however, each node contains one of the keys that begins with
the bit string implicit in the search path. Before the search proceeds to the
left or right child of a node, the search key is compared for equality with
the key stored in the node. Figure 8.4 shows such a tree for the set of keys
used in the previous examples; the character code is the last five bits of the
ASCII code, so A = 00001, B = 00010, ... , Z = 11010.

The search procedure for digital search trees works correctly regardless of

263

264 SETS OF DIGITAL DATA

Figure 8.4 Digital search tree for the keys of Figures 8.1 through 8.3. Each
character has a five-bit code, with M = 01101, P = 10000, and T =
10100. The digital codes for all keys in the subtree rooted at node u
begin with the bit string on the path from the root of the entire tree to u.
No special significance is attached to which of the keys in a subtree is
stored at its root.

which of the keys that belong in the subtree is stored in the node. If the structure
is static and the frequency distribution of the keys is known in advance, then
it makes sense to store in each node the key of highest frequency that belongs
in the subtree rooted at that node. That is, the root contains the key of highest
frequency in the entire tree; the left child of the root contains the key of highest
frequency that begins with a 0 bit (with the possible exception of the key at the
root) and the right child of the root contains the key of highest frequency that
begins with a 1 bit (with the possible exception of the key at the root); and so
on. Then if n keys are to be represented, the tree has exactly n binary nodes,
each of which has two pointer fields and a Key field.

A digital search tree can also be grown dynamically, with each new key
inserted at the node where an unsuccessful search for it terminates. Deletions
can be supported as well; when a key in an interior node is to be deleted, it is
replaced by the key in any of its descendants that has two empty children, and
that leaf is deleted from the tree.

Digital search trees have storage utilization and search time characteristics
similar to those of random binary search trees. In particular, expected search
time in a tree with n keys is O(log n), given natural assumptions about the
distribution of keys. (Note the sort of circumstance that can make a digital
search tree badly imbalanced: if 0 bits are more likely to occur than 1 bits, the
tree will become imbalanced because left children are more common than right
children.)

6. Let us return to the basic trie structure and its elementary variants, the

8.3 HASHING TECHNIQUES 265

de la Briandais tree and the Patricia tree. If the keys are English words or
sequences of English words, the lack of uniformity in the distribution of
letter sequences can result in tries that are imbalanced, that is, discriminate
poorly for several levels because certain letter combinations are so common
and others so uncommon. In English there are a great many th- words, but
no tx- or td- words. Instead of indexing on the first character of a word
at the root, the second character at the second level of the tree, and so on,
the indexing could proceed from the last letter of the key back towards the
first, or alternately from the two ends (first letter, last letter, second, second
to last, ...), or in any other way that improves the balance of the trie.

8.3 HASHING TECHNIQUES

Let K be a key space, that is, a large (possibly infinite) set from which keys
are to be drawn. For example, K might be the set of all strings of characters
constructible using the ASCII character set. Let {Ko,.. ., Kn-, } be a particular
set of keys on which dictionary operations (Insert and LookUp at least, and
possibly Delete as well) are to be performed. The basic idea of hashing is to
store the members of this set in a hash table T[O. . m - 1] with the aid of a
hash function h: K -{ .. . , m-I}. For each j, key Kj is to be stored
in the table at position h(Kj). If h can be computed quickly, then to retrieve
a key K one can compute h(K) and retrieve the key (and any associated data)
from that position in the table. The number h(K) is called the hash value of
key K.

The problem, of course, is that h probably cannot be a one-to-one mapping,
since the size of K is in general much larger than m. Therefore collisions may
occur: that is, there may be distinct keys in the set, say Ki and Kj where
i # j, such that h(Ki) = h(Kj). Since the two items cannot be stored in the
same position, some strategy must be adopted for resolving the collision, that is,
relocating one of the items in such a way that each can be found on subsequent
LookUps.

Besides being easy to compute, the basic property of a good hash function h
is that it tends to spread keys out uniformly in the table. That is, if a key K
is drawn at random from the key space K then the probability that h(K) = i
should be 1/rm, independent of i. This will tend to make collisions as infrequent
as possible. A good simple method is to treat K as an integer and to let
h(K) = K mod m, that is, to use as the hash value of a key the remainder
when it is divided by the length of the hash table. If the keys are alphabetic and
a binary code is in use, then m, the table size, should not be a power of 2, since
K mod m. will then be just the Ig m low-order bits of K, independent of the
rest of K. For example, if K is in 8-bit ASCII and m = 256, then K mod m
is nothing but the ASCII code for the last character of K. As a rule of thumb,

266 SETS OF DIGITAL DATA

Figure 8.5 Names of the first twenty (in alphabetical order) signers of the
Declaration of Independence, and their death dates. (Source: The World
Almanac 1987, p. 442.) To experiment with various hashing techniques,
we use the hash function h(K) = the day of the month on which K died.
(Later in this chapter we use the secondary hash function h2 (K) = the
month in which K died.)

remainder modulo m provides a decent hash function if m is prime. We shall
have more to say about hash functions in §8.5.

Whatever the hash function, there are two general types of strategy for or-
ganizing the hash table and resolving collisions: chaining and open addressing.

Chaining Strategies
Separate Chaining In the most straightforward strategy, T[i] is used not to
store a single datum, but as a pointer to a dynamic data structure containing
data for all key values K such that h(K) = i. This data structure might be
any that supports the dictionary operations, but since the number of collisions
is expected to be small, elaborate structures can be avoided; ordinarily a simple
linked list is used. In this case the entire data structure is on two levels; the
hash table is an index that divides the dictionary into m linked lists, which are
referred to as buckets.

To illustrate the notion of separate chaining, consider the data of Figure 8.5,
the names of the first twenty (in alphabetical order) signers of the Declaration
of Independence, together with their death dates.

Figure 8.6 shows a hash table of 31 buckets constructed by inserting these
names in alphabetical order, using as the hash function the day of the month
on which the individual died. (Of course, one could not in practice calculate

Name Date of Death h(K) h2 (K)

J. Adams July 4, 1826 4 7
S. Adams October 2, 1803 2 10
J. Bartlett May 19, 1795 19 5
C. Braxton October 10, 1797 10 10
C. Carroll November 14, 1832 14 11
S. Chase June 19, 1811 19 6
A. Clark September 15, 1794 15 9
G. Clymer January 23, 1813 23 I
W. Ellery February 15, 1820 15 2
W. Floyd August 4, 1821 4 8
B. Franklin April 17, 1790 17 4
E. Gerry November 23, 1814 23 11
B. Gwinnett May 19, 1777 19 5
L. Hall October 19, 1790 19 10
J. Hancock October 8, 1793 8 10
B. Harrison April 24, 1791 24 4
J. Hart May 11, 1779 11 5
J. Hewes November 10, 1779 10 11
T. Heyward March 6, 1809 6 3
W. Hooper October 14, 1790 14 10

8.3 HASHING TECHNIQUES 267

Figure 8.6 Hash table with separate chaining for the data of Figure 8.5, with
the name of a man hashed to the day of the month on which he died.

that day from an individual's name; this "function" is being used for illustrative
purposes only. Also, for the purpose of this illustration we have suspended our
convention that table indexing is zero-based; the indices run from 1 to 31, like
the days of the months, rather than from 0 to 30.) For example, since four of
these men happened to have died on the nineteenth day of a month, bucket 19
has four members. We assume that insertions occur at the ends of chains, so
that each chain is in alphabetical order.*

*This makes the diagrams easier to follow, since the chains show the keys in the order in which
they are inserted. But it is, of course, quicker to insert at the beginning of a linked list.

2
3
4

5
6
7

8
9
10
11

12

13
14
15
16

17
18
19
20

21
22
23
24

25
26
27
28
29

30
31

268 SETS OF DIGITAL DATA

Let us count as one probe each access to the data structure. Thus in
separate chaining one probe is used to get a list header; if it is nonnull, a second
probe is needed to retrieve the first record of the linked list, including both
its key and pointer fields, and so on. For a given hashing structure the time
required for a LookUp is proportional to the number of probes, so the number
of probes is a good indicator of efficiency. For the example of Figure 8.6, two
probes are needed to retrieve S. Adams or J. Adams; three for W. Floyd; and so
on. Since there are 12 chains with at least one element, six with at least two,
and one with four, the average number of probes to find a key in the table is
(2- 12 + 3 -6 + 1 4 + 1 -5)/20 = 2.55.

To understand more generally the performance of hashing strategies such as
separate chaining, let n be the size of the dictionary to be stored and m be the
size of the hash table. Then a = n/m is called the load factor; in our example
the load factor is 20/31 P 0.65. (With separate chaining, the load factor may
be greater or less than one.)

Let S(a) be the expected number of probes to perform a LookUp on a key
that is actually in the hash table, and U(a) be the expected number of probes in
an unsuccessful LookUp, on the hypothesis that the key sought is equally likely
to be mapped by the hash function to each of the m hash buckets. For separate
chaining, a LookUp takes one probe to get the list header, plus one probe for
each element of the list that is inspected. Since the average length of a list is
a = n/m and an unsuccessful search always goes through an entire list,

U(a) = I + a.

The quantity S(a) is slightly trickier to analyze. A successful search goes
through roughly half the elements of a list, on average, since a random key is
equally likely to be the first, second, ... , or last key in a list. To be precise,
the average number of probes in a successful search, not counting the one to
get the list header, is 1 if the list is of length 1, (1 + 2)/2 = 3/2 if the list is of
length 2, and in general (I/k) Ek1I i = (k + 1)/2 if the list is of length k. If
all the buckets were known to be nonempty, then the expected length of a list
would again be a = n/m, and the expected search time, including the probe to
get the list header, would be 1 + (a + 1)/2 = 3/2 + a/2. In fact, a successful
search never inspects an empty bucket, and S(a) is 3/2 plus half the expected
length of a nonempty list. Since some buckets might be empty, the expected
length of a nonempty list is slightly larger than a, and the expected time for a
successful search with separate chaining is

a
S(a) t 2 + .

2
(See Problem 22.) Of course the worst-case number of probes is very much
worse; if the keys all happened to have the same hash value, they would all be
in the same bucket, and it would take n + 1 probes, in the worst case, for either
a successful or an unsuccessful search.

8.3 HASHING TECHNIQUES 269

Ideally, if the expected size n of the dictionary is known in advance, the
size rn ot the hash table can be chosen to be proportional to n, so that a is a
constant. In this case expected access time is bounded by a constant and no
elaborate data structure is needed for the buckets.

A major advantage of separate chaining strategies is that deletion is easy, or,
to be precise, as easy as deletion from a bucket. If the buckets are linked lists,
deletion is completely straightforward. The price paid for this ease in deletion,
and for the opportunity to have a dictionary that is larger than the hash table,
is the memory used by pointers, and the fact that a dynamic memory manager
must be used to satisfy requests for allocation and deallocation of cells.

Coalesced Chaining Looking up a key in the hash table of Figure 8.6 takes
at least two probes; the head of a linked list must be found by indexing, then
that pointer must be followed to get the first element of the linked list. An
alternative organization stores the first cell of the linked lists in the hash table
itself (Figure 8.7). This organization is plausible if the key field is not too large
or the hash table is likely to be rather full, so that the space lost to empty key
fields is not great.

From this modest variation on the separate chaining scheme another idea
arises: to use the empty cells of the hash table itself to store the second and
subsequent cells of the chains. In essence, the dynamic memory allocator is
replaced by sequential allocation of empty cells, starting, say, from the top of
the table and working down towards the bottom. Unfortunately, a slot that is
occupied by such a "displaced" cell might be wanted later on to store an item
that hashes to that slot. Such a collision is treated like any other; the key is
stored in the next available position, as discovered by sequential search through
the table.

The LookUp operation is implemented exactly as in the case of separate
chaining, but the chains may contain elements with several different hash values.
However, all elements with a given hash value are in the same chain, so only
one chain need be searched for a key, namely, the chain that is entered at the
key's hash value. In general the first probe does not go to the beginning of a
chain, so even in case of an unsuccessful search only part of a chain is searched.
The Insert operation is also essentially the same as for separate chaining, except
that new cells are allocated from within the table, and the table can become full.
The table is detected to be full when a search for an empty slot wraps around
to its starting point.

Figure 8.8 shows the data of Figure 8.5 stored according to a coalesced
chaining strategy, with collisions resolved by searching the table from top to
bottom for a free slot. There are four chains of length 1, four of length 2, one
of length 3, none of length 4, and one of length 5, so the expected number of
probes to find an element in the table is

((4+4+ 1 +0+ l) I +(4+ 1 +0+ 1)-2+(l +0+). 3+(O+ 1)-4+ 1 5)/20 = 1.85.

270 SETS OF DIGITAL DATA

S. Adams 1

J. Adams |-- W.Floyd V

T. HeywardV

J. Hancock

C. Braxton |0 J. THewes V1
J. Hart

3 >W. Hooper _V1
C. Carroll or
A. Clark *tW ley V

7 B. Franklin /

J. Bartlett Hall

G. Clymer|- E.Gry /

B. Hariso

Figure 8.7 Hash table of Figure 8.6, with first entry of each chain (rather
than a pointer to that entry) stored in the hash array proper.

For separate chaining the figure calculated earlier was 2.55 probes, but a fair
comparison with the separate chaining method would have to discount the first
probe used in that method, which simply accesses the first cell of the chain, so
these data support the intuition that coalesced chaining is not much less efficient
than separate chaining in expected access time.

Since some collisions are almost certain to occur, and these interfere first
with the placement of records that hash to positions early in the hash table, a
logical strategy to improve the performance of coalesced chaining is to leave
the first few slots in the table strictly for resolving collisions. In other words,
have the table indices extend from -v to m - 1, but hash only to the indices

-71

8.3 HASHING TECHNIQUES 271

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 8.8 Hashing with coalesced chaining. The hash table of Figure 8.7 is
organized with all hash table entries stored internally. If position h(K) is
occupied when key K is to be installed, the first free slot in the table is
used to store K, and that cell is added to the list that contains slot h(K).
As a result keys with different hash values can fall in the same chain, so
the chains "coalesce." For example, Hancock (h(K) = 8) is in the same
chain with Hall (h(K) = 19) because Hall was put in the table before
Hancock, and at that time slot 19 was occupied and slot 8 was the first
free slot.

272 SETS OF DIGITAL DATA

0 through m - 1; this leaves v positions that can be used for resolving collisions,
before starting to use the main part of the hash table for this purpose. The first v
slots are sometimes called the cellar, and the strategy is referred to as coalesced
chaining with cellar. Experimental and theoretical work suggests that making
the cellar about 14% of the total space allocated (that is, v/(m + v) = 0.14)
yields good performance for both successful and unsuccessful searches over a
wide range of values of the load factor.

Open Addressing Strategies
In an open addressing strategy items are stored directly in the hash table, but
no pointers are used to direct the search from one slot to another. Instead, if
the intended position of a key is found to be occupied, some method, perhaps
depending on properties of the key, is used to determine a sequence of positions
to be searched.

The sequence of positions searched is called the probe sequence for the
key. We let H(K, p) denote the pth position tried for key K, where p = 0, 1,
.... Thus H(K, 0) = h(K), the primary hash position for the key. To search for
a key, look at the successive positions in its probe sequence, until either the key
is found or an empty ("open") position is encountered; if an empty position is
encountered, the key is known not to be in the table. If the key is to be inserted
in the table, it may be inserted in the open position just discovered, or the table
may first be reorganized somewhat to reduce search times in the future.

We first describe two methods for determining the probe sequence, linear
probing and double hashing, and then discuss several insertion strategies that
reduce search times.

Sequential or Linear Probing If key K hashes to index i, but that position is
occupied by another record, just try positions i + 1, i + 2, ... until an empty slot
is found, and store the record with key K there. If the search must continue
beyond the end of the table, that is, beyond position m -1, then continue from
the top of the table (position 0). That is,

H(K, 0) = h(K)

H(K, p + 1) = H(K, p) + 1 mod m.

Of course, if the search reaches the initial probe position a second time, then
the table is full and there is no hope of inserting the key.

For example, Figure 8.9 shows the result of inserting the data of Figure 8.5
and Figure 8.6 into a hash table, using the same hashing function as before
(day of the month on which death occurred) and using linear probing to resolve
collisions. The third column shows the number of probes needed to look up a
key K in the hash table; this is 1 if the key is in its natural position h(K), but
is greater than 1 if the key collided with a previously inserted key when it was
inserted.

8.3 HASHING TECHNIQUES

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

S. Adams

J. Adams
W. Floyd

T. He ward

J. Hancock

C. Braxton
J. Hart

J. Hewes

C. Carroll
A. Clark
R. Ellery

B. Franklin
W. Hooper
J. Bartlett
S. Chase

B. Gwinnett
L. Hall

G. Clymer
E. Gerry

B. Harrison

12

3

2

5

2

4

2
2

Figure 8.9 Open-addressed hash table for the data of Figure 8.5, with linear
probing used to resolve collisions. The names have been inserted in al-
phabetical order. The third column shows the number of probes required
to find a key in the table; this is the same as the number of slots that
were inspected when it was inserted.

The last name inserted in this table was that of T. Hooper, with hash
value 14; but at the time his name was inserted, positions 14, 15, 16, and 17 in
the table were all occupied, so his name wound up in position 18.

Linear probing is extremely easy to implement and has satisfactory behavior
when the table is not too full. Unfortunately, it suffers from a phenomenon called
primary clustering. Once a block of a few contiguous occupied positions
emerges in the hash table, it becomes a "target" for subsequent collisions; a
collision at any of the positions in the cluster makes the cluster grow larger, and
the larger the cluster becomes, the bigger a target it is. As clusters grow, they
also merge to form larger clusters; in our example this happened when Hooper
filled up the last open space between clusters of size 4 and 7. In Figure 8.9, 20
of the 31 table entries are filled, but the filled entries form five clusters, one of
them 12 entries long.

273

274 SETS OF DIGITAL DATA

Large clusters tend to increase the expected search time. In the example of
Figure 8.9, the expected number of probes to find a key in the table (provided
that all keys are equally likely to be sought) is the average of the values in the
third column, which turns out to be 1.8 (versus a minimum of 1.0 probes per
LookUp). The time required for an unsuccessful search increases even more
dramatically as a result of clustering. Consider the number of probes required
to look up K, if K is not in the hash table. If K hashes to an empty slot, only
one probe of the table is needed; but if K hashes to a slot that is not empty,
the search must proceed to the end of the cluster before it can be abandoned.
With clusters of size 1, 3, 1, 3, and 12 the expected number of probes in an
unsuccessful search is 1/31 of the sum

11 * 1 (h(K) is an empty slot)
+ 5 2 (h(K) is the last slot of a cluster)
+ 3 * 3 (h(K) is the next to last in a cluster of size at least 2)
+ 3 * 4 (h(K) is the third to last in a cluster of size at least 3)
+ 1 5 (h(K) is the fourth to last in a cluster of size at least 4)
+ I 6

+ 1 13, (h(K) is the first slot of the cluster of size 12)

or about 3.97. But if the 20 entries happened to fall into ten clusters each of
size 2, the expected number of probes for an unsuccessful search would be less
than 2.

An attempt to improve this strategy by adding some constant k greater than
one to the index would not help at all; the clusters would then become sequences
of the form i, i + k mod m, i + 2k modm,

Open Addressing with Double Hashing Clusters can be broken up if the sec-
ond and subsequent positions in the probe sequence for a key are chosen in a
way that is independent of its primary position. One way to do this is to use a
second hash function h2, the values of which are independent of the values of
the primary hash function h. When key K is sought, each probed position is
h2 (K) beyond the previous one, with the search wrapping around to the top of
the table if it goes beyond the end of the table. In other words,

H(K, 0) = h(K)

H(K, p + 1) = (H(K, p) + h2 (K)) mod m.

Linear probing is double hashing with h2 (K) = I for all K.
To ensure that the probe sequence visits all positions in the table, h2(K)

must be greater than zero and relatively prime to m for any K. That is, h2(K)
and m should have no common divisor. For if d divides both m and h2(K),
then

(dh 2 (K)) mod m = (in. 2 j()) mod m -0,

8.3 HASHING TECHNIQUES

2
3
4
5
6
7

. 8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

J. Hewes
S. Adams
E. Gerry
J. Adams

T. Heyward

J. Hancock

C. Braxton
J. Hart

W. Floyd
W. Hooper
C. Carroll
A. Clark

R. Ellery

J. Bartlett

B. Franklin

G. Clymer
B. Gwinnett

S. Chase

B. Harrison
L. Hall

3
l
2
1

-

I

-

2
I4

l

-2
2

2

Figure 8.10 Open-addressed hash table for the data of Figure 8.5 on
page 266, inserted in alphabetical order, with double hashing used to
resolve collisions; h(K) = day of month on which death occurred, and
h2 (K) = month in which death occurred. The third column shows the
number of probes used when the key was inserted, which is the number
that would be used during a search for that key.

so that the m/dth probe in the sequence will be the same as the first. Therefore
the probe sequence will not reach all positions in the table. Of course, the
simplest way to ensure that h2 (K) is always relatively prime to m is to choose
m to be a prime number in the first place. For example, in the hash tables of
Figures 8.6 through 8.9 we have chosen m = 31, a prime number.

Figure 8.10 shows the data of Figure 8.5 on page 266 entered into a hash
table by double hashing. The primary hash function is, as before, the day of
the month on which death occurred; the secondary hash function is the month
of death, with January = 1, February = 2, and so on.

The last name inserted, W. Hooper, has hash values h(K) = 14 and
h2 (K) = 10. Position 14 in the table is found to be occupied (by Carroll);
next position 14 + 10 = 24 is checked, but this too is occupied (by Gwinnett);

275

276 SETS OF DIGITAL DATA

then position 14 + 2 10 mod 31 = 3 is checked, but it is occupied (by Gerry);
finally position 14 + 3 * 10 mod 31 = 13 is checked and found to be vacant.

In the example the secondary hashing breaks up the clusters and shortens
the expected search time. For example, each of the four keys with primary
hash value of 19 can be looked up with at most one extra probe. The expected
number of probes to look up a key (the average of the values in the third column
of Figure 8.10) is 33/20 = 1.65.

The exact performance of open addressing with double hashing is difficult to
determine analytically, but the behavior of double hashing can be approximated
by the assumption that each probe into the hash table is independent and has a
probability of hitting an occupied position exactly equal to the load factor. Of
course this assumption is false; successive probes are to algorithmically related
positions, and it is impossible to probe the same position twice. But the use
of the second hashing function sufficiently disorganizes the probe sequences of
different keys that the algorithm behaves empirically as though the italicized
statement were true.

Suppose that the assumption is true, and we insert n items into an initially
empty hash table of size m; what is the expected number of probes in a suc-
cessful or unsuccessful search? Let ai = i/m for each i < n; thus by the
assumption the probability of a collision on any probe was ai after i keys had
been inserted. Then the expected number of probes in an unsuccessful search
when n- I items have been inserted is

Un -l 1 (1 -an 1) +2 -a in-1 0 - an-1) +3 -an (I An-I) +

1
1 - 2_n

That is, with probability I - an the first slot probed will be empty, so only
one probe is needed to insert it; with probability an-l (1- A n-) the first slot
will be full but the second slot probed will be empty, so exactly two probes are
needed for the insertion; and so on. (Of course the sum is not truly infinite,
since it stops after m terms.) The number of probes in a successful search is
the average of the number of probes it took to insert each of the n items; and
the expected number of probes to insert the ith item is the expected number of
probes in an unsuccessful search when i - 1 items have been inserted. Therefore

1 n
Sn -E Ui- I

n 1

n iI1-

8.3 HASHING TECHNIQUES 277

m E I =-Hmn mn
n i i -+1 n

where H, = I + 2 + + * + i zzIn i is the ith harmonic number. Therefore2 3

Sn (Inm l-n(m n)) =-IIn r -In
n n m-n a, I-an

When an = 20/31 as in the example, Sn t 1.606, in good agreement with
our observed value of 1.65. Even when the table is 90% full, Sn is only 2.56,
though Un 1/(1 -. 9) = 10.0.

While double hashing can be modelled rather accurately in this way, se-
quential probing is much harder to analyze. Knuth shows that for sequential
probing,

Sn I(l + 1a)

2 (I (a)2)

When a = .9 the expected times for successful and unsuccessful searches are
Sn 5.5 and Un ; 50.5, in contrast to the figures of 2.56 and 10.0 for double
hashing. The small extra effort required to implement double hashing certainly
pays off!

Ordered Hashing The time required for unsuccessful searches with double
hashing can be reduced if some care is taken with the way insertions are done.
In the hash tables of Figures 8.6, 8.7, and 8.8, the names have been inserted
in alphabetical order; since insertions are performed at the ends of the lists,
the chains are in alphabetical order. This ordering could be used to reduce
search times during unsuccessful searches, since a search for key K can safely
be abandoned once a key alphabetically greater than K has been found. The
special nature of the ordering has no impact on the expected time for successful
searches, however.

With separate chaining, even if the data are not inserted in the hash table
in order, the chains can still be kept alphabetically ordered, simply by inserting
keys at their alphabetic positions in the chains. This requires a search, unless
the appropriate position is known as a result of a previous LookUp.

The same basic idea can be applied to hash tables with open addressing,
though the manipulations required to keep the data organized are somewhat
more complicated. The items must be inserted in such a way that if key K is
in the table, then during the probe sequence for key K, the keys encountered
before reaching K are alphabetically smaller than K. Clearly, if this is the case
then when key K is sought, the search can be abandoned as soon as a key is
encountered in K's probe sequence that is alphabetically greater than K. The

278 SETS OF DIGITAL DATA

question is how to perform the insertions so that this property is maintained
regardless of the order in which the keys are inserted. The trick is this: As
the probe sequence for key K is followed, if a key K' is encountered such that
K' < K, replace K' by K, and proceed to insert K' as dictated by its probe
sequence.

To see how this works, imagine the keys to be students (male students, for
grammatical simplicity) who are to be seated in a classroom. Each student has
his own preferences of where to be seated (probe sequence), and students vary
in size (the alphabetic ordering, with bigger students being the alphabetically
earlier strings). When a student enters the classroom, he first tries his first-
choice seat; if it is empty he occupies it. If it is not empty and the student
sitting in it is bigger than he is, he tries his next-highest choice seat. But if the
seat is occupied by a smaller student, he ejects the student from the seat, sits
down himself, and sends the displaced student off to try his next-highest choice
seat. Algorithm 8.2 shows the details.

It is not completely obvious that this algorithm creates a hash table with
the critical property that if a record with key K is in the table then the keys
preceding K in its probe sequence are necessarily smaller than K alphabetically.
In fact this property follows by a simple induction. When the table is empty
the property holds trivially. Thereafter, the only operations on the table are

1. to put a key, which is greater than any of its predecessors in its probe
sequence, in a previously empty slot, and

2. to replace a key already in the table by a smaller key.

Neither of these operations can cause a greater key to come before a lesser key
in the probe sequence of the latter.

Indeed, if Algorithm 8.2 is used, the final state of the hash table for a given
set of keys will be the same, regardless of the order in which the keys were
inserted. In fact, the hash table will have the same appearance as it would if
the keys had been inserted in alphabetical order. For example, any of the 20!
ways of inserting the 20 keys of Figure 8.5 on page 266 in an ordered hash
table would result in the table of Figure 8.10. To see why this is so, let K1,
... , K, be the keys in alphabetical order, and suppose that there are different
insertion sequences yielding distinct hash tables. Let i be the smallest number
such that Ki can fall in different positions depending on the order in which the
keys are inserted. Thus K 1, ... , Ki- 1 are in the same positions in all hash
tables derived from these keys. But then Ki must also be in a unique position,
namely, the earliest position in its probe sequence not occupied by one of K1 ,
... , Ki-1; if it were located any later than this in its probe sequence, it would
be preceded in its probe sequence by one of Ki+1 , ... , K", and Algorithm 8.2
would not work.

Algorithm 8.2 uses double hashing to calculate the probe sequence, and
assumes that h2 (K) is relatively prime to the table size m for any key K,

8.3 HASHING TECHNIQUES 279

procedure OrderedHashlnsert(key K, info I, pointer P):
if Size(P) = m - I then error
T <- Table(P)
p - h(K)
while T[p] 5 A do {Table position

if Key(T[p]) > K then
K +-* Key(T[p])
I +-+ Info(T[p])

else if Key(T[p]) = K then
Info(T[p]) i- I
return

p +- p + h2(K) mod m {Next position inI
Key(T[p]) K
Info(T[p]) I
Size(P) - Size(P) + I

{Hash table is full}

n T[p] is not empty}

K's probe sequence}

function OrderedHashLookUp(key K, pointer P): info
p <- h(K)
while T[p] 5 A and Key(T[p]) < K do

p-- p+ h 2(K)

if T[p] $ A and Key(T[p]) = K
then return Info(T[p])
else return A

Algorithm 8.2 Insertion and search in an ordered, open-addressed hash table.
The hash table is passed as a pointer P to a record with two fields, T =
Table(P), which is the hash table itself, and n = Size(P), which is the number
of occupied positions in the hash table. The constant m is the length of table T.

so that any key's probe sequence would eventually visit all positions in the
table. To make it possible to discover quickly whether the table is full, the
dictionary is implemented as a record with two components, the hash table
itself T = Table(P) (a table of which each entry has Key and Info fields) and
the number n = Size(P) of items in the table. The length of the table is a
constant m; thus the table indices are 0. .m - 1.

If we assume that all keys are equally likely to be sought, the ordering
strategy does not change the expected time for a successful search; Sn is the
same as for the double hashing strategy of the last section. However, the number
of probes in an unsuccessful search is essentially the same, on average, as in
a successful search, since in both cases about half of the occupied portion of
a key's probe sequence will have to be inspected on average, either to find the

280 SETS OF DIGITAL DATA

key or to determine that it is not present. So for ordered hashing with double
hashing,

Sn Z U" -Z, In1~ 1 -a
ar?, I1-,,,

Deletions
Deleting from a separately chained hash table is easy; indeed it is one of the
principal advantages of separate chaining that deletion from the hash table is
as easy as deletion from the chain, which typically is a linked list. Deletion
from an open-addressed hash table is not so simple. A key to be deleted cannot
simply be removed from the hash table, leaving its position empty, since the
position of the key being deleted might be on a probe sequence for a key that
remains in the hash table.

Suppose for simplicity that sequential probing is used, and consider what
happens when two keys with the same primary hash value i are inserted into an
otherwise empty hash table, and then one of them is deleted. The other will be
left at position i + 1 mod m, but a subsequent LookUp would stop on finding
position i empty. The usual way of avoiding this problem is to add a one-bit
Deleted field to each table entry; when an entry is deleted, the Deleted bit is
set to 1. Searches proceed over both the occupied slots and the empty slots that
have Deleted bit 1; insertions occur at the first position that is empty or has
a Deleted bit 1. With these algorithms the data structure correctly implements
the dictionary operations, but searches, particularly unsuccessful searches, tend
to be lengthy once a large number of insertions and deletions have occurred,
since eventually nearly every unoccupied position will have its Deleted bit 1.

Other strategies for resolving collisions, such as coalesced chaining and
double hashing, can make use of Deleted bits, but the side-effect-increased
search times-occurs with these methods as well. As a last resort, if a hash
table becomes too cluttered with deleted entries, it can be rebuilt from scratch by
inserting all its members into a new hash table that is initially empty. Naturally
this is a time-consuming process, but its cost may be worth while; the size of the
hash table can be increased at the same time, if necessary, to respond to what
may have been learned about the number of entries that must be accommodated.

8.4 EXTENDIBLE HASHING

Open-addressing hashing strategies have the advantages over separate chaining
strategies that they do not use space for pointers and do not rely on dynamic
memory management. But they have the significant disadvantages that deletions
cause performance to be degraded and that the size of the table cannot be
adjusted if the number of entries is larger than was anticipated when the table

8.4 EXTENDIBLE HASHING 281

D=3

000

001

010

011

100

101

110

111

Figure 8.11 Extendible hash table, consisting of a directory and four leaf
pages. The four leaf pages contain all keys whose hash values begin with
00, 010, 011, and 1, respectively. The box in the upper left corner of a
leaf page shows the depth of the page, that is, the length of the prefix of
the hash value of all keys in that page.

was initialized. The only practicable course of action, in case an open-addressed
table becomes heavily contaminated by deleted entries or becomes full, is to
allocate an entirely new table of the appropriate size and to transfer the contents
of the old hash table, one entry at a time, into the new table.

Extendible hashing is a method that allows a hash table to grow and shrink
gracefully while keeping access times bounded. It is especially useful in orga-
nizing data in secondary storage, and can be used as an alternative to a B-tree
structure. The extendible hashing data structure has two levels: a top-level
directory, and a set of leaf pages (Figure 8.11). The directory is a table of
pointers to leaf pages; the data records themselves are kept in the leaf pages. It
is easiest to think of the directory as held in internal storage and the leaf pages
as held in external storage; then finding any item takes only a single reference
to external storage. The leaf pages are of fixed size, say b records; we assume
that a memory manager is available to allocate or release leaf pages on request.

Extendible hashing is based on a hash function h that maps keys to bit
strings of, say, L bits in length; it is important that the distribution of keys
across the 2L hash values be uniform. If d < L, let hd(K) be the first d bits
of h(K), that is, the prefix of h(K) of length d. For example, if L = 5 and
h(KO) = 01010, then h3(KO) = 010. A leaf page consists of all keys in the
hash table whose hash values have a particular prefix; the length of this prefix
is the depth of the page. Figure 8.11 shows an extendible hash table consisting
of a directory and four leaf pages; the depths of those pages are shown in their
upper left-hand corners. (The boxes denoting the leaf pages contain not the
keys themselves, but their hash values.) Since the page containing the key that
hashes to 01010 has depth 3, that page also contains any other key in the hash

282 SETS OF DIGITAL DATA

table whose hash value begins with 010 (01001 is such a page in our example).
However, not all pages need have the same depth. In Figure 8.11 there are four
pages, which have depths 2, 3, 3, and 1; these pages contain records whose keys
have hash values with prefixes 00, 010, 011, and 1, and every bit string begins
with exactly one of these prefixes.

The maximum depth of any leaf page is called the depth of the hash table
as a whole, and is denoted by D; in our example D = 3. The directory is a
table T of length 2D containing pointers to leaf pages; thus to locate the page
containing key K, compute hD(K) and follow the pointer in T[hD(K)]. If the
depth of a leaf page is less than the depth of the table, several pointers will point
to it; to be exact, a leaf page of depth d will be pointed to by 2 D-d consecutive
entries of T. Thus the directory is essentially the top level of a trie structure,
discriminating on the first D bits of the hash value of the key.

The choice of the internal structure of a leaf page is independent of the
other considerations about the data structure; the pages could be open-addressed
hash tables, or search trees, for example. But their capacity is limited to exactly
b items; if a page overflows due to an attempted insertion, it must be split.
Splitting is accomplished by increasing the depth of the page and creating a
"buddy" page. For example, Figure 8.12(a) shows the effect of inserting a key
with hash value 11101, on the assumption that b = 2. Since the page of depth 1
corresponding to the prefix string 1 is already full, the page is split into two pages
of depth 2, one for prefix 10 and one for prefix 11; the records are distributed
between these two pages as appropriate. Conceivably this process might have
to be iterated, because all the records move to one of the pages, but unless b
is very small such an occurrence probably indicates some nonuniformity in the
hashing function.

If a page of less than maximal depth is split, one or more pointers in the
directory need to be changed to point to the new leaf page. But if increasing
the depth of a leaf page causes the depth of the whole table to increase (because
the page being split was of maximal depth), then the size of the directory must
be doubled. Figure 8.12(b) shows what happens when a key with hash value
01011 is inserted into the table of Figure 8.12(a). In general, entries 2i and
2i + 1 of the new directory both point to the same leaf page as entry i of the old
directory, except if entry i pointed to the page that was being split. Of course,
increasing the size of the directory requires recourse to a memory manager, and
if the directory becomes too large it will not be possible to hold it in internal
memory.

Extendible hashing is capable of accommodating deletions. Suppose that
directory entries 2i and 2i + 1 point to distinct pages of maximal depth. If
deleting an entry from one of them causes their collective size to be b entries or
less, then the two pages can be collapsed into a single page; if they were the only
leaf pages of maximal depth, then the directory can be halved in size. When
and how to carry out such operations may require some judgment and tuning;

8.4 EXTENDIBLE HASHING 283

D=4

D=3

000

001

010

011

100

101

110

111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

(a) (b)

Figure 8.12 Insertion into the extendible hash table of Figure 8.11. The
leaf pages can hold only two records; if a page overflows as a result of
an insertion, it is split. (a) The result of inserting a record that hashes
to 11101 into the table of Figure 8.11; the last leaf page splits. (b) The
result of inserting a record that hashes to 01011 into the table of part (a);
the page containing 01001 and 01010 splits.

collapsing two half-full pages into one full page is an expensive operation,
especially if it happens to be followed by splitting the full page as a result of
an insertion.

How efficient is extendible hashing? There is no question about time effi-
ciency, since by definition any record can be found with a single probe of the
directory and a single access to a leaf page. However, storage efficiency is an
important issue, since leaf pages are generally underfull and since the directory
usually has duplicate entries. A complex analysis (cited on page 297) shows that
if pages can accommodate b items, then the expected number of pages needed
to store n items is roughly n/(b . In 2); that is, the pages are about 69% full on
average, and about 44% more pages are needed than the theoretical minimum.
The expected size of the directory is about (e/(b . In2)) * n1+1/b; thus for large b,
the directory is expected to have about 2.7 times as many slots as there are leaf
pages.

284 SETS OF DIGITAL DATA

8.5 HASHING FUNCTIONS

It is important not to lose sight of the basic performance properties of all the
hashing methods discussed above: they perform very well on average, provided
that the hashed values of the keys are uniformly distributed, but in the worst case
their performance is almost unthinkably bad (linear in the size of the dictionary).
The worst case can be realized either if the hash function does not distribute the
keys properly, or if, through bad luck, the hashing function does not perform
well for the particular set of keys being stored. Thus it is important to devote
a bit of attention to the choice of a hashing function.

Hashing by Division
On page 265 it was suggested that a good hashing function is h(K) = K mod m,
where m is the table size and K is treated as an integer for the purposes of
division. Since in fact keys are typically alphabetic, K can be expressed as
(cf. page 164)

P-
1

K Z ciri,
i=O

where p is the length of the key, r is the radix of the character code (typically 128
or 256), and cp-., ... , co are the character codes for the successive characters
in the key (0 < ci < r). (Depending on details of the encoding, p might be
fixed, and "blank" or "null" characters might be used to pad a short string out
to length p at either the left or the right end.) Any hashing function causes
many distinct keys to collide; the trick is to avoid systematic collisions in cases
where the source from which the keys originate is likely to exhibit a systematic,
nonrandom pattern in its selection of keys. For example, it is clearly a bad
idea, as already noted, to choose m to be r or r2, since the division then simply
retains the last character or two in the string. If the keys are the identifiers in
the source text of a computer program, the last character is likely to be very
unevenly distributed, with a heavy concentration of a few printing characters.
Similarly, choosing m to be even is a poor idea, since h(K) would then be odd
or even depending on whether the last character in K has an odd or even code.

It is safest, when using this method, to choose m to be prime, and moreover
to have the property that m does not divide rk ± a for any small value of k or a.
For example, taking m = r- I is a poor choice, even if it happens to be a
prime, since

P-I p-'

(I cir) mod (r- 1) (EZ(ciri mod (r - 1))) mod (r - 1)
i=o i=O

= (Zci) mod (r-1),
i-i

8.5 HASHING FUNCTIONS 285

since for any i,

i-l

ri mod (r -1)= (I +(r -I)rj) mod (r- 1) = 1.
3H=o

Therefore using m = r-I results in all permutations of the same character string
(ABC, BCA, etc.) having the same hash value. In practice these considerations
rule out only a few values; for example, if r = 256 then values of m in the
neighborhood of 256 and 2562 65536 should be avoided, but the latter figure
is probably impractically large anyway in many applications.

One difficulty with the division method (as well as the multiplication method
discussed below) is that the length of the key may well be much greater than the
machine word size on which integer division can be performed. The usual way
to work around this problem is to fold the key into a single machine word before
carrying out the division. Folding is the act of breaking an alphabetic key into
chunks of length, say, two or four characters, and combining them together by an
operation such as integer addition or logical exclusive-or. The folding operation
can be more complex; for example, cyclically shifting successive chunks by 1,
2, 3, ... bit positions prevents keys made up of the same chunks in different
orders from having the same folded value.

Hashing by Multiplication
The division method is simple and fast, but it is not suitable in all situations.
The method of the last section yields a hash function h: K - {O, ... , m -I },
where m is prime; but sometimes we need m to be nonprime. For example, in
the implementation of extendible hashing, the range of h should include all bit
strings of a specified length; the number of such bit strings is a power of 2.

If x is a nonnegative real number, let {f} - x - [xJ be the fractional
part of x. It is an interesting fact of mathematics that if 0 is any irrational
number, then for large enough n the n fractions {9}, {20}, {30}, ... , {nO} are
distributed very uniformly across the interval from 0 to 1. It turns out that the
n + I segments formed by 0, 1, and the n fractions have only three lengths, and
the next fraction in the sequence, {(n + I)0}, falls in one of the segments of
greatest length. Choosing 0 to be the reciprocal of the golden ratio

° = - I ;=/S - 0.61803399
2

causes the distribution of the fractions to be particularly even; each new point
splits one of the largest existing intervals in the golden ratio (Figure 8.13).

Having chosen 0 = o-1 and fixed the range size m, we define the multi-
plicative hash for key K as

h(K) = [m{K9}j. (I)

286 SETS OF DIGITAL DATA

F-

F]_

10

E

F]

V

E I

I

F3

F]a

F]~

I I II I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.13 The values of {K0` } for K = 1, ... , 10, where 0-1 is the
reciprocal of the golden ratio, 0.61803.... Each new value divides one of
the existing intervals of maximal size in the golden ratio, so the values
are distributed evenly across the interval from 0 to 1.

That is, K is treated as an integer, as in the case of the division method, and
the fractional part of KO, which is nonnegative and less than 1, is scaled to fit
the range of the possible values 0, 1, ... , m - 1.

Mathematically, this method has a number of attractive properties. If the
key space consists of all character strings of up to a certain length, the method
provably distributes the keys uniformly across hash values. The hash value
depends on all the characters of the key and their positions (so permutations
are no more likely to collide than other pairs of keys). Keys that are "close" to
each other, like SUM1 and SUM2, differ in numerical value by a small constant,
so their hash values are widely separated. However, it is not evident that the
computation of (1) can be carried out easily, especially on machines lacking
floating-point capabilities.

In fact, if m is a power of 2, the computation is quite easily programmed
using only fixed-point arithmetic, if we think of machine words as representing
fractions between 0 and 1 (with the "binary point" at the left end) rather than
integers. Let m = 2k, and let s > k be the number of bits of precision with
which a positive fixed-point number is represented. For example, if the machine
has 16-bit words and all 16 bits can be used to represent "unsigned" fixed-point
numbers, then s = 16. The largest integer representable is 2' - 1, but as a binary
fraction this bit pattern (a string of s 1 bits) represents a number just slightly
less than 1. We refer to an s-bit number as a word. On typical computers,

r__1

I F I I IP II �F

8.5 HASHING FUNCTIONS 287

two positive one-word fixed-point numbers can be multiplied to produce a two-
word fixed-point product. If we think of both the numbers being multiplied as
fractions, the result is a two-word fraction with the binary point at the left end;
the product of two numbers in the range [0,1) is in the range* [0,1). But if we
think of one as a fraction and the other as an integer, then the binary point of the
result is between its two one-word halves-the product of an s-bit fraction in
the range [0, 1) and an integer in the range [0, 2' - 1] is in the range [0, 2s - 1)
and has an s-bit integer part and an s-bit fractional part.

Let af be a one-word binary fraction approximately equal to the irrational
number 9. For reasons explained below, the low-order bit of a should be 1;
that is, if a is regarded as an s-bit integer, then a should be odd and a/2' a 0.
Then the quantity Lm{K9}J can be approximated by multiplying K by a, and
taking the k high-order bits of the low-order word of the result. That is, if K
is regarded as an integer and a as a fraction, the low-order word of K *a is a
binary fraction approximating {KO}; taking the high-order k bits of the result
and treating them as an integer effectively multiplies {KO} by m = 2 k and
discards the fractional part (Figure 8.14).

If ar is chosen so that, when regarded as an integer, it is odd, then different
values of K produce different values of the low-order word of the product Ka.
That is, no collisions will occur until the last step of the computation of the hash
function, which is essentially to truncate the value to the precision determined
by the size of the range. To see this, let ao be the bit string as- 1as-2 ... * I 00,

so that when viewed as an integer, a = Es= oj2'. We wish to show that if
ao = 1, then for any distinct K, and K2 ,

aK, mod 2' =& aK2 mod 28,

where all numbers are treated as integers. Suppose K, < K2 and let D
K 2 - K1 ; then we must show that aD mod 2' 4 0 provided that D j$ 0. If the
binary representation of D is d3 -lds-2 ... d1do, so that D = OSLO dj22, then

2s-2 i

aD= - (E di-j)2.
i=0 j=(

Let p be the position of the rightmost nonzero bit of D; that is, 0 < p < s 1,
and d, = 1, but d,- I do = 0. Then the term in parentheses in the

*For any numbers a and b,

[a, b] = {x: a < x < b};

(a, b) = {: a < x < b}; and

[a, b) = {x a < x < b}.

288 SETS OF DIGITAL DATA

K a

o 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1. * 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1

4 s 4 S

LKorj {Ko}

oo 0 1 1 1 1 1 0 1 0 1 0 0 0 1. 1 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1

4 s '; s

k -

h(K)

Figure 8.14 Computing a multiplicative hashing function. The key K and
the constant a are both fixed-point unsigned numbers of s = 16 bits.
K is an s-bit integer, while a is the fractional representation of the
golden ratio, with the low-order bit adjusted to be 1. Their product is a
2s-bit number, with the binary point between the two halves; the high-
order s bits represent LKaJ and the low-order bits represent {Ka}. The
high-order k bits of the low-order s bits yield an integer in the range

{O,.. ., 2k- l} that is uniformly distributed in that range as K varies
over all s-bit keys.

above sum will be O for i = O, ... , p- 1, but for i = p it will be

p

E ajdp-j = dpao = 1,

j=o

so bit p of aD will be 1. It follows that multiplication by a distributes the keys

uniformly across the range from 0 to m - 1.

Perfect Hashing of Static Data
If the data are known in advance, it may be possible to design a hash function

that completely avoids collisions. A hashing function for a fixed finite set

of keys that maps them one-to-one onto a set of values is called a perfect

hashing function. For example, Pascal has 36 reserved words; it is possible to

discover an easily computable function that maps these words one-to-one onto

the numbers {0,. . . , 35}. Of course it is always possible to find some function

that achieves something like this; for example, use binary search to find the

keyword in an ordered table, and return the table position. The trick, however,

is to find a function that can be computed quickly, and without use of auxiliary

storage tables. Several techniques, some theoretically justified and some ad

8.5 HASHING FUNCTIONS 289

hoc, have been developed for finding perfect hashing functions for given sets
of keys. However, the applicability of perfect hashing is quite limited, since in
most applications the data do not sit still, so no predetermination of the hash
function is possible.

Universal Classes of Hash Functions
In the case of a dynamically changing dictionary, with the set elements not
known in advance, any preselected hash function will have bad behavior on
certain sets of inputs, and there is always the possibility that a particular set of
data on which it is used will be one on which collisions cause its performance
to be poor. Even worse, it is possible that someone using a system repeatedly
will systematically choose inputs in a way that turns out to be biased, so that
the hashing function performs poorly over and over again. (For example, I
am using a compiler, and I always use the names of my relatives as variable
names in my programs, and these happen to collide under the hashing function
chosen by the compiler-writer.) Universal hashing is designed to defeat this
kind of bias, by choosing the hash function at random from a large class of
hash functions at run time. It is still possible that the particular hash function
chosen will behave badly for the particular data supplied, but the odds are low;
moreover the odds are equally low even if the program is run a second time
on the same input data. In other words, our previous analyses were based on
the assumption that the outside world provides the program with random input
data; universal hashing works well even if the input data are highly nonrandom,
because the program itself has a random element. (A similar argument justifies
the fingerprinting method for string searching described on page 164.)

Let K be the key set, let m be the desired size of the range of the hash
function, and let H be a set of functions from K to {O, .m. rn - I}. Then H is
said to be universal provided that for any distinct x, y C K,

{h C H: h(x) = h(y)}I 1
HIm

In other words, H is a universal class if no pair of distinct keys collide
under more than 1/m of the functions in the class. Thus there can be no "bad"
pairs of keys; picking a function from the class at random leaves at worst a 1/m
chance of any given pair colliding. It is easy to show by a counting argument
(Problem 30) that if the key space is large relative to m, this 1/m chance of
collision in the worst case is as small as can be achieved by any hashing scheme.
Moreover, no matter what subset of the key space is in the dictionary during
a particular execution run, if the hashing function is chosen at run time from
a universal class then the expected number of collisions of any one key with
others is no more than the ratio of the size of the set that is being represented to
the total number of values of the hashing function (Problem 31). Thus universal
hashing functions are expected to spread out any subset of the key space across
the range of the hashing functions as evenly as can be conceived.

290 SETS OF DIGITAL DATA

The following Theorem shows that a very simple division method provides
a universal class of hashing functions. The method treats keys as integers and
requires expanding the key space up to a prime larger than the largest actual
key. However, the size m of the range of the hashing function can be chosen
arbitrarily. In particular m could be a power of two, so this method can be used
in conjunction with the extendible hashing scheme of §8.4.

* THEOREM (Universal Classes of Hash Functions) Let IKI = N be
a prime number, and regard the members of K as the integers 0
N - 1. For any numbers a {1,..., N - 1} and b C {O,...,N - 1} let

ha,b(X) = ((ax + b) mod N) mod m.

Then

H ={ha,b: 1 < a < N and 0 < b < N}

is a universal class.

PROOF We first show that I{h E H: h(x) = h(y)}I is the number
of pairs of distinct numbers (q, r), where 0 < q, r < N, with the property
that q =r (mod m).* First note that

ha,b(X) = ha,b(y) if and only if

((ax + b) mod N) mod m = ((ay + b) mod N) mod m if and only if

(ax + b) mod N - (ay + b) mod N (mod m).

Then for any fixed x, y < N, there is a one-to-one correspondence between
the pairs (a, b) such that 0 < a < N and 0 < b < N and h0,b(X) = ha,b(Y),
and the pairs of distinct numbers (q, r) with the property that 0 < q, r < N
and q - r (mod m). The correspondence is given in one direction by

q = ax + b mod N

r = ay + b mod N

(q # r since {az+b: z = 0,...,N- 1} = {0,...,N- 1} when N is
prime and a 7& 0). In the other direction the correspondence is given by the
condition that a and b are the unique integers in {0,. . . , N -1 } such that

ax + b q (mod N)

ay + b r (mod N).

These equations have a unique solution for a and b since N is prime, and
a 7& 0 since q 7# r.

*This means that q mod m = r mod m.

PROBLEMS 291

Clearly IHI = N(N - 1). How many pairs of distinct numbers (q, r)
are there such that 0 < q, r < N and q - r (mod m)? For any fixed d < m
there are at most FN/ml numbers q < N such that q d (mod m). Since
N and m are integers,

[N] < N -1 +1

(see Problem 13 of Chapter 1). Therefore for each q < N there are not
more than [N/m] - 1 < (N - 1)/m numbers r < N distinct from q such
that q - r (mod m), and the total number of such pairs (q, r) is at most
N(N -1)/m. Hence for any fixed distinct x, y the fraction of H that cause
x and y to collide is at most 1/m, so H is universal. D

This Theorem suggests the following strategy for choosing a hashing func-
tion at run time, once the set of keys to be hashed is known: let N be the next
prime number larger than the size of the key set, let a and b be randomly chosen
integers less than N such that a > 0, and use the function heb as defined in
the statement of the Theorem.

Problems

8.1 1. Show the data structure that would result if Algorithm 8.1 on page 259
were used to implement the following sequence of set operations
on an initially empty set S: Insert(5, S), Delete(5, S), Insert(8, S),
Insert(6, S), Insert(1, S), Insert(9, S), Insert(O, S), Delete(l, S).

2. a. With the data structure of Algorithm 8. 1, the operation IsEmptySet
cannot be implemented in constant time. Describe the changes
needed to make this possible, while preserving the performance
of the other operations.

b. Can the function Size(S), which returns the number of elements
in S, be implemented to run in constant time?

3. Modify the routines of Algorithm 8.1 so that attempts to insert an
item that is already in the set, or to delete an item that is not already
in the set, are error conditions rather than null operations.

4. Implement these operations using the data structure of Algorithm 8.1:

a. Union(S, T);

b. Intersection(S, T);

c. Complement(S), which replaces S by {uo.... ,UN-I} - S.

8.2 5. Organize the words need, needle, needless, needlepoint, negative,
neglect, neigh, neighbor, neighborhood, and neighborly into

a. a trie;

292 SETS OF DIGITAL DATA

b. a Patricia tree;

c. a de la Briandais tree.

6. Construct from the titles of the chapters of this book:

a. a trie;

b. a Patricia tree.

7. Insert the following words in order into a digital search tree, where
a = 00001, b = 00010, ... , z = 11010: four score and seven years
ago.

8. Choose a representation for the nodes of a tried, and write the appro-
priate routines LookUp, Insert, and Delete.

9. Choose a representation for the nodes of a Patricia tree, and write the
appropriate routines LookUp, Insert, and Delete.

10. Choose a representation for the nodes of a de la Briandais tree, and
write the appropriate routines LookUp, Insert, and Delete.

11. Design a hybrid data structure of the type suggested in item (4) on
page 262. Can you propose algorithms that cause the representation
to shift from "sparse" to "dense" as keys are added?

12. A binary trie is a trie with binary branching at depth k based on the
kth bit of the key. Instead of extending the tree to have height equal
to the number of bits in the longest key, a branch is terminated when
it corresponds to but a single key, and the key itself is stored in a leaf
node.

a. Construct a binary trie from the keys of Figure 8.4 on page 264.

b. Show that the structure of a binary trie is independent of the order
in which the keys are inserted.

c. Write the algorithm for binary trie insertion.

8.3 13. Let p be the number of bits needed for a pointer and r the number
of bits needed for a record, and let a be the load factor. Under what
circumstances, in terms of these three parameters, is the hash table
organization of Figure 8.7 more economical in its use of storage than
that of Figure 8.6?

14. Consider a separately chained hash table in which the lists are reor-
ganized on each LookUp using the Move-to-Front Heuristic. Under
what circumstances might this make sense, and what can you say
about the improvement in search time that might result?

15. In ordered hashing with open addressing, is it true that the keys
encountered along the probe sequence of a key in the table are in
alphabetical order?

PROBLEMS 293

16. Show that, in ordered hashing with open addressing, the contents of
the hash table are uniquely determined by the set of keys that are
inserted, independent of the order in which they are inserted.

17. Make a table of birthdays of your classmates, like Figure 8.5 on
page 266, and insert their names in a hash table using

a. separate chaining;

b. coalesced chaining;

c. linear probing;

d. double hashing;

e. ordered hashing.

18. The following idea leads to an open addressing strategy called binary
tree hashing that is superior to ordered hashing for LookUp opera-
tions, though it is more costly for insertions. When a collision is
discovered between a key K that is being inserted and a key K' that
is already in the hash table, consider the next positions in the probe
sequences of K and K'. If one of these is empty, move the cor-
responding item to that position, and put (or keep) the other in the
position originally considered. On the other hand, if the next posi-
tions in the probe sequences of both K and K' are occupied, say by
L and L', then consider the following four positions: the subsequent
positions in the probe sequences for K and K', and the next positions
in the probe sequences for L and L'. Once again, if one of these four
positions is empty, put the appropriate key in that position, and rear-
range the others. At each additional stage that needs to be considered,
the number of probe positions under consideration doubles (though
they do not all need to be distinct), so an empty position is likely
to be located before many stages have been considered, and probe
sequences are likely to be kept short.

a. Insert the names of Figure 8.5 on page 266 into a hash table with
binary tree hashing, using double hashing to calculate the probe
sequence.

b. Write the detailed algorithm for Insert and LookUp in a hash table
of this kind.

19. The Quicksearch Center is hired to design a data structure for storing
10,000 names. The client informs the Center that one-quarter of the
names will account for three-quarters of the successful searches, and
the remaining three-quarters of the names will account for only one-
quarter of the successful searches. (There will also be searches for
names not in the data structure at all.) The Center first decides to
store all 10,000 names in an open-addressed hash table of size 12,000

294 SETS OF DIGITAL DATA

using double hashing. But then one of its employees, C. Wizard,
suggests splitting the 12,000 locations into two tables, a small table
of size 3000 to hold the high-frequency quarter of the names and a
larger table of size 9000 to hold the low-frequency three-quarters.

a. Is Wizard's suggestion a good one? Analyze both proposals with
respect to their performance in the case of both successful and
unsuccessful searches.

b. Repeat the analysis, on the assumption that the Center always
implements ordered hashing.

c. Suppose that the proportions in the statement of the problem are
not 1/4 and 3/4 but p and 1 - p, where 0 < p < 1. For what
values of p, if any, would it make sense to isolate the fraction p
of the most frequently occurring keys in a subtable consisting of
the fraction p of the available memory?

20. In Algorithm 8.2 on page 279, explain exactly why the test in the first
line of the Insert algorithm tests Size(P) = m - 1, and what would
go wrong if the test were Size(P) = m instead.

21. One situation in which hashing with separate chaining may present
problems is when the size of a record is comparable to the size of a
pointer; then separate chaining may devote too large a percentage of
memory to the pointers that hold the chains together. Assume that the
total number of records is very large, so that it is impractical to use
a single large hash table with open addressing. Devise and analyze a
variation on the separate chaining algorithm that dynamically allocates
blocks of memory larger than single linked list cells.

22. Let S(n, m) represent the expected time for a successful search in a
separately chained hash table of m buckets containing n keys, not
counting the probe to get the list header. By considering separately
the case in which the key is in the first bucket or in one of the other
m - 1 buckets, show that S(n, m) is equal to

n in) (m -)nk k + I n kn-k
-I-2 -- S(n -k,m -1

Here k is the number of keys in the first bucket. Then prove by
induction on m that

S(n, m) = 1 + 2
2m

You will want to use the identities

n (n)pk= (1 ap)n

k=O

PROBLEMS 295

Zk(n)pk = np(l +p)nl1

Zk2(n)Pk = np(l +np)(l +p)n-2.

8.4 23. Illustrate the effect of inserting into the extended hash table of Fig-
ure 8.11 on page 281 a sequence of keys that hash to the following
hash values: 01101, 01100, 01000.

24. Suppose that a deletion strategy is employed that attempts to keep the
directory as small as possible. Show the effect of deleting the key
with hash value 01110 from the extended hash table of Figure 8.11.

25. Show the structure of the extendible hash table that would result in
the (unlikely) event that records with hash values 000, 001, 010, 011,
100, 101, 110, 111 were inserted into an initially empty hash table.

26. Assume that every effort is made to keep the directory as small as
possible. What are the minimum and maximum number of leaf pages
of an extended hash table of depth D?

27. It may be possible to collapse two adjacent leaf pages of an extendible
hash table-say distinct pages pointed to by directory entries j and
j + 1-even when these pages are not of maximal depth. Explain
exactly the conditions under which this is possible, and what should
be done.

8.5 28. When you buy a ticket in the State Lottery, you choose six different
numbers between 1 and 36. The lottery officials keep a dictionary
keyed on the set of six numbers chosen on each ticket. After the
officials pick the winning numbers, they access this dictionary to
identify the winning ticket or tickets, if any. Since millions of tickets
are sold, the officials have decided to keep the dictionary in external
storage with a directory in an internal hash table. Their computer
consultant, S. L. Ow, has recommended that they use the hash function

h(x1, X2 , X3, X4 , X5 , X6) = (XI + X2 + X3 + X4 + X5 + X6) mod m,
where m is the number of external buckets in which the records will
be stored. Give a critique of this recommendation, and suggest a
better alternative.

29. a. In which of the intervals of Figure 8.13 does the next value of
{Kohl} lie (the one for K = 11)?

b. Using standard 8-bit ASCII character codes and the 16-bit value
of o- shown in Figure 8.14, determine the 8-bit multiplicative hash
values of the keys AA, AB, and BA.

296 SETS OF DIGITAL DATA

30. Let H be any set of functions from K to {O, . . ., m- 1}. Show that
there are distinct x, y E K such that

I{h E H: h(x) = h(y)}j 1 I

IHI >m IKI

31. Let H be a universal class of hash functions from K to {O, . . ., m-1,
let S be any subset of K, let x be any member of S, and let h be a
randomly chosen member of H. Show that the expected value of

I{y E S: x # y but h(x) = h(y)}

is at most SI/m.

32. Let N = 31 and m = 5 and consider the universal class of hash
functions defined in the Theorem.

a. Exactly how many pairs of distinct numbers (q, r) are there such
that O <q, r < N and q r (mod m)?

b. What is the exact maximum probability, over all pairs of distinct
keys x, y, that a randomly chosen hash function ha,,b will cause
x and y to collide?

References

Tries were first described by

E. Fredkin, "Trie Memory," Communications of the ACM 3 (1960), pp. 490-499.

Patricia trees, as we have described them, are a variation on those presented in

D. R. Morrison, "PATRICIA-Practical Algorithm To Retrieve Information Coded in
Alphanumeric," Journal of the ACM 15 (1968), pp. 514-534,

and digital search trees are from

E. G. Coffman and J. Eve, "File Structures Using Hashing Functions," Communications
of the ACM 13 (1970), pp. 427-432, 436.

All these structures are presented and analyzed by Knuth, in Sorting and Searching (cited
on page 44). See also

R Flajolet and R. Sedgewick, "Digital Search Trees Revisited," SIAM Journal on Com-
puting 15 (1986), pp. 748-767.

Ordered hashing is from

0. Amble and D. E. Knuth, "Ordered Hash Tables," Computer Journal 17 (1974),
pp. 135-142.

Binary tree hashing (Problem 18) is described in

G. H. Gonnet and I. Munro, "The Analysis of an Improved Hashing Technique," Pro-
ceedings, 9th ACM Symposium on Theory of Computing, 1977, pp. 113-121.

REFERENCES 297

These and many other hashing algorithms are described in Standish's book (cited on
page 45).

Extendible hashing was presented in

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, "Extendible Hashing-A Fast
Access Method for Dynamic Files," ACM Transactions on Database Systems 4
(1979), pp. 315-344.

A detailed analysis of its efficiency appears in

P. Flajolet and J.-M. Steyaert, "A Branching Process Arising in Dynamic Hashing, Trie
Searching, and Polynomial Factorization," in Automata, Languages, and Program-
ming, Lecture Notes in Computer Science 140 (1982), Springer-Verlag, pp. 239-25 1.

The theory of the multiplication-based and division-based hashing functions was devel-
oped by Knuth, in Sorting and Searching; see that book for references to the underlying
mathematical results. A simple heuristic that often produces a perfect hash function for
a small set of keys is presented in

R. J. Cichelli, "Minimal Perfect Hash Functions Made Simple," Communications of the
ACM 23 (1980), pp. 17-19.

Universal classes of hash functions were the invention of

J. L. Carter and M. N. Wegman, "Universal Classes of Hash Functions," Journal of
Computer and System Sciences 18 (1979), pp. 143-154.

9
Sets with

Special Operations

9.1 PRIORITY QUEUES

The data structures of Chapters 6, 7, and 8 are primarily designed to support
the dictionary operations of Insert, LookUp, and Delete. However, other fairly
common set operations admit efficient implementation by means of specialized
data structures. This chapter deals with three of these set abstract data types:
priority queues, whose elements are retrieved in order of their value, regardless
of the order in which they were inserted; union-find structures, which manage
a partition of a finite universe into disjoint subsets; and range query structures,
which permit retrieval not only of a single key value, but of all keys with val-
ues falling between certain bounds, perhaps in several independent dimensions.
Each of these abstract data types has important practical applications to a variety
of kinds of problems.

Structures for the dictionary abstract data type solve the problem of storing
and retrieving data according to a distinguishing key value: store key K together
with certain associated information, look up the information associated with key
value K. If the universe from which the keys are drawn has a natural linear
order, such as the lexicographic order on alphabetic keys, then this order can
be used (in binary search trees, for example) to structure the sets internally to
speed up the insertion and retrieval times.

In this section we imagine that such an ordering is associated with the
items to be stored, and that the items are to be retrieved according to this order,
smallest first, for example. To be precise, consider a set of key values key that
is linearly ordered by some ordering relation. The items to be stored are pairs
(K, I), where K E key and I is some associated information of type info, about
which no more will be said. A priority queue is a set abstract data type of
such pairs (K, I) supporting the following operations:

MakeEmptySet): Return the empty set 0.
IsEmptySet(S): Return true if S = 0, otherwise false.
Insert(K, I, S): Add the pair (K, I) to the set S.

298

9.1 PRIORITY QUEUES 299

FindMin(S): Return an info I such that (K, I) E S and K is minimal with
respect to the ordering.

DeleteMin(S): Delete an element (K, I) from S such that K is minimal,
and return I.

Note that in a priority queue the ordering plays an explicit role in the semantics
of the abstract operations; in the dictionary structures of previous chapters, the
key ordering did not appear in the definitions of the abstract data type operations,
but was utilized in the implementation of those operations. Moreover, note that
the key value need not be unique; there may be several pairs in S with the same
value K. If there are, then FindMin and DeleteMin may return the information
component of any one of those pairs (but they should find the same pair).

The term "priority queue" is now enshrined by tradition, but it may have
an odd ring to those hearing it for the first time. When working with a queue
structure we can insert items in any order, and then withdraw them in the
sequence in which they were inserted. In a priority queue the items have a
certain intrinsic "priority," or relative value; we can insert items, and withdraw
them in order of their priority, independent of the time sequence in which they
were inserted. To stress this interpretation, and the fact that these values need
not be unique, we refer in this section to the key value of an item as its priority
value.

As mentioned on page 17, any priority queue provides a basis for a sorting
algorithm: make the priority queue empty, then insert the items to be sorted,
then repeatedly remove the smallest remaining element (via DeleteMins) until
the structure is once again empty. Of course the efficiency of such an algorithm
depends on the efficiency of the priority queue operations. Priority queues have
many other applications; we shall touch on some of them in Chapter 12.

Balanced Tree Implementations
The dictionary organizations that utilize key value comparisons all provide im-
plementations of priority queues, at no extra charge. In particular, the balanced
tree structures of Chapter 7-AVL trees, 2-3 trees, red-black trees, B-trees-all
provide implementations of priority queues supporting FindMin and DeleteMin,
as well as the dictionary operations LookUp and Delete, in O(log n) time for
sets of size n. With any of these structures, the minimal element is found by
searching from the root, following the leftmost pointer out of each node, until
that pointer is A; the value stored at the last node along that path is the smallest
value in the tree. (This assumes that values are stored in the internal nodes; if
all values are in the leaves and the tree simply provides an index, then the min-
imum value is in the leftmost leaf, which is also easy to find.) Since these tree
structures have logarithmic height, FindMin takes logarithmic time. DeleteMin
takes logarithmic time because deletion of any element takes logarithmic time.

As an added feature, in these structures the maximal element can be found
by searching along the rightmost path from the root. So the operations of

300 SETS WITH SPECIAL OPERATIONS

Figure 9.1 A partially ordered tree.

FindMax and DeleteMax are automatically supported in logarithmic time, and
these operations can be interspersed with FindMin, DeleteMin, and the others
in any combination. A structure supporting these operations is called a double-
ended priority queue (Problems 5 and 6). In spite of their flexibility, the
memory used to store child pointers make these balanced tree structures both
larger to represent and slower to update than the heap structures to which we
now turn.

Heaps
A partially ordered tree* is a binary tree of elements that have a priority
ordering such that the priority of each node is less than or equal to that of
each of its children. This property must hold at every node in the tree, so in
particular it holds at the root, which must therefore contain the smallest element
in the whole tree. On any path from the root, the elements encountered are in
increasing order, but no conclusion can be drawn about the relative order of the
items in the left and right subtrees of a node.

For the remainder of this section, all trees considered will be binary trees.
For example, Figure 9.1 shows a partially ordered binary tree with twelve nodes.
Note that although this tree happens to be well-balanced, there is no special
relationship among the values on the branches of the tree, except for the partial
ordering property; for example, there is a node of depth 2 with a larger value
than any node of depth 3.

In any partially ordered tree, it is easy to find a minimal element, since one
is located at the root. The difficulty in using partially ordered trees as priority
queue structures is in reorganizing the tree when the minimal element is deleted,
or when a new element is inserted into the tree. Since we want these operations
to be efficient, that is, taking time at worst logarithmic in the size of the tree,
it is natural to expect that the tree should be kept well balanced, that is, of
height O(log n) if its size is n. But if the root node is deleted as the result of

*"Partially ordered trees" should not be confused with "ordered trees," as defined on page 100. An
ordered tree is one in which the children of each node have a specified order; a partially ordered
tree is one in which the keys stored in parent and child have a specified order.

9.1 PRIORITY QUEUES 301

(a) (b)

(c)

Figure 9.2 Deleting the minimal element from the partially ordered tree of
Figure 9.1. (a) The item in the root is removed, and is replaced by the
item in the bottommost, rightmost leaf, which has priority value 13. The
leaf itself is deleted. (b) The root is swapped with its left child (8), which
is the child of smaller priority value. (c) The node is swapped with its
right child (12), which is the child of smaller priority value. It is now
smaller in priority than both children, and the deletion procedure stops.

a DeleteMin operation, how can the two resulting partially ordered subtrees be
merged into a single partially ordered tree in logarithmic time?

The answer is not to delete the root node, but instead to transfer into it the
information from one of the leaves, and to delete the leaf instead.* If this is done
properly, only minimal alteration of the structure of the tree will be needed. The
resulting tree will, however, not be partially ordered any longer, since the item
at the root will probably not be of minimal priority. For example, Figure 9.2(a)
shows the result of replacing the value in the root of Figure 9.1 with that of the
rightmost leaf of maximum depth, and then deleting that leaf; the root node now
has priority 13, which is greater than that of its children. Except at the root,
however, the partial ordering property will be satisfied throughout the tree. The
partial ordering property can be restored at the root by swapping its value with

* Of course, if the data record associated with a node is large, the nodes should contain only pointers
to these records, and only the pointers are moved, not the records themselves.

302 SETS WITH SPECIAL OPERATIONS

(a) (b)

(c)

Figure 9.3 Inserting a node of priority 7 into the heap of Figure 9.1. (a) The
node is appended as a leaf; (b) it is exchanged with its parent; (c) it is
again exchanged with its parent, but then stops, since its priority value is
now larger than that of its parent.

that of its smaller child. That is, if R is the root and it has children A and B,
and the priority of A or B (or both) is smaller than R, then after swapping the
contents of R with whichever of A and B has the smaller priority value, R will
have the smallest priority value of the three nodes. In Figure 9.2(b), the root has
been exchanged with its left child. Now the partial ordering property has been
restored at the root, but possibly destroyed at one (but only one) of the root's
children, so the same strategy must be applied to the new node (Figure 9.2(c)).
Eventually the key value comes to rest at a node where its children have larger
values, or it winds up at a leaf; the entire tree then enjoys the partial ordering
property. If the tree was of logarithmic height to begin with, any such path is
of logarithmic length and the operation requires logarithmic time at worst.

How can the leaf to be deleted be chosen and located? If the tree is a
complete binary tree, then it can be stored using the implicit representation
on page 110, and the position of the rightmost leaf of maximum depth can
be determined arithmetically from the number of nodes and the address of the
beginning of the table used to store the structure. Deleting this leaf results
in a complete tree, so the balance property is maintained. Moreover all the
memory that would be used in an explicit representation to store the linkage
pointers is saved. An implicitly represented complete partially ordered tree

9.1 PRIORITY QUEUES 303

procedure Heaplnsert(key K, info I, heap h):
{Insert the pair (K, I) into heap h}

H Table(h)
n Size(h)

if n = N then error {Heap is full}
m +-rn {m is a "pointer" that moves up a path in the tree
while m > 0 and K < Key(H[[(m - 1)/2J]) do

H[m] H[L(m - 1)/21]
m [(m- 1)/2J {That is, m *- Parent(m)}

Key(H[m]) - K; Info(H[m]) ÷- I {Move item to its resting place}
Size(h) n- n + I {One more record now in the heap}

function HeapDeleteMin(heap h): info
{Delete an item of smallest priority from heap h, and return it}

H Table(h)

n Size(h)

if n = 0 then error {Heap is empty}
I <- Info(H[O]) {The item to be returned}

K Key(H[n - 1]) {The priority value of the item to be moved}
m 0 {m is a "pointer" that moves down the tree}
while 2m + 1 < n and K > Key(H[2m + 1])

or 2m + 2 < n and K > Key(H[2m + 2]) do
if 2m + 2 < n then {Node m has two children}

if Key(H[2m + 1]) < Key(H[2m + 2]) then
p 2m + I

else

else
p 2+2m+2

{Node m has only one child, the last leaf in the tree
p n - I

H[im] +- H[p]
m +p

H[m] 4- H[n - 1]
Size(h) - n -I
return I

{Move the child up}
{Move the pointer down}

{Finally, move the item into its position}
{The new size of the heap}

Algorithm 9.1 Insertion and deletion in a heap. The heap h is a record with
two fields, the table H = Table(h) and its current size n = Size(h). The
partially ordered tree is stored implicitly in the table H[O. . N -1], that is, N
is the maximum size of the heap.

304 SETS WITH SPECIAL OPERATIONS

is called a heap, and is a particularly efficient structure for the basic priority
queue operations. (This use of the term "heap" is entirely distinct from another
meaning: that portion of the memory of a computer software system-operating
system, compiler, etc.-from which blocks of memory are allocated in response
to specific requests. Heaps in this sense are discussed in Chapter 10. The
coincidence is an unfortunate historical accident.)

To insert an item into a heap, append it as a new leaf in its natural position.
(For example, Figure 9.3(a) shows the result of inserting a node of priority 7
into the heap of Figure 9.1.) The partial ordering property may be violated, but
only at the parent of this leaf, which may now have larger priority value than its
new child. If it does, exchange it with that child, and repeat the same process at
its parent. Eventually the value either rises to a level where it is smaller than its
parent, or reaches the root; in either case the partial ordering property has been
restored throughout, at the expense of O(log n) exchanges. (See Figure 9.3(b,c).
Recall that in an implicitly represented tree it is easy to locate the parent of a
node, by dividing by 2 the node's index in the table.)

Algorithm 9.1 presents the details for the deletion and insertion routines.
The heap h is a record with two fields, the table H = Table(h) and its current
size n = Size(h). Note that in practice there is no "exchanging" of values as the
proper position of an item is located by searching up the tree (during insertion)
or down the tree (during deletion); instead, a "hole" is moved up or down the
tree, by shifting the items along a path down or up single edges of the tree. The
item is moved only once, at the last step.

Leftist Trees
The heap data structure is extremely compact and the algorithms for insertion and
deletion are very efficient, but heaps are not perfect in all situations. Because
an implicit, tabular representation is used for the partially ordered tree, the
maximum size of the priority queue must be known ahead of time; if the structure
becomes full there is no way to utilize dynamic memory except to reallocate the
structure completely in a larger table and to copy the old values into the new
heap. Also, because the representation is so compact, it is not easy to implement
additional operations, such as the dictionary operations of LookUp and Delete
(by key value). Another operation that is needed for some applications is

Union(SI, S2): Return the set consisting of the members of the disjoint sets
Si and S2 ,

but heaps cannot be so merged in less than linear time.
Leftist trees are an ingenious variety of explicitly represented partially or-

dered binary trees that provide logarithmic time implementations of the priority
queue operations of Insert and DeleteMin, and Union as well. With a bit more
work, the full set of dictionary operations can be provided.

Recall (pages 182 and 195) that an external node of a binary tree is a
node attached anywhere a node of the tree has no child; in terms of the natural

9.1 PRIORITY QUEUES 305

Figure 9.4 A leftist tree. The number in the lower half of a node is the
distance to the nearest external node; the external nodes themselves are
not illustrated. The number in the upper half is a key value, since the tree
is to be used to represent a priority queue.

representation of binary trees, external nodes correspond to LC or RC fields that
have the value A. The defining property of a leftist tree is that from any node,
the external node reached by descending through right children is at least as
near as any other external node. To be specific, in any binary tree, let Dist(N)
denote the distance from node N to the nearest external node. That is,

Dist(N) fo, if N =A;
1 + min(Dist(LC(N)), Dist(RC(N))), otherwise.

Note that if the root of the tree has distance d, then the tree has at least
2d - 1 nodes, since the nodes of depths 0, 1, ... , d -1 form a perfect binary
tree. A leftist tree is a binary tree such that the distance of each node's left
child is at least as great as that of its right child:

Dist(LeftChild(N)) > Dist(RightChild(N)), for every node N.

By applying the definition repeatedly it is clear that no path from the root
to an external node is shorter than the path that always goes through right
children; hence if the tree has n nodes then this shortest path can contain at
most [log2 (n+ 1)] nodes. Because of this property the trees tend to "lean"' to the
left (Figure 9.4). To implement leftist trees as data structures, the distance of
each node is stored as a field Dist within the node itself, and, as operations are
performed on the tree, the subtrees of nodes are occasionally swapped so that
this leftist inclination is maintained. In general, therefore, the values stored in
the left and right children of a node will not be in any particular order relative
to each other.

A leftist tree can be used to represent a priority queue if the tree is partially
ordered. The crucial operation is the formation of the union of two leftist

1

306 SETS WITH SPECIAL OPERATIONS

function LeftistUnion(pointer A, B): pointer
{Return the union of the leftist trees A and B}

if A = A then return B
else if B = A then return A
else if Key(A) < Key(B) then

return MergeRight(A, B)
else

return MergeRight(B, A)

procedure MergeRight(pointer A, B):
{Replace right child of A by its union with B, and preserve leftist property}
{Both A and B are assumed to be nonempty}

RC(A) +- LeftistUnion(RC(A), B) {Now RC(A) is nonempty}
if LC(A) = A or Dist(LC(A)) < Dist(RC(A)) then

LC(A) +-+ RC(A) {Restructure to preserve leftist property}
Fixdist(A) {Recalculate Dist field of A}

procedure Leftistlnsert(key K, info I, locative T):
{Create and insert a new node into leftist tree T}

P *- NewCell(Node)
Key(P) +- K; Info(P) *- I
LC(P) - RC(P) - A
Dist(P) 1- 1
T ¢= LeftistUnion(T, P)

function LeftistDeleteMin(locative T): info
{Delete root element of leftist tree T, and return the associated information}

R T
T .= LeftistUnion(LC(T), RC(T))
return Info(R)

procedure Fixdist(pointer A):
{Recalculate distances of a node whose children have changed}
{Assume that the tree already has the leftist structure,

and that the Dist fields of its children are correct}
if RC(A) = A then Dist(A) 1-
else Dist(A) +- 1 + min(Dist(LC(A)), Dist(RC(A)))

Algorithm 9.2 Union of leftist trees, insertion into a leftist tree, and deletion
of the root. Union is achieved by merging the rightmost paths, exchanging
subtrees if necessary to maintain the leftist property. Insertion of a new value is
the union of the old tree with a new tree consisting of a single node. Deletion
of the root is accomplished by forming the union of its subtrees.

9.2 DISJOINT SETS WITH UNION

trees with roots A and B, which is accomplished recursively by the function
Union(A, B) (Algorithm 9.2). The union of a nonempty tree and an empty
tree is the nonempty tree. The union of two nonempty trees is the result of
retaining the smaller root as the root of the new tree and replacing its right
subtree by the (recursively formed) union of that right subtree with the other
tree. After forming this union, it may be necessary to exchange the left and
(new) right subtree of the root so that the leftist property is preserved. The
routine MergeRight carries out this restructuring, as well as calling on Fixdist
to update the Dist fields as necessary.

With the aid of the Union operation the other priority queue operations
are easy to implement. The DeleteMin operation on leftist trees is a special
case of the Union operation: to delete the minimal element, form the union
of the left and right subtrees of the root, since the root must contain a small-
est item (function LeftistDeleteMin in Algorithm 9.2). And to insert a new
item into a leftist tree, simply form the union of the tree with a new tree
consisting of a single node that contains the item (function LeftistInsert in Algo-
rithm 9.2).

With a little more work leftist trees can handle the full range of dictionary
operations. This seems impossible at first since the internal structure of the
leftist tree is dictated by considerations other than the lexicographic order of
the keys stored in the tree; the same tree cannot simultaneously be partially
ordered by key values and be a search tree on those key values. The trick is
to construct, in addition to the leftist tree, an entirely separate balanced tree
structure organized by key value, a 2-3 tree, for example. The data records (or
pointers to them) are stored in the leftist tree; the dictionary tree is simply an
index to help locate those primary data records by key value. When a record is
inserted, it is inserted first in the leftist tree, and then a reference by key value
is inserted into the dictionary tree. When a record is deleted via a DeleteMin
from the leftist tree, the key value is used to locate and delete the record from
the dictionary tree. And if a record is deleted via a Delete from the dictionary
tree, it must be removed from the leftist tree as well by forming the union of
its left and right subtrees (but see Problem 7).

9.2 DISJOINT SETS WITH UNION

Most of the data structures discussed in Chapters 6, 7, and 8 pertain to the
problem of maintaining a single set S through incremental changes (inserting
and deleting single elements) in such a way as to support queries (is X E S?).
Here we deal with the problem of maintaining information about a fixed set U
that is divided into a number of disjoint subsets S, ... , Sk; that is, Si n Sj is
empty if i :A j, and S1 U * U Sk = U. The relevant operations include the
following:

307

308 SETS WITH SPECIAL OPERATIONS

MakeSet(X): Return a new set consisting of the single item X.
Union(S, T): Return the set S U T, which replaces S and T in the data

base.
Find(X): Return that set S such that X E S.

For example, imagine the elements of U to be people, each of whom be-
longs to a family; Find(X) identifies the unique family to which X belongs.
Occasionally a marriage occurs, which unites two families into one; Union(S, T)
returns the new family, and a subsequent Find of a person that was in either
S or T would return that new family. In particular these operations make it
possible to tell whether two individuals are related; X and Y are related just in
case Find(X) = Find(Y).

Up-Trees
If each element can belong to only one set, a simple data structure for main-
taining disjoint sets is an up-tree: a tree structure with the pointers pointing up
the tree, from children to parents (Figure 9.5). Each node needs only a single
pointer field, to point to its parent; at the root of the tree, this pointer field is
empty. A node can have any number of children, since there is no limit on
the number of pointers that can be pointing at a node. The sets are identified
by their root nodes, so to Find which set an element belongs to, just follow
pointers up the tree until reaching the root, and to check whether element X is
a member of set S, do Find(X) and see if the result is S. To form the Union
of sets S and T, just make one set point to the other, that is, make the root of
one tree point to the root of the other. If we make the root of S point to the
root of T, we shall say that we are merging S into T.

How efficient is the up-tree structure for implementing Unions and Finds?
If we assume that the roots of the two trees are in hand, forming their Union
takes constant time, since it simply involves changing one pointer field. A Find
operation, however, takes time proportional to the length of the path from a
node to the root, that is, in the worst case, time proportional to the height of
the tree. So once again, there is good reason to keep trees well-balanced. The
height of a tree representing a set can be drastically affected by the way it is
constructed while doing Unions; for example, in Figure 9.5(b) the height of the
tree increases as a result of the Union operation, while in Figure 9.5(c) it does
not. In the worst case, if we start with n singleton sets {al}, ... , {a} and
form the set {al,..., an} by repeatedly merging the set {al, . .. , ai} into {ai+j }
for i = 1, ... , n - 1, we will wind up with a tree of height n -I consisting of
a single path of length n -1.

However, this linear growth in the height of the tree can be avoided if we
adopt the strategy of always merging the smaller tree into the larger (that is,
merging the tree with fewer nodes into the one with more nodes). To be specific
about how this is done, let us call Parent the field of a node that points to the
node's parent (except when it is the root), and let every node have an additional

9.2 DISJOINT SETS WITH UNION

(a)

C

E J B

G A H 0 F

(b) (c)

Figure 9.5 The basic up-tree structure for representing disjoint sets. (a) Two
disjoint sets, {A, C, D, E, G, H, J} and {B, F}. (b) and (c) Two ways of
forming the union of these sets, by making the root of one point to the
root of the other.

field Count that is used, if the node is the root of a tree, to hold a count of the
number of nodes in the tree.* Thus MakeSet(R) would initialize a node R to
represent a singleton set by setting Parent(R) -- A and Count(R) +- 1. The
basic algorithms for Union and Find are shown in Algorithm 9.3.

* LEMMA (Height of Balanced Up-Trees) Let T be an up-tree repre-
senting a set of size n constructed from singleton sets by repeatedly
forming unions by the method of Algorithm 9.3. Then the height of T is
at most Ig n.

PROOF Let us write ITI for the number of nodes in the tree. We
prove the Lemma by showing that for any h, if T is a tree of height h
created by a sequence of Unions, then T has at least 2 h nodes, that is,
TI > 2 h. The lemma as stated follows immediately.

The proof is by induction on h. If h - 0, that is, Height(T) = 0, then
T consists of a single node, that is, IT= I > 20. Now assume that for
any S, if Height(S) < h, then ISI > 2 Height(S). Suppose that T is the first
tree created of height h + 1 (Figure 9.6). Then T must have been created

*In any node, only one of these fields is used; Parent for a node that is not a root and Count for
a root. Thus the two fields can actually be the same, if there is some way to distinguish between a
number and a pointer, and the test "is Parent(X) = A?" is changed to "is Parent(X) a number?"

309

310 SETS WITH SPECIAL OPERATIONS

new edge

h+1

tree with fewer
nodes

Figure 9.6 Constructing the first tree of height h + 1 by a Union operation.

function UpTreeFind(pointer P): pointer
{Return the root of the tree containing P}

R -P
while Parent(R) $ A do

R +- Parent(R)
return R

function UpTreeUnion(pointer S, T): pointer
{S and T are roots of up-trees}

{Return result of merging smaller into larger}

if Count(S) > Count(T) then
Count(S) Count(S) + Count(T)
Parent(T) S
return S

else
Count(T) <- Count(S) + Count(T)
Parent(S) +- T
return T

Algorithm 9.3 Union and Find algorithms, using balanced up-trees.

by merging T2 into T1 , where T2 has height h and T1 has height at most h

(otherwise T would not have been the first such tree), and ITI > IT21
(otherwise T1 would have been merged into T2). But then IT2 1 > 2 h by the

induction hypothesis, so

|TI = ITIp + IT21 > 2 IT21 > 2h+1. r--

It follows from the Lemma that Find can be implemented in logarithmic

time. However, our explanation contains a small cheat. It is easy to implement

9.2 DISJOINT SETS WITH UNION

Figure 9.7 The up-trees of Figure 9.5(a), together with an auxiliary 2-3 tree
to serve as an index for the keys.

Find(X) by following Parent pointers from X up to the root of the tree, if we
know the location of the node representing X; but if X is actually a key value
of some kind, how are we to locate the node where X is represented? In other
words, how do we do a LookUp? If the key space from which X is drawn
is small and can be indexed, for example, if it is a numerical interval such as
{1, 100}, then the records can be allocated in an array and the LookUp can
be implemented in constant time by an array reference based on the key value.
Otherwise, an auxiliary tree structure of some kind can be used as a dictionary
(Figure 9.7). To do a Find might then take logarithmic time to locate the node
via the dictionary, and then logarithmic time to search the up-tree, but the total
would still be logarithmic.

Path Compression
If LookUps take logarithmic time, the time bounds achieved by Algorithm 9.3
for Union and Find are the best possible; if a LookUp takes logarithmic time,
no improvement to Find can make the combination of the two sublogarithmic.
Nonetheless there is a simple modification to the algorithm for Find that re-
structures the tree in such a way that subsequent Finds will execute somewhat
more quickly. Although in general the speedup will not change the order of
the complexity of the algorithm, in the special case in which LookUps can be
done in constant time, this modification actually makes the algorithm's behavior
sublogarithmic. Thus the technique is practically useful in any case, and is the-
oretically significant when the items being stored are array elements accessed
by their indices.

A Find would take less time in a shallow, bushy tree than it would in a tall,
skinny tree. Use of the balanced merging strategy guarantees, by the Height

311

312 SETS WITH SPECIAL OPERATIONS

(a)

(b)

Figure 9.8 Path compression. (a) An up-tree; (b) the same tree restructured
after executing Find(D). Nodes C and D, which were encountered
while traversing the path starting from D, are made children of the root.
Thereafter, a Find on C, D, or a node in any of the trees T4, T5, T6,
or T7 will be faster.

of Balanced Up-Trees Lemma, that trees will not be too skinny; the height of
a tree can be at worst logarithmic in its size. However, since any number of
nodes of an up-tree can have the same parent, we may be able to restructure our
up-trees to be even bushier. It may be hard to justify taking the time to perform
such restructuring for its own sake, but there is one built-in opportunity to do
it: during a Find operation. During such an operation several nodes are visited;
it is a simple matter to redirect their Parent pointers to point to the root, once
the root has been found. This restructuring increases the work done by the Find
by only a constant factor, but it may reduce the work required of subsequent
Finds by a significant amount.

The resulting path compression rule is very simple: after doing a Find,
make any node along the path to the root point directly to the root, rather than to
its previous parent along that path (Algorithm 9.4, Figure 9.8). Any subsequent
Find on one of these nodes, or on any descendant of one of these nodes, will
take less time since the node is now closer to the root.

When path compression is used, MakeSet and Union still take constant time,

9.2 DISJOINT SETS WITH UNION

function PathCompressFind(pointer P): pointer
{Return the root of the tree to which P belongs}

R +-P
while Parent(R) # A do R <- Parent(R)
Q +-P
while Q #y R do

reQ) Parent(Q)
r Parent(Q) R V R

return R

{Now retrace the path}

Algorithm 9.4 Find algorithm, using path compression.

of course. How quickly does Find execute after a series of path compression
steps? The answer is that each Find operation takes time that is almost-but not
quite-constant. To make that idea more precise, we need to introduce some
new notation.

For any i > 0, let
2

F(i) = 222 i

That is, F(i) is defined inductively by

F(O) = 1

F(i + 1) = 2F(i) for any i > 0.

The values of F(i) grow very rapidly with i; for i = 5 already

F(S) 222 = 2224 226 2 65536 p 1019728.

It is hard to get a sense of how big this number is-by way of comparison, the
diameter of the universe is less than 1040, even when measured in angstroms,
and the number of particles in the universe is less than 10120.

To describe the running time of the Find algorithm, we need the inverse of
the function F, which is called log*:

log* n = the least i such that F(i) > n

= the least i such that lg lg ... Ig n < 1.

Thus log* n < 5 for all n < 265536. Although log* n grows inexorably towards
infinity as n increases without bound, as a practical matter log* n is less than 5
for any n of useful size!

313

314 SETS WITH SPECIAL OPERATIONS

* THEOREM (Path Compression) If balanced up-trees and path com-
pression are used, then any sequence of m > n of the operations
MakeSet, Union, and Find on the universe {l,...,n} takes total time
O(m log* n).

Thus in the amortized sense each operation takes time clog* n for some
constant c, an amount that is independent of n for all practical purposes. The
proof of this Theorem follows from three Lemmas.

Let 01...., 0 m be any sequence of the operations MakeSet, Union, and
Find. Imagine executing only the MakeSets and Unions (not the Finds, so no
path compression is done). Let T* be the set of trees that would result; in other
words, T* is the forest that would result if 01, ... , 0

m were carried out using
Algorithm 9.3 for the Finds instead of Algorithm 9.4. For each node v, let
level(v), the level of node v, be the height of v in T*.

* LEMMA (Level Census) There are at most n/2' nodes at level 1
in T*.

PROOF By the Height of Balanced Up-Trees Lemma, each node at
level l is the root of a subtree of T* with at least 21 nodes. These subtrees
are disjoint (since no tree of height 1 can be a subtree of another tree of
height 1). So there are at most n/21 of them. E

* LEMMA (Levels of Descendants) If node w is a descendant of v
during the execution of 01, ... , Om using Algorithm 9.4 then w is a
descendant of v in T*, and hence level(w) < level(v).

PROOF The Finds eliminate, but do not create, descendancy rela-
tionships; and the height of a proper subtree is strictly less than the height
of the tree itself (Figure 9.9). El

Now define G(v), the group of node v, to be log* level(v).

* LEMMA (Group Numbers) G(v) < log* n for each node v.

PROOF Since there are only n nodes, the level of each is at most
Ign by the Height of Balanced Up-Trees Lemma. Therefore

G(v) = log* level(v) < log* 1g n < log* n. CI

PROOF (of the Path Compression Theorem) Now we are ready to
show that the time used for the m operations 01, ... , 0 m is 0(m log* n).

First of all, the MakeSets and Unions take 0(1) time each, for a total of
0(m). So we need only determine the time required for the Finds. Let

9.2 DISJOINT SETS WITH UNION

t k
level(v)

(a) (b)

Figure 9.9 Tree constructed (a) with and (b) without doing path compression
during Finds. If w is a descendant of v in a tree constructed using path
compression, it is also a descendant of v if path compression is not used.
In this case the level of w must be less than that of v.

Oi be a Find operation, and let Xi be the set of all nodes on the path
traversed while executing Oi. The cost of a Find is proportional to the
length of the path traversed while executing it, so the cost of all Finds is
proportional to

F- E Xi.
all Finds Oi

If v is a node in Xi such that v is not a root during Oi, then let pi(v) be
the parent of v during the execution of Oi. Then Xi can be divided into
three subsets:

Yi = {v e Xi: v is a root or a child of a root during Oi,
and hence is not moved during Oil

Zi = {v E Xi: v is moved during Oi, and G(v) < G(pi(v))}

Wi = {v E Xi: v is moved during Oi, and G(v) = G(pi(v))}.

(The case G(v) > G(pi(v)) is impossible by the Levels of Descendants
Lemma.) Clearly IYjI < 2, and jZij < log* n by the Group Numbers

315

316 SETS WITH SPECIAL OPERATIONS

Lemma. Therefore

F= E (IYil+ Zil+IWil)
all Finds Oi

Y (Wjj) +m-(2+1og*n),
(all Finds °i

since there are at most m Finds in all. So it remains only to bound

Ft = E 1Wil.
all Finds Oi

F' counts, for each Find operation Oi, the number of nodes v E W5 ; but
this sum can be reversed:

F' = E (the number of oi such that v E Wi).
all nodes v

How many times can a node be moved by path compression steps before
its parent is in a higher group than itself? By the Levels of Descen-
dants Lemma, each time a node is moved during path compression its
new parent is at a higher level than its old parent. Therefore the max-
imum number of times that a node v at level I can be moved before
acquiring a parent in a higher group is the maximum number of differ-
ent numbers 1' such that log* l' = log* 1. If G(v) = log* 1 = g, this number
is at most F(g). Therefore, breaking the nodes down by groups, we find
that

log* n

F' < E (the number of nodes in group g) * F(g).
g=O

But by the Level Census Lemma the number of nodes in group g > 0 is at
most

F(g)
v n < n (I + + I+-- n5 2< 2 F(g-1)+ l 2 4 F(g)'

I =F(g-l)+l

which is clearly a bound for group g = 0 as well. Hence

log* n

F' < E F(g) E O(n log* n) C O(mlog* n). 0
Ft-< O F(g)

It is remarkable that such a simple algorithm has such an exotic analysis.
Even more strangely, the O(log* n) amortized cost per operation is not the end
of the story about the efficiency of Find when path compression is used. It is
possible to establish identical lower and upper bounds on the efficiency of the
algorithm. This bound is not constant, but a function that grows even more
slowly than log* n (see the references at the end of this chapter).

9.3 RANGE SEARCHING 317

procedure BSTRangeSearch(key L, U; pointer P; procedure Op):
{Perform Op on each lnfo(X) such that L < Key(X) < U}

if P = A then return
K + Key(P)
if L < K < U then Op(lnfo(P))
if L < K then BSTRangeSearch(L, U, LC(P), Op)
if K < U then BSTRangeSearch(L, U, RC(P), Op)

Algorithm 9.5 Range searching in a binary search tree.

9.3 RANGE SEARCHING

The search problem, as we have considered it so far, is to find the record
corresponding to a given key value, or to determine that no such record exists
in the data structure. If the data have a natural linear order (for example, the
lexicographic order of words), it makes sense to study a related problem, called
range searching. This is the problem of locating, not the single record for
a particular key value, but all records for key values that fall between two
specified limiting values. For example, if the data structure is used to represent
a dictionary of English words, and I asked for the words between chili and
chin (inclusive), I might get back chili, chill, chilly, chime, chimera, chimney,
chimpanzee, and chin. Perhaps I would like these returned in their own data
structure, or perhaps I want them printed or otherwise operated upon; for the sake
of formulating the problem abstractly, let us assume that we wish to represent
a set of pairs (K, I) consisting of key and info values, and for an arbitrary
operation Op on info values we wish to implement

RangeSearch(L, U, S, Op): Perform operation Op on each info I such that
(K, I) C S and L < K < U.

It is easy to search a range in ordinary binary search trees. The basic
plan, starting from a node of the tree, is to perform the appropriate operation
on the information stored at that node, if its key K is in the range; to search
recursively in the left subtree if L < K (since there might be additional elements
of the range in that subtree), and to search recursively in the right subtree
if K < U. The method (Algorithm 9.5) is a combination of the recursive
algorithms for ordinary searching (Algorithm 6.6 on page 194) and for preorder
traversal (Algorithm 4.2(b) on page 105).

For example, consider the binary search tree of Figure 9.10, and suppose we
search for the range from E to P inclusive. Starting at the root, we find that F
is in the range (E < F < P) and process it. Since E < F we descend to the left
subtree, whose root is B. B is not in the range, so it is not processed; moreover
it is less than the lower limit of the range (E) so we do not descend to the left
subtree; but it is less than the upper limit of the range, so we must descend to

318 SETS WITH SPECIAL OPERATIONS

Figure 9.10 Searching a binary search tree for the range from E to P.
Only the nodes within the curve are visited; the rest of the tree is never
searched. The four shaded nodes are discovered to be in the range.

the right subtree. Here E is discovered to be in the range; both children of E
are explored, but both are A. Returning to the root, the right subtree is searched
since F < P. Its root, S, is not in the range, so it is not processed, but is greater
than the lower limit of the range, so the left subtree is searched. Both N and its
left child M are discovered to be in the range; but its right child Q is discovered
to be outside the range. The left child of Q is explored and discovered to be A,
but the right child of Q need not be explored. On returning to node S, the right
subtree is not searched since P < S. In sum, then, nodes E, F, N, and M are
discovered to be in the range.

Note that there is nothing magic about mimicking the preorder traversal
algorithm; if the postorder or inorder traversal were used instead, the only effect
would be to process the nodes in the range in a different order. For example,
if it were desired to print the items in lexicographic order of their keys, then
inorder traversal should be used, and the next-to-last and third-from-last lines
of Algorithm 9.5 should be exchanged. Also, note that the use of less-than-or-
equal (rather than strict inequality) in the last two lines permits the algorithm to
operate correctly even if there are multiple occurrences of the same key value
in the tree (for example, in a real dictionary the word cleave appears twice).

Essentially the same range searching algorithm works in any tree data struc-
ture in which the sets of records in the subtrees of a node are determined by
comparing their keys to the key or keys stored in that node. Thus range search-
ing works in AVL trees, 2-3 trees, B-trees, and splay trees.

What is the complexity of Algorithm 9.5, and its relatives for the other
types of search trees? For plain, unbalanced binary search trees it can take
Q(n) time to find a single key, and it cannot take less than this, in the worst
case, to do a range query, since an ordinary LookUp can be viewed as a special
case of RangeSearch in which the lower and upper limits are the same. Using
a balanced tree structure should help, but a range search can still take Q(n)

9.3 RANGE SEARCHING 319

time-if the range includes all the keys in the tree! To get at more meaningful
analysis we have to use two measures of the "size of the problem": the size of
the question and the size of the answer. If we let n be the number of nodes in
the tree and m the number of keys in the tree that actually fall in the range,
then a reasonable analysis must take both n and m into account. We cannot
hope for an algorithm that is better than 0(m), since it takes that much time
just to present the answer. In fact a range search in a balanced tree structure
takes time that is linear in the sum of m and log n.

* THEOREM (Range Search in Search Trees) A range search in a
search tree takes time 0(m +p), where m is the number of elements of
the tree that are in the range and p is the height of the tree. In particular,
in a balanced tree with n nodes, a range search takes time 0(m+logn).

We shall prove this Theorem just for binary search trees; the generalization
to other kinds of search trees is straightforward. Before proceeding to the proof,
let us introduce the important notion of a bounding path of a range in a binary
search tree. Let T be a binary search tree and let L and U be the limits of
a search range. The left bounding path is the sequence of nodes Lo, -. , L
defined as follows. Lo is the root of T; and for any i > 0,

1. if L < Key(Li), then
a. if LC(Li) 7 A, then Li+, = LC(Li);
b. if LC(Li) = A but RC(Li) :L A, then Li+, = RC(Li);
c. if LC(Li) RC(Li) = A, then 1 = i (that is, Li is the last node on the

path);
2. if Key(Li) < L, then

a. if RC(Li) $1 A, then Li+ = RC(Li);
b. if RC(Li) = A, then 1 = i.

Thus the left bounding path delimits the left edge of the part of the tree in
which it makes sense to search for an element of the range. For example, the
left bounding path in the tree of Figure 9.10 goes from F to B to E. The right
bounding path Ro, . . ., Rr is defined similarly (Problem 20(a)); in Figure 9.10
the right bounding path goes from F to S to N to Q. Note that the ith node
on either bounding path is a node of depth i. The two bounding paths begin
at the same node (the root) and may coincide through some additional nodes;
in fact if the lower and upper limits of the search range are the same then both
bounding paths are identical to the search path for that key value.

PROOF As in the definitions above, let T be a binary search tree and
let L and U be the limits of a search range. Assume that T is nonempty and
moreover contains an element of the range; otherwise the Theorem follows
easily. Let Lo, ... , L, and R0, ... , Rr be the left and right bounding paths
for the search, respectively.

320 SETS WITH SPECIAL OPERATIONS

Xo = Lo = Ro X, Bounding
Paths

Figure 9.11 Schematic illustration of a range search in a binary search tree.
The tree is encompassed by the diagonal lines running down from the
root to the left and right; the heavy lines represent the bounding paths.
The portion of the path from X0 to Xc belongs to both bounding paths.
X = Xk denotes a typical node that is visited but is not on either
bounding path; its key must be in the range, since it is a right descendant
of Xj and a left descendant of Xc, both of whose keys are in the range.

Let c be the largest index such that Lc = R,; that is, L, = R, is
the last node that is common to both bounding paths. (See Figure 9.11;
in Figure 9.10, c - 0.) If L, = R, is the last node on both bounding
paths then the Theorem follows immediately. It is impossible for one of
the bounding paths to end and the other to continue; for example, it is
impossible to have 1 = c < r (Problem 20(b)). Therefore Key(L,) is in the
range, since the search from L, = R, extends to both its left child and its
right child.

Now let X be any node visited during the range search of T, and let
X, ... ,-Xk = X be the path from the root to X. We claim that if X is
on neither bounding path then Key(X) is in the range. The Theorem will
follow, since then the only visited nodes that are not in the range are on the
bounding paths, and there cannot be more than 2p of them, where p is the
height of T.

So suppose that X is on neither bounding path and let j be the largest
index such that Xj is on a bounding path; thus c < j < k and none of
X , . . ., Xk is on either bounding path. Without loss of generality, assume
that Xj is on the left bounding path; the case in which Xj is on the right
bounding path can be treated symmetrically. Xj cannot be the last node on
the left bounding path (Problem 20(c)), and since Xj is on the left bounding
path but Xj+l is not, Xj+l is the right child of Xj and L < Key(Xj).
Then node Xk is in the subtree rooted at the right child of Xj, and so
Key(Xk) > Key(Xj) > L. On the other hand, Key(Xk) < Key(X,), since

9.3 RANGE SEARCHING 321

Xk is in the left subtree of Xc, and Key(X0) < U, since the right bounding
path goes to the right from Xc. Therefore L < Key(Xk) < U. E

It is not hard to see that this Theorem gives the best result possible, since
any unsuccessful range search (one that finds no records) in a tree with minimum
path length S(log n) will take time Q(log n).

k-d-Trees for Multidimensional Searching
An interesting generalization of the range searching problem is to consider the
keys to be coordinates in a space of dimension two or higher. An application in
computer graphics is to find all the objects being displayed in a given rectangular
region of the screen. For another example, suppose we had a data base of cities,
together with their latitudes and longitudes, and we wished to be able to answer
queries of the form "find each city with latitude between 410 and 420 N, and
longitude between 90° and 910 W." (We would want to get back Clinton, IA, and
Rock Island, IL.) It is not at all obvious how such queries could be processed
efficiently using any of the data structures presented so far. We could store the
cities in a search tree by latitude, say, but the cost of searching through all the
cities between 41° and 420 N latitude to find the few having the appropriate
longitudes would seem to be prohibitive. Even hashing, generally a robust and
flexible data storage and retrieval technique, is wholly inapplicable here, since
our searches will not be for exact key values that are known in advance, but for
key ranges instead.

In its general form, the multidimensional range searching problem can
be described as follows. Suppose that k > I and there are k key components.
The data structure is to contain (k + I)-tuples (Ko,..., Kk-1, I), where I is
information to be associated with the sequence of key values. Since these
structures are used to represent items that may not be uniquely determined by
the sequence of key values, the data structure should accommodate multiple
items with the same key sequence. The values of each key are drawn from a
domain key which is linearly ordered (for simplicity, we assume that all field
values are drawn from the same domain). Also, let L and U be k-tuples of
values; Ld and Ud are members of key bounding the range to be searched in
dimension d.

RangeSearch(L, U, S, Op): Perform operation Op on each I such that

(Ko,..., Kk-1,I) E S

for some Ko, ... , Kk-l such that Ld < Kd < Ud for d = O...
k - I.

A variety of methods have been proposed for this problem, including some
involving very complex data structures and some that are analytically very dif-
ficult. The simplest data structure that performs satisfactorily in practice is the
k-dimensional binary search tree, or k-d tree.

322 SETS WITH SPECIAL OPERATIONS

Figure 9.12 Some U.S. cities located between 92° and 880 west longitude
and between 410 and 450 north latitude, listed in alphabetical order.
(Source: The Times Atlas of the World.)

A k-d tree is a binary tree with k key fields and an information field at each
node. Each item in the left subtree of the root has a Keyo value less than or
equal to that of the root, and each item in the right subtree of the root has a Keyo
value greater than that of the root. At the nodes of depth 1, the keys are split
according to the value of the Key, field, and so on. Nodes at depth k are again
split according to Keyo, and in general nodes at depth d are split according to
dimension d mod k.

For example, consider the geographic data of Figure 9.12. Figure 9.13
shows a 2-d search tree (one of many possibilities, constructed to be well-
balanced) based on these data. At the root the keys in the subtrees are divided
by longitude, with the more eastern cities (the ones with smaller longitude) in
the left subtree and the more western cities in the right subtree. The longitude
of the city at the root is the dividing line. At the nodes of depth 1 the division
is by latitude, at depth 2 by longitude, and so on. The geometrical effect is to
split the rectangle in which all the cities lie into a sequence of subrectangles by
alternating vertical and horizontal divisions running through cities on the map
(Figure 9.14).

The search procedure for this data structure is a straightforward generaliza-
tion of that for the one-dimensional case. Starting with longitude, see if the key
at the root lies inside or outside the range in that dimension. If it is outside the
longitudinal range then search is restricted to one of the two subtrees, depend-
ing on whether the longitude at the root is too large or too small. If the key at
the root is inside the longitudinal range then its latitude is checked as well; if
the latitude is also in range the record is processed as appropriate. Then both
subtrees must be searched. At the next level the search begins by checking the
latitudinal dimension.

Algorithm 9.6 is the range search algorithm for arbitrary k-d trees. The

City N Latitude W Longitude

Appleton, WI 44.17 88.24
Beloit, IL 42.31 89.04
Clinton, IA 41.51 90.12
Dubuque, IA 42.31 90.41
Elgin, IL 42.03 88.19
Fond du Lac, WI 43.48 88.27
Freeport, IL 42.17 89.38
Iowa City, IA 41.39 91.31
Joliet, IL 41.32 88.05
La Crosse, WI 43.48 91.04
Madison, WI 43.04 89.22
Rockford, IL 42.16 89.06
Rock Island, IL 41.30 90.34
Winona, MN 44.02 91.37

9.3 RANGE SEARCHING 323

Freeport, IL
(42.17,89.38)

Clinton, IA Beloit, IL
(41.51,90.12) (42.31,89.04)

Rock Island, IL La Crosse, WI Elgin, IL Fond du Lac, WI
(41.30,90.34) (43.48,91.04) (42.03,88.19) (43.48,88.27)

Iowa City, IA Db IA Joliet, IL / Appleton, WI
(41.39,91.31) (42.31,90.4) / (41.32,88.05) (44.17,88.24)

Winona, MN Rockford, IL Madison, WI
(44.02,91.37) (42.16,89.06) (43.04,89.22)

Figure 9.13 Cities of Figure 9.12 arranged into a 2-d tree. At each nonleaf
node the records in the subtrees are partitioned around the dimension
shown in boldface; for example, all cities in the left subtree of the root
have longitude greater than that of Freeport, IL, namely, 89.38, while all
cities in the right subtree of the root have longitude less than 89.38. (A
split according to longitude has the larger values in the left subtree so as
to correspond to the orientation of maps of the western hemisphere.) At
the first and third levels the split is according to longitude, while at the
second and fourth levels the split is according to latitude.

92

44

4,3

4-

0
Winona

Iowa
City

01 90

)La
Crosse

0
Dubuque

Freeport

Clinton

Rock
|Island

89

Appleton

Fond du
Lac

OMadison

- Beoi

88

0

o Rockford
Elgin

CJoliet

Figure 9.14 Partition of two-dimensional space implicit in 2-d search tree of
Figure 9.13.

324 SETS WITH SPECIAL OPERATIONS

procedure kdRangeSearch(key L, U; integer d; pointer P; procedure Op):
{Perform Op on each element in the range from L to U}
{P points to a node that splits on dimension d}

if P = A then return
if Li < Keyi(P) < Ui for i = 0, .. , k - 1 then Op(Info(P))
K +- Keyd(P)
if Ld < K then kdRangeSearch(L, U, d + 1 mod k, LC(P), Op)
if K < Ud then kdRangeSearch(L, U, d + 1 mod k, RC(P), Op)

Algorithm 9.6 Range searching a k-d tree. On entry P points to the root of a
k-d tree (that is, k is the dimensionality of the data set) and Ld and Ud bound
the dth dimension of the range to be searched (d = 0 ... , k -1). Parameter d
is the tree depth currently being searched, modulo k; when the procedure is
called nonrecursively from the outside, d should be 0. Procedure Op is to be
performed on the Info field of each item whose Key fields are in the range.

parameter d cycles through 0, 1, ... , k - 1, 0, 1, ... as the procedure calls
itself recursively, so the original call should have d = 0. This procedure is
closely analogous to Algorithm 9.5, with one other exception: before it can be
concluded that a key is in range, all its dimensions must be checked against the
bounds.

It is possible to construct a perfectly balanced (and hence logarithmic height)
k-d tree quickly if the data are given in advance. Given a set of n items and a
"dimension number" d (initially 0), if n = 0 then the tree is A; otherwise, find
the median of the n items, according to their Keyd coordinates; that item goes
at the root, and the left and right subtrees are constructed recursively on the
next dimension, each from roughly half of the remaining n - 1 items. Finding
the median-the item that would be in the middle if the data were sorted-can
of course be done in time O(n log n) by sorting, but it turns out that the median
can be found and the data set partitioned around the median in linear time (see
§11.8). Therefore the time T(n) to construct a k-d tree on n items is described
by the recurrence relation

T(0) = c

T(n + 1) = dn + T(jn/21) + T([n/21),

for some constants c and d. By the Divide-and-Conquer Recurrences Theorem,
T(n) G O(n log n).

Unfortunately there is no simple variation, analogous to AVL trees and 2-3
trees, that makes it possible to keep the tree balanced as insertions are performed.
A simple insertion algorithm that does not preserve good balance is, however,

9.3 RANGE SEARCHING 325

procedure kdInsert(key Ko, ... , Kk-l, info I, locative P):
{Insert (Ko,..., Kk-_, I) into the k-d tree with root P}

R - NewCell(Node)
for d from 0 to k -1 do Keyd(R) - Kd
Info(R) - I
LC(R) - RC(R) , A
d +-
while P # A do

if Kd < Keyd(P) then P - LC(P) else P - RC(P)
d - d + 1 mod k

P e~- R

Algorithm 9.7 Insertion into a k-d tree. The tree is searched until an appro-
priate leaf position is found, where a new node is implanted. This algorithm
permits more than one item to exist in the tree with the same key values.

not hard to devise; Algorithm 9.7 is a generalization of recursive binary tree
insertion.

Even if a k-d tree is well-balanced, a range search may take more than
logarithmic time to report even a single item in response to the query. Thus the
situation summarized in the Range Search in Search Trees Theorem does not
apply to k-d trees when k > 1. In fact, it can be shown that in the worst case
a range search in a k-d tree with n nodes takes time e(m + kn I-/k) to find
m elements in the range. For example, when k = 2 this is O(m + V/iT), a very
poor response time if n is large but m is small.

Quad Trees
A quad tree is another data structure that can be used to organize data with two
independent key coordinates, such as spatial coordinates. In a quad tree each
node that is not a leaf has four children. Such a node represents a square region;
its four children represent its northwest, northeast, southeast, and southwest
quarters. If a particular region contains more than one data point, it must be
recursively subdivided until it contains only one data point. A leaf of a quad
tree represents either a single data point, in which case the leaf record contains
the point's key coordinates and any associated data, or an empty square region,
in which case the leaf pointer is A.

For example, Figure 9.15 is a quad tree representing the data of Figure 9.12.
The four children of a node represent the northwest, northeast, southeast, and
southwest quarters in that order; a square represents a child which is A because
the corresponding quadrant contains no data point. The spatial partition that
gives rise to this quad tree is shown in Figure 9.16.

326 SETS WITH SPECIAL OPERATIONS

I SWI SEI .I.

wa
,ty

Winon

Appleton \ Madison
Fond du
Lac

Figure 9.15 Quad tree representation of the data of Figure 9.12. Square
nodes represent children which are A.

92 91 90 89 88

Joliet

Figure 9.16 Spatial subdivision corresponding to the quad tree of Fig-
ure 9.15. The initial square is divided into quarters, and each quarter is
recursively subdivided, until each region either is empty or contains a
single data point.

-4- - Appleton 0
Winona

, La Fond du o
Crosse Lac

Dubuque , Beloit
D-Fu = - Rockford

4. o Elginn

linton
Iowa - Ri
c ity si n _ _ _ _ __ _ _ _ _ _

9.3 RANGE SEARCHING 327

A quad tree is really more like a trie than like a search tree because the
structure of the tree depends on the numerical values of the coordinates, not on
the relative coordinate values of the items being stored. If two data points have
coordinates that are numerically close, a quad tree of great height may result,
even if these are the only data items in the tree. For example, in Figure 9.15
an extra layer of subdivision is needed to discriminate Beloit, Rockford, and
Freeport; all three cities fall in the same squares of size 10 and 0.50, aligned on
multiples of these dimensions, and so space must be partitioned to the level of
0.25° before the cities fall in different squares.

The precise correlation between quad trees and tries may be expressed as
follows. Suppose that the data to be represented are of the form (X, y), where
0 < x < 1 and 0 < y < 1. Number the four children of a node 00, 01, 10,
and 11. Then the node that is reached from the root via the children x0yO,
xIYi, ... , xp-lyp-l, where each xi and yi is 0 or 1, represents the set of
all keys whose x-coordinates, in binary notation, begin with .xoxl ... xp-I and
whose y-coordinates begin with .yoyi .. . p- 1. For example, the root represents
all the points, and its 10 child represents all points whose x-coordinates begin
with 1 and whose y-coordinates begin with 0, that is, the points that look like
(.1... ,.0...) in binary, or in other words the points with 2 < x < 1 and
0 < y < 2. If there is more than one such point in the data set, this node is not
a leaf, but has four children representing squares of side 4.

As is the case for tries, it is relatively easy to search a quad tree for a
data point, or to insert or delete a data point. Range search queries are also
straightforward; to search a tree T representing a square region R for all points
lying in a rectangular region S, recursively search each of the four children
of T representing a quadrant of R that overlaps with S. Determining "overlap"
entails simple comparison of coordinate values that are passed as arguments to
the search procedure (see Problem 28).

However, because the height of a quad tree is related to the key values, not
just to the number of data items to be stored, quad trees can be inefficient in
their use of memory. A second source of storage inefficiency is the fact that
each node has four children; in a large tree many A children will have to be
stored. Quad trees can be generalized to more than two dimensions, but the
storage inefficiencies become even more severe in higher-dimensional spaces.
In a three-dimensional space, for example, each node would have eight children;
such a structure is called an octtree.

Storage compaction techniques like those discussed for tries in §8.2 can
be applied to quad trees, but another difficulty with quad trees renders them
impractical for really large data sets, namely, their very poor storage locality.
That is to say, since the data structure will have to be stored on disk or in
some other secondary storage medium if it is really large, it is important to
ensure that as the data structure is searched successive probes are usually not
to different blocks of secondary storage. Quad trees do not enjoy good storage

328 SETS WITH SPECIAL OPERATIONS

locality; however, the next structure we discuss is designed to address the locality
problem.

Grid Files
A grid file is a two-level data structure consisting of a grid directory and a set
of buckets. The buckets are disk blocks of fixed size, which can therefore hold
only a bounded number of data records. As we will see, the directory is split
between main and secondary memory in such a way that the bucket in which a
record is stored can be identified with at most one disk access; thus any record
access should take only two disk accesses, one within the directory and one to
access the bucket itself.

It will be helpful to explain in advance a few of the structures and operations
on which grid files are based. By a scale we mean a monotone increasing
array A[O. . m] for some m > 0; we may as well think of the elements as
numbers, but they can actually be drawn from any linearly ordered set. Thus
A[O] < A[1] < ... < A[m]. Given any value a such that A[O] < a < A[m],
we can find a particular index i such that A[i] < a < A[i + 1]. We call i the
result of locating a on the scale A.

A two-dimensional grid file is used to represent data that can be located
on two scales, X[O.. m] and Y[O.. my]. (Grid files in higher dimensions
can be defined similarly.) Thus the keys are really ordered pairs (x, y), where
X[O] < x < Xfm1] and Y[O] < y < Y[my]. The location of the record
with this key (if it is in the file at all) is then determined as follows. The
values x and y are located on the scales X and Y, yielding indices i and j.
A two-dimensional array reference G[i, j] then gives the location of the bucket
containing the record with key (x, y). In general several grid coordinates G[i, j]
may point to the same bucket; thus the grid file can efficiently represent data
that may be distributed quite nonuniformly in two-dimensional space.

More precisely, a grid directory consists of

1. two positive integers mx and my, which are the sizes of the scales in the
x and y dimensions;

2. two scales X and Y, of sizes mx and my;
3. a two-dimensional array G[O. .m - 1,0. my -1], which gives, for each

pair of indices (i, j) of locations on the scales, the bucket G[i, j] in which
items belonging to that part are stored.

The scales X and Y need not be regular; for example, if the data set happens
to be denser in the smaller values of x then the values of X[i] might increase
rather slowly for small i and then more rapidly for larger i. Also, although
several G[i, j] may well point to the same bucket, in general buckets will be
organized to correspond to consecutive values of the index coordinates. The
scales X and Y can be kept entirely in main memory, but the array G may well
be too large to fit in main memory; however, since finding a record requires

9.3 RANGE SEARCHING 329

accessing only a single array position, the limit of two disk accesses for looking
up a single key pair is satisfied. The internal organization of a bucket might
be according to a 2-d tree or some other data structure that supports efficient
LookUps or range searches.

For example, Figure 9.17 illustrates the construction of a grid file for the
cities of Figure 9.12 on page 322, inserted in alphabetical order, on the assump-
tion that a bucket can hold only two cities and that the dimension of splitting
alternates between x and y. (Of course, the figure of two records per bucket
is rather small, and is used only for illustrative purposes.) The rectangles with
rounded corners show all of the grid squares that point to the same bucket.
Figure 9.17(a): Until there are three cities the region does not need to be sub-
divided; when Clinton is inserted, the first division occurs, into two vertical
regions. Figure 9.17(b): Dubuque can be accommodated in an existing bucket,
but adding Elgin forces the right-hand region to be subdivided, this time by a
horizontal subdivision. Still, only a single bucket represents the entire left-hand
region. Figure 9.17(c): Fond du Lac fits into an existing bucket, but Freeport
forces a new vertical subdivision. Figure 9.17(d): Iowa City fits into an ex-
isting bucket, but Joliet forces a new horizontal subdivision. At this point the
directory is a 3 x 3 array dividing space into nine regions, but there are only
five buckets; several directory entries point to the same bucket. Figure 9.17(e):
Adding La Crosse causes a bucket to overflow, but no addition need be made
to the grid scales; it suffices to split an existing bucket horizontally and change
the grid directory. Figure 9.17(f): Inserting the remaining cities requires one
more vertical partition; in the end the fourteen cities in twelve regions fit into
nine buckets, so disk storage is utilized with an efficiency of 14/18 = 78%.

Within the general framework sketched here, there are many possible strate-
gies for splitting buckets. Figure 9.17 was obtained by splitting first in the
vertical direction, and then alternately in the horizontal and vertical dimensions;
when a scale must be expanded, because a bucket overflows but no suitable
scale division partitions the bucket, a single new value is inserted into the scale
so as to divide the records in the bucket roughly in half. Notice that expanding
the grid directory in this way may entail significant disk access to rewrite the
directory; it may be worthwhile, since the directory has to be rewritten anyway,
to subdivide it more finely if other buckets are also near to overflowing.

Note that it is possible to delete records from a grid file; if a bucket becomes
too empty it may be possible to merge it with one of its neighbors. Another set
of strategic decisions revolve around how such mergers might occur. The most
restrictive strategy would allow a bucket to be merged only with the "buddy"
bucket from which it was split when it was created. But other pairs might
be merged with equal ease; for example, in Figure 9.17(f), if Appleton were
deleted it might make sense to merge the buckets containing Fond du Lac and
Madison together, even though they had not been formed by splitting apart a
single bucket earlier.

330 SETS WITH SPECIAL OPERATIONS

(a)

oClinton
Kim I

(c

(e

Figure 9.17 Construction of a grid file for the data of Figure 9.12 on
page 322.

Appleton 0

Beloit
0

1I
E

111,11 11 "I'll I

al

I

4',4 , !CARRIER.,L 11 11 I I M, 0"ENkqg- SUN- HUMANg mg�pij E��IjT% �zN�
Mm-00 � &H.

PROBLEMS 331

Grid files bear many similarities to extendible hash tables (page 280), which
also have a two-level structure of a directory and a set of buckets; in each struc-
ture the directory is refined and grows as data are added, and several directory
entries may point to the same bucket. The most important difference between
an extendible hash table and a grid file (aside, of course, from the multidimen-
sional organization of a grid file) is that the values located in the directory of
an extendible hash table are guaranteed by the hash function to be uniformly
distributed across the range; that is why it makes sense to double the size of the
directory if it needs to be expanded at all. The key values in a grid file cannot
be assumed to be at all uniformly distributed, and they cannot be transformed
by hashing into a uniform distribution since this would make it impossible to
search ranges by probing only a subset of the buckets. Instead the linear scales
X and Y can adapt gradually to any nonuniformity in the data.

Problems

9.1 1. a. Show the heaps that result from inserting 6, 5, 2, 4, 7, 1, and 3
into an initially empty heap. (Draw the partially ordered trees,
not the actual tables.)

b. Show the heaps that result from three successive DeleteMins on
the heap resulting from part (a).

2. Show that deletion of an arbitrary element (not just the minimal ele-
ment) of a heap can be done in O(log n) time, if its index in the
heap is known. That is, give an O(log n) implementation of a routine
HeapDelete(i, h) that deletes the item with index i in the heap h.

3. Algorithm 9.1 on page 303 gives an implementation of HeapInsert
that takes time O(log n) in the worst case.

a. Show that the exact number of comparisons between data items
is about Ign in the worst case, and that the exact number of
movements of data items is also about Ig n.

b. Show that the number of comparisons can be reduced to about
Ig Ig n by performing binary search, without changing the number
of movements of data items.

4. a. Suppose that H, and H2 are two heaps of size n1 and n 2 , that
n, > n2, and that every element of H2 is greater than every
element of H,. Explain how to merge H, and H2 into a single
heap in time O(nl).

b. Why is the condition n, > n2 needed, and how quickly can the
heaps be merged if this condition is violated?

5. Heaps permit one to find the minimum element in constant time and to
insert or delete an element in O(log n) time. Explain how to modify

332 SETS WITH SPECIAL OPERATIONS

the heap data structure and algorithms to provide an implementation
of a double-ended priority queue with the following characteristics:
the data structure can be constructed in 0(n) time, a record can be
inserted or deleted in 0(logn) time, and either the minimum or the
maximum can be found in constant time. (Hint: Arrange the records
so that each node at even depth has key value greater than that of
any of its descendants, and each node at odd depth has key value less
than that of any of its descendants. This data structure is called a
min-max heap.)

6. Another variant of the heap data structure that solves Problem 5 is
called a deap ("double-ended heap"). A deap is like a heap except
that (1) no record is at the root; (2) the left subtree of the root is a
heap arranged so that the minimal element is at the top and each node
has key less than or equal to those of its children; (3) the right subtree
of the root is a heap arranged so that the maximal element is at the top
and each node has key greater than or equal to those of its children;
and (4) each leaf of the "min" heap is less than the corresponding
leaf of the "max" heap, where the node "corresponding" to a leaf N
of the left subtree is the leaf in the same position as N in the right
subtree, if it exists, and is otherwise the node in the same position as
the parent of N. Show that there are algorithms for this data structure
that implement the same operations as those of Problem 5 in the same
time bounds.

7. Suppose that a balanced dictionary tree is used in conjunction with a
leftist tree to implement dictionary operations as well as priority queue
operations. There is a problem with the suggested implementation
of Delete, since deleting a node in the leftist tree seems to require
knowing the location, not of the node, but of its parent. Suggest how
this difficulty might be overcome (there is more than one acceptable
method).

8. Devise a priority queue representation that permits each FindMin and
DeleteMin operation to run in constant time, while Insert takes time
0(log n). (Hint: Keep the records both in a list and in an AVL tree.
When deleting an item, remove it completely from the list, but leave
it in the AVL tree, with its priority changed to -1. Remove nodes
from the AVL tree only when the root acquires priority -1.)

9. A priority queue is said to be stable if deletions of items with equal
priority value occur in the order in which they were inserted. Which
of the priority queue structures discussed in this section are stable?
Explain why, or give counterexamples.

10. A p-tree is a binary tree structure used to implement priority queues.
These trees satisfy the following constraints:

PROBLEMS 333

I. Any node lacking a left child also lacks a right child.

2. The priority value of any node is greater than or equal to that of
its left child (if it has a left child).

3. All priority values in the right subtree of a node P are less than
the priority value of P itself, and are greater than or equal to the
priority value of P's left child.

a. Where are the maximum and minimum items in the entire tree?

b. Show that priority trees can be used to implement priority queues
by giving implementations of Insert and DeleteMin. It may be
helpful to augment the trees with pointer fields in addition to the
left and right child pointers.

c. Show that the algorithms of part (b) can be implemented so that
the priority queue is stable, in the sense of Problem 9.

d. Show that p-trees can also support DeleteMax, thus providing an
implementation of double-ended priority queues.

e. Show that after a sequence of n insertions in a p-tree (with no
deletions), the length of the path from the root through left chil-
dren to a leaf is about 2 In n.

11. A binomial tree of order n is an ordered tree consisting of a root B
with n children, such that the iA child of B is a binomial tree of
order i for each 0 < i < n -1 (Figure 9.18 depicts several binomial
trees). It is easy to see that any binomial tree of order n has exactly
2n nodes. A binomial forest is a forest of binomial trees with no
two trees of the same order. There is only one way to construct a
binomial forest with k nodes for any given k: the forest will have
one tree for each I in the binary representation of k. A binomial
queue is a binomial forest in which each node stores a key value
(and possibly other information associated with the key) such that
each tree is partially ordered; that is, the key of each node is less than
the keys of its children.

a. Devise a representation for binomial trees that allows two trees
of order n to be combined into a single tree of order n + 1 in
constant time, preserving the tree partial ordering, and that allows
two binomial queues having nt and n2 nodes respectively to be
combined into a queue with n = ni +n2 nodes in time O(n log n),
thus implementing the abstract operation Union. (Hint: Consider
the usual addition algorithm for binary numbers.)

b. Show how to implement the Insert and DeleteMin abstract op-
erations on a binomial queue in time O(log n), where n is the
number of elements in the queue.

334 SETS WITH SPECIAL OPERATIONS

*

Figure 9.18 Four binomial trees, of orders 0, 1, 2, and 3. As a whole, these
four trees make up the (unique) binomial forest with 15 nodes.

c. Show how to implement Delete(X, B), which deletes from a bi-
nomial tree an arbitrary node X (whose location is given) in time
logarithmic in the number of nodes.

d. Analyze the space requirements of your representation.

9.2 12. Starting with a singleton set Si for each item i, where I < i < 10,
show the forest of up-trees that results after each of the follow-
ing operations, if balanced union and path compression are used:
A - Union(SI, S2); B +- Union(A, S3); C +- Union(S4 , B); D
Union(S5, S6); E +- Union(D, S7); F - Union(C, E); Find(7).

13. Consider a sequence of operations that starts with n singleton sets
and consists of a sequence of m < n Union operations followed by a
sequence of n -m Find operations (with path compression). Show
that the time for the whole sequence is 0(n).

14. a. The numbers 1, 2, ... , 2k-1 are merged into a single perfect
binary up-tree by a sequence of balanced Union operations, in
such a way that the leaves are numbered 1, 2, ... , 2 k-1 from left
to right. Describe a sequence of operations that could produce
this result.

b. The operations Find(1), Find(2), ... , Find(2k- 1) are then carried
out using path compression. What is the order of the time required
for this sequence of Find operations? (That is, the answer should
be of the form "E(f (k))" for some function f.)

15. Show that Q(m log n) is a lower bound on the time to perform m op-
erations on n elements if up-trees are used with balancing but without
path compression. That is, exhibit a sequence of m operations that
will require Q(m log n) time.

16. Precisely where in the proof of the Path Compression Theorem (in-
cluding its Lemmas) do we use any property of the function log*
other than the fact that it is monotone nondecreasing?

PROBLEMS 335

17. a. Where in the proof of the Path Compression Theorem do we use
the assumption that m > n?

b. Suppose that assumption is violated; what can be said about the
time needed to carry out m operations on a universe of size n if
m < n?

18. Suppose we are using up-trees with path compression but without
balancing to implement the Union and Find operations. Determine the
time bound for a sequence of operations as in the Path Compression
Theorem.

9.3 19. Carry out a range search of the tree in Figure 9.10 on page 318 for
the range from 0 to W. What are the left and right bounding paths
for this search?

20. a. Define the right bounding path, by analogy with the given defi-
nition of left bounding path.

b. Show that it is impossible for the left and right bounding paths
to coincide up to a node, and for one bounding path to continue
while the other ends at that node.

c. Let X be a node whose key is in the range but which is not on
either bounding path, and let Y be the last node on the path from
the root to X that is on a bounding path. Show that Y is not the
last node on the bounding path.

21. Show how to do range searching in one dimension using threaded
trees, and analyze the method you propose.

22. Where in the proof of the Theorem on Range Search in Search Trees
is the assumption used that the tree contains at least one element of the
range? What can be done if we do not wish to make this assumption?

23. Suppose that the specification of the range searching operation is
redefined so that, instead of performing Op on all items in the range,
it returns as a value the set of all items in the range. Show that by
using a search tree representation, range searching in this sense can be
performed in one dimension in time O(log n), where n is the number
of items in the set being searched, independent of the number of items
in the range. Show that this worst-case logarithmic time bound can
be maintained even if points are dynamically inserted into and deleted
from the data structure.

24. The problem of retrieving sets of cities from a geographical data
base according to minimum and maximum latitude and longitude does
not, in fact, quite fit the model for multidimensional range searching
presented on page 321. While latitudes have natural minimum and

336 SETS WITH SPECIAL OPERATIONS

maximum values (90° S and 900 N), longitudes vary in cyclical fash-
ion, from 00 E (= 00 W) to 900 E to 1800 E = 180° W to 900 W
back to 00. Thus we might want to do a range search for the range
from 10° W to 100 E longitude, or from 170° E to 1700 W, or, for
that matter, from 10° E to 100 W (that is, most of the way around the
globe). Explain how to do range searching in a domain of this type,
and present pseudocode for your algorithm.

25. Insert the cities of Figure 9.12 into a 2-d tree by starting with a split
on latitude, rather than longitude as in Figure 9.13. Illustrate the
corresponding spatial partition.

26. Show that range searching in a 2-d tree of size n can take time f2(V/ni),
independent of the number of items in the range.

27. Consider the following data structure for range searching in two
dimensions. Items are organized into a binary search tree on their
key values in the first dimension; but attached to each node X of this
binary search tree is a separate binary search tree containing all items
in the subtree rooted at X, organized according to their key values in
the second dimension.

a. Give an algorithm for inserting an item into such a "tree of trees."

b. Give an algorithm for range searching such a structure.

c. Show that under reasonable assumptions about the distribution
of key values, inserting n items into an initially empty structure
takes expected time O(n(log n)2), and range searching a structure
with n items when there are m items in the range takes expected
time O(m + (log n) 2).

d. Show that the expected time to search a range in this structure
is O((logn)2) if the objective is not to perform an operation on
every item in the range but to return a representation of the set of
all items in the range.

e. What are the memory requirements for this data structure?

f. Generalize this structure to more than two dimensions, and give
the corresponding results about expected time complexity for in-
sertions and range searches.

28. Write an algorithm that performs a range search in a quad tree.

29. Explain why the structure of a quad tree does not depend on the order
in which items are inserted into it.

30. Quad trees are used in computer graphics for representing digitized
images. An image is divided into 2 k x 2k picture elements, or pixels,
each of which is either black or white. (The value of k is typically 10

PROBLEMS 337

or 11.) Each leaf of the representing quad tree has a binary Shade
field, indicating that the pixels in the entire square corresponding to
that leaf are either all black or all white.

a. What are the maximum and minimum sizes of quad trees that
represent images in this way, and what are the worst-case and
best-case images? What is the maximum size of the quad tree
representation of a 2k-1 x 2 k-1 square with its sides parallel to
the sides of the image?

b. Explain how to transform a quad tree representing an image into
a quad tree representing the same image rotated 900.

c. Write an algorithm for computing the black area of an image, that
is, for counting the number of black pixels of an image represented
by a quad tree.

d. Write an algorithm that converts a square array of binary values
(Os and Is representing rixels) into a quad tree. Naturally, the
quad tree should be as small as possible. Assess the complexity
of your method.

e. Write an algorithm that converts a quad tree representation of an
image into a square array of binary values.

f. In practice the problem of part (e) is not really what is wanted in
computer graphics, since the array would be huge and the pixels
are wanted in scan-line order: first all the pixels in the first row,
from left to right, then all the pixels in the second row, and so on.
Devise an algorithm that produces the pixels from a quad tree in
this order without precomputing the entire image.

31. Show the stages in the construction of a grid file from the data of
Figure 9.12 on page 322 when the cities are inserted in reverse al-
phabetical order, rather than in alphabetical order as in Figure 9.17
on page 330.

32. Design a data structure that can be used to answer questions of the
following kind about a fixed set of n points in the plane: Given a
rectangle, how many points does it contain? The data structure can
be as big as you want and you may take as much time as you want to
prepare the data structure from the points, but once the data structure
is ready the questions must be answered in constant time. How big
is the data structure, and how much time does it take to prepare?

33. a. Suppose we are given n points on the x-axis by the values of
their x-coordinates. Suppose further that we are given constants
c and d such that the following "sparseness" condition holds: no
interval on the line of length 2d contains more than c of the points.

338 SETS WITH SPECIAL OPERATIONS

Find an O(n log n) algorithm for discovering all pairs of points
that are within distance d of each other. Why is the sparseness
condition necessary?

b. Now consider a collection of n points in the plane governed by
the sparseness condition that no circle of radius d contains more
than c of the points. Find an O(n log n) algorithm for discovering
all pairs of points that are within distance d of each other. (Hint:
Use divide and conquer, and the result of part (a).)

c. Generalize the method of part (b) to obtain a O(n(log n)k- I) algo-
rithm in k dimensions.

34. a. Suppose we are given n points on the x-axis by the values of
their x-coordinates. Give an algorithm that finds the closest pair
of points in O(n log n) time.

b. Repeat part (a) for a collection of n points in two dimensions.
(Hint: Divide and conquer.)

References

Heaps were first used as part of the sorting algorithm known as Heap Sort (see page 386)
by

J. W. J. Williams, "Algorithm 232: Heapsort," Communications of the ACM 7 (1964),
pp. 347-348,

and

R. W. Floyd, "Algorithm 245: Treesort 2," Communications of the ACM 7 (1964), p. 701.

The data structure for Problem 5 is described in

M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, "Min-Max Heaps and Gener-
alized Priority Queues," Communications of the ACM 29 (1986), pp. 996-1000.

Deaps (Problem 6) are from

S. Carlsson, "The Deap-A Double-Ended Heap to Implement Double-Ended Priority
Queues," Information Processing Letters 26 (1987), pp. 33-36.

Problem 3 is from

G. H. Gonnet and J. I. Munro, "Heaps on Heaps," SIAM Journal on Computing 15
(1986), pp. 964-971.

If the priority values are arbitrary, then any priority queue structure must use Q(log n)
time for insertions and deletions. But if the universe of priority values is small, for
example, if it is { 1,... , n} where n is the size of the priority queue itself, then subloga-
rithmic cost can be achieved. (The situation resembles that for the disjoint sets problem
discussed in §9.2.) Priority queue implementations with O(log log n) cost per insertion
or deletion under these circumstances are described in

P. van Emde Boas, R. Kaas, and E. Zijlstra, "Design and Implementation of an Efficient
Priority Queue," Mathematical Systems Theory 10 (1977), pp. 99-127

REFERENCES 339

and

P van Emde Boas, "Preserving Order in a Forest in Less than Logarithmic Time and
Linear Space," Information Processing Letters 6 (1977), pp. 80-82.

The p-tree structure (Problem 10) is explored in

A. Jonassen and O.-J. Dahl, "Analysis of an Algorithm for Priority Queue Administra-
tion," BIT 15 (1975), pp. 409-422.

Leftist trees were discovered by

C. A. Crane, Linear Lists and Priority Queues as Balanced Binary Trees, PhD Thesis,
Stanford University, 1972.

They are described in detail in Knuth's book Sorting and Searching cited on page 44.
Binomial queues (Problem 11) are from

J. Vuillemin, "A Data Structure for Manipulating Priority Queues," Communications of
the ACM 21 (1978), pp. 309-314.

Balanced up-trees are from

R. Bayer, "Oriented Balanced Trees and Equivalence Relations," Information Processing
Letters 1 (1972), pp. 226-228.

The full union-find algorithm, using path compression, was analyzed by

R. E. Tarjan, "Efficiency of a Good but Not Linear Set Union Algorithm," Journal of
the ACM 22 (1975), pp. 215-225.

The data structures known as k-d trees were invented by Jon Bentley; see

J. L. Bentley, "Multidimensional Binary Search Trees Used for Associative Searching,"
Communications of the ACM 19 (1975), pp. 509-517;

J. L. Bentley, "Multidimensional Binary Search Trees in Database Applications," IEEE
Transactions on Software Engineering SE-5 (1979), pp. 333-340.

Problem 26 is from

D. T. Lee and C. K. Wong, "Worst-Case Analysis for Region and Partial Region Searches
in Multidimensional Binary Search Trees and Balanced Quad Trees," Acta Infor-
matica 9 (1977), pp. 23-29.

Problem 27 is from

G. Lueker, "A Data Structure for Orthogonal Range Queries," Proceedings, 19th Annual
IEEE Symposium on Foundations of Computer Science, 1978, pp. 28-34.

Data structures with guaranteed worst-case behavior for range searching in higher
dimensions are discussed in

D. E. Willard, "New Data Structures for Orthogonal Range Queries," SIAM Journal on
Computing 14 (1985), pp. 232-253;

B. Chazelle, "Filtering Search: A New Approach to Query-Answering," SIAM Journal
on Computing 15 (1986), pp. 703-724.

340 SETS WITH SPECIAL OPERATIONS

These papers contain references to many papers on related problems. An extensive
explanation of quad trees and their variants is in

H. Samet, "The Quadtree and Related Hierarchical Data Structures," Computing Surveys
16 (1984), pp. 187-260.

Grid files are discussed in

J. Nievergelt, H. Hinterberger, K. C. Sevcik, "The Grid File: An Adaptable, Symmetric,
Multikey File Structure," ACM Transactions on Database Systems 9 (1984), pp. 38-
71.

Some interesting and useful generalizations of binary search to higher dimensions are
discussed in

J. L. Bentley, "Multidimensional Divide-and-Conquer," Communications of the ACM 23
(1980), pp. 214-229.

This paper is the origin of Problems 33 and 34. (Problem 33(c) can actually be solved
in time O(n log n), independent of k.) Problem 32 is from

J. L. Bentley and M. 1. Shamos, "A Problem in Multivariate Statistics," 15th Allerton
Conference on Communication, Control, and Computing, 1977, pp. 193-201,

and also appears in thefollowing book, a good source of algorithmsfor related problems:

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, 1985.

For an introduction to computational geometry, including a discussion of range search-
ing, see

R. Graham and F. Yao, "A Whirlwind Tour of Computational Geometry," American
Mathematical Monthly 97 (1990), pp. 687-702.

10

Memory
Management

10.1 THE PROBLEM OF MEMORY MANAGEMENT

In our model the memory of a computer consists of a single large table of
cells of small fixed size (typically 8 bits). The only basic operations directly
supported by the memory are storage into and retrieval out of a memory cell,
as functions of its address. Programming language systems, operating systems,
and other "service" programs provide more abstract interfaces for dealing with
memory. For example, programming languages provide a mechanism for re-
ferring to an integer quantity by a variable name such as "X," rather than by
its true position and extent in memory. The label "X" is an abstraction of
an address. Indeed, the quantity referred to as X in a subroutine may be lo-
cated in different places in memory on different occasions that the subroutine
is called; it may even move within memory while the subroutine is active. As
another example, we have used in our descriptions of several algorithms a gen-
eral routine NewCell that provides a chunk of memory of a specific requested
size, but whose location we consider irrelevant. Similarly, an operating sys-
tem may locate a 50 kilobyte program in a particular chunk of a much larger
memory, and then relocate it elsewhere in memory when other programs start
to run. As long as the behavior of the program does not depend in any relevant
way on its position in memory, we are happy to let the operating system move
it around.

The semantic advantages of an abstract, high-level interface to memory are
obvious: the size of fields can be determined by considerations external to the
program, such as the characteristics of the machine on which the program is to
be run, and the program's view of the structure of memory can be much less
rigid than reality would otherwise dictate. Equally important, however, is the
finiteness of memory. An abstract interface supports the view that memory is
unlimited: if you need to create an object that takes up memory, just ask for
the amount of memory you need. Reality is quite different in this respect as
well: if all the memory cells have been allocated to one use or another, no
more are available. Memory management is the prudent utilization of this

341

342 MEMORY MANAGEMENT

scarce resource, whether by conservation, recycling, or other strategies. It is
carried out in a way that tries to interfere as little as possible with the high-level
view of memory as a resource that can be consumed on request in specified
amounts.

Let us agree on the following terminology. The portion of memory to be
managed is a table M[O.. N - 1] of N cells, called the heap,* from which
smaller blocks are from time to time to be allocated. When a block has been
allocated, it is said to be reserved or in use; it may later be freed or deallocated,
and it is then available to satisfy further allocation requests.

What makes a good heap scheme depends critically on many characteristics
of the system in which it is being used. There are few absolute rules; techniques
that are effective in one context may be suboptimal in another, where the num-
ber or size of the memory requests may be different. Here are some of the
characteristics of the memory management environment that affect the choice
of scheme to be employed:

Blocks offixed size vs. blocks of various sizes: In some contexts all mem-
ory requests are for records of the same size, or at least one size is
requested in such quantity that it makes sense to set aside a heap to
be managed for just those requests. An example is the allocation of
list cells in a system like Lisp that manipulates list structures exten-
sively. In other contexts the size of memory requests is unpredictable
within a certain broad range; an example is the allocation of large
chunks of memory within an operating system for programs to run
in, or the allocation of memory for array storage in a programming
language system. Fixed-size blocks are much easier to manage than
diverse-sized blocks, because any one can occupy the position of any
other.

Linked blocks vs. unlinked blocks: Suppose A and B are records in mem-
ory, and somewhere within A is a pointer to B (for example, A and B
might be logically adjacent cells in a linked list). Although the spe-
cific location of B in memory is unimportant, B cannot be moved
without updating the reference to B that occurs in A. To do so would
leave in A a "dangling pointer" that now points not to B but per-
haps to some other structure that was created when B was moved.
The memory blocks used by the independent programs managed by
an operating system, on the other hand, generally have no linkage
between them. Linked structures present management difficulties that
unlinked structures do not.

*The term "heap" is also used in an entirely different sense, to mean an implicitly represented tree
structure in which the datum at each parent node stands in a particular ordering relation to the data
stored in its children (page 300). Heaps in this sense are the basis for a useful sorting algorithm
called "Heap Sort" (page 386). The coincidence of terminology is a historical accident.

10.1 THE PROBLEM OF MEMORY MANAGEMENT

Small blocks vs. large blocks: Memory management routines may be called
on to handle blocks as small as a few bytes or as large as a few
megabytes. To handle a request it may be reasonable to move a
small block, or to zero it, or to do something else that takes time
proportional to the size of the block, since if the block is small the
time spent in this way is only a small fraction of the total time spent
by the memory management routine. To handle a request for a large
block it is probably undesirable to carry out an operation that takes
time proportional to the size of the new block.

Time vs. memory: In some environments the heap may be much larger than
the part used at any one time (though smaller than the sum of all
requests over a long period of time). Some underutilization of the
memory may then be perfectly acceptable, if it permits use of a much
faster memory management algorithm. In other environments every
bit may be precious, and complex algorithms operating in limited
amounts of memory may be required.

Explicit vs. implicit release: When a block of memory ceases to be needed,
will the user of the memory notify the memory management system,
or must the system determine by itself that the block is no longer
in use? The answer to this question is in part a matter of protocol
between the "service" that provides memory and the "clients" that use
it, and as such affects the abstract interface between them. In extreme
cases, however, the choice is fairly clear. An operating system that
requests of its memory management subsystem huge blocks in which
to run programs is in a good position to inform the memory manage-
ment system when the programs stop running. Deallocation of small
blocks in a programming language context can be extremely tricky,
however. Assignment is a form of implicit release. If explicit release
were required, one could not even say

P <- NewCell(Node)
P -- Q

without remembering to release, before the second assignment, the
memory to which P points. Otherwise that memory would become
garbage, that is, considered allocated by the memory manager but
not referenced by any variable or data structure that still exists and is
significant to the client. In this context counting on explicit release
is not only delicate, it is dangerous, since it relies on cooperation by
a user who may be hostile or ignorant. On the other hand, implicit
release is a subtle matter as well, since a block cannot be considered
free until all use of it has ceased; the flip side of the problem of failing
to release a block when appropriate is reclaiming a block before it
is really free, since one cannot tell by looking at a block how many
pointers may be pointing to it.

343

344 MEMORY MANAGEMENT

Scheduled vs. unscheduled release: Anything that is known about the order
in which allocated blocks of memory will be released can be helpful
to the memory manager. As an extreme example, if the manager
knows that certain requests are released in last-in-first-out fashion, it
can simply allocate them on a stack-no more efficient or economical
scheme is possible. (This is exactly what happens when memory is
allocated for local variables and procedural parameters in recursive
program calls, see page 79.) But in general nothing can be known
about the release schedule, and the memory manager must plan for
the worst.

Initialized vs. uninitialized blocks: The memory manager may be given the
responsibility of initializing allocated blocks by setting bits to 0 or to
some other pattern. For example, the runtime system for a higher-
level programming language may expect this because the semantics
of the programming language defines the value of newly allocated
variables. As another example, an operating system may want to
initialize blocks that are supplied in response to memory requests by
user programs as a security measure, to ensure that data in memory
released by one user program do not become visible to another user
program. On the other hand, initialization takes time proportional to
the size of the block, and may not be worth doing if the clients of the
memory manager do not require it.

This chapter considers various combinations of these situational character-
istics and describes some of the techniques that have proved useful repeatedly.

10.2 RECORDS OF A SINGLE SIZE

If all records are the same size k, the heap M[O. .N-I] can be partitioned once
and for all into a table of cells of size k, say T[0. . m - 1], where m = LN/kj.
Any request for a cell is satisfied by allocating one of the T[i]; there is no need
to consider allocating a record across the boundaries separating the T[i] from
each other. At any point in time certain of the T[i], scattered through the table,
are in use and the rest are free; in general no pattern describes which of the
cells are in use.

To satisfy requests for cells a free list is maintained; this is a singly linked
list of the cells that are not in use. No additional memory is required to maintain
this list, since the Next fields can be part of the cells themselves. (We assume
that k, the size of a cell, is at least p bits, the size of a pointer. Using part of
a cell as a pointer may be inconsistent with the fields of a cell as viewed by
the client; but since the cell is linked into the free list only when it is free, no
conflict can arise.) The list is accessed as a stack; retrieving a cell from the list

10.2 RECORDS OF A SINGLE SIZE

is a Pop, and adding a cell to the list is a Push. Therefore allocating a cell takes
19(l) time.

The difficulties come in returning used cells to the free list once they are no
longer needed by the client; this process is called garbage collection. To define
"no longer needed" a little better, we need to make some assumptions about
how the client is using the cells. In the worst case, there are links to a cell from
other cells and also from variables or data structures outside T. In this case
"use" can be indirect; there may be no pointer directly from a known object to
a cell, but a long chain of anonymous links might still connect a cell to one that
is in use, and cause it to be "in use" as well. (However, we assume the client
performs no pointer operations except assigning one pointer to another, moving
from a pointer to the thing to which it points, and comparing two pointers for
equality. For example, the client never has occasion to utilize the arithmetic
order of two different pointers, to calculate the numerical difference between
two pointers, or the like. Bugs of an entirely different order can be created in
programming languages like C, in which such operations are possible!)

Reference Counts
Explicit deallocation may be possible in principle, though it is likely to be
awkward even under the best of circumstances. Each time the address of a cell
is copied, another "use" is created; the cell cannot reliably be deallocated until
all the copies of its address have been destroyed. One method for keeping track
of the use of cells is to maintain a reference count for each cell, that is, a count
of the number of pointers that point to a cell. When a new copy of the address of
a cell X is created, the cell's reference count must be incremented; when a copy
is destroyed (because a pointer that used to point to X is assigned some other
value) the reference count is decremented. When the reference count becomes 0,
then X can safely be deallocated; at the same time, the reference count of any
cell pointed to from within X must be decremented. The disadvantages of the
reference count method are at least three:

1. It requires careful handling of pointers at all times. For example, even a
simple assignment P +- Q of one pointer to another must be preceded by
the following sequence of actions: decrement the count of the cell P now
points to (since that reference is about to be destroyed) and release that
cell if the count is now 0; then increment the count of the cell Q points to
(since a new reference to it is about to be created).*

2. It requires a new field in each cell to contain the count. Moreover, unless
there is some externally supplied bound on the number of pointers that can
point to a cell, there will be no bound on the size of this field; for example,
a one-byte reference count field would be sufficient only if it is known that
no more than 255 pointers could ever point to a cell.

*Even this cautious procedure has a subtle bug (see Problem 1).

345

346 MEMORY MANAGEMENT

3. Most important, it doesn't work at all if "circular" list structures can be
created. For example, if cell X has a pointer to cell Y and Y has a pointer
to X, then both X and Y will have nonzero reference counts even if there
are no other references to either cell. In this case both X and Y will appear
to be in use, when in fact neither is in use. The problems of such "islands
of garbage" are the most crippling of all, and limit the use of the reference
count method to specialized applications in which circular structures cannot
be created.

Mark and Sweep Garbage Collection
A commonly used alternative to the reference count method is to wait until the
free list becomes empty, and then to scavenge memory for unused cells from
which a new free list can be created. This process proceeds in two stages. First,
the cells that are in use are marked, that is, a bit called the Mark bit is turned
on for each cell that is accessible by some chain of pointers that begins outside
the block T. Anything unmarked must then be garbage, and can be put on the
free list.

The Mark bits may occupy a new field in each cell, or may be kept in a bit
table in the same order as the cells they are intended to mark. If they are kept
in a table, access to them may take a little longer, but the space they occupy
can be used for something else when garbage collection is not going on.* In
order to avoid these implementation details, we assume the existence of two
routines, Mark(P), which turns on the mark bit of the cell to which P points,
and Marked(P), which returns true if that bit is already on. All the mark bits
can be turned off during an address-order scan (that is, a scan of the form for
i from 0 ton -1 do . . . T[i] ...). Another address-order scan of the cells will
collect the unmarked cells into the free list. (The mark bits can be turned off
as the cells are collected, so that subsequent calls to the garbage collector need
not be preceded by a pass to turn the mark bits off.) Thus the only part of the
procedure that remains to be specified is the marking algorithm itself.

The marking algorithms we consider are generalizations of the tree traversal
and scanning algorithms of §4.5. Of course cells may be linked together in quite
complex patterns, not just as trees; nonetheless the tree visiting algorithms serve
as marking algorithms almost without modification. If a cell can be reached via
more than one sequence of links, it is marked the first time it is encountered;
the subsequent times it is reached the Mark bit is found to be on, so it is not
explored further.

For the purpose of discussion we assume that all cells are instances of the
same record type, and that they have k pointer fields, which we call CO, C1, C2,

C(k - 1). Binary tree nodes correspond to the k = 2 case, with LC = CO

*In many cases an unused bit can be found within the record structure. For example, if all records
are located at even addresses, the low-order bit of any pointer field will be 0; this bit can he
"temporarily borrowed" for another purpose as long as it is returned to its original condition later.

10.2 RECORDS OF A SINGLE SIZE

FullyRecursiveMark(pointer P): PartlyRecursiveMark(pointer P):
if not Atom(P) while not Atom(P)

and not Marked(P) then and not Marked(P) do
Mark(P) Mark(P)
for j from 0 to k - 1 do for j from O to k - 2 do

FullyRecursiveMark(Cj(P)) PartlyRecursiveMark(Cj(P))
P +- C(k - 1)(P)

Algorithm 10.1(a) Algorithm 10.1(b)

and RC = C1. The references in the tree algorithms to the empty tree A serve
only the purpose of stopping a traversal or scan once it has reached the frontier
of the tree, or worked its way back to the root; therefore in the new context a
test of the form "P = A?" should sometimes be replaced by a question "Does
P point to a cell of the type that is to be marked, or does P point outside the
table T?" As shorthand, we say that Atom(P) is true (and that P points to an
atom) if P points outside the table T; exactly what P does point to in such a
case is a matter of interest only to the application.

Recursive, Depth-First Marking The most straightforward methods are those
that are based on preorder versions of the recursive traversals, Algorithms
4.5 and 4.6; these are shown as Algorithm 10.1(a) and (b) generalized to the
case of k pointers and incorporating a test that avoids retraversal of structure
that has already been marked.

Algorithm 10.1(a) checks that P points to an unmarked list cell, and if so
marks it and recursively follows all its pointer fields. Algorithm 10.1(b) does
the same, except that the tail-recursive call to follow the last pointer is replaced
by an iteration. (If k = 2, there is just one recursive call, to follow CO.) Note
the importance of the preorder traversal, that is, marking a node before marking
its children; in this way a circular structure will not be reentered.

The difficulty with both algorithms is the amount of memory they may
require for a stack; Algorithm 10.1(a) needs a stack of pointers as large as the
maximum number of links that may be traversed before an atomic value is found,
and Algorithm 1O.1(b) needs a stack of pointers as large as the maximum number
of CO, ... , C(k - 2) links that may be so traversed. Neither requirement is at
all satisfactory, especially since garbage collection is called into action exactly
when memory is in shortest supply.*

*In many environments the stack space is entirely separate from the heap space where garbage is
produced and collected. In this situation there is no interference between the stack and heap, but it
is still important to keep the stack size as small as possible, since a failure of the garbage collection
algorithm is likely to be fatal to the entire system.

347

348 MEMORY MANAGEMENT

procedure LinklnversionMark(pointer Q):
{Mark all cells reachable from the cell Q}

P A
S MakeEmptyStack()
repeat forever

if Q :A A and not Atom(Q) and not Marked(Q) then
Mark(Q)
Push(O, S)
descend via CO

else if P = A then return
else

j - Pop(S)
ascend via Cj
i j + I
if j < k then

Push(j, S)
descend via Cj

Algorithm 10.2 Link inversion (or "Schorr-Deutsch-Waite") marking algo-
rithm for cells with k pointers.

Link-Inversion, Schorr-Deutsch-Waite Marking The adaptation of the link-
inversion traversal algorithm for binary trees (Algorithm 4.7 on page 115) to
the marking problem is called the Schorr-Deutsch-Waite method and is shown
as Algorithm 10.2. It stores the stack of Algorithm 10.1(a) as a pointer chain
in the structure itself. Two general comments are in order. Instead of using a
Tag bit in each cell as in Algorithm 4.7 to record whether descent through that
cell has been to the left or right, Algorithm 10.2 pushes a number in the range
0, ... , k - 1 onto a stack to indicate which of the pointers has been descended
through. (If k = 2, this number carries the same information as the Tag bit.)
If it is more convenient to keep this number as a statically allocated field in
each record, it is easy to modify the algorithm so that it does (Problem 3). The
ascend and descend code used by the algorithm is similar to the code shown on
page 115 to ascend or descend to the left or right, but it is now used to ascend
or descend through any of the k fields CO, ... , C(k -1):

descend / Q ascend Q P
via Cj: CQ) AO via Cj: Cj(P) Q

C(Q) () (Cp)) ()Q

Since this algorithm never follows the same pointer twice and marks each
cell only once, it uses ((n) time to mark n cells. It is likely to be a bit slower
than the naive recursive algorithm, since the code to descend and ascend does

10.2 RECORDS OF A SINGLE SIZE

more work than a simple Push and Pop; but it uses only [ig kl . h bits, where h
is the length of the longest pointer chain from the root to any cell (in the worst
case, h can be as large as n).

Link-Inversion, Constant-Space Marking If even this much memory cannot
be given over to the marking task, the constant-space scanning algorithm (Algo-
rithm 4.8 on page 118) can be adapted to the marking task as well-in the case
of binary cells. Recall that when used on binary trees, this algorithm visits each
node with two children three times, rotating the pointers on each visit so that
they are restored to their original condition after the third visit. When the algo-
rithm encounters a node, it does not "know" whether the encounter is the first,
second, or third; all three are handled identically. This feature of the algorithm
raises problems when it is used to mark structures that are not trees, but may
have more than one sequence of pointers that lead to the same cell.

The recursive and link inversion algorithms refuse to visit a cell that is
found to have been marked already, and in this way avoid repetitive searches
of structures that can be reached along more than one sequence of links. If
the constant-space algorithm is to be used, a similar refusal to revisit a marked
cell would cause the algorithm to quit before making its crucial second and
third visits. If we simply dispense with this test, and follow all pointers blindly,
even if they lead to marked cells, then the algorithm will loop endlessly if it
encounters a cycle of pointers (say A contains a pointer to B which contains
a pointer to A). It will work slowly but correctly if there are multiple paths
to certain cells, but no cycles (Problem 4). We might be tempted to include a
count field to tell how many times a cell has been visited, but then we might as
well use the link inversion method.

Instead there is a clever way to use the Mark bit itself to indicate not
only that a cell has been visited but in what direction it was last departed.
Unfortunately both pieces of information cannot be represented perfectly in a
single bit, but we can come close enough that a cell's status can be determined
exactly by some retracing of the path from the root to the cell.

The basic idea is to complement the Mark bit of a cell each time we go
through it. Thus the Mark bit is

0 initially;
I after the first visit, that is, while descent is through the LC;
0 after the second visit, that is, while descent is through the RC;
1 after the third and last visit, that is, after ascending from the cell.

So it winds up marked, as it should. Algorithm 10.3 gives the details of the
pointer and Mark bit manipulations (the pointer rotations are the same as in
Algorithm 4.8 on page 118).

Algorithm 4.8 does "know" when it has reached the frontier of the tree:
when Q = A. When this happens Algorithm 4.8 "turns around" and starts to

349

350 MEMORY MANAGEMENT

procedure Rotate(locative P, Q):
{Rotate P, Q, and the children of Q, and complement the mark bit of Q}

P \Q

Q LC(Q)
LC(Q) I RC(Q)
RC(Q) P

Mark(Q) 1 - Mark(Q)

Algorithm 10.3 Pointer rotation and Mark bit manipulation for use in constant-
space marking algorithm.

ascend the tree. On return to the previous node, the information that the algo-
rithm is "ascending" rather than "descending" is lost, because in Algorithm 4.8
there is no way to tell whether the node has been reached from the left child (so
that it will continue by descending to the right) or from the right child (so that
it will continue by ascending to its parent). With the Mark bit as just described,
however, these two cases can be distinguished: during an ascent, if a node with
Mark bit 1 is encountered, ascent has been from the left (and so descent to the
right is about to take place); if a node with Mark bit 0 is encountered, ascent
has been from the right (and so ascent is to be continued). So the algorithm can
tell when it is descending, and when it is ascending.

Now for the question of how to avoid repenetrating into portions of the
data structure that have already been visited. This is a concern only during the
descent phase of the algorithm. If, during descent, a marked cell is encountered,
that cell should not be entered, since it must have been visited previously. But
if an unmarked cell is encountered, it could be either a brand new cell or a cell
along the path back to the root from which descent has been to the right. To
tell which, we can retrace the path back to the root; P points to the first cell on
that path, and if R is any cell on the path, then the next cell on the path is

LC(R) if R is unmarked, that is, descent from R was to the right;
RC(R) if R is marked, that is, descent from R was to the left.

The OnPath routine retraces the path in this way to determine whether its argu-
ment points to a new node. The full details are in Algorithm 10.4.

A significant price in performance is paid by Algorithm 10.4 in exchange for
its savings in memory. Each time a new cell is encountered, the full path from
that cell back to the root must be traversed in order to verify that it is indeed
a new cell, and not a cell along that path through which descent has been to
the right. The time needed to retrace the path grows at least in proportion to
the length of the shortest sequence of links that connect the root to the cell
in the original structure. If the structure is a binary tree of height n - 1 with

10.2 RECORDS OF A SINGLE SIZE

procedure ConstantSpaceMark(pointer Q):
{r is a distinguished value; initially Q points to the root of the tree}

P--r
while Q :A r do

if Q # A and not Atom(Q)
and not Marked(Q) and not OnPath(Q, P) then

Rotate(P, Q)
else

P "Q

function OnPath(pointer Q, P): boolean
{Return true if unmarked cell Q is on path from P back to root}
{R traces the path from P back to Q or to the root}

R -P
while R $ r do

if Marked(R) then
R +- RC(R) {Ascend from left}

else
if R = Q then return true
else R ,- LC(R) {Ascend from right}

return false

Algorithm 10.4 Marking binary cells with the aid of Mark bits only.

n nodes, each having an empty child, then the time used to check all the cells
is = i) = Q(n2). So Algorithm 10.4 takes time E(n2) in the worst case
to mark n cells, significantly more than Algorithm 10.1 and Algorithm 10.2,
which take time @(n).

Collecting by Copying
If memory is relatively abundant, an alternative strategy to marking and sweep-
ing is to divide memory into two spaces of equal size, and to allocate cells
from only one space until it is exhausted. (Thus at least half the memory is
always "dormant," that is, unoccupied by active cells.) When no free cells are
available in the space currently being used, the active cells are copied to the
other space, and the pointers to them and between them are adjusted to point to
the new copies. The cells are compacted as they are copied; when the copying
is complete, the copies of the active cells are all at one end of the new space,
and the rest of that space is free and can be used for allocation of new cells in
serial address order. Since the free cells are contiguous, there is no need to keep
them in a free list; it suffices to use a single pointer free that advances after
each cell allocation. When the free pointer reaches the end of the new space,

351

352 MEMORY MANAGEMENT

(a) (b)

Garbage Active, in use

Free Dormant

Figure 10.1 Garbage collection by copying. (a) Memory is divided into two
equal spaces. The lower space is dormant; the upper space is a mixture of
active cells and garbage. There are no free cells, so garbage collection is
triggered by the next allocation request. (b) The active cells are copied to
the lower space, and the remainder of the lower space is free. The upper
space is now regarded as dormant.

that space is exhausted, the roles of the two spaces are reversed and the active
cells are copied back (Figure 10.1).

This method has the advantage that the garbage is never touched; only the
active cells are explored. Since pointers are adjusted when they are copied, the
cells can be moved in any order. A simple recursive exploration would work,
as would depth-first, link-inversion strategies. But the availability of the space
into which the cells are being copied also makes possible an ingenious breadth-
first strategy that avoids using the extra memory required by the linear-time
recursive and link-inversion marking algorithms. Let us call the space initially
containing the active cells and the garbage the from-space, and the initially
dormant space into which the active cells are to be copied the to-space. We
shall use a contiguous portion of the to-space to represent the queue needed
to implement breadth-first search; this portion of to-space is bounded by two

i
i

10.2 RECORDS OF A SINGLE SIZE

pointers, head and tail. Initially both pointers point to the beginning of to-space.
Once again we assume that each cell consists of k pointer fields; the algo-

rithm can easily be adapted to the case in which other types of fixed-sized fields
are located at fixed locations within the cells. We assume that memory addresses
are pointers, so that if a cell begins at M[p] then Cj(p) is at M[p + j]. Algo-
rithm 10.5 gives the details; the "roots" referred to in procedure CopyCollect
are the locations, typically machine registers or global variables, from which
the search for active cells must proceed.

When a cell is moved from from-space to to-space, the first field of its
former location is left containing a forwarding address, that is, the address in
to-space to which it has been moved, so that pointers to it that are subsequently
discovered can be redirected correctly. (There is no need to reserve a special
field of the record to contain the forwarding address. The forwarding address
simply replaces in memory whatever used to be stored at the beginning of the
record, so it results in no overhead in the size of a record.*) In Algorithm 10.5,
procedure Forward updates a single pointer as follows. If the pointer does
not point into from-space, it is unchanged; if it does point into from-space
but the memory location to which it points points into to-space, then the cell
must already have been moved and this location must contain the forwarding
address; otherwise, the cell must be copied into to-space, to locations which are
simultaneously the first free locations in to-space and the tail of the breadth-first
search queue, which advances in memory by k pointers.

When the size of memory is large, collection by copying is much more
efficient than marking and sweeping. This fact, though not obvious, can be
derived quite easily. Recall that N is the size of the heap, and let A be the
amount of active data in the heap. We analyze the efficiency of the alternative
algorithms by measuring the time required by the algorithms per cell that is
actually made available. The number of active cells A is a property of the
program being run and its input, not of the memory management algorithm;
increasing N or changing the memory manager may change the frequency with
which the garbage collection algorithm is invoked, but it will not change the
value of A. Thus it is reasonable to regard A as fixed and see what happens to
the cost per cell as N increases.

Consider first the cost per cell of a mark-and-sweep algorithm. If a linear-
time mark-and-sweep algorithm is used, the marking phase takes time propor-
tional to A and the sweep phase takes time proportional to N, for a total time
of cl A + c2 N for some constants cl and c2. Therefore the amortized cost per
collected cell is

c1A + c2 N
Cmark-and-sweep - Nc - A

* We have assumed for simplicity that all fields of a record are pointers. If the first field of a record
was in fact of some other data type, then a strongly typed programming language would consider
it a type violation to replace a something that is not an address by an address in this way.

353

354 MEMORY MANAGEMENT

procedure CopyCollect:
{Garbage collect by copying cells from from-space to to-space}

head - tail beginning of to-space
foreach root pointer p do Forward(p)
while head < tail do {Update next pointer in pointer queue}

Forward(M[head])
head + head + 1

free +- head {Set free space pointer to head (= tail)}
Exchange roles of from-space and to-space

procedure Forward(locative p):
{Copy an uncopied record from from-space into to-space}
{Adjust pointer that is passed as argument to point to new location of cell}
{Records are assumed to consist of k pointer fields}

if p does not point into from-space then return
else if M[p] points into to-space then

p *= M[p] {Record already copied, this is the forwarding address}
else {Copy the record}

for i from 0 to k - 1 do M[tail+i] - M[pjp+i]
M[p] - tail {Install forwarding address}
p -t tail {Adjust the pointer}
tail+- tail + k

Algorithm 10.5 Garbage collection by copying.

On the other hand copying collection takes time proportional to the number of
active cells, but the amount of memory available after copying is only N/2 - A.
Therefore the amortized cost per cell made available is

C3 A
Ccopying - N/2 A

As N becomes large, we find that Cmark-and-sweep approaches the constant c2 ,
but Ccopying approaches 0! Thus there is no lower limit on the cost per re-
claimed cell of copying collection, and for this reason copying collection is
frequently used in systems that expect to have large amounts of heap memory
available.

Though we have assumed throughout this section that all cells are the same
size, note that since copying collection compacts the active cells, it would
be easy to allocate cells of different sizes, provided that the copying algo-
rithm can determine the size of a record as it scans through the pointer queue
in to-space.

10.3 COMPACTION OF RECORDS OF VARIOUS SIZES

Final Cautions on Garbage Collection
As a practical matter it should be noted that the performance of a system that
relies on garbage collection is dramatically degraded as memory becomes heav-
ily utilized, whichever algorithm is used. As the system demands more and
more cells, the garbage collector is called more and more frequently, and fewer
and fewer cells are released between those calls. The time to do the marking
or copying increases, but the return achieved diminishes each time, and the
next call on the garbage collector comes even sooner. Ultimately the garbage
collector cannot recover any memory at all.

Even if a system does not attempt to use more memory than is available,
the intermittent and unpredictable timing of calls on the garbage collector can
make garbage collection an unsuitable strategy in some applications, for example
those requiring real-time response. However, the unpredictability of garbage
collection can be combatted by invoking the garbage collector pre-emptively at
points that are known to be convenient, rather than always waiting until free
space is completely exhausted. There are also several so-called incremental
garbage collection algorithms, which collect garbage a little bit at a time rather
than all at once (Problem 6).

10.3 COMPACTION OF RECORDS OF VARIOUS SIZES

If cells can be of different sizes, the general strategy used with fixed-sized
records-to maintain a free list of available cells and to remove one from the
front of the list any time a request is made-will not work, since small cells
are not interchangeable with large cells. A number of alternative approaches to
memory management suggest themselves:

1. Keep a single set of all the cells, regardless of size. When a request is made
for a cell of size k, find a cell of size at least k on the list; if its size is
greater than k, put the leftover back in the set as a smaller cell. The set of
cells will be called the pool; the pool might be implemented as a linked list,
like the free lists of the previous sections, or it might be implemented by
some other set data structure, such as a binary tree. Maintaining such a pool
of available cells is an important technique, which is studied in detail in the
next section. However, it suffers from the possibility that the "leftovers"
may be too small to use for anything. Also, if a cell that is being deallocated
is adjacent in memory to a cell that is already free, the two ought to be
combined into a single larger free cell to maintain maximum flexibility for
later allocations.

2. Keep several pools of free cells according to the size of the cells. Allocate
a cell of size k by selecting a cell from the appropriate pool. This avoids
the decision problem of how to select a larger cell and subdivide it, but

355

356 MEMORY MANAGEMENT

unless some subdivision strategy is incorporated the algorithm may fail to
satisfy a request even though there is a block of memory available that is
sufficiently large. Certain approaches of this type, called buddy systems,
are discussed starting on page 367.

3. Allocate in address order from a single large block of memory. When the
heap has been exhausted, some of the cells that had been allocated have
presumably been freed; squeeze them out by compressing together the cells
that are still in use. The result is a partition of the original heap into a block
that is completely in use, followed by a block that is completely free; the
allocation strategy continues as before, using the new free block.

Approach (3), a so-called compaction scheme, fully utilizes the available
memory, but at a cost: it takes time to move cells within memory, and any point-
ers to those cells, either from other cells or from elsewhere in the system that is
using the cells, must be readjusted to point to their new locations. Nonetheless
this approach may be the only practical one, especially if the allocated cells
are many in number but relatively small in size. In such cases approach (1)
will tend to leave many unusably small "slivers" of memory, and the overhead
required to move cells will not grossly exceed the time required to perform any
other contemplated operation on the cells. (That is, suppose that the average
number of memory bytes per cell is pu. If si is small, say 5 or 10, then an
algorithm that moves every byte of memory does not take significantly longer
than an algorithm that does something to a pointer to each cell. If p is in the
thousands, however, we would be willing to do a lot of work with the pointers
to memory cells to avoid moving the memory cells themselves.)

The "Collection by Copying" method of the previous section compacts
memory and can be adapted to work with blocks of different sizes, but it never
utilizes more than half the available memory. We consider here another approach
that "shuffles" cells into lower addresses after first readjusting pointers between
cells to maintain the integrity of the structure. We make the following specific
assumptions about the cells to be compacted (clearly the algorithm presented
can be modified to work in other circumstances):

* The heap M[O. . N - 1] is completely partitioned into cells, some of which
are "in use" and some of which are "free." They can be distinguished
because Marked(P) is true if P points to a cell that is in use, and false
if P points to a free cell. (Whether Marked is implemented by means of
a Mark bit stored in the cell, or in some other way, is unimportant, as is
whether a marking algorithm, explicit deallocation, or some other method
is used to determine which cells are in use.)

* First is the address of memory location M[O]; Last is the address of memory
location M[N - 1].

* Each cell (in use or free) has a Size field, such that the next cell after the
one beginning at address P begins at address P + Size(P).

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

* The pointer fields of a cell that is in use are known in advance, because the
cell represents a structure in a strongly typed language, or can be recognized
by inspecting the cell.

* Each cell that is in use contains a pointer field ForwardingAddress that is
reserved for use by the compaction algorithm. This field will contain the
so-called forwarding address of the cell, that is, the address to which the
cell will be moved. The forwarding addresses of all cells are calculated and
stored in the cells before any cell is actually moved.

The compaction algorithm first calculates the forwarding address of each
cell by scanning through M in address order; the forwarding address of cell C is
one more than the aggregate size of all allocated cells having addresses smaller
than C. A second scan through memory adjusts all internal links to point to
cells' destined locations, rather than their present locations. (References to the
cells from outside M can be adjusted at this time, but how these references can
be traced is a matter external to the compaction algorithm.) Finally, a third scan
through memory actually moves the cells.

Algorithm 10.6 presents the details. In it, we use the abbreviation

for each cell P, in address order, do

for the following loop:

P +- First
while P < Last do

P <- P + Size(P)

Note that the memory manager performs the kind of pointer arithmetic we have
assumed the client program may not do.

Algorithm 10.6 takes time linear in the amount of memory that is actually
compacted; aside from the multiplicative constant, this is of course as fast
as can be hoped for. Nonetheless the algorithm does make three passes over
the memory to be compacted (four, if there is an initial marking scan). The
requirement that a special field ForwardingAddress be set aside strictly for the
use of the memory manager can be alleviated somewhat; see Problem 9.

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

We now consider the situation in which the size of blocks is substantial, so that
compaction methods should be considered only as a last resort. The memory
manager starts with a heap that is entirely free space, and handles calls of two
kinds:

357

358 MEMORY MANAGEMENT

procedure Compact:
{Compact cells into low memory addresses, adjusting pointers between cells}
{Assumes that marking of cells in use has already been done}
{First and Last are the memory addresses at the ends of the heap}

{Compute forwarding addresses of cells}
Destination +- First
for each cell P, in address order, do

if Marked(P) then
ForwardingAddress(P) +- Destination
Destination +- Destination + Size(P)

{Adjust internal links}
for each cell P. in address order, do

if Marked(P) then
for each pointer field Link do

Link(P) 4- ForwardingAddress(Link(P))
{Move the cells}
for each cell P, in address order, do

if Marked(P) then
Copy Size(P) bytes beginning at P

to ForwardingAddress(P)

Algorithm 10.6 Compaction of cells of various sizes.

Allocate(n): Return the starting address of a block of size n, if one exists.
Free(B): Put the block with starting address B back in the available storage.

Thus deallocation is here assumed to be explicit, as is reasonable in the case
of large blocks. What strategy should be used for maintaining a pool of free
blocks, selecting from among them, subdividing them, and recombining them?
The criteria on which a strategy should be judged are

* memory utilization: the memory manager should not fail to satisfy a request
if the aggregate amount of memory that is reserved is a small percentage
of the total memory available;

* memory overhead. the amount of memory occupied by data structures
needed only by the memory manager should be minimal; and

* time efficiency: allocation and deallocation requests should be handled
quickly.

The first thing to understand is that perfection should not be hoped for.
Suppose that the memory is a block of size 100, and the following requests are
received (Figure 10.2):

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

Initial

B1 v- Allocate(20)

B2 - Allocate(20)

Free(B1)

Allocate(50)?

0 20 40 60 80 100

I I

1_ I II I?,l00? ;1 1

I I
|1 | 1 777E

WMEWN I

Figure 10.2 A sequence of requests that defeats a simple strategy of allocat-
ing in address order.

B 1 Allocate(20)
B2 Allocate(40)
Free(B1)
B3 +- Allocate(50)

If the first two requests are allocated sequentially starting from the beginning
of the heap, then after Free(B 1) the heap has 40 in use in the middle, preceded
by a free block of size 20 and followed by a free block of size 40, so the
request for 50 cannot be satisfied, even though more than 50 units of storage
are actually free. This problem could have been avoided if the request for 40 had
been allocated from the end of the heap, but a slightly more complex example
involving four allocation requests defeats the strategy of allocating "from the
ends in" (Figure 10.3). It is hard to imagine how the proper allocation pattern
can be predicted, unless the memory manager has the clairvoyance to know in
advance the sequence of requests it will receive. Indeed, in a certain sense even
clairvoyance does not help: even if the whole sequence of requests is given in
advance, the problem of determining whether the requests can all be satisfied
is NP-complete, and is therefore believed to be computationally intractable. So
we should not worry about designing a perfect memory manager; we should
strive for reasonable performance for a reasonable amount of effort.

One thing is clear: two blocks of size sI and S2 are never more useful than
one block of size SI + S2, but the opposite is frequently true. Therefore it should
be a goal of any allocation strategy to reduce the number of free blocks and
to increase their size. External fragmentation is the splitting of free storage
into a relatively large number of relatively small free blocks, thus decreasing its
usefulness. External fragmentation can be combatted by refusing to subdivide

359

360 MEMORY MANAGEMENT

Initial

B1 v- Allocate(20)

B2*- Allocate(20)

B3 <- Allocate(20)

Free(B1)

0 20 40 60 80 100

1

I -T-1, 0 -l s , ; 56,0,l l

Allocate(50)?

Figure 10.3 A sequence of requests that defeats a strategy of allocating from
the ends of the heap inward. If B3 were allocated from the right end,
then freeing B2 instead of B1 would cause the same problem. Yet if the
whole sequence of requests were known in advance, it could be satisfied.

a free block if the leftover would be too small to be useful, instead allocating
a block somewhat larger than was actually requested. The result, however, can
be internal fragmentation, that is, the distribution of a significant amount of
free storage within allocated blocks, where it cannot be used. Some degree of
internal fragmentation is inevitable, since no free block can be smaller than the
space required to hold the block's size, one or more pointers to link the block
to others in the pool, and perhaps some additional fields used by the memory
system to manage free blocks. We refer to the amount of this overhead as 6:
if subdividing a block would leave over less than 5 bytes, the entire block
is allocated.

So the general situation is this: we wish to maintain a pool of free blocks,
to adopt some strategy for selecting a block from the pool when an allocation
request is made (returning the leftover, if any, to the pool), and to develop a
method for returning a freed block to the pool and fusing it with a free block,
if there is one, that comes just before or after it in memory. If the selection
of a free block is made, in one way or another, on the basis of the size of the
request and the sizes of the available blocks, there seems to be an incentive
for keeping the pool organized by block size; on the other hand, we might also
consider keeping the pool organized by address, or letting it have no particular
structure at all. Let us examine the consequences of various choices in greater
detail.

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

Allocation Strategies
Two general approaches seem reasonable. The best fit strategy allocates a
request of size n out of the smallest free block in the pool that has size greater
than or equal to n. The first fit strategy allocates out of the first block found
in the pool that is large enough to satisfy the request.*

Let us consider the best fit strategy first. If the pool is implemented as a
linked list ordered by increasing size, and the free blocks are comparable in size
to the requested blocks, then on the average half the free list must be scanned
to locate the block from which the allocation should be made. A further scan
must occur to put the leftover part of the block in its proper position on the
free list. If the free list is kept in any other order (for example, by address or
randomly) then the entire list must be searched to find the best fit.

A more efficient implementation of best fit organizes the pool as a binary
search tree, with the search key being the block size. However, such a search
tree would not quite result in a solution to the problem at hand, since the best
fit for a request of size k is the smallest block of size greater than or equal to k.
If we simply searched a binary tree for k, the node we would find would be
either the best fit node or its inorder predecessor. We can find the best fit node
by a single scan from the root to a leaf either by using a threaded tree structure,
which makes it easy to find inorder successors, or by storing in each node the
size of the largest block in the left subtree of that node (see Problem 17).

Whether the pool is implemented as a list or as a tree, the search time
becomes unpleasantly long when the number of free blocks becomes large; we
would prefer a method that uses an amount of time independent of the number
of blocks being managed. What is worse, the best fit strategy tends to leave a
large number of small "splinters" that are almost useless for allocation purposes
but slow down the searches that must occur when allocation requests are made.
Moreover, simulation experiments suggest that any advantage best fit may have
over first fit in memory utilization is likely to be negligible.

The first fit strategy is most naturally used with a linked list implementation
of the pool. First fit has its own disadvantage: blocks that are near the beginning
of the list tend to get subdivided more often than blocks that are later, so small
fragments tend to accumulate near the beginning of the list; this increases the
search time since all searches start there. (This happens whether or not the list
is in order by memory address.) To this problem there is an easy fix, however:
begin each search where the last one left off, starting over at the beginning of
memory when the search extends beyond the end. Maintaining such a roving
pointer makes the algorithm behave similarly in all parts of the free list; small
blocks do not accumulate near the beginning or anywhere else. Moreover a

* These are not the only alternatives. The worst fit strategy always allocates out of the largest free
block. This makes it easy to decide which block to use, but squanders the precious large blocks
unnecessarily on medium-sized requests. Worst fit rarely works well in practice.

361

362 MEMORY MANAGEMENT

block that has just been subdivided or passed over as too small will not be
considered again until all the other free blocks have been examined, so it has
as much time as possible to be coalesced with its neighbors into a larger block.

Data Structures for Freeing
It is time to be more specific about the format of blocks and the structure of
the pool of free blocks. So far we have implicitly assumed that each block B,
whether free or in use, has a Size field and a Mark bit that indicates whether it is
free (Mark(B) = 0) or in use (Mark(B) = 1). To simplify the later discussion,
let us assume that the pool is implemented as a doubly linked list; nothing
fundamental depends on this assumption, but the doubly linked representation
has the advantage that a block can be deleted easily given just the address of
the block, rather than the address of a block that points to it. To hold the free
list together, a free block must have Next and Prev fields that point to block's
successor and predecessor on the free list; however, these fields are needed only
when the block is free, so they do not consume any space in blocks that are in
use. These fields alone are sufficient to support the search required by the first
fit with roving pointer algorithm; as a convenience we make the list circular,
with the Next field of the last free block pointing to the first free block, and the
Prev field of the first free block pointing to the last free block. Subdivision of a
block is also easy: if a request of size n is allocated out of a free block of size
m > n (but m -n > 6), the simplest procedure is to allocate the last n bytes
of the block, since the "leftover" can then replace the block from which the
allocation took place simply by changing its Size from m to m - n. Allocation
of an entire block requires deleting the block entirely from the free list; this is
where the doubly linked representation is handy.

We must now face the questions of how to implement the Free operation,
and whether there is good reason to keep the free list in address order. While
it might seem at first that keeping the list in address order would facilitate the
fusion of free blocks, there is a fundamental reason to avoid it: placing a block
on the free list would then require an expensive search to locate its proper
position. So we make no assumption about the order of blocks on the free list,
and use other methods to determine if a block has a free neighbor.

There is no difficulty in determining if the next higher block in memory
after block B is free; that block begins at address B + Size(B), and is therefore
free if Mark(B+Size(B)) = 0. To help determine the character of the next lower
block, we replicate the Mark bit of each block at its end; then by examining
a bit at a fixed displacement from B, it can be determined whether B's lower
neighbor is free. We call this field LowMark(B); it can even be implemented
as a field of B, rather than of B's lower neighbor, if it is inconvenient to use
a bit from the end of blocks that are in use. If B's lower neighbor is free
(LowMark(B) = 0), then we also replicate its size near its end, in a field we
refer to as LowSize(B); this also could be allocated out of B, though it logically

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

LowMark LowSize

Mark 1 Size

Lower
Addresses

er
Higher

Addresses

LowMark 1 LowSize I

Mark Size

(a) (b)

Figure 10.4 Fields of a block in the boundary-tag data structure. One block
is shown in its entirety, together with the end of the previous block and
the beginning of the subsequent block. (a) Reserved block; (b) Free
block. The LowMark and LowSize fields at the end of the block are
copies of the Mark and Size fields, but are properly considered fields of
the subsequent block.

is part of B's lower neighbor. Because LowMark(B) and LowSize(B) describe
properties not of B but of B's lower neighbor, these fields must be permanently
allocated, whether or not block B is free. The freeing algorithm can then locate
B's lower neighbor thus: check LowMark(B) to discover that the neighbor is
free; if it is, B - LowSize(B) is its address. The algorithm that frees a block
may therefore add a block to the free list, while removing one or two others; it
is because we may need to replace two blocks on the free list by one that the
doubly linked representation of the free list is helpful.

Figure 10.4 illustrates the reserved fields of blocks, both free and in use.
The replication of the Mark bit at both ends of each block gives this technique
its name, the boundary-tag method.

Algorithm 10.7 is the allocation algorithm. Rover is the roving pointer.
Before the search for a suitable block begins, the value of Rover is preserved as
SaveRover; if Rover gets this value again, then the free list has been searched
completely without successfully finding a large enough block, so the allocation
algorithm fails. The algorithm uses a subroutine DoublyLinkedDelete(P), which
deletes the cell with address P from a doubly linked list (Algorithm 3.11 on
page 88).

The freeing algorithm (Algorithm 10.8) takes as argument a pointer P to
the block to be freed, and assumes that Free is the address of a header cell
for the doubly linked free list. That is, Next(Free) is the first block on the

363

364 MEMORY MANAGEMENT

function BoundaryTagAllocate(integer n): pointer
{Return address of a free block of size n, or A if no block is large enough}

SaveRover - Rover
repeat

m - Size(Rover)
if m <n then

Rover + Next(Rover)
else

if m-n < 6 then
P 4- Rover
DoublyLinkedDelete(P)

else {If

{Almost exact match, no leftover}

nexact match, subdivide the block}
P - Rover+ m - n
Size(Rover) <- LowSize(P) m - n
Size(P) -- LowSize(P + n) n

LowMark(P) - 0
Mark(P) 1- 1
LowMark(P + Size(P)) 1-
Rover +- Next(Rover)
return P

until Rover = SaveRover
return A {No large enough block is available}

Algorithm 10.7 Allocate a block of size n using first fit with roving pointer
and boundary tags.

free list, and Prev(Free) is the last block on the free list. (Also, Size(Free)
should be 0, so that the allocation algorithm will not try to allocate any cells
from this "block.") To make certain that the freeing algorithm does not try to
fuse a block with memory that lies outside the heap, it is also important that
LowMark(First) = Mark(Last) = 1, where First is the first location in the entire
heap and Last is the first location after the end of the heap. BoundaryTagFree
adopts a straightforward strategy for coalescing the block to be freed with the
block before or after, should one or both be free: it removes the neighbor
from the free list and adds its size to the size of P (possibly readjusting P
so that it points to the beginning of the combined block). When any such
fusion has been carried out, block P is placed on the beginning of the free list.
One detail to be noted is that the roving pointer must be left pointing to the
beginning of a block that is still on the free list; this requires a special check in
one place. In addition to the DoublyLinkedDelete routine, Algorithm 10.8 uses
DoublyLinkedInsert(P, Q) (Algorithm 3.10 on page 88), which inserts cell P

10.4 MANAGING A POOL OF BLOCKS OF VARIOUS SIZES

procedure BoundaryTagFree(pointer P):
{Deallocate the block pointed to by P}

if LowMark(P) = 0 then
{Preceding block is free, merge them together}
Q P
P P - LowSize(P)
Size(P) - Size(P) + Size(Q)
DoublyLinkedDelete(P)

else {Preceding block is in use, mark this block as free}
Mark(P) O- 0

Q +- P + Size(P) {Q - address of subsequent block}
if Mark(Q) = 0 then

{Subsequent block is free, merge them together}
Size(P) Size(P) + Size(Q)
if Rover = Q then Rover <- P
DoublyLinkedDelete(Q)
Q <- P + Size(P)

{P now points to the block to be put on the free list}
{Q points just after the end of that block}
LowSize(Q) Size(P)
LowMark(Q) 0
DoublyLinkedlnsert(P, Free)

Algorithm 10.8 Freeing a block using boundary tags.

just after Q in a doubly linked list.
The performance of algorithms like these is notoriously difficult to pin

down analytically, and most knowledge we have of their behavior is based on
the results of simulation experiments. Nonetheless a few interesting analytic
results are easy to derive. First of all, we can claim success in deriving a
method with low memory overhead; if tf is the number of bits needed to store
the size of a block and p is the number of bits needed to store a pointer, then
2 + a bits are used in reserved blocks, and 2 + 2a + 2p in free blocks (which
have unused space anyway). Of course, these numbers may have to be rounded
up in practice to the next larger number of bytes or words.

The time to free a block is bounded by a constant, independent of the
number of blocks or the size of the memory. However, allocation of a block
requires a search, which in the worst case traverses the entire free list. How long
can the free list be, and how long is it likely to be? To answer such questions
we must make some assumptions about the behavior of the system that is calling
upon the memory manager. A reasonable scenario to consider is one in which

365

366 MEMORY MANAGEMENT

memory utilization has reached a steady state; that is, blocks are being freed at
the same rate at which they are being reserved, and the sizes of these requests
are such that the memory manager is able to accommodate them. (These are
only statistical assumptions, however; it is not assumed that from instant to
instant the number of free or reserved blocks remains exactly constant.) We
also assume that a request is unlikely to be satisfied by allocating one of the
free blocks in its entirety; that is, nearly every allocation entails subdivision of
a block. This is a reasonable assumption if the requests are relatively large and
variable in size, and it implies that allocations do not change the number of free
blocks. Given this scenario, let

F = the expected number of free blocks, and

R = the expected number of reserved blocks.

Knuth (see the references at the end of the chapter) observed the following rule:

Fifty-Percent Rule: F = 1R, that is, there are about half as many free
blocks as reserved blocks.

Thus the length of the free list increases as the number of reserved blocks
increases, but only about half as quickly. Of course, the blocks on the free list
may be of widely differing sizes, and how much of the free list must actually
be searched depends on the distribution of requests and the allocation strategy.

To derive the Fifty-Percent Rule, classify the reserved blocks into three
types:

Type A: a block whose lower and upper neighbors are both free;
Type B: a block that has exactly one free neighbor;
Type C: a block whose lower and upper neighbors are both reserved.

Now let A, B, and C denote the expected number of blocks of each type.
Clearly

R =A+B+C (1)

and since each free block (except, possibly, for a free block at the beginning or
end of the heap) has two neighbors that are reserved, it is also true that

2F ; 2A + B, (2)

where the equality is approximate to accommodate an error of 1 or 2 due to
conditions at the ends of the heap. When a type A block is freed, the number
of free blocks decreases by one; when a type B block is freed, the number
remains the same; and when a type C block is freed, the number of free blocks
increases by one. Finally, because the system is assumed to be in steady state
and allocations do not change the number of free blocks, when a block is freed
it must be equally likely to be one that increases the number of free blocks as
one that decreases the number of free blocks; that is,

A = C. (3)

10.5 BUDDY SYSTEMS 367

The Fifty-Percent Rule follows immediately from (1), (2), and (3). (It is evident
from the argument used to derive this rule that it is at best a rule of thumb,
which may be violated if the behavior of the system deviates from the assumed
steady state for a period of time.)

The maximum length of the free list is R + 1; the fifty-percent rule implies
that its expected length is R/2. These quantities govern the performance of the
best fit strategy, since it searches the entire free list on each allocation call. It
can be shown (Problem 19) that without a roving pointer the first fit strategy
searches half the free list, or R/4 blocks, on average. With a roving pointer,
however, its performance improves dramatically; in a simulation carried out by
Knuth, the expected number of blocks searched, out of a free list of length 250,
dropped from 125 to 2.18 when the roving pointer was introduced.

The third criterion to be considered is memory utilization. The fifty-percent
rule has an implication for this criterion as well, namely, the

Two-Thirds Rule: No more than two-thirds of the heap can be in use, in
steady state.

To derive the Two-Thirds Rule from the Fifty-Percent Rule, let

f = the expected size of a free block, and

r = the expected size of a reserved block.

Thus f F + rR = N, the total size of the heap. If the system is in steady state,
then f > r, since otherwise it is likely that a request will be received that cannot
be satisfied. Therefore N = fF + rR > rF + rR = -rR, and rR < ? N.2 ~ - 3

The Two-Thirds Rule has implications for the size of the maximum request
that the memory manager should be called on to satisfy. For if we hope for the
most efficient utilization of memory, then requests bigger than !N will, with
high probability, be unsatisfiable. In practice requests should be kept a good
deal smaller than this; Knuth suggests a maximum size of 110N.

10.5 BUDDY SYSTEMS

Buddy systems trade external fragmentation for internal fragmentation, and uti-
lize a block-freeing algorithm that is simple and fast but does not necessarily
coalesce all neighboring free blocks into larger free blocks. Blocks can be al-
located only in certain predetermined sizes and at certain positions in the heap.
For each such allocatable block there is a unique neighboring block, called its
buddy, which is the only block with which it can be coalesced to form a larger
block; that larger block has a buddy of its own, and so on. The number of
possible block sizes is small enough that separate free lists can be maintained

368 MEMORY MANAGEMENT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

4

8

16

Figure 10.5 Legal blocks under a binary buddy system in a heap of size 16.
Buddies of each size are joined by a line.

for each possible block size. When a request is made for an allocation of size n,
n is rounded up to the next legal block size n', and a block of that size is allo-
cated. If there are no free blocks of exactly size n', a larger block is subdivided
into buddies until a block of the appropriate size is obtained.

The simplest buddy system is the so-called binary buddy system. In this
system all allocatable blocks are a power of two in size. The heap itself is of size
N = 2 m for some m; the possible block sizes are then 2m, 2 m-, ... , 21, and
20 = 1.* Therefore there are m + 1 free lists, whose headers we call Free[m],
Free[m- 1], ... , Free[O]. Moreover, each block of size 2k (0 < k < m) begins
at an address which is a multiple of 2k. That is, a block of size 2k begins at
address p * 2kand ends at address (p+ 1) .2 k - 1 for some p with 0 < p < 2m-k
(Figure 10.5). The buddy of a block of size 2k is then uniquely determined by
the rule that it is the other block of size 2k within the same block of size 2k+1.
(The largest block has no buddy.)

If a block B of size 2k begins at address P, then B's buddy begins at
either P - 2k or P + 2 k. In fact it is easy to determine which, by inspection
of the bits of the binary representation of P. Let this binary representation
be Om-, i3o. If Ak = 0 then the buddy begins at P + 2 k; if Ak = 1 the
buddy begins at P - 2k. In other words, the position of B's buddy is obtained
by complementing bit k in the binary representation of B's address (with the
rightmost bit being bit 0, and the numbering increasing to the left).t But this is
just the exclusive-or of the block's position and size: the buddy of the block of
size 2k beginning at P is the block of size 2k beginning at P E 2 .

For example, consider the blocks beginning at 24 in a heap of size 64 = 26.

Since 8 is the largest power of two that divides 24 evenly, there are blocks
beginning at this position of sizes 1, 2, 4, and 8, but not of any larger size.

*Of course, these units need not be single bytes or words; for example, the blocks could be in these
multiples of 128, or any other fixed number, of bytes. It is convenient in this section to refer to
"addresses" in the heap which start at 0. These are really displacements from the beginning of the
heap, and should be added to the true address at which the heap begins.
t This operation is easy to do in assembly language or C, but it may be impossible in a higher-level
language. Of course, it can be done if the "addresses" are really array indices.

I 0 1 0 1
0 i-0 0 1 0

6��

10.5 BUDDY SYSTEMS 369

Mark F1 Size Mark

Next

Prey

(a) (b)

Figure 10.6 Fields of a block in binary buddy system. (a) Reserved block;
(b) free block.

Since the six-bit binary notation for 24 is 011000, the buddies of these four
blocks are those

of size I = 000001 beginning at 011001 = 25,
of size 2 = 000010 beginning at 011010 = 26,
of size 4 = 000100 beginning at 011100 = 28, and
of size 8 = 001000 beginning at 010000 = 16.

The free lists are kept in doubly linked form to facilitate deletions. Free
blocks have a structure similar to that used in the boundary-tag algorithms,
except that the "second copies" of the Mark and Size fields are not needed
(Figure 10.6). (Also, the Size field can be smaller, since only the value of k
need be stored if the block is actually of size 2 k.)

The allocation algorithm (Algorithm 10.9) tries to satisfy a request of
size* n. It first finds the smallest free block of size greater than or equal to
that requested. (IsEmptyList determines whether a doubly linked list is empty.)
The block is removed from its free list, and if it is larger than the minimum
suitable size (2[Ignl), its second half, second quarter, and so on are placed on
the appropriate free lists. Finally the block is marked as in use and returned.

Freeing a block (Algorithm 10.10) may reverse the splits that occurred
during allocation. If the block's buddy is free, it is removed from its free list
and merged to form a larger block; this process is repeated until the buddy is in
use or the block has become the entire heap. The free block, now of maximal
size, is then placed on the appropriate free list.

With the buddy system both allocation and freeing a block involve an iter-
ation and therefore take a nonconstant amount of time; but the iteration is over
block sizes, so these algorithms take time e(log N) in the worst case, where N

*Note that n must already include the overhead for the Mark and Size fields; that is, n is the size
as the system sees it, not as the user sees it.

370 MEMORY MANAGEMENT

function BinaryBuddyAllocate(integer n): pointer
{Return pointer to a block whose size is the next power of 2 > n}
{Retum A if no sufficiently large block is available}

j -k -Flg n]
while j < m and IsEmptyList(Free[j]) do j j + 1
if j > m then return A
P *- Free[j]
DoublyLinkedDelete(P)
while j > k do

j - I
Q 4- P + 2i
Mark(Q) 0
Size(Q) j
DoublyLinkedlnsert(Q, Free[j])
{This actually inserts Q onto an empty list Free[j]}

Mark(P) - 1
Size(P) +- k
return P

Algorithm 10.9 Allocation of a block, using binary buddies.

procedure BinaryBuddyFree(pointer P):
{Free the block of size 2 k beginning at location P}

k +- Size(P)
while k < m and Mark(P ®D 2 k) = 0 and Size(P e 2 k) = 2k do
{P's buddy is free, so merge it to create a free block twice as big}

Q P 2
DoublyLinkedDelete(Q)
if Q < P then P ÷- Q
k4- k+ 1

Mark(P) O- 0
Size(P) +- k
DoublyLinkedlnsert(P, Free[k])

Algorithm 10.10 Freeing a block, using binary buddies.

is the size of the heap. (Most requests take less than the worst case amount of
time.) In fact, if it is unnecessary to provide for requests of size comparable to
the size of the heap, it is a simple matter to restrict the maximum block size to
some fraction of N, thereby eliminating a certain amount of pointless splitting
and merging of large blocks. Then the maximum number of iterations of either

10.5 BUDDY SYSTEMS 371

the allocation or freeing algorithm is Ig p, where p is the ratio of the size of
the largest allocatable block to the smallest-independent of the total number
of blocks, or the number of free blocks. For example, if it is reasonable to
accommodate requests that range in size over at most three (decimal) orders of
magnitude, then the loops can iterate ten (= Fig 10001) times at most.

In practice, the time efficiency of buddy system algorithms is comparable
to that of boundary-tag algorithms, and therefore quite acceptable. When the
system reaches steady state, most of the free lists are nonempty most of the
time, so allocation rarely requires several splits. Also, external fragmentation
is not a problem for buddy systems. It is possible for two adjacent blocks of
size 2k to be free but unmergeable, because they are not buddies (consider, for
example, the two blocks of size 4 beginning at 4 and 8 in Figure 10.5). And
it is theoretically possible for this to happen just when a block of size 2k+l is
needed but none is available. But such problems seem not to be significant,
either in the simulations that have been carried out or in actual systems that
have been constructed.

The more serious problem is internal fragmentation, which can be signif-
icant. Since a request of size i is automatically rounded up to 2Flgl, almost
half the allocated memory can be wasted, if each request is for just more than
a power of 2. While this worst case is unlikely to occur, we can also analyze
the expected case. For this purpose we assume that a request is equally likely
to be for any size in the range from 1 to n; then after n requests the amount
requested has expected value R, = En I i = n(n + 1)/2. The total amount

allocated, however, has expected value
n

An = 2[lil = 1 +2+4+4+8+8+8+8+ 16+ - +2rlgnl.
i=-

Let k = LlgnJ and a = n/2k, so that I < a < 2; then the sum of the first 2k

terms in the expression for An is 1 +2fiO' 4i 1 + 2 (4k _ 1), while the sum
of the last (a - 1)2k terms is (a - 1) * 2 * 2 k+I, for a total of 22k+ (a - 3) +
With n = 2k . a, the value of R, is 22 k-Ia2 + 2k-la, so the ratio

An 2
2
k+l(a -)+ a- 2

=__ _ 3_ 3 __ 4 3

Rn 22k- 1a 2 + 2k- a a 2

Differentiating this expression reveals that when 1 < a < 2 it ranges in value be-
tween 4 and 2 so the binary buddy system should be expected to waste between
a quarter and a third of the memory it allocates due to internal fragmentation
(Problem 25).

The problem of internal fragmentation suggests that another set of block
sizes be used, which will provide better fits for a variety of requests and still
permit a strategy of splitting and merging buddies like that of the binary buddy
system. The most successful proposal has been to use the Fibonacci numbers Fk
as the block sizes. These numbers were defined on page 26; they are defined

372 MEMORY MANAGEMENT

by the property that Fo = F1 = I and Fk+2 = Fk+l + Fk for all k > 0. For all
but small n, there are more Fibonacci numbers than powers of 2 less than n, so
there is likely to be less wastage if blocks of these sizes are used instead. When
allocating, the basic idea is to split a block of size Fk+2, if it is too big, into a
left buddy of size Fk and a right buddy of size Fk+1, and to keep a separate free
list, for each k, of the blocks of size Fk. There is, however, a bit more work
to do when freeing a block than in the case of binary buddies, since there is no
way to tell from a block's size and position alone whether it is the left or right
buddy of a pair-that is, whether the buddy of a block of size Fk is a block
of size Fkl (because they arose from splitting a block of size Fk, 2) or a block
of size Fk, (because they arose from splitting a block of size Fk+l). (Recall
that in the case of binary buddies, the bits of the block's address and size can
be used to determine whether it is a left or right buddy.) It is not sufficient to
record this information as a single bit with each block, since the same problem
will recur when the block is recombined with its buddy; is the larger block the
left or right member of its buddy pair?

The following scheme records in one additional small field of each block the
information necessary to maintain a so-called Fibonacci buddy system. Define
the SplitCount of the largest block to be 0; and whenever a block is split, the
SplitCount of the right buddy is 0, and the SplitCount of the left buddy is 1 more
than the SplitCount of the block from which it was obtained. (Except for the
largest block, the SplitCount of a block is the number of times it must be merged
with right buddies to form larger blocks, before it becomes a right buddy.) If
this information is maintained as blocks are split, it can be used to merge them;
a block is a left buddy just in case its SplitCount is nonzero, and in that case
the SplitCount of the block that results from merging it with its buddy is I less
than its SplitCount. In other respects the allocation and freeing algorithms are
straightforward generalizations of the algorithms for binary buddies.

Problems

10.2 1. As explained on page 345, the reference count method requires that
the assignment P +- Q be preceded by (i) decrementing the count of
the cell P points to, (ii) releasing that cell if the count is zero, and
(iii) incrementing the count of the cell that Q points to.

a. Suppose that P and Q are the same variable, that is, the assign-
ment is P - P. What can go wrong with the procedure (i)-(iii),
and how can it be repaired?

b. Suppose that P and Q are different variables but that, before the
assignment, P and Q point to the same cell. Could the sequence
(i)--(iii) fail in that case? If so, how should it be recoded?

2. Simplify Algorithm 10.2 on page 348 under the assumption that
k = 1; that is, that each cell has only a single pointer.

PROBLEMS 373

3. Recode Algorithm 10.2 without using an auxiliary stack, under the
assumption that each cell has a field Direction that can hold a value
in the range 0. . k - 1. All Direction fields are initially 0, and should
be 0 when the marking is complete.

4. Suppose that, as suggested on page 349, we use the constant-space
scanning algorithm (Algorithm 4.8 on page 118) to mark list structure
that has no cycles but may have multiple paths to some cells. How
much time might it take to scan a structure composed of n cells, each
containing two pointer fields?

5. Write the memory allocation algorithm that goes with Algorithm 10.5.
Assume that every request is for a cell of k pointer fields.

6. The "collection by copying" method can be modified to provide one
scheme for incremental garbage collection. Assume that there is a
fixed set of locations, not part of the heap, such that a value must
be explicitly fetched into one of these locations before it can be used
for any operation. We can imagine these locations to be machine
registers, and we refer to them as "registers" for convenience. Now
when CopyCollect (Algorithm 10.5) is invoked, let it return immedi-
ately after all the registers have been treated as "root pointers" and
have been forwarded. In general we wish to ensure that the registers
never point into from-space, but in fact unforwarded locations in to-
space might point back into from-space. Thus the client program is
required to call Forward on every pointer that it fetches from memory
into a register. Once most of the pointers have been redirected out of
from-space, these calls to Forward will be relatively inexpensive.

a. Explain how the computations carried out by the remainder of
CopyCollect (the forwarding of the other root pointers and of
pointers referenced indirectly through cells that have already been
moved) can be spread out across the calls to the memory allocation
routine.

b. In Algorithm 10.5 the free pointer is set once the copying process
has been completed and the amount of free space is known. If the
copying is carried out incrementally this method will not work,
since allocation requests must be serviced before the copying has
been completed. How can allocation be done under this scheme?

c. Compare the efficiency of this method to that of Algorithm 10.5.

10.3 7. Design a compaction algorithm for fixed-sized blocks that makes only
a single pass over the memory being compacted and uses only a
constant amount of additional memory.

8. Suppose that memory is allocated in blocks of varying size and that
blocks are not linked (so that it is unnecessary to worry about pointers

374 MEMORY MANAGEMENT

to blocks). Suppose further that blocks are allocated and explicitly
freed in strict first-in-first-out fashion, that is, no block is freed until
after all previously allocated blocks have been freed. Design and code
routines FIFOAllocate and FIFOFree in such a way that all requests
can be satisfied, provided only that at any time the total size of the
allocated blocks is less than or equal to the size of the heap.

9. Design a compaction algorithm for blocks of various sizes that does
not use a dedicated ForwardingAddress field, but dedicates to the
compaction algorithm one bit per pointer field of a cell. (Hint: The
pointer fields that point to a cell C are linked together into a linked
list whose head is in C. The information that used to be where the
head of the list is now can be stored at the end of the list.)

10. Consider a heap M[O. . N - 1] containing diverse-sized blocks each
of which has a Size field, with no free space intervening between
the blocks (so, for example, the second block begins at M[Size(0)]).
The heap may be full, or there may be free space at its end. Suppose
now that each block also has a NewSize field, and that we wish to
change the size of each block (by either expansion or contraction)
under the assumption that all useful information within a block is at
its beginning. That is, if Size(B) = j and NewSize(B) = k < j,
then the first k words of block B are important and must be preserved,
while the final j - k words can be forgotten; and if k > j then we
don't care about the contents of the final k - j words of the expanded
block. Devise an algorithm that restructures the heap, resizing each
block as required, without using any additional storage. You may
assume that there are no pointers to blocks (so that blocks can be
moved without worrying about dangling pointers) and that the sum
of the NewSize fields is at most N. When your algorithm finishes,
the heap should once again consist of contiguous blocks with all free
space (if any) at the end of the heap. Of course, the Size fields should
be updated to their new values!

10.4 11. Show how the best fit, first fit with roving pointer, and worst fit
strategies would handle the following sequence of requests, if the
total memory size is 9:

A Allocate(3)
B Allocate(2)
C <- Allocate(1)
Free(A)
D +- Allocate(3)

Free(B)
E +- Allocate(5)

PROBLEMS 375

12. Using first fit with roving pointer, and starting with an empty block of
size 100, can the following sequence of requests be satisfied? Show
the state of memory at the end of the sequence, or when a failure
occurs.

A Allocate(40)
B Allocate(10)
Free(A)
C Allocate(20)
D Allocate(40)
Free(B)
E +- Allocate(25)

13. Show that there are sequences of allocation and deallocation requests
that are successfully handled by the first fit strategy but not by the
best fit strategy.

14. In each of the following cases, find a sequence of allocation and
deallocation requests that defeats the strategy and has as few requests
as possible.

a. Construct a sequence of requests that defeats the best fit allocation
strategy.

b. Construct a sequence of requests that defeats the first fit allocation
strategy.

c. Construct a sequence of requests that defeats the worst fit alloca-
tion strategy.

15. Assume that allocation and deallocation requests cannot be predicted
in advance and that blocks cannot be moved within the heap once
they have been allocated. Show that any memory allocation algo-
rithm is inferior to clairvoyance; that is, show that any algorithm that
dynamically allocates blocks by responding to requests as they occur
will fail to satisfy some sequence of requests that could be satisfied
if the whole sequence were known in advance. (An algorithm must
always respond to the same sequence of requests in the same way.)

16. Devise a sequence of requests that cannot be satisfied even if the
memory manager knows the entire sequence in advance, even though
at no time does the total size of the allocated and requested blocks
exceed the size of the heap. (Blocks cannot be moved once they have
been allocated.)

17. Explain carefully how to implement the best fit strategy using a binary
tree implementation of the pool.

18. It appears that Algorithm 10.8 on page 365 does a little more work
than is really needed when deallocating a block with exactly one free

376 MEMORY MANAGEMENT

neighbor; in that case it removes a block from the free list and then
inserts a block onto the free list, when it would suffice to change the
description of that block. Explore whether this idea is really feasible,
and worth the trouble.

19. Show that without a roving pointer the first fit strategy searches half
the free list on average. What assumptions lead to this conclusion?

20. Derive the Fifty-Percent Rule from Equations (1)-(3) on page 366.

10.5 21. Show how the binary buddy strategy would handle the following
sequence of requests, if the total memory size is 16:

A Allocate(3)
B Allocate(2)
C Allocate(3)
Free(B)
D +- Allocate(4)
Free(A)
Free(D)
E Allocate(5)
F Allocate(3)

22. In Algorithm 10.10 on page 370, what is the purpose of the clause

... Size(P E 2k) = 2 ?

23. Suppose that we use a binary buddy system with a memory size of 16.
There are some sequences of allocation requests for a total of less
than 16 cells that cannot be satisfied. What is the largest number n
such that any sequence of requests for a total of n or fewer cells can
be satisfied? Justify your answer, and give an example of a sequence
of requests totalling n + 1 that cannot be satisfied.

24. Suppose the binary buddy system is to be used in a system where N,
the total size of the heap, is not known in advance and is not nec-
essarily a power of 2. Moreover, suppose the maximum block size
should be 2k, where k is known in advance. Write the routine

BinaryBuddyHeaplnitialize(H[O . N - 1])

that initializes the heap and free lists for this situation, and rewrite
Algorithm 10.9 and Algorithm 10.10 as necessary to take the new
restrictions into account.

25. Complete the calculations needed to confirm the claim on page 371
about memory wasted by the binary buddy system due to internal
fragmentation.

REFERENCES 377

26. Write Allocate and Free routines for a Fibonacci buddy system, using
the SplitCount field as described at the end of the chapter. Analyze
the timing of these algorithms.

References

The Schorr-Deutsch-Waite marking algorithm (Algorithm 10.2 on page 348) was pub-
lished in

H. Schorr and W. M. Waite, "An Efficient Machine-Independent Procedure for Garbage
Collection in Various List Structures," Communications of the ACM 10 (1967),
pp. 501-506,

and was discovered independently by L. P. Deutsch. The version presented here, which
uses a stack rather than a reserved field in each node, is essentially that described for
the k = 2 case in

B. Wegbreit, "A Space-Efficient List Structure Tracing Algorithm," IEEE Transactions
on Computers C21 (1972), pp. 1009-1010.

The constant-space algorithm (Algorithm 10.4 on page 351) is from

G. Lindstrom, "Scanning List Structures without Stacks or Tag Bits," Information Pro-
cessing Letters 2 (1973), pp. 47-51.

Copying collection was described in

C. J. Cheney, "A Nonrecursive List Compacting Algorithm," Communications of the
ACM 13 (1970), pp. 677-678,

and was analyzed in

A. W. Appel, "Garbage Collection Can Be Faster than Stack Allocation," Information
Processing Letters 25 (1987), pp 275-279.

Our presentation of the copying algorithm follows

A. W. Appel, "Garbage Collection," in P. Lee, Topics in Advanced Language Implemen-
tation, MIT Press, 1990.

This paper also discusses the incremental garbage collection method of Problem 6, which
was originally described in

H. G. Baker, "List Processing in Real Time on a Serial Computer," Communications of
the ACM 21 (1978), pp. 280-294.

For an extensive survey of garbage collection see

J. Cohen, "Garbage Collection of Linked Data Structures," Computing Surveys 13 (1981),
pp. 341-367.

The various dynamic storage allocation strategies (for example, first fit, best fit, worst
fit) have been studied extensively. Knuth's Fundamental Algorithms (cited on page 44)
is a good general source; the derivations of the Fifty-Percent Rule and the Two-Thirds

378 MEMORY MANAGEMENT

Rule are from Knuth. Standish (in the book cited on page 45) presents and cites a
good deal of experimental evidence about the relative effectiveness of these strategies.
The strategies have been analyzed in the context of the following bin-packing problem:
Given a sequence of bins of identical size and a sequence of requests to put things of
different sizes into the bins, what strategy should be followed to minimize the number of
bins used? "First fit" and "best fit" are natural approaches, and have been shown to
use at worst 70% more bins than would be used by an optimal strategy that could foresee
future requests and exhaustively search through an exponential number of possibilities.
For a summary, see

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, "Worst-
Case Performance Bounds for Simple One-Dimensional Packing Problems," SIAM
Journal on Computing 3 (1974), pp. 299-325;

a discussion of more recent results appears in

D. S. Johnson and M. R. Garey, "A 71/60 Theorem for Bin Packing," Journal of Com-
plexity 1 (1985), pp. 65-106.

That dynamic storage allocation is NP-complete even in the presence of perfect informa-
tion about the schedule of allocation and deallocation requests is noted on page 226 of
the book by Garey and Johnson (cited on page 71). The binary buddy system was first
published by

K. C. Knowlton, "A Fast Storage Allocator," Communications of the ACM 8 (1965),
pp. 623-625.

The Fibonacci buddy system is described in

J. A. Hinds, "An Algorithm for Locating Adjacent Storage Blocks in the Buddy System,"
Communications of the ACM 18 (1975), pp. 221-222.

11

Sorting

11.1 KINDS OF SORTING ALGORITHMS

Sorting is among the most basic and universal of computational problems.
Where data exist, there is often a need to put the data in order. Hundreds
of algorithms, and variations on algorithms, have been proposed and imple-
mented for sorting data. Entire books have been devoted to the study of sorting
algorithms. A significant industry flourishes around the production of more ef-
ficient sorting software for mainframe computer systems. That such investment
has been made in the engineering of sorting programs is testimony to the great
amount of time that some computers spend sorting: in some commercial data
processing applications, the processing consists of little else.

In spite of its omnipresence, one caution should be injected about sorting
before we proceed further: naive programmers sometimes do it more than is
necessary. If the only reason to sort the data is to be sure you know where
everything is, it may be cheaper to use a dictionary structure instead. For
example, rather than sorting data into a table and then using linear or binary
search to find individual items, insert the data into a balanced search tree instead.
It will be just as easy to locate data items, and in addition it will be possible to
modify the data set dynamically.

Sorting methods are in great variety, in part because of the variety of cir-
cumstances under which they can be used. Here are a few crucial distinctions
to be borne in mind:

Internal vs. external sorting: If all the data to be sorted can be kept in
main memory, then random-access addressing can be used without
any cost overhead. Several independent pointers can move through
memory with different patterns of movement, and it may be possible
to calculate addresses from the values of key fields or to use dynamic
data structures to organize the data. On the other hand, if the data to
be sorted do not fit all at once in main memory, then access patterns
are more restricted; once a block of data is retrieved it is important
to make as much use of it as possible before abandoning it to probe

379

380 SORTING

another block. Consequently, many techniques that can be used for
internal sorting are completely inappropriate for external sorting.

Sorting in place vs. sorting with auxiliary data structures: Some internal
sorting methods use no memory beyond that in which the data are
initially given; the data items are simply rearranged in their existing
positions. (Use of a constant amount of memory, independent of the
size of the data set, does not violate this paradigm; for example, a
program may use a few local variables to hold single data items.) On
the other hand some algorithms build data structures that require extra
memory. For example, the MergeSort algorithm on page 29 requires
that the lists to be merged be located separately from the space into
which the result is to be placed. As another example, an algorithm
called Tree Sort builds a binary search tree from the data and then
does an inorder traversal of that tree to enumerate the data in sorted
order.

Worst-case vs. expected-case performance: Some algorithms come with
good worst-case performance guarantees; other algorithms, more effi-
cient in practice, may come only with good expected-case guarantees.

What is the "expected case" ? It is common practice, when assessing the
expected-case performance of sorting algorithms, to consider all n!
permutations of a data set of size n to be equally likely. In fact this
may be grossly inaccurate: in some applications a list may be sorted
repeatedly, each time after adding a few new items to the end. In such
a case the data are "nearly" in order, and it pays to use an algorithm
that is efficient on such data sets, even if it is very slow on data sets
that are very "far" from being in order.

Sorting by comparison vs. sorting digitally: This echoes a distinction we
have already used in analyzing searching methods; Chapters 6 and 7
discuss comparison-based searching, while Chapter 8 is on digital
searching. Many sorting algorithms use only comparison between
key values to determine what to do next; that is, there is some linear
order <, such as arithmetic comparison of numbers or lexicographic
comparison of strings, that governs the control of flow in the algo-
rithm. Any data set that is permuted in the same way would cause an
essentially identical execution, just as the structure of a binary search
tree depends only on the order in which the data are inserted, not
on the values themselves. Other sorting methods use the actual bit
values or character values in the keys to direct the algorithm, just as
the shape of a trie structure depends on the bits and characters of the
keys.

Stable vs. unstable sorting: This has to do with the possibility that multiple
data items in the data set may have the same key value on which
items are compared. A sorting algorithm is stable if such items retain

11.2 INSERTION AND SHELL SORT

their order relative to each other during the sort, and otherwise the
algorithm is said to be unstable. Depending on the application, it
may be essential that a stable sort be used. For example, suppose that
a contest is held, the winner being the person who comes closest to
guessing the number of pennies in a jar without going over. A tie
will be resolved by the order in which the entries were submitted; if
several entrants guess the exact number, or if no one guesses the exact
number but several entrants come equally close, the winner will be the
one of those entries that was submitted earliest. The contest data can
be modelled as a file of records, each consisting of a person's name
and a numerical guess, with the records appearing in the file in the
same order in which they were submitted. The winning entry can then
be found by sorting the file and finding the largest guess not exceeding
the actual number of pennies; if there are several consecutive records
in the sorted file with the winning guess, the first of these is the
winning entry, provided that the algorithm used to sort the file was
stable.

The "quick and dirty" vs. the efficient hut hard to remember: There some-
times is an almost irresistible temptation to use the sorting algorithm
I remember the best without looking it up, rather than a more effi-
cient algorithm I remember studying but of which I have forgotten
the details. This laziness is often justified by the allegation that (a) n
is small, so it really doesn't matter much what algorithm I use; or
(b) this is only temporary-I'll rip out this code and replace it when I
have my reference work at hand; or (c) how much difference in run-
ning speed is there really-a factor of two is not worth my trouble to
recapture. For many of us, the best-remembered algorithm is Bubble
Sort. In fact, there are enormous differences in running times-a
E3(n2) sorting algorithm like Bubble Sort is vastly slower than most
E3(n log n) or E(n1 5) methods; and even among E(n2) methods, Bub-
ble Sort is the worst! Do it right the first time-the better methods
are hardly more work to program.

11.2 INSERTION AND SHELL SORT

The first set of methods apply to data stored in a table. To fix our assumptions
once and for all, assume that the table is A[O. . n-1], and that the table elements
can be compared directly: for any elements x and y that might appear in the
table, either x < y, or x = y, or x > y. We wish to rearrange A to be monotone
nondecreasing; that is, we want to permute the elements of A so that at the end
A[O] < A[]• < < A[n -1].

381

382 SORTING

procedure InsertionSort(table A[O. .n - 1]):
{Sort by inserting each item in position in the table of elements to its left}

for i from I to n- 1 do
j 4- i {j scans to the left to find where A[i] belongs}
x +- A[i]
while j > 1 and A[j - 1] > x do

A [j] A[j -1]

AU^] x

Algorithm 11.1 Insertion Sort.

In practice this is a simplification of reality; often the table elements are
records, which are to be compared according to key values. Of course, all the
algorithms considered below continue to work, except that where an algorithm
compares x and y (for example) the comparison should really be between Key(x)
and Key(y). However, this introduces another problem: if the records are large,
it may not make sense to move entire records around in the table. It makes
more sense to create a table of pointers to the records, and to sort the pointer
table by comparing the Key fields of the records to which the pointers point.
(Of course, the table of pointers can be replaced by a table of indices, which
may take less memory or be more easily implemented in some programming
languages.)

The Insertion Sort algorithm (Algorithm 11.1) repeatedly expands a sorted
subtable A[O. . i - 1] by comparing A[i] with each item A[i -1], A[i - 2], ...
until its proper position is located. As each of these items is passed over, it is
moved one position to the right in the table, thus opening up a "hole" into which
A[iI (now called x since another value may have been moved into position i of
the table) can be dropped at the appropriate moment. The index i starts at 1,
since the table consisting of the single element A[O] is already sorted. On each
successive iteration of the outer loop i moves one position to the right; in the
inner loop, the index j moves from i to the left in search of the appropriate
insertion point.

This algorithm is easy to remember, but has little else to recommend it in
its present form. In the worst case it takes E3(n 2) steps to sort a table of size n.
To see this, note that two table elements that are initially out of order cannot
wind up in the correct order without being directly compared to each other (via
the comparison Aj - 1] > x). If the table is in reverse order initially, there are

I + 2 + + (n - 1) = (n- l).n E 8(n2)2

11.2 INSERTION AND SHELL SORT

such "out-of-order" pairs or inversions in the table. Therefore this is a lower
bound on the running time of the algorithm. It is an upper bound as well, since
each loop iterates fewer than n times, and the other statements take constant
time independent of n. To describe the situation more loosely, in this algorithm
the values move within the table in small steps, and so to reorganize a table that
is initially far out of order will take many steps.

Even if we look at the expected-case running time of the algorithm we still
get E3(n 2). For if all permutations are equally likely, then the expected number
of inversions in a randomly selected permutation is half the number in the worst
case, or (n- 1) n/4, since for every permutation with k inversions its reversal
has (n - I) n/2 -k inversions.

There is only one situation in which Insertion Sort can be relied on to work
effectively: if the table is nearly in order to begin with, that is, no element
is far from its proper position, then no single iteration of the main loop can
take too long. For example, if no element is more than 5 away from its proper
position, then the inner while loop cannot iterate more than 5 times, and the
whole algorithm will run in linear time. Note that Merge Sort, while superior
to Insertion Sort in the worst case, is inferior if the data to be sorted are known
to be almost in order.

The Insertion Sort algorithm does have one remarkable property, however:
it can be made into a very useful, efficient, and general-purpose algorithm by
wrapping it in a third outer loop! The revised algorithm is called Shell Sort,
after its inventor, Donald Shell, who discovered its good properties empirically.

Recall that the inefficiency in the Insertion Sort algorithm derives from its
inability to move data quickly over long distances. To address this problem,
suppose we pick some "increment" bigger than 1; for illustrative purposes let us
choose an increment of 5. We can then imagine the table A subdivided into five
interlaced subtables: one consisting of elements A[O], A[5], A[10], ... ; another
consisting of elements All], A[6], A[ll], ... ; and so on (Figure ll.l(a, b)). If
we sort each of these five interlaced subtables independently, say by Insertion
Sort, then we can hope that small elements that are far to the right and hence
badly out of order will move to the left in a few large hops, skipping positions
by increments of 5 rather than by increments of 1. It takes no more time to
move an element five positions than one position, if it is moved by a statement
of the form A[j] +- A[j - 5].

Of course, this is only a beginning; if the five interlaced tables are not
compared with each other, the data will certainly not wind up sorted. We can
finish up, however, by doing an Insertion Sort, with an increment of 1. If the
table is nearly in order, then Insertion Sort will run quickly since there are
relatively few inversions to repair (Figure I. I (c, d, e)).

In general, Shell Sort uses not just two sorting increments, such as 5 and 1,
but a sequence of increments ht. ... , h1, with the last, hi, being 1. Thus the
general outline of the algorithm is

383

384 SORTING

(a) 11 10 9 8 7 6 5 4 3 2 1 0
(b) 11 6 1

10 5 0
9 4

8 3
7 2

(c) 1 6 11
0 5 10

4 9
3 8

2 7
(d) 1 0 4 3 2 6 5 9 8 7 11 10
(e) (1 2 3 4 5 6 7 8 9 10 11

Figure 11.1 Example of Shell Sort running on a table of size 12 that is
initially in reverse order. (a) The initial appearance of the table; (b) the
five interlaced subtables; (c) the results of sorting the five interlaced
subtables separately; (d) the appearance of the table after it has been
sorted with increment 5; (e) the final sorted table, after it has been sorted
with increment 1.

for k from t downto 1 do
for d from 0 to hk - 1 do

Insertion Sort the sequence A[d], A[d + hk], A[d + 2 hk],.

The last line would expand into a doubly nested loop like that for Algo-
rithm 11.1, except that the loop indices i and j run only through values that
leave a remainder of d when divided by hk. However, there is no real rea-
son to complete the Insertion Sort on one of these interlaced sequences before
beginning to sort the next; since the sequences do not have any members in
common, we can equally well consider each member of the table A in order
from left to right, moving it to the left by jumps of hk until it comes to rest in
its appropriate position within its own subsequence of the table. The result is
Algorithm 11.2.

As long as the last increment h, is 1, Shell Sort is a true sorting algorithm,
regardless of what the other increments ht, ... , h2 may be. However, to achieve
the desired efficiency the sequence of increments should have certain proper-
ties. The sequence should be decreasing, so that elements tend to move large
distances in the early iterations of the outer loop and then move over shorter
distances in the later iterations. The early increments should not be multiples of
the later increments, since some of the comparisons made with the smaller in-
crement will have been rendered redundant by comparisons made earlier. There
should not be too many increments; for example, if there were Ln/2j incre-
ments then the outer two loops would combine to cause the algorithm to be of

11.2 INSERTION AND SHELL SORT

procedure ShellSort(table A[O. . n - 1]):
{Sort by "diminishing increments"}

inc +- Initiallnc(n)
while ine > 1 do

for i from inc to n - I do
j +-i
x +- A[i]
while j > inc and ALl - inc] > x do

AU] +- A[j - inc]
j ,. j - inc

A[j] x
inc -- Nextlnc(inc, n)

Algorithm 11.2 Shell Sort. The increment sequence is determined iteratively
using the two functions Initiallnc(n), which returns the largest increment to be
used when sorting a table of length n, and Nextlnc(inc, n), which returns the
next increment smaller than inc to be used when sorting a table of length n.
These two functions generate the monotone decreasing increment sequence ht,
ht- , . .. , h = 1. It is assumed that Nextlnc(l, n) = 0, so that the main loop
terminates after the iteration with inc = 1.

complexity Q(n 2), even if the innermost loop takes constant time. Also there
should not be too few; if there are only a constant number of increments then
the analysis resembles that for Insertion Sort, and the complexity is quadratic
(Problem 6).

Beyond such rules of thumb the exact analysis of various sequences of in-
crements is extremely difficult. A good practical sequence is obtained by taking
hi = 1 and hi,, = 3hi + 1 for each successive i, until the increment would be
greater than or equal to n. This sequence begins 1, 4, 13, 40, 121, ... , and in
general hi = (3i- 1)/2; therefore the sequence has t = Llog3(2n+1)1 increments
in all. Once the largest increment ht has been determined, the successive incre-
ments to be used can be calculated iteratively by the formula hi = (hi+, -1)/3;
in the notation of Algorithm 11.2, Nextlnc(inc, n) = (inc - 1)/3. The exact
computational complexity of Shell Sort with this sequence of increments is not
known; however, empirical evidence shows that it is competitive with O(n log n)
sorts for n in the range commonly encountered for internal sorting problems.
Some other increment sequences yield algorithms that are known to have time
complexity O(n(log n)2), although in practice these variations are inferior to the
(3Z - 1)/2 sequence. Remarkably, the best increment sequence to use with Shell
Sort is still not known.

385

386 SORTING

procedure SelectionSort(table A[O . n -1]):
{Sort A by repeatedly selecting the smallest element from the unsorted part}

for i from 0 to n - 2 do
j- i {j will be the index of the smallest element in A[i .. n-l]}
for k from i + 1 to n - 1 do

if A[k] < A[j] then j *- k
A[i] - A[j]

Algorithm 11.3 Selection Sort.

11.3 SELECTION AND HEAP SORT

Insertion Sort, and its relative Shell Sort, work by repeatedly taking an element
of an unsorted set and putting it in its proper position within a sorted table.
No work is done to find the element; all the work is in locating its position
and inserting it. By contrast, Selection Sort works by repeatedly finding in the
unsorted set the element that should be next in the sorted table, and moving it
to the end of the sorted portion. All the work is in selecting the right element;
no work is required to put it where it belongs.

As with Insertion Sort, the simplest implementation of Selection Sort divides
the table being sorted into a sorted part at the left and an unsorted part at the
right (Algorithm 11.3). As the algorithm progresses the line dividing the sorted
and unsorted parts of the table moves from the left end of the table (completely
unsorted) to the right end of the table (completely sorted).

Selection Sort has time complexity E3(n 2) since the outer loop iterates from 0
to n - 2 and the inner loop iterates from the outer index to n -1. However,
it is easy to see how to make it more efficient, since the repeated selection of
the smallest remaining element is really a repeated appeal to a priority queue
structure. In Algorithm 11.3 the priority queue is simply a table that is searched
linearly, but there are other structures that yield more efficient implementations
of priority queue operations. For example, we could start out by inserting all
the table elements into a balanced tree structure, such as a 2-3 tree, and then
repeatedly withdraw the smallest element and move it into the next position in
the table. But building a 2-3 tree would require extra memory.

A better idea is to implement the priority queue as a heap; since the heap can
be represented implicitly, the resulting sorting algorithm, called Heap Sort, does
not require any memory beyond that occupied by the table being sorted (Algo-
rithm 11.4). The index i is again the borderline between the sorted and unsorted
parts of the table; the heap is represented in A[i. . n- 1], with the root of the heap
(which contains the smallest element) at the right end, in A[n -1]. This permits
the sorted part of the table to grow at the left end as in Algorithm 11.3; every
time the size of the sorted table increases by one element, the size of the heap de-

11.3 SELECTION AND HEAP SORT

procedure HeapSort(table A[0. n -1]):
{Sort by turning A into a heap and repeatedly selecting its smallest element}

InitializeHeap(A[O. . n -1])

for i from 0 to n - 2 do
A[i] +-* A[n - 1]
Heapify(A[i + . . n -1])

procedure InitializeHeap(table A[O. . n -1]):
{Turn A into a heap}

for i from I to n - I do Heapify(A[O . . i])

Algorithm 11.4 Heap Sort algorithm. Once the table has been initially turned
into a heap, the algorithm repeatedly exchanges the first element beyond the
end of the sorted part of the table with the heap minimum, then calls Heapify
(Algorithm 11.5) to let the element that has just been put at the root of the heap
settle to its proper position and thus restore the heap's partial ordering property.

creases by one, with the left edge of the heap (index i) moving from left to right.*
To extend the sorted part of the table by one element, the heap root element

(which is A[n - 1]) is exchanged with the leftmost "unsorted" element (which
is A[i]). This destroys the partial order property of the heap, but only at the
root; Algorithm 11.4 restores the partial order property of the heap by calling
Heapify(A[i- 1+. . n -1]), which takes the rightmost element of A[i+ 1 .. n - 1]
and lets it settle down (to the left) into the heap until it reaches its proper position.

It turns out that a small variation on this call to Heapify is exactly what is
needed to set up the heap in the first place. In general, Heapify(A[i . .j]) assumes
that A[i.. j -1] is already partially ordered, and pushes A[j] down as far as
is necessary so that A[i.. j] becomes partially ordered. Then to initialize the
heap successively larger subtables A[O. . i] are passed to Heapi fy, thus turning
the unsorted table into a heap from the leaves up to the root.

Thus it remains only to detail Heapify (Algorithm 11.5). The computation
is very similar to that of Algorithm 9.1 on page 303, but the indexing is different
because the root of the heap is at the right end. We use LC(j) and RC(j) to
denote the indices of the left and right children of the heap element AD]. Since
the root of the heap is at A[n - 1] and the leaves are the nodes with smaller
indices in the table, LC(j) = 2j - n and RC(j) = 2j - n - 1. Of course, if
RC(j) is less than the index of the left end of the heap, then node j does not
actually have a right child; and if LC(j) is less than the index of the left end of

*As a result of reversing the direction in which the heap is stored in the table, the right child of
a node is stored in the table to the left of the left child (that is, the right child has a smaller table
index than the left child).

387

388 SORTING

procedure Heapify(table A[i.. j]):
{Initially A[i.. j - 11 is partially ordered}
{Afterwards A[i.. j] is partially ordered}

if RC(j) > i and A[RC(j)] < A[LC(j)] and A[RC(j)] < A[j] then
AU] - A[RC(j)]
Heapify(A[i. . RC(j)])

else if LC(j) > i and A[LC(j)] < AU^] then
AU] + A[LC(j)]
Heapify(A[ij. . LC(j)])

Algorithm 11.5 Push the element AU] down into a heap until it finds its
resting place. The heap is organized so that the root is at the right end of the
table, namely, A[n- 1]; the elements to the left of AU] are assumed already
to form a partially ordered tree. LC(j) = 2j - n and RC(j) = 2j - n - 1 are
the positions of the left and right children, if any, of AUj]. The algorithm is
presented as recursive for clarity, but since it is tail-recursive it can be recoded
so that it uses no extra memory (Problem 13).

the heap, then node j has neither child. (Strictly speaking, the value of n should
be passed in to Heapify so that the LC and RC functions can be calculated; we
omit this parameter to avoid clutter.)

What is the complexity of HeapSort? A single call to Heapify takes time
that is O(log n), since the while loop in Algorithm 11.5 essentially traces a path
in a heap whose maximum height is Llg nJ. Since HeapSort creates and then
repeatedly deletes from a priority queue for which the cost of a single deletion
is 0(log n), the time required for everything except the initialization of the
heap is O(n log n). Also, the n -1 calls to Heapift from within InitializeHeap
take 0(log n) time each, so the initialization also takes time that is O(n log n).
Therefore the worst-case running time of HeapSort is 0(nlogn).

Actually, the time used to initialize the heap is linear in n; this does not
change the end result of the analysis of HeapSort, but it is an interesting fact
in its own right. For each h = 0, ... , LlgnJ, there are at most n/2h nodes
of height h in the heap A[O. . n - 1], and to Heapify a node of height h takes
time proportional to h. The calls on Heapify for the nodes of height 0 take
constant time each and hence 0(n) time in all. The rest of the calls on Heapify
to initialize the heap take time proportional to

Lig nj

h 2hn < n * 2+ 4 + 8 + *Z h - 24
h=l

The sum on the right was analyzed on page 36, and has the value 2, so the total
cost of InitializeHeap is 0(n).

11.4 QUICK SORT 389

11.4 QUICK SORT

In Chapter 1 we analyzed the Merge Sort algorithm (Algorithm 1.7 on page 29),
which sorts a table by recursively sorting the first and second halves of the table,
and then merges the two sorted halves into a single sorted table. If the table
is of size n, then everything except the recursive sorts takes time proportional
to n; thus at each level of recursion the total time spent is 0(n), and since there
are [Ig nj levels of recursion, the total time for Merge Sort is 0(n log n).

Merge Sort is simple, elegant, and much more efficient than quadratic-cost
sorting algorithms like Insertion Sort for n small enough to be of practical
interest. Nonetheless as an internal sorting algorithm Merge Sort has a sig-
nificant disadvantage: it is very difficult to carry out the merge step in place.
That is, the only practical way to merge the sorted halves T[a. .middle] and
T[middle + I . .b] into a single sorted table T[a. . b] is to copy the first half into
some temporarily allocated memory block and then to merge this copy with the
second half back to the table T[a. . b]. The data copying seems to be nonpro-
ductive effort, and using a general-purpose memory manager to allocate and
deallocate these temporary blocks would entail significant overhead, especially
since many of the blocks requested will be only a few cells long. We can avoid
using a general-purpose memory manager by noting that only Ln/2J cells are
ever needed, so they can be allocated once and for all at the beginning of the
algorithm and deallocated after the sorting is complete. Still, the extra memory
required and the amount of data movement limit the usefulness of Merge Sort
as an internal sorting method.

Quick Sort is a recursive sorting algorithm that resembles Merge Sort,
but avoids the need for additional memory beyond that in which the data are
presented. Before making the recursive calls, Quick Sort rearranges the data in
the table so that every element in the first part of the table is less than or equal
to every element in the second part of the table. Then when the two parts have
been recursively sorted, no merge step is necessary; the whole table is in order
automatically.

The rearrangement of the data before the recursive calls is called the parti-
tioning step. To make Quick Sort efficient, partitioning must be done in linear
time and without recourse to extra memory. Ideally we would like the two parts
to be always exactly the same size. However, this is too much to hope for,
since achieving such an exact partition would entail finding the median of the
table. (While the median can be found in linear time (page 412), the linear-time
algorithm uses extra memory, and the cruder methods employed in Quick Sort
yield satisfactory performance in practice. But see Problem 24.)

For practical purposes, however, it is sufficient to partition the table some-
what sloppily. The basic approach is to choose some element from the table
called the pivot, and then to rearrange the data so that elements less than the
pivot are to its left and elements that are greater are to its right. In Algo-
rithm 11.6 the pivot is simply the leftmost element in the table; of course by

390 SORTING

procedure QuickSort(table A[1. .rj):
{Sort A[l.. r]. The outermost call should be QuickSort(A[O.. . - 1])}

if I < r then
i +- 1 {i scans from the left to find elements > the pivot}
j r + 1 {j scans from the right to find elements < the pivot}
v A[l] {v is the pivot element}
while i < j do

i +- i+ 1
while i < r and A[i] <v do i i + 1
i E - I
while j > 1 and A[j] > v do j j - 1
A[i] - AU]

A[i] A[j] {Undo extra swap at the end of the preceding loop}
A[j] A[l] {Move the pivot element into its proper position}
QuickSort(A[I . .j-1])
QuickSort(A U + 1 . . r])

Algorithm 11.6 Quick Sort.

bad luck, or because the table was in order already, that element might turn
out to be the smallest table element, and then the two parts would wind up
very disproportionate in size. A couple of methods for avoiding this kind of
imbalance are discussed below.

In Algorithm 11.6 the partitioning around the pivot element is carried out
by running two scans, one from left to right in search of an element greater
than or equal to the pivot, and one from right to left in search of an element
less than or equal to the pivot. When two such elements are located, they are
exchanged and the scan continues. The partitioning phase stops when the two
scans meet each other (Figure 11.2).

Quick Sort has time complexity 0(n 2) in the worst case, and as implemented
in Algorithm 11.6 this worst case occurs when the table is initially in order. We
could try to avoid this worst case by exchanging the first and the middle element
in the table before beginning the partitioning, by inserting a new step

A[l] - A[L(l + r)/2J]

at the beginning of Algorithm 11.6. Unfortunately this merely changes the
permutation that leads to the worst-case performance; it does not eliminate such
permutations (Problem 17).

A better variation on Algorithm 11.6 takes the first, middle, and last ele-
ments of the table, rearranges them in order, and then uses the median of the
three as the partition element. This method is illustrated in Algorithm 11.7.

11.4 QUICK SORT 391

01 2 3 4 5 6 7 8 9
(a) 9 1 11 17 13 18 4 12 14 5

> > <

(b) 9 1 5 17 13 18 4 12 14 11

(c) 9 1 5 4 13 18 17 12 14 11

(d) 9 1 5 13 4 18 17 12 14 11
(e) 4 1 5 9 13 18 17 12 14 11
(f) 1 4 5 9 11 12 13 14 17 18

Figure 11.2 Example of partitioning a table A[O. . 9]. The pivot element v
is A[O] = 9. The main while loop of Algorithm 11.6 iterates three
times: (a)-(c) show the appearance of the table just before each iteration;
(d) shows the table after the last iteration. The alternate rows show the
movement of the i and j indices, which are represented by > and <,
respectively. At the end of the partitioning i = 4 and j 3. (e) Two
swaps undo the extra exchange performed between (c) and (d), and leave
the array with the pivot in its proper position; all numbers to the left of
A[3] = 9 are less than 9, and all numbers to the right of A[3] = 9 are
greater than 9. Then (f) sorting A[O. . 2] and A[4.. .9] sorts the entire
table.

Since the median of three elements of the array is less likely than any one ele-
ment to be nearly the smallest or largest element of the array, Algorithm 11.7
is more likely than Algorithm 11.6 to partition the array evenly. Moreover, po-
sitioning an element no larger than the pivot at the left end of the array and an
element no smaller than the pivot at the right end of the array makes it possible
to eliminate the tests in the inner loops which in Algorithm 11.6 ensure that
the search indices i and j do not go out of range. The elements A[l] and A[r]
become sentinels; the tests A[i] < v and A[j] > v must eventually fail since
A[r] > v and A[l] < v.

We can hope that permutations that force uneven splitting at every iteration
will be rather rare. In fact the expected running time of Quick Sort, if all n!
permutations are assumed to be equally likely, is O(nlogn). To derive this
fact, let T(n) represent the expected running time of Quick Sort on a table of
length n. During the partitioning step, elements within the two subarrays are not
compared to each other, but only to the pivot; this implies that all permutations
of the subarrays are also equally likely. Therefore, if the pivot is the ith largest
element in the table, where I < i < n, then the expected running time of the
two recursive calls is T(i - 1) + T(n -i). Since all permutations are equally
likely, it follows that the pivot element is equally likely to be the smallest,
next-to-smallest, ... , or largest of the n table elements, and the expected time
to complete the recursive calls is the average value of T(i -1) + T(n - i) over

392 SORTING

procedure QuickSort(table A[1. . r]):
{Sort A[l. . r]. The outermost call should be QuickSort(A[O .. n - 1])}

Put A[l], Al (l + r)/2J], and A[r] in order in the same positions
if r - 1 > 2 then {Any shorter array is sorted by the previous step}

A[l + 1 -+ Al[(L + r)/2J]
i <- 1 + 1 {i scans from the left to find elements > the pivot}
j 4- r {j scans from the right to find elements < the pivot}
v <- A[l + 1] {v is the pivot element}
while i < j do

i +-i+I
while A[i] < v do i i + 1
i j - I
while A[j] > v do j j -1

A[i] - A[j]

A[i- AU] {Undo extra swap at the end of the preceding loop}
AU] A[l + 1] {Move the pivot element into its proper position}
QuickSort(A[. . j - 1])
QuickSort(A j + 1. . r])

Algorithm 11.7 Quick Sort, modified to use median-of-three partitioning.

all n values of i. The nonrecursive part of Quick Sort takes time linear in n, so
there is a constant c such that

n
T(n) = cn + - (T(i - 1) + T(n - i)).

Therefore

nT(n) = cn2 + 2(T(O) + + T(n- 1)).

Substituting n - I for n and subtracting,

(n- 1)T(n- 1) = c(n- 1)2 + 2(T(O) + + T(n-2))

nT(n) - (n - l)T(n - 1) = c(2n - 1) + 2T(n - 1)

T(n) T(n - 1) 2c

n+ 1 n n+ I
< T(n-2) 2c 2c
- n-1 n n+l
< ...

T(1) nl- I

_ 2 +2c
i-3

11.5 THE INFORMATION-THEORETIC LOWER BOUND

The first term in this sum is a constant; the second term is 2c times the sum
of a harmonic series and is therefore bounded by 2c ln(n + 1) plus a constant.
Therefore T(n) E O(nlogn), as was to be shown.

The "improved" version of Quick Sort, Algorithm 11.7, uses recursive calls
on itself to sort even small arrays. As discussed on page 33, it makes sense,
because of the overhead for recursion, to use a simpler sorting algorithm when
only a few elements need to be sorted. This could be effected by replacing the
line "if r - 1 > 2 then . . ." by "if r - 1 < no then NonRecursiveSort(A[l . .r])
else ... ," where no is an appropriately chosen cutoff for recursive subdivision
and NonRecursiveSort is some simple sorting algorithm. Even this approach
can be simplified, however. If the subtables are not sorted at all when their
size becomes smaller than no, then after the algorithm terminates the table will
consist of small unsorted blocks of length less than no, but the blocks as wholes
will be in the right order. A single call on Insertion Sort, outside and after the
recursive code for Quick Sort, will then sort the entire table. Moreover, since
Insertion Sort works well on input that is almost in order, this call on Insertion
Sort will not be expensive.

One further observation about Quick Sort concerns its use of memory. We
motivated the derivation of Quick Sort by the desire to eliminate Merge Sort's
use of auxiliary memory; but Quick Sort uses an auxiliary data structure as well,
namely, the stack that is used to implement recursion! What is worse, the depth
of recursion on a table of size n could be as much as n, in case the table was
permuted in one of those unfortunate ways that causes the worst-case running
time. Thus it appears that a good deal of extra memory will be used by Quick
Sort, in the worst case.

This is indeed true for Quick Sort as implemented in Algorithm 11.6 or
Algorithm 11.7; but these implementations can be improved. Note that these
algorithms are tail-recursive; thus the recursive call QuickSort(A[j + 1 . . r]) can
be replaced by an iteration. Still it is possible that the remaining recursive
call could result in recursion to depth n. However, the two recursive calls can
actually be done in either order, and do not have to be done in the same order
on each invocation of the procedure. If the smaller of A[l. . j] and A[i. . r] is
sorted recursively, and the larger is sorted iteratively, then the maximum depth
of recursion will be only [lg nj, since the recursive call will always be on a
table that is at most half the size of the original. In this way Quick Sort can be
implemented to require a stack of depth that is only O(log n).

11.5 THE INFORMATION-THEORETIC LOWER BOUND

We have developed two sorting algorithms that take O(n log n) time in the
worst case to sort a table of length n (Heap Sort and Merge Sort), and one that
takes O(n log n) in the expected case (Quick Sort). And we have extolled the

393

394 SORTING

virtues of these algorithms by comparison with those that use Q(n 2) time, in
both the worst and the expected cases (Insertion, Selection, and Bubble Sorts).
But why are we content with E)(n log n) algorithms-shouldn't we be trying to
develop algorithms that take even less time, perhaps time that is 0(nV log n) or
0(n log log n) or even 0(n)?

The answer is that there can be no such algorithms, at least no such algo-
rithms of the general variety we have been discussing up till now. To be specific,
we call a sorting algorithm comparison-based if the only operations it performs
on keys are comparing them (that is, determining which of the three relations
a < b, a = b, or a > b holds between two keys) and moving them from place
to place. Comparison-based methods exclude such operations as using the first
character of a key as a table index or comparing the individual bits of two
keys. In other words, the keys cannot be taken apart-in a comparison-based
algorithm they must be treated as wholes.

All of the sorting algorithms discussed so far are comparison-based. Com-
parison-based algorithms have the attractive property that they can be used on
data of many different types just by changing the comparison function and
the way records are stored and moved from place to place; regardless of the
underlying structure of the data, a comparison-based method will use exactly the
same number of steps on two tables that are similarly permuted. Nonetheless,
there are important and useful sorting algorithms that are not comparison-based;
we shall see some in the next section. One of the reasons for seeking such
methods is given by the following lower bound on the efficiency of comparison-
based methods.

* THEOREM (Information-Theoretic Lower Bound) Any comparison-
based algorithm for sorting takes time that is Q(n log n) to sort tables
of length n.

PROOF Consider any comparison-based sorting algorithm P applied
to a table A of fixed size n. For simplicity we will assume that all elements
of A are distinct; this assumption does not change the conclusions we draw.
Since only comparisons can be used by P in its decision-making process,
we may as well imagine A to contain a permutation of the integers 0, 1,
n - 1; when the sorting is done, we should have A[i] = i for each i. We
shall show that sorting A must take Q(n log n) comparisons in the worst or
expected case, even ignoring the cost of any other operations the algorithm
might be performing (data movement, for example). The total time must
be at least proportional to the number of comparisons, and is therefore
Q(n log n).

The basic idea of the proof is intuitively very simple: A might be any
one of n! possible different permutations of the integers between 0 and n-1,
and in the end enough information must have been extracted by the algo-
rithm to determine which of these permutations A represents. For if P

11.5 THE INFORMATION-THEORETIC LOWER BOUND

treated two different permutations identically, it could not sort them both;
one or the other would wind up unsorted when the algorithm finished. But
each comparison extracts only one bit of information about which permuta-
tion is being sorted, so the number of comparisons in the worst case, c(n),
must be at least large enough so that 2c(n) > n!; this turns out to mean that
c(n) E Q(n log n).

However, this appeal to an intuitive notion of "information" is rather
shaky, so let us detail the argument more carefully. Imagine tracing the
operation of P on a particular table A, and let us write i :: j to mean
that P compares the data element that was originally at A[i] with the data
element that was originally at AUj]. (Of course, the algorithm can move data
around within the table and to and from temporary variables and auxiliary
data structures, so a comparison i :: j might well result when those data
are no longer located at positions i and j in the table.) Once the original
permutation A has been fixed, the sequence of comparisons i1 :: ji,
ic:: j, made by P is completely determined. Moreover the first comparison
il :: ji must be the same for all permutations A, since the decision about
which two elements of A to compare first is coded into the algorithm. This
first comparison has two possible outcomes, < or >. Now if A and B are
two different permutations of 0, . . ., n-1 such that A[iI] stands in the same
relationship to A~jl] as B[iR] stands to BUId, then the second comparison
made by P must be between the same table positions whether the input is A
or B; for P has no other basis for making a decision about which two data
elements to compare except the result of the first comparison, which is the
same whether A or B is being sorted. Extending this principle to subsequent
comparisons, we see that the comparisons made by P when sorting a table
of length n can be represented by a tree. Each node that is not a leaf is
labelled by a comparison i:: j and has at most two children, corresponding
to the two possible outcomes of the comparison (Figure 11.3). Such a tree
is called a decision tree.

The leaves in a decision tree (the square nodes in Figure 11.3) rep-
resent terminations of the algorithm; every possible permutation corre-
sponds to a path from the root to one of the leaves. For example, in
Figure 11.3 the permutation in which A[0] < Ail] < A[2] initially corre-
sponds to the path through left children only, and the permutation in which
A[0] > A[M] > A[2M corresponds to the path through right children only.
Conversely every path corresponds to some permutation. The length of a
path is the number of comparisons made while sorting that permutation.
Moreover, two different permutations must correspond to different paths;
otherwise the algorithm would carry out exactly the same data movements
and one of the two permutations would not wind up sorted. Therefore the
decision tree must have exactly n! leaves.

If a tree has at most binary branching at each internal node and its
height is h, then the tree can have at most 2h leaves. Consequently the

395

396 SORTING

Figure 11.3 Decision tree for Insertion Sort (Algorithm 11.1 on page 382)
on tables of length n = 3. The only comparison in the algorithm is
"A[j - 1] > x" in the inner loop. The first level of the tree corresponds
to the i = 1 case of the outer loop, the lower levels to the i = 2 case.

height of the tree is lg(n!) or greater. By Stirling's approximation, n! E
(e(n+!) 1 -n), so lg n! E Q(n log n). Therefore the worst-case number of

comparisons by algorithm P is in Q(n log n). L1

We might still hope to achieve an average-case performance that is better
than Q(n log n), but this too is impossible if we are sorting permutations and all
permutations are assumed to be equally likely. In this case the expected number
of comparisons is the average length of the paths from the root to the leaves
of the decision tree. The calculation of this value is almost exactly the same
as that in the Expected Binary Search Theorem (page 184), and is therefore at
least logarithmic in the number of leaves, that is, Q(n log n).

11.6 DIGITAL SORTING

The way to attempt escape from the Information-Theoretic Lower Bound is to
treat the keys themselves as data on which calculations can be based. If the
keys are numbers they might be used as addresses or table indices; if the keys
are strings they can be broken down into their component characters which can
be used as indices; and on any digital computer it is possible (at least in theory)
to treat the keys as binary numerals whose component bits can be used in the
sorting process. Thus the methods suggested in this section are akin to those
used in Chapter 8 for implementing dictionaries of digital data.

Bucket Sort
The simplest digital sorting method is Bucket Sort, and it applies if the keys are
small nonnegative integers which can be used as table indices. In other words,

11.6 DIGITAL SORTING 397

the size of the universe from which the keys are drawn must be fixed in advance,
so that it is possible to represent a set of keys by a bit vector. To sort a table
A[O.. n -1] of distinct numbers drawn from a universe U = {O,...,N - },
we can then create a bit vector B[O. . N - I] representing the set of numbers
appearing in A, by initializing B to be all Os and then setting B[A[O]I, B[A[1]],
... I B[A[n - 1]] to 1. The numbers in A have now served their purpose; the
rest of the procedure reconstructs those numbers from left to right in A in their
sorted order. This is done by traversing the bit vector B from left to right; each
time we encounter a position in which a I occurs, we insert its index into the
next position in A.

If this simple bit vector representation is used, then Bucket Sort takes O(N)
time to initialize B, 0(n) time to insert the elements of A, and O(N) time to
traverse B, for a total of O(N). The initialization step can be sped up by
the device shown on page 258, at a cost of much greater memory usage; but
traversing the bit vector still takes Q(N) time, so this refinement is not worth the
trouble. Nonetheless there are many algorithms in which N is known in advance
and there is a regular need to maintain and sort subsets of {O,. . . , N -}, and
in these cases Bucket Sort is the algorithm of choice.

It should be noted that while Bucket Sort is indeed a linear-time algorithm
in practice, in a theoretical sense it really is not. That is, if we consider N and n
to be arbitrarily large, then the keys must have at least lg N bits for them to be
distinct. If lg N were sufficiently large, then table indexing using indices of this
size could not be considered a constant-time operation, but would cost P(log N)
time. If table references are regarded as costing Q(log N) rather than 0(1), then
bucket sort becomes an O(N log N) algorithm. It is only because table indexing
takes constant time for tables of practical size that Bucket Sort takes linear time.

If the numbers in A need not be distinct, then a very similar method can
be used, but the bit vector must be replaced by a table representing the number
of times each key appears in A. That is, in place of the table B[O. . N - 1] of
bits which can be 0 or 1, we need a table C[O. . N -I] whose elements are
counts-values between 0 and n, inclusive. Reconstructing the table A from
these counts simply requires replicating in A each index i a number of times
equal to C[i].

A further generalization extends Bucket Sort to the case in which A con-
tains records, or pointers to records, which may themselves be large though the
keys are small numbers. In this case simply keeping counts of the number of
occurrences of a key is not sufficient, since the table A cannot be reconstructed
from an enumeration of the keys. In place of the bit vector B or count table C
we must use a table of sets S[O. . N - 1], where S[i] contains pointers to the
records with key i. For example, S might be a table of linked lists. The set
S[i] is called the bucket of data with key i, and we think of the distribution
part of the algorithm as picking up the members of A and dropping each into its
appropriate bucket (Algorithm 11.8). The second phase of the algorithm goes

398 SORTING

procedure BucketSort(table AI[O. . n -1]):
{A is a table of pointers to records to be sorted on their Key fields}
{S[O. . N - 1] is a table of sets}

for i from 0 to N - 1 do S[i] - MakeEmptySeto)
for j from 0 to n - 1 do Insert(Aj], S[Key(A[j])])
j +-
for i from 0 to N Ido

until IsEmptySet(S[i]) do
x 4- any member of S[i]
Delete(x, S[i])
Ad] *- x
j +-j + I

Algorithm 11.8 Bucket Sort. The table passed as an argument contains point-
ers to the actual records; only this table of pointers is to be sorted.

through the bucket table in index order to construct a sorted version of A. If A
contains pointers to records as in Algorithm 11.8, this construction can be done
in place and in one pass, but otherwise it may be necessary to allocate separate
memory in which to construct the final sorted table.

Whether or not Bucket Sort is stable depends on the implementation of the
set data structure. If elements are withdrawn from the S[i] in the same order in
which they were inserted-that is, if the sets behave like queues-then bucket
sort is stable. This effect can be achieved by using a linked queue representation,
rather than a simple linked list representation; in this case, both insertion and
deletion take constant time.

Radix Sort
If the keys are not small enough to use as table indices, bucket sort cannot be
used in the form presented, but it may be possible to sort the data by doing
several phases of bucket sorting on successive fragments of the keys. To take a
simple example, suppose that the keys consist of two-character strings, and that
a character is 8 bits. Thus there are 256 characters, which is a good length for
a table, but there are N = 65536 possible keys, which is a bit large for a table.
Let us assume that the sorting order for the keys is like the dictionary ordering,
so that, for example, AA < AB < BA < BB. Then the keys can be sorted by

1. first, doing a bucket sort of all the records using only the second character
as the key value; and

2. then, doing a bucket sort of the resulting table using only the first character
as the key value. It is important that the algorithm used be stable, so that
the relative order of two keys with the same first character but different
second characters is preserved.

11.6 DIGITAL SORTING 399

For example, consider the table of keys

CX AX BZ BY AZ BX AY.

When this table is sorted using only the second character as the key value, three
buckets are used:

X Y Z

CX AX BX BY AY BZ AZ.

When this list is bucket sorted on the first character of the keys, again three
buckets result:

A B C

AX AY AZ BX BY BZ CZ.

The concatenation of these three buckets is the sorted table. Each pair of keys
is in the right order; for if the two keys have different first characters they are
in the right order because they were put in separate buckets in Step 2, and if the
two keys have the same first character then by stability Step 2 does not change
their relative order, which was correct just before Step 2 since they were put in
different buckets in Step l.

Exactly the same method works if the keys are broken into more than two
chunks; the resulting algorithm is called Radix Sort. To be specific, let us
assume that the Key field is broken into K components, Keyo, .- KeyK- ,
each of which has value in the range from 0 to N - 1. For example, if the
keys are character strings then K is their length and N = 256, or if the keys
are identification numbers with nine decimal digits then K = 9 and N = 10.
Moreover, let us assume that KeyK- is the most significant position in the key
and Keyo is the least significant position; for example, if the keys are decimal
numerals then KeyK-l is the leftmost digit and Keyo is the rightmost digit.
With these conventions, Algorithm 11.9 gives the details. This algorithm is
quite similar to Algorithm 11.8, except that there is an outer loop that iterates
over the components of the key, since the key component being sorted on de-
pends on the loop iteration. Also, the general set operations of Algorithm 11.8
have been replaced by queue operations to ensure that the later phases of the
algorithm are stable.

Radix Sort works best when maximum advantage is taken of the parallelism
in the computer hardware, by using as large a key fragment as possible for the
bucket sorting. For example, to sort a large number of 32-bit keys we could do
four passes, sorting on 8-bit key components, or eight passes, sorting on 4-bit
key components. The second method takes almost exactly twice as long as the
first, since each pass of either version takes the same amount of time. The
reason we seem to have gotten "something for nothing" is that the addressing
hardware can as easily index on an 8-bit index as on a 4-bit index, and if we
elect to use only 4-bit indices we do not gain anything in return. This reasoning

400 SORTING

procedure RadixSort(table A[O.. n - 1]):
{A is a table of pointers to records to be sorted}
{S[0.. N - 11 is a table of queues}

for i from 0 to N - 1 do S[i] +- MakeEmptyQueue()
for k from 0 to K - 1 do

for j from 0 to n - 1 do Enqueue(A[j], S[Keyk(A[j])])
j -0
for i from 0 to N - Ido

until IsEmptyQueue(S[i]) do
A[j] +- Dequeue(S[fl)
j j + 1

Algorithm 11.9 Radix Sort. The table A contains pointers to the records,
which have K key components; record R is to be sorted on the K-tuple
(KeyK-l(R), .. ., Key0(R)), with the leftmost component being the most sig-
nificant. The table S of queues is used within the algorithm; there is one queue
for each possible value of a key component.

breaks down when the key components become too big to use as table indices;
for example, we could theoretically radix-sort the 32-bit keys in a single pass
by bucket-sorting on the entire 32-bit key. But this would require a table of
232 or over four billion entries and a computer that can index on a full 32-
bit index into that table. Moreover if there are so many buckets that many
of them are likely to be empty, then the time to initialize the queues and to
concatenate empty queues becomes significant and degrades the performance of
the algorithm; so the number N of queues should not be much greater than the
number n of keys.

At the other extreme, we could sort 32-bit keys by doing thirty-two passes,
each on a one-bit key. Note, however, that the linear time complexity has now
been completely lost; 32 is really Ig N, and the result is effectively a E/(n Ig N)
sorting algorithm.

Radix Exchange Sort
Even though Radix Sort is not particularly effective when the keys are bro-
ken down into single bits, there is a digital sorting algorithm that works well
when keys are viewed in this way. This algorithm, called Radix Exchange
Sort, has the advantage that, like Quick Sort, it uses no auxiliary storage ex-
cept for a stack used to implement recursion, which can be kept relatively
small.

Imagine the keys themselves to be in the table A[O . . n - 1] (the same
method works if A contains pointers). Starting with the most significant bit,

11.6 DIGITAL SORTING 401

procedure RadixExchangeSort(table A[.. r], integer k):
{Sort A[1.. r] on bits k, ... , 0}
{The outermost call should be RadixExchangeSort(A[O . . n- 1], K - 1)}

if k > 0 and 1 < r then
i +-1 {i scans from the left to find elements with 1 in bit k}
j +- r {j scans from the right to find elements with 0 in bit k}
while i < j do

while i< j and bit k of A[i is 0 do i i + 1
while i < j and bit k of AU] is 1 do j j - 1
if i < j then

A[i] +-* AU]
i-i+1

RadixExchangeSort(A[l. .i - 1], k - 1)
RadixExchangeSort(A[i. . r], k -1)

Algorithm 11.10 Radix Exchange Sort. The table contains K-bit values; the
most significant bit is bit K - 1, and the least significant bit is bit 0.

search from the left for an entry that has a 1 and from the right for an en-
try that has a 0. If two such keys are found and the first is to the left
of the second, exchange them and continue. Stop when the two searches
meet. When this pass is done all keys with most significant bit 0 are to
the left of all keys with most significant bit 1; something very like a parti-
tion step of Quick Sort has been effected, with the pivot value being 100... .0.
When this step has been completed the keys with most significant bit 0, which
are at the left end of the table, are sorted recursively on the remaining bits,
and the keys with most significant bit 1 are also sorted recursively (Algo-
rithm 11.10).

The stack used implicitly by Algorithm 11.10 grows to height K, which in
general does not place a limitation on the algorithm's usefulness. Probably the
main inefficiency actually arises because the later sorting passes are likely to
accomplish less than the first. For example, if the keys are alphabetic strings,
they may be well-distinguished by their first few characters, so the table may
be almost in order after sorting on the first few bits; but Algorithm 11.10 calls
for many recursive invocations of itself, each of which sorts a subtable that
probably is quite short. A strategy to increase the speed of the algorithm is
to abandon the radix exchange method after a few bits and to switch to a
method that works well on data that are almost in order, such as Insertion
Sort.

402 SORTING

11.7 EXTERNAL SORTING

All the sorting algorithms discussed in the previous sections depend in essential
ways on the ability to move data to arbitrary locations in memory. If the data
are on tape or in a disk file, then access may be restricted to a sequential
scan, which must begin at the beginning of the file and cannot reach a later
position without traversing all the intermediate records. Thus the constraints
on external sorting methods are inherently more severe than those on internal
sorting methods. For simplicity we shall refer to the external storage medium
on which the data are stored as a tape, although similar restrictions may apply
to disks either for physical reasons or because of conditions imposed by the
operating system. (Even though it may be possible to access blocks of a disk
file randomly, the cost of accessing a new block is so high by comparison with
the cost of accessing another record in the same block that algorithms for sorting
disk blocks must try to make good use of all the data in a block when any datum
is accessed.)

Merge Sorts
Merge Sort was described in Chapter I as a recursive algorithm that sorts a table
by recursively sorting its first and second halves and then merging the sorted
halves. The computation preceding the innermost recursive calls consists of
subdividing the table into smaller and smaller blocks; the computation following
the innermost recursive calls consists of merging sorted blocks into larger sorted
blocks until the whole table is sorted. If we ignore the recursive control structure
and simply implement the repeated merging of blocks from the bottom up, we
get a version of Merge Sort suitable for sequential-access media.

The Merge Sort algorithm for sequential files first organizes the file into a
sequence of runs, which are sorted subfiles. In principle the runs could be of
length 1 initially; this corresponds to Algorithm 1.7 on page 29, which carries
out the recursion all the way to the level of single data items. In practice,
however, it is more efficient to use whatever internal random-access memory
is available to break the initial file into runs that are as long as possible. One
way to do this is to transform the original completely unsorted file into runs by
reading in a bufferfull of data, sorting it internally, and writing it out as a run to
a new file. The larger the buffer that is available, the longer the runs. We shall
see at the end of this section an interesting variation on this simple method of
run generation.

Suppose that the original file has been transformed into a sequence of r runs,
each of length roughly b, which are stored on a tape (Tape I in Figure 11.4).
The simplest version of Merge Sort for sequential files, called Straight Bi-
nary Merge Sort, distributes these runs alternately onto two other tapes (Tapes
2 and 3), each of which winds up with roughly r/2 runs of length b. Pairs of
runs, one from each file, are then merged together and stored back on Tape 1.
The result of the merger is a file consisting of r/2 runs, each having length 2b.

11.7 EXTERNAL SORTING 403

PASS 1 PASS 2 PASS 3

TAPEl 1 0 1J234567 01 | 23 | 45 | 67 |

distribute\ merge \distribute

TAPE2 024 | 01 4 45 |

TAPE 3 113523 67

PASS 4 erge

TAPE 1 0123 | 4567 01234567

\distribute 7 merge
PASS 5 PASS6

TAPE2 20123'

TAPE 3 4567

Figure 11.4 Merge Sort algorithm for sequential files. Originally the file is
stored on Tape 1 and is broken into 8 runs, indicated by the numbers 0
through 7. These runs are distributed alternately on Tape 2 and Tape 3.
Then Tape 2 and Tape 3 are merged back to Tape 1; for example, runs 0
and 1 are merged to form a new run, twice as long, which is called 01.
The net effect is to halve the number of runs and to double their length.
Repeating this process twice more results in a single run that is eight
times as long as the original runs. Each scan through the data counts as a
pass; thus the first, third, and fifth passes are distribution passes, and the
second, fourth, and sixth passes are merge passes.

The splitting and merging process can be repeated in exactly the same way on

the new sequence of runs, continuing until the file has been reduced to a single

run of length n.

If the number of runs to be distributed is not even, one tape winds up with

an extra run. During the merge phase of the algorithm the extra run is simply

copied back; we can picture it as being merged with an empty run on the other

tape. During the entire course of the algorithm, the net effect of introducing

these empty runs is as though the number of initial runs had been rounded up

to the next power of 2 greater than or equal to r. Therefore the total number of

cycles of distribution and merging needed to sort the initial r runs is Fig ri.

The crucial cost measure for an algorithm operating under these circum-

stances is the total number of times that a record is handled, that is, the total
number of passes over the data. If the data are stored on tape, the number of

passes is proportional to the total amount of tape movement, so reducing the

number of passes is the most significant way of reducing the time used to sort

the data. In Merge Sort as we have described it, every other pass, starting with

404 SORTING

PASS 1 PASS 2 PASS3 PASS4

TAPE 1 10111212341567 012 | 345 67 01234567

distribute merge distributee merge

TAPE2 / 0122

TAPE3 31 47 345

TAPE4 2 6

Figure 11.5 Straight Ternary Merge Sort.

the first, distributes the data from Tape 1 to Tapes 2 and 3, and the alternate
passes merge Tapes 2 and 3 back to Tape 1. Since it takes flgrl merges to
transform the original sequence of r runs into a single run, the total number of
passes required by Straight Binary Merge Sort is 2[Igrl.

If more than three tapes are available, the Straight Binary Merge Sort algo-
rithm can be generalized to take advantage of the extra tapes. If there are
T = t + I tapes available, where t > 2, then the Straight Multiway Merge
Sort algorithm alternates between distributing runs from Tape I onto the other
t tapes, and merging the t tapes back to Tape 1 (Figure 11.5). If there are origi-
nally r runs, one distribution and one merge pass produce a tape with about r/t
runs, each of length about bt. Hence the total number of passes needed to sort
the original r runs is 2 [logt rl = 2 [ig r/ Ig tj. This is a decreasing function
of t, but it flattens out rather dramatically as t increases; most of the advantage
of a Multiway Merge is gained by increasing t to 3 or 4, and thereafter the
percentage gain in using more tapes is relatively small.

The reason why adding more tapes to the Straight Multiway Merge Sort
algorithm gains so little is that most of the tapes are quiet most of the time,
especially during the distribution passes. A simple way to increase the activity
level per tape is by a Balanced Multiway Merge. Suppose that the total
number T of tapes is even. Then the merge and distribution passes can be
united by dividing the tapes into two subsets of T/2 tapes each. Initially the
runs are distributed among the first T/2 tapes with about 2r/T runs per tape,
the other T/2 tapes being empty. In the first pass the T/2 runs are merged,
and are redistributed among the other T/2 tapes (Figure 11.6). After this phase
there are I'/2 empty tapes, and T/2 tapes each containing 4r/T2 runs that are
each about T/2 as long as the original runs. The same merge and redistribution
pattern is then repeated in the opposite direction, and this process is repeated
until there is only a single sorted run.

Balanced Multiway Merge reduces the number of runs by a factor of about
T/2 on each pass, so the total number of passes is about

[1ogT/2 r = lIgT

11.7 EXTERNAL SORTING 405

PASS 1 PASS 2 PASS 3

TAPE 0 1 |23 0145l

TAPE2 4 5 67 2367 |

TAPE 3 F04 | 26 | 01234567

TAPE4 15 37

Figure 11.6 Balanced merge with T = 4 tapes.

PHASE 1 PHASE2 PHASE3 PHASE4

TAPE 1

TAPE 2

TAPE 3

Figure 11.7 Polyphase Merge Sort. Each rounded rectangle encloses the
runs that are processed during a particular phase of the algorithm; the
arrow points to the tape that is created by merging these runs.

Perhaps it would be fair to add one additional pass to distribute the runs from a
single tape among the initial set of T/2 tapes. For example, when T = 4, Bal-
anced Multiway Merge uses about 1 + [ig rl passes, whereas Straight Multiway
Merge uses about [2lgr/1g31 = [1.261grl passes.

Polyphase Merge Sort
In Balanced Multiway Merge Sort the activity level per tape is increased because
every pass is both a distribution pass and a merge pass. However, among the
T/2 tapes being distributed to, only one is active at a time; the rest are simply
waiting their turn to receive a run. It would be better if a (T - 1)-way merge
could take place at every step. This effect can actually be achieved, by using
runs of different lengths with different numbers of runs on each tape.

Polyphase Merge Sort proceeds in a sequence of phases, each of which
may be only a partial pass over the data. A phase is defined as the time during
which a particular set of T- I tapes is being used as the source of a merge and the
remaining tape is being used as the destination. To take a concrete illustration,
suppose there are T = 3 tapes and r = 8 runs initially (Figure 11.7). Initially
the runs are distributed on Tapes 2 and 3, but not evenly; Tape 2 has five runs

406 SORTING

and Tape 3 has only three. (We shall return later to the question of where
these "magic numbers" come from.) During the first phase Tapes 2 and 3 are
the source and Tape 1 is the destination. The first three runs from Tape 2 are
merged with the three runs on Tape 3, creating three runs on Tape 1, each of
length 2b. Tape 3 is now empty, but there remain two runs on Tape 2. During
the second phase the two runs remaining on Tape 2 are merged with the first
two runs on Tape 1, creating two runs of length 3 on Tape 3. Tape 2 is now
empty, but there remains one run on Tape 1. In the third phase this run is
merged with the first run on Tape 3 to create a new run on Tape 2. In the final
phase the remaining run on Tape 3 is merged with the run on Tape 2 and the
result, which is a single run of length 8, is put on Tape 1. The total amount of
data processed by this procedure, measured in units of the size of the original
runs, is 6 in the first phase, 6 in the second phase, 5 in the third phase, and 8 in
the fourth phase, for a total of 25; this works out to 25/8 = 3.125 passes over
the data using three tapes.

What was special about the way the runs were distributed on the tapes
initially that permitted the Polyphase Merge algorithm to flow so conveniently
from one phase to the next and wind up with a single sorted run in the end? We
can work out the pattern by starting from the last phase and working backwards.
To wind up with a single run after a binary merge in the end, at the beginning
of the last phase there must have been single runs on two tapes and the third
tape must have been empty. One of these single runs must have been created
in the next-to-last phase, and the other must have been "left over"; this means
that at the beginning of the next-to-last phase one tape must have had two runs,
one must have had one run, and the remaining tape must have been empty. In
the phase prior to that, the tape with two runs was created, out of a tape with
three runs and a tape with two runs, leaving one run behind.

In general, if at the beginning of a phase the three tapes contain x, y, and 0
runs, where x > y, then at the beginning of the previous phase the three tapes
must have contained 0, x + y, and x runs, respectively. At the beginning of
the last phase the two nonempty tapes each contain 1 run. Therefore at the
beginning of the kth from last phase the nonempty tapes contain Fk+, and Fk+2

runs, where Fj is the ith Fibonacci number (and the last phase is viewed as the
",Oth from last"). In this way at the beginning of the k + 1st from last phase the
nonempty tapes contain Fk+2 and Fk+j + Fk+2 Fk+3 runs.

So to make the Polyphase Merge procedure "come out even" at the end,
the number of initial runs r must be a Fibonacci number. If it is not, empty
runs can be introduced, as many as are needed to bring r up to a Fibonacci
number; merging a nonempty run with an empty run entails simply copying the
nonempty run. Unfortunately, the device of empty runs reduces the efficiency
of the method somewhat, since simply copying a run is relatively unproductive
labor; and it is not even clear how the empty runs should be distributed initially
in order to make the algorithm most efficient.

11.7 EXTERNAL SORTING 407

The number of passes required by Polyphase Merge Sort is a bit complicated
to analyze, especially given the variety of options for distributing the empty
runs. If the empty runs are distributed evenly between the two tapes initially,
the number of passes turns out to be roughly 1 + 1.04 Ig r, a little more than half
as many as needed for Straight Binary Merge Sort with three tapes.

The Polyphase Merge Sort algorithm can be generalized to work for more
than three tapes. For example, if there are four tapes, we would like every step
to be a three-way merge. The initial distribution of runs must then follow a
generalized Fibonacci pattern. If we start a sequence of numbers with 0, 0, 1,
and then continue it in such a way that each subsequent number is the sum of
the previous three numbers in the sequence, we get

0,0, 1, 1,2,4,7, 13,24,44,....

This sequence is called the Fibonacci sequence of order 3, F3, F3, ... (the
ordinary Fibonacci sequence is then the sequence of order 2). The generalized
Polyphase Merge Algorithm with four tapes ends with a single run on one tape
if initially the four tapes contain

n+2 Fn+2 + Fn+i +F +F, and 0

runs, for some n > 0. Then after one pass the tapes will contain

0, F3+ F 3 + F , and F3 = F,+1 + F, + F 3

runs, respectively. As is the case with Straight and Balanced Merge, increasing
the number of tapes decreases the number of passes, but the advantages of
additional tapes diminish rapidly. With four tapes the number of passes is about
1+0.7 Ig r-a 30% improvement over Balanced Multiway Merge with the same
number of tapes-and with five tapes it is about 1 + 0.6 Ig r, but to reduce the
number of passes to 0.5 Ig r, plus a constant, twenty tapes must be used!

Generating the Initial Runs
Of course, all these algorithms work faster if there are fewer runs to begin with,
so it is worth spending some time finding ways to generate the initial runs so
that they are as long as possible. Our original suggestion, made back at the
beginning of this section, was to cut up the original data file into chunks of the
size that could be accommodated in internal memory, use an internal sorting
algorithm to sort each chunk, and write the sorted chunks out to tape as runs.
If we can afford to allocate an internal buffer that can hold b records, then our
original file of n records will be divided up into r = Fn/bl runs, each of which
is of size b except for the last, which may be smaller.

At first it might appear that this is about as well as we can do, but a look at
an extreme case shows how stupid this method actually is: if the file was sorted
in the first place, the run generation process breaks it up into a sequence of
many runs, which will be elaborately sorted by merging to restore their original

408 SORTING

order! Somehow we should try to take advantage of any preexisting order in
the data.

The replacement selection procedure uses whatever internal buffer space
is available to hold records which are classified into two types: records that will
eventually be output into the current run, and records that will have to belong to
the next run. Initially the buffer is filled up from the input file, and all the data
items are designated as destined for the current run, which will be the first run.
A run is produced by repeatedly selecting from the buffer and outputting the
smallest item that should go into the current run; then another item is read from
the input data file. If the new item is larger than the item that was just output,
it will eventually become part of the current run. However, if the new item is
smaller than the item just output, it will have to be part of the next run. Thus the
total number of items in the buffer remains constant, but as a run is produced
the balance between current-run items and next-run items tends to shift. When
there are no more items for the current run, a new run begins on the output
tape; the next-run items in the buffer are redesignated as the current-run items
and the set of items designated for the next run once again becomes empty.

The replacement selection algorithm can be implemented elegantly and with
no overhead for data structures by dividing a single block of buffer space into
two priority queues implemented as back-to-back heaps, one whose root is at
the left end and grows to the right and one whose root is at the right end and
grows to the left (Figure 11.8). The point where the two heaps meet is the
dividing line between the current-run items and the next-run items. Each item
brought in from the input file goes into one of the two heaps, depending on a
comparison of its key to the key of the last item that was output. When the
current-run heap becomes empty the next-run heap becomes full, and their roles
are reversed.

When replacement selection is applied to a file that is already sorted, the file
flows through the buffer without interruption and emerges as a single sorted run.
In fact only a single run will be produced provided that no item is preceded
anywhere in the input file by more than b - I items that ought to follow it
(Problem 43). On the other hand replacement selection works worst on a file
that is initially in reverse order. In this case the priority queue is initially filled
with the largest b items in the file; the smallest of these is output to begin the
first run; it is replaced by an item that is smaller than any seen so far, including
the one that was just output, so it must be marked to be part of the second
run; and all subsequent selections of items to be output are made from the first
bufferful of data, until it has been completely replaced by the second bufferful of
data from the input file. So if the file is originally in reverse order replacement
selection behaves exactly like the naive method and produces Fn/bl runs of
size b or less.

What is the expected behavior of replacement selection, between the ex-
tremes of a single run of size n and Fn/bl runs mostly of size b? In other

11.7 EXTERNAL SORTING 409

|12147119133121 40

Input 5
File

(a)
Current-Run
Heap

1121471191331

Input File

Current-Run Heap

(c)

Output
File

Next-Run
Heap

Output
File

Next-Run
Heap

112147119133121

- * ~55
Input File M4

0

(b)
Current-Run
Heap

F30]

Output File

Next-Run Heap

. |12|47|19| j3

Input File 61 Output

File ~ -

Current-Run Next-Run
(d) Heap Heap

Figure 11.8 Replacement selection algorithm, implemented by means of
two heaps whose total size is 7. (a) Initially the output file is empty, the
current-run heap is filled with items from the input file, and the next-run
heap is empty. (b) The smallest datum in the current-run heap is 30;
this item is output. It is replaced by the next item from the input file,
namely, 40. Since 40 > 30 this item goes into the current-run heap.
(c) The smallest item in the current-run heap, namely, 37, is output. The
next item from the input file is 21, and since 21 < 37 this item goes
into the next-run heap. (d) The smallest item in the current-run heap, 39,
is output. The next item from the input file is 33, which goes into the
next-run heap since 33 < 39.

words, what is the expected length of a run, if all permutations of the input file
are assumed to be equally likely? This quantity can be analyzed quite readily
by appeal to a physical analogy.

For simplicity let us assume that the key values are in the range 0 < K < 1.
Imagine the priority queue to be a circular track that is exactly 1 kilometer in
circumference; there is a fixed position that is marked as 0, and each position on
the track corresponds to a particular key value between 0 and 1 (Figure 11.9(a)).
The data items are snowflakes; when the priority queue is full there are exactly b
snowflakes piled up on the track, and a snowflake representing a datum with key
value K would rest on the track at position K. Just as the data coming in from
the input file are in random order, the snowflakes are falling at random places
along the track. Meanwhile a snowplow is plowing snow off the track, just as

410 SORTING

0

0.25 0.75

0.50

(a)

0 0.25 0.50 0.75

(b)

Figure 11.9 (a) The snowplow plowing its circular track. (b) If it snows
steadily on the track at a rate that exactly matches the rate at which the
snowplow is removing snow from the track, then the amount of snow
plowed during a complete cycle is twice the amount of snow on the
track at any point in time, since the snowplow always sees the pile at its
maximum height.

data are being removed from the internal buffer for output to tape. When the
snowplow passes the 0 point on the track, a new run on the tape is begun, since
the key value of the snowflake being plowed changes from a number just less
than I to a number that is 0 or just greater. It is snowing at just the same rate
that the snowplow is plowing (every datum removed is immediately replaced),
so the total amount of snow on the track (the total number of items in the buffer)
remains constant.

Under this analogy, the question, "What is the expected length of a run?"
becomes: "How much snow does the snowplow plow during one circuit of the
track?" Since everything is assumed to be in steady state-the speed of the
snowplow matches the intensity of the snowstorm, and the amount of snow on
the track remains the same at all times-the height of the snow on the track is
greatest just in front of the snowplow and decreases linearly around the track;
just behind the snowplow the height of the snow is 0. But the height of the
snow right in front of the plow remains constant during the plow's complete
circuit of the track. Consequently during a complete circuit of the track the
snowplow plows the area of a rectangle of constant height and of base equal to
the circumference of the track, while the amount of snow on the track at any
instant is the area of a triangle of the same height and base. Therefore the total
amount of snow plowed is twice the amount that is on the track at any one time
(Figure 11.9(b)). Thus the expected run length when replacement selection is
used is 2b.

tariffs I li�_ lllmopg p�"I 11 11 1 I , ,, I

11.8 FINDING THE MEDIAN 411

11.8 FINDING THE MEDIAN

Let us return from the world of external data storage to consider a problem
apparently related to internal sorting, the problem of finding the median of a
table, or more generally, finding the jth smallest element in a table. The median
of a table of n numbers is that number k in the table that would be in position
Fn/21 - 1 (counting from 0) if the table were sorted into increasing order. For
example, the median of the table 5, 7, 6, 3, 1, 2 is 3, and the median of the
table 3, 1, 1, 3, 3 is 3. (We talk about the median of a table rather than the
median of a set so that the same number can occur several times.) There are
always at least [n/2] numbers in the table less than or equal to the median and
at least fn/2] numbers in the table greater than or equal to the median. How
can we find the median?

Of course, if the table is already in order from smallest to largest, we can
simply look in position Fn/21 - 1; this takes constant time. If the table is not
in order, we can sort it and then look in the middle; if we use a good sorting
algorithm the whole process can be done in time O(nlogn). Any approach
that relies on sorting will take time Q(n log n) in the worst case; but sorting,
of course, gives back much more information than we wanted to find. All the
effort required to get the other n - 1 numbers in their correct positions in the
table produces a result that really does not interest us. Is there some way to
find the median in linear time, by avoiding some of the computation involved
in a full sort of the data?

To most people the problem of finding the median does not "look" like a
problem for which a divide-and-conquer strategy could be helpful; for example,
the median of a table might bear no relation to the medians of its first and
second halves. Indeed, at first it is hard to imagine that any divide-and-conquer
strategy will be effective in attacking the median problem. The first case of the
Divide-and-Conquer Recurrences Theorem suggests that to achieve a linear-time
recursive algorithm, we need to do two things on each call, when the argument
is of size n: first, ensure that the amount of time spent, except for the recursive
calls, is linear in n; and second, ensure that the total amount of data passed
to recursive calls is less than n by a fixed percentage. The algorithm we now
design achieves the first goal, and approximately achieves the second goal as
well, though it does not exactly fit the divide-and-conquer paradigm as presented
on page 32.

The problem of finding the median by a recursive algorithm becomes more
tractable if we recast it as a special case of the more general problem of finding
the kth largest. That is, we wish to design an algorithm Select(T, n, k) that
returns, for any table T of n > 0 integers, the one that would be in position k if
the table were sorted, where 0 < k < n -1. Finding the median then amounts to
calling Select(T, n, [n/21 - 1). Note that if k were always some small number
such as 0 or 1 then it would be easy to find a linear-time method; the difficulty
arises only because k might be somewhere "in the middle."

412 SORTING

Consider a table T of length n, and call the numbers in the table T[OI,
T[n - 1]. For the time being think of n as relatively large; we shall take care
of the case in which n is small later (as well as defining exactly what "large"
and "small" mean).

Imagine dividing the table into blocks of 5 numbers each (depending on the
value of n, the last block might have anywhere between I and 5 numbers). We
say "imagine," because we do not need to move the data; we simply think of
the first block as consisting of T[O], ... , T[4], the second block as consisting of
T[5], ... , T[9], and so on. (5 is not the only possible choice for the length of
the blocks; actually any odd number greater than or equal to 5 will do. But the
number has to be chosen once and for all before the value of n is known.) There
are [n/5J blocks in all; let us call this number b. Any single block of 5 numbers
can be sorted in constant time using any convenient sorting method, including
one that is optimized for the special case of exactly 5 numbers. Therefore all the
blocks can be sorted in 0(b) (O[Ln/5j) = 0(n) time, with the proportionality
constant depending on the speed with which we can sort a single block of 5
numbers. When this has been done we can assume that, if u, v, x, y, z is one
of these blocks, then u < v < x < y < z. Thus we can compile (elsewhere in
memory) a table of the medians of the blocks:

M[O. . b- 1] = T[2], T[7], T[12],..., T[5b-3].

Now find (recursively!) the median of the table M, whose length is b, by calling

m +- Select(M, b, rb/21 - 1).

Thus m is the "median of the medians" of the blocks.
At first it might seem that nothing has been accomplished, since the median

of the medians might well not be near the median of the original table. But
in fact we do know something; in the block u, v, x, y, z, if x < m then we
definitely know that u < m and v < m, even though we know nothing about
y or z. Likewise if x > m then we definitely know that y > m and z > m,
even though we know nothing about u or v. That is, we can be certain about
three out of the five members of each block, by comparing m with the "block
median" x. Moreover we also know that about half the block medians are less
than or equal to m, and about half are greater than or equal to m; this is because
m is the median of M. To be precise, we know that at least Fb/21 of the block
medians are less than or equal to m and at least [b/21 of the block medians
are greater than or equal to m. Now let n< be the number of elements of the
original table T that are less than m, let n. be the number of elements of T
that are equal to m, and let n> be the number of elements of T that are greater
than m; thus n< + n= + n> = n. Then because, in each block whose median
is less than or equal to mn, three out of the five elements are less than or equal
to m,

n< + n= > 3 [b/21, (la)

11.8 FINDING THE MEDIAN 413

and similarly

n_ + n> > 3 [b/21. (Ib)

Now let us form two new tables: 7<, which is a table of all the members
of T that are less than m; and T>, which is a table of all the members of
T that are greater than m. Then we can complete the call Select(T, n, k) by
returning m or recursively calling Select on table T< or T., depending on the
relation between the value of k and the values of n<, n=, and n>:

if n< > k then return Select(T<, n<, k)
else if n< + n= > k then return m
else return Select(T>, n>, k- n< - n.)

It remains to specify the base case of this recursion. Let no be some number
such that, for all k > no ,

3FLk/5]/21 > [k/41. (2)

For example, the number 40 has this property (Problem 47).* Then if n < no the
recursive method is abandoned; instead the table is sorted directly and element
fn/21 -I is selected by indexing.

To show that this recursive method runs to completion in linear time, we
must establish that n< and n>-the size of the tables on which Select might
be recursively called-are not too large by comparison with n. But it follows
immediately from (1) and (2) that

n< < n - n/41 = [_3n/4j,

and similarly n> < L3n/4j. Therefore the running time of the algorithm can
be characterized by the recurrence

T(n) < fc, if n <no (3)
l T([n/5j) + T([3n/4j) + c'n, if n > no.

This recurrence does not fit the format of the Divide-and-Conquer Recurrences
Theorem because the two recursive terms have different arguments; however,
the sum of the arguments is [n/51 + [3n/4J < n for n > no. This suggests that
the solution will be linear, but we must check to be sure. (See Problem 43 of
Chapter I for a general version of this argument.) First, assume that 20c' > c;
if this is not the case then the value of c' can be increased without affecting the
validity of (3). Then it is easy to show by induction that T(n) < 20c'n for all
n > 0. For if 0 < n < no then T(n) < c < 20c' < 20cn. And if n > no and
T(m) < 20c'm for all m < n, then

T(n+ 1) < T(L(n+ 1)/5]) +T(L(3n+ 3)/4j)+c'(n+ 1)

* The value of no is chosen once and for all at the time the algorithm is written; it does not depend
on n.

414 SORTING

< 20c'[(n + 1)/5J + 20c'[(3n + 3)/4J + c'(n + 1)

< 4c'(n + 1) + 5c'(3n + 3) + c'(n + 1)

= 20c'(n + 1).

So this algorithm can be used to find the median value of a table, or the item
in any other ordinal position, in time linear in the size of the table.

Problems

11.1 1. (This problem is one of psychology, not mathematics.) Suppose you
are given two dozen numbers on a piece of paper, and are asked to
produce-by hand-another piece of paper with the same numbers
in order. What sorting method would you use? Does your answer
change if there are five hundred numbers? What if there are five
thousand numbers, with five hundred on each of ten pieces of paper?

2. You are given n intervals li = [ai, bi] on the real line, where ai < bi
and 1 < i < n. Give an algorithm that computes the measure of this
set of intervals, that is, the total length of UU11hi, in Q(nlogn) time.

11.2 3. Suppose that A[O. . n - 1] has the property that no element is more
than k away from its proper position; that is, there is a sorted version
of A, say A[p(O)] < A[p(1)] < ... < A[p(n - 1)], where p is a
permutation of {O, .. ., n- 1}, such that ji-p(i)I < k for each i. Give
an exact upper bound on the number of comparisons Aij - 1] > x
performed by Insertion Sort (Algorithm 11.1 on page 382), and exhibit
a table A for which that is the number of comparisons performed.

4. Show that if the increments for Shell Sort are defined by the recursion

hi = 1

hi,, = 3hi + 1,

then hi = (3 i - 1)/2 and the index of the last increment that is less
than n ist = [log3 (2n + l)J.

5. In Figure 11.1 on page 384, how many element-to-element compar-
isons does Shell Sort make during the sorting passes with the two
increments? Insertion Sort would make 11 * 12/2 = 66 comparisons.

6. Suppose that Shell Sort is run with only a constant number of incre-
ments, independent of n. (The increments themselves might depend
on n, but the same number of increments are used, whether n is 10
or 10 billion.) Show that under these circumstances Shell Sort has
quadratic time complexity.

7. Sort the sequence 237, 563, 003, 876, 393, 323, 266, 591, 139, 041,
980, 769 using Shell Sort with the increments 4 and 1.

PROBLEMS 415

11.3 8. What arrangement of the table causes Selection Sort to have its worst-
case behavior?

9. How does Heap Sort behave if the table is in order already? in reverse
order?

10. a. Show that Heap Sort is unstable.

b. Find a table A[O. . 3] such that Key(A[O]) = Key(A[l]) but the
relative order of these two elements in the sorted output produced
by Heap Sort depends on the value of one of the other elements
of the table.

11. Algorithm 11.4 and Algorithm 11.5 provide an O(n log n) worst-case
sorting algorithm. This problem concerns constant-factor improve-
ments in the running time of Heap Sort that can be achieved by
reducing the number of comparisons of data items. The key to these
improvements is in the implementation of Heapify, which inserts a
single item into a heap.

a. Show that a careful recoding of Algorithm 11.5 can reduce the
number of data item comparisons to about 2n Ig n in the worst
case.

b. Show that this number can be further reduced to about n Ig n by
first identifying the path on which the insertion should take place,
then finding, by binary search, the point on the path where the
insertion should occur, and only then moving the data items that
need to be moved to open up the slot for the item being inserted.

12. In Algorithm 11.4, the procedure InitializeHeap does somewhat more
work than is really necessary. What simple change will make this
procedure more efficient?

13. Rewrite Algorithm 11.5 as an iterative algorithm by eliminating the
tail-recursion.

14. Show how to find the k smallest elements of a table of size n in time
O(n log k).

11.4 15. This problem deals with efficient implementation of the Merge Sort
algorithm (Algorithm 1.7 on page 29).

a. Write an algorithm Merge(A[. . im], ALm+ I . .r]) that merges the
sorted subtables A[l . . m] and A[m+ I . -r] into A[U.. r] by using
an auxiliary table of size [(r -1)/2j at most.

b. Design an "in-place" version of Merge that uses no extra memory.
What is its time complexity, and what inputs cause its worst-case
behavior? (For a linear-time algorithm, see the references.)

416 SORTING

16. In Algorithm 11.6 on page 390 one of the two tests in the inner loops,
"i < r" and "j > 1", is unnecessary. Which one, and why?

17. What is the worst-case arrangement of the numbers 0, 1, ... , 9 for
Algorithm 11.6?

18. Write the code for the first line of Algorithm 11.7 on page 392, which
orders the three elements A[l], AlL(U + r)/2j], and A[r]. Try to be as
efficient as possible.

19. Find a table of the numbers 0, 1, ... , 9 that causes Algorithm 11.7
to behave as badly as possible.

20. Is any of the versions of Quick Sort stable? Explain, or give coun-
terexamples.

21. Suppose that we had a linear-time procedure that was guaranteed to
find a pivot element for Quick Sort such that at least 1% of the array
was less than or equal to the pivot and at least 1% was greater than or
equal to the pivot. Show that Quick Sort would then have worst-case
complexity O(n log n).

22. This problem concerns Quick Sort, Algorithms 11.6 and 11.7.

a. How many comparisons does Algorithm 11.6 make if the table is
of length n and is in order to begin with?

b. How many comparisons does Algorithm 11.7 make if the table is
of length n and is in order to begin with?

c. How many comparisons does Algorithm 11.7 make if the table is
of length n and is in reverse order to begin with?

23. Give a version of the Quick Sort algorithm that is not tail-recursive
and that requires a stack that is only of height O(log n) to sort tables
of length n.

24. The following sorting algorithm, called distributive partitioning,
might be viewed as a cross between Quick Sort and Bucket Sort.
It employs a partitioning step somewhat like that of Quick Sort, but
with the pivot element chosen as the exact median. Since the linear-
time median algorithm can be used (§ 11.8), this guarantees O(n log n)
time complexity in the worst case. It also avoids deep recursion in
the expected case by distributing the items to be sorted into buck-
ets according to their key values, using a calculation like that in
Interpolation Search; in fact the expected performance is linear if the
data are uniformly distributed. Assume that the keys are numerical
values, and that the table to be sorted contains n items. Then the
algorithm proceeds as follows.

PROBLEMS 417

1. Find the minimum, median, and maximum items in the table; call
these key values a, b, and c.

2. Divide each of the ranges from a to b, and from b to c, into [n/2J
intervals of equal length, and distribute the items to be sorted into
buckets corresponding to these intervals. The item with key K
goes in bucket number

[K a n if K < b;

LI b - 2 a 21 -
K bn] [n ,if b <K< c;

2 [n]_ 1 if K =c.

3. The buckets are scanned in order of increasing bucket number.
If a bucket contains no element, it is passed over; if it contains
one element, that element is appended to the sorted table; and if it
contains more than one element, the algorithm is called recursively
to sort the bucket.

a. Give examples of tables of 16 numbers that result in the best- and
worst-case performance of this algorithm.

b. Show that this algorithm takes time O(n log n) in the worst case.

c. Explain what data structures are needed to implement this algo-
rithm efficiently. How much extra space is needed in addition to
the input table?

d. How can the assertion that this algorithm has expected linear-time
performance be consistent with the Information-Theoretic Lower
Bound?

25. Given n < 2m numbers of m bits each, show how to find a num-
ber different from all of them in time 0(n), on the hypothesis that
comparing two m-bit numbers can be done in constant time.

26. a. Given a table of length n in which the first n - F[vo1 items
are sorted but nothing is known about the last [vl items, how
would you sort the entire table in 0(n) time in the worst case?

b. Find a larger function f(n) such that 6 C o(f) and such that a
table of length n can be sorted in linear time in the worst case
when the first n - f(n) entries are known to be in order. How
big can f be?

11.5 27. The proof of the Information-Theoretic Lower Bound assumes that
a comparison can have only two outcomes, < or >. But it is also

418 SORTING

possible for the items being compared to be equal; why does this not
make any difference to the proof?

28. Show the decision tree that results from sorting a table of four unequal
elements using

a. Selection Sort (Algorithm 11.3);

b. Heap Sort (Algorithm 11.4);

c. Quick Sort (Algorithm 11.6).

29. Find a way to sort five items using only seven comparisons.

30. a. It takes n -I comparisons to find the largest of n numbers. Why?

b. But it takes only [3n/21 -2 comparisons to find both the largest
and smallest of n numbers. How can this be done?

c. Show that any comparison-based algorithm for finding both the
largest and the smallest of n items must make at least [3n/21 - 2
comparisons in the worst case.

31. Show how to find the largest and next-to-largest elements of a table
of length n by using only about n + lg n comparisons.

32. Suppose you are given a list of n integers with many duplications, so
that there are only O(log n) distinct numbers in the list.

a. Show how to sort the numbers in time O(n log log n).

b. Why is this result not a violation of the Information-Theoretic
Lower Bound?

33. Suppose that a table of length n contains k distinct elements x..
Xk, where xi occurs ci times. (Therefore n = Ek I Ci.) Prove that
any comparison-based sorting algorithm must use

(Wclc2! . .. Ck!)

comparisons in the worst case to sort the list. (The algorithm does not
know ahead of time the number and distribution of the duplicates.)

34. Show that 2n -1 comparisons are both sufficient and necessary to
merge two sorted lists Ao, . . . , A. . and Bo, ... , Bn-1 . (Hint for
the lower bound: Show that if Bi < Ai for each i and Ai < Bi+j for
each i < n - 1, then each of the comparisons Bi :: Ai and Ai :: Bi,
must actually be made.)

35. You are given a sequence of n elements to sort. The input is a
sequence of [n/mi subsequences each of length at most m, with all
the elements in each subsequence less than all the elements in the
next.

PROBLEMS 419

a. Show that the input can be sorted in time O(n log m).

b. Show that any algorithm for solving this problem takes time
Q(nlogm). (It is not sufficient simply to combine the lower
bounds for the subsequences.)

11.6 36. Show how Radix Sort would be used to sort the numbers 217, 045,
232, 311, 565, 927, 361, 252, 087, 143, 409, 275, 511, 806, 695 by
breaking them into their decimal digits.

37. Use Radix Exchange Sort to sort the numbers whose decimal repre-
sentations are 160, 228, 756, 475, 170, 082, 616, 729, 570, 749, 643,
360, 158.

11.7 38. Joe's Sorting Shoppe uses Balanced Multiway Merge with 4 tape
drives. Joe has a little capital to invest in making his Shoppe more
efficient. For $500 each he can buy more tape drives of the same
model as the ones he already has, and for $250 each he can upgrade
his existing tape drives to run 50% faster. If he has $1000 to spend,
should he buy or upgrade?

39. Consider Polyphase Merge Sort with three tapes and with r = 9 runs.
Four empty runs must be introduced to bring the number of runs up
to the next Fibonacci number. Investigate the consequences of

a. putting two empty runs on each of the initially nonempty tapes;

b. putting all four empty runs on one of those tapes.

40. Illustrate the number of runs on the various tapes as Polyphase Merge
Sort is run on four tapes with 24, 20, 13, and 0 runs initially. Show
the length of the runs on each tape, on the hypothesis that the runs
were all of equal length initially. Calculate the average number of
times a datum is moved in this process, and compare the result to the
number of times a datum would be moved if the four tapes were used
to sort the 57 runs by Balanced Multiway Merge instead, starting with
24, 23, 0, and 0 runs on the four tapes.

41. In general, if T tapes are used to implement Polyphase Merge Sort,
how many runs should be on the tapes initially to leave a single
nonempty tape containing one run at the end? Explain your answer.

42. Show the runs that replacement selection would generate, assuming
that the available buffer space can hold only 3 numbers and the input
is the sequence 583, 918, 946, 701, 528, 457, 195, 158, 785, 103,
014, 733, 864, 007, 203, 052, 602, 120, 771, 632, 660, 642, 541, 319.

43. Prove that replacement selection produces a single sorted run if and
only if no item in the input is preceded by more than b - 1 items that
ought to follow it, where b is the size of the buffer.

420 SORTING

44. Explain how to make the replacement selection algorithm somewhat
more efficient by refraining from organizing the next-run items into
a heap until the current-run heap is completely exhausted.

45. This problem concerns the length of the first run that is produced
when replacement selection is used with an initially empty buffer of
size b and the input is random.

a. Explain on an intuitive level why the expected length of the first
run is less than the expected length of subsequent runs.

b. Let a be the expected length of the first run if the buffer were of
size one. That is, a is the expected length of the initial monoton-
ically increasing sequence of items in a random permutation of a
very large collection of items. Show that the expected length of
the first run when a buffer of size b is used is ab.

c. Show that a = e - 1. (Hint: This can be done by count-
ing permutations of various kinds and using the infinite series
e = Z-0 1/i!, or by using the snowplow metaphor and a bit of
differential calculus.)

11.8 46. Let k be a fixed positive integer. Describe a simple nonrecursive
algorithm that finds the kth smallest of a set of n numbers.

47. In the analysis of the linear-time median algorithm, show that the
inequality (2) is satisfied whenever k > 40. Is 40 the smallest number
with this property?

48. How much memory is needed to implement the linear-time algorithm
for finding the median?

49. It is not hard to develop a version of the linear-time algorithm for
finding the median that works by segmenting the table into blocks
of length 7 or 9. How might a version of the algorithm work that
uses blocks of an even length, such as 6 or 8? Can the blocks be of
length 3 or 4?

50. Design an algorithm for finding the median that is based on the par-
titioning step of Quick Sort. What are the worst-case and expected
time complexity of your algorithm? Can it be generalized to find the
k' largest, where k is a parameter that is an input to the algorithm?

51. Let T[O. . n- 1] be a table of n data items that can be compared
for equality but not for relative order; likewise the data elements
cannot be used as indices into another table. (Therefore it would
be inherently impossible to sort the table, for example, since there
is no notion of one element being "smaller" than another.) Find a
linear-time algorithm for determining whether the table has a majority

REFERENCES 421

element, that is, an element that occurs in more than n/2 of the table
positions. (You may allocate additional tables or other structures
to contain elements of T, numbers, or other data, and you may do
ordinary arithmetic on numbers, but the only thing you can do with
elements of the table T is to move them around and to tell whether
two are the same.)

52. The mode of a table is the item that occurs most frequently; for
example, the mode of 4, 5, 5, 3, 5, 1, 2, 4 is 5.

a. Show how to find the mode of a sorted table in linear time.

b. Show how to find the mode of a table in time O(n log(n/m)),
where n is the size of the table and m is the number of times
the mode occurs. (Hint: Maintain two collections, S and T. S
contains items together with exact counts of their frequency in
the input. T contains "disjoint multisets" of items; that is, each
member of T is a collection of input items, possibly containing
duplicates; but no member of a collection in T belongs either
to S or to any other of the collections in T. Initially S is empty
and T contains just one collection, namely, the entire input table.
Repeatedly subdivide the largest collection in T and move its
median to S.)

References

Knuth's Sorting and Searching, cited on page 44, is a good general reference on most of
the classical sorting algorithms. Shell Sort was first described in

D. L. Shell, "A High-Speed Sorting Procedure," Communications of the ACM 2 (1959),
pp. 30-32.

The analysis of Shell Sort remains mysterious, although progress in understanding it
has been made in recent years. It has long been known that there are sequences of
O(log n) increments for which Shell Sort runs in time 0(n3/2) in the worst case. On the
other hand there are sequences of O((log n)2) increments for which the running time is
O(n(log n)2); see

V. R. Pratt, Shellsort and Sorting Networks, Garland Publishing Company, 1979.

Improvements of the 0(n3/2) behavior for sequences of only O(log n) increments were
obtained first to 0(n4 /3), in

R. Sedgewick, "A New Upper Bound for Shellsort," Journal of Algorithms 7 (1986),
pp. 159-173,

and then to O(n1+`/V`9), for any fixed e > 0, by

J. Incerpi and R. Sedgewick, "Improved Upper Bounds on Shellsort," Journal of Com-
puter and System Sciences 31 (1985), pp. 210-224.

422 SORTING

However, it is still unknown whether any version of Shell Sort runs in time O(n log n),
how fast Shell Sort might run with only O(log n) increments, and what is the exact
complexity of Shell Sort with simple sequences of increments such as the 3k + 1 sequence
that seems to work so well in practice. Heap Sort was developed by J. W. Williams and
R. W. Floyd; see the citations on page 338. The improvements discussed in Problem 11
are from

R. W. Floyd, "Algorithm 245-Treesort3," Communications of the ACM 7 (1964), p. 701,

and

S. Carlsson, "A Variant of Heapsort with an Almost Optimal Number of Comparisons,"
Information Processing Letters 24 (1987), pp. 247-250.

There is an in-place Merge algorithm (see Problem 15) that runs in linear time and uses
no extra memory. It is described in

M. A. Kronrod, "An Optimal Ordering Algorithm without a Field of Operation," Doklady
Akademii Nauk SSSR 186 (1969), pp. 1256-1258,

and in the solution to Problem 5.2.4-18 on page 623 of Knuth's Sorting and Searching.
A stable version of this merging algorithm is presented in

L. T. Pardo, "Stable Sorting and Merging with Optimal Space and Time Bounds," SIAM
Journal on Computing 6 (1977), pp. 351-372.

Quick Sort was discovered by C. A. R. Hoare in about 1959; the first published versions
are

C. A. R. Hoare, "Algorithm 63: Partition, and Algorithm 64: Quicksort," Communica-
tions of the ACM 4 (1961), p. 321;

C. A. R. Hoare, "Quicksort," Computer Journal 5 (1962), pp. 10-15.

It is an interesting algorithm from both a theoretical and a practical standpoint. The
versions presented here are due to Robert Sedgewick. For details, see

R. Sedgewick, Quicksort, Garland Publishing Company, 1980;

R. Sedgewick, "The Analysis of Quicksort Programs," Acta Informat. 7 (1977), pp. 327-
355;

R. Sedgewick, "Implementing Quicksort Programs," Communications of the ACM 21
(1978), pp. 847-857.

Distributive Partitioning Sort (Problem 24) is from

W. Dobosiewicz, "Sorting by Distributive Partitioning," Information Processing Letters
7 (1978), pp. 1-6.

By taking advantage of the fixed-precision arithmetic and logical operations that are
available on digital computers, as well as the comparison instructions, it is theoretically
possible to "beat" the Information-Theoretic Lower Bound and to sort n numbers in
O(n log n/ log log n) time. See

M. L. Fredman and D. E. Willard, "BLASTING through the Information Theoretic Barrier
with FUSION TREES," Proceedings, 22nd Annual ACM Symposium on Theory of
Computing, 1990, pp. 1-7.

REFERENCES 423

The analysis of the expected length of the runs produced by replacement selection was
initially achieved by Betty Jane Gassner in 1958; the published version is

B. J. Gassner, "Sorting by Replacement Selection," Communications of the ACM 10
(1967), pp. 89-93.

The results of Problem 45 are established in this article. Knuth also obtained these
results in

D. E. Knuth, "Length of Strings for a Merge Sort," Communications of the ACM 6
(1963), pp. 685-688.

The "snowplow" analysis of replacement selection is from Knuth's Sorting and Searching;
Knuth attributes it to E. F Moore. The linear-time algorithm for finding the median (or
any other ordinal value in a set of numbers) was discovered by

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, "Time Bounds for
Selection," Journal of Computer and Systems Sciences 7, 4 (1972), pp. 448-461.

A more complicated but significantly faster version is described in

A. Sch6nhage, M. Paterson, and N. Pippenger, "Finding the Median," Journal of Com-
puter and Systems Sciences 13 (1976), pp. 184-199.

Problem 52 on finding the mode is from

1. Munro and P. M. Spira, "Sorting and Searching in Multisets," SIAM Journal on Com-
puting 5 (1976), pp. 1-8.

12

Graphs

12.1 GRAPHS AND THEIR REPRESENTATIONS

Graphs are among the most important mathematical tools of computer science.
A graph consists of a set of points and a set of lines connecting pairs of points
(Figure 12.1 gives a few examples). But this simple idea is an abstraction that
models a wealth of problems. For example:

1. An airline company offers flights between certain cities. But not every
pair of cities is served by a nonstop flights; sometimes you must make a
connection. This situation can be modelled as a graph in which the cities
are the points and there are lines connecting pairs of cities with nonstop
service.

2. One of the traditions of mapmaking is that adjacent regions of a map (coun-
tries, states, or whatever) should always have different colors. This problem
can be modelled using graphs; each region is a point and there is a line
between each pair of adjacent regions. The problem is then to assign a
color to each point such that no line connects two points of the same color.
Figure 12.2 gives an example of a map and the associated graph.

3. Many games can be modelled as graphs. Each possible "situation" or "con-
figuration" of the game is a point and each line represents a legal move.
(Of course, the graph of a given game may be extremely large; the graph
of chess, for example, has over one hundred million points just for the first
six moves!) There is a complication here: for most games, there must be
an asymmetry in the lines of the graph, because moves can be made in only
one direction-one example is tic-tac-toe, in which the reverse of any legal
move would be an illegal erasure. Thus when modelling games (and many
similar problems) we typically use directed graphs, in which each line has
a direction indicated by an arrowhead.

4. A classical use of graphs is in modelling the Travelling Salesman Problem
discussed on page 59: given a set of cities and the distance between each
pair of cities, find a route that visits every city and minimizes the total travel

424

12.1 GRAPHS AND THEIR REPRESENTATIONS

U W

v *~X

(a)

z

V

x

y

w

(b) (c)

Figure 12.1 Three graphs. (a) and (c) are undirected graphs, (b) is a directed
graph. The placement of the vertices on the paper is immaterial when we
draw graphs; for example, (a) and (c) are in fact depictions of the same
graph.

Figure 12.2 A map and its associated undirected graph. Each region is
represented by a vertex, and an edge joins each pair of vertices that
correspond to bordering regions.

distance. Here we may use an undirected graph, but each line contains a
cost as an auxiliary piece of data.

Before considering how to represent graphs within the computer we need
some definitions and terminology. An undirected graph is an ordered pair
consisting of two sets: a finite, nonempty set whose elements are called the
vertices of the graph, and a set of edges each of which is a set consisting of
two distinct vertices. For example, let V be the set {u, v, WI X, y, Z} and let

E = {{u, v}, {J, u}, {y, 2}, {y, V}, {w, V}, {y, z}, {V, z}, {x, z}}.

Then G = (V,E) is the graph depicted in Figure 12.1(a). If {vl,v2} is an edge
of graph G then vl and v2 are said to be adjacent vertices; we also say that

425

426 GRAPHS

vi and v2 are neighbors of each other and that they are the endpoints of the
edge {VlV2}.

This simple definition merits a few additional comments. First, we have
not placed any restriction at all on the nature of the vertices of a graph. In
the examples just given the vertices are cities, game configurations, and re-
gions of a map. In general, vertices may represent arbitrary entities, or may
be simply places where auxiliary information is stored. The only requirement
is that a graph must have at least one vertex. On the other hand, it is quite
possible for E to be empty-that is, a graph need not have any edges at all.
Consider, for example, the flight schedule of the airline during a work stop-
page, or a world consisting entirely of island states, or any graph with only a
single vertex.

As we saw in the third example above, sometimes it is important to assign
a direction to graph edges. Or reconsider the airline example, and suppose
that there exist two cities A and B such that flights are offered from A to B,
but not from B to A. Undirected graphs do not model this situation because
of the symmetric nature of edges. Instead, we define a directed graph as
a pair (V, E) in which V is a nonempty set of vertices as before, and E is
a set of ordered pairs of distinct vertices. On paper, directed graphs look
just like undirected graphs except with arrows on the edges. So, for example,
the graph of Figure 12.1(b) has edges (v,u), (u, w), (w,u), (Xw), (w,y),
and (y, v). Notice that a "two-way" edge consists of two separate edges in a
directed graph.

When u and v are vertices of a directed graph and e = (u, v) is an edge,
we say that e departs from u and enters v. In this case, v is adjacent to u
(and is thus a neighbor of u) but u is not adjacent to v unless (v, u) is also
an edge of the graph. By the way, our definitions require that the two vertices
of an edge be distinct; edges like (u, u), called self-loops, are not permitted in
our version of directed graphs, although they are sometimes used in other con-
texts.

There are a large number of abstract operations that we might want to
perform on a graph G = (V, E):

MakeGraph(V): Return a graph containing vertices V (and no edges).
Vertices(G): Return V, the set of vertices of G.
Edges(G): Return E, the set of edges of G.
Neighbors(v, G): Return the set of neighbors in G of vertex v.
AddVertex(v, G): Add a new vertex v to G.
AddDirectedEdge(u, v, G): Add a new edge (u, v) to G.
AddUndirectedEdge(u, v, G): Add a new edge {u, v} to G.
DeleteVertex(v, G): Delete a vertex v from G, along with all edges that

have v as an endpoint.
DeleteEdge(u, v, G): Delete an edge from G.

12.1 GRAPHS AND THEIR REPRESENTATIONS

By convention, these operations are undefined in error situations such as
deleting a nonexistent vertex from a graph. The graph algorithms of this chapter
frequently make implicit rather than explicit use of the abstract operations; for
example, a code fragment of the form 'foreach neighbor w of v do ... ' would
actually be implemented using the Neighbors operation.

Now let G be a (directed or undirected) graph with vertices vi, v2 , ... , vn.
Let MG be a two-dimensional array where MG[i, j] = 1 if vj is a neighbor of vi,
and MG[i, j] = 0 otherwise. For example, if G is the graph of Figure 12.1(b)
then MG is

U V W X y

u (0 1 0 0
v I 0 0 0 0
W I 0 0 0 1
x 0 0 1 0 0
Y 0 1 0 0 0

where we have added labels to make the indexing clear. Notice that when G is
an undirected graph, MG is necessarily symmetric; that is, MG[i, j] = MG[j, i]
for every i and j. Furthermore, MG[i, i] = 0 for every i whether G is directed
or undirected.

The array MG is called the adjacency matrix of G, and is the simplest
way to represent G within computer memory. It is particularly attractive when
no additional information needs to be stored with vertices, so that the vertices
can be integers and can be used directly as indices. (If the vertices have other
information they can still be stored as records, each with a field containing the
integer index of the vertex into the adjacency matrix; an auxiliary array can be
used, if necessary, to find the record of the vertex associated with a given index.)
The abstract operations can be implemented in a straightforward manner. The
only difficulty comes when trying to add or delete a vertex, for then the size
of the matrix must be changed. Of course, this problem is not important for
algorithms that operate on static graphs, in which vertices and edges are neither
added nor deleted.

Although it is simple, the adjacency matrix representation is not always
as efficient as we would like. For example, to find the neighbors of a given
vertex v we must examine n - 1 entries of MG regardless of the number of
neighbors v actually has--even if v has no neighbors at all! For this reason,
graphs are frequently represented by adjacency lists: with each vertex keep
a list of its neighbors. The whole graph is then represented by the set of its
vertices, which may themselves be stored in a list. (Here there is no question
of auxiliary indices; each vertex is represented as a record with a field called
Neighbors and as many other fields as desired.) This representation has the
advantage that vertices can be added and deleted as easily as edges. On the
other hand, it takes more time to determine whether two given vertices are

427

428 GRAPHS

adjacent, since a list must be searched; also, adjacency lists typically require
more memory than adjacency matrices.

Sometimes the edges of a graph as well as the vertices must store auxiliary
information, as in the Travelling Salesman Problem. If so, edges can also be
represented as records with as many fields as necessary. If adjacency lists are
used then each vertex can store a list of pointers to edge records rather than
to vertex records. A similar variation on the adjacency matrix representation is
possible: let MG[i, j] be a pointer to the appropriate edge record when vi is
adjacent to vj, and MG[i,j] = A otherwise.

A few words are in order about the "size" of a graph. In particular, what
does it mean to say that an algorithm on graphs runs in linear time, or quadratic
time, or polynomial time? The most obvious measure of the size of a graph G
is the number of its vertices, which we denote by G1 or simply by n. But
the number of edges of the graph, which we denote by e, must be taken into
account as well. A graph with n vertices may have as many as n' - n edges or
as few as 0 edges; thus, for example, an algorithm that runs in time @(e) would
be preferable to one that runs in time O(n 2), since the former would be faster
for graphs with relatively few edges. But such algorithms are rarely possible,
since such an algorithm would not even be able to examine each vertex of a
graph with very few edges. (We frequently speak of sparse graphs as those that
contain relatively few edges, and dense graphs as those that contain relatively
many edges.)

In light of this discussion, the time bound of a graph algorithm is often
expressed using a function of both n and e. If the time of algorithm T is
(say) O(n + e), then T has enough time to examine each vertex and each edge
regardless of how sparse or dense the graph is. Moreover, for very sparse graphs
T will be linear in the number of vertices, whereas for very dense graphs it will
be linear in the number of edges. Thus we would have no qualms calling T a
fast algorithm.

Still another consideration is the choice of representation. For instance, the
code fragment 'foreach edge E in G ... ' can be implemented in time O(n+e)
using adjacency lists, but requires time Q(n2) if only an adjacency matrix is
available. Thus any discussion of the time bounds of a graph algorithm must
include some consideration of the representation to be used. Certain algorithms
may benefit from special representations: for example, when implementing an
algorithm that requires frequent loops over all edges of a graph, it might be
advantageous to represent the graph with a list of its edges and nothing more.
The space required to represent a graph can also be measured in these terms;
representation with an adjacency matrix typically uses space e(n 2), while rep-
resentation with adjacency lists uses space E3(n + e). But we must be careful of
the multiplicative constants here, since the adjacency matrix uses n2 bits, while
the adjacency list method uses e records each of which contains at least one
pointer plus other information.

12.1 GRAPHS AND THEIR REPRESENTATIONS

)<G

FAC,

(a) (b) (c)

Figure 12.3 Three pictures of the same tree: (a) rooted at L, (b) rooted
at G, (c) rooted at E. The height of the tree, the depth of each vertex,
and the parent of each vertex all depend on which vertex is drawn at the
root, but in each case the tree has the same vertices and edges.

Trees
Trees were defined in Chapter 4 as a special kind of directed graph.* Trees
are such an important class of graphs that they deserve particular study. In this
section we shall develop characterizations of trees that will be useful later; doing
so also provides an opportunity to set forth more useful terminology and concepts
about graphs in general. (Although we are mainly concerned with undirected
graphs in this section, for completeness we shall extend new terminology to
directed graphs where appropriate.)

The first thing to point out is that the concept of a "root" is in certain
ways immaterial to the property of "tree-ness." Think of trees for a moment
as undirected graphs-that is, erase the downward-pointing arrowhead on each
edge. It may not be obvious, but now any vertex can serve as the root of the
tree. That is, we can pick up the graph by any vertex and shake it out, and
the resulting object is still a tree (although for some vertices a child becomes
the parent and the former parent becomes a child; see Figures 12.3 and 12.4).
Therefore we avoid defining trees in terms of roots, parents, and children, and
use instead a definition that captures a property crucial to the important role of
trees in computer science.

We first give some supporting terminology. A path in an undirected graph G
is a sequence of vertices (vO,vl,..., vn) where {vivi+l} is an edge of G for
each 0 < i < n; such a path is called a path from vo to vn, or a path between
vo and vn. (Informally, a path is said to contain the n edges {vi, vi+l} as well
as the vertices vi, even though only vertices appear in the formal definition.)
The length of the path is n. For example, in Figure 12.1 (u,v,y,z,v, w) is

* In Chapter 4 we used the alternative terminology node instead of vertex, and the definition of a
path in a tree was also slightly different from the one in this chapter.

429

430 GRAPHS

Ma

Electronic Computers,
Computer Science

A .25 .4 .5
thematics Vocational Analog Digital

Guidance Computers Computers

73 267 Q
natical Slide Machine Theory, Science

* G H R T
Geography, Social Medicine Technology
Anthropology Sciences

Figure 12.4 The tree of Figure 4.2 on page 98, redrawn from a more
parochial point of view.

a path of length 5 from u to w. A path is simple if v,, ... , v, are distinct
vertices; that is, a simple path never encounters any vertex more than once
(except that the first vertex might also be the last vertex). If a graph has a path
between two vertices, it necessarily has a simple path between the same two
vertices (Problem 5). These definitions also apply to directed graphs, replacing
undirected edges with directed edges.

A tree is an undirected graph T that satisfies the following property: given
any two vertices u and v of T, there is a unique simple path from u to v. It is
straightforward to show that the definition in Chapter 4 agrees with this new def-
inition once we have converted from directed to undirected graphs (Problem 6).
We use the term rooted tree when it is important to pick a particular root and
consider parents and children with respect to that root. Trees have a number of
nice properties, but to study them we need some further definitions. An undi-
rected graph is connected if there is at least one path between any two vertices;
informally, this means that the graph is in one "piece." A path in a directed or
undirected graph is a cycle if its first and last vertices are identical and if it con-
tains at least two distinct edges. (Consequently, a cycle in an undirected graph
must have length at least 3, while a cycle in a directed graph may have length
2.) A simple cycle is a cycle that is also a simple path; if a graph has a cycle
starting and ending at v then it must have a simple cycle that starts and ends
at v (a consequence of Problem 5). We make no distinction among cycles that

Mather
Lo

F

B
Philosophy,
Religion

12.1 GRAPHS AND THEIR REPRESENTATIONS

differ only in starting from different vertices; that is, if (vo, VI,, Vn-, VO) is
a cycle, then (vj, vj,. . . ,vn- IvO, vi,..., vj- ,vj) is the same cycle for any
0 < j < n. A graph is disconnected if it is not connected and is acyclic if it
has no cycles at all.

* THEOREM (Tree Characterization, Part /) Let T = (V, E) be a tree.
Then T has the following properties:
1. T is connected;
2. T is acyclic;
3. deleting any edge of T yields a disconnected graph;
4. if u,v e V and e = {u,v} is not an edge of T, then adding e to T

yields a graph with exactly one simple cycle, and that cycle contains e;
5. T has exactly n - I edges, where n is the number of vertices of T.

PROOF Since these properties are fairly obvious from our mental
picture of trees, we sketch the proof of (3) and leave the rest to Problem 7.
Let e = {u,v} be any edge of T. Then (uv) is the unique simple path
from u to v, and if e is deleted the resulting graph is disconnected since
there is no path from u to v. L

Clearly, not every connected undirected graph is a tree. In fact, for each
part of the Theorem we can find an undirected graph that satisfies that property
but is not a tree (Problem 8). However, certain combinations of these properties
do imply that an undirected graph is a tree; the next Theorem gives the details.
We need one definition: an undirected or directed graph G is complete if u is
a neighbor of v for every pair of distinct vertices u and v, that is, if G contains
every possible edge.

* THEOREM (Tree Characterization, Part 11) Let G be an undirected
graph with n vertices. If G satisfies any of the following conditions, then
G is a tree:
1. G is connected and acyclic;
2. G is connected, but deleting any edge yields a disconnected graph;
3. G is not complete, and adding any edge to G yields a graph with

exactly one simple cycle, which contains the added edge;
4. G is connected and has n- I edges;
5. G is acyclic and has n - I edges.

We leave the proofs of (1) through (3) to the exercises. Parts (4) and (5)
are proved using the following Lemma, which is interesting in its own right:

* LEMMA
a. A connected graph with n vertices has at least n -1 edges.
b. An acyclic graph with n vertices has at most n - 1 edges.

431

432 GRAPHS

PROOF To prove this Lemma we introduce the final terminology
of this section. A subgraph of a (directed or undirected) graph G =
(V,E) is a graph G' = (V',E') such that V' C V and E' C E. A
connected component of an undirected graph G is a maximal connected
subgraph of G; that is, if G' is a connected component of G then G' is not a
subgraph of any larger connected subgraph of G. Informally, the connected
components of a graph G are simply its disjoint pieces. Two extreme
cases are these: any connected graph has a single connected component
(consisting of the entire graph), and if a graph has no edges at all, each of
its vertices lies in a separate edgeless connected component.

To prove part (a) of the Lemma, consider a graph G with n vertices
and no edges; such a graph has n connected components. Now add edges
to G; each edge either joins two vertices that are in the same connected
component (leaving the number of components unchanged) or it joins two
vertices that are in different components (reducing the number of compo-
nents by 1). Therefore, at least n - 1 edges must be added before there
is only a single component. To prove part (b), let G be any acyclic graph
with n vertices. Suppose G has k > 1 connected components whose sizes
are ni, n2 , ... , nk. Each component is acyclic and connected, hence each
component is a tree and has one more vertex than it has edges. So the total
number of edges in G is (n-1 l)+(n 2 -)+ +(nk- 1) = n-k < n-1. CZ

Now we can show parts (4) and (5) of the second part of the Tree Charac-
terization Theorem. In (4), G must be acyclic, for if it had a cycle then deleting
any edge from that cycle would produce a connected graph with n -2 edges,
contrary to the Lemma. In (5), G must be connected, for otherwise adding an
edge between two vertices in different components of G would yield an acyclic
graph with n edges, contrary to the Lemma. In either case G is connected and
acyclic, and is therefore a tree by part (1) of the Theorem.

12.2 GRAPH SEARCHING

Suppose we are given a directed or undirected graph G and vertices v and w
of G; how can we determine whether there exists a path from v to w in G?
Intuitively, we would like to start at v and examine all vertices that can be
reached from v by traversing edges of G, stopping when w is reached or when
all vertices reachable from v have been examined. More generally, we may
want to perform an arbitrary operation-called Visit, as in Chapter 4-on each
vertex. This process is called a search of G starting at v. There are two
differences between searching G and simply iterating over the vertices of G.
First of all, an iteration visits every vertex of G by definition, while searching
may reach only a subset of the vertices. In fact, a search starting at v visits

12.2 GRAPH SEARCHING 433

exactly those vertices w such that there is a path in G from v to w. (In the case
of an undirected graph a search starting at v will reach exactly those vertices in
the same connected component as v.) Secondly, an iteration visits the vertices
of G in some order unrelated to vertex adjacencies, whereas (as we shall see)
searching is most often used precisely because of the order in which vertices
are visited.

Breadth-First Search
If v and w are vertices of a directed or undirected graph, the distance between
v and w is the length of a shortest path from v to w; more informally, the distance
between v and w is the minimum number of edges that must be traversed to get
from v to w. The definitions imply that the distance from a vertex v to itself is
zero, since the sequence (v) is a path of length zero from v to v. If there is no
path from v to w, the distance from v to w is undefined (although sometimes in
this case we say that the distance is infinite). In the graph of Figure 12.1(b) on
page 425, for example, the distance from u to y is 2, while the distance from u
to v is 3 and the distance from u to x is undefined.

In a breadth-first search, the order in which vertices are visited is as
follows: vertex v is visited first, then the vertices adjacent to v, then the ver-
tices adjacent to those vertices (omitting any already visited), and so forth. In
other words, we first visit v (which is at distance 0 from v), then all vertices at
distance 1 from v, then all vertices at distance 2, and so on. Speaking metaphor-
ically we might say that the search proceeds in an expanding circle centered at v.
Figure 12.5(a) gives an example of breadth-first search. When the graph is a
tree with root v, a breadth-first search visits the vertices in the same order as a
level-order traversal of the tree (page 108).

An implementation of breadth-first search is sketched in Algorithm 12.1. It
requires a one-bit field called Encountered in each vertex; this field is cleared
at the start of the search and is set when the vertex is reached for the first time,
at which point the vertex is placed in a queue of vertices to be visited. When a
vertex is dequeued and visited each of its neighbors is added to the end of the
queue, except that vertices already reached (as determined by the Encountered
bit) are not reprocessed. The use of a queue to store encountered but unvisited
vertices insures that all vertices at distance d from v are visited before any
vertices at distance greater than d. (See Problem 15. Compare this algorithm
with the level-order traversal in Algorithm 4.12 on page 124; the only difference
is that no Encountered field is necessary when the graph is known to be a tree,
since each vertex is encountered exactly once.) If the procedure Visit requires
constant time per vertex and adjacency lists are used to represent G, a breadth-
first search can be carried out in time O(v + e): clearing all the Encountered
fields at the beginning of the algorithm requires time ((v), but thereafter each
edge of G is processed at most twice (once as each of its endpoints is Visited)
and each vertex is enqueued, dequeued, and visited at most once.

434 GRAPHS

(a) (b)

Figure 12.5 An undirected graph searched by (a) breadth-first and (b) depth-
first search. In each case the search starts at the vertex labelled 1; the
labels in the vertices show the order in which they are first encoun-
tered. (For breadth-first search this is also the order in which they are
Visited. For depth-first search it is the order in which they are PreVisited;
the PostVisit order is 5, 4, 7, 6, 11, 10, 9, 13, 12, 8, 3, 2, 15, 14, 1.)
The arrows, which are not part of the graph, illustrate edges that were
followed to previously unencountered vertices. Only the connected com-
ponent containing the starting vertex is searched.

procedure BreadthFirstSearch(graph G, vertex v):
{Breadth-first search of G starting at v}

foreach vertex w in G do Encountered(w) +- false
{Q is a queue storing encountered but unvisited vertices}
Q *- MakeEmptyQueueo)
Encountered(v) +- true
Enqueue(v, Q)
until IsEmptyQueue(Q) do

{Process the next vertex}
w Dequeue(Q)
Visit(w)
foreach neighbor w' of w do

if not Encountered(w') then
Encountered(w') - true
Enqueue(w', Q)

Algorithm 12.1 Breadth-first search. The procedure Visit is to be executed on
each vertex reachable from v.

Here is a small but important point: Algorithm 12.1 doesn't completely
determine the order in which vertices of G are visited. The reason is that the
neighbors of each vertex may be processed in any order, and changing that
order changes the overall order of the search, although all vertices at any given

12.2 GRAPH SEARCHING 435

distance from v will be visited before vertices at any greater distance. The order
in which the neighbors of w are processed depends on the way G is stored in
memory and the way the abstract operation Neighbors is implemented.

The original problem was to determine whether there is a path between two
given vertices of G. Breadth-first search can be used to solve this problem,
but so can any other search procedure. However, since breadth-first search
processes vertices in order of distance from the source vertex, it finds not only
whether a path exists but also the length of a shortest path between the given
vertices-that is, the distance between them. With only a little extra work we
can obtain the entire path (Problem 16).

Depth-First Search
A second important graph search technique is depth-first search. The defining
characteristic of depth-first search is that each vertex is completely explored
as soon as it is first encountered; that is, the vertex is visited and all as-yet-
unencountered neighbors of the vertex are immediately processed. But "pro-
cessing" each neighbor entails applying this same procedure recursively. To
understand the pattern of the resulting search, suppose that we start the search
from v. First v is visited, then its first neighbor, say v,, is encountered and
visited. Now the neighbors of v, are considered; each in turn is visited and
explored as far as possible before the next is examined. Only after all neighbors
of v, (except for v) have been completely explored do we continue with the
second neighbor of v. (Of course, the second neighbor of v may have been vis-
ited at some point during the exploration of v,, in which case it is not processed
further.) The name "depth-first" reflects the idea that the search proceeds ever
deeper-farther from its starting point-moving from each vertex to a neighbor
of that vertex, to a neighbor of the neighbor, and so forth, retreating to check
other neighbors only when a vertex with no unencountered neighbors is reached
and thus no further "forward" progress is possible. Figure 12.5(b) gives an
example of depth-first search.

In a depth-first search there are actually two points at which we might
apply the Visit operation to the vertices: a vertex might be visited as soon as it
is encountered for the first time, just before its neighbors are processed (as in
the description in the preceding paragraph), or the vertex might be visited after
all of its neighbors are completely explored. To distinguish these possibilities
we define separate operations PreVisit and PostVisit in connection with depth-
first search. When G is a tree and the source vertex is the root, a depth-first
search with PreVisit is exactly a preorder traversal of the tree, and a depth-
first search with PostVisit is exactly a postorder traversal of the tree. And like
tree traversal, depth-first search is most naturally implemented by a recursive
algorithm (Algorithm 12.2).

Topological Sorting Suppose we are given a set T = {T,, T2,..., T. } con-
sisting of n tasks that must be carried out. Only one task can be performed at

436 GRAPHS

procedure DepthFirstSearch(graph G, vertex v):
{Depth-first search in G starting at v}

foreach vertex w in G do Encountered(w) - false
RecursiveDFS(v)

procedure RecursiveDFS(vertex v):
Encountered(v) <- true
PreVisit(v)
foreach neighbor w of v do

if not Encountered(w) then RecursiveDFS(w)
PostVisit(v)

Algorithm 12.2 Outline of depth-first search. The procedure PreVisit is to
be called on each vertex before processing its neighbors and PostVisit is to be
called afterwards.

a time and each task must be completed before the next task is begun. Assume
further that we are given a set of constraints on the order in which tasks can be
performed. Each constraint is an ordered pair of tasks; if the pair (Ti, Tj) is a
constraint, then task T7 must precede task Tj. The problem is to find an order
(or schedule) in which we can carry out the tasks such that all of the constraints
are obeyed.

For example, suppose there are five tasks {A, B, C, D, E} and constraints
(C, E), (E, D), (D, A), and (E, A). Then we could perform the tasks in order
C, E, B, D, A, satisfying every constraint. On the other hand, the order C, D,
A, B, E is not satisfactory since E must be performed before A. (Notice that
B is completely unconstrained in this example-it may be performed first, last,
or anywhere in between.) Not every set of constraints is satisfiable: if another
constraint (A, C) is added to this example, then E must be performed before A,
and A before C, but also C before E.

There is an obvious relationship between directed graphs and the constrained
task problem: each task corresponds to a vertex, and each constraint corresponds
to a (directed) edge between two vertices. Figure 12.6(a) depicts the graph
corresponding to the example of the previous paragraph. Informally, the problem
can be stated as follows: find a linear order for the vertices of G such that every
edge of G points "forwards." More precisely, given a directed graph G with n
vertices, determine an order vi, v2, ... , Vn for the vertices of G such that there
is no edge (vi, vj) of G with j < i. Such an ordering is called a topological
sort of G.

A directed graph that contains no cycles is called a directed acyclic graph,
or dag. Clearly, if a directed graph G has a cycle, then it cannot be topologically
sorted-note in Figure 12.6(b) how a cycle is formed when the final impossible

12.2 GRAPH SEARCHING 437

(a) (b)

Figure 12.6 (a) Directed graph corresponding to the example of topological
sorting in the text. (b) The same graph with an additional edge; this
graph is not a dag and cannot be sorted.

constraint (A, C) is added to G. On the other hand, as we shall see, any dag
can be topologically sorted.

A simple way to sort G is as follows. Find any vertex that has no entering
edge, for example, either B or C in Figure 12.6(a). (Every dag has at least one
such vertex; see Problem 20.) Call this vertex v1; it clearly can be first in the
sort since all of its departing edges will point forward and there are no entering
edges that might point back. Now remove vl and all of its edges from G. The
remaining graph is still a dag, so we can repeat the procedure to obtain v2, the
next vertex in the sort. Continue the process until G consists of a single vertex,
which becomes vn, the last vertex of the sort. The problem with this algorithm
is its time complexity. With a straightforward approach it may require time
proportional to the number of vertices remaining to find each vertex in the sort,
yielding a time bound no better than 0(n 2).

We can use depth-first search to build a faster algorithm for topological
sorting. In fact, the topological sort described in Algorithm 12.3 differs from
the general depth-first search procedure only in that the entire graph must be
explored, not just those vertices reachable from a given starting vertex. This is
accomplished by modifying the main procedure to perform a depth-first search
starting from every vertex of G. Of course, for many vertices there will be
nothing to do, since they will have been visited during searches from other
starting points.

Algorithm 12.3 has no PreVisit, but the PostVisit operation consists of as-
signing a number to each vertex, storing it in a field called Number; this number
is the location of the vertex in the topological sort order. Recall that PostVisit(v)
takes place just after v is completely explored, that is, just before the call of
WalkForSort on v returns. (WalkForSort is called on each vertex exactly once.)
Sort numbers are assigned in decreasing order: the first vertex that is completely
explored receives number n, and so forth down to number 1.

It is not obvious that the ordering of the vertices produced by Algorithm 12.3

438 GRAPHS

procedure TopologicalSort(graph G):
{G is the graph to be sorted}

nextnumber *-G {The next number to assign}
foreach vertex v in G do Encountered(v) - false
foreach vertex v in G do

if not Encountered(v) then WalkForSort(v)

procedure WalkForSort(vertex v):
Encountered(v) +- true
foreach neighbor w of v do

if not Encountered(w) then WalkForSort(w)
Number(v) nextnumber
nextnumber nextnumber- 1

Algorithm 12.3 Topological sort of a directed acyclic graph. The Number
field of each vertex is set to its location in the sort order. Recall that G1 is the
number of vertices of G.

does in fact constitute a topological sort.* To prove the correctness of the
algorithm, let v and w be any two vertices of the dag G such that Number(v) <
Number(w). We prove that (w, v) cannot be an edge of G.

Since vertices are numbered in decreasing order, w received its number
before v did. At the moment that w received its number-that is, just after
w was completely explored-Encountered(v) was either true or false. If
Encountered(v) was false then (w, v) cannot be an edge of G, because the
search of w would have followed that edge and encountered v, exploring and
numbering it before returning. On the other hand, if Encountered(v) was true
at this instant then v was encountered but not yet numbered, and an exploration
of v was therefore in progress at that point. Since an exploration of v led to w,
there must be a path in G from v to w. But then if (w, v) were an edge of G
we could add it to that path to form a cycle in G, and this is impossible since
G is a dag and has no cycles.

Notice that Algorithm 12.3 works only when the graph G is known to be
a dag. But suppose G is an arbitrary directed graph; how can we tell whether
G contains cycles, that is, whether G is a dag? One way is to assign a number
to each vertex of G as in Algorithm 12.3, then check whether all edges do in
fact point forward. But there are more clever algorithms for cycle detection;
see Problem 23.

* In fact, the ordering is not even uniquely determined. As with depth-first search, the order produced
by Algorithm 12.3 can depend on the order in which the neighbors of each vertex are processed, and
moreover on the order in which vertices are processed in the second loop of the main procedure.

12.2 GRAPH SEARCHING 439

Biconnectivity Given an undirected graph G, it is easy to determine whether or
not G is connected using either depth-first or breadth-first search: G is connected
if and only if every vertex has been encountered upon completion of a single
search (which can start anywhere).

Now let pR and P2 be two simple paths in G, both from u to v. Two
such paths are vertex-disjoint if no vertex (except for u and v) appears in both
paths. An undirected graph is biconnected if, given any two distinct vertices
u and v, there exist two vertex-disjoint paths from u to v. There is another way
to formulate this definition. If G is a graph and v is a vertex of G, the graph
G - v is the graph obtained by deleting v from G, and also deleting all edges
adjacent to v. A vertex v of G is a cutvertex of G (or an articulation point
of G) if G- v is not connected. We then say that a graph is biconnected if it
has no cutvertices. (These two definitions of biconnectivity are equivalent for
any graph that has more than two vertices; see Problem 24.) For example, the
graph of Figure 12. 1(a) on page 425 is not biconnected because vertex v is a
cutvertex, but if the edge {u, x} is added then the resulting graph is biconnected.

A graph can be tested for biconnectivity by deleting each vertex in turn and
testing to see whether the remaining graph is connected, but this straightforward
approach yields a time bound no better than O(n2). Depth-first search can be
used to provide a much faster test for biconnectivity. Since every biconnected
graph is connected, assume that G is a connected, undirected graph which is to
be tested for biconnectivity.

To understand the approach, start with another look at the general depth-
first search procedure, Algorithm 12.2. The recursive subroutine RecursiveDFS
processes each vertex v by marking it encountered and considering its neighbors
in turn. If a neighbor w has already been encountered the subroutine simply
ignores it; we then say that the edge leading from v to w is skipped. When a
neighbor w of v has not been encountered, RecursiveDFS is called recursively
to process it. In this case, we say that the edge from v to w is followed.
Now fix some starting vertex r for the search. Let T be the subgraph of G
consisting of the vertices of G plus the followed edges; that is, T is just G
with all skipped edges deleted. The following argument proves that T is in
fact a tree. T contains all vertices of G by definition, and is connected since
any depth-first search of G-which is assumed to be connected-reaches every
vertex of G. Furthermore, if G contains n vertices then T contains n - I edges,
since each vertex except for r is first encountered when some edge is followed
(and no edge can be followed twice). Thus T is a tree by the second part of
the Tree Characterization Theorem. It is natural to consider T as a rooted tree
with root r; then v is the parent of w if and only if w is first encountered when
the edge {v, w} is followed from v.

The original graph G consists of T plus the skipped edges. The next crucial
point to notice is that each skipped edge joins two vertices that are ancestrally
related in T; that is, if {v, w} is a skipped edge of G then either v is an ancestor

440 GRAPHS

Figure 12.7 Depth-first search in an undirected graph. The search begins
at the vertex labelled 1, and the vertices are labelled in the order they
are encountered during the search. Followed edges are drawn with heavy
lines and skipped edges with light lines; the arrows on the followed edges
indicate the direction in which the edge was followed. When the skipped
edges are deleted, the result is a tree; if vertex 1 is taken as the root of
the tree then skipped edges join only ancestrally related vertices.

of w or w is an ancestor of v. To see this, let {v, w} be any skipped edge of G,
and suppose that the exploration of v was finished before the exploration of w
was finished; we shall show that w must be an ancestor of v. (The other case
is handled symmetrically.) Consider the instant at which exploration of v was
completed. Clearly w must have been encountered already, for otherwise the
edge { v, w} would not have been skipped during the exploration of v. But then
an exploration of w must be in progress at this instant, since we assumed that
exploration of v completed before exploration of w. This exploration of w has
progressed along a sequence of followed edges from w to v-that is, w is an
ancestor of v. Since every edge of G is either part of T or is a skipped edge, it
follows that every edge of G joins two vertices that are ancestrally related in T.
Figure 12.7 shows an example of an undirected graph and the embedded tree
of followed edges produced by a depth-first search.

This picture of the depth-first search process leads us to a precise character-
ization of the cutvertices of G. We must distinguish the root of T as a special
case.

* LEMMA Vertex r, the root of T, is a cutvertex of G if and only if it
has more than one child in T.

PROOF Suppose u and v are distinct children of r. Then every
path from u to v must contain r since there are no edges of G between
different subtrees of T; thus r is a cutvertex. Conversely, if r has only
one child v, then deleting r and all edges adjacent to it leaves G connected
since the remainder of T is still connected; therefore in this case r is not a
cutvertex. C

12.2 GRAPH SEARCHING 441

For example, in Figure 12.7, the root (vertex 1) is a cutvertex since it has
two children 2 and 16. If the edge {1, 16} were deleted and a new edge {2,16}
added, the numbering of the graph would be unchanged but now 1 would no
longer be a cutvertex since 2 would be its only child.

* LEMMA Let v be any vertex of G other than r. Then v is a cutvertex
of G if and only if it has a child w in T such that no skipped edge of G
joins a descendant of w to a proper ancestor of v.

PROOF (Recall that a proper ancestor of v is any ancestor of v other
than v itself.) First, suppose that such a child w exists. Then any edge
of G adjacent to a descendant of w either joins two descendants of w or is
adjacent to v. (The reason is that edges of G join only ancestrally related
vertices, and there are no edges between descendants of w and any proper
ancestor of v by assumption.) Therefore, every path between w and the
parent of v must contain v, so v is a cutvertex.

Now assume that no such children of v exist. We claim that for any
vertex u J v there is a path Pu not containing v between u and r. Once
we prove this claim it follows that v is not a cutvertex, since any two
vertices other than v can then be joined by a path (via r) not containing v.
Obviously Pu exists if u is not a descendant of v. If u is a descendant of v,
let w be that child of v that is an ancestor of u (w might be u itself). By
assumption there is an edge of G between some descendant of w and some
proper ancestor of v; we can use such an edge to "bypass" v in making the
desired path Pu from u to r. C

Again using Figure 12.7 as an example, vertex 7 is a cutvertex since one of
its children, 8, has no descendant with a skipped edge leading back to a proper
ancestor of 8. On the other hand, 4 is not a cutvertex, since the edge {3, 5}
joins a descendant of 5 (namely, 5 itself) to a proper ancestor of 4, and the edge
{1, 13} joins a descendant of 6 to a proper ancestor of 4. Notice that vertex 16
is a cutvertex even though the edge {18, 16} joins a descendant of 17 to an
ancestor of 16 (namely, to 16 itself)-the Lemma states that the ancestor must
be a proper ancestor.

These ideas are exploited by Algorithm 12.4, which finds the cutvertices
of a connected, undirected graph. Rather than numbering vertices in the order
they are encountered we give each vertex a Depth field that stores its depth
in the tree of followed edges rooted at root. The recursive function Walk-
ForCutVertices sets this field with a standard depth-first search. The function
WalkForCutVertices returns the minimum of the depths of the vertices encoun-
tered during the entire exploration of its argument v; as each neighbor of v
is examined (and possibly explored recursively) we remember the smallest of
all depths encountered, including those returned by recursive calls on WalkFor-
CutVertices. As each descendant w of v is explored we can tell whether there is

442 GRAPHS

procedure FindCutVertices(undirected graph G):
{Determine the cutvertices of graph G}

foreach vertex v in G do
CutVertex(v) false
Depth(v) -1

root - any vertex of G
Depth(root) O- 0
WalkForCutVertices(root)
if more than one neighbor of root has depth 1 then

CutVertex(root) +- true

function WalkForCutVertices(vertex v): integer
{Walk v recursively; return the smallest depth encountered}

mindepth +- Depth(v)
foreach neighbor w of v do

if Depth(w) =-1 then
Depth(w) <- Depth(v) + 1
m <- WalkForCutVertices(w)
if m > Depth(v) and v :A root then

CutVertex(v) *- true
mindepth min(mindepth, m)

else
mindepth min(mindepth, Depth(w))

return mindepth

Algorithm 12.4 Find the cutvertices of a connected, undirected graph. Each
vertex's CutVertex field is set to true if and only if the vertex is a cutvertex.

a descendant of w that is adjacent to a proper ancestor of v-such an ancestor
would have depth less than Depth(v). (As in the Lemmas above, the root of
the search is an exception and is handled specially in the main routine.) Notice
that the test is applied only to descendants of v in the tree, not to all neighbors
of v.

12.3 GREEDY ALGORITHMS ON GRAPHS

Minimum Spanning Trees
A communications network is to consist of a number of widely spaced relay
stations called switches. Each switch will accept messages from nearby users
of the network or from other switches, and will pass each message on towards

12.3 GREEDY ALGORITHMS ON GRAPHS

its destination. The switches will communicate with each other using commu-
nications lines that must be purchased; the cost of each such line depends on
the location of the two switches that it will connect-in general, longer lines
are more expensive. There are n(n - 1)/2 possible lines between n switches,
but clearly it is not necessary to purchase every such line; it suffices to purchase
enough lines so that there is at least one path between each pair of switches.
How can we decide which communications lines to purchase to minimize the
total cost?

More generally, let G = (V, E) be a connected undirected graph and let
c be a function that assigns a positive cost to each edge of G. If E' C E
is any set of edges of G, we also write c(E') to denote the total cost of the
edges in E'. The problem is then to find a subset E' of the edges of G
such that the undirected graph G' = (V, E') is connected and such that c(E')
is minimal. (The assumption that G is connected ensures that such a set E'
exists.)

The first point to note is that G' will surely be a tree, and therefore
there are lVi - 1 edges in E'. For if G' is connected and is not a tree,
then by the Tree Characterization Theorem it must have a cycle. But delet-
ing any edge along this cycle yields a connected graph with smaller cost. The
tree we are looking for is called a minimum spanning tree on the graph G
with respect to the cost function c. There may be more than one minimum
spanning tree for a given cost function and set of vertices, but all have the
same total cost. There are two standard algorithms for finding minimum span-
ning trees:

* (Prim's Algorithm) Maintain two sets: a set E' of edges that is initially
empty and a set N of vertices that initially contains a single vertex (any
vertex at all). Repeat the following step VI -1 times: find an edge e G E
of least cost that joins a vertex u E N to a vertex v , N, and add e to E'
and v to N.

* (Kruskal's Algorithm) Maintain a set E' of edges, initially empty. Repeat
the following step VI - 1 times: find an edge e E E of least cost such that
adding e to E' creates no cycles in (V, E'), and add e to E'.

Each of these algorithms is a greedy algorithm; at each step we take the
cheapest possible action with no a priori certainty that doing so yields the cheap-
est possible overall result. The only difference between the algorithms is that
Prim's algorithm builds the minimum spanning tree starting from an arbitrary
vertex, using low-cost edges to connect new vertices into a single growing tree,
whereas Kruskal's algorithm may "grow" large disconnected pieces of the tree
before connecting them together. (By the way, ties may be broken arbitrarily in
either algorithm.) The remarkable fact is that each of these algorithms always
produces a minimum spanning tree. We will not consider Prim's algorithm fur-
ther (except in Problem 30) but we will discuss an efficient implementation for
Kruskal's algorithm after proving it correct.

443

444 GRAPHS

(a) (b)

Figure 12.8 Illustration for the correctness proof of Kruskal's algorithm.
(a) The graph (V, E') and the new edge e. Each oval represents a con-
nected component of (V, E'). (b) The path in F from u to v, which must
contain an edge e' between distinct connected components of (V, E').
The set F' contains all of F except for e', and since it also contains e
there is a path P' in F' from u' to v'.

Since adding an edge to a connected graph always creates a new cycle and
since a connected component of a graph is a connected graph by definition,
Kruskal's algorithm may be restated as follows: start with a graph consisting of
vertices V and no edges, then at each step add a least-cost edge of G joining
two distinct connected components of the graph constructed so far. If (V, E) is
a graph and E' C E, a connected extension of E' with respect to E is any set
of edges F C E that contains E' and such that (V, F) is a connected graph. In
this section the set E of available edges is always implicit; thus we refer more
simply to connected extensions of E'. The proof of Kruskal's algorithm rests
on the following Lemma, which states that taking the cheapest edge at each
point leads to the cheapest solution overall:

* LEMMA Let (V, E) be a connected graph and let E' C E be such
that the graph (V, E') is not connected. Let e V E' be a minimal-cost
edge in E joining distinct connected components of (V, E'). Then there
is a minimal-cost connected extension of E' that includes e.

PROOF Let the endpoints of e be u and v (Figure 12.8(a)). Let
F be any minimal-cost connected extension of E'. If F contains e then
there is nothing further to prove, so assume otherwise. Since (V, F) is
connected, there is a path in (V, F) from u to v; this path must contain
at least one edge e' = {u', v'} that joins distinct connected components
of (V, E') since there is no path from u to v in (V, E') (Figure 12.8(b)).
Furthermore, c(e) < c(e'), since otherwise c(e) is not minimal in E - E'.

12.3 GREEDY ALGORITHMS ON GRAPHS

Now let F' = F U {e} - {e'}; we claim that F' is a minimal-cost
connected extension of E' that includes e. Obviously F' includes e, and it
contains E' since e' 0 E'. Furthermore, c(F') = c(F)+c(e) -c(e') < c(F).
It remains only to prove that G' = (V, F') is connected. To see this, first
construct a path P' between u' and v' by taking the path in (V, F) from u
to v and adjoining edge e, creating a cycle. Each edge of this cycle except
for e' is in F'; thus deleting e' yields a path from u' to v' all of whose
edges are in F' (Figure 12.8(b)). To show G' connected, let two arbitrary
vertices be given and let P be the path between them in (V, F) (which is
known to be connected). If P does not contain e' then it is also a path in
(V, F') and we are done. Otherwise, modify P by inserting the path P' in
place of the edge e', producing a path in (V, F'). C

Using this Lemma we can prove the correctness of Kruskal's algorithm
with a simple induction on the number of edges in E'. Let K be the cost of a
minimum spanning tree on G. Thus when E' is equal to the empty set it has
a connected extension with cost K. At each step of the algorithm, the Lemma
ensures that adding the edge chosen by Kruskal's algorithm yields a new set
of edges that also has a connected extension with total cost K. Finally, when
(V, E') is connected, the total cost of E' must itself be K.

In fact, the Lemma proves something more. When E' starts as an empty set
of edges, Kruskal's algorithm constructs a minimum spanning tree on G. But
nowhere does the Lemma assume that E' is contained in a tree; E' is an arbitrary
set of edges, possibly containing cycles. Therefore, Kruskal's algorithm solves
the more general problem of finding a least-cost connected extension for an
arbitrary graph. That is, if some of the communications lines in our network
already exist (or are provided for free), even if they redundantly connect large
portions of the network, we can still use Kruskal's algorithm to determine the
cheapest set of lines that will ensure connectivity of the entire network.

Implementing Kruskal's Algorithm Recall that the basic step in Kruskal's
algorithm is to find and add an edge of least cost that joins two connected com-
ponents of the graph. Let us break this operation into three subproblems: find
an edge of least cost, determine whether a given edge joins two connected com-
ponents of the graph-so-far, and add an edge to the graph-so-far (thus combining
two connected components into one).

The key to the first subproblem is that when an edge cannot be added to the
graph (because both of its endpoints lie in the same connected component) it
will never be useful again, since the connected component in which it lies will
never be broken apart. Therefore, it suffices to consider the edges of G in order
from cheapest to most expensive. The simplest solution would be to sort all
the potential edges by cost, which takes time e(e log e). But this method will
often incur extra work; in a lucky case, the n -I cheapest edges will suffice to

445

446 GRAPHS

function KruskalMST(undirected graph G): set
{Find the edges of a minimum spanning tree on G}

El MakeEmptySeto) {The set of edges in the tree}
components +- IGI {The number of components of (G, E') }
edges i- make a priority queue containing the edges of G
foreach vertex u of G do MakeSet(u)
while components > 1 do

{Process the next edge in order}
{u, w} *- DeleteMin(edges)
U Find(u)
W Find(w)
if U # W then

Union(U, W)
Insert({u, w}, E')
components +- components- 1

return E'

Algorithm 12.5 Kruskal's algorithm for finding a minimum spanning tree on
a graph, where c(e) gives the cost of adding edge e. This function returns E',
the set of edges in the tree. The priority queue edges is ordered by the cost
function c. As explained in the text, edges is typically implemented as a heap.

construct the minimum spanning tree. Therefore, a better method is to place all
the potential edges in a priority queue, removing them one at a time as necessary
until the tree is finished. If the priority queue is implemented as a heap it can
be built in time e(e) as explained on page 387, and the cost of removing the
edges is 19(f log f) where f is the number of edges examined before the tree is
complete.

The second and third problems admit an elegant solution using the Union-
Find data structures of §9.2. At the beginning of the algorithm, each vertex lies
in a connected component all by itself. An edge can be added if and only if its
endpoints lie in different connected components, and adding an edge creates a
new connected component that is the union of two extant connected components.
Thus, the connected components are a partition of the vertices V into disjoint
sets, which must be managed with the operations Union and Find. Kruskal's
algorithm executes 2f Find operations (finding the connected component of
each endpoint of each link considered) and n - 1 Union operations (joining n
connected components into 1). The time for these 2f + n - 1 operations is
0((2f + n) log*(2f + n)), or O(f log* f) since f > n - 1. The total time for the
algorithm is thus O(f log f) which is O(e loge) in the worst case. The method
is shown in full in Algorithm 12.5.

12.3 GREEDY ALGORITHMS ON GRAPHS

Single-Source Least-Cost Paths
In §12.2 we solved the problem of finding the shortest path between two given
vertices of a graph, where the length of a path is defined as the number of edges
it contains. We now generalize this problem a little. Let G be a directed graph*
and suppose that each edge Au, v) of 0 has a nonnegative cost c(u, v. Let the
cost of a path be defined as the total cost of the edges contained in the path.
Now consider the problem of finding the least-cost path between two given
vertices. Of course, if each edge has cost 1 the problem is the same as before.
But when the costs may differ it is not necessarily true that the shortest path is
also the least-cost path. For example, in Figure 12.9(a) the shortest path from S
to D is (S, A, D), but the least-cost path is (S, B, E, A, D). (The requirement
that each edge cost is nonnegative guarantees that a least-cost path always exists
and is well-defined; see Problem 35.) We redefine the distance between two
vertices u and v as the minimum cost of a path between them, thus generalizing
the previous definition to permit arbitrary edge costs.

The algorithm that we use to solve this problem, known as Dijkstra's algo-
rithm, actually does more: given a source vertex S, the algorithm computes the
distances between S and every other vertex of G. The idea is as follows. For
each vertex v maintain a "tentative" distance from v to S; the tentative distance
of a vertex may be too large, but it will never be less than the true distance.
Initially, the tentative distance of S itself is zero, and all other vertices have
infinite tentative distance. We store the tentative distance of each vertex v in a
field Distance of the record associated with v. Also maintain a set of vertices U
(for "unknown") whose actual distance to S is not yet known-when a vertex v
is not a member of U, the tentative distance of v is the true distance from S
to v. Initially, U contains every vertex of G; the algorithm will terminate when
U is empty.

Now execute the following procedure repeatedly (Figure 12.9). Find a ver-
tex v E U whose tentative distance is minimum and remove v from U. Consider
each neighbor w of v and compare Distance(w) to d = Distance(v) + c(v, w).
If Distance(w) > d then reduce Distance(w) to d, reflecting the fact that a
new, cheaper path from S (via v) to w has been encountered. In fact, this
comparison need be performed only on neighbors w such that w G U, for
otherwise Distance(w) is the actual distance from w to S and will never
exceed d. Each time this procedure is executed a single vertex is removed
from U; therefore, we must perform the procedure exactly G1 times and the
algorithm terminates. The method is illustrated in Figure 12.9 and coded in
Algorithm 12.6.

Dijkstra's is clearly a greedy algorithm; each time through the loop we
select the vertex with smallest tentative distance and, by removing it from U,
declare that its distance is not tentative at all. We must prove that these local
optimal choices really do lead to the overall best result. We start with a Lemma:

*The algorithm in this section can be used on undirected graphs as well, with very little change.

447

448 GRAPHS

(a) (b)

0

(c) (d)

Figure 12.9 An example of Dijkstra's algorithm. (a) A directed graph, with
a cost on each edge. We wish to find the least-cost path from S to each
other vertex. (b) The distance to each vertex (except S) is tentatively
set to oc. (Tentative distances are shown in italics.) The vertex with
least tentative distance is S, so it is removed from U, here depicted
by shading the vertex. The tentative distance to each neighbor of S is
updated. (c) Now vertex B has least tentative distance, and is removed
from U. The tentative distance to C is updated from 5 to 4 and the
tentative distance to E is updated from oc to 4. The distance via B to A
is 8 which is greater than the tentative distance of A, so no update is
necessary. (d) E is now removed from U (C could have been selected
as well) and the distance to A is updated. The next vertex to be removed
from U will be C (Problem 32).

E LEMMA During the operation of Dijkstra's algorithm, vertices are
deleted from U in nondecreasing order of their final tentative distances.

PROOF It suffices to show that the final value of Distance(v) is
less than or equal to the final value of Distance(w), where w is the ver-
tex that was removed from U immediately after v was removed from U.
Now Distance(v) must have been less than or equal to Distance(w) at the
instant that v was deleted from U, since otherwise w and not v would

7

3 1

0
2 1

12.3 GREEDY ALGORITHMS ON GRAPHS

procedure DijkstraLeastCostPaths(directed graph G, vertex S):
{S is the source vertex of graph G}

U +- MakeEmptySeto)
foreach vertex v in G do

Distance(v) *- oc
Insert(v, U)

Distance(S) +- 0
repeat G1 times

v - any member of U with minimum Distance
Delete(v, U)
foreach neighbor w of v do

if Member(w, U) then
Distance(w) -- min(Distance(w), Distance(v) + c(v, w))

Algorithm 12.6 Dijkstra's algorithm for finding the distance between a given
source vertex and all other vertices of a directed graph G. The cost function
c(u, v) gives the cost of the edge (u, v), with the convention that c(u, v) = 00
when (u, v) is not an edge of G.

have been selected for deletion. From that point to the termination of
the algorithm, the only possible change to either tentative value is reduc-
tion of Distance(w) to Distance(v) + c(v, w), but then we still would have
Distance(v) < Distance(w) since c(v, w) > 0. E7

* THEOREM (Correctness of Dijkstra's Algorithm) At the termination
of Algorithm 12.6, Distance(v) is the distance from S to v for each ver-
tex v of G.

PROOF Clearly Distance(v) is the cost of some path from S to v,
so the only thing to prove is that for each vertex v there is no path from S
to v with cost less than Distance(v). Suppose to the contrary that v is
such a vertex and that (S WlIW2i...,WkV) is such a path, and let d <
Distance(v) be the sum of the edge costs along this path. We may also
assume that Distance(wi) is the least-cost distance from S to wi for each
1 < i < k, since if not we can use the first offending wi in place of v. At
the instant that v was removed from U, none of the wi was in U (since
vertices are removed from U in nondecreasing order of tentative cost). Let
K = Distance(wk) + c(Wkv). Then K > Distance(v) since when Wk
was removed from U the field Distance(v) was either set to K or was
already smaller than K (and Distance values can never increase). But also
d > Distance(wk) + C(Wk, v) = K since Distance(wk) is the minimum

449

450 GRAPHS

cost of a path from S to Wk. Combining these two inequalities yields
d > Distance(v), a contradiction. El

One way to implement Dijkstra's algorithm is to represent the set U as a
heap, thinking of it as a priority queue ordered by Distance fields. Initializing U
can then be performed as a separate step in time @(n). Searching U for the ver-
tex with minimum tentative distance and deleting it is then simply a DeleteMin
operation; there are exactly n such operations in the second loop, which there-
fore takes time O(n log n). The Member operation in the final if statement can
be implemented in constant time, say by using an additional field in each vertex.
But changing the priority value of a heap element, as required by the last line
of the algorithm, may require a number of operations that is logarithmic in the
size of the heap. (Priority queues as abstract data types do not support the op-
eration of altering priority values; it is just this added requirement of Dijkstra's
algorithm that makes things interesting.) The total time used by the final loop
is therefore O(e log n) since it executes once for each edge of the graph. Thus
this implementation of Dijkstra's algorithm runs in time O((n + e) log n), which
is quite acceptable when there are few edges in the graph.

On the other hand, a simpler implementation is superior for dense graphs.
Suppose that we use a one-bit field in each vertex to denote whether that vertex
is a member of U, and search for the minimum-distance vertex by examining
every vertex of the graph. The search now requires time $(n) but insertion,
deletion, and modifying Distance values are accomplished in constant time.
Each iteration of the main loop consists of one search and at most n - I updates
of Distance fields, so the total time of the algorithm is now E3(n 2), which is
better than the heap implementation when the number of edges is close to n2.
It is easy to see that no solution to the single-source least-cost path problem
can run in time o(n2) in general: any such algorithm must examine each edge
of G at least once and G may have 19(n 2) edges. Problem 34 discusses another
approach to the least-cost path problem.

12.4 ALL PAIRS LEAST-COST PATHS

Let G = (V, E) be a directed graph, and let c be a cost function assigning a
non-negative cost to each edge of G. In the previous section we considered how
to find the least-cost path between a given vertex of G and all other vertices
of G. But suppose now that we wish to find the least-cost path between every
pair of vertices of G. Clearly, it suffices to perform the algorithm of the previous
section n = lVI times, successively letting each vertex be the source vertex;
this approach yields an algorithm whose time bound is 0(n 3). In this section
we present the Floyd-Warshall algorithm, a dynamic programming solution of

12.4 ALL PAIRS LEAST-COST PATHS

procedure Floyd WarshallAllShortestPaths(directed graph G):
{Find the distance between each pair of vertices of G}

{Set up Costu for U = 0}
foreach vertex u in C do

foreach vertex v in G do
Cost[u, v] + c(U, v)

{Add each vertex w to U}
foreach vertex w in G do

foreach vertex u in G do
foreach vertex v in G do

Cost[u, v] -- min(Cost[u, v], Cost[u, w] + Cost[w, v])

Algorithm 12.7 Floyd-Warshall dynamic programming algorithm for finding
the cost of the cheapest path between every pair of vertices of directed graph G.
The function c(u, v) gives the cost of the edge from u to v, with c(u, v) = x
if there is no such edge and c(u, u) = 0 for all u. The results are stored in the
array Cost.

the same problem that gives the same time bound using a different technique
that is much easier to program.

We begin by extending the cost function c so that it produces a cost for
every pair of vertices in G: if u and v are distinct vertices of G such that (U, v)
is not an edge of G we let c(u, v) = so, and let c(u, u) = 0 for each u E V.
Now let U be a set of vertices, initially empty. (In this section, all vertices are
integers so that we can use them directly as array indices.) For each u and v
let Costu[u, v] be the cost of the cheapest path from u to v whose intermediate
vertices are all drawn from U. Of course, when U is empty this implies that
Costu[u, v] = c(u, v), which is the cost of the unique path with no intermediate
vertices at all. As we add vertices to U, more and more of the graph is available
to construct paths of lower cost. Finally, when U = V, there is no constraint
on which vertices can be used in forming paths, so Costv [u, v] is the cost of
the cheapest path overall.

Now suppose that U is an arbitrary set of vertices and that Costu is the array
defined in the previous paragraph. How can we compute the array Costuu{w}?
That is, how can we add a vertex w to U? Given any two vertices u and v, let us
compute the cost of the cheapest path from u to v whose intermediate vertices
consist only of vertices in U U {w}. There are two possibilities for the least-cost
path: the least-cost path PI from u to v that does not contain w, and the least-
cost path P2 that does contain w. The cost of PI is known to be Costu [u, v].
To compute the cost of P2 , note that it has the form (u, ... w, ... , v); that is,
w occurs exactly once (otherwise we could excise a cycle from w to w and

451

452 GRAPHS

create a cheaper path). The first portion of this path, from u to w, uses only
vertices in U as intermediate vertices and must be the least-cost path from u to w
that does so (since otherwise we could construct a cheaper path from u to v).
Therefore the cost of this portion of the path is Costu[u, w]. Similarly, the cost
of the portion of P2 from w to v is Costu[w, v], and the cost of P2 is thus
Costu[u, w] + Costu[w, v]. The cheapest path from u to v that uses arbitrary
vertices in U U {w} is the cheaper of PI and P2; that is, we have proved that

Costuj{w} [u, v] = min(Costu[u, v], Costu[u, w] + Costu[w, v]).

Algorithm 12.7 incorporates this discussion, initially setting up Costu for
U equal to the empty set and adding vertices to U one by one. The only
subtlety in the code lies in the fact that a single array Cost suffices for the entire
computation; that is, as the "new" costs Costuu{f} are computed in the final line
of the algorithm, they are stored in the same array from which the "old" costs
Costu are drawn in the same calculation! But there is no difficulty, because the
only "old" costs that are used are those of paths that start or end at w, and none
of these costs change while w is added to U. Assuming an implementation
in which arrays can be accessed and modified in constant time, the total time
used by Algorithm 12.7 is easily seen to be 6(n 3), a bound that could also be
attained using n separate invocations of Algorithm 12.6. (Indeed, in the case of
sparse graphs, a heap implementation of Dijkstra's algorithm can be used to find
all least-cost path lengths in time O(n 2 log n).) However, the simplicity of the
Floyd-Warshall algorithm makes it quite appealing for practical use. Another
important advantage of this approach is its behavior on graphs with negative
edge weights (Problem 40).

12.5 NETWORK FLOW

A network is a directed graph G = (V, E) with a distinguished source vertex s
that has no incoming edges, a sink vertex t that has no outgoing edges, and a
function C that assigns to each edge e E E a positive real capacity C(e). A
flow on a network G is a function f that assigns a number to each edge under
the following constraints:

* 0 < f(e) < C(e) for each e E E; that is, each edge is assigned a nonnega-
tive value that is no more than its capacity.

* For each vertex v E V other than s and t, the flow into v is equal to the
flow out of v; that is, for each such v the sum of f(e) over all edges e
entering v is equal to the sum of f(e') over all edges e' departing v. In
other words, the net flow into v is zero.

When f(e) = C(e), edge e is said to be saturated. The value of a flow f,
written f(G), is the total flow departing s; this is necessarily the same as the

12.5 NETWORK FLOW 453

5/7 t 8 t

(a) (b)

Figure 12.10 (a) A network G and a flow f on G. The notation a/b on
edge e means f(e) = a and C(e) = b; that is, flow a is assigned out of
a maximum of b. The value of the flow is f(G) = 6. A cut (N, N) with
capacity C(N, N) = 23 is indicated by a line around the vertices of N.
(b) The augmenting network A(G, f) corresponding to the network of
part (a).

total flow entering t (Problem 43). By convention, we let C(u, v) = 0 when
(u, v) is not an edge of G, and also let f (u, v) = 0 when (u, v) ¢ E.

Figure 12.10(a) gives an example of a network G and a flow on G. Think
of each edge of G as a pipe with capacity specified by C (in liters per second,
say). Each vertex of G is a complex valve, able to shunt fluid between the
entering and departing pipes in any manner, but unable to produce or to absorb
any fluid; the source and sink vertices are able respectively to produce and to
absorb arbitrary amounts of fluid. The value of a flow is the rate at which fluid is
transferred from the source to the sink. We wish to solve the Max Flow problem:
given a network G, find a flow of maximum value. This problem has many
important applications in situations where the notions of "flow" and "capacity"
are more than metaphorical; the vertices may represent transfer locations, and the
capacities of the edges represent the capacities of transportation media between
them. We shall examine other applications at the end of this section and in
Problems 55 through 58.

A cut in a network is a partition of its vertices into two sets N and N such
that s E N and t E R. We write a cut as an ordered pair (N, N). If f is a flow
on G, then the value of the cut (N, N) with respect to f is the net flow from N
to N, which is the total flow from N to N minus the total flow from N to N:

f(N,)= N f(u, v) - f(v, u).
uEN, vEN vEN, uEN

454 GRAPHS

Define the capacity of a cut with respect to f as the sum of the capacities of
the edges from vertices in N to vertices in N; that is,

C(N, N) = E C(u, v).

uEN, VENV

The capacity of a cut is just the maximum imaginable value of the cut, where
all "forward" edges are saturated and all "backward" edges have zero flow.

An example of a cut (N, N) is drawn in Figure 12.10(a) as a line surround-
ing N. It should be obvious that if (N, N) is any cut in G, then for any flow f
the total flow f (G) cannot exceed C(N, N), since no greater flow can be pushed
from N as a whole to N as a whole. This observation follows directly from
the following stronger fact:

* LEMMA If G is a network, f is a flow on G, and (N, N) is any cut
in G, then f (G) = f (N, N).

PROOF By induction on the size of N. If N contains one vertex,
then N = {s}; since s has no incoming edges, f (N, N) is the sum of f (e)
over all edges e leaving s, which is f (G) by definition. Now suppose that
INI > 1 and let N' = N - {w} where w is some element of N other than s.
Then f (N', N') = f (G) by the induction hypothesis. We can now compute
f (N, N) from f (N', N') by subtracting the flow on the edges entering w
(each of which either no longer contributes to f (N, N) or now contributes
negatively) and adding the flow on the edges departing w (each of which
either now contributes to f (N, N) or used to contribute negatively and no
longer contributes). The net change is zero since the net flow into w is
always zero, thus f (N, N) = f (N', N'). D

Thus the flow on G cannot exceed the capacity of any cut. In particular,
the maximum flow on G cannot exceed the capacity of a minimum cut, that
is, a cut with least capacity. Remarkably, the converse is also true, as captured
by the following Theorem:

* THEOREM (Max-Flow Min-Cut) If G is a network, f is a flow on G
with maximum value, and (N, N) is a cut of G with minimum capacity,
then f (G) = C(N, N).

Before proving this Theorem we need a bit more machinery. If G is a
network, f is a flow on G, and u and v are distinct vertices of G, define the
augmenting capacity from u to v (with respect to f) as the amount of additional
net flow that can be sent from u to v by increasing the flow on the edge (u, v)
up to its capacity and decreasing the flow on the "reverse" edge (v, u) to zero.
The augmenting capacity from u to v is thus C(u, v) -f (u, v)+ f (v, u). (One or

12.5 NETWORK FLOW 455

both of these edges may not exist; we are using here the conventions about the
values of C and f on nonexistent edges.) Now define the augmenting network
A(G, f) as follows. The vertices, source, and sink of A(G, f) are the vertices,
source, and sink of G. For each pair of distinct vertices u and v, (u, v) is an
edge of A(G, f) if and only if the augmenting capacity from u to v is positive,
and in that case the capacity of the edge (u, v) is just the augmenting capacity
from u to v with respect to f. As in any network, the source has no incoming
edges and the sink has no outgoing edges, even if there is some "augmenting ca-
pacity" toward the source or away from the sink. When G and f are understood,
we denote by CA the capacity function of the augmenting network A(G, f).

Figure 12.10(b) shows the augmenting network A(G, f) corresponding to
the network and flow of Figure 12.10(a). Notice that both (uv) and (vu)
may be edges of A(G, f) even when only one such edge exists in G, since that
edge may have "unused capacity" in both directions. Given a network G and a
flow f, the augmenting network describes the possibilities for adding flow to G.

An augmenting path for a network G (with respect to a flow f) is a path
from s to t in the augmenting network A(G, f). For example, the augmenting
graph in Figure 12.10(b) has three augmenting paths of length 4; it has no shorter
augmenting paths and several longer ones. Augmenting paths are central to the
problem of finding maximum flows because given an augmenting path there is
a simple way to increase the flow: let a be the minimum of the augmenting
capacities of the edges along the path, and increase the flow on each edge of
the augmenting path by a. Since each edge has augmenting capacity at least a,
the forward flow along each edge can be increased by a (although sometimes
this increase is brought about by decreasing the reverse flow as well). The net
flow into any vertex on the path (other than s and t) remains zero as required,
since as much additional flow leaves as enters. Finally, the overall value of the
flow increases by a since the first edge of the path must depart from s.

* LEMMA If a network G has no augmenting paths with respect to a
flow f, then there is a cut in G whose capacity is exactly f(G).

PROOF Let G and f be given and let N be the set of all vertices v
such that there is a path from s to v in the augmenting network A(G, f).
Obviously s E N, and t V N since there is no path from s to t in A(G, f)
(any such path would be an augmenting path). Therefore (N, N) is a cut
in G. Now f(N, N) = f(G) by the previous Lemma, so it suffices to
show that f(N, N) is in fact equal to C(N, N). Assume to the contrary
that C(N, N) > f(N, N); this means that either there is an unsaturated
edge from a vertex in N to a vertex in N, or there is an edge with positive
flow from a vertex in N to a vertex in N. Either way, there is an edge in
A(G, f) from a vertex u C N to a vertex v V N, but then there is a path
from s to v in A(G, f), contrary to the definition of N. El

456 GRAPHS

We have already seen that if a flow is maximum, it can have no augmenting
paths. One consequence of this Lemma is the converse: if a flow f allows no
augmenting paths then it is a maximum flow. For by the Lemma there is a cut
in G whose capacity is exactly f(G) and therefore no flow can have greater
value. Another consequence of the Lemma is the proof of the Max-Flow Min-
Cut Theorem: We know already that the maximum flow is no bigger than the
mininum cut; it remains to prove that there is a cut whose capacity is equal
to the maximum flow. But if f is a maximum flow then it has no augmenting
paths; thus by the Lemma there is a cut whose value is f(G), and the proof is
complete.

Finding Maximum Flows
Given a network G, how can we find a maximum flow on G? A simple
algorithm might work like this. Start with a flow f that assigns 0 to every
edge of G. Construct the augmenting network, find an augmenting path and
increase f accordingly, then repeat. Although this algorithm works, it can be
very slow in some cases (Problem 45). The algorithm we describe uses a similar
but more efficient strategy whose total time is 0(n 3) where, as usual, n is the
number of vertices of G.

The key idea is to find and use augmenting paths in order of increasing
length. Starting with an everywhere-zero flow f, the algorithm operates in a
series of phases. In each phase, we first construct the augmenting network
A(G, f) and use it to find the length (say k) of the shortest augmenting path-if
no augmenting path exists, the algorithm terminates. Then f is increased by
adding flow along paths of length k until no further such paths exist, at which
point the phase is over. As we shall show later, no new augmenting paths of
length less than k are created during this process. Thus after at most n -1
phases (the length of the longest possible path in G) there are no augmenting
paths at all and f is a maximum flow.

The part of the algorithm that is tricky to implement efficiently is adding
flow to f along the shortest augmenting paths. We give an overview of the pro-
cess first, deferring implementation details until later. Suppose the augmenting
graph A(G, f) has been constructed and k, the length of the shortest augment-
ing path, has been determined. The next step is to delete from A(G, f) any
vertices and edges that lie on no path of length k from s to t; this process, in
which only "useful" vertices and edges are retained, is called pruning A(G, f).
The pruned network has a very interesting structure: it is always a dag, and
moreover each edge leads from a vertex at some distance d from s to a vertex
at distance d + 1 from s. We say that a vertex at distance d from s is in layer d.
Figure 12.11 shows the pruned network constructed from the augmenting graph
of Figure 12.10(b).

The simplest way to increase flow f using the pruned network would be to
select an augmenting path P, find the edge of P with the smallest augmenting

12.5 NETWORK FLOW 457

S

t

(a) (b)

Figure 12.11 Construction of the pruned network corresponding to the aug-
menting graph of Figure 12.10(b). (a) Each vertex has been labelled with
its distance from s, showing that k, the length of the shortest augment-
ing path, is 4. (For clarity, edge capacities are omitted.) (b) Edges and
vertices that lie on no path of length 4 from s to t have been removed.
(Edge capacities have been restored and the vertices have been rearranged
slightly to emphasize the layers, which are separated by dotted lines.)

capacity, and increase the flow along P by that amount. Instead we must use
a more efficient strategy that permits augmenting along many paths at once.
For any vertex v other than s or t, define the input capacity of v to be the
sum of the capacities of the edges entering v in the pruned network. Similarly,
the output capacity of v is the sum of the capacities of the edges departing
from v. The capacity of v is the minimum of its input and output capacities;
the capacity of v is the largest flow that can possibly be added to augmenting
paths of length k containing v. (Special case: s and t have infinite capacity.)
For example, in Figure 12.11(b) the sole vertex in layer 3 has input capacity 11
and output capacity 9, and hence capacity 9.

Let v be a vertex in the pruned network with minimum capacity, let c be
its capacity, and suppose v is in layer d. Because the capacity of a vertex is an
aggregate of the capacities of its edges, it is not necessarily true that there is a
single augmenting path through v along which we can increase the total flow
by c. But we can increase the flow by c if we use many paths through v. We do
so in two steps, called "pushing" and "pulling." In the first step flow is "pushed"
forward from v toward t by increasing the flow on edges leaving v-as many
edges as necessary-until the total net flow out of v has been increased by c. As
flow is added to edges leaving v the new flow enters vertices in layer d + 1; in
each such vertex, we record the new amount of flow that must be pushed forward
toward t. When flow c has been pushed out of v we visit these vertices in layer
d + 1; in each, we use the same procedure to push flow onward to vertices in
layer d + 2. Eventually, a total flow of c has been pushed to t. The process

458 GRAPHS

function MaxFlow(network G): number
{s, t, and C are the source, sink, and capacity function of G}

value +- 0
InitializeFlowsToZero(G)
repeat forever

A +- BuildAugmentingNetwork(G)
ComputeLayers(A)
if Layer(t) = xo then return value {No au
PruneAugmentingNetwork(A)
CalculateVertexCapacities(A)
while t has incoming edges in A do

v +- FindLeastCapacityVertex(A)
value +- value + Capacity(v)
AddFlow(A, v)

{New phase}

gmenting paths}

Algorithm 12.8 Find the maximum flow for a network G: main routine. The
flow on each edge of G is determined and f (G), the total flow from s to t, is
returned. A is a "scratch" network that is set to A(G, f) at the start of each
phase and is then pruned and otherwise modified. Each vertex has a Layer field
that is set to its distance from s in A(G, f).

of "pulling" flow is the reverse: we first consider v and pull total flow c along
edges entering v from vertices in layer d - 1, then we consider vertices in layer
d - 1 and pull flow from layer d - 2, and so forth, until flow c has been pulled
from s to v. The fact that v is a vertex of minimum capacity is critical to the
success of this procedure; it guarantees that the pushing and pulling processes
never fail because of inadequate edge capacities whether the flow from v moves
along a single path or splits and is recombined at a subsequent layer.

Once flow c has been pushed to t and pulled from s we update the pruned
network to reflect the new situation, deleting saturated edges and vertices whose
capacity is now zero-in particular, v will be deleted. After all updates have
been performed we again find the vertex of minimum capacity and repeat the
entire process. No vertices or edges are ever added to the pruned network;
eventually, only s and t remain, and the phase is over.

Implementing the Max Flow Algorithm
The top-level structure of the Max Flow algorithm is shown in Algorithm 12.8.
Its input is a network, including a source s, sink t, and capacity function C; it
returns the value f (G) of the maximum flow. It also computes and stores the
flow on each edge in an unspecified data structure accessed by InitializeFlows-
ToZero and later IncrementFlowOnEdge. Although to prove that the algorithm

12.5 NETWORK FLOW 459

attains the promised time bound we shall eventually have to worry about the
details of the implementation, we shall defer doing so for as long as possible;
for now we assume only that each vertex is represented by a record in which
we specify fields as needed. Keep in mind that there are two graphs under
consideration: the input graph G and an auxiliary graph A. The latter is set
to the current augmenting network A(G) at the start of each phase and is later
pruned, modified, and so forth, while G always remains fixed except for the
flow assigned to its edges. Each vertex of A is necessarily a vertex of G (and
we assume that the same record is used in both graphs), but A may have edges
that are not in G, as a comparison of Figures 12.10(a) and 12.10(b) shows.
Furthermore, the capacity CA(e) of an edge e in A is quite different from the
capacity of an edge between the same two vertices in G.

We now turn to a discussion of the subroutines of MaxFlow. Constructing
the augmenting network is straightforward (Problem 46), and a breadth-first
search can be used as in §12.2 to find the distance from the source to each other
vertex; this distance is stored in a Layer field in each vertex (Problem 47). If
t is not encountered during the search, there is no augmenting path at all in
A(G, f) and the algorithm terminates. Otherwise, let k be Layer(t), which is
the length of the shortest augmenting path.

Pruning the network is also relatively easy (Algorithm 12.9). Recall that
the objective is to retain exactly those vertices and edges that lie on some path
of length k from s to t. Now any such path must start at s, proceed to a vertex
in layer 1, then to a vertex in layer 2, and so forth until reaching t. Hence
no edge of A(G, f) is useful unless it goes from a vertex v to a vertex in the
very next layer; all other edges can be deleted. Furthermore, the augmenting
network may contain vertices that are farther from s than t is, and vertices
that are closer than t but are on "dead end" paths (there is an example of such
a vertex in Figure 12.11(a)). To find and eliminate these vertices and their
associated edges we next perform a search backwards from t, that is, traversing
the edges that enter each vertex rather than those that depart. Since only useful
edges remain, the vertices that are encountered during this search are exactly
those vertices that lie on some path of length k from s to t; all other vertices
can now be deleted. Algorithm 12.9 gives the details.

The function FindLeastCapacityVertex finds and returns the vertex in A
with minimum capacity, and Capacity(v) returns the capacity of any vertex v.
As we shall see shortly, these function must not recalculate vertex capacities
on every call because doing so would use too much time. Therefore we use
a routine CalculateVertexCapacities that is called on the pruned augmenting
network once at the beginning of each phase to set fields InputCapacity and
OutputCapacity in each vertex; the routine Capacity then simply takes the
minimum of these two fields (Problem 48). (Again, note carefully that the
edges and capacities considered here are those in the auxiliary graph A, not the
original graph G.)

460 GRAPHS

procedure PruneAugmentingNetwork(network A):
{A is an augmenting network to be pruned}

foreach edge (u, v) of A do
if Layer(v) 7 Layer(u) + 1 then DeleteEdge(u, v, A)

foreach vertex v of A do Encountered(v) I- false
Q *- MakeEmptyQueue()
Encountered(t) I- true
Enqueue(t, Q)
until IsEmptyQueue(Q) do

w t- Dequeue(Q)
foreach edge (v, w) of A do

if not Encountered(v) then
Encountered(v) +- true
Enqueue(v, Q)

foreach vertex v of A do
if not Encountered(v) then DeleteVertex(v, A)

Algorithm 12.9 Prune an augmenting network, leaving only those vertices and
edges that lie on a path of length k = Layer(t) from s to t. The Layer field of
each vertex v already contains the length of the shortest path from s to v.

The only remaining subroutine is AddFlow, which is detailed in Algo-
rithm 12.10. The pushing and pulling subroutines use breadth-first search so
that all vertices of one layer are considered before any vertices of the next
layer. Each time the flow on an edge e is changed, there is a lot of bookkeeping
to be performed. We update the scratch network A by reducing the capacity of e
as appropriate, and if the edge is now saturated it is removed entirely. We also
update the input and output capacities of the endpoints of e. After the pushing
and pulling operations are complete, vertex v can be removed from the network.
But we must also remove any other now-useless vertices of zero capacity; this
operation is a bit tricky since deleting a single vertex can cause many other
vertices to become "dead ends" (Problem 50).

This completes the discussion of the code for the Max Flow algorithm.
Since the AddFlow routine is the only place where the flow is modified, it is easy
to see that we always have a legitimate flow between calls on AddFlow. Thus
all that remains is to show that within total time O(n3) the algorithm terminates
with no remaining augmenting paths (which implies that f is a maximum flow
as implied by the Lemma on page 456). As already mentioned, we do so by
showing that there are O(n) phases and that each phase can be carried out in
time O(n2). The first fact rests on the following rather technical Lemma whose
proof we leave to Problem 51:

12.5 NETWORK FLOW 461

procedure AddFlow(vertex v, network A):
{Increment the flow on G by the capacity of vertex v}

c *- Capacity(v)
PushFlow(v, A, c)
PullFlow(v, A, c)
foreach vertex w of A do DeleteUnusableVertex(w, A)

procedure PushFlow(vertex v, network A, number c):
{Push flow c from v to the sink vertex t, using breadth-first search}

foreach vertex w of A do FlowToPush(w) +- 0
Q <- MakeEmptyQueueo)
Enqueue(v, Q)
FlowToPush(v) - c
until IsEmptyQueue(Q) do

u i- Dequeue(Q)
{Push flow over as many edges leaving u as necessary}
while FlowToPush(u) > 0 do

ei- any edge (u, w) in A
newflow +- min(CA(e), FlowToPush(u))
{Add flow newflow to e, updating all data structures}
IncrementFlowOnEdge(u, w, newflow)
if CA(e) = 0 then DeleteEdge(e, A)
FlowToPush(u) - FlowToPush(u) - newflow
if FlowToPush(w) = 0 and w 7$ t then Enqueue(w, Q)
FlowToPush(w) -- FlowToPush(w) + newflow
OutputCapacity(u) +- OutputCapacity(u) - newflow
InputCapacity(w) I- InputCapacity(w) - newflow

procedure DeleteUnusableVertex(vertex w, network A):
{If w is useless, delete it and all useless vertices reachable from it}

if Capacity(w) = 0 then
foreach edge e = (w, u) of A do

InputCapacity(u) +- InputCapacity(u) - CA(e)
DeleteUnusableVertex(u, A)

foreach edge e = (u, w) of A do
OutputCapacity(u) *- OutputCapacity(u) - CA(e)
DeleteUnusableVertex(u, A)

DeleteVertex(w, A)

Algorithm 12.10 Add flow to G starting at v, updating A as necessary. The
routine PullFlow is analogous to PushFlow and is omitted.

462 GRAPHS

* LEMMA (Termination of Max Flow) Let G be a network and f a flow
on G, and let k be the length of the shortest augmenting path in A(G, f).
Let E be the set of all edges of A(G, f) that lie on at least one aug-
menting path of length k. Suppose f is increased on some or all edges
of E in such a way that f is still a flow. Then no augmenting path with
length less than k is created, and if any augmenting paths with length k
remain, every edge of every such path is a member of E. E

From this Lemma, it follows that the pushing and pulling operations create
neither shorter augmenting paths nor new paths of the same length that are not
already in the "scratch" network A. Therefore, each phase adds flow along
paths strictly longer than those of the preceding phase, and thus there are at
most n - 1 phases in all.

The next part of the analysis depends on the details of the implementation.
We require a representation of graphs such that constructing the augmenting
network, finding the layer of each vertex, pruning the scratch network, and cal-
culating vertex capacities can all be carried out in time 0(n2). We must also
represent the (fixed) capacity C(e) of each edge of G and the (changing) capacity
CA(e) of each edge of A. Finally, we must keep track of the current value of the
flow f on each edge of G-these values constitute the output of the algorithm.
One twist is that from each vertex we must be able to find quickly its incoming
as well as its outgoing vertices, because of the reverse search in PruneAugment-
ingNetwork. None of these requirements is difficult to fulfill (Problem 49).

The only remaining task is to prove that the innermost loop of the main
procedure (Algorithm 12.8) also has time bound 0(n 2). A naive argument does
not work, since the loop may iterate n -2 times (but no more, since at least one
vertex is deleted from A each phase) and each call on AddFlow may require time
E3(n 2). So we have to take a more careful look at AddFlow and its subroutines.

We first show that there are 0(n 2) occasions per phase on which flow is
added to an edge of G. When flow is added to an edge one of two things must
happen: either the corresponding edge e of A becomes saturated and is deleted,
or the edge does not become saturated because the remaining flow to be pulled
or pushed is less than CA(e). The first of these possibilities occurs 0(n 2) times
since A starts with 0(n 2) edges and no edges are added during a phase. In a
single call to AddFlow there can be at most n -2 edges that acquire new flow
but do not become saturated, because at most one edge per vertex can fail to
saturate. Thus, since there are at most n - 2 calls per phase on AddFlow, there
are 0(n 2) occasions on which an edge fails to saturate after flow is added. In
total, the number of times that flow is added to an edge of G is 0(n 2).

Finally, we must consider the recursive procedure DeleteUnusableVertex
that deletes dead-end vertices and edges from A. Although any particular call
on this routine can delete many vertices and edges, the routine never performs
more than constant work without deleting an edge from A (recall that deleting

12.5 NETWORK FLOW 463

a vertex from a graph entails deleting all edges adjacent to it). Thus the total
time spent in this routine is also 0(n2).

Applications of Max Flow
The edge connectivity of an undirected graph G is the minimum number of
edges that must be deleted from G in order to produce a disconnected graph.
The vertex connectivity of an undirected graph G is the minimum number
of vertices that must be deleted from G in order to produce a disconnected
graph (recall that deleting a vertex implies deleting every edge adjacent to that
vertex).* Determining edge and vertex connectivity is important in commu-
nications networks, where the connectivity of the network must be preserved
even though communications lines or switches may fail: if a communications
network has (say) edge connectivity k, then it can maintain its function even if
any k - I links fail. In this section, we show how to determine edge and vertex
connectivity using the Max Flow algorithm.

Let G be an undirected graph, and let s and t be distinct vertices of G.
Construct a directed graph G' from G as follows: G' has the same vertices as G,
and for each edge {u, v} of G there are two edges (u, v) and (v, u) in G'. Let
C be the capacity function that assigns I as the capacity of every edge of G'.
Apply the Max Flow algorithm to the network consisting of G', s, t, and C,
and let k be the result. By the Max-Flow Min-Cut Theorem, any cut in the
network has capacity at least k. But since the capacity of each edge is 1, this
means that in any cut (N, V) there are at least k edges between N and N; that
is, at least k edges of G must be deleted to disconnect s from t. If we repeat
this process using every pair of vertices as the source and sink, the minimum
of the resulting flows is exactly the edge connectivity of the graph G.

A slightly more complex procedure can be used to find the vertex connec-
tivity of G. Again, let s and t be arbitrary vertices. Form a directed graph G'
from G as follows. For each vertex v of G, there are two vertices vin and
v0 1t in G'. To each edge {uv} in G there correspond edges (uoutvin) and
(vot,, uin) in G'; in addition, there is an edge (uin, uout) for each vertex u of G
(Figure 12.12). Finally, let k be the maximum flow across the network G' with
source Sin, sink tout and a capacity function that assigns 1 to each edge of G'.

We claim that if any k -1 vertices are deleted from G. then there still
remains a path from s to t. For assume otherwise: let W be a set of k - I
vertices such that every path from s to t contains at least one vertex in W.
Let A be the set of vertices v of G such that there exists a path from s to v
that contains no vertex in W; that is, A is the set of vertices in the connected
component of G - W that contains s. Let N consist of the vertices vin and vout

for each v G A, plus the vertices win for each w E W. Then the cut (N, N)

*If G is complete, it is impossible to produce a disconnected graph by deleting vertices; in this
case we arbitrarily say that the vertex connectivity of G is one less than the number of its vertices.

464 GRAPHS

w v

Vin

vout

Yin

Yout

Figure 12.12 An undirected graph and the graph constructed from it by the
vertex connectivity algorithm.

of G' has capacity k - 1, since only the edges (win, Wout) can cross the cut, and
this is impossible by the Max-Flow Min-Cut Theorem. So, as before, we need
only repeat this procedure with every pair of vertices of G as s and t and take
the minimum of the results obtained to find the vertex connectivity of G.

The problem with this approach is the time required. Determining either
edge or vertex connectivity in this manner requires e(n 2) applications of the
Max Flow algorithm, so the time bound of the algorithm is no better than 0(n5

).

Frequently it suffices to verify that the vertex connectivity of a graph exceeds
some fixed k; the Max Flow algorithm can be used to solve this problem, for ar-
bitrary k, in time 0(n4

) (Problem 58). But for small k the time bounds are much
better: as we have already seen verifying that the vertex connectivity of a graph
is at least 2-which simply means checking that the graph is biconnected-can
be done in time O(n + e), and in fact the same time suffices to verify that the
vertex connectivity of a given graph is at least 3.

Problems

12.1 1. Find a set of six U.S. states whose associated undirected graph is that
of Figure 12.1(a) on page 425.

2. How many directed graphs are there on a given set of n vertices?
How many undirected graphs are there on those vertices?

3. Two graphs with the same number of vertices are isomorphic if their
vertices can be labelled in such a way that they have the same edges.
More formally, undirected graphs G, = (V, El) and G2 = (V2, E2)
are isomorphic if there is a bijective function f from VI to V2 such
that {v, v2} is an edge of G, if and only if {f(v), f(V2)} is an edge
of G2 . (The definition for directed graphs is similar.) Call two graphs
different if they are not isomorphic.

a. How many different undirected graphs with four vertices exist?

b. How many different directed graphs with three vertices exist?

PROBLEMS 465

4. How many edges are in a complete undirected graph with n vertices?
How many edges are in a complete directed graph with n vertices?

5. Prove that if a graph has a path between two vertices, it necessarily
has a simple path between the same two vertices.

6. Suppose the recursive procedure for constructing trees described on
page 98 is modified to construct undirected graphs; that is, instead
of adding edges (r,rl), (r,r2), and so forth, we add edges {r,ri},
{r, r21 and so forth. Show that the object constructed by the re-
cursive procedure is a tree according to the definition on page 430.
Conversely, show that any tree can be constructed by the recursive
procedure, with any vertex at the root.

7. Complete the proof of the Tree Characterization Theorem (both parts).

8. For each of the five properties of the first part of the Tree Character-
ization Theorem, find a graph that has that property but is not a tree.
For each of the ten possible pairs of properties, either show that any
graph with those two properties is a tree or find a counterexample.

9. Explain why it is necessary to insist that G not be complete in the
third clause of the second part of the Tree Characterization Theorem.

10. The degree of a vertex of a graph is the number of its neighbors. A
leaf of a tree is a vertex with degree one.

a. Find all trees with no leaves, with exactly one leaf, with exactly
two leaves, and with exactly three leaves.

b. Find a formula for the number of leaves of a tree in terms of the
number of vertices in the tree and the degrees of the vertices.

11. If G = (V, E) is an undirected graph, the complement of G is the
graph (V, E') such that {a, b} E E' if and only if {a, b} V E. In-
formally, the complement of G is constructed by adding all possible
edges to G and then deleting the original edges of G.

a. Proof or counterexample: if G is connected, then the complement
of G is disconnected.

b. Proof or counterexample: if G is disconnected, then the comple-
ment of G is connected.

12. Prove that any vertex of a graph G belongs to exactly one connected
component of G.

13. Generalize the Lemma on page 431 by showing that a graph with n
vertices and k connected components must have at least n - k edges,
and that a graph with n vertices and e edges must have at least n - e
connected components.

466 GRAPHS

14. Suppose that graphs are represented by adjacency matrices. Show
that any algorithm that determines whether a graph is connected must
examine Q(n2) entries of the adjacency matrix. (Hint: Find a class
of graphs for which this is so.)

12.2 15. Prove formally the assertion on page 433, that if Algorithm 12.1 visits
vertex w, before vertex W2 then the distance from v to wI is less than
or equal to the distance from v to W2.

16. Show how to modify Algorithm 12.1 so that it yields a shortest path
from v to each vertex. (One approach is simply to save, with each
vertex, a list of the vertices in a path from v to that vertex. Try to
find a better way.)

17. Improve Algorithm 12.1 so that it carries out a breadth-first search in
time proportional to the number of vertices encountered.

18. Write an iterative version of depth-first search in which both PreVisit
and PostVisit are carried out on each vertex.

19. Write a function GraphFromDFS that reconstructs a graph given the
PreVisit and PostVisit orderings of the vertices. It should accept a
list of vertices each of which has integer fields PreVisitOrder and
PostVisitOrder, and should return a graph that yields these orders
when searched depth-first starting at the vertex whose PreVisitOrder
field contains 1.

20. Prove that every dag has at least one vertex with no entering edge.

21. As pointed out in the text, the particular topological sort produced by
Algorithm 12.3 on page 438 may depend on the order in which the
vertices of G are processed in the main procedure and the order in
which the neighbors of each vertex are processed. Is it true that any
topological sort of a dag can be produced by some depth-first search?

22. Find a necessary and sufficient set of conditions for a dag to have a
unique topological sort order.

23. a. Show how to determine in a single depth-first search whether an
arbitrary directed graph has a cycle. Your algorithm should use
only a single numeric field in each vertex.

b. Show how to determine whether an arbitrary directed graph has
a cycle using only a single bit per vertex, possibly modifying the
graph.

24. Show that the two definitions of biconnectivity on page 439 are equiv-
alent for graphs with more than two vertices; that is, show that such
a graph has no cutvertices if and only if, given any two vertices of
the graph, there are two vertex-disjoint paths between those vertices.

PROBLEMS 467

25. A common error of nonspecialists is the belief that a biconnected
graph is one in which every vertex has degree at least 2. Find a
graph with fewest vertices demonstrating the falsehood of this notion.

26. In the Lemma on page 431 we proved that no connected graph with n
vertices has fewer than n - I edges. What is the smallest number
of edges in a biconnected graph with n vertices? What is the largest
number of edges in a graph with n vertices that is not biconnected?

27. Consider the second Lemma used to characterize the cutvertices of an
undirected graph (page 441). Where does the proof of this Lemma
break down if v is the root of T?

28. The diameter of a directed or undirected graph is the length of its
longest simple path. Write a function that, given a graph, computes
its diameter.

29. A directed graph is called strongly connected if there is a path be-
tween any two of its vertices. Write a function that, given a directed
graph, determines if it is strongly connected. (Hint: Use depth-first
search.)

12.3 30. Implement Prim's algorithm for finding minimum spanning trees (de-
scribed on page 443) and prove that it is correct.

31. Find the minimum and maximum number of edges that may be con-
sidered by Kruskal's algorithm (Algorithm 12.5 on page 446) when
given a connected graph with n vertices.

32. Draw Figures 12.9(e), (f), (g), and (h), completing the example of
Dijkstra's algorithm on page 448.

33. In the graph of Figure 12.10(a) on page 453, let the cost of each
edge be the "numerator" of its label (so that, for example, the two
edges departing vertex s have cost 2 and 4). Show the operation of
Dijkstra's algorithm on this graph and find the distance from s to
every other vertex.

34. Consider the least-cost paths problem in the special case where all
edge costs are nonnegative integers. To solve this problem we can
use Dijkstra's algorithm with a fast method of finding the members
of U with least tentative cost. The crucial fact is that at each point
in the execution of the algorithm, each vertex has tentative cost of
either d, d + 1, d + 2, ... , d + C -1, or oc, where d is the smallest
tentative cost of any vertex in U and C is the maximum cost of any
edge in the graph. We may therefore keep C lists, each containing
vertices all with the same tentative cost, and such that every vertex is
either on exactly one list or has tentative cost oo. It is then a trivial

468 GRAPHS

matter to find a vertex of least tentative cost. Expand these ideas
into a procedure that runs in time O(e + nC), where as usual e is the
number of edges and n is the number of vertices of the graph.

35. In our discussion of the least-cost paths problem we assumed that all
edge costs are nonnegative. If edge costs can be negative, the graph
may have negative cycles-those with total cost less than zero. If
two vertices lie on a negative cycle there is no least-cost path between
them, because paths of arbitrarily low cost can be constructed by
traversing the cycle many times.

a. Write a function that determines whether a given directed graph
has a negative cycle.

b. Modify Algorithm 12.6 on page 449 so that it works correctly
on graphs with negative edge costs but no negative cycles. (Hint:
The behavior of U will not be as simple in the modified algorithm,
and the time bound will not be preserved.) What is the best time
bound you can find for the modified algorithm?

36. Let an undirected graph with nonnegative edge costs be given, along
with a source vertex s and a destination vertex t. Devise an algorithm
that, in addition to finding the length of the least-cost path between
s and t, finds all least cost paths between s and t. Try to make your
algorithm as efficient as possible in time and space.

37. Let k be fixed. Show how to find the k shortest paths (not necessarily
disjoint) between two vertices in a given graph.

12.4 38. Consider the effect of the last line of the Floyd-Warshall algorithm,
Algorithm 12.7 on page 451, when u, v, and w are not all distinct.
Recode the triple loop to avoid this inefficiency.

39. Trace the operation of Algorithm 12.7 on the graph of Figure 12.9
on page 448 by showing the contents of the Cost matrix just before
each entry to the triple loop (that is, seven times) and after the algo-
rithm terminates. (Assume that each loop processes the vertices in
alphabetical order.)

40. Show that the Floyd-Warshall algorithm correctly finds the distance
between all pairs of vertices even when edge costs may be zero or
negative, as long as the graph has no negative cycles. What happens
if the graph does have negative cycles?

41. Suppose that LeastCostSimplePaths is a routine that finds the cost of
all cheapest simple paths in an undirected graph with possibly negative
edge weights and negative cycles. Show how to construct a program
that solves the Travelling Salesman Problem using LeastCostSimple-
Paths as a subroutine and only a small amount of additional time.

PROBLEMS 469

(You need not write any code; just describe the method.) This process
is called a reduction of the Travelling Salesman Problem to the least-
cost simple paths problem; it follows that finding least-cost simple
paths in a graph with arbitrary edge costs is at least as hard as solving
the Travelling Salesman Problem.

12.5 42. a. Compute the maximum flow of the network of Figure 12.10(a)
on page 453.

b. Noting that an augmenting network is itself a network, compute
the maximum flow of the network of Figure 12.10(b).

c. Proof or counterexample: If G is a network and f is any flow
on G, then the maximum flow on G is equal to f (G) plus the
maximum flow on A(G, f).

43. Suppose f is a flow on network G. We defined f(G) as the total
flow leaving s and required that the net flow into each vertex (except
s and t) must be zero, but said nothing about the flow into t.

a. Show that the flow entering t is equal to f (G).

b. Let a function on the edges of G be "almost a flow" if it satisfies
all the requirements of a flow except that there is a single vertex v
(distinct from s and t) whose net flow is allowed to be nonzero.
Let g be almost a flow, and suppose that the total flow leaving s
is equal to the total flow entering t. Show that g is a flow.

44. If (N,.N) is a cut in G = (V, E), define E(N, N) to be the set of
edges leading from vertices in N to vertices in N. Suppose E' C E
is such that there is no path from s to t in (V, E - E'). Is there
necessarily a cut (N, N) such that E' = E(N, N)? (Proof or coun-
terexample.)

45. Reconsider the naive algorithm on page 456 for finding maximum
flow: build the augmenting network, find an augmenting path and
increase the flow along it, and repeat until there are no augmenting
paths. Find a network with integral edge capacities in which this pro-
cedure iterates a number of times proportional to the maximum flow
itself, that is, not bounded by any function of the number of vertices.
(If edge capacities may be irrational, it is possible to construct a net-
work in which the naive algorithm does not terminate, and moreover
converges to a flow whose value is strictly less than the maximum!)

46. Write the routine BuildAugmentingNetwork used in the Max Flow
algorithm.

47. Write the routine ComputeLayers used in the Max Flow algorithm.

48. Write the routines CalculateVertexCapacities, Capacity, and Find-
LeastCapacityVertex used in the Max Flow algorithm.

470 GRAPHS

49. Design data structures for the Max Flow algorithm. You must imple-
ment routines InitializeFlowsToZero, IncrementFlowOnEdge, C, CA,
and the graph abstract operations used by the routines that create and
manipulate the scratch network-including those in the three problems
just preceding! Your solution must meet the time bounds discussed on
page 462 but is otherwise unconstrained. Don't forget that graphs G
and A must share vertices; that is, if a vertex v appears in both graphs
then the same record is used for each. (On the other hand, there are
many ways that edges might be represented. In particular, keep in
mind that just because the algorithm carefully distinguishes between
edges of G and edges of A, and between C and CA, it doesn't follow
that separate data structures must be maintained for each.)

50. Consider the last line of procedure AddFlow in Algorithm 12.10 on
page 461. Explain clearly why it is necessary to call DeleteUnusable-
Vertex on each vertex of A; in particular, what goes wrong if we
replace this line with DeleteUnusableVertex(v, A)?

51. Prove the Max Flow Termination Lemma on page 462.

52. Our Max Flow algorithm yields the value of the maximum flow and
a flow on each edge that realizes the maximum flow. Modify the
algorithm so that it also produces a minimum cut of the network.

53. Show that the edge connectivity of a graph always equals or exceeds
the vertex connectivity.

54. Show that the vertex connectivity of a graph is k if and only if for
every pair v, w of vertices there are k vertex-disjoint paths between
v and w. (Hint: use the Max-Flow Min-Cut Theorem. This result is
called Menger's Theorem; it generalizes Problem 24.)

55. An undirected graph is called bipartite if its vertices can be parti-
tioned into disjoint sets V1 and V2 such that every edge of the graph
connects a vertex in VI with a vertex in V2. A matching of a graph
(not necessarily bipartite) is a set of edges no two of which are ad-
jacent to the same vertex. A maximum matching of a graph is a
matching with maximum size. Show how to find the size of a maxi-
mum matching of a bipartite graph using the Max Flow algorithm.

56. Show how to find the maximum flow through a network in which the
vertices, as well as the edges, have assigned capacities. That is, the
flow through each vertex must not exceed the capacity of the vertex;
of course, the net flow into each vertex must still be zero. (Hint:
Consider how such an algorithm could be used to solve the vertex
connectivity problem.)

REFERENCES 471

57. Show how to find the maximum flow through a network that has
multiple sources and sinks.

58. Given an undirected graph G, show how to determine whether its
vertex connectivity exceeds a given number k with only 0(n) invo-
cations of the Max Flow algorithm. (Hint: Use Menger's Theorem,
Problem 54.)

References

Graph theory is a wonderfully rich subject; for more information, consult any of the
excellent texts on the subject. Two introductory texts are

F. Harary, Graph Theory, Addison-Wesley, 1969;

and

C. Berge, Graphs and Hypergraphs, North-Holland, 1973.

The interplay between data structures and graph algorithms is explored in greater detail
in the monograph

R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics (CMBS 44), 1983,

which discusses the topics treated in this chapter and a number of others, and which has
an extensive bibliography of further references. More applications of depth-first search
can be found in

R. E. Tarjan, "Depth-First Search and Linear Graph Algorithms," SIAM Journal on
Computing 1 (1972), pp. 146-160.

Prim's algorithm is from

R. C. Prim, "Shortest Connection Networks And Some Generalizations," Bell System
Technical Journal 36 (1957), pp. 1389-1401

and Kruskal's algorithm was published in

J. B. Kruskal, "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem," Proceedings of the American Mathematical Society 7 (1956), pp. 48-50.

A very interesting use of leftist trees (described in Chapter 9) as the basis of a faster
algorithm with running time in O(e log log n) is given in

D. Cheriton and R. E. Tarjan, "Finding Minimum Spanning Trees," SIAM Journal on
Computing 5 (1976), pp. 724-742

which contains an excellent overview of the problem and survey of results. The shortest
path problem is a fundamental technique that has been studied extensively. A good
general discussion of the problem and overview of basic techniques (with particular
application to sparse graphs) is found in

D. B. Johnson, "Efficient Algorithms for Shortest Paths in Sparse Networks," Journal of
the ACM 24 (1977), pp. 1-13

472 GRAPHS

and a survey of more recent work, including use of more sophisticated data structures,
is in

R. K. Ahuja, K. Mehihorn, J. B. Orlin, and R. E. Tarjan, "Faster Algorithms for the
Shortest Path Problem," Journal of the ACM 37 (1990), pp. 213-223.

Dijkstra's algorithm appears in

E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische
Mathematik 1 (1959), pp. 269-271,

and the approach in Problem 34 first appeared in

R. B. Dial, "Shortest-Path Forest with Topological Ordering," Communications of the
ACM 12 (1969), pp. 632-633.

An approach to the shortest-paths algorithm that works well in practice even on graphs
with negative edges (as in Problem 35) is presented in

U. Pape, "Algorithm 562: Shortest Path Lengths," ACM Transactions on Mathematical
Software 6 (1980), pp. 450-455.

The Floyd-Warshall algorithm for finding the least-cost path between all pairs of graph
vertices was published independently in

R. W. Floyd, "Algorithm 97: Shortest Path," Communications of the ACM 5 (1962),
p. 345

and

S. Warshall, "A Theorem on Boolean Matrices," Journal of the ACM 9 (1962), pp. 11-12.

Problem 41 is from

G. B. Dantzig, "All Shortest Routes in a Graph," in Theory of Graphs, Gordon and
Breach, 1967.

The extremely important Max Flow problem first arose in connection with minimizing
costs in transportation networks. A classic reference is

L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962,

which describes early solutions for the problem and many variations and applications.
The Max-Flow Min-Cut Theorem was proved in

L. R. Ford, Jr. and D. R. Fulkerson, "Maximal Flow Through a Network," Canadian
Journal of Mathematics 8 (1956), pp. 399-404.

The use of acyclic layered networks to solve the Max Flow problem quickly is the work
of

E. A. Dinic, "Algorithm for Solution of a Problem of Maximum Flow in a Network with
Power Estimation," Soviet Math. Doklady 11 (1970), pp. 1277-1280.

(Papadimitriou and Steiglitz, in their book cited below, point out that the last two words
of this title are probably a bad translation for "complexity analysis.") Dinic's method
has been the basis for several algorithms; the one we present is due to

V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari, "An O(IVI3) Algorithm for Finding
Maximum Flows in Networks," Information Processing Letters 7 (1978), pp. 277-
278.

REFERENCES 473

Increasingly sophisticated data structures have led to ever-faster algorithms for special
kinds of graphs (especially sparse graphs) and on multiprocessor systems. For a brief
survey with many references, see

R. K. Ahuja and J. B. Orlin, "A Fast and Simple Algorithm for the Maximum Flow
Problem," Operations Research 37 (1989), pp. 748-759.

The connection between the Max Flow problem and other optimization problems is thor-
oughly explored in

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice-Hall, 1982.

Many applications of the Max Flow algorithm, including several discussed here and used
in the problems, are presented in

S. Even and R. E. Tarjan, "Network Flow and Testing Graph Connectivity," SIAM Journal
on Computing 4 (1975), pp. 507-518.

The linear-time test for triconnectivity mentioned at the very end of the chapter is from

J. E. Hopcroft and R. E. Tarjan, "Dividing a Graph into Trico.. -cted Components,"
SIAM Journal on Computing 2 (1973), pp. 135-158.

13
Engineering

with Data Structures

We study data structures so that when confronted with a computational problem
we can choose intelligently among the alternatives for its solution. Up until
now we have studied each data structure by itself, learning its properties and
analyzing its performance. But a real problem arrives without a data structure
attached-not even a hint inferred from the title of the chapter in which the
problem appears! In this chapter we offer more involved and open-ended prob-
lems; solving each is an exercise in software design requiring one or more of
the data structures studied in this book.

But this is not the end of the story. Selecting a data structure is usually a
matter of balancing tradeoffs: space versus time, efficiency versus simplicity,
and so forth. As we have seen in previous chapters, the distinctions may be very
fine; one data structure may permit rapid search but slower insertion, another
may have the opposite characteristics, and still another may allow fast insertion
at the cost of slow deletion. Naturally, the specifics of the problem at hand
dictate the final decision-and for many of the problems in this chapter, we have
not provided detailed enough specifications to determine the "best" solution. It
is part of the solver's task to determine the questions that must be answered, just
as the software designer must often begin by resolving underspecified problems.
(Another characteristic of some software designers is a tendency to justify the
use of unsophisticated techniques on the grounds that the blinding speed of the
computer will overcome any defects of the solution. The problems here should
not be approached in this spirit; elegance and efficiency are paramount.)

So the problems presented here can be solved in different ways. You might
want to do no more than to sketch a possible solution, or you might write some
pseudo-code, or implement a solution in full on a machine. When criteria that
determine a best solution are not apparent, so that you must identify the signifi-
cant issues, you might discuss various alternatives and the approach to be taken
in each case. Frequently the first task is to define precisely the arguments and
functionality of the abstract operations that are required. Although some of the
problems have clear-cut answers, some lie within open research areas and are
not well understood. As you tackle some of these issues, a significant difference

474

13.1 DISPLAY SCREEN WINDOW MANAGEMENT

between real-world problems and textbook exercises will become apparent: real
problems lack not only guidelines for their solution, but unambiguous notifica-
tion that the best possible solution has been found.

1. Display Screen Window Management A computer display is addressed us-
ing a two-dimensional coordinate system that can be used to locate any point on
the screen. Typically the point (0, 0) represents the upper-left-hand corner, with
x coordinates increasing to the right and y coordinates increasing downward.
The screen displays a number of windows of various sizes. Each window occu-
pies a rectangular region of the screen, which can be fully specified by giving
the coordinates of the upper-left and lower-right corners of the window. Since
windows may overlap, each window also has a z coordinate used to determine
which window is "on top" and therefore visible; if several windows include the
same point, that point on the screen "belongs" to the window with the largest z
coordinate. Windows may be added, deleted, and resized, and may also change
z coordinate. For example, we might have an abstract operation

AddWindow(S, (xi, yl), (X2, Y2), Z)

that adds a window named S with upper-left corner (xi, yl), lower-right corner
(X2, Y2), and "height" z. Devise data structures and algorithms for the use of the
display manager, which must keep track of the windows and must at any time be
able to determine the window that owns any given point. (In some systems this
determination must be performed frequently and rapidly. For example, many
workstations have a pointing device with which the user can indicate a location
on the screen, and the window owning the pointer might have to be found each
time the pointer moves.)

2. Display Screen Icon Management The display screen of the previous prob-
lem may also display icons, images of small objects with arbitrary shape. We
require data structures and algorithms for handling icons as well. Icon handling
differs from window handling in several ways. (a) As already mentioned, icons
may be of arbitrary shape: circles, ellipses, irregular blobs, long lines, and so
forth, possibly containing holes. (b) Generally, there are many more icons than
there are windows. Consider, for example, a map of the world on which an
airline draws its flight routes; each city and flight path may be represented by
a separate icon. (c) Icons typically appear, disappear, and move much more
frequently than windows. (d) Icons are typically much smaller than windows.
Therefore we may require the ability to tell not only which icon is located at
a given point but also which icons are nearby; this capability might be used to
help the user select small icons in crowded regions. (e) In some systems, the
process of determining which icon corresponds to a screen location need not be
extremely fast, because icons are selected only by slow user actions (such as

475

476 ENGINEERING WITH DATA STRUCTURES

clicking a mouse). But it is also possible that the current icon, like the current
window, might need to be determined each time the pointer moves.

Discussion: One way to approach the problem of icons with arbitrary
shapes is to equip each icon with a bounding rectangle that completely con-
tains the icon. For example, let each icon I have fields BoundingHeight(I)
and BoundingWidth(I) that specify the size of a bounding rectangle for I. The
details of the shape of I can be handled by a function InternalPoint, where
InternalPoint(I, (x, y)) returns true if (x, y) is part of I when the upper-left
corner of the bounding rectangle of I is placed at point (0,0). This repre-
sentation frees us from worrying about icon shapes (which are not part of this
problem anyway) and permits us to manipulate bounding rectangles instead.
Calls on InternalPoint might be expensive, but the bounding rectangle can be
used to determine quickly whether a given point can possibly be part of an icon.
(Bounding rectangles are not always too useful for this purpose; consider, for
example, a long diagonal line.)

3. Digitized Pictures The use of quad trees for representing digitized images
was introduced in Problem 30 of Chapter 9. Many other aspects of this rep-
resentation do not have clear-cut answers. For example, one of the principal
advantages of the quad tree representation over a complete array of bits is that
the quad tree representation takes less space, since large monochromatic areas
are represented by single tree nodes. But if we really want to save space, then
the quad tree should not be represented using explicit pointers, but by some
kind of implicit representation or two-dimensional run-length encoding. Devise
such a representation, and try to assess its efficiency, and the difficulty of con-
verting between it and a representation that uses explicit pointers or an array
representation.

What if a quad tree is used to represent an image that consists simply of
straight line segments? How easily can the quad tree be constructed from the
endpoints of the line segments? Can the exact endpoints of the line segments be
recovered from the quad tree, given reasonable assumptions about the lengths
of the segments?

Many important geometrical properties can be computed from the quad
tree representation of a digitized image. For example, a set of pixels forms
a connected component of the image if they are connected by a sequence
of horizontally or vertically contiguous pixels of the same color. Devise an
algorithm that enumerates the connected components of an image and labels
each quad tree node with the number of its connected component. A related
problem is to find the area of the connected component containing a given pixel
(specified by its coordinates). You might also try to calculate the perimeter of
a connected component.

Sometimes it is necessary to produce a lower-resolution version of an im-
age, that is, to scale an entire n x n image to fit into m x m pixels, where

13.4 INTERSECTION OF RECTANGLES

Figure 13.1 A number of rectangles, with their skyline indicated by the
heavy line.

m < n. Obviously some of the sharpness of the original image will be lost,
but some scaling methods produce significantly poorer results than others. Ex-
plore this problem. Do the methods you propose work well with a quad tree
representation?

Finally, many problems can be generalized to higher dimensions-finding
the area becomes, in three dimensions, finding the volume; finding the perimeter
becomes finding the surface area; and so on. In three dimensions the octtree
representation is also useful in computer graphics, and introduces a further set
of problems, such as calculating the projection of a solid body onto a two-
dimensional surface from an arbitrary projection point, or finding the digitized
representation (as a quad tree, perhaps) of a slice through a solid object repre-
sented as an octtree.

4. Intersection of Rectangles We wish to manipulate a large number of rect-
angles with edges parallel to the coordinate axes. Each rectangle is specified by
name and by its upper-left-hand and lower-right-hand points; rectangles may be
added and deleted dynamically. At any time, we must be able to determine the
intersection of all the rectangles, that is, the set of points that belong to every
rectangle. Find a representation of rectangles and a data structure that solves
this problem.

5. Skyline of Rectangles As in the previous problem, we have a dynamic set
of rectangles with edges parallel to the coordinate axes. Assume further that the
y coordinate of the lower corners of each rectangle is 0; that is, all rectangles
sit on the x-axis. The problem is to determine (at any time) the skyline of
the current set of rectangles. The skyline of a set of rectangles is most clearly
defined by picture, as in Figure 13.1; part of your task is to find a definition of
skyline more appropriate to computer representation.

477

478 ENGINEERING WITH DATA STRUCTURES

6. Spelling Checker The English language is notorious for its spelling anoma-
lies; the mechanical spelling checker is a relatively recent development that has
been a boon to many writers. (Spelling checkers are not yet perfect; the seman-
tic capability needed to detect the error in this sentence, for example, is beyond
there powers at this writing.) A spelling checker requires a dictionary of English
words, which of course should include common place names, personal names,
abbreviations, and so forth. Even using automated methods for dealing with
plurals, prefixes, suffixes, and other derived forms, such a dictionary must con-
tain at least tens of thousands of words. Given a word not in the dictionary, we
might also wish to find "nearby" words that are in the dictionary-for example,
when confronted with "accomodate" we might suggest "accommodate" as an
alternative, and given "suick" we might suggest "sick," "stick," "slick," "quick,"
and perhaps others. Devise a dictionary representation for the use of a spelling
checker.

Discussion: The difficulty lies with the size of the dictionary, which may
well have hundreds of thousands of words of varying length, making it undesir-
able to store the entire dictionary in fast memory in order to perform a LookUp
on each word of the document. Many of these words are simply variations on
a standard pattern, such as plurals of nouns and the principal parts of regular
verbs. Another consideration is that no data are stored with the words-only
the presence of words in the dictionary is important. So one possibility is to
use a static hash table (built once and for all from the dictionary) whose entries
are single bits. A character string that hashes to an unoccupied table entry is
certainly not a word in the dictionary; unfortunately, if it hashes to an occupied
table entry it may or may not be a word. Can you improve this scheme to make
a useful and usably fast spelling checker?

7. Diff The Unix utility program diff compares two text files A and B and
lists their differences. This is useful, for example, when you have two versions
of the same source file of a computer program and you wish to determine what
changes were made in producing one from the other. To be precise, diff matches
as many lines as possible from file A to identical lines, appearing in the same
order, in file B. These lines are then presumed to be of common origin, and
lines appearing in one file but not matched in this way in the other file are
presumed to be the result of insertions in the one file or deletions from the
other, and are listed as discrepancies.

Develop algorithms and data structures for implementing diff. To be spe-
cific, diff finds the longest common subsequence of the two sequences of lines;
that is, if we regard the lines in the two files as the lists ao, . . ., a.l - and bo, * . .,
bi-,, then diff finds sequences of indices 0 < Po < pi < * < Pk-l <M - 1
and O < qO < q1 < ... < qk-I < •n-I of maximal length k such that api = bqj
for each i = 0 ... , k - 1. Is this in fact a reasonable notion of "finding the
differences"?

13.8 GO 479

There is a fairly straightforward O(mn) algorithm for the longest common
subsequence problem that works essentially by comparing every line of each
file with every line of the other, but if most of the lines of the files are unique
(as will generally be the case in practice!) this seems an unreasonably slow
method. Instead, try breaking this problem down into two steps. First, identify
each line of file B by its line number, and build a data structure that will enable
you to find quickly all the places in file A where each line of file B appears.
Thereafter the length of the lines can be regarded as a small constant. Second,
consider each line bj of file B in turn and partition the lines of file A into
consecutive blocks, such that if line i is in one block but line i + I is in the
next, then the longest common subsequence of ao . ai and bo, ... , bj is
shorter than the longest common subsequence of ao . ai, 1 and bo, ... , bj.
By judicious use of balanced tree structures this method can be implemented to
run in time O((m+n+p)log(m+n)) where p is the number of pairs (i, j) such
that ai = bj. Explore this approach, and the various data structures that might be
used in the implementation. This is an excellent problem for experimentation,
since such parameters as the length of the lines, the relation between processor
and disk speeds, and the number of duplicated lines may be as important as the
theoretical analysis in determining the running speed.

What would be a useful format in which to present the output of this
program? Are additional data structures needed to produce it? The actual diff
program can be instructed (with "-h") to make a "fast, half-hearted" effort at
matching the lines of the files. Speculate about what algorithm might be used
when this option is requested.

8. Go The game of Go is played by two players on a square board with 19
horizontal and 19 vertical lines producing 361 intersections called points. The
players alternately place markers called stones on the points; one player uses
black stones and moves first, the other player uses white stones. Stones are
never moved once played but may be captured and removed from the board
as described below. Two stones of the same color are connected if they are
adjacent horizontally or vertically. A set of stones all of the same color is
connected if there is a path of connected stones between each pair of stones in
the set. A maximal set of connected stones is called a group.

A liberty of a group of stones is a vacant point adjacent to some stone in
the group. A group of stones is captured when its last liberty is occupied; such
a group is immediately removed from the board. An eye is (for the purposes
of this problem) a maximal nonempty set of connected, vacant points that is
completely surrounded by a single group, possibly with the help of the edges
of the board. The object of the game is to control (by surrounding) more open
territory than your opponent, under fairly simple rules which are nevertheless
not detailed here

Construct a data structure that keeps track of the Go board on behalf of a
Go-playing computer program. It is important to determine rapidly the group

480 ENGINEERING WITH DATA STRUCTURES

of stones to which a given stone belongs, and the eyes and liberties of every
group. For a bigger challenge, learn the complete rules of Go and extend your
solution accordingly.

9. Gomoku A game much simpler than Go that is played on the same board
is Gomoku, or "five-in-a-row." The players alternately place stones as usual,
but there is no capture, and the winner is simply the first player to construct
a vertical, horizontal, or diagonal line containing five (but not six!) adjacent
stones. The strategy for playing Gomoku is to attain winning configurations,
those from which the opponent cannot prevent a victory. For example, four
adjacent stones in a line is a winning configuration if there is sufficient open
space at each end of the line. Two lines of three adjacent stones each, with
sufficient open space on each end of each line, is also a winning configuration.
(Of course, it does no good to have a winning configuration if your oppo-
nent has a better one, that is, one from which a victory can be achieved in
fewer moves.)

Design a "configuration manager" for the use of an automated Gomoku
player. Your manager should maintain a representation of the board as pieces
are played. It must also store a dictionary of configurations and it must be able
to search the board rapidly, finding any instances of the configurations in its
dictionary. (A better manager would also be able to find configurations that
are within a single move of configurations in the dictionary, either to block
an opponent's incipient victory or to suggest a winning move. An even better
manager could add configurations to its dictionary on the fly; the rest of the
program could then analyze games that it loses in order to learn new winning
configurations.)

10. Rubik's Cube We assume familiarity with Rubik's Cube, the delights of
which cannot be presented adequately in a textual description! The theory of
groups gives a mathematical basis for a sophisticated representation of Rubik's
Cube that is appropriate for many analyses and manipulations. Suppose, on the
other hand, that our only interest is in drawing the cube; that is, we must be
able to determine rapidly which colors are visible on any face of the cube, and
must be able to apply rotations to the cube, where each rotation consists of a
twist of one of the six faces. Define operations and devise a data structure that
handles this more limited set of requirements.

11. Tetris The video game called Tetris is played by a single player in a
rectangular area n units wide by m units high that is initially empty. Randomly
selected tetrominoes are dropped one by one into this area. (A tetromino
is a planar shape consisting of four unit squares attached along their sides;
two tetrominoes are considered identical if one can be rotated into the other.

13.11 TETRIS 481

M 0

E*

IT,1111

10 0

loo
100

I

00

0 a

(a) (b) (c)

Figure 13.2 The game of Tetris. (a) The seven tetrominoes. (b) A game
situation. The player has already selected a good position for the falling
tetromino. (c) Two lines have been completed and removed, and the next
tetromino has begun to fall.

Figure 13.2(a) shows all possible tetrominoes.) The tetrominoes fall with their
sides parallel to the sides of the playing field and with vertical sides at integral
distances from the side walls of the playing field. As each tetromino falls, the
player can move it left and right by integral distances and rotate it in increments
of 900; the tetromino stops moving when it can descend no farther without
overlapping the "ground" or a lower tetromino.

A completed line is a horizontal strip one unit high and n units wide con-
sisting of n squares each of which is occupied by a portion of some tetromino.
Each time a tetromino stops moving, any completed lines are removed from the
playing field, and the portion of the playing field above the completed bands
"slides down" to fill up the space (Figure 13.2(b,c)). The player's score is the
number of lines that have been completed. The game ends when a stopped
tetromino extends above the playing field. Completing lines therefore not only
increases the player's score but also creates more vertical space and thus pro-
longs the game.

Devise data structures and algorithms to be used by the computer to imple-
ment the game of Tetris. Your implementation should be very fast, as though for
a Tetris server that might be playing thousands of games at a time with playing
fields of various sizes. Try to solve the problem in a way that would generalize
to other shapes (such as pentominoes) or even to a three-dimensional version of
the game.

W,3
LIMA 11116`101,1��

482 ENGINEERING WITH DATA STRUCTURES

12. Mazes Build a system for representing, manipulating, and solving mazes.
Formally, define a lattice point as a point (x, y) with integer coordinates x and y.
Now define a maze segment as a horizontal or vertical line segment connecting
two lattice points, and a maze as a finite set of maze segments. To keep paths
through the maze distinct from maze segments, define a half-lattice point to be
a point (x + 2, Y + 2) where x and y are integers. A maze problem is a maze
together with two half-lattice points s and t, the starting and ending points,
and a solution to such a problem is a sequence of half-lattice points po, pl,
pan such that s = po, t = pn, and for each 0 < i < n the line segment from pi
to Pi+, does not intersect any of the segments of the maze.

A user of your system may wish to create a maze from scratch, or to add
or delete segments dynamically. It is most important to be able to determine
quickly whether or not the line segment between a given pair of half-lattice
points intersects a given maze. You should also develop an algorithm that finds
a solution to a given maze problem or determines that none exists. Can you
generalize this problem to three (or more) dimensions?

13. Fuzzy Sets The sets typically used in mathematics (whose representations
are discussed in Chapters 6 through 9) are all-or-nothing entities; given an
object a and a set A, either a E A or a ¢ A obtains, and not both. Fuzzy
sets give a more general formalism: an object a can be contained in a set A
to any extent between 0 and 1, so we use phrases like "a is x in A" where
o < x < 1. Suppose, for example, that we have the fuzzy set T of tall people.
Then Abraham Lincoln, say, might be 93% in T, whereas Napoleon might be
only 6% in T. The union and intersection operations apply to fuzzy sets: if
a is x in A and y in B, then a is min(x, y) in A n B and is max(x, y) in
A U B. By analogy with normal sets, fuzzy sets might be sparse (few elements
of positive containment) and they support generalized versions of the dictionary
operations, such as "increase the amount that a is contained in A." Define
abstract operations and devise data structures for representing fuzzy sets and
fuzzy containment.

14. Dynamic Partial Order The members of a tennis club compete in an
ongoing singles competition. After each match, a ranking of the players is com-
puted as follows. Starting with the most recent match and working backward,
the match results are used to construct a directed acyclic graph, where an edge
(A, B) is added to the graph if player A beats player B. Any matches that
are inconsistent with more recent results are ignored; that is, if incorporating
a match into the growing graph would introduce a cycle then that match is
skipped. The resulting graph is sorted topologically (as in Algorithm 12.3 on
page 438) to determine the overall rankings.

13.15 TEXT EDITOR 483

For example, suppose that the following matches are played in the order
given, where XY means that player X beats player Y:

GB, EA, CF, GD, FG, EF, EB, CD, DA, BD, BC, AC

After these twelve matches, player E is the champion and the rankings proceed
F, G, B, D, A, C. The match in which player C beat player D was ignored
since it is inconsistent with the later matches in which D beats A and A beats C.
If now A beats B, the new ranking is (E, A, B, C, F, G, D) and the CD match
is no longer ignored. (Note an anomaly here: by losing to player A, player B
has risen in the rankings-given the situation after the first twelve matches,
player B should intentionally lose if matched against A!)

Devise a program that accepts match results as they happen and after each
one computes the ranking of the players. Your program should make no as-
sumptions about the number of players and should not produce a ranking unless
only one possible ranking exists. For example, after the first match above your
program should produce the ranking (G, B) since it has no way of knowing
that there are any other players, but after the second match the program should
simply state that no unique ranking exists. (In fact, once a unique ranking exists,
there will always be a unique ranking until a new player enters the tournament;
can you prove this?) What would you do if matches were played so quickly
that it was undesirable to reconsider all the data after each match?

15. Text Editor Design data structures and algorithms to support a simple text
editor. Such a system must be able to handle standard editing operations such
as insertion and deletion, which apply not only to single characters but also
to words, lines, and perhaps sentences and paragraphs. It should also support
simple motion commands (e.g., "Move the cursor down one line, remaining in
the current column") and string searching. Furthermore, it should be possible
to "cut and paste" easily, removing any selected portion of the text and moving
it to another location.

16. Literature Search In Chapter 5 we considered the string searching prob-
lem. With large databases it is often important to be able to find data according
to more general criteria. To be specific, consider an on-line index for a library
containing a very large number of books. There are several restrictions that a
library user may wish to apply in searching for a particular book: possibilities
include author, title, year of publication, classification number, and subject. Fur-
thermore, the user may not have complete information, remembering, say, only
a word or two from the title. It may also be important to find all books whose
bibliographies reference a given book, so that with each book must be stored a
list of other books related to it. Finally, it is important to be able to combine
these criteria in a search, finding, for example, all books published since 1991
on the topic of "Computers" and either "Data Structures" or "Algorithms."

484 ENGINEERING WITH DATA STRUCTURES

Design data structures to be used in such a literature search system. Notice
that books will be added to the library frequently, but will only rarely be deleted.
As a more ambitious project you may wish to include the question of availability:
the library possesses a certain number of copies of each book, some or all of
which may be borrowed and due back on different days.

17. Adaptive Huffman Encoding The results of Problem 31 of Chapter 5 can
be used to implement adaptive Huffman encoding efficiently. The basic idea is
as sketched on page 150: at all times maintain an encoding tree that is optimal
for the text encountered so far. To process a character, first encode it using the
current tree, then update the tree so that it is optimal when the new character is
taken into account. The decoder works in step with the encoder, at each point
reconstructing the same tree and therefore retrieving characters correctly.

The nodes of the encoding tree must contain weights as they would during
the Huffman tree-construction algorithm: the weight of each leaf is the number
of times its character has occurred in the text so far, and the weight of each
nonleaf is the sum of the weights of its children. To update the tree after a
character c is encoded, we increase by I the weight of the leaf corresponding
to c and the weights of all ancestors of that leaf. The weights in the resulting
tree correctly reflect the text encountered so far, but the tree is not necessarily
optimal for that text unless the tree satisfied the conditions stated in part (b) of
the problem. Therefore, before incrementing the leaf weights, we must adjust
the tree so that condition (b) holds-it suffices to swap a few pairs of nodes of
the tree. (Hint: two nodes that are to be swapped will have the same weight.)

Implement adaptive Huffman encoding and decoding routines. As we men-
tioned in Chapter 5, the advantage of adaptive Huffman encoding is that only a
single pass through the input is required, but the disadvantage is that much more
processing time is used. Therefore, your implementation should be as efficient
as you can make it. In particular, each character should be processed in time
proportional to its compressed length (as with non-adaptive Huffman encoding).
There are several subproblems to solve and a good implementation may make
use of a variety of data structures. There is a small problem getting started,
which you will have to overcome; beware that Problem 31 requires that each
node weight is at least 1, which is not so at the start of the encoding. However,
note that the results of the problem are still valid if at most one node of the tree
has zero weight.

18. Lempel-Ziv Compression The algorithms used in Chapter 5 for Lempel-
Ziv encoding and decoding (Algorithm 5.3 on page 153 and Problem 33 on
page 170) are high-level, abstract descriptions of the technique. Production
versions must incorporate solutions to at least two further problems. First of
all, how should the dictionary LookUp and Insert operations be implemented,

13.19 SQUARING THE SETS 485

especially considering the special pattern of LookUps performed by the encoding
process? We mentioned in Chapter 5 that tries may be especially useful for
implementing the dictionary, because of the property that every prefix of a
string in the dictionary is also contained in the dictionary. However, the details
were not considered in that chapter.

The second problem is to determine what action should be taken when the
dictionary overflows, that is, when all available code numbers have been used
up. Suppose we want to deal with this problem by discarding the least-recently-
used entries when the dictionary is full. That is, if the string p is to be inserted
and no further code numbers are available, we find the string q whose code
hasn't been output in the largest number of steps, delete q from the dictionary,
and insert p in its place.

Write the encoding and decoding procedures for this variant of Lempel-
Ziv compression, choosing data structures that permit efficient implementation.
Note that if the least-recently-used criterion is followed rigidly, then the prefix
property described above is lost; strings of which q is a prefix may still be in the
dictionary. You may therefore want to modify the criterion slightly, or change
the circumstances under which a dictionary entry is marked "used."

19. Squaring the Sets Western Square Dancing takes place on a four by four
grid of locations, each of which is called a spot. A setup is an assignment of
eight (indistinguishable) dancers to the spots, along with a facing direction for
each dancer, either North, South, East, or West. For example, Figure 13.3(a) is
an illustration of the setup from which a dance begins. The dancers move in
response to calls, each of which specifies a new spot and a new facing direction
for every possible position in the grid. That is, a call is a function that accepts a
spot and facing direction, and produces a new spot and a new facing direction.
A call need not be a total function, that is, it may be undefined for some inputs.
A call can be applied to a given setup only if (a) the call is defined for each
dancer in the setup, and (b) the eight spots produced by applying the call to
each dancer in the setup are distinct-in other words, no collisions ensue!

As an example, we give the complete definition of the call All Four Couples
Square Chain Thru (Figure 13.3(b)). The call is undefined for the four central
spots of the grid and for the four corners. Call the other eight spots the 0 spots.
From the 0 spots, the call is undefined if the dancer is facing outside the set
or towards a corner. If facing toward the center, the dancer moves to the 0
spot 90° counterclockwise around the grid that does not correspond to a 90°
rotation, and faces outside the grid. If facing another 0 spot, the dancer moves
to the similarly noncorresponding 0 spot in the clockwise direction, and faces
the nearest corner spot. Notice that this call is rotationally symmetric: from
any setup, the result of applying the call is identical to the result obtained by
rotating the setup 1800, applying the call, and rotating back. All calls must be
symmetric in this way; most have 90° and 270° symmetry as well.

486 ENGINEERING WITH DATA STRUCTURES

(a) (b)

Figure 13.3 Bow to your partner! (a) Initial setup. Each dancer is drawn as
a square with a dot indicating facing direction. (b) Result of executing
All Four Couples Square Chain Thru from the initial setup. If a single
couple began facing each other (rather than facing center) then the call
would not be applicable because of collisions, even though it is defined
for each dancer.

Devise data structures and algorithms for use in square dance analysis.
The primary task is to determine which of the thousands of established calls is
applicable to a given setup. More ambitiously, we would like to find a sequence
of calls that will resolve a given setup, that is, transform it back into the initial
setup. And often we want to experiment with new calls added on the fly. (The
real-life problem is much more complicated, involving a larger grid with half-
spots, invisible and faceless dancers called phantoms, and calls that depend
on the gender of the dancer, the location of other dancers, and the preceding
call. There are also concepts which transform calls into other calls-in fact,
the call illustrated above results from applying the All Four Couples concept to
the Square Chain Thru call.)

20. Air Traffic Control Consider a simplified version of the air traffic control
problem. We must manage a set of airplanes, each of which has a three-
dimensional position and velocity specified as latitude, longitude, altitude, track
(the direction along the ground, which is the airplane's heading corrected for
wind velocity), groundspeed, and rate of climb or descent. Moreover, each
airplane has a type that determines the radius of a sphere around it that must
not be broached-two Grumman trainers can fly much closer together than
two 747s! Our system must provide warnings whenever two planes are on
a collision course, if the collision will occur in time less than some given
threshold. Changes of course, speed, altitude and so forth arrive frequently, as
do new flights. Flights that pass beyond some distance from our location become
another controller's responsibility and leave the database, as do flights that land
(or crash!). We must also handle hypothetical queries consisting of proposed
changes of flight plan. Design a system to solve this problem, recalling that
lives depend on its accuracy and rapidity.

13.21 BOUNDED-DEGREE MINIMUM SPANNING TREE

21. Bounded-Degree Minimum Spanning Tree As in the minimum spanning
tree problem of §12.3, let G = (V, E) be an undirected graph and let c be a
function that assigns a nonnegative cost to each edge of G. Also let d > 2 be
a positive integer. The bounded-degree minimum spanning tree problem is
to find a minimal-cost subset E' of E such that the graph (V, E') is a tree in
which each vertex has at most d neighbors. (The degree of a vertex of a graph
is the number of its neighbors; the degree of a graph is the maximum of the
degrees of its vertices. Thus the problem is to find a minimal-cost spanning
tree of degree at most d.) Even when the original graph G is connected there
may be no solution to the problem; this happens, for example, when d = 2 and
G consists of a central vertex connected to each of many peripheral vertices of
degree 1. To avoid this difficulty we assign infinite cost to edges not in G, thus
ensuring that a solution exists even though it may have infinite cost.

The bounded-degree minimum spanning tree problem is NP-complete; as
we have discussed, this means that no efficient algorithm that solves it is known.
We describe here an algorithm that may run for an extremely long time but will
always find the solution eventually. Essentially, the algorithm is an intelligent
way of organizing a brute-force search over all possible trees on the set V of
vertices of G.

Call a tree on V feasible if it has degree d or less; thus we are searching
for the least-cost feasible tree. The algorithm maintains a partition of the trees
on V, that is, a collection of disjoint sets whose union contains all the trees.
Initially the partition consists of a single set So containing all the trees on V.
Now let T be a least-cost tree in S. If T is feasible, then it must be the solution
to the problem (since no lesser-cost tree can exist) and we are done. Otherwise,
select any edge, say el, and split So into the set S, of all trees containing el and
the set S2 of all trees not containing el; there are now two sets in the partition.
Let T1 and T2 be minimal-cost trees in St and S2 respectively. Suppose that the
cost of T1 is less than that of T2. If T1 is feasible then it must be the solution
to the problem. Otherwise, pick any edge other than el, call it e2 , and split S,
into the sets S3 and S4 of trees containing and not containing e2 respectively,
and let T3 and T4 be least-cost trees in each set. The partition now consists of
three sets: trees containing el and e2 are in S3 , trees containing el but not e2

are in S4, and trees not containing el are in S2.
We continue in the same way. At each point the partition consists of a

collection of sets of trees, where each set is defined by specifying which edges
are required and which are forbidden in its member trees. (For example, the
initial set So has no restrictions. When we split So using el the set S, requires el
among all of its trees and forbids no edges, while S2 forbids el and requires
no edges.) At each point we also know the least-cost tree Ti in each set Si. If
the cheapest tree among the Ti, say Tk, is feasible, then it is the solution to the
original problem. Otherwise we select an edge e that is not among the edges
defining Sk, split Sk into two subsets (one requiring e and one forbidding e),

487

488 ENGINEERING WITH DATA STRUCTURES

and find the least-cost tree in each subset. If Sk contains only a single infeasible
tree then Sk is simply discarded. (After the first time this happens the sets Si
no longer partition all trees on V, but only infeasible trees are discarded.) The
first feasible tree found by this procedure is in fact the minimal-cost feasible
tree.

Implement this algorithm. Discussion: The problem hinges on finding a
good representation for the sets of trees that make up the partition. It is a simple
matter to take a specification of such a set (in terms of required and forbidden
edges) and find its least-cost tree using (say) Kruskal's algorithm. But a nafve
implementation with lists of edges representing the Si entails much extra work,
because the same minimum spanning trees will be computed repeatedly. (For
example, notice that until there are |VI sets in the partition, the set that splits is
always the one containing the minimum unconstrained spanning tree of G, and
that same tree will always be selected and found to be infeasible.) Try to avoid
this extra recomputation as much as possible. Consider selecting edges e in the
same way that Kruskal's algorithm does, that is, cheapest possible edge next.

22. Crossword Puzzle Construction Design a tool, complete with data struc-
tures, to be used as an aid in the construction of crossword puzzles. Assume you
are given a large, fixed dictionary D containing all of the legal words. There
are several functions that you might provide. First of all, the user should be
able to find quickly all words with any given restriction on their characters, such
as all seven-letter words beginning with A and ending with TE, or all words
of five or more letters whose second letter is S. You should also be able to
find sets of words satisfying more complex requirements, such as the words
that can be placed just under a given word without making it impossible to
complete the puzzle. (For example, ODOR can be placed under HEMP since
there exist words beginning with HO, ED, MO, and PR. But CHIP cannot be
so placed.) More ambitiously, you might consider how to create small diagrams
automatically.

23. Hypergraphs Recall that an undirected graph is an ordered pair (V, E)
consisting of a set V of vertices and a set E of edges, where each edge is a
set containing two distinct vertices. A hypergraph is an ordered pair (V, E)
consisting of a set V of vertices and a set E of edges, where each edge is
a set containing any number of vertices. Most of the definitions and graph
properties from Chapter 12 can be extended in a natural way to hypergraphs.
For example, two vertices of a hypergraph are adjacent if there is an edge that
contains both, and a path in a hypergraph is a sequence of adjacent vertices.
Explore representation methods for hypergraphs, evaluating the advantages and
disadvantages of each.

13.24 MULTIDIMENSIONAL STORAGE ALLOCATION

24. Multidimensional Storage Allocation Reconsider the problem of memory
management, discussed in Chapter 10, in a context where the "memory" being
managed is a two-dimensional structure. (This problem arises, for example, in
a computer that consists of a large number of independent processors communi-
cating along a two-dimensional rectangular grid; the system may wish to assign
various subtasks to connected groups of processors and must keep track of which
processors are free and which are available.) Let us assume that each allocation
request is for a rectangular block of specified dimensions and that blocks are
explicitly freed when no longer in use. Explore allocation and freeing strategies,
and the data structures to support them. There are several different settings that
might be examined. For example, you might assume that (a) all requests are
of the same dimensions, (b) requests are of various dimensions, but allocated
blocks may not be moved, or (c) requests are of various dimensions and blocks
may be moved.

25. Logical Inference Aristotelian logic recognizes four kinds of premises,
statements used to build logical arguments. A premise states a relationship
between two terms, each of which can be thought of as a set. The forms of the
premises are:

* (Universal Affirmative) All A are B.
* (Universal Negative) No A are B.
* (Particular Affirmative) Some A are B.
* (Particular Negative) Some A are not B.

For example, the statement "All humans are mortal" is a universal affirmative in
which A is the term "humans" (that is, the set of all humans) and B is the term
"mortals." A universal affirmative states that any element of A is an element
of B, or equivalently that A C A n B. Similarly, the particular affirmative states
that the set A n B is nonempty.

We wish to build a system that can accept logical premises dynamically and
can then decide on the validity of other premises. For example, after accepting
premises "All A are B," "All B are C," and "No C is D," the system should
respond with true when asked if all A are C, with false when asked whether
some A is D, and with maybe when asked if all C are B. And of course, if
"Some A are not B" is then asserted, an error condition should be reported.

Design such a logical engine. Assume that each term is represented by an
integer; you must then implement the procedure AssertUA(1, 2) (meaning that
the premise "All SI is S2" should be added to your data structure) and simi-
larly AssertUN, AssertPA, AssertPN. The data structure is probed with function
QueryUA and three others like it. Additional capabilities might also be added.
You may wish to extend the form of statements handled by your system, en-
compassing such possibilities as "All A are not-B" or "Some A exist." Another
possibility is to permit the deletion of information, along the lines of "It is no

489

490 ENGINEERING WITH DATA STRUCTURES

longer known that all A are B." Finally, you may wish to have the data structure
itself deduce premises that follow from the current information.

26. Music Design data structures for computer representation of music. We
wish to support tools that manipulate musical pieces, such as an engraver that
prints a piece in standard notation, a music editor, or a sound synthesizer. You
must determine the objects and relationships to be represented as well as the
abstract operators required for your tools.

27. Genealogies Suppose we wish to keep track of family trees for a very
large number of people. With each person there is associated some identifying
information (name, social security number, and so forth) and some auxiliary
information. We would like to be able to trace family histories, finding the
exact relationship or relationships between any two people in the database. Of
course, new information comes in all the time: marriages, births, deaths, and so
forth. We may also learn of previously unknown relationships, or even discover
that two badly-identified persons were actually one and the same. Design data
structures that might be used for this problem.

Problems

1. Discuss whether it makes sense to have problems in a chapter like
this one.

References

Two excellent articles about spelling checkers are

J. L. Peterson, "Computer Programs for Detecting and Correcting Spelling Errors," Com-
munications of the ACM 23 (1980), pp. 676-687

and

M. D. Mcllroy, "Development of a Spelling List," IEEE Transactions on Communica-
tions COM-30 (1982), pp. 91-99.

The longest common subsequence algorithm described in connection with diff is from

J. W. Hunt and T. G. Szymanski, "A Fast Algorithm for Computing Longest Common
Subsequences," Communications of the ACM 20 (1977), pp. 350-353.

Much more about Rubik's Cube can be found in

E. Rubik, T. Varga, G. Keri, G. Marx, and T. Vekerdy, Rubik's Cubic Compendium
(translated by D. Singmaster), Oxford University Press, 1987.

Fuzzy sets are the invention of

L. A. Zadeh, "Fuzzy Sets," Information and Control 8 (1965), pp. 338-353;

REFERENCES 491

a good introductory text, including an extremely extensive bibliography, is

A. Kandel, Fuzzy Mathematical Techniques with Applications, Addison-Wesley, 1986.

The dynamic partial order problem (and the anomalous example) appeared in

C. L. Mallows, "Producing a Ranking from Recent Results" (problem E3240), American
Mathematical Monthly 96 (1989), pp. 529-530.

The algorithm for the bounded-degree minimum spanning tree problem is similar to one
for a problem with slightly different constraints; see

K. M. Chandy and R. A. Russell, "The Design of Multipoint Linkages in a Teleprocessing
Tree Network," IEEE Transactions on Computers C-21 (1972), pp. 1062-1066.

Some early work on automated crossword puzzle construction is due to

L. J. Mazlack, "Machine Selection of Elements in Crossword Puzzles," SIAM Journal
on Computing 5 (1976), pp. 51-72.

Elementary logic, including Aristotelian premises and syllogisms, is beautifully laid out
in

W. V. Quine, Methods of Logic, Harvard University Press, 1982 (Fourth Edition).

One piece of the genealogy problem is discussed in

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "On Finding Lowest Common Ancestors
in Trees," SIAM Journal on Computing 5 (1976), pp. 115-132.

Berge's book Graphs and Hypergraphs, cited in the references to Chapter 12, is a classic
exposition of hypergraphs. References for adaptive Huffman encoding and Lempel-Ziv
compression are given in Chapter 5.

[I

APPENDIX

A

Locatives

Locatives were introduced in Chapter 1 as a programming convenience. Here is
a quick review of their semantics. A locative is like any other variable, except
that when assigned a value with the assignment operator "a-" a locative both
takes on the new value and "remembers" the place from which the new value
came. When assigned a value with the locative assignment operator "=" a
locative takes on the new value and also assigns the new value to the location
it is remembering. For example, if P is a locative, then after the assignments

P÷-Q; P•R

all three variables have the same value, just as though the assignment Q +- R
had been carried out as well. In this book only pointers are assigned to locatives,
but locatives may be used more generally; in this example, Q and R might just
as well be integers.

We use locatives in order to focus on the important aspects of our algo-
rithms, avoiding distracting details of pointer manipulation. But although elegant
and handy, locatives are not featured in typical programming languages. There-
fore, in this Appendix we describe carefully the behavior of locatives so that
algorithms that use them are fully specified and unambiguous. Our discussion
yields a concrete method for implementing locatives, one that could be realized
fairly easily in any programming language. (In fact, for sufficiently powerful
languages the implementation could be carried out in the language itself; that
is, we could present a purely syntactic, mechanical procedure for transforming
any program with locatives into an equivalent program without locatives.)

We begin by taking a closer look at ordinary variables. Every variable is
associated with a memory cell in which the value of the variable is stored. The
process of obtaining the address of the memory cell associated with a variable
is called L-evaluating that variable. (Typically variables are "associated with"
memory cells via a symbol table in which the variable can be looked up to
find the address of the cell. Not all variables are associated with the same cell
throughout the execution of a program.) When a variable is evaluated, that is,
when its value is needed in an expression, it is not the address of the memory

492

LOCATIVES 493

cell that is used but rather the contents of the cell. For example, when the
expression P + 3 is evaluated the value that is added to 3 is the contents of
the cell associated with P. The operation of taking the contents of a memory
cell, given its address, is called dereferencing. Thus evaluating a variable is a
two-step process: first the variable is L-evaluated to obtain the address of the
cell with which it is associated, and then that address is dereferenced to obtain
its contents.*

Now consider a simple assignment P +- a where P is a variable and a is
an arbitrary expression. The first thing to notice is that the left-hand side of this
assignment is not evaluated. It would serve no purpose to evaluate P, since to
perform the assignment we need the associated cell itself and not its contents.
The assignment is carried out by evaluating a and storing the resulting value
in the memory cell whose address is obtained by L-evaluating P. (In so-called
strongly typed languages it is also necessary to check that the value of a is a
legitimate one for the memory cell; if not, it may be possible to convert it to an
appropriate value, or an error condition may result.) L-evaluation is so named
because of its use on the left-hand side of assignment statements.

The left side of an assignment statement need not be a variable, but it
must in some way name a memory cell in which a value can be stored. In
the pseudo-programming language used in this book the only legitimate targets
for assignment (other than variables) are field references, as in the statement
Next(P) +- A. Like variables, field references yield memory cells. But finding
the memory cell may require some computation since a field reference may
contain an arbitrarily complex subexpression, for example, LC(Pop(S)). Again,
we denote by L-evaluation the process of finding the address of a memory
cell given a field reference. To L-evaluate a field reference Field(a) we first
evaluate a. The result should be a pointer to a record that contains a field
called Field; the address of the cell within the record in which that field is
stored is the result of the L-evaluation. (Keep in mind that the "address" of a
memory cell need not be simply an integer, since memory cells are independent
of addressable, physical memory. For example, L-evaluating a field reference
like Mark(N) might yield the "address" of a one-bit cell.) Normal evaluation of
a field reference, like evaluation of a variable, consists of L-evaluation followed
by dereferencing the address obtained. Notice that the rule for performing an
assignment is the same whether a field reference or a variable is on the left-hand
side.

We now have all the machinery we need to implement locatives. Consider
the assignment statement P +- Q where P is a locative, and recall that we
want P to store not only the value of Q but also the "place that value came
from." That is, we want P somehow to remember the address of the memory

* We should note that our point of view regarding the semantics of variables and assignment is not
universal; other authors explain the meaning of these constructs in a different manner.

494 APPENDIX A

cell associated with Q, so that a later locative assignment to P can change the
value of Q as well. To accomplish this, we implement locatives as pointers to
memory cells; that is, each locative stores the address of a cell. In the example,
P will store the address associated with Q; we can later retrieve this address
from P in order to modify Q. A simple rule is used to obtain this behavior:
when a locative appears on the left-hand side of an ordinary assignment we
perform L-evaluation (rather than ordinary evaluation) of the right-hand side,
and the resulting address is stored into the locative. For example, to execute
P *- Q we note that P is a locative and thus we L-evaluate Q, obtaining the
address of the associated cell, which is then stored into P. After an assignment
like P + Mark(Q) the locative P will store the address of the cell containing
the Mark field of Q.

But now we must consider ordinary evaluation of locatives. The problem
is that we wish to use locatives in expressions as though they were ordinary
variables, even though they contain addresses of cells. For example, suppose
P is a locative and Q is an integer. After the assignments Q -- 3 and P -- Q
the value of P + 1 should be 4, even though the cell associated with P contains
not 3 but the address associated with Q. What is required is a special rule
for evaluating locatives: a locative P is evaluated by L-evaluating P as usual
and then dereferencing the resulting address twice instead of only once. In the
example, the first dereference yields the address of the cell associated with Q,
and dereferencing that address then yields 3. With this rule in place we can use
locatives just like any other variables.

There is one case of ordinary assignment that needs special consideration:
assignments like P -- R in which both P and R are locatives. The desired
behavior is that P and R should point to the same memory cell. For example,
after the sequence

Q*-3; R-Q; PER; P -4

the expressions P + 1, Q + 1 and R + 1 should all evaluate to 5. To obtain
this effect, we need to evaluate R normally and store the resulting value (which
is the address of Q) in the locative P. This differs from the rule for ordinary
assignment to a locative, which would dictate that we L-evaluate R. Put another
way, ordinary assignment between two locatives is carried out just like ordinary
assignment between any two variables; the special rule for assignment to a
locative is not invoked.

It is now a simple matter to implement the locative assignment operator.
To perform P e4= a, where P is a locative and a is an arbitrary expression, just
evaluate a as usual and store the result in the memory cell to which P points.
More precisely, evaluate P normally to obtain the address of a memory cell, and
store into that cell the value obtained by evaluating a. To perform a locative
assignment where the left-hand side is any expression other than a locative, we
act as though an ordinary assignment was intended. (This typically occurs only

LOCATIVES 495

LHS action RHS action

non-locative any L-evaluate evaluate

locative non-locative L-evaluate L-evaluate
locative locative L-evaluate evaluate

locative <-= any evaluate evaluate

non-locative *= any L-evaluate evaluate

Figure A.1 Summary of the rules for ordinary and locative assignment.

during a parallel locative assignment where some of the left-hand elements are
not locatives, as in Algorithm 7.3 on page 227.) Figure A.1 summarizes the
rules that we have presented up to this point.

The next topic to discuss is the use of locatives in function and procedure
calls. It may seem as though there are very tricky interactions involved; indeed,
it is important to get the correct behavior, since our code sometimes depends on
passing values to functions and procedures with locatives as formal arguments.
However, the rules are simple if we take the right point of view, which is that
passing arguments to functions and procedures is an implicit use of ordinary as-
signment. For example, suppose that Proc is a procedure with formal parameters
A, B, and C. Then a call Proc(a, 0, -y) is equivalent to the sequence

A o-c; B <--; C -y

followed by the code in the body of Proc. In other words, each argument in a
procedure or function call is properly seen as the right-hand side of an implied
ordinary assignment to the corresponding formal parameter. The appropriate
dereferencing rules for function and procedure invocation follow immediately.
The expression return a simply evaluates a and returns the resulting value; thus
return P works as expected even when P is a locative (see also Problem 3).

Finally, there is one somewhat anomalous situation that deserves mention
even though it never arises in this book. Our rules call for the use of L-evaluation
in certain contexts. But not every expression can be L-evaluated! In fact, we
have given L-evaluation rules only for variables and for field references; if some
other construct must be L-evaluated we might have difficulty. For example,
consider ordinary assignments like 3 2 x or Q + I - min(y, z). The left-hand
sides cannot be L-evaluated as required and it is not clear what action to take.
This situation is erroneous in most programming languages; a few just evaluate
the right-hand side (for its possible side effects) without storing the resulting
value anywhere.

But when the left-hand side of an ordinary assignment is a locative and
the right-hand side cannot be L-evaluated, the situation is more serious. To
see the problem, let P be a locative and consider assignments like P +- 3
or P ÷- min(y, z). There is no cell whose address we can use as the result

496 APPENDIX A

of L-evaluating the right-hand side, and yet we cannot simply ignore these
assignments since we might later encounter the expression P + 1 where we
expect to dereference the address associated with P twice and find the value
most recently assigned to P. One solution is to extend the definition of L-
evaluation to arbitrary expressions: if an expression is not a variable or field
reference, then to L-evaluate it we evaluate it normally, store the result in a
freshly allocated memory cell, and return the address of that cell as the result
of the L-evaluation. In this way even subsequent statements like P ¢- 4 will
work as we would wish (see also Problem 1). Alternatively, we could simply
declare assignments like P -- 3 to be erroneous when P is a locative, since they
violate an implicit typing restriction that permits only locations to be assigned
to locatives. (Either solution suffices for our purposes, since no such assignment
appears in this text.)

Problems

1. a. Let P be a locative. If statements like P +- 3 are handled as
suggested in the last paragraph of this appendix, is there any
difference between the later statements P +- Q and P += Q ?

b. Suppose that, although we forbid assignments like P +- a where
P is a locative and a cannot be L-evaluated, we wish to permit as
a special case the initialization P +- A. To conserve memory we
allocate once and for all a cell containing A and use the address
of that cell as the result of any L-evaluation of A. Are there any
disadvantages to this scheme?

2. In enumerating the various rules for assignment we did not consider
locative assignments like P -• R in which both sides are locatives.
Explain why not.

3. Although the functions in this book may execute return P where
P is a locative, the formal result type of a function is never loca-
tive. If we lift this restriction then the result of a function evaluation
might be a legitimate target for assignment; for example, we could
write a function Choose such that Choose(true) +- 0 assigns 0 to A,
and Choose(false) 4- 0 assigns 0 to B. Discuss any modifications
to the rules that are necessary in order to incorporate this feature
into our language, and write the function Choose. (You may wish to
think about the programming language Pascal, which has no return
statement; instead, the value returned by a function is the last value
assigned to a variable with the same name as the function.)

Index

As in the text, italic type is used to indicate function and procedure names,
sans-serif type is used for field names, and boldface type is used for literals
of the pseudo-programming language (including "built-in" data types).

(assignment operator), 8, 492
= (locative assignment operator), 14, 492

(exchange operator), 9
(comparison operator), 227, 236, 395

0 (empty set), 16
ed (exclusive-or), 89, 368
! (factorial), 20
-y (Euler's constant), 21
6 (memory waste threshold), 360
e (empty string), 131
e(), 24, 40
A (null pointer), 6, 101, 108
0 (golden ratio), 27, 285
O(), 24, 40, 54
[1 (ceiling), 11
L J (floor), 11
1 I (length or size), 73, 131, 176
0-1 Knapsack Problem, 62

abracadabra, 170
abstract data type, 15-17
(a, b)-tree, 236
(a, b)-Trees and B-Trees, 236-242
Access, 73, 130, 135, 137
accomodate, 478
Ada, 90
adaptive Huffman encoding, 150, 169, 484
AddDirectedEdge, 426
AddFlow, 461
address, 4
AddUndirectedEdge, 426
AddVertex, 426
Adel'son-Vel'skii, G. M., 256
adjacency lists, 427
adjacency matrix, 427

adjacent, 425, 488
Aho, A. V., 45, 491
Ahuja, R. K., 472, 473
airplanes, 424, 486
air traffic control, 57, 486
ALGOL 60, 94
algorithm, 2

greedy, 59-61, 179, 442-450
algorithm analysis, 2, 46-72
algorithm paradigms, 59-65
All Four Couples Square Chain Thru, 485
Allocate, 358
allocated block, 342
allocation strategies, 361-362
all pairs least-cost paths, 450-452
almost perfect, 127
alphabet, 131
Amble, O., 296
amortized analysis, 57, 243
amortized cost, 121
ancestor, 99

proper, 441
ancestrally related, 439
and, 10
Appel, A. W., 377
ApplyOp, 104
Aristotle, 96
arithmetic expressions, 104
array, 7, 8, 130-174

constant-time initialization of, 136-138
contiguous representation of, 133-138
multidimensional, 132, 134-136
sparse, 138-143
with special shape, 142-143

articulation point, 439

497

498 INDEX

ascend, 348
ascendfrom left or right, 116
ASCII, 144, 257, 263
Assign, 131, 137
assignment, 8, 15

locative, 15, 492
Atkinson, M. D., 338
atom, 347
Atom, 347
atomic data types, 10
augmenting capacity, 454
augmenting network, 455
augmenting path, 455
average-case analysis, 57
AVL tree, 219-228, 247, 299, 318
AVL Tree Height Theorem, 220
AVLTreelnsert, 226
Avni, H., 217
awk, 130

Back, 86, 90
Back, 79, 80
Baer, J.-L., 256
Baker, H. G., 377
balance, 219, 220
Balance, 221
Balanced Multiway Merge, 404
balanced tree, 299-300, 386
balancing heuristic, 204
bananas, 151, 152
base case, 25
Bayer, R., 256, 339
Beigel, R., 217
Bellman, R., 71
Bentley, J. L., 217, 339, 340
Berge, C., 471, 491
best fit, 361
biconnected graph, 439-442
Bierce, A., 170
Big-O Theorem, 23
binary buddy, 368
BinaryBuddyAllocate, 370
BinaryBuddyFree, 370
binary logarithm, 20
binary search, 2, 82, 181-184
BinarySearch, 11, 82, 83
BinarySearchLookUp, 182
Binary Search Theorem, 183
binary search tree, 108, 193-199, 317, 361

extended, 195
optimal, 201-204
self-adjusting, 243-251
static, 200-207

binary tree, 101, 108-109
complete, 110-112, 207
empty, 101
extended, 182
full, 101, 104, 126, 146, 167

BinaryTreeDelete, 200
binary tree hashing, 293
BinaryTreelnsert, 196
BinaryTreeLookUp, 194
binary trie, 292
binomial forest, 333
binomial queue, 333
binomial tree, 333
bin-packing, 378
bipartite graph, 470
bit, 3, 56
Bitner, J. R., 216
Bits, 259
bitstream, 146
BitVectDelete, 259
BitVectlnsert, 259
BitVectMakeEmptySet, 259
BitVectMember, 259
bit vector, 257-259
Black, 233, 236
blinding speed, 474
Blum, M., 423
BMSearch, 162
Bonaparte, N., 482
boolean, 10
boundary-tag, 363
BoundaryTagAllocate, 364
BoundaryTagFree, 365
bounded-degree minimum spanning tree, 487
bounding path, 319
bounding rectangle, 476
Boyer-Moore algorithm, 159-162
Boyer, R. S., 174
branch-and-bound algorithms, 487
Brassard, G., 45
breadth-first search, 108, 352, 433-435
BreadthFirstSearch, 434
brute-force search, 59
BSTRangeSearch, 317
B-tree, 236-242, 299, 318
B*-tree, 241
Bubble Sort, 381
bucket, 266, 328, 397
Bucket Sort, 396-398
BucketSort, 398
buddy, 367

binary, 368
Fibonacci, 372

buddy systems, 356, 367-372

INDEX 499

C, 10, 11, 13, 90, 130, 132, 133, 345
capacity, 452, 454, 457

augmenting, 454
Carlsson, S., 338, 422
Carter, J. L., 297
Cartesian product, 132
cdr-coding, 91, 94
ceiling, 11
cellar, 272
cells, 3
chaining strategies, 266-272
Chandy, K. M., 491
Char, 145
character, 131
Chazelle, B., 339
checkerboard, 167
Cheney, C. J., 377
Cheriton, D., 471
chess, 424
child, 99, 122
Children, 103
Chung, F. R. K., 216
Cichelli, R. J., 297
Clark, D. W., 94
CleverMult, 53
coalesced chaining, 269-272
cocoa, 151, 152
code number, 151
Coffman, E. G., 296
Cohen, J., 377
coins, 60
Cole, R., 174
collecting by copying, 351-354
collisions, 265
Color, 236
Colorado, 425
column major order, 134
Comer, D., 256
Compact, 358
compaction, 355-357
comparison, 178, 182
comparison-based, 394
complement, 465
complete, 102, 126, 431
complete binary tree, 110-112, 207
completed line, 481
complete graph, 465
compressing, 144
Concat, 73, 131, 244
concepts, 486
concurrent processes, 86, 242
connected component, 432, 433, 476
connected extension, 444
constant function, 24
ConstantSpaceMark, 351
constant-space scan, 349-351
ConstantSpaceScan, 118

CopyCollect, 354
correctness, 47
Correctness of Dijkstra's Algorithm Theorem,

449
cost, 148, 201, 443, 447
Cost of Splay Steps Lemma, 250
Count, 137, 259, 309
counting in binary, 58
Crane, C. A., 339
critical node, 223
crossword puzzle construction, 488
Culberson, J., 217
current match, 151
cut, 453
cut-off point, 32
cutvertex, 439, 440
cycle, 430

simple, 430

dag, 436
Dahl, O.-J., 339
Dantzig, G. B., 472
Data, 137
data structure, 7
Data Structures and Their Algorithms, 483
data type, 7, 16
deallocated, 342
deap, 332
decision tree, 395
Declaration of Independence, 266
Default, 137
degree, 465, 487

of a polynomial, 23
de la Briandais trees, 262
Delete, 176, 177, 245, 257, 299
Deleted, 280
DeleteEdge, 426
DeleteMax, 300
DeleteMin, 299
DeleteUnusableVertex, 461
DeleteVertex, 426
deletion

from AVL tree, 228
from binary search tree, 198-199
from doubly linked list, 88
from hash table, 280

Demers, A., 378
Denenberg, L., 140, 157, 161, 483
dense, 40, 428
dense graph, 450
departs, 426
depth, 100, 281
Depth, 441
Depth, 103
depth-first search, 435-442
DepthFirstSearch, 436

500 INDEX

deque, 91
Dequeue, 74, 77, 80
dereference, 13, 493
descend, 348
descendant, 99
descend to left or right, 116
Deutsch, L. P., 377
Dial, R. B., 472
diameter, 467
dictionary, 177, 298, 488
diff, 478
difference, 176
different graphs, 464
digital search tree, 263
digital sorting, 396-401
digitized pictures, 476
Dijkstra, E. W., 94, 472
DijkstraLeastCostPaths, 449
Dijkstra's algorithm, 447-450, 452, 467
dimension of an array, 132
Dinic, E. A., 472
directed acyclic graph, 436-438
directed graph, 426
directory, 281
disconnected graph, 431
disjoint sets, 307-316
display screen icon management, 475
display screen window management, 475
Dist, 305
Dist, 305
distance, 433, 447
Distance, 447
distance matrix, 139
distributive partitioning sort, 416
divide-and-conquer algorithm, 29, 51
divide-and-conquer recurrences, 27-33
Divide-and-Conquer Recurrences Theorem,

32, 41, 413
Dobosiewicz, W., 422
domains, 16
dominate, 20
double-ended priority queue, 300
double-ended queue, 91
double rotation, 223
DoublyLinkedDelete, 88, 363, 364
DoublyLinkedinsert, 88, 364
dummy node, 13
dynamic data structure, 11
dynamic partial order, 482
dynamic programming, 61-64, 71, 202

EBCDIC, 144
edge connectivity, 463, 470
edges, 98, 425
Edges, 426
effectiveness, 46

efficient algorithm, 48, 64
elements, 130
empty binary tree, 101
empty list, 73
empty run, 403
empty set, 16
Emtza Region USY, 425
encoding, 144
encoding tree, 146, 484
Encountered, 433
endpoints, 426
Enqueue, 74, 77, 80
enters, 426
Equal, 176, 214
Euclid's algorithm, 66
Euler's constant, 21
Evaluate, 105
evaluated, 492
Eve, J., 296
Even, S., 473
event, 33
exact analysis, 49-58
exclusive-or, 89, 93, 94, 109, 285, 368
exhaustive search, 59
Expected Binary Search Theorem, 184, 396
Expected Binary Search Tree Theorem, 197
expected-case analysis, 57, 58, 380, 391
expected value, 35
exponential function, 19-20
Exponentials, Powers, and Logarithms Theo-

rem, 20
expression tree, 104
extended binary search tree, 195
extended binary tree, 182
extendible hashing, 280-283, 331
external fragmentation, 359, 371
external node, 182, 195
external path length, 184
external storage, 238
eye, 479

Fn, 26, 40
facing direction, 485
factorial, 20
Fagin, R., 297
fan-out, 126
fast Fourier transform, 71
Feller, W., 45
Fibonacci buddy, 372
Fibonacci generator, 91
Fibonacci number, 26, 61, 221, 371, 406
Fibonacci sequence of order 3, 407
field, 4, 8
FIFO, 74
Fifty-Percent Rule, 366-367
Find, 308, 316

INDEX 501

FindCutVertices, 442
FindLast, 85
FindMax, 300
FindMin, 299
fingerprinting, 163-165
FingerprintSearch, 164
FirstChild, 103, 110
FirstChild, 110
first fit, 361-362, 367
first-in-first-out, 74
Fixdist, 306
Flajolet, P., 296, 297
floor, 11
flow, 452
Floyd, R. W., 338, 422, 423, 472
Floyd-Warshall algorithm, 450
FloydWarshallAllShortestPaths, 451
fold, 285
followed edge, 439
Ford, Jr., L. R., 472
for ... do ... , 9
foreach, 105
forest, 103

binomial, 333
ordered, 103

FORTRAN, 130
Forward, 86, 90, 354
Forward, 189
forwarding address, 353, 357
ForwardingAddress, 357
Foster, C. C., 256
fragmentation

external, 359, 371
internal, 360, 371

Franklin, W. R., 217
Fredkin, E., 296
Fredman, M. L., 422
free, 342, 344
Free, 358
free list, 344
Frob, 37
from-space, 352
Front, 74, 77, 80
Front, 76, 79, 80
Froobs, 37
Fulkerson, D. R., 472
full binary tree, 101, 104, 126, 146, 167
FullyRecursiveMark, 347
fun, 485
function, 9

constant, 24
hash, 265
linear, 24
quadratic, 24

fuzzy sets, 482

Galil, Z., 174
Gallager, R. G., 173
games, 424, 479, 480, 482
garbage, 343
garbage collection, 345, 346-355, 489

copying, 35 -354
incremental, 355, 373
mark and sweep, 346-351

Garey, M. R., 71, 378
Garsia, A. M., 218
Gassner, B. J., 423
gas station, 60
genealogies, 490
geometric series, 18
Geometric Series Theorem, 18
George, J. A., 217
go, 479
golden ratio, 27, 221, 285
gomoku, 480
Gonnet, G. H., 45, 216, 217, 296, 338
good problems, 474-491
grade school multiplication algorithm, 50-51
GradeSchoolMult, 51
Graham, R. L., 340, 378
graph, 424-473, 487, 488

acyclic, 431
biconnected, 439-442
bipartite, 470
complete, 465
connected, 430, 479
directed, 426
directed acyclic, 436-438
disconnected, 431
representation of, 424-432
searching, 432-442
sparse, 428, 450, 452
undirected, 425

greatest common divisor, 66
greedy algorithm, 59-61, 179, 442-450
greedy heuristic, 151
grid directory, 328
grid file, 328-331
group, 314, 479
Group Numbers Lemma, 314
growth rate, 21
Growth Rates Theorem, 22
Guibas, L. J., 256
Gurevich, Y., 71

Hn, 21, 197
Hajela, D. J., 216
half-lattice point, 482
Hall, M., 44
Hansen, W. J., 94
Harary, F., 471
harmonic number, 21, 197, 277, 393

502 INDEX

hash function, 265
hashing, 265-280

by division, 284-285
by multiplication, 285-288
extendible, 280-283, 331
functions, 284-291
ordered, 277-280

head, 98
Header, 189
header node, 13
heap, 300-304, 342, 408, 446, 450

min-max, 332
HeapDeleteMin, 303
Heapify, 388
HeapInsert, 303
Heap Sort, 338, 386-388
HeapSort, 387
height, 99
Height, 103
Height of Balanced Up-Trees Lemma, 309
heuristic, 179

balancing, 204
greedy, 151
move-to-front, 179, 216, 262, 292
transpose, 181

Hibbard, T. N., 217
hierarchical tables, 141-142
higher-level language, 90, 230, 344, 368
Hillis, W. D., 45
Hinds, J. A., 378
Hinterberger, H., 340
Hoare, C. A. R., 422
Holobom, J., 170
Hopcroft, J. E., 45, 256, 473, 491
hue, 158
Huffman, David A., 146, 168, 173
Huffman encoding, 145-150, 200, 484
Huffman encoding tree, 147, 202
Huffman Optimality Theorem, 149
Hunt, J. W., 490
Hu, T. C., 217, 218
hypergraph, 488

IBM 704, 95
icons, 475
if ... then ... , 9
Illinois, 322, 425
implicit representation of trees, 110
Incerpi, J., 421
incremental garbage collection, 355, 373
independent events, 34
index, 130, 238
index set, 130
indices, 130
infix, 104
Info, 6, 79, 108, 189, 279

info, 75, 176
information-theoretic lower bound, 393-396
Information-Theoretic Lower Bound Theorem,

394
Infos, 75, 76
Initialize, 131, 137
InitializeHeap, 387
inorder predecessor, 121
inorder successor, 120, 121
InorderSuccessor, 122
inorder traversal, 106, 112, 120, 318
input capacity, 457
Insert, 153, 176, 177, 243, 257, 298, 484
Insertion Sort, 33, 382, 389, 393, 401
InsertionSort, 382
integer, 21
integer, 10
interior node, 229
internal fragmentation, 360, 371
internal node, 182
internal path length, 184
Interpolation Search, 184-187, 416
InterpolationSearchLookUp, 185
Intersection, 176, 253, 258

Intersection of Rectangles, 477
interval, 130
in use, 342, 344
inversions, 383
Investment Lemma, 249
Iowa, 322, 425
IsEmptyList, 73
IsEmptyQueue, 74, 77, 80
IsEmptySet, 176, 177, 298
IsEmptyStack, 74, 76, 78
IsLeaf, 103
isomorphic, 464
Itai, A., 217
Iterate, 131, 132, 136, 176
iteration, 133

job-shop scheduling, 60
Johnson, D. B., 471
Johnson, D. S., 71, 378
Jonassen, A., 339

Kaas, R., 338
Kandel, A., 491
Kansas, 425
Kapoor, S., 218
Karatsuba, A., 71
Karp, R. M., 174
k-ary tree, 109, 126
kdlnsert, 325
kdRangeSearch, 324
k-d tree, 321-325
Keri, G., 490

INDEX 503

key, 176
Key, 12, 89, 189, 279
key, 15
key space, 176, 265
KMPSearch, 159
knapsack, 60
0-1 Knapsack Problem, 62-63
Knowlton, K. C., 378
Knuth, D. E., xv, 44, 45, 173, 174, 218, 296,

366-367, 377, 422, 423
Knuth-Morris-Pratt algorithm, 155-159
Kronrod, M. A., 422
Kruskal, J. B., 471
Kruskal's algorithm, 443-446
Kumar, M. P., 472

Label, 104
Lagarias, J. C., 71
lagged Fibonacci generator, 91
Landis, E. M., 256
last-in-first-out, 74
lattice point, 482
layer, 456
LC, 108, 114, 221, 236, 387
leaf, 99, 465
leaf pages, 281
least significant, 49, 399
Lee, D. T., 339
Lee, P., 377
left bounding path, 319
left child, 101
LeftChild, 103, 108
LeftHeight, 219, 220
LeftistDeleteMin, 306
LeftistInsert, 306
leftist tree, 304-307
LeftistUnion, 306
LeftSibling, 103
Lempel, A., 173
Lempel-Ziv Encoding, 151-154, 484
length, 73, 429
Length, 73, 130
Length, 75, 76
Let's Make a Deal!, 44
L-evaluation, 492
level, 314
Level, 189, 314
level-0, 187
level-i, 187, 188
Level Census Lemma, 314
LevelOrder, 124
level-order traversal, 108, 111, 123-125, 433
Levels of Descendants Lemma, 314
Lewis, H. R., 72, 139, 157, 161, 483
lexicographic order, 84, 108
Ig, 20

L'HIpital's rule, 39
liberty, 479
Library of Congress, 96
LIFO, 74
Lincoln, A., 482
Lindstrom, G., 377
linear function, 24
linear in, 24
linearly ordered set, 15, 108
linear order, 107, 176, 181, 436
linear probing, 274
Link, 89
linked list, 6, 11, 12-14, 77, 79, 87-90, 362
linked representation, 75
link inversion, 85, 93, 115, 116
Link-Inversion, Constant-Space Marking,

349-351
LinklnversionMark, 348
Link-Inversion, Schorr-Deutsch-Waite Mark-

ing, 348-349
link-inversion traversal, 113-116, 348-351
LinkInversionTraversal, 115
Lisp, 10, 95, 342
list, 73-95, 139-140

ordered, 181-193
unordered, 177-181

literature search, 483
LLlnsert, 13, 14
In, 20
load factor, 268
locating, 328
locative, 12-15, 195, 227, 306, 325, 350, 354,

492-496
locative, 13
locative assignment, 15, 492
locative value, 14
log*, 313
logb, 19
logarithm, 19-21

binary, 20
natural, 20

logarithmic function, 19
logarithmic in, 19
Logarithms, Powers, and Exponentials, 19-21
logical inference, 489
longest common subsequence, 478
LookUp, 153, 177, 235, 243, 299, 478, 484
lopsided, 216
lossless, 144
lossy, 144
lower bound, 24, 56
LowMark, 362
LowSize, 362
Lueker, G., 339
LZDecode, 153, 170

504 INDEX

Magazine, M. J., 72
Maheshwari, S. N., 472
majority, 420
MakeEmptyList, 73
MakeEmptyQueue, 74, 77, 80
MakeEmptySet, 153, 176, 177, 258, 298
MakeEmptyStack, 74, 76, 78
MakeGraph, 426
MakeSet, 308
Malhotra, V. M., 472
malloc, 11
Mallows, C. L., 491
maps, 424
Mark, 346
Mark, 346, 362
mark and sweep garbage collection, 346-351
marked, 346
Marked, 346
Marsaglia, G., 94
Martin, W. A., 256
Marx, G., 490
matching, 470
matrix multiplication, 69, 71
MaxFlow, 458
Max-Flow Min-Cut Theorem, 454, 472
maximum matching, 470
maze, 482
maze segment, 482
Mazlack, L. J., 491
McCarthy, J., 95
McCreight, E. M., 256
McIlroy, M. D., 490
median, 207, 324, 389, 411, 416, 423
median split tree, 207
Mehlhorn, K., 218, 472
Member, 175, 257
memory management, 11, 341-378, 489
Menger's Theorem, 470
MergeRight, 306
Merge Sort, 29, 31, 32, 33, 81, 389, 393
MergeSort, 29, 81
merging S into T, 308
Min, 176
minimum cut, 454
minimum spanning tree, 442-446, 487
min-max heap, 332
Minnesota, 322, 425
Missouri, 425
mod, 50, 290
mode, 421
models, 3
Modula-2, 90
modulo, 50
monotone increasing, 19
monotone nondecreasing, 26
Moore, J. S., 174
Morris, Jr., J. H., 174

Morrison, D. R., 296
most significant, 49, 399
Move-to-Front Heuristic, 179, 216, 262, 292
multidimensional array, 132, 134-136
multidimensional range searching, 321
multidimensional storage allocation, 489
multiplication, 49, 52-55, 71

grade school algorithm, 50-51
simple block, 51 -52

multisets, 175
Munro, J. I., 216, 296, 338, 423
music, 490

N, 21
natural logarithm, 20
natural representation of binary trees, 108,

120
Nebraska, 425
negative cycles, 468
neighbor, 426
Neighbors, 426
Neighbors, 427
Nembauser, G. L., 72
Ness, D. N., 256
net flow, 452
network, 452

augmenting, 455
network flow, 452-464
new, 11
NewCell, 11, 190
NewNode, 12
Next, 6, 77, 87, 362
Nievergelt, J., 256, 297, 340
node, 98

external, 182, 195
interior, 229
internal, 182

Node, 6, 79
node value, 207
NodeValue, 207
noisy, 144
not so perfect, 127
NP-complete, 64-65, 71, 359, 378, 487
null elements, 139
null string, 131
null value, 139
Number, 437
number of binary trees, 201

Of), 21, 22, 40, 55
o(), 22
octtree, 327
OddEven, 48
Ofman, Y., 71
Omaha, 425
OnPath, 351

INDEX 505

Open Addressing Strategies, 272-280
with Double Hashing, 274-277

operations, 16
optimal binary search tree, 201-204
OptimalBinarySearchTree, 203
or, 10
order, 24, 333
ordered forest, 103
ordered hashing, 277-280
OrderedHashinsert, 279
OrderedHashLookUp, 279
ordered list, 181-193
ordered tree, 100, 109-110, 300
order notation, 21-25
OrdHt, 113
Orlin, J. B., 472, 473
o spots, 485
output capacity, 457
overwork, 209

p, 7
padded list, 212
Papadimitriou, C. H., 72, 473
Pape, U., 472
Pardo, L. T., 422
parent, 99
Parent, 103
Parent, 308
partially ordered tree, 300
partitioning, 389
PartlyRecursiveMark, 347
Pascal, 7, 9, 10, 11, 13, 496
passes, 403
Paterson, M., 423
path, 99, 429, 465, 488

augmenting, 455
bounding, 319
simple, 465
vertex-disjoint, 439

PathCompressFind, 313
path compression, 311-316
Path Compression Theorem, 314
Patricia tree, 261
pattern, 154
perfect, 101, 126
perfect hashing, 288-289
Perlis, A. J., 129
Perl, Y., 217
permutation, 20
Peterson, J. L., 490
phantoms, 486
phases, 405
Pippenger, N., 297, 423
pivot, 389
pixel, 336
poetry, 170

point, 479
pointer, 5, 134
pointer, 10
polynomial of degree d, 23
polynomial time, 64
polyphase merge sort, 405-407
pool, 355
Pop, 74, 76, 78, 345
popping, 74
postfix expression, 106
Postorder, 105
PostorderEvaluate, 106
postorder traversal, 105, 112, 435
PostVisit, 435
power, 20
powers, 19-20
Pratt, V. R., 174, 421, 423
prefix, 127, 131
prefix expression, 127
premises, 489
Preorder, 105
preorder successor, 123
PreorderSuccessor, 124
preorder traversal, 106, 112, 318, 347, 435
Preparata, F. P., 340
Prev, 87, 362
PreVisit, 435
primary clustering, 273
prime, 46
Prim, R. C., 471
Prim's algorithm, 443, 467
priority queue, 16, 298-307, 386

double-ended, 300
priority value, 299
probabilistic algorithms, 47
probability-balanced tree, 204-206
Probability-Balanced Trees Theorem, 206
probability distribution, 34
probability theory, 33-36
probe, 268
probe sequence, 272
procedure, 9
processor, 3
program complexity, 48-49
programming languages, 7, 11
program size, 49
proper, 99
proper ancestor, 441
PruneAugmentingNetwork, 460
pruning, 456
pseudo-random number generator, 91
p-tree, 332
Pugh, W., 217
Push, 74, 76, 78, 345
PushFlow, 461
pushing, 74

506 INDEX

quadratic function, 24
quad tree, 325-328
queue, 74, 75, 79, 123, 398, 433

binomial, 333
double-ended, 91
representation in contiguous memory,

75-76
representation in linked memory, 79

Queue, 80
Quick Sort, 389-393, 400
QuickSort, 390, 392
Quine, W. V., 491

R, 21
R*, 21
Rabin, M. O., 174
Radix Exchange Sort, 400-401
RadixExchangeSort, 401
Radix Sort, 398-400
RadixSort, 400
Random, 189
random-access, 5
RandomLevel, 190
random-number generator, 189
range checking, 135
RangeSearch, 317, 321
range searching, 317-331

multidimensional, 321
Range Search in Search Trees Theorem, 319
rank, 248
Rank Rule Lemma, 250
RC, 108, 114, 221, 236, 387
real numbers, 21
reciprocals, 21
record, 4
recurrence relation, 25-33
recursion, 10, 79-84
recursive case, 25
Recursive, Depth-First Marking, 347
RecursiveDFS, 436
Red, 233, 236
red-black tree, 233-236, 299
RedBlackTreelnsert, 237
reduction, 469
reference count, 345-346
regular expressions, 174
Reingold, E. M., 218
relatively prime, 274
repeat forever ... , 9
replacement selection, 407-410
reserved, 342
resolve, 265, 486
return, 9, 496
return address, 81
reverse level order, 129
right bounding path, 319

right child, 101
RightChild, 103, 108
RightHeight, 219, 220
RightSibling, 103, 110
RightSibling, 110
ring buffer, 76
Rivest, R. L., 216, 423
RL rotation, 223
Rogers, L. D., 217
root, 98
rooted tree, 430
Rosen, S., 94
Rotate, 227, 236, 350
rotation, 8, 222, 227, 247
roving pointer, 361, 367
row major order, 134
Rubik, E., 490
Rubik's Cube, 480
run-length encoding, 90, 144, 476
runs, 402
Russell, R. A., 491
Rytter, W., 174

Sack, J.-R., 338
Samet, H., 340
Santoro, N., 217, 338
saturated, 452
scale, 328
scan, constant-space, 116-119, 349-351
scan-line order, 337
schedule, 436
Schonhage, A., 71, 423
Schorr-Deutsch-Waite algorithm, 348-349
Schorr, H., 377
Schwab, B., 256
search, 175, 432

brute-force, 59
exhaustive, 59
interpolation, 184-187, 416
multidimensional range, 321
successful, 177
unsuccessful, 177

search tree
binary, 108, 193-199, 317, 361
digital, 263
extended binary, 195
optimal binary, 201-204
self-adjusting binary, 243-251
static binary, 200-207

Sedgewick, R., 256, 296, 421, 422
Seiferas, J., 174
selection, 130
Selection Sort, 386-388
SelectionSort, 386
self-adjusting binary search tree, 243-251
self-loops, 426

INDEX 507

sentinel value, 133
separate chaining, 266-269
Sequential or Linear Probing, 272-274
SequentialSearch, 10
series, 17-19
setup, 485
Sevcik, K. C., 340
Seymour, R D., 216
Shamos, M. I., 340
Shelah, S., 71
Shell, D. L., 421
Shell Sort, 381-385
ShellSort, 385
Shiel, B. A., 218
short-circuited, 10
shuffles, 356
siblings, 99
Sidney, J. B., 217
simple block multiplication algorithm, 51-52
simple cycle, 430
simple path, 465
simple power, 20
SimpleStringSearch, 154
single rotation, 222
SinglyLinkedlnsert, 8
Singmaster, D., 490
sink, 452
size, 55, 132
Size, 176
Size, 279, 304, 356, 362
SkipListInsert, 191
SkipListLookUp, 190
skip lists, 187-193
Skip List Theorem, 190
skipped edge, 439
skyline, 477
Sleator, D. D., 256
snowplow, 409-410
sort, 379-423

bubble, 381
bucket, 396-398
digital, 396-401
distributive partitioning, 416
heap, 338, 386-388
insertion, 33, 382, 389, 393, 401
merge, 29, 31, 32, 33, 81, 389, 393
quick, 389-393, 400
radix, 398-400
radix exchange, 400-401
selection, 386-388
Shell, 381-385
topological, 435-438
tree, 380
unstable, 381

source, 452
South Dakota, 425
spanning tree, minimum, 442-446, 487

sparse array, 138-143
sparse graph, 428, 450, 452
spelling, 478
Sperry Univac, 174
Spira, R M., 423
Splay, 243
splaying, 181
splay tree, 243, 318
Splay Tree Theorem, 249
SplitCount, 372
split value, 207
SplitValue, 207
spot, 485
square dancing, 485
stable, 332, 380, 398
stack, 10, 73, 75, 77, 79-84, 344, 393

and recursion, 79-84
representation in contiguous memory, 75
representation in linked memory, 77-79

Standish, T. A., 45
StartTraversal, 86
static, 11
static binary search, 200-207
static Huffman encoding, 150
Steele, G. L., 45
Steiglitz, K., 473
Steyaert, J.-M., 297
Stirling's approximation, 396
storage allocation, 11

multidimensional, 489
Storer, J. A., 174
Straight Binary Merge Sort, 402
Straight Multiway Merge Sort, 404
Strassen's algorithm, 70
Strassen, V., 71
string, 131, 143-165

over F, 131
representations of, 143-154
searching, 154-165

Strong, H. R., 297
strongly connected graph, 467
strong type, 8, 90, 493
Strothotte, T., 338
subgraph, 432
subroutine, 9, 14
Subset, 214
Substring, 131
subtrees, 98
successful search, 177
suffix, 131
suick, 478
Sum of Successive kth Powers Theorem, 24,

204
Suwanda, H., 216
Szymanski, T. G., 490

508 INDEX

table, 4, 11, 131, 133, 177
Table, 279, 304
Tag, 114
tail, 98
tail-recursion, 83, 84, 113, 193, 393
tape, 402
target string, 154
Tarjan, R. E., 256, 339, 423, 471, 472, 473
tennis, 482
termination, 47
Termination of Max Flow Lemma, 462
term, 489
Tetris, 480
tetromino, 480
TEX, xv
text string, 144
text editor, 483
Thompson, K., 174
Thornton, C., 129
thread, 122
Threadedlnsert, 122
threaded tree, 120-123
threads, 120
3-node, 230
tic-tac-toe, 132, 424
time, 48, 56
Top, 74, 76, 78
TopologicalSort, 438
topological sort, 435-438
to-space, 352
tour, 59
tradeoffs, 7
transitive, 40
transpose, 216
Transpose Heuristic, 181
Travelling Salesman Problem, 59, 60, 63-64,

65, 69, 71, 139, 424-425, 468-469
traversal, 84, 105

inorder, 106, 112, 120, 318
level-order, 108, 111, 123-125, 433
link-inversion, 113-116, 348-351
of binary trees, 105-107, 112-119, 125
postorder, 105, 112, 435
preorder, 106, 112, 318, 347, 435

Traverse, 84, 112, 113
tree, 96-129, 261, 429-432

B-tree, 236-242, 299, 318
B*-tree, 241
binary, 101
binary search, 108, 193-199, 317, 361
binomial, 333
complete binary, 112, 207
decision, 395
digital search, 263
empty binary, 101
encoding, 146, 484

tree, cont.
expression, 104
extended binary, 182
extended binary search, 195
full binary, 101, 104, 126, 146, 167
Huffman encoding, 147, 202
implementations, 108-112
implicit representation of, 110
k-ary, 109, 126
k-d, 321-325
leftist, 304-307
median split, 207
minimum spanning, 442-446, 487
operations and traversals, 103-108
optimal binary search, 201-204
ordered, 100, 109-110, 300
p-tree, 332
probability-balanced, 204-206
quad, 325-328
red-black, 233-236, 299
self-adjusting binary search, 243-251
splay, 243, 318
static binary search, 200-207
threaded, 120-123
2-3, 229-236, 299, 318, 386
unordered, 101
up-tree, 308-311

Tree Characterization Theorem, 431, 465
TreeDecode, 147
tree hashing, binary, 293
Tree Sort, 380
Tree Structures for Dynamic Dictionaries,

219-256
tridiagonal matrix, 167
tried, 142, 260, 327, 380, 485

binary, 292
Trotter, Jr., L. E., 72
Tsay, L.-H., 94
Tucker, A. C., 217
2-node, 229
Two-Thirds Rule, 367
2-3 tree, 229-236, 299, 318, 386

Ullman, J. D., 45, 378, 491
undirected graph, 425
uniform, 34
Union, 304
Union, 175, 258, 308, 316, 333
Union-Find, 446
universal, 289
universal classes of hash functions, 289-291
Universal Classes of Hash Functions Theo-

rem, 290
Unix, 130
unordered, 101
unordered lists, 177-181

INDEX 509

unordered tree, 101
unstable sort, 381
unsuccessful search, 177
upper bound, 24, 56
upper-triangular matrix, 142
up-tree, 308-311
UpTreeFind, 310
UpTreeUnion, 310

Valid, 137, 259
value, 452, 453
value set, 130
van Emde Boas, P., 338, 339
Varga, T., 490
var parameter, 13
Vekerdy, T., 490
vertex connectivity, 463, 470
vertex-disjoint path, 439
vertices, 425
Vertices, 426
Visit, 432
visited, 105
Vuillemin, J., 339

Wachs, M. L., 218
Waite, W. M., 377
WalkForCutVertices, 442
WalkForSort, 438

Warshall, S., 472
Wegbreit, B., 377
Wegman, M. N., 297
weight, 147, 248
weighted path length, 148
Welch, T. A., 174
western square dancing, 485
When, 137, 259
Which, 137, 259
while ... do ... , 9
wildcard, 173
Willard, D. E., 339, 422
Williams, J. W. J., 338
Wisconsin, 322, 425
Wong, C. K., 339
word, 286
worst-case analysis, 55, 380
worst fit, 361

Yao, A. C., 217
Yao, F. F, 217, 218, 340

Zadeh, L. A., 490
0-1 Knapsack Problem, 62
zig-zag scan, 85
Zijlstra, E., 338
Zipf's law, 208
Ziv, J., 173

ISBN 0-673-39736-X

9 0 D 0 0

9 7906Y "3M6-2'1 111111 111"'ll

