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PREFACE

The second volume of the CRC Press Comprehensive Dictionary of Mathematics covers algebra,
arithmetic and trigonometry broadly, with an overlap into differential geometry, algebraic geometry,
topology and other related fields. The authorship is by well over 30 mathematicians, active in
teaching and research, including the editor.

Because it is a dictionary and not an encyclopedia, definitions are only occasionally accompanied
by a discussion or example. In a dictionary of mathematics, the primary goal is to define each term
rigorously. The derivation of a term is almost never attempted.

Thedictionaryis written to be a useful reference for areadership that includes students, scientists,
and engineers with a wide range of backgrounds, as well as specialists in areas of analysis and
differential equations and mathematicians in related fields. Therefore, the definitions are intended
to be accessible, as well as rigorous. To be sure, the degree of accessibility may depend upon the
individual term, in a dictionary with terms ranging from Abelian cohomology to z intercept.

Occasionally a term must be omitted because it is archaic. Care was taken when such circum-
stances arose to ensure that the term was obsolete. An example of an archaic term deemed to be
obsolete,and hence not included, is “right line”. This term was used throughout a turn-of-the-century
analytic geometry textbook we needed to consult, but it was not defined there. Finally, reference to
a contemporary English language dictionary yielded “straight line” as a synonym for “right line”.

The authors are grateful to the series editor, Stanley Gibilisco, for dealing with our seemingly
endless procedural questions and to Nora Konopka, for always acting efficiently and cheerfully with
CRC Press liaison matters.

Douglas N. Clark
Editor-in-Chief

© 2001 by CRC Press LLC



CONTRIBUTORS

Edward Aboufadel
Grand Valley State University
Allendale, Michigan

GerardoAladro
Florida International University
Miami, Florida

Mohammad Azarian
University of Evansville
Evansville. Indiana

Susan Barton
West Virginia Institute of Technology
Montgomery, West Virginia

Albert Boggess
Texas A&M University
College Station, Texas

Robert Borrelli
Harvey Mudd College
Claremont, California

Stephen W. Brady
Wichita State University
Wichita, Kansas

Der Chen Chang
Georgetown University
Washington, D.C.

Stephen A Chiappari
Santa Clara University
Santa Clara. California

Joseph A Cima

The University of North Carolina at Chapel Hill
Chapel Hill, North Carolina

Courtney S. Coleman
Harvey Mudd College
Claremont, California

John B. Conway
University of Tennessee
Knoxville, Tennessee

© 2001 by CRC Press LLC

Neil K. Dickson
University of Glasgow
Glasgow, United Kingdom

David E Dobbs

University of Tennessee
Knoxville, Tennessee

Marcus Feldman
Washington University
St. Louis, Missouri

Stephen Humphries
Brigham Young University
Provo, Utah

Shanyu Ji
University of Houston
Houston, Texas

Kenneth D. Johnson
University of Georgia
Athens, Georgia

Bao Qin Li

Florida International University

Miami, Florida

Robert E. MacRae
University of Colorado
Boulder, Colorado

Charles N. Moore
Kansas State University
Manhattan, Kansas

Hossein Movahedi-Lankarani
Pennsylvania State University

Altoona, Pennsylvania

Shashikant B.
University of Tennessee
Knoxville, Tennessee

Judy Kenney Munshower

Avila College
Kansas City, Missouri



Charles W. Neville
CWN Research
Berlin, Connecticut

Daniel E. Otero
Xavier University
Cincinnati, Ohio

Josef Paldus
University of Waterloo
Waterloo, Ontario, Canada

Harold R. Parks

Oregon State University
Corvallis, Oregon

Gunnar Stefansson

PennsylvaniaState University
Altoona, Pennsylvania

© 2001 by CRC Press LLC

Anthony D. Thomas
University of Wisconsin
Platteville. Wisconsin

Michael
University of Regina
Regina, Saskatchewan,Canada

James S. Walker
University of Wisconsin at Eau Claire
Eau Claire, Wisconsin

C. Eugene Wayne

Boston University
Boston, Massachusetts

Kehe Zhu
State University of New York at Albany
Albany, New York



A

A-balanced mapping Let M bearight mod-
ule over thering A, and let N be aleft module
over thesamering A. A mapping ¢ from M x N
to an Abelian group G is said to be A-balanced
if ¢ (x, -) isagroup homomorphism from N to
G foreachx € M, if ¢(-, y) isagroup homo-
morphism from M to G for each y € N, and
if
¢(xa,y) =o¢(x,ay)
holdsforal x e M,y € N,anda € A.

A-B-bimodule  AnAbeliangroup G thatisa
left module over thering A and aright module
over thering B and satisfies the associative law
(ax)b = a(xb) foral a € A, b € B, and al
x €qG.

Abelian cohomology = Theusua cohomology
with coefficients in an Abelian group; used if
the context requires one to distinguish between
the usua cohomology and the more exotic non-
Abelian cohomology. See cohomology.

Abeliandifferential of thefirstkind A holo-
morphic differential on a closed Riemann sur-
face; that is, a differential of the form w =
a(z) dz, where a(z) isaholomorphic function.

Abelian differential of the second kind A
meromorphic differential on a closed Riemann
surface, thesingularitiesof which areall of order
greater than or equal to 2; that is, a differential
of theform w = a(z) dz where a(z) is amero-
morphic function with only O residues.

Abelian differential of the third kind A
differential on a closed Riemann surface that is
not an Abelian differential of the first or sec-
ond kind; that is, adifferential of theformw =
a(z) dz where a(z) is meromorphic and has at
least one non-zero residue.

Abelian equation A polynomial equation
f(X) = Oissad to be an Abelian equation if
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itsGaloisgroupisan Abelian group. See Galois
group. See also Abelian group.

Abelian extension A Galois extension of a
field iscalled an Abelian extension if its Galois
group is Abelian. See Galois extension. See
also Abelian group.

Abelian function A function f(z1, z2, z3,
..., z») meromorphic on C" for which there ex-
ist 2n vectorswy, € C", k = 1,2,3,..., 2n,
called period vectors, that are linearly indepen-
dent over R and are such that

f+w) =1
holdsfork =1,2,3,...,2nandz € C".

Abelian function field  The set of Abelian
functions on C" corresponding to a given set of
period vectors forms a field called an Abelian
function field.

Abedliangroup  Briefly,acommutativegroup.
Morecompletely, aset G, together with abinary
operation, usually denoted “+,” a unary opera-
tion usually denoted “—," and a distinguished
element usually denoted “0" satisfying the fol-
lowing axioms:

iYa+ B+c)=(a+Db)+cfordl

a,b,ceq,

(i))a+0=afordla € G,

(ili.) @ + (—a) =0fordla € G,

(iv)a+b=b+afordla,bedG.

The element 0 is called the identity, —a is
called the inverse of a, axiom (i.) is caled the
associative axiom, and axiom (iv.) iscaled the
commutative axiom.

Abelianideal Anideal inaLieagebrawhich
forms a commutative subalgebra.

Abelian integral of thefirst kind  Anindef-
inite integral W(p) = fp’;a(z)dz on a closed
Riemann surface in which the function a(z) is
holomorphic (the differential w(z) = a(z)dz
is said to be an Abelian differential of the first
kind).

Abelian integral of thesecond kind  Anin-
definiteintegral W (p) = f;; a(z) dzonaclosed
Riemann surface in which the function a(z) is



meromorphic with all its singularities of order
at least 2 (thedifferential a(z) dz issaidtobean
Abelian differential of the second kind).

Abélian integral of the third kind  Anin-
definiteintegral W (p) = flf; a(z) dzonaclosed
Riemann surface in which the function a(z) is
meromorphic and has at |east one non-zero resi-
due(thedifferential a(z) dzissaidtobean Abel-
ian differential of the third kind).

Abelian Liegroup A Lie group for which
the associated Lie algebrais Abelian. See also
Lie algebra.

Abelian projection operator A non-zero
projection operator E inavon Neumannalgebra
M such that the reduced von Neumann algebra
Mg = EME isAbelian.

Abélian subvariety A subvariety of an
Abelian variety that isalso asubgroup. Seealso
Abelian variety.

Abeliansurface A two-dimensional Abelian
variety. See also Abelian variety.

Abelian variety A complete algebraic vari-
ety G that also forms a commutative algebraic
group. That is, G isagroup under group oper-
ations that are regular functions. The fact that
an algebraic group is complete as an algebraic
variety implies that the group is commutative.
See also regular function.

Abel’s Theorem  Niels Henrik Abel (1802-
1829) proved severa results now known as
“Abel’s Theorem,” but perhaps preeminent
among these is Abel’s proof that the genera
quintic equation cannot be solved algebraically.
Other theorems that may be found under the
heading “Abel’s Theorem” concern power se-
ries, Dirichlet series, and divisors on Riemann
surfaces.

absolute class field Let k be an algebraic
number field. A Galois extension K of k isan
absolute class field if it satisfies the following
property regarding prime ideals of k: A prime
idea p of k of absolute degree 1 decomposes
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as the product of prime ideals of K of absolute
degree 1if and only if pisaprincipal ideal.

Theterm “ absolute classfield” isused to dis-
tinguish the Galois extensions described above,
which were introduced by Hilbert, from amore
general concept of “class field” defined by
Tagaki. See also classfield.

absolute covariant
See also covariant.

A covariant of weight 0.

absoluteinequality  Aninequality involving
variables that is valid for all possible substitu-
tions of real numbers for the variables.

absoluteinvariant  Any quantity or property
of an algebraic variety that is preserved under
birational transformations.

absolutely irreduciblecharacter ~ Thechar-
acter of an absolutely irreduciblerepresentation.
A representation is absolutely irreducibleif itis
irreducibleand if the representation obtained by
making an extension of the ground field remains
irreducible.

absolutely irreducible representation A
representation is absolutely irreducible if it is
irreducibleand if the representation obtained by
making an extension of the ground field remains
irreducible.

absolutely smplegroup A group that con-
tains no serial subgroup. The notion of an ab-
solutely ssimple group is a strengthening of the
concept of asimple group that is appropriate for
infinite groups. See serial subgroup.

absolutely uniserial algebra Let A beand-
gebraover thefield K, and et L bean extension
field of K. Then L ® A can be regarded as
an algebra over L. If, for every choice of L,
L ®k A can be decomposed into a direct sum
of ideals which are primary rings, then A isan
absolutely uniserial algebra.

absolute multiple covariant A multiple co-
variant of weight 0. See also multiple covari-
ants.



absolute number A specific number repre-
sented by numerals such as 2, ;3{, or 5.67 in con-
trast with a literal number which is a humber
represented by aletter.

absolute value of acomplex number  More
commonly called the modulus, the absolute val -
ue of the complex number z = a + ib, wherea
and b are real, is denoted by |z| and equals the
non-negative real number /a2 + b2.

absolutevalue of avector ~ More commonly
called the magnitude, the absolute value of the
vector

_U) = (U1’U27"'7vl’l)
is denoted by | v | and equals the non-negative
real number\/var V34 V2

absolute value of real number For a real
number », thenonnegativereal number ||, given

by
rif
=N

abstract algebraicvariety A setthatisanal-
ogous to an ordinary algebraic variety, but de-
fined only locally and without an imbedding.

r>0
r<0.

abstract function (1) In the theory of gen-
eralized almost-periodic functions, a function
mapping R to a Banach space other than the
complex numbers.

(2) A function from one Banach spaceto an-
other Banach space that is everywhere differen-
tiable in the sense of Fréchet.

abstract variety A generalization of the no-
tion of an algebraic variety introduced by Weil,
in anal ogy with the definition of adifferentiable
manifold. An abstract variety (also called an
abstract algebraic variety) consists of (i.) a
family {Vy}qeca Of affine agebraic sets over a
given field k, (ii.) for each @ € A afamily of
opensubsets{Wyp}gea of Vi, and (iii.) for each
pair @ and 8 in A abirational transformation be-
tween W, and W,z such that the composition
of the birational transformations between sub-
sets of V,, and Vg and between subsets of Vg
and V, are consistent with those between sub-
setsof V, and V,,.
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acceleration parameter A parameter chosen
in applying successive over-relaxation (which
is an accelerated version of the Gauss-Seidel
method) to solveasystem of linear equationsnu-
merically. Morespecifically, onesolvesAx = b
iteratively by setting

Xpy1=Xp + R (D — Axy) ,

where

-1
R= (L 4 a)_lD>

with L the lower triangular submatrix of A, D
the diagonal of A, and 0 < w < 2. Here, w
is the acceleration parameter, also called the
relaxation parameter. Anaysis is required to
choose an appropriate value of w.

acyclic chain complex  An augmented, pos-
itive chain complex

Opt1 0 On—1
= Xy = X1 —> .

0; d
B X B XeS A0

forming an exact sequence. Thisin turn means
that the kernel of 9, equals the image of 9,11
for n > 1, the kernel of ¢ equals the image of
91, and ¢ is surjective. Herethe X; and A are
modules over a commutative unitary ring.

addend Inarithmetic, anumber that isto be
added to another number. In general, one of the
operands of an operation of addition. See also
addition.

addition (1) A basic arithmetic operation
that expresses the relationship between the
number of elementsin each of two digjoint sets
and the number of elementsin the union of those
two sets.

(2) The name of the binary operation in an
Abelian group, when the notation “+” is used
for that operation. See also Abelian group.

(3) The name of the binary operation in a
ring, under which the elementsform an Abelian
group. See also Abelian group.

(4) Sometimes, the name of one of the opera-
tionsin amulti-operator group, even though the
operation is not commutative.



addition formulasintrigonometry  Thefor-
mulas

cos(¢p +6) = cos¢ coshd —sing sind,
sin(¢ + 6) COS¢ Sin6 + sing cosé,
tan¢ + tan6
tan ) = ——.
@+6) 1—tang¢ tan6

addition of algebraic expressions  One of
the fundamental ways of forming new algebraic
expressionsfromexisting algebraicexpressions;
the other methods of forming new expressions
from old being subtraction, multiplication, divi-
sion, and root extraction.

addition of angles  In elementary geometry
or trigonometry, the angle resulting from the
process of following rotation through one an-
gle about a center by rotation through another
angle about the same center.

addition of complex numbers  One of the
fundamental operations under which the com-
plex numbers C form afield. If w = a + ib,
z=c+id € C,witha, b, ¢, and d redl, then
w+z = (a+c)+i(b+d)istheresult of addi-
tion, or the sum, of those two complex numbers.

addition of vectors  One of the fundamental
operationsin avector space, under which the set
of vectors form an Abelian group. For vectors
inR" or C", if x = (x1,x2,...,x,)and y =
(1, y2, - yn), thenx +y = (x1 + y1, x2 +
V24 o ees X+ Ya).

additive group (1) Any group, usualy
Abelian, where the operation is denoted +. See
group, Abelian group.

(2) In discussing aring R, the commutative
group formed by the elements of R under the
addition operation.

additiveidentity InanAbeliangroup G, the
unique element (usually denoted 0) such that
g+0=gfordl g e G.

additive identity  abinary operation that is
called addition and is denoted by “+. In this
situation, anadditiveidentity isanelementi € S
that satisfies the equation

i+s=s+i=s
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for al s € S. Such an additive identity is nec-
essarily unique and usually is denoted by “0.”

In ordinary arithmetic, the number O is the
additive identity because 0 +n =n+0 =n
holds for all numbersn.

additive inverse  In any algebraic structure
with acommutative operation referred to as ad-
dition and denoted by “+,” for which there is
an additive identity 0, the additive inverse of an
element a is the element b for whicha + b =
b+ a = 0. The additive inverse of a is usu-
ally denoted by —a. In arithmetic, the additive
inverse of a number is aso called its opposite.
See additive identity.

additiveset function Let X beasetandlet. A
be a collection of subsetsof X that isclosed un-
der theunion operation. Let¢ : A — F,where
F isafield of scalars. We say that ¢ isfinitely
additive if, whenever S, ..., Sy € A are pair-
wise digjoint then ¢ (US_, 5;) = 5_1 6(S)).
We say that ¢ is countably additive if, when-
ever S1, So, - -+ € A are pairwise disjoint then
P(U5L1S)) = Z}'i1¢(5j)-

additive valuation  Let F be afield and G
be a totally ordered additive group. An addi-
tivevaluationisafunctionv : F — G U {o0}
satisfying

(i.) v(a) = ccifand only if a = 0,

(ii.) v(ab) = v(a) + v(b),

(iii.) v(a + b) > min{v(a), v(b)}.

adele  Following WEeil, let k be either afinite
algebraic extension of Q or afinitely generated
extension of afinite primefield of transcendency
degree 1 over that field. By aplaceof k ismeant
the completion of the image of an isomorphic
embedding of & into alocal field (actualy the
equivalence class of such completions under the
equivalence relation induced by isomorphisms
of thelocal fields). A placeisinfiniteif thelocal
fieldisR or C, otherwise the placeisfinite. For
aplace v, k, will denote the completion, and if
v is afinite place, r, will denote the maximal
compact subring of k,. An adeleisan element

of
Hkvxl_[rv,

veP vgP



where P is afinite set of places containing the
infinite places.

adelegroup  Let V be the set of valuations
on the global field k. For v € V, let k, be
the completion of k& with respect to v, and let
0, be thering of integer elementsin k,. The
adele group of the linear algebraic group G is
the restricted direct product

[]6x (Go,)

veV

which, as a set, consists of all sequences of e-
ements of Gy, indexed by v € V, with all but
finitely many terms in each sequence being ele-
mentsof Go, .

adelering  Following Well, let k be either a
finite algebraic extension of Q or afinitely gen-
erated extension of a finite prime field of tran-
scendency degree 1 over that field. Set

ka(Py=Tkox []ro

veP vgP

where P is afinite set of places of k contain-
ing the infinite places. A ring structure is put
on k4 (P) defining addition and multiplication
componentwise. The adelering is

ka = UkA(P) .
P

A locally compact topology isdefined on k4 by
requiring each k4 (P) to be an open subring and
using the product topology on k4 (P).

adjoining (1) Assuming K isafield exten-
sionof k and S C K, thefield obtained by ad-
joining S to k isthe smallest field F satisfying
k Cc F C K and containing S.

(2) If R isacommutative ring, then the ring
of polynomials R[X] is said to be obtained by
adjoining X to R.

adjoint group  Theimage of aLiegroup G,
under the adjoint representation into the space
of linear endomorphisms of the associated Lie
algebrag. See also adjoint representation.

adjoint Liealgebra Letgbealieagebra
The adjoint Lie algebra is theimage of g under
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the adjoint representation into the space of linear
endomorphismsof g. See also adjoint represen-
tation.

adjoint matrix  Foramatrix M with complex
entries, the adjoint of M is denoted by M* and
isthe complex conjugate of the transpose of M;;
soif M = (m;;), then M* hasm j; asthe entry
initsith row and jth column.

adjoint representation (1) In the context of
Lie algebras, the adjoint representation is the
mapping sending X to [X, -].

(2) In the context of Lie groups, the adjoint
representation is the mapping sending o to the
differential of the automorphismea, : G —> G
defined by o (1) = o101,

(3) Inthe context of representations of an al-
gebra over afield, the term adjoint representa-
tion is a synonym for dual representation. See
dual representation.

adjoint syssem  Let D be acurve on a non-
singular surface S. The adjoint system of D is
|D + K|, where K isacanonical divisor on S.

adjunction formula  Theformula

26—2=C(C+K)

relating the genus g of a non-singular curve C
on asurface S with theintersection pairing of C
and C + K, where K isacanonical divisor on
S.

admissible homomorphism  For agroup G
with a set of operators €2, a group homomor-
phism from G to agroup G’ on which the same
operators act, such that

w(ab) = (wa)(wb)

holdsforalla, b € Gandal w € . Alsocaled
an 2-homomor phism or an operator homomor-
phism.

admissibleisomorphism  Foragroup G with
aset of operators €2, agroup isomorphism from
G ontoagroup G’, onwhich the same operators
act, such that

w(ab) = (wa)(wb)



holdsforall a, b € Gandadl w € Q. Alsocalled
an ©-isomor phism or an operator isomor phism.

admissible normal subgroup Let G bea
group. It iseasily seen that asubset N of G is
anormal subgroup if and only if there is some
equivalencerelation ~ on G suchthat ~ iscom-
patible with the multiplication on G, meaning

a~b, c~d= (ac) ~ (bd),

and N is the equivalence class of the identity.
In case G aso has an operator domain 2, an
admissible normal subgroup is defined to bethe
equivalence class of the identity for an equiva-
lencerelation ~ that iscompatiblewith the mul-
tiplication as above and that also satisfies

a~b= (wa)~ (wb)fordlwe Q.

admissible representation  Let 7 be a uni-
tary representation of the group G in a Hilbert
space, and let M be the von Neumann algebra
generated by 7 (G). Therepresentation  issaid
to bean admissible representation or atrace ad-
missible representation if there exists atrace on
M whichisacharacter for .

Ado-lwasawa Theorem The theorem that
every finitedimensional Liealgebra(over afield
of characteristic p) has a faithful finite dimen-
sional representation. The characteristic p = 0
case of thisis Ado’'s Theorem and the charac-
teristic p # O caseis lwasawa’'s Theorem. See
also Lie algebra.

Ado’'sTheorem A finitedimensiona Liea-
gebra g has a representation of finite degree p
such that g = p(Q).

While originally proved for Lie agebras
over fields of characteristic O, the result was
extended to characteristic p by lwasawa. See
Ado-lwasawa Theorem.

affect  For apolynomial equation P(X) = O,
the Galois group of the equation can be consid-
ered as a group of permutations of the roots of
the equation. The affect of the equation is the
index of the Galois group in the group of al
permutations of the roots of the equation.
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affectless equation A polynomia equation
for which the Galois group consists of all per-
mutations. See also affect.

affine algebraic group
group.

See linear algebraic

affine morphism of schemes Let X and Y
be schemesand f : X — Y beamorphism. If
there is an open affine cover {V;} of the scheme
Y for which f~1(V;) isaffinefor each i, then f
is an affine morphism of schemes.

affinescheme  Let A be acommutative ring,
and let Spec(A) = X be the set of al prime
idealsof A, equippedwiththespectral or Zariski
topology. Let Ox be a sheaf of local rings on
X. Theringed space (X, Oyx) iscaled theaffine
scheme of thering A.

affinespace Let V bearedl, linear n-dimen-
sional space. Let A beaset of points, which are
denoted P, Q. Define arelation between points
in A and vectorsin V asfollows:

(i.) Toevery orderedpair (P, Q) € A x A, there
isassociated a “ difference vector” PQ € V.
(ii.) To every point P € A and every vector
v € V thereis associated precisely one point
Qe AsuchthatP_>Q = .

(iii.) If P, Q, R € A then

— = —
PO+ OR=PR.

Inthiscircumstance, wecall A ann-dimensiona
affine space.

affine variety A variety (common zero set
of afinite collection of functions) defined in an
affine space.

A-homomorphism  For A-modules M and
N, a group homomorphism f : M — N is
called an A-homomorphism if

flam) =af(m)fordlaec A, me M.

Albanese variety  For V a variety, the Al-
banese variety of V isan Abelian variety A =
Alb(V) such that there exists a rational f
V — A which generates A and has the uni-
versal mapping property that for any rational



g 1V — B, where B is an Abelian variety,
there exist ahomomorphismiz : A — Banda
constant c € B suchthatg =4 f +c.

Alexander Duality If A isacompact subset
of R", then for all indices ¢ and all R-modules
Ga

H,R"R"\ A:G)=H""A:G).

algebra (1) The system of symbolic ma-
nipulation formalized by Francois Viéte (1540—
1603), which today is known as elementary al-
gebra.

(2) The entire area of mathematics in which
one studies groups, rings, fields, etc.

(3) A vector space (over afield) on whichis
al so defined an operation of multiplication.

(4) A synonym for universal algebra, which
includes structures such as Boolean algebras.

algebraclass Anequivaenceclassof central
simple algebras under the relation that relates a
pair of algebras if they are both isomorphic to
full matrix rings over the same division algebra.
Algebrasinthe samealgebraclassare said to be
“similar” Seealso central simple algebra.

algebraclassgroup Let K beafield. Two
central smple algebras over K are said to be
similar if they areisomorphicto full matrix rings
over the same division algebra. Similarity isan
equivalence relation, and the equivalence
classes are called algebra classes. The product
of apair of algebra classesis defined by choos-
ing an algebrafrom each class, say A and B, and
letting the product of the classes be the algebra
class containing A ® ¢ B. This product iswell
defined, and the al gebraclassesform agroup un-
der this multiplication, called the algebra class
group or Brauer group.

algebraextension Let A be an algebra over
the commutative ring R. Then by an algebra
extension of A ismeant either

(i.) an algebraover R that contains A; or

(ii.) analgebra A’ containing atwo-sided R-
module M which isatwo-sided idea in A’ and
issuch that

A/M=A.
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In this case, M is called the kerndl of the ex-
tension because it is the kernel of the canonical
homomorphism.

algebra homomorphism  Suppose A and B
are algebras of the same type, meaning that for
each n-ary operation f4 on A thereis a corre-
sponding n-ary operation fz on B. A mapping
¢ : A — B iscaled ahomomorphism from A
to B if, for each pair of corresponding operations
faand fg,

¢(fA (al’ a, ""al’l))
= fp@(ar).¢(az),....¢ (an))

holdsfor al a1, as, ..., a, € A.

Typically, an algebra A isaring that also has
the structure of amodule over another ring R, so
that an algebra homomorphism ¢ must satisfy
(i.) p(ar+az) = ¢p(a1) +¢(a) foray, az € A,
(ii.) ¢(ara2) = ¢p(a1)¢(az) foray, az € A,
(iii.) ¢ (ra) = r¢(a),forr € Randa € A.

algebraic (1) An adjective referring to an
object, structure, or theory that occursin algebra
or arises through application of the processes
used in algebra.

(2) An adverb meaning a process that in-
volves only the operations of algebra, which are
addition, subtraction, multiplication, division,
and root extraction.

algebraic addition In elementary algebra,
the addition of algebraic expressions which ex-
tends the operation of addition of numbers in
arithmetic.

algebraic addition formula  For an Abelian
function f, an equation that expresses f (a + b)
rationally, in terms of the values of a certain
(p + D)-tuple of Abelian functions, evaluated at
thepointsa, b € C. See also Abelian function.

algebraicalgebra Analgebra A over afield
K such that every a € A isagebraic over K.
See algebra.

algebraically closed field A fieldk, inwhich
every polynomial in one variable, with coeffi-
cientsin k, has aroot.



algebraicclosure  Thesmallest agebraically
closed extension field of a given field F. The
algebraic closure exists and is unique up to iso-
morphism.

algebraic correspondence  Let C be anon-
singular algebraic curve. By an algebraic cor-
respondence is meant a divisor in the product
variety C x C. More generaly, an algebraic
correspondence means a Zariski closed subset
T of the product V; x V> of two irreducible va-
rieties. Points P, € Vp and P, € V, are said
to correspond if (P1, P2) € T. Seealso corre-
spondence ring.

algebraic curve  An algebraic variety of di-
mension one. See also algebraic variety.

algebraiccycle By an algebraic cycle of di-
mension m on an algebraic variety V ismeant a
finite formal sum

ZCiVi

where the ¢; are integers and the V; are irre-
ducible m-dimensional subvarieties of V. The
cycleis said to be effective or positive if al the
coefficients ¢; are non-negative. The support of
the cycle is the union of the subvarieties hav-
ing non-zero coefficients. The set of cycles of
dimension m forms an Abelian group under ad-
dition, which is denoted Z,,, (V).

algebraic dependence  The property shared
by a set of elements in a field, when they sat-
isfy anon-trivial polynomial equation. Such an
equation demonstrates that the set of elements
is not algebraically independent.

algebraicdifferential equation
tion of the form

F (x, v, vy y(")> =0

inwhich F isapolynomial with coefficientsthat
are complex analytic functions of x.

(2) An equation obtained by equating to zero
adifferential polynomial in a set of differential
variables in a differential extension field of a
differentia field. See also differential field.

(1) Anegua-

algebraicelement  If K isan extensionfield
of thefield k, an element x € K isan algebraic
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element of K if it satisfies anon-trivial polyno-
mial equation with coefficientsin k.

algebraic equation  Anequation of theform
P = Owhere P isapolynomial in one or more
variables.

algebraic equivalence  Two cycles X1 and
X5 inanon-singular algebraic variety V areal-
gebraically equivalent if thereisafamily of cy-
cles{X(¢t) : t € T} on V, parameterized by
t € T, where T is another non-singular alge-
braicvariety, suchthat thereisacycleZinV xT
for which each X (¢) istheprojectionto V of the
intersectionof Z and V x {¢}, and X1 = X (1),
X2 = X(t2), for somery, 12 € T. Such afamily
of cycles X (¢) is called an algebraic family.

algebraic equivalence of divisors  Two di-
visors f and g on an irreducible variety X are
algebraically equivalent if there exists an alge-
braic family of divisors, f;, t € T, and points
trandf € T,suchthat f = f;, and g = f,.
Thus, algebraic equivalenceis an algebraic ana-
log of homotopy, though the analogy is not par-
ticularly fruitful.

Algebraic equivalence has the important
property of preserving the degree of divisors;
thatis, twoalgebraically equivalent divisorshave
the same degree. It aso preserves principal
divisors; that is, if one divisor of an agebrai-
cally equivalent pair is principal, then so is the
other one. (A divisor isprincipal if it isthe di-
visor of arational function.) Thus, the group
Do/ P is asubgroup of the divisor class group
CI°(X) = D/P. Here, Dy isthe group of divi-
sorsalgebraically equivalentto O, P isthegroup
of principal divisors, and D is the group of di-
visors of degree 0. The group Do/ p is exactly
the subgroup of the divisor class group realized
by the group of points of the Picard variety of
X. Seealgebraic family of divisors, divisor. See
also integral divisor, irreducible variety, Picard
variety.

algebraicexpression  Anexpression formed
from the elements of a field and one or more
variables (variables are also often called inde-
terminants) using the algebraic operations of ad-
dition, subtraction, multiplication, division, and
root extraction.



algebraicextension  Anextensionfield K of
afield k such that every « in K, but not in k,
is algebraic over k, i.e, sdatisfies a polynomial
equation with coefficientsin k.

algebraic family A family of cycles {X (¢) :
t € T} on anon-singular algebraic variety V,
parameterized by ¢+ € T, where T is another
non-singular algebraic variety, such that there
isacycle ZinV x T for which each X (¢) is
the projection to V of the intersection of Z and
V x {t}.

algebraic family of divisors A family of di-
visors f;, t € T, on anirreducible variety X,
wheretheindex set T isaso an irreducible va-
riety, and where f; = ¢/(D) for some fixed
divisor Don X x T and al r € T. Here, for
eecht € T, ¢ is the map from divisors on
X x T todivisorson X induced by the embed-
dng¢; : X > X x T, where¢p(t) = (x,1),
and X x T isthe Cartesian product of X and 7.
Thevariety T iscalled thebasefor thealgebraic
family f;,t € T. See also Cartesian product,
irreducible variety.

algebraic function A function Y = f(Xq,
Xo, ..., Xy) satisfying an equation R(X1, X,
..., Xn,Y) =0where R isarational function
over afield F. Seealso rational function.

algebraic function field Let F be afield.
Any finite extension of thefield of rational func-
tionsin

X1, X2, ..., X,

over the field F is called an algebraic function
field over F.

algebraicfundamental group A generaiza-
tion of theconcept of fundamental group defined
for an algebraic variety over afield of character-
istic p > 0, formed in the context of finite étale
coverings.

algebraic geometry  Classically, algebraic
geometry hasmeant the study of geometric prop-
erties of solutions of algebraic equations. In
modern times, algebraic geometry has become
synonymouswith the study of geometric objects
associated with commutative rings.
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algebraic group An agebraic variety, to-
gether with group operations that are regular
functions. See regular function.

algebraichomotopy group A generalization
of the concept of homotopy group, defined for
an algebraic variety over afield of characteris-
tic p > 0, formed in the context of finite é&ae
coverings.

algebraicidentity Analgebraic equationin-
volving a variable or variables that reduces to
an arithmetical identity for all substitutions of
numerical values for the variable or variables.

algebraicindependence Let k be asubfield
of thefield K. Theelementsay, ap, ..., a, of K
are said to be algebraically independent over k
if, for any polynomia p(X1, X», ..., X,;) with
coefficientsink, p(a1, az, ..., a,) = 0implies
p = 0. When a set of complex numbersis said
to be algebraically independent, the field k is
understood to be the rational numbers.

algebraic integer A complex number that
satisfies some monic polynomial eguation with
integer coefficients.

algebraic Liealgebra  Let k beafield. An
algebraicgroup G, realized asaclosed subgroup
of the general linear group GL(n, k), iscaleda
linear algebraic group, and its tangent space at
the identity, when given the natural Lie algebra
structure, is called an algebraic Lie algebra.

algebraic multiplication  In elementary al-
gebra, the multiplication of agebraic expres-
sions, which extends the operation of multipli-
cation of numbersin arithmetic.

algebraicmultiplicity ~ Themultiplicity of an
eigenvalue A of amatrix A asaroot of the char-
acteristic polynomial of A. See also geometric
multiplicity, index.

algebraic number A complex number z is
an algebraic number if it satisfies a non-trivia
polynomial eguation P(z) = O, for which the
coefficients of the polynomial are rational num-
bers.



algebraic number field A field F c C,
which is a finite degree extension of the field
of rational numbers.

algebraic operation  In elementary algebra,
the operations of addition, subtraction, multipli-
cation, division, and root extraction. In a gen-
eral algebraic system A, an agebraic operation
may be any function from the n-fold cartesian
product A" to A, wheren € {1, 2, ...} (thecase
n = 0 is sometimes also alowed). See also
algebraic system.

algebraic pencil A linear system of divi-
sorsin aprojective variety such that one divisor
passes through any point in general position.

algebraic scheme  An agebraic schemeisa
scheme of finite type over afield. Schemes are
generalizations of varieties, and the algebraic
schemesmost closely resemblethealgebraic va-
rieties. See scheme.

algebraic space A generalization of scheme
and of algebraic variety due to Artin and in-
troduced to create a category which would be
closed under variousconstructions. Specifically,
an algebraic space of finite type is an affine
scheme U and aclosed subscheme R C U x U
that isan equival encerel ation and for which both
the coordinate projectionsof R onto U areétale.
See also étale morphism.

algebraic subgroup A Zariski closed sub-
group of an affine algebraic group.

algebraic surface A two-dimensional age-
braic variety. See also algebraic variety.

algebraicsystem A set A, together with var-
ious operations and relations, where by an oper-
ation we mean afunction from the n-fold carte-
sianproduct A" to A, forsomen € {0,1,2,...}.

algebraic system in thewider sense  While
an algebraic system is a set A, together with
various operations and relations on A, an alge-
braic systeminthewider sensemay alsoinclude
higher level structures constructed by the power
set operation.
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algebraictorus  Analgebraic group, isomor-
phic to a direct product of the multiplicative
group of a universal domain. A universal do-
main is an algebraically closed field of infinite
transcendence degree over the primefieldit con-
tains.

algebraic variety  Classicaly, the term “al-
gebraic variety” has meant either an affine al-
gebraic set or a projective algebraic set, but in
the second half of the twentieth century, various
more genera definitions have been introduced.
One such more genera definition, in terms of
sheaf theory, considers an algebraic variety V
tobeapair (T, O), inwhich T isatopological
space and O is a sheaf of germs of mappings
from V into agiven field k, for which the topo-
logical space has a finite open cover {U,-}{\’:l
such that each (U;, O|U;) is isomorphic to an
affine variety and for which theimage of V un-
der the diagona map is Zariski closed. Seealso
abstract algebraic variety.

algebraisomorphism  Analgebrahomomor-
phismthat isalso aone-to-oneand onto mapping
between the algebras. See algebra homomor-
phism.

algebraof matrices Then x n matriceswith
entriestaken from agiven field together with the
operations of matrix addition and matrix multi-
plication. Also any nonempty set of such ma-
trices, closed under those operations and con-
taining additive inverses, and thus forming an
algebra.

algebra of vectors The vectors in
three-dimensional space, together with the oper-
ations of vector addition, scalar multiplication,
the scalar product (also called the inner prod-
uct or the dot product), the vector product (also
called the cross product), and the vector triple
product.

algebroidal function  Ananalyticfunction f
satisfying a non-trivial algebraic equation

ao(2) f" +a1() M4+ an() =0,

inwhich the coefficientsa (z) are meromorphic
functionsin a domain in the complex z-plane.



all-integer algorithm An agorithm for
which the entire calculation will be carried out
in integers, provided the given datais all given
in integers. Such algorithms are of interest for
linear programming problemsthat involve addi-
tional integrality conditions. A notable example
of suchanalgorithmwasgivenintheearly 1960s
by Gomory.

allowed submodule  Inamodule M with op-
erator domain A, an allowed submoduleisasub-
module N ¢ M suchthata € Aandx € N
impliesax € N. Also called an A-submodule.

almost integral  Let R be a subring of the
ring R’. Anelementa € R’ issaid to be almost
integral over R if thereexistsan element b € R
which isnot a zero divisor and for whicha”"b €
R holdsfor every positive integer n.

alternatinggroup  For fixed n, the subgroup
of the group of permutations of {1, 2, ..., n},
consisting of the even permutations. More spe-
cifically, the set of permutationso : {1, 2,...,
n} — {1, 2,...,n}suchthat

[] @l -oG)=>0.

1<i<j<n
Usually denoted by A,,.

alternatinglaw  Any binary operation R(-, -)
onaset S issaid to satisfy an alternating law if

R(a,b) = —R(b, a)

holdsfor @l a, b € S. Theterm is particularly
used for exterior products and for the bracket
operation in Lie algebras.

alternating polynomial Any polynomial
P(X1, X2, ..., X,) thatistransformedinto — P
by every odd permutation of the indeterminants
X1, X2, ..., X,

alternative algebra A distributive algebra,
in which the equationsa - (b - b) = (a - b) - b
and(a-a)-b=a-(a-b)holdforal aandb
in the algebra.

alternativefield  Analternativeringwithunit
inwhich, given any choicesof a # 0 and b, the
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two equations
ax1=b and xpa=0»>

are uniquely solvablefor x; and x2. Also called
alternative skew-field.

amalgamated product Given a family of
groups {G 4 }qeca and embeddings {/q}yca Of @
fixed group H into the G, the amalgamated
product is the group G, unique up to isomor-
phism, having the universal properties that (i.)
there exist homomorphisms {g, }4ca Such that
guohy = ggohgfordl a,p e A and (ii.)
for any family {€4}qyea Of homomorphisms of
the groups G, to a fixed group L satisfying
lyohy =Lgohgfordla, B € A, thereexists
a unique homomorphism ¢ : G — L such that
by =Lo0gy.

For the case of two groups G1 and G2 with
isomorphic subgroups H1 € Gy and H> C G2,
the amalgamated product of the groups can be
identified with the set of finite sequences of €l-
ements of the union of the two groups with the
equivalence relation generated by identifying a
sequence with the sequence formed when adja-
cent elements are replaced by their product if
they are in the same G; or with the sequence
formed when an element of an H; is replaced
by its isomorphic image in H»> and vice-versa.
Multiplication is then defined by concatenation
of sequences.

The amalgamated product is also called the
free product with amalgamation.

ambigideal Let k be aquadratic field, i.e.,
k = Q(/m) wherem isanon-zero integer with
no factor that is a perfect square. Conjugation
onkisthemapsendinga = a+b/m,a,b € Q,
toac.

ambiguous case A problem in trigonome-
try for which there is more than one possible
solution, such as finding a plane triangle with
two given side lengths and agiven non-included
angle.

Amitsur conomology A cohomology theory
defined as follows. Let R be a commutative
ring withidentity and F acovariant functor from
the category Cr of commutative R-algebras to
the category of additive Abelian groups. For



S e Cg and n a nonnegative integer, let §™
denote the n-fold tensor product of S over R.
For n a nonnegative integer, let & : SO+ —
§t+2(; = 0,1,...,n) be the Cg-morphisms
defined by

Ei(x0® - Qxp) =
XO®...®xi_1®1®xi®...®xn_

Defined” : F(S®tD) — F(§®12) py setting

n
d"=Y (-D'F (&) .
i=0
Then {F(S®™tD), 4"} defines a cochain com-

plex called the Amitsur complex and the coho-
mology groups are called the Amitsur cohomol-

0ogy groups.

Amitsur cohomology groups  See Amitsur

cohomol ogy.

Amitsur complex  See Amitsur cohomology.

ample  Seeample vector bundle, ample divi-
Sor.
ampledivisor A divisor D such that nD is

very ample for some positive integer n. A divi-
sorisvery ampleif it possesses a certain type of
canonical projective immersion.

ample vector bundle A vector bundle E
wherethelinebundle Ogv (1) on P(EY) isam-
ple. Thatis, thereisamorphism f from P(EY)
to a projective space P with Ogv (1)®" = f*
Opn (D).

amplification ~ The process of increasing the
magnitude of a quantity.

analyticallynormalring Ananalytically un-
ramified ring that is also integrally closed. See
analytically unramified ring.

analytically unramified ring A local ring
such that its completion contains no non-zero
nilpotent elements. (An element x of aringis
nilpotent if x - x = 0.)

analytic function  Same as a holomorphic
function, but with emphasis on the fact that such
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afunction has a convergent power series expan-
sion about each point of its domain.

analytichomomorphism A homomorphism
between two Lie groups which is also an ana-
Iytic function (i.e., expandablein apower series
at each point in the Lie group, using alocal co-
ordinate system).

analytic isomorphism An anaytic
homomorphism between two Lie groups which
is one-to-one, onto and has an inverse that is
also an analytic homomorphism. See analytic
homomorphism.

analyticstructure A structureon adifferen-
tiable manifold M which occurs when there is
anatlasof charts{(U;, ¢;) : i € I} on M, where
the transition functions

giow i (UinUj) — ¢; (Ui NU;)
are anaytic.

analytic variety A set that is the simulta-
neous zero set of afinite collection of analytic
functions.

analyticvector A vector vinaHilbert space
‘H is called an analytic vector for a finite set
{T; }’;’:1 of (unbounded) operatorson 7 if there
exist positive constants C and N such that

k
|7, Tjpv|y < CN*K!

foral j; € {1, ..., m}andevery positiveinteger

k.

anisotropic A vector space V with an inner

product (-, -) and containing no non-zero iso-
tropic vector. A vector x € V isisotropic if
(x,x)=0.

antiautomorphism  An isomorphism of an
algebra A onto its opposite algebra A°. See
opposite.

antiendomorphism A mapping r fromaring
R to itself, which satisfies

tx+y) =t +1(y), Ty =71(y)T(x)

for @l x,y € R. The mapping tr can also be
viewed as an endomorphism (linear mapping)
from R to its opposite ring R°. See opposite.



antihomomorphism A mapping o from a
group G into agroup H that satisfieso (xy) =
oc(y)o(x) for dl x,y € G. An antihomor-
phism can also be viewed as a homomorphism
o: G — H° where H° isthe opposite group to
H. See opposite.

anti-isomorphism A one-to-one, surjective
map f : X — Y that reverses some intrinsic
property commonto X and Y. If X and Y are
groups or rings, then f reverses multiplication,
f(ab) = f(b)f(a). If X andY arelattices, then
f reverses the lattice operations, f(a N b) =
f@U fb)and f(aUb) = f(a) N f(b).

antilogarithm  For anumber y and abase b,
the number x such that log, x = y.

antipode  Let S be a sphere in Euclidean
spaceand s apoint of S. Thelinethrough s and
the center of the sphere will intersect the sphere
in auniquely determined second point s’ that is
calledtheantipodeof s. The celebrated Borsuk-
Ulam Theorem of algebraic topology consid-
ers the antipodal map P — —P. The theory
of Hopf algebras contains a notion of antipode
which isanalogousto the geometric onejust de-
scribed.

antisymmetric decomposition  The decom-
position of a compact Hausdorff space X con-
sists of digoint, closed, maximal sets of anti-
symmetry with respect to A, where A isaclosed
subalgebraof C(X), theagebraof all complex-
valued continuous functionson X. A is called
antisymmetric if, from the conditionthat £, f
A, it follows that f is a constant function. A
subset SRX iscalled aset of antisymmetry with
respect to A if any function f € A that isrea
on S is constant on this set.

apartment  An element of A, a set of sub-
complexes of a complex A such that the pair
(A, A) isabuilding. That is, if the following
hold:

(i.) A isthick;

(ii.) theelementsof A arethin chamber com-
plexes;

(iii.) any two elements of A belong to an
apartment;
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(iv.) if two apartments ~ and £’ contain two
elements A, A’ € A, then there exists an iso-
morphism of X onto X" which leaves invariant
A, A’ and al their faces.

approximate functional equations  Equa
tions of the form f(x) = g(x) + Ev(x) where
f(x) and g(x) are known functions and the
growth of Ev(x) isknown.

approximately finitealgebra A C*-algebra
that istheuniform closureof afinitedimensional
C*-algebra

approximately finite dimensional von Neu-
mann algebra A von Neumann algebra, M,
which contains an increasing sequence of finite
dimensional subalgebras, A,, C A, 1, suchthat
U™ A, isdensein M. (Density is defined in
terms of any of a number of equivalent topolo-
gies on M, eg., the weak* topology, or the
strong operator topology in any normal repre-
sentation.)

approximate number A numerical approx-
imation to the actual vaue.

approximation theorem A theorem which
states that one class of objects can be approxi-
mated by elements from another (usually
smaller) class of objects. A famous example
isthe following.

Welerstrass A. T. Every con-
tinuous function on a closed inter-
val can be uniformly approximated
by a polynomial. That is, if f(x)
is continuous on the closed inter-
val [a, b] and € > 0O, then there ex-
ists a polynomial p.(x) such that
|f(x) — pe(x)| < € for all x €
[a, b].

Arabicnumerals ThenumbersO, 1, 2, 3, 4,
5, 6, 7, 8, and 9. These numbers can be used to
represent all numbersin the decimal system.

arbitrary constant A constant that can be set
to any desired value. For example, in the calcu-
lus expression [ 2x dx = x2 + C, the symbol
C isan arbitrary constant.



arccosecant  The multiple-valued inverse of
the trigonometric function csc 6, e.g., arccsc(2)
= 7/6 + 2kmw where k is an arbitrary integer
(k = 0 specifiesthe principal value of arc cose-
cant). The principal value yields the length of
the arc on the unit circle, subtending an angle,
whose cosecant equals a given value.

The arc cosecant function is aso denoted
cscLx.

arccosine  Themultiple-valuedinverseof the
trigonometric function cos 0, e.g., arccos(—1)
= 742k wherek isanarbitrary integer (k = 0
specifiesthe principal value of arc cosine). The
principal valueyieldsthelength of thearc onthe
unit circle, subtending an angle, whose cosine
equals agiven value.

The arc cosine function is also denoted

cos1x.

arc cotangent  The multiple-valued inverse
of the trigonometric function cotan 6, e.g., arc-
cot (v/3) = /6 + 2km where k is an arbitrary
integer (k = O specifies the principal value of
arc cotangent). The principal value yields the
length of the arc on the unit circle, subtending
an angle, whose cotangent equals agiven value.

The arc cotangent function is aso denoted
cot~1x.

Archimedian ordered field If K isan or-
dered field and F a subfield with the property
that no element of K isinfinitely large over F,
then we say that K is Archimedian.

Archimedian ordered field A set which, in
addition to satisfying the axiomsfor afield, also
possesses an Archimedian ordering. Thatis, the
field F isordered in that it contains a subset P
and the following properties hold:

(i.) Fisthedigointunionof P, {0},and —P.
In other words, each x € F belongseither to P,
or equals 0, or —x belongsto P, and thesethree
possibilities are mutually exclusive.

(ii.) Ifx,y € P,thenx+y € Pandxy € P.

The ordered field is also Archimedian in that
the absolute value function

X, ifxeP
[x] =10, ifx=0
—x, ifxe—-P
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is satisfied.

(iii.) For each x € F there exists a positive
integer n suchthat n - 1 > x.

Therational numbersare an Archimedian or-
dered field, and so are the real numbers. The
p-adic numbers are anon-Archimedian ordered
field.

Archimedian valuation A valuation on a
ring R, for which v(x — y) < max(v(x), v(y))
isfalse, for somex, y € R. See valuation.

ar csecant The multiple-valued inverse of
the trigonometric function sec x, sometimes de-
noted sec1x.

arcsine  The multiple-valued inverse of the
trigonometric function sin 9, e.g., arcsin(l) =
7 /24 2k wherek isanarbitrary integer (k = 0
specifies the principal value of arc sine). The
principal value yields the length of the arc on
the unit circle, subtending an angle, whose sine
equalsagiven value.

Thearc sine function isalso denoted sin~Lx.

arctangent  The multiple-valued inverse of
the trigonometric function tan 0, e.g., arctan
(v/3) = /3 + 2k where k is an arbitrary in-
teger (k = 0 specifiesthe principal value of arc
tangent). The principal value yields the length
of thearc ontheunit circle, subtending anangle,
whose tangent equals a given value.

The arc tangent function is aso denoted
tan—Lx.

Arens-Royden Theorem LetC(My) denote
the continuous functions on the maximal ideal
space M4 of the Banach algebra A. Suppose
that f € C(My) and f does not vanish. Then
thereexistsag € A, forwhichg=1 € A, andfor
which f/g has a continuous logarithm on M 4.
(Here g denotes the Gelfand transform of g.)

arithmetic  The operations of addition, sub-
traction, multiplication, and division and their
properties for the integers.

arithmetical equivalence  An equivaence
relation on the integers which is consistent with
the four operations of arithmetic. (a ~ b and
c~dimplya+c~ b=+td,etc.) Anexample



would becongruencemodn wheren isapositive
integer. Here, two integers j and k are equiva-
lentif j — k isdivisible by n. See equivalence
relation.

arithmetically effective  Referring to adivi-
sor on anonsingular algebraic surface, whichis
numerically semipositive, or numerically effec-
tive (nef).

arithmetic crystal class  For an n-dimen-
sional Euclidean space V, an equivalence class
of pairs (', G) where I is a lattice in V and
G is a finite subgroup of O(V). Two pairs
(T'1, G1) and (I'2, G) are equivalent if there
isag € GL(V) such that gI'y = TI'p, and
gG1g7t = Ga.

arithmeticgenus  Aninteger, definedinterms
of the characteristic polynomial of a homoge-
neous ideal U in the ring of polynomials,
k[x1, ..., x,], in the variables x1, ..., x,, over
a commutative ring k. If x (U; g) denotes this
characteristic polynomial, then

XU q) = ao ({)+a1 (1) + - +ar—1(})+a,

whereay, . .., a, € kand{(%)} arethe binomial
coefficients. The integer (—1)" (e, — 1) isthe
arithmetic genus of .

arithmeticmean  For apositiveinteger n, the
arithmetic mean of the n rea numbersay, ...,
apis(ar+---+ay)/n.

arithmetic of associative algebras An area
of mathematics devoted to the study of simple
algebrasover local fields, number fields, or func-
tion fields.

arithmetic progression
real numbers such that

A sequence {s,} of

Sp=Sp_1+r, for n>1.

The number s; is the initial term, the number
r is the difference term. The genera term s,
satisfies s, = s1+ (n — Dr.

arithmetic series A series of the form
Y o2 a, Wherefordln > 1,a,11 = a, +d.
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arithmetic subgroup For a rea algebraic
group G C GL(n, R), asubgroup I of G, com-
mensurable with Gz = G N GL(n, R). That
is,

[T:TNGz] <occand [Gz: T NGz] <o0.

Arrow-Hurewicz-Uzawa gradient method

A technique used in solving convex or concave
programming problems. Suppose ¥ (x, u) is
concaveor convexinx € A C R" andconvexin
ue0cR" Usudlyo(x,u) = ¥ (x)+u-g(x)
where ¢ isthe function we wish to minimize or
maximize and our constraints are given by the
functions g;(x) <01 < j < m. The method
devised by Arrow-Hurewicz and Uzawaconsists
of solving the system of equations

0 ifx,-:O
dx; and g—fi<0,
dr i=1...,n

W otherwise

0 ifuj=0
du; and 5% >0,
dr j=1,...,m

=9 otherwise

uj

If (x(¢), u(t)) isasolution of this system, un-
der certain conditions, tlim x(1) = x solvesthe
— 00

programming problem.

artificial variable A variable that is intro-
duced into a linear programming problem, in
order to transform aconstraint that isan inequal -
ity into an equality. For example, the problem
of minimizing

C =3x1+ 2x2
subject to the constraints

4x1 —5x0 < 7
X1+ x2 = 9

with x1 > 0, xo > 0, istransformed into
C =3x1+ 2x2+ 041

subject to the constraints

|
\l

4x1 — 5xo + Aq
x1+ x2+ 044

|
©



withx1 > 0, x2 > 0, A1 > 0, by introducing
the artificial variable A1. This latter version is
in the standard form for a linear programming
problem.

Artin-Hasse function ~ For k a p-adic hum-
ber field with kg amaximal subfield of k£ unram-
ified over Q,,, a an arbitrary integer in kg and
x € k, the function E(a,x) = exp—L(a, x)
where L(a, x) = Y2,((a®) /pH)x?" and o is
the Frobenius automorphism of k,/Q,,.

Artinian module A (left) module for which
every descending sequence of (left) submodules

MiDODMoD---DM, DMyy1D ...

isfinite, i.e., there exists an N such that M,, =
M, 1 foraln > N.

Artinian ring A ring for which every de-
scending sequence of left ideals

LhD>LD---DLL,DL+1D...

is finite. That is, there exists an N such that
I, =I,41fordln>N.

Artin L-function  Thefunction L(s, ¢), de-
fined asfollows. Let K be afinite Galois exten-
sion of a number field k with G = Gal(K /k).
Letp : G — GL(V) beafinitedimensional rep-
resentation (characteristic 0). For each prime o
of k, set Ly (s, ) = det( — g N(p) )72,
where g, = 13 0(o1), T is the inertia
group of g, |T| = e and o is the Frobenius
automorphism of . Then

L(s, )= HLBO(S, @), forfs > 1.
2

Artin-ReesLemma  Let R be a Noetherian
ring, I anideal of R, F afinitely generated sub-
module over R, and E asubmodule of F. Then,
there exists an integer m > 1 such that, for all
integers n > m, it followsthat I"F N E =
[""™(I"F N E).

Artin-Schreier extension For K afield of

characteristic p # 0, an extension of the form
L = K(Pas,...,Pay) Wwhereas,...,ay €
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K, Pa; isaroot of x» —x —a; = 0,L/K is
Galois, andthe Galoisgroupisan Abeliangroup
of exponent p.

Artin’sconjecture A conjecture of E. Artin
that the Artin L-function L(s, ¢) isentirein s,
whenever ¢ isirreducibleand s # 1. See Artin
L-function.

Artin’s general law of reciprocity If K/k
is an Abelian field extension with conductor F
and A r isthe group of ideals prime to the con-

ductor, then the Artin map A (%{") isa

homomorphism Ar — Gal(K/k). The reci-
procity law states that this homomorphism is
an isomorphism precisely when A lies in the
subgroup Hx of A x consisting of those ideals
whose prime divisors split completely. That is,
Ar/Hr = Ga(K /k).

Artin’s symbol  The symbol (Kéé") defined
as follows. Let K be afinite Abelian Galois
extension of anumber field £ with o the princi-
pal order of k and D the principal order of K.
For each prime o of K thereisao = (Kgék)
€ G =Gal(K /k) such that

A° = AN®  (mod p), AeD;

(Kp/") is called the Artin symbol of o for the
Abelian extension K / k. For anideal a = Ip°
of k relatively primeto the relative discriminant
of K /k, define (*/*) = m(*/1)".

ascending central series A sequence of sub-
groups

(l=Ho<Hi<H)y<---<G

of agroup G with identity 1, where H,1 isthe
unique normal subgroup of H, for which the
quotient group H, 1/ H, isthecenter of G/H,,.

ascending chain of subgroups A sequence

of subgroups
Hi<---<H,<Hy1<--<G

of agroup G.

associate A relation between two elementsa

and b of aring R with identity. It occurs when
a = bu for aunit u.



associated factor sets  Related by a certain
equivalencerelation between factor setsbelong-
ing to agroup. Suppose N and F aregroupsand
G is a group containing a normal subgroup N
isomorphicto N withG/N = F. If s : F — G
is a splitting map of the sequence 1 — N —
G > F - landc: Fx F — N isthe
map, c(o, 7) = s(o)s(t)s(ot) 1 (s,c) iscaled
afactor set. Moregeneraly, apair of maps (s, ¢)
wheres : F — AutN andc: F x F — N is
called afactor set if

(i) s()s(t)(@) = c(o,1)s(ot)(a)c(o,
)" Ya e N),

(i) c(o,t)c(oT, p) = s(o)(c(z, p))c(o,
0).

Two factor sets (s, ¢) and (¢, d) are said to
be associated if thereisamap ¢ : F — N
suchthat 1 (o) (a) = s(0)(¢(o)(@)¢(o) 1) and
d(0,7) = (@) (s(@)(p())e(o, Dg(oT) .

associated form  Of aprojectivevariety X in
P, the form whose zero set defines a particular
projective hypersurface associated to X in the
Chow construction of the parameter space for
X. The construction beginswith the irreducible
algebraic correspondence {(x, Hp,...,Hy) €
XxP'x.--xP":xe€XN(HoN---NHy)}
between points x € X and projective hyper-
planes H; in P*, d = dimX. The projection
of this correspondence onto P" x --- x P" is
a hypersurface which is the zero set of asingle
multidimensional form, the associated form.

associative algebra  An agebra A whose
multiplication satisfies the associative law; i.e.,
foral x,y,z € A, x(yz) = (xy)z.

associative law  The requirement that a bi-
nary operation (x, y) — xy on aset S satisfy
x(yz) = (xy)zforadl x,y,z € S.

asymmetricrelation A relation ~, on a set
S, which does not satisfy x ~ y = y ~ x for
somex,y € S.

asymptoticratioset  In avon Neumann al-

gebra M, the set

Feo(M) = {2€]0,1[: M ® Ry,

is isomorphic to M}.
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augmentation An augmentation (over the

integers Z) of achain complex C isasurjective
. d

homomorphism Co->Z such that C1— Co—>Z

equals the trivial homomorphism Cl—O>Z (the
trivial homomorphism maps every element of
C1100).

augmented algebra
bra.

See supplemented alge-

augmented chain complex A non-negative
chain complex C with augmentation c5Z. A
chain complex C isnon-negativeif each C, € C
withn < O satisfies C,, = 0. See augmentation.

automorphic form  Let D be an open con-
necteddomainin C" with " adiscontinuoussub-
group of Hol(D). For g e Hol(D) andz € D
let j(g,z) be the determinant of the Jacobian
transformation of ¢ evaluated at z. A mero-
morphic function f on D is an automorphic
form of weight ¢ (an integer) for " if f(yz) =
f@j.27 " yel,zeD.

automorphism  Anisomorphism of agroup,
or algebra, onto itself. See isomorphism.

automorphism group  The set of all auto-
morphisms of a group (vector space, algebra,
etc.) onto itself. This set forms a group with
binary operation consisting of composition of
mappings (the automorphisms). See automor-
phism.

average  Often synonymous with arithmetic
mean. Can also mean integral average, i.e.,

b
ﬁ/ﬂ f(x)dx,

the integral average of a function f(x) over a
closed interval [a, b], or

1 /fd
nX) Jy

the integral average of an integrable function f
over a measure space X having finite measure

u(A).

axiom A statement that is assumed as true,
without proof, and which is used as a basis for
proving other statements (theorems).



axiom system A collection (usualy finite) of Azumayaalgebra A centra separable alge-
axioms which are used to prove all other state- bra A over a commutative ring R. That is, an
ments (theorems) in a given field of study. For  algebra A with the center of A equal to R and
example, the axiom system of Euclidean geom-  with A a projective left-module over A ® A°
etry, or the Zermelo-Frankel axioms for set the- (where A° is the opposite algebra of A). See
ory. opposite.
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B

back substitution A technique connected
with the Gaussian elimination method for solv-
ing simultaneous linear equations. Afterthe sys-
tem

anxi +apxy+ -+ aipxn =by
a1x1 +axnxy+ -+ amxp, =b
an1X1 + apax2 + -+ apnxn = Dby
is converted to triangular form
Hnixy +tox2 + -+ tinxXy  =ci
12X + -+ -+ topXp =
IhnXn =Cpn -

One then solves for x;, and then back substitutes
this value for x,, into the equation

i1 n—1Xn—1 + tanXn = Cp—1

and solves for x,,_1. Continuing in this way, all
of the variables x1, x2, ..., x, can be solved for.

backward error analysis A technique for
estimating the error in evaluating f (xy, ..., X,),
assuming one knows f (ay, ..., a,) = bandhas
control of |x; —a;| for1 <i <n.

Baer’s sum  For given R-modules A and C,
the sum of two elements of the Abelian group
Extr(C, A).

Bairstow method of solving algebraic equa-
tions  An iterative method for finding qua-
dratic factors of a polynomial. The goal being
to obtain complex roots that are conjugate pairs.

Banach algebra  An algebra over the com-
plex numbers with a norm | - ||, under which it
is a Banach space and such that

eyl < eyl

for all x, y € B. If B is an algebra over the real
numbers, then B is called a real Banach algebra.
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base  See base of logarithm. See also base of
number system, basis.

base oflogarithm  The number that forms the
base of the exponential to which the logarithm
is inverse. That is, a logarithm, base b, is the in-
verse of the exponential, base b. The logarithm
is usually denoted by log;, (unless the base is
Euler’s constant e, when In or log is used, log is
also used for base 10 logarithm). A conversion
formula, from one base to another, is

log, x =log, x log, b .

base of number system  The number which
is used as a base for successive powers, com-
binations of which are used to express all posi-
tive integers and rational numbers. For example,
2543 in the base 7 system stands for the number

2(73) +5<72) +4(7‘) +3.
Or, —524.37 in the base 8 system stands for the
number

- [5 (82) +2(8‘) 1443 (8*‘) +7 <8*2)] .

The base 10 number system is called the deci-
mal system. For base n, the term n-ary is used;
for example, fernary, in base 3.

base point  The point in a set to which a bun-
dle of (algebraic) objects is attached. For exam-
ple, a vector bundle V defined over a manifold
M will have to each point b € M an associated
vector space V. The point b is the base point
for the vectors in Vj,.

base term For a spectral sequence E =
{E",d"} where d" : E;,q — E”

2,3 d E pratr b0
,3,... and E},

4 = 0 whenever p < 0 or
q < 0, aterm of the form E;’O.

basic feasible solution A type of solution of
the linear equation Ax = b. If Aisanm x n
matrix with m < n and b € R™, suppose A =
A1 + A; when A; is an m X m nonsingular
matrix. It is a solution of the form A(x,0) =
A1x] + A0 = b where x; € R™ and x; > 0.

basic form of linear programming problem
The following form of a linear programming



problem: Find a vector (x1, x3, ..., x,) which
minimizes the linear function
C=cixi+cxpg+---+cpxp,
subject to the constraints
ayxy +apxy +---+apx, =b
axxy +anxy+---+awmxpy =b
am1X1 + amaxo + - - + apnxn = by
andx; >0,x>0,...,x, >0.

Here a;j, b;, and c; are all real constants and
m <n.

basic invariants  For a commutative ring K
with identity and a ring R containing K and G
a subgroup of Autg (R), a minimal set of gener-
ators of the ring RC.

basic optimal solution A solution of a linear
programming problem that minimizes the ob-
jective function (cost function) and is basic in
the sense that, in the linear constraints

anxy +apxy +---+apx, =b
a1 x1 +axnxy+ - +awmxy, =b
Am1X1 + amax2 + -+ ampXn = by

for the problem, n — m values of the n variables
X1, X2, ..., X, are zero.

basic variable A variable that has value zero
in a linear programming problem. The basic
variables lie on the boundaries of the convex re-
gions determined by the constraints in the prob-
lem.

basis A subset B of a vector space V which
has the property that every vector v € V can
be expressed uniquely as a finite linear com-
bination of elements of B. That is, if V is a
vector space over the field F, then for a given
v € V, there exists a unique, finite, collec-
tion of vectors xi, x2, ..., x, € B and scalars
o1, Q2,...,0, € Fsuchthatx = ayx1+azx2+

s+ o Xy

By definition, V is finite dimensional if it has
a finite basis. In an infinite dimensional vec-
tor space, if there is a topology on V, the sum
representing a vector x may be allowed to be
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infinite (and convergent). If only finite sums are
permitted, a basis is referred to as a Hamel basis.

Bernoulli method for finding roots  An it-
erative method for finding a root of a polyno-
mial equation. If p(x) = apx" + ap_1x" 1+

- 4 a,, is a polynomial, then this method, ap-
plied to p(x) = 0, consists of the following
steps. First, choose some set of initial-values
X0, X—1, ..., X_pn+1. Second, define subsequent
values x,, by the recurrence relation

arXm—1+ axpm—2+ -+ apXm—n

ao

for m > 1. Third, form the sequence of quo-
tients r,, = Xp+41/Xm for m > 1. If the polyno-
mial has a single root, r, of largest magnitude,
then the sequence {r,,} will converge to r.

Bernoullinumber Consider numbers B, de-
fined by the functional equation

X o ( l)n IB* 2n
eX — 1 Z 2n)!
n=1
_ foz B Bé‘x4 B;x6 L
2 41 6!

or, alternatively, by the equation

00
B* 2n
2 2) " &)
_ B;‘x2 Bi‘x4 B;‘x6
2! 4! 6!

The numbers B;' are called the Bernoulli num-
bers. The definition given here is the classical
one. There are several alternative, and more
modern, definitions. Bernoulli numbers arise
in the theory of special functions, in the study
of hypergeometric functions, and as the coeffi-
cients of the Taylor expansions of many classical
transcendental functions.

Betti numbers The nth Betti number B,,,
of a manifold M, is the dimension of the nth
cohomology group, H" (M, R). [The group H"
(M, R) is the quotient group consisting of equiv-
alence classes of the closed n forms modulo the
differentials of (n — 1) forms.]



Bezout’s Theorem  If p;(x) and py(x) are
two polynomials of degrees n| and ny, respec-
tively, having no common zeros, then there are
two unique polynomials g1 (x) and g»(x) of de-
grees n1 — 1 and ny — 1, respectively, such that

p1(x)q1(x) + p2(x)g2(x) = 1.

biadditive mapping  For A-modules M, N
and L, the mapping f : M x N — L such that

fle+xy)=f@»+f(.y). and

fEy+yY)=rfan+7£xy),
x,x’ €M, v,y €L.

bialgebra A vector space A over afield k that
is both an algebra and a coalgebra over k. That
is, (A, u, n, A, ¢€) is a bialgebra if (A, u, n) is
an algebra over k and (A, A, ¢) is a coalgebra
over k, u : A ® A — A (multiplication).
n:k — A(nit), A: A —> AR A (co-
multiplication). ¢ : A — k (counit) and these
maps satisfy

mo(u®Iy) =pno(la®@u),
pom®Ia) =pno(la®n) ,
(A®Iy)oA=(Is®@A) oA,
(e®Ip))oA=(UsR®¢e)oA.
bialgebra-homomorphism For (A, u,
n,A,¢e)and (A, ', n', A, &’) bialgebras over

a field k, a linear mapping f : A — A’ where

fon=n',fou=po(f®f), (f®f)oA=
Ao f,e =¢' o f. See bialgebra.

biideal A linear subspace I of A, where (A,
uw, n, A, ¢) is a bialgebra over k, such that u(A
RQel)=I1and A(J) CAQr I +1 Q@ A.

bilinear form A mappingb: V xV — F,
where V is a vector space over the field F', which
satisfies

b(ax + By, z) = ab(x, z) + B(y, 2)

and

b(x,ay + Bz) = ab(x, y) + Bb(x, z)
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for all x,y,z € Vand o, 8 € F. See also
quadratic form.

bilinear function  See multilinear function.

bilinear mapping A mappingb: V x V —
W, where V and W are vector spaces over the
field F, which satisfies

b(ax + By, z) = ab(x,z) + Bb(y, 2)
and

b(x,ay + Bz) = ab(x,y) + Bb(x, 2)
forallx,y,ze Vanda,B € F.

bilinear programming The area dealing with
finding the extrema of functions

f (x1,x2) = Cix1 4+ Chxa + x{ Ox2
over
X ={(x1,x) eR" xR™: Ax; < by,

Axxy < by, x1 > 0,x2 >0}

where Q is an n| X np real matrix, A is an
ni X ni, real matrix and A, is an np X nj real
matrix.

binary Diophantine equation A Diophan-
tine equation in two unknowns. See Diophan-
tine equation.

binary operation A mapping from the Carte-
sian product of a set with itself into the set.
That is, if the set is denoted by S, a mapping
b: § xS — S. Anotation, such as x, is usually
adopted for the operation, sothatb(x, y) = xxy.

binomial A sum of two monomials. For ex-
ample, if x and y are variables and « and S are
constants, then ax? y? 4 Bx" y*, where p, q, r, s
are integers, is a binomial expression.

binomial coefficients The numbers, often
denoted by (Z), where n and k are nonnegative
integers, with n > k, given by

@

kl(n — k)!



wherem! =m(@m—1)---(2)(1)and 0! = 1 and
1! = 1. The binomial coefficients appear in the
Binomial Theorem expansion of (x + y)" where
n is a positive integer. See Binomial Theorem.

binomial equation
x"—a=0.

An equation of the form

binomial series The series (1 + x)¥ =
Y oo2 o(@)x™. It converges for all |x| < 1.

Binomial Theorem  For any nonnegative in-
tegers b and n, (a + b)" = Z?zo(’/’.)a/b"’f.

birational isomorphism A k-morphism ¢ :
G — G’, where G and G’ are algebraic groups
defined over k, that is a group isomorphism,
whose inverse is a k-morphism.

birational mapping For V and W irreducible
algebraic varieties defined over k, a closed irre-
ducible subset T of V x W where the closure of
the projection T — V is V, the closure of the
projection T — W is W, and k(V) = k(T) =
k(W). Also called birational transformation.

birational transformation See birational

mapping.

Birch-Swinnerton-Dyer conjecture The
rank of the group of rational points of an el-
liptic curve E is equal to the order of the O of
L(s, E) at s = 1. Consider the elliptic curve
E : y> = x3 — ax — b where a and b are inte-
gers. If E(Q) = EN(Q x Q), by Mordell’s
Theorem E(Q) is a finitely generated Abelian
group. Let N be the conductor of E, and if
p /N, leta, + p be the number of solutions of
y2 = (x3 — ax — b) (mod p). The L-function
of E,

Lis.E)y=[](1—¢,p7)

PIN

l_[ (1 _app—s +p1—2s)

PIN

where g, =0or & 1.

block A term used in reference to vector bun-
dles, permutation groups, and representations.
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blowingup A process in algebraic geometry
whereby a point in a variety is replaced by the set
of lines through that point. This idea of Zariski
turns a singular point of a given manifold into a
smooth point. Itis used decisively in Hironaka’s
celebrated “resolution of singularities” theorem.

blowingup Let N be an n-dimensional com-
pact, complex manifold (n > 2), and p € N.
Let {z = (z;)} be a local coordinate system, in
a neighborhood U, centered at p and define

U:{(z,l)eUxP"—lzzez},

where P"~! is regarded as a set of lines / in
C". Letw : U — U denote the projection
7(z,1) = z. Identify 7~!(p) with P"~! and
U\~ (p) with U\{p}, via the map 7 and set

N = (N\{phUU, B,(N) =N/~ ,

where z ~ wifz € N\{p}andw = (z,]) € U.
The blowing up of N at pis : B,(N) — N.

BN-pair A pair of subgroups (B, N) of a
group G such that:
(i.) B and N generate G;
(ii.) BNN = HAN; and
(iii.) the group W = N/H has a set of genera-
tors R such that forany r € R and any w € W
(a)rBw C BwB N BrwB,
(b)rBr # B.

Bochner’s Theorem A function, defined on
R, is a Fourier-Stieltjes transform if and only if it
is continuous and positive definite. [A function
f,defined on R, is defined to be positive definite
if

/Rf(y)f(x —y)ydy >0

for all x-values.]

Borel subalgebra A maximal solvable sub-
algebra of a reductive Lie algebra defined over
an algebraically closed field of characteristic 0.

Borel subgroup A maximal solvable sub-
group of a complex, connected, reductive Lie

group.

Borel-Weil Theorem If G, is the complex-
ification of a compact connected group G, any



irreducible holomorphic representation of G is
holomorphically induced from a one-dimension-
al holomorphic representation of a Borel sub-
group of G..

boundary (1) (Topology.) The intersection
of the complements of the interior and exterior
of a set is called the boundary of the set. Or,
equivalently, a set’s boundary is the intersection
of its closure and the closure of its complement.

(2) (Algebraic Topology.) A boundary in
a differential group C (an Abelian group with
homomorphism d: C — C satisfying 99 = 0)
is an element in the range of 9.

boundary group  The group Ima, which is a
subgroup of a differential group C consisting of
the image of the boundary operator 9: C — C.

boundary operator A homomorphism
d: C — C of an Abelian group C that satisfies
00 = 0. Used in the field of algebraic topology.
See also boundary, boundary group.

bounded homogeneous domain A bounded
domain with a transitive group of auto-
morphisms. In more detail, a domain is a con-
nected open subset of complex N space CV.
A domain is homogeneous if it has a transi-
tive group of analytic (holomorphic) automor-
phisms. This means that any pair of points z
and w can be interchanged, i.e., ¢(z) = w, by
an invertible analytic map ¢ carrying the do-
main onto itself. For example, the unit ball in
complex N space, {z = (z1,...,2n) : 21> +
.-« 4 |zn|* < 1}, is homogeneous. A domain
is bounded if it is contained in a ball of finite
radius. A bounded homogeneous domain is a
bounded domain which is also homogeneous.
Thus, the unit ball in CV is a bounded homo-
geneous domain. There are many others. See
also Siegel domain, Siegel domain of the sec-
ond kind.

bounded matrix A continuous linear map
K : 02(N) ® £2(N) — ¢1(N) where N is the set
of natural numbers.

bounded torsion group A torsion group T

where there is an integer n > 0 such that " =
forallt € T.
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bounded variation Let/ = [a,b] € Rbe
a closed interval and f : I — R a function.
Suppose there is a constant C > 0 such that, for
any partitiona = agp <a; < --- <ar =bit
holds that

k
S 1f @) — flajnl = C.

j=1

Then f is said to be of bounded variation on the
interval I.

bracket product If a and b are elements of
aring R, then the bracket product is defined as
[a, b] = ab — ba. The bracket product satisfies
the distributive law.

branch and bound integers programming
At step j of branch and bound integers pro-
gramming for a problem list P a subproblem P;
is selected and a lower bound is estimated for its
optimal objective function. If the lower bound
is worse than that calculated at the previous step,
then P; is discarded; otherwise P; is separated
into two subproblems (the branch step) and the
process is repeated until P is empty.

branch divisor  The divisor »_ ix X, where
ix is the differential index at a point X on a
nonsingular curve.

Brauer group  The Abelian group formed by
the tensor multiplication of algebras on the set of
equivalence classes of finite dimensional central
simple algebras.

Brauer’s Theorem Let G be a finite group
and let x be any character of G. Then x can be
written as ) ng Xvy» Where ny is an integer and
each xy, is an induced character from a certain
linear character v of an elementary subgroup
of G.

Bravais class  An arithmetic crystal class de-
termined by (L, B(L)), where L is a lattice and
B(L) is the Bravis group of L. See Bravais

group.

Bravais group  The group of all orthogonal
transformations that leave invariant a given lat-
tice L.



Bravais lattice A representative of a Bravais
type. See Bravais type.

Bravais type  An equivalence class of arith-
metically equivalent lattices. See arithmetical
equivalence.

Brill-Noether number The quantity g —
(k + 1)(g — k + m), where g is the genus of
a nonsingular curve C and k and m are posi-
tive integers with k < g. This quantity acts as a
lower bound for the dimension of the subscheme
{@(D) : I(D) > m,deg D = k} of the Jacobian
variety of C, where ¢ is the canonical function
from C to this variety.

Bruhat decomposition A decomposition of
a connected semisimple algebraic group G, as a
union of double cosets of a Borel subgroup B,
with respect to representatives chosen from the
classes that comprise the Weyl group W of G.
For each w € W, let g, be a representative in
the normalizer N(B N B™) in G of the maximal
torus B N B~ formed from B and its opposite
subgroup B~. Then G is the disjoint union of
the double cosets Bg,, B as w ranges over W.

building A thick chamber complex C with
a system S of Coxeter subcomplexes (called the

© 2001 by CRC Press LLC

apartments of C) such that every two simplices
of C belong to an apartment and if A, B are in
S, then there exists an isomorphism of A onto
B that fixes A N B elementwise.

building of Euclidian type A building is of
Euclidean type if it could be used like a sim-
plical decomposition of a Euclidean space. See
building.

building of spherical type A building that
has finitely many chambers. See building.

Burnside Conjecture
order is solvable.

A finite group of odd

Burnside problem (1) The original Burn-
side problem can be stated as follows: If every
element of a group G is of finite order and G
is finitely generated, then is G a finite group?
Golod has shown that the answer for p-groups
is negative.

(2) Another form of the Burnside problem is:
If a group G is finitely generated and the orders
of the elements of G divide an integer 7, then is
G finite?



C

C;-field Let F be a field and let i, j be in-
tegers such thati > 0 and j > 1. Also, let P
be a homogeneous polynomial of m variables
of degree j with coefficients in F. If the equa-
tion P = 0 has a solution (s1, §2, ..., Sn) #
(0,0,...,0)in F for any P such thatm > ji,
then F is called a C;(j) field. If, for any j > 1,
F is a C;(j) field, then F is called a C;-field.

Calkin algebra  Let H be a separable infinite
dimensional Hilbert space, B(H) the algebra of
bounded linear operators on H, and I (H) be the
ideal of H consisting of all compact operators.
Then, the quotient C*-algebra B(H)/I(H) is
called the Calkin algebra.

Campbell-Hausdorff formula A long for-
mula for computation of z = In(e*¢”) in the al-
gebra of formal power series in x and y with the
assumption that x and y are associative but not
commutative. It was first studied by Campbell.
Then Hausdorff showed that z can be written in
terms of the commutators of x and y.

cancellation  Let x, y, and z be elements of
a set S, with a binary operation *. The acts of
eliminating zinx xz = y*%zorz*«x =z%y
to obtain x = y is called cancellation.
cancellation law  An axiom that allows can-
cellation.

canonical class
an algebraic curve.

A specified divisor class of

canonical cohomology class

m

The 2-cocycle

H? (Gal(K /k), Ig) = Z/nZ

in the Galois cohomology of the Galois exten-
sion K /k of degree n with respect to the idéle
class group Ik that corresponds to 1 in Z/nZ
under the above isomorphism.
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canonical coordinates of the first kind  For
each basis By, ..., B, of a Lie algebra L of
the Lie group G, there exists a positive real
number r with the property that {exp(>_ b; B;) :
|bi| < r (i = 1,...,n)} is an open neigh-
borhood of the identity element in G such that
expQ_biBi)—(b,,....by)(bil < r,i =1,
..., n)isalocal coordinate system. These local
coordinates are called the canonical coordinates
of the first kind associated with the basis (B;) of
this Lie algebra L.

canonical coordinates of the second kind

For each basis By, ..., B, of a Lie algebra L
of the Lie group G, we have a local coordi-
nate system [ [exp(b;Bi) —(b,,...,b,) (i =
1,2,...,n) in a neighborhood of the identity
element in G. These b, ..., b, are called the
canonical coordinates of the second kind asso-
ciated with the basis (B;) of this Lie algebra L.

canonical divisor = Any one of the linearly
equivalent divisors in the sheaf of relative dif-
ferentials of a (nonsingular) curve.

canonical function A rational mapping ¢ :
X — J, from a nonsingular curve X to its Jaco-
bian variety J, defined by ¢ (P) = ®(P — Py),
where P is a generic point of X and Py is a fixed
rational point, ® : Go(X)/G;(X) — J is the
associated isomorphism, G(X) is the group of
divisors, Go(X) is the subgroup of divisors of
degree 0 and G;(X) the subgroup of divisors of
functions. Such a ¢ is determined uniquely by
@ up to translation of J.

canonical homology basis A one-dimension-
al homology basis {B;, Bi+i }f.‘zl such that
Bi, Bj) = Br+is Be+j) = 0, (Bis Br+i) = 1,
and(:Biv ﬂk-l—j) = O(l # ])a(ls.] = 1927 s 7k)

canonical homomorphism (1) Let R be a
commutative ring with identity and let L, M
be algebras over R. Then, the tensor product
L ®r M of R-modules is an algebra over R.
The mappings I - [ ® 1 (l € L) and m —
m® 1 (m € M) give algebra homorphisms
L - LR Mand M — L Qr M. Each
one of these homomorphisms is called a canon-
ical homomorphism (on tensor products of al-
gebras).



(2) Let the ring R = [[;<; R be the direct
product of rings R;. The mapping ¢; : R — R;
that assigns to each element r of R its ith com-
ponent r; is called a canonical homomorphism
(of direct product of rings).

canonical injection  For a subgroup H of a
group G, the injective homomorphism 6:H —
G, defined by 6(h) = hforallh € H. (0 is also
called the natural injection.)

canonically bounded complex Let FO(C)
and F"™*t1(C) (m an integer) be subcomplexes
of a complex C such that FO(C) = C, and
F™+1(C™) = 0, then the complex C is called a
canonically bounded complex.

canonically polarized Jacobian variety A
pair, (J, P), where J is aJacobian variety whose
polarization P is determined by a theta divisor.

canonical projection Let S/ ~ denote the
set of equivalence classes of a set S, with re-
spect to an equivalence relation ~. The mapping
w:S — S/ ~ that carries s € S to the equiva-
lence class of s is called the canonical projection
(or quotient map).

canonical surjection (1) Let H be a normal
subgroup of a group G. For the factor group
G/H, the surjective homomorphism 6:G —
G/H suchthat g € 6(g),forall g € G, is called
the canonical surjection (or natural surjection)
to the factor group.

2)Let G = G| x G x ... x Gy, be the di-
rect product of the groups G1, G, ... , G,. The
mapping (g1, €2, ---,8) — & (i =1,2,...,
n) from G to G; is a surjective homomorphism,
called the canonical surjection on the direct prod-
uct of groups.

capacity of primeideal Let A be a separable
algebra of finite degree over the field of quotients
of a Dedekind domain. Let P be a prime ideal
of A and let M be a fixed maximal order of
A. Then, M/ P is the matrix algebra of degree
d over a division algebra. This d is called the
capacity of the prime ideal P.
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cap product (1) In alattice or Boolean alge-
bra, the fundamental operation a A b, also called
the meet or product, of elements a and b.

(2) In cohomology theory, where H, (X, Y;
G) and H*(X, Y; G) are the homology and co-
homology groups of the pair (X, Y) with coef-
ficients in the group G, the operation that as-
sociates to the pair (f, g), f € H5(X,Y U
Z,G1),g € H(X,Y; Gy) theelement fUg €
H;(X,Y U Z; G3) determined by the composi-
tion

Heys (X, YUZ;Gy)
- Hr—i—x ((Xv Y) X (Xv Z)v Gl)
— Hom (H' (X, Y; G), Hy (X, Z: G3))

where the first map is induced by the diagonal
mapA: (X, YUZ)— (X,Y) x (X, 2).

Cardano’s formula A formula for the roots
of the general cubic equation over the complex
numbers. Given the cubic equation ax +bx? +
cx+d = 0,let A = 9abc — 2b> — 27a%d
and B = b* — 3ac. Also, let y; and y, be
solutions of the quadratic equation Y> — AY +
B3=0.Ifwis any cube root of 1, then (—b+w
Iy +? Yy2)/3ais aroot of the original cubic
equation.

cardinality A measure of the size of, or num-
ber of elements in, a set. Two sets S and T are
said to have the same cardinality if there is a
function f : § — T that is one-to-one and
onto. See also countable, uncountable.

Cartan integer  Let R be the root system of
aLie algebra L and let F' = {x1, x2, ..., x,} be
a fundamental root system of R. Each of the
n? integers x;; = —2(x;, x;)/(x;, x;) (1 < i,
Jj < n)iscalled a Cartan integer of L, relative
to the fundamental root system F.

Cartan invariants  Let G be a finite group
and let n be the number of p-regular classes
of G. Then, there are exactly n nonsimilar,
absolutely irreducible, modular representations,
M, My, ..., M,, of G. Also, there are n non-
similar, indecomposable components, denoted
by R1, R», ..., R,, of the regular representation
R of G. These can be numbered in a such a way
that M,, appears in R, as both its top and bottom



component. If the degree of M,, is m, and the
degree of R, is ry, then R, appears m, times
in R and M,, appears r, times in R. The multi-
plicities p,, of M; in R, are called the Cartan
invariants of G.

Cartan involution Let G be a connected
semisimple Lie group with finite center and let
M be a maximal compact subgroup of G. Then
there exists a unique involutive automorphism of
G whose fixed point set coincides with M. This
automorphism is called a Cartan involution of
the Lie group G.

Cartan-Mal’tsev-Iwasawa Theorem Let M
be a maximal compact subgroup of a connected
Lie group G. Then M is also connected and G is
homeomorphic to the direct product of M with
a Euclidean space R”.

Cartan’s criterion of semisimplicity A Lie
algebra L is semisimple if and only if the Killing
form K of L is nondegenerate.

Cartan’s criterion of solvability  Let g/(n,
K) be the general linear Lie algebra of degree
n over a field K and let L be a subalgebra of
gl(n,K). Then L is solvable if and only if
tr(AB) = 0 (tr (AB) = trace of AB), for every
AeLandB e [L, L]

Cartan’s Theorem (1) E. Cartan’s Theo-
rem. Let Wi and W; be the highest weights of
irreducible representations w1, wy of the Lie al-
gebra L, respectively. Then w, is equivalent to
w, if and only if W; = W».

(2) H. Cartan’s Theorem. The sheaf of
ideals defined by an analytic subset of a com-
plex manifold is coherent.

Cartan subalgebra A subalgebra A of a Lie
algebra L over a field K, such that A is nilpotent
and the normalizer of A in L is A itself.

Cartan subgroup A subgroup H of a group
G such that H is a maximal nilpotent subgroup
of G and, for every subgroup K of H of finite
index in H, the normalizer of K in G is also of
finite index in K.
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Cartan-Weyl Theorem A theorem that as-
sists in the characterization of irreducible repre-
sentations of complex semisimple Lie algebras.
Let G be a complex semisimple Lie algebra, H a
Cartan subalgebra, ¥ the root system of G rela-
tiveto H,a =) 5700, 7s € R, acomplex-
valued linear functional on H, and p : G —
GL,, (C) arepresentation of G. The functional «
is a weight of the representation if the space of
vectors v € C” that satisfy p(h)v = a(h)v for
all h € H is nontrivial; C" decomposes as a di-
rect sum of such spaces associated with weights
ap, ..., a. If we place a lexicographic linear
order < on the set of functionals «, the Cartan-
Weyl Theorem asserts that there exists an irre-
ducible representation p of G having « as its
highest weight (with respect to the order <) if
and only if 2[[:;]] is an integer for every o € X,
and w(a) < « for every permutation w in the
Weyl group of G relative to H.

Carter subgroup  Any finite solvable group
contains a self-normalizing, nilpotent subgroup,
called a Carter subgroup.

Cartesian product If X and Y are sets, then
the Cartesian product of X and Y, denoted X x
Y, isthe setof all ordered pairs (x, y) withx € X
andy €Y.

Cartier divisor A divisor which is linearly
equivalent to the divisor 0 on a neighborhood of
each point of an irreducible variety V.

Casimirelement Letfy, ..., B, beabasisof
the semisimple Lie algebra L. Using the Killing
form K of L, let m;; = K(B;, Bj). Also, let
m'/ represent the inverse of the matrix (m; ;) and
let ¢ be an element of the quotient associative
algebra Q(L), defined by c = > m'/ ; B;. This
element c is called the Casimir element of the
semisimple Lie algebra L.
Casorati’s determinant  The n x n determi-
nant

D(c,(x),...,cu(x)) =

¢ () Qw en ()

cp(x+1) ox+1) cp(x +1)

cl(x+n—1) cz(x+n—]) cpx+n—1)



where c1(x), ..., c,(x) are n solutions of the
homogeneous linear difference equation

> )y +k) =0,

k=0

casting out nines A method of checking
base-ten multiplications and divisions. See ex-
cess of nines.

casus irreducibilis If the cubic equation
ax3 4+ bx? 4+ cx +d = 0 is irreducible over
the extension Q(a, b, ¢, d) of the rational num-
ber field Q, and if all the roots are real, then it
is still impossible to find the roots of this cubic
equation, by only rational operations with real
radicals, even if the roots of the cubic equation
are real.

category A graph equipped with a notion
of identity and of composition satisfying certain
standard domain and range properties.

Cauchy inequality = The inequality
n 2 n n
<Zaibi) < Za?be,
i=1 i=1 =1
for real numbers ay, ..., a,, by, ..., b,. Equal-

ity holds if and only if a; = cb;, where ¢ is a
constant.

Cauchy problem  Given an nth order partial
differential equation (PDE) in z with two inde-
pendent variables, x and y, and a curve I in the
xy-plane, a Cauchy problem for the PDE con-
sists of finding a solution z = ¢(x, y) which
meets prescribed conditions

3/ tkz
dx/dyk
j+k<n-1,jk=01,...,.n—1onT.
Cauchy problems can be defined for systems
of partial differential equations and for ordinary

differential equations (then they are called ini-
tial value problems).

= fik

Cauchy product  The Cauchy product of two
series Y ooy apand Y o2 by is Y oo | ¢, Where

cp =arb, +aby,_1 +---+a,b; .

© 2001 by CRC Press LLC

IfA=)>a,and B=) by, then ) ¢, = AB
(if all three series converge). The Cauchy prod-
uct series converges if Y _ a, and Y b, converge
and at least one of them converges absolutely
(Merten’s Theorem).

Cauchy sequence (1) A sequence of real
numbers, {r,}, satisfying the following condi-
tion. For any € > 0 there exists a positive inte-
ger N suchthat |r,, —r,| < €,forallm,n > N.

(2) A sequence {p,} of points in a metric
space (X, p), satisfying the following condition:

o (Pu> pm) — 0 asn,m — 0.

Cauchy sequences are also called fundamen-
tal sequences.

Cauchy transform  The Cauchy transform,
[, of a measure y, is defined by (¢) = [(z —
¢)~'du(z). If K is a compact planar set with
connected complement and A(K) is the algebra
of complex functions analytic on the interior of
K, then the Cauchy transform is used to show
that every element of A(K) can be uniformly
approximated on K by polynomials.

Cayley algebra  Let F be a field of charac-
teristic zero and let Q be a quaternion algebra
over F. A general Cayley algebra is a two-
dimensional Q-module Q + Qe with the mul-
tiplication (x + ye)(z + ue) = (xz + vu'y) +
(xu + yz')e, where x, y,z,u € Q, v € F and
7/, u’ are the conjugate quarternions of z and
u, respectively. A Cayley algebra is the special
case of a general Cayley algebra where Q is the
quaternian field, F is the real number field, and
v=—L

Cayley-Hamilton Theorem  See Hamilton-
Cayley Theorem.

Cayley number  The elements of a general
Cayley algebra. See Cayley algebra.

Cayley projective plane Let H be the set of
all 3 x 3 Hermitian matrices M over the Cayley
algebra such that M> = M and tr M = 1. The
set H, with the structure of a projective plane, is
called the Cayley projective plane. See Cayley
algebra.



Cayley’s Theorem  Every group is isomor-
phic to a group of permutations.

Cayley transformation The mapping be-
tween n X n matrices N and M, given by M =
(I — N)(I + N)~', which acts as its own in-
verse. The Cayley transformation demonstrates
a one-to-one correspondence between the real
alternating matrices N and proper orthogonal
matrices M with eigenvalues different from —1.

CCR algebra A C*-algebra A, which is
mapped to the algebra of compact operators un-
der any irreducible *-representation. Also called
liminal C *-algebra.

center (1) Center of symmetry in Euclidean
geometry. The midpoint of a line, center of a
triangle, circle, ellipse, regular polygon, sphere,
ellipsoid, etc.

(2) Center of a group, ring, or Lie algebra X.
The set of all elements of X that commute with
every element of X.

(3) Center of alattice L. The set of all central
elements of L.

central extension LetG, H, and K be groups
such that G is an extension of K by H. If H is
contained in the center of G, then G is called a
central extension of H.

centralizer Let X be a group (or a ring) and
let S C X. The set of all elements of X that
commute with every element of S is called the
centralizer of S.

central separable algebra An R-algebra
which is central and separable. Here a central
R-algebra A which is projective as a two-sided
A-module, where R is a commutative ring.

central simple algebra A simple algebra A
overafield F, such that the center of A coincides
with F. (Also called normal simple algebra.)

chain complex Let R be a ring with iden-
tity and let C be a unitary R-module. By a
chain complex (C, o) over R we mean a graded
R-module C = ) , C, together with an R-
homomorphisma: C — C of degree —1, where
aoa =0.
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chain equivalent Let C| and C;, be chain
complexes. Ifthere are chain mappingsa: C1 —
Cyand B: C; — Cy suchthata o B = 1¢, and
Boa = 1¢,, then we say that Cy is chain equiv-
alent to Cy. See chain complex, chain mapping.

chain homotopy Let Cy and C, be chain
complexes. Let o, B: C; — C be two chain
mappings, and let R be a ring with identity. If
there is an R-homomorphism y : C; — C; of
degree 1, suchthata — 8 = yoa’+ B’ oy, where
(C1, ') and (C3, B’) are chain complexes over
R. Then y is called a chain homotopy of a to
B. See chain complex, chain mapping.

chain mapping Let (Cy, @) and (C», ) be
chain complexes over aring R with identity. An
R-homomorphism y : C; — C; of degree 0
that satisfies B o y = y o « is called a chain
mapping of C1 to Cy. See chain complex.

chain subcomplex Let R be aring with iden-
tity and let (C, o) be a chain complex over R. If
H = ), H, is a homogeneous R-submodule
of C such that «(H) C H, then H is called a
chain subcomplex of C. See chain complex.

Chain Theorem Let A, B, and C be alge-
braic number fields such that C C B C A and
let Ag/c, Aayp, and Apg/c denote the relative
difference of A over C, A over B, and B over C,
respectively. Then As/c = Aa/pAp/c. See
different.

chamber In a finite dimensional real affine
space A, any connected component of the com-
plement of a locally finite union of hyperplanes.
See locally finite.

chamber complex A complex with the prop-
erty that every element is contained in a chamber
and, for two given chambers C, C’, there exists
a finite sequence of chambers C = Cy, Cq, ...,
C, = C’ in such a way that codim¢, ,(Cy N
Cr—1) = codimc, (Cx N Cy—1) < 1, for k =
1,2,...,r. See chamber.

character A character X of an Abelian group
G is a function that assigns to each element x of
G a complex number X (x) of absolute value 1
such that X (xy) = X'(x)X(y) forall x and y in



G. If G is a topological Abelian group, then X
must be continuous.

character group  The set of all characters
of a group G, with addition defined by (X; +
X)) (x) = X1 (x)- A>2(x). The character group is
Abelian and is sometimes called the dual group
of G. See character.

characteristic =~ Let F' be a field with identity
1. If there is a natural number ¢ such that c1 =
1+4---+1(c1s) = 0, then the smallest such ¢
is a prime number p, called the characteristic of
the field F'. If there is no natural number ¢ such
that ¢l = 0, then we say that the characteristic
of the field F is 0.

characteristic class (1) Of an R-module
extension 0 - N —- X —> M — 0,
the element A°(idy) in the extension module
Ext}e(M , N), where idy is the identity map on
N in Homg(N, N) = Ext%(N, N) and A is
the connecting homomorphism Ext% (N,N) -
Ext}e(M , N) obtained from the extension se-
quence. See connecting homomorphism.

(2) Of a vector bundle over base space X,
any of a number of constructions of a particu-
lar cohomology class of X, chosen so that the
bundle induced by amap f : ¥ — X is the
image of the characteristic class of the bundle
over X under the associated cohomological map
f*: H*(X) —> H*(Y). See Chern class, Euler
class, Pontrjagin class, Stiefel-Whitney class,
Thom class.

characteristic equation (1) If we substitute
y = ¢** in the general nth order linear differen-
tial equation

YO @)+ a1y +
+a1y'(x) +apy(x) =0

with constant coefficients a; (i =n—1,...,0)
and then divide by ¢**, we obtain

Mt ap NVt aA+ar=0,

which is called the characteristic equation asso-
ciated with the given differential equation.

(2) If we substitute y, = A" in the general
kth order difference equation

Yn+an_1Yn—1+ -+ ap_kYn—k =0
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with constant coefficientsa; (i =n—1, ..., n—
k) and then divide by A%, we obtain

Wt g h @ =0,

which is again called the characteristic equation
associated with this given difference equation.

(3) The above two definitions can be extended
for a system of linear differential (difference)
equations.

(4) Moreover, if M = (m;;) is a square ma-
trix of degree n over a field F', then the algebraic
equation |AI — M| = 0 is also called the char-
acteristic equation of M.

characteristic linear system Let S be a non-
singular surface and let A be an irreducible al-
gebraic family of positive divisors of dimension
d on S such that a generic member M of A is an
irreducible non-singular curve. Then, the char-
acteristic set forms a (d — 1)-dimensional linear
system and contains Trps | M| (the trace of | M | on
M) as a subfamily. This linear system is called
the characteristic linear system of A.

characteristic multiplier  Let Y (7) be a fun-
damental matrix for the differential equation

Yy =AW)y. ()

Let w be a period for the matrix A(¢). Suppose
that H is a constant matrix that satisfies

Yt+o)=YO)H, te(—00,00).

Then an eigenvalue u for H of index k and mul-
tiplicity m is called a characteristic multiplier
for (%), or for the periodic matrix A(¢), of index
k and multiplicity m.

characteristic multiplier  Let Y (¢) be a fun-
damental matrix for the differential equation

Yy =A®)y. ()

Let w be a period for the matrix A(z). Suppose
that H is a constant matrix that satisfies

Yt+w)=Y@t)H, te€(—00,00).

Then an eigenvalue u for H of index k and mul-
tiplicity m is called a characteristic multiplier,
of index k and multiplicity m, for (), or for the
periodic matrix A(t).



characteristic of logarithm The integral part
of the common logarithm.

characteristic polynomial  The polynomial
on the left side of a characteristic equation. See
characteristic equation.

characteristic series  Let G be a group. If we
take the group Aut(G) (the group of automor-
phisms of G) as an operator domain of G, then
a composition series is called a characteristic
series. See composition series.

characteristic set A one-dimensional set of
positive divisors D of a nonsingular curve of
dimension # so that, with respect to one such
generic divisor Dy of the curve, the degree of
the specialization of the intersection D - Dy over
the specialization of D over Dy is a divisor of
degree equal to that of D - Dy.

character module Let G be an algebraic
group, with the sum of two characters X} and &>
of G defined as (X} + A)(x) = X (x) - Ap(x),
for all x € G. The set of all characters of G
forms an additive group, called the character
module of G. See character of group, algebraic

group.

character of alinear representation  For the
representation p : A — GL, (k) of the algebra
A over a field k, the function x, on A given by

Xpla) = tr(p(a)).

character of group A rational homomor-
phism « of an algebraic group G into GL(1),
where GL(1) is a one-dimensional connected
algebraic group over the prime field. See alge-
braic group.

character system  For the quadratic field «,
with discriminant d and ideal class group I =
F/H (F the group of fractional ideals and H the
subgroup of principal ideals generated by posi-
tive elements), a collection { xp(N (A))}(p| 4 of
numbers, indexed by the prime factors of d, in
which y, is the Legendre symbol mod p and
A is any representative ideal in its ideal class
mod H. The character system is independent of
the choice of representative and uniquely deter-
mines each class in /.
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Chebotarev Density Theorem Let F be an
algebraic number field with a subfield f, F/f
be a Galois extension, C be a conjugate class of
the Galois group G of F/f, and I (C) be the set
of all prime ideals P of k such that the Frobenius
automorphism of each prime factor F; of P in
F isin C. Then the density of 1 (C) is |C|/|G].

Chern class  The ith Chern class is an ele-
mentof H% (M R), where M isa complex man-
ifold. The Chern class measures certain proper-
ties of vector bundles over M. It is used in the
Riemann-Roch Theorem.

Chevalley complexification Let G beacom-
pact Lie group, r(G) the representative ring of
G, A the group of all automorphisms of r(G),
and G’ the centralizer of a subgroup of A in A.
If G’ is the closure of G relative to the Zariski
topology of G’, then G’ is called the Chevalley
complexification of G.

Chevalley decomposition Let G be an alge-
braic group, defined over a field F and R, the
unipotent radical of G. If F is of characteristic
zero, then there exists a reductive, closed sub-
group C of G such that G can be written as a
semidirect product of C and R,. See algebraic

group.

Chevalley group Let F be a field, f an ele-
mentof F, L aLie algebra over F, B abasis of
L over F and ty(f) the linear transformation
of L ¢ withrespect to B, where 6 ranges over the
root system of L. Then, the group generated
by the ty(f), for each root 6 and each element
[, is called the Chevalley group of type over F.

Chevalley’s canonical basis  Of a complex,
semisimple Lie algebra G with Cartan subalge-
bra 7 and root system X, a basis for G consisting
of a basis {Hl, el HS} of H and, for each root
o € X, a basis {Xg} of its root subspace G,
that satisfy: (i.) o (H;) is an integer for every
o € ¥ and each H;; (ii.) B(Xo, X_y) = ﬁ
for every o € X, where (, ) represents the inner
product on the roots induced by the Killing form
Bong; (iii.) if o, 7, and o + t are all roots and
[Xo, X:] = no . Xo+1, then the numbers ng ¢
are integers that satisfy n_, _; = —ng ¢.



Chevalley’s Theorem Let G be a connected
algebraic group, defined over a field F, and let
N be a (F-closed) largest, linear, connected,
closed, normal subgroup of G. If C is a closed,
normal subgroup of G, then the factor group
G/C is complete if and only if N C C.

Cholesky method of factorization =~ A method
of factoring a positive definite matrix A as a
product A = LLT where L is a lower triangular
matrix. Then the solution x of Ax = b is found
by solving Ly = b, LTx = y.

Choquet boundary Let X be a compact
Hausdorff space and let A be a function algebra
on X. The Choquet boundary is c(A) = {x €
X :the evaluation at x has a unique representing
measure}.

Chow coordinates  Of a projective variety
X, the coefficients of the associated form of the
variety, viewed as homogeneous coordinates of
points on X. See associated form.

Chow ring Of a nonsingular, irreducible,
projective variety X, the graded ring whose ob-
jects are rational equivalence classes of cycles
on X, with addition given by addition of cycles
and multiplication induced by the diagonal map
A : X — X x X. The ring is graded by codi-
mension of cycles.

Chow variety Let V be a projective variety.
The set of Chow coordinates of positive cycles
that are contained in V is a projective variety
called a Chow variety.

circulant  See cyclic determinant.

circular units  The collection of units of the
form %, where ¢ is a p"th root of unity, p is

a prime, and s # t(modp) (and p [s, t).

class (1) (Algebra.) A synonym of set that
is used when the members are closely related,
like an equivalence class or the class of residues
modulo m.

(2) (Logic.) A generalization of set, includ-
ing objects that are “too big” to be sets. Con-
sideration of classes allows one to avoid such
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difficulties as Russell’s paradox, concerning the
set of all sets that do not belong to themselves.

classfield Let F be an algebraic number field
and E be a Galois extension of F'. Then, E
is said to be a class field over F, for the ideal
group I (G), if the following condition is met: a
prime ideal P of F of absolute degree 1 which is
relatively prime to G is decomposed in E as the
product of prime ideals of E of absolute degree
1 if and only if P isin I(G).

class field theory A theory created by E.
Artin and others to determine whether certain
primes are represented by the principal form.

class field tower problem Let F be a given
algebraic number field, andlet F = Fy C F| C
F, C --- be a sequence of fields such that F;,
is the absolute class field over F;,_1, and F is
the union of all F,,. Now we ask, is F a finite
extension of F'? The answer is positive if and
only if Fy is of class number 1 for some k. See
absolute class field.

class formation  An axiomatic structure for
class field theory, developed by Artin and Tate.
A class formation consists of

(1) a group G, the Galois group of the for-
mation, together with a family {G kK € Z}
of subgroups of G indexed by a collection ¥ of
fields K so that

(i.) each G has finite index in G;

(ii.) if H is a subgroup of G containing some
Gk, then H = G for some K’

(iii.) the family {G g} is closed under intersec-
tion and conjugation;

(iv.) Ny Gk is the trivial subgroup of G;

(2) a G-module A, the formation module,
such that A is the union of its submodules A (¢ )
that are fixed by Gg;

(3) cohomology groups H" (L/K), defined
as H' (Gg /Gy, ACK)), for which H'(L/K)
= 0 whenever G, is normal in Gg;

(4) for each field K, there is an isomorphism
A > invg A of the Brauer group H*(x /K)
into Q/Z such that



(i.) if G is normal in G g of index n,
. 2 1

invk H*(L/K)=|-Z) /Z
n

and

(ii.) even when G is not normal in G,
invy oresg 1 = ninvg

whereresg 1 is the natural restriction map
H%(x/K) — H*(x/E).

classical compact real simple Lie algebra

A compact real simple Lie algebra of the type
Ay, By, Cy,, or D, where A,,, B,, C,, and D,
are the Lie algebras of the compact Lie groups
SU( + 1), SO2n + 1), Sp(n), and SO(2n),
respectively.

classical compact simple Lie group  Any of
the connected compact Lie groups SU(n + 1),
SO(nl+1), Sp(n), or SO(2n), with correspond-
ing compact real simple Lie algebra A, (n > 1),
B, (n>2),C, (n=>3),o0orD, (n>4)asits
Lie algebra.

classical complex simple Lie algebra  Let
Ay, By, Cy, and D, be the Lie algebras of the
complex Lie groups SL(n + 1, C), SO(2n +
1, C), Sp(n, C), and SO(2n, C). Then A,, (n >
1),B,(n>2),C, (n>3),and D, (n > 4) are
called classical complex simple Lie algebras.

classical group  Groups such as the general
linear groups, orthogonal groups, symplectic
groups, and unitary groups.

classification  Let R be an equivalence rela-
tion on a set S. The partition of § into disjoint
union of equivalence classes is called the clas-
sification of S with respect to R.

class number  The order of the ideal class
group of an algebraic number field F'. Similarly,
the order of the ideal class group of a Dedekind
domain D is called the class number of D.

class of curve  The degree of the tangential
equation of a curve.
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clearing of fractions  An equation is cleared
of fractions if both sides are multiplied by a com-
mon denominator of all fractions appearing in
the equation.

Clebsch-Gordon coefficient
efficients, denoted

One of the co-

(jim1jamz] j1j2jm)

in the formula

yim = Y.

—j<mi,my<j

X Y (jim)y (jam2)

(jim1 joma|ji jojm)

which relates the basis elements of the represen-
tation space C> ® - - - ® C? of 2 copies of C?
for a representation of SO(3) = SU(2)/ {£1}.
The coefficients are determined by the formula

(J1m1 jamal ji jojm) = Sm,+mo.m

o [ @A DG+ 2 = DG+ J1 = WG+ 2 = 1!
(1 +j2+Jj+D!

. ZH)V\/ Gt +m)IG1 =Y +mo)!

m vI(1 +j2 — j =G —mp —)!

y (o —m)!(j +m)!(j —m)!
Go+my =W —jo+mp+WIG —j1 —mp+ )

Clifford algebra Let L be an n-dimensional
linear space over afield F', Q aquadratic form on
L, A(L) the tensor algebra over L, 1(Q) the two-
sided ideal on A(L) generated by the elements
[®I— Q) -1( € L), where ® denotes tensor
multiplication. The quotient associative algebra
A(L)/1(Q) is called the Clifford algebra over
0.

Clifford group Let L be an n-dimensional
linear space over a field F, Q a quadratic form
on L, C(Q) the Clifford algebra over Q, G the
set of all invertible elements g in C(Q) such that
gLg™' = L. Then, G is a group with respect
to the multiplication of C(Q) and is called the
Clifford group of the Quadratic form Q. See
Clifford algebra.

Clifford numbers  The elements of the Clif-
ford algebra. See Clifford algebra.



closed boundary If X is a compact Haus-
dorff space, then a closed boundary is a bound-
ary closed in X.

closed image Let u:V — V' be a morphism
of varieties. If V is not complete, then w(V)
may not be closed. The closure of ©(V) which
isin V', is called the closed image of V.

closed subalgebra A subalgebra B; of a Ba-
nach algebra B that is closed in the norm topol-
ogy. Bj is then a Banach algebra, with respect
to the original algebraic operations and norm of
B.

closed subgroup A subgroup H of a group
G such that x € H, whenever some nontrivial
power of x lies in H.

closed subsystem Let M be a character mod-
ule. Let s be a subset of a root system r, and let
s’ be the submodule of M generated by s. If
s’ Nr = s, then s is called a closed subsystem.
See character module.

closed under operation A set S, with a bi-
nary operation * such that a x b € § for all
a,bes.

closure property  The property of a set of be-
ing closed under a binary operation. See closed
under operation.

coalgebra  Let p and o’ be linear mappings
definedas p : V- V@p V,and p' : V —
F, where F is a field, V is vector space over
F, and ® denotes tensor product. Then, the
triple (V, p, p’) is said to be a coalgebra over
F, provided (1y ® p)op = (p ® ly) o p and
vy ®@pH)op=(p'®@1y)op=1ly.

coalgebra homomorphism A k-linear map
f:C — C', where (C, A,¢)and (C', A, ¢)
are coalgebras over a field k, such that (f ® f)o
A=Aofande=¢"o f.

coarse moduli scheme A scheme M and a
natural transformation ¢ : M — Hom(—, M)
where M is a contravariant functor from
schemes to sets such that

(i.) @(Spec(k)) : M(Spec(k)) — Hom (Spec

© 2001 by CRC Press LLC

(k), M) is bijective for any algebraically closed
field k, and

(ii.) for any scheme N and any natural transfor-
mation ¢ : M — Hom(—, N) there is a unique
natural transformation A Hom(—, M) —
Hom(—, N) such that v = A o ¢.

coarser classification ForR, S C X x X two
equivalence relations on X, § is coarser than R
ifRCS.

coboundary  See cochain complex.

coboundary operator  See cochain complex.

cochain  See cochain complex.
cochain complex A cochain complex C =
{C!, 8" i € Z}is a sequence of modules {C’ :
i € Z}, together with, for each i, a module
homomorphism 8’ : C! — Ci*!suchthats’~'o
8" = 0. Diagramatically, we have

51'—2 . 51’—1 . Bi . 8i+|
Lot o ettt 2

where the composition of any two successive
87 is zero. In this context, the elements of C!
are called i-cochains, the elements of the ker-
nel of &', i-cocycles, the elements of the im-
age of 8'~!, i-coboundaries, the mapping &',
the ith coboundary operator, the factor module
H!(C) = kerd'/ims'~!, the ith cohomology
module and the set H(C) = {H'(C) : i € Z},
the cohomology module of C. If ¢ is ani-cocycle
(i.e., an element of ker 87), the corresponding el-
ement ¢ + im &'~ of H'(C) is called the coho-
mology class of c¢. Two i-cocycles belong to the
same cohomology class if and only if they dif-
fer by an i-coboundary; such cocycles are called
cohomologous.

cochain equivalence Two cochain com-
plexes C and C are said to be equivalent if
there exist cochain mappings ¢ : C — C and
(/3 C — C such that ¢y and Y ¢ are homo-
topic to the identity mappings on C and C, re-
spectively.

cochain homotopy ~ LetC = {C', 8" : i € Z}
and C = {C', €' : i € Z} be two cochain com-
plexes and let ¢, ¢ : C — C be two cochain



mappings. A homotopy { : ¢ — VY is a se-
quence of mappings {¢' : i € Z} such that, for
each i, ¢' is ahomomorphism from C* to C* and

o — i =it il

When such a homotopy exists, ¢ and ¥ are said
to be homotopic and H(¢) = H (), where
H(¢) and H(y) are the morphisms from the
cohomology module H(C) to the cohomology
module H(C) induced by ¢ and .

cochain mapping Let C = {(C,8 : i €
Z} and C = {Cl, €' : i € Z} be two cochain
complexes. A cochain mapping ¢ : C — Cis
a sequence of mappings {¢' : i € Z} such that,
foreachi, ¢i is a homomorphism from CitoC!
and

piel = sigit!

The mapping ¢’ induces a homomorphism from
the ith cohomology module H'(C) to the ith
cohomology module H i(é). Hence ¢ can be
regarded as inducing a morphism ¢* from the
cohomology module H(C) to the cohomology
module H (C). The morphism ¢* is also de-
noted H (¢). Thisenables H (-) to be regarded as
a functor from the category of chain complexes
to a category of graded modules; it is called the
cohomological functor.

cocommutative algebra A coalgebra C, in
which the comultiplication A is cocommutative,
i.e., has the property that 5t = §, where 7 is the
flip mapping, i.e., the mapping from C ® C to
itself that interchanges the two C factors.
cocycle  See cochain complex.

codimension = Complementary to the dimen-
sion. For example, if X is a subspace of a vector
space V and V is the direct sum of subspaces X
and X', then the dimension of X’ is the codi-
mension of X.

coefficient A number or constant appearing
in an algebraic expression. (For example, in
3 + 4x + 5x2, the coefficients are 3, 4, and 5)

coefficient field  See coefficient ring.

coefficient module  See coefficient ring.

© 2001 by CRC Press LLC

coefficient of equation A number or constant
appearing in an equation. (For example, in the
equation 2tanx = 3x + 4, the coefficients are
2,3,and 4.)

coefficient of linear representation =~ When a
representation y (of a group or ring) is isomor-
phic to a direct sum of linear representations and
other irreducible representations, the number of
times that a particular linear or irreducible rep-
resentation ¢ occurs in the direct sum is called
the coefficient of ¢ in x.

coefficient of polynomial term
mial

In a polyno-

ap +ajx +axx® + ... +apx",

the constants ag, ay, . .. , a, are called the coef-
ficients of the polynomial. More specifically, ag
is called the constant term, a; the coefficient of
x, as the coefficient of x2, . .. , ay the coefficient
of x"; a, is also called the leading coefficient.

coefficient ring  Consider the set of numbers
or constants that are being used as coefficients in
some algebraic expressions. If that set happens
to be a ring (such as the set of integers), it is
called the coefficient ring. Likewise, if that set
happens to be a field (such as the set of real
numbers) or a module, it is called the coefficient
field or coefficient module, respectively.

cofactor Let A be ann x n matrix. The (k, £)
cofactor of A written Ay is (—1)¥+ times the
determinant of the n — 1 x n — 1 matrix obtained
by deleting the kth row and jth column of A.

cofunction  The trigonmetric function that is
the function of the complementary angle. For
example, cotan is the cofunction of tan.

cogenerator An element A of category C
such that the functor Hom(—, A) : C — Ais
faithful where A is the category of sets. Also
called a coseparator.

Cohen’s Theorem A ring is Noetherian if
and only if every prime ideal has a finite basis.
There are several other theorems which may be
called Cohen’s Theorem.



coherent algebraic sheaf A sheaf F of Oy -
modules on an algebraic variety V, such that if,
for every x € V, there is an open neighborhood
U of x and positive integers p and ¢ such that
the Oy |y-sequence

O€|U — O‘{,lU — Flu = 0
is exact.

coherent sheaf of rings A sheaf of rings A
on a topological space X that is coherent as a
sheaf of A-modules.

cohomological dimension  For a group G,
the number m, such that the cohomology group
H(G, A) is zero for every i > m and every G-
module A, and H™ (G, A) is non-zero for some
G-module A.

cohomology  The name given to the subject
area that comprises cohomology modules, co-
homology groups, and related topics.

cohomology class  See cochain complex.

cohomology functor  See cochain mapping.
cohomology group (1) Because any Z-
module is an Abelian group, a cohomology
module H (C), where C is a cochain complex, is
called a cohomology group in the case where all
the modules under consideration are Z-modules.

(2)Let G beagroup and A a G-module. Then
H(G, A), the ith cohomology group of G with
coefficients in A, is defined by

H'(G, A) = Ext;(Z, A) .

(When interpreting the Ext functor in this con-
text, Z should be interpreted as a trivial G-
module.)

cohomology module  See cochain complex.
cohomology set The set of cohomology

classes, when these classes do not possess a
group structure.

cohomology spectral sequence
sequence.

See spectral
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coideal Let C be a coalgebra with comulti-
plication A and counit €. A subspace I of C is
called a coideal if A(I) is contained in

I®C+CRI
and € (1) is zero.

coimage Let¢ : M — N be a homomor-
phism between two modules M and N. Then
the factor module M/ker ¢ (where ker ¢ de-
notes the kernel of ¢) is called the coimage of
¢, denoted coim ¢. By the First Isomorphism
Theorem, the coimage of ¢ is isomorphic to the
image of ¢, as a consequence of which the term
coimage is not often used.

cokernel Let¢ : M — N be a homomor-
phism between two modules M and N. Then the
factor module N/ im ¢ (where im ¢ denotes the
image of ¢) is called the cokernel of ¢, denoted
coker ¢.

collecting terms  The name given to the proc-
ess of rearranging an expression so as to com-
bine or group together terms of a similar nature.
For example, if we rewrite

x2+2x+1+3x2+5x as 4x2+7x+1

we have collected together the x2 terms and the
x terms; if we rewrite

x2+y2+2x—2y as <x2 + 2x>+<y2 - Zy)

we have collected together all the terms involv-
ing x, and all the terms involving y.

color point group A pair of groups (K, K1)
such that K = G/T, G is a space group, T is
the group of translations, and for some positive
integers r, K is the group of conjugacy classes
of all subgroups G; of G with T C G and
[G:Gi]l=r.

color symmetry group A pair of groups (G,
G') where G isaspace groupand [G : G'] < oo.

column finite matrix  An infinite matrix with
an infinite number of rows and columns, such
that no column has any non-zero entry beyond
the nth entry, for some finite 7.



column in matrix  See matrix.

column nullity  For an m x n matrix A, the
number m — r(A), where r(A) is the rank of A.

column vector A matrix with only one col-
umn, i.e., a matrix of the form

Also called column matrix.

combination of things = When r objects are
selected from a collection of n objects, the r
selected objects are called a combination of r
objects from the collection of n objects, pro-
vided that the selected objects are all regarded
as having equal status and not as being in any
particular order. (If the » objects are put into a
particular order, they are then called a permu-
tation, not a combination, of r objects from n.)
The number of different combinations of r ob-

. . n
jects from n is denoted by "C, or - and

n!
equals ———.
rl(n —r)!
commensurable Two non-zero numbers a
and b such that a = nb, for some rational num-
ber n. For example, 24/2 and 3+/2 are com-
mensurable because 2+/2 = %(3\/5). All ra-
tional numbers are commensurable with each
other. No irrational number is commensurable
with any rational number.

common denominator  When two or more
fractions are about to be added, it is helpful to re-
express them first, so that they have the same de-
nominator, called a common denominator. This
process is also described as putting the fractions
over a common denominator. For example, to

simplify % - % we might write

3 2
x—l_x—i—l
. 3(x+D 2(x — 1)
T a-D@E+D) =D+
_ x+5
T a-D@+D’
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Here (x —1)(x +1) is the common denominator.

common divisor A number that divides all
the numbers in a list. For example, 3 is a com-
mon divisor of 6, 9, and 12. See also greatest
common divisor.

common fraction A quotient of the forma /b
where a, b are integers and b # 0.

common logarithm  Logarithm to the base
10 (the logarithm that was most often used in
arithmetic calculations before electronic calcu-
lators were invented). See also logarithm.

common multiple A number that is a multi-
ple of all the numbers in a list. For example, 12
is a common multiple of 3, 4, and 6. See also
least common multiple.

commutant If S is a subset of a ring R, the
commutant of Sistheset S’ ={a € R : ax =
xa for all x € S}. Also called: commutor.

commutative algebra (1) The name given to
the subject area that considers rings and modules
in which multiplication obeys the commutative
law, i.e., xy = yx for all elements x, y.

(2) An algebra in which multiplication obeys
the commutative law. See algebra.

commutative field A field in which multi-
plication is commutative, i.e., xy = yx, for all
elements x, y. (The axioms for a field require
that addition is always commutative. Some ver-
sions of the axioms insist that multiplication has
to be commutative too. When these versions of
the axioms are in use, a commutative field be-
comes simply a field, and the term division ring
is used for structures that obey all the field ax-
ioms except commutativity of multiplication.)
See also field.
commutative group  See Abelian group.
commutative law  The requirement that a bi-
nary operation x, on aset X, satisfy xxy = yxx,
forall x, y € X. Addition and multiplication of
real numbers both obey the commutative law;
matrix multiplication does not.



commutative ring A ring in which multi-
plication is commutative, i.e., xy = yx, for all
elements x, y. (The axioms for a ring ensure
that addition is always commutative.) The real
numbers are a commutative ring. Rings of ma-
trices are generally not commutative.

commutator (1) An element of the form x !

y~Ixy or xyx~'y~!in a group. Such an el-
ement is usually denoted [x, y] and it has the
property that it equals the identity element if
and only if xy = yx, i.e., if and only if x and y
commute.

(2) An element of the form xy — yx in aring.
Such an element is denoted [x.y] and is also
called the Lie product of x and y. It equals zero
if and only if xy = yx.

In a ring with an involution *, the element
x*x — xx* is often called the self-commutator
of x.

commutator group See commutator sub-

group.

commutator subgroup  The subgroup G’ of
a given group G, generated by all the commu-
tators of G, i.e., by all the elements of the form
x~'y~lxy (where x, y € G). G’ consists pre-
cisely of those elements of G that are expressible
as a product of a finite number of commutators.
So G’ may contain elements that are not them-
selves commutators. G’ is a characteristic sub-
group of G. G/G’ is Abelian and in fact G’ is
the unique smallest normal subgroup of G with
the property that the factor group of G by it is
Abelian. G’ is also called the commutator group
or the derived group of G.

commutor  See commutator.

compact group A topological group that is
compact, as a topological space. A topologi-
cal group is a group G, with the structure of a
topological space, such that the map

(x,y) — xy_1 from G xG toG

is continuous.
compact real Lie algebra A real Lie alge-

bra whose Lie group is a compact group. See
compact group.
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compact simple Lie group A Lie group that
is compact as a topological space and whose Lie
algebra is simple (i.e., not Abelian and having
no proper invariant subalgebra).

compact topological space A topological
space X with the following property: whenever
O = {Oy}que4 is an open covering of X, then
there exists a finite subcovering O1, O», ..., O.

companion matrix  Given the monic poly-
nomial over the complex field

pO)=1"+a,_ 11"+ +ait +ao,

the n x n matrix

0 0 0 —ag
1 0 0 —a
A=]0 1 :
S T 0 —apn
0 ... 0 1 —a,_

is called the companion matrix of p(t). The
characteristic polynomial and the minimal poly-
nomial of A are known to coincide with p(¢). In
fact, a matrix is similar to the companion ma-
trix of its characteristic polynomial if and only if
the minimal and the characteristic polynomials
coincide.

complementary degree Let F be a filtra-
tion of a differential Z-graded module A. Then
{Fp Ay} is a Z-bigraded module and the module
Fp Ay has complementary degree g = n — p.

complementary law of reciprocity A reci-
procity law due to Hasse and superseded by
Artin’s general law of reciprocity. Let p be
a prime number. If o € k is such that @ =
1 mod p(1 — 1)) where 1, =exp 27 i/p €k,
then



complementary series  The irreducible, uni-
tarizable, non-unitary, principal series represen-
tations of a reductive group G.

complementary slackness This refers to
Tucker’s Theorem on Complementary Slackness,
which asserts that, for any real matrix A, the in-
equalities Ax = 0,x > 0 and ‘uA > 0 have
solutions x, u satisfying A’u + x > 0.

complementary submodule Let N be a sub-
module of a module M. Then a complementary
submodule to N in M is a submodule N’ of M
suchthat M = N ® N'.

complementary trigonometric functions
The functions cosine, cosecant, and cotangent
(cos, csch and cot @), so called because the
cosine, cosecant, and cotangent of an acute an-
gle 6 equal, respectively, the sine, secant, and
tangent of the complementary angle to 6, i.e.,
the acute angle ¢ such that 6 and ¢ form two of
the angles in a right-angled triangle. (¢ = 5 —6
in radians or 90 — 0 in degrees.)

complete cohomology theory A cohomol-
ogy theory of the following form. Let 7 be a
finite multiplicative group and B = B(Z(w))
the bar resolution. If A is a w-module define
H*(w, A) = H*(B, A). See cohomology.

complete field A field F' with the following
property: whenever p(x) = ag+ax +- - - agx*
is a polynomial with coefficients in F then p has
arootin F.

complete group A group G whose center
is trivial and all its automorphisms are inner.
Thus, G and the automorphism group of G are
canonically isomorphic.

complete integral closure Let O be an in-
tegral domain in a field K and M an O-module
contained in K. Let S be the set of all val-
uations on K that are nonnegative on O. If
v € §, let R, be the valuation ring of v. Then
M’ = (,es RaM is the completion of M. If O
is the integral closure of O, M’ is the complete
integral closure of the O-module M’ = OM.
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complete intersection A variety V in P" (k)
of dimension r, where [ (V') is generated by n —r
homogeneous polynomials. See variety.

complete linear system  The set of all effec-
tive divisors linearly equivalent to a divisor.
complete local ring  See local ring.
completely positive mapping  For von Neu-
mann algebras A and B, a linear mapping T :
A — B such that for all » > 1 the induced
mappings

LT : M,(A) =M,(C)®A — M,(B)
are positive.

completely reduced module  An R module
(R aring) which is the direct sum of irreducible
R modules. An R module is irreducible if it has
no sub R-modules.

completely reducible  Let k be a commuta-
tive ring and E a module over k. Let R be a
k-algebra and let ¢ : R — Endy (E) be a repre-
sentation of R in E. We say that ¢ is completely
reducible (or semi-simple) if E is an R-direct
sum of R-submodules E;,

E=E & ---®E,,
with each E; irreducible.

completely reducible representation A rep-
resentation o such that the relevant R-module E
is an R-direct sum of R-submodules E;,

E=E®E,® --®E,,

such that each E; is irreducible. See irreducible
representation.
Also called semi-simple.

completely solvable group A group that is
the direct product of simple groups.

complete pivoting A process of solving an
n x n linear system of equations Ax = b. By
a succession of row and column operations, one
may solve this equation once A has been trans-
formed to an upper triangular matrix. Suppose



AD = A AD ... A(k_(]:) 1I)lave beel(lk dle)ter-

. k—1) _ — —
mined so that A®—D = (a;; ). Letay,  be
the entry so that

(k=1)| _
)apq = max{

Interchange the kth row and pth row and the
kth column and gth column to obtain a matrix
B*=D_ Now A® is obtained from B*~1 by
subtracting bglg_l) /b,(clli_l) times the kth row of
B%*=D from the ith row of B*~D,

complete resolution Let 7 be a finite mul-
tiplicative group. The bar resolution BZ((7))
of B is also called the complete free resolution.
Here B, is the free [1-module with generators
[x1]---|x,] forall x;y #1,...,x, # linm.
So, By, is the free Abelian group generated by
all x[x1]...|x,] with x € 7 and no x; # 1.
Define 9 : B, — B, _1 for n > 0 by setting

O Lxtl. .. lxn] =21 [x2] ... |x4]

n—1

+ Z(—l)j [x1|... lxjxj—1]... |xn]
j=1

+ (=D [x1l. .. lxn—1]

where [y1]...|y,] = 0if some y; = 1.

complete scheme A scheme X over a field
K together with a morphism from X to Spec K
that is proper and of finite type. See scheme.

complete valuation ring  Let k be a field. A
subring R of k is called a valuation ring if, for
any x € k, we have either x € R orx ' eR. A
valuation ring gives rise to a valuation, or norm,
on K. The valuation ring is complete if every
Cauchy sequence in this valuation converges.

complete Zariski ring  See Zariski ring.
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completing the square
ax® + bx + c is rewritten as

When a quadratic

b
ax2+bx+c=a<x2+—x)+c
a

b\* b
=da ()C—F%) _W +c

( b b? — 4ac>
where X =x + —andd = ——

2a 4a
the process is called completing the square in x.
It is often used when solving equations or de-
termining the sign of an expression because the
absence of an X term in the final form a X? — d
makes it easy to determine whether the expres-
sion is positive, negative, or zero.

completion The act of enlarging a set (mini-
mally) to a complete space. This occurs in ring
theory, measure theory, and metric space theory.

complex (1) Involving complex numbers.
See complex number.

(2) A set of elements from a group (not nec-
essarily forming a group in their own right).

(3) A sequence of modules {C' : i € Z},
together with, for each i, a module homomor-
phism 8 : C! — Ci*+! such that 8! 0 8" = 0.
Diagramatically, we have

A 3 o A e

where the composition of any two successive 8/
is zero.

complex algebraic variety
riety.

See algebraic va-

complex analytic geometry (1) Analytic
geometry, i.e., the study of geometric shapes
through the use of coordinate systems, but
within a complex vector space rather than the
more usual real vector space so that the coor-
dinates are complex numbers rather than real
numbers.

(2) The study of analytic varieties (the sets of
common zeros of systems of analytic functions),



as opposed to algebraic geometry, the study of
algebraic varieties.

complex conjugate representation Let G
be a group and let ¢ be a complex representa-
tion of G (so that ¢ is a homomorphism from
G to the group GL(n, C) of all n x n invert-
ible matrices with complex entries, under matrix
multiplication). If we define a new mapping
¥ : G — GL(n, C) by setting ¥ (g) = ¢(g)
for all ¢ € G, where ¢(g) is the matrix ob-
tained from the matrix ¢ (g) by replacing all its
entries by their complex conjugates, then v is
also a complex representation of G, called the
complex conjugate of ¢.

complex fraction  An expression of the form
+ where z and w are expressions involving com-
plex numbers or complex variables. A complex
fraction - is frequ?ntly simplified by observ-
ing that it equals <= (where w is the complex
conjugate of w), which is simpler because the
denominator ww is real.

complex Lie algebra  See Lie algebra.

complex Lie group  See Lie group.
complex multiplication (1) The multiplica-
tion of two complex numbers a +ib and ¢ + id
(where a, b, ¢, d are real) using the rule

(a+ib)(c+id) = (ac — bd) +i(ad + bc) ,

which is simply the usual rule for multiplying
binomials, coupled with the property that i> =
—1.

(2) The multiplication of two complexes of
a group, which is defined as follows. Let G be
a group and let A, B be complexes, i.e., subsets
of G. Then AB = {ab : a € A, b € B}.
This definition obeys the associative law, i.e.,
A(BC) = (AB)C for all complexes A, B, C of
G.

complex number A number of the form z =
x +iy where x and y are real and i> = —1. The
set of all complex numbers is usually denoted C
or C.

complex orthogonal group  See complex or-
thogonal matrix.
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complex orthogonal matrix A square ma-
trix A such that its entries are complex num-
bers and it is orthogonal, i.e., has the property
that AAT = I, or equivalently that AT = A~!
(where AT denotes the transpose of A). Such a
matrix has determinant +1. The setof alln x n
complex orthogonal matrices forms a group un-
der matrix multiplication, called the complex or-
thogonal group O(n, C). The setof all n x n
complex orthogonal matrices of determinant 1
is anormal subgroup of O(n, C), called the com-
plex special orthogonal group SO(n, C).

complex plane  The set C of complex num-
bers can be represented geometrically as the
points of a plane by identifying each complex
number a + ib (where a and b are real) with
the point with coordinates (a, ). This geomet-
rical representation of C is called the complex
plane or Argand diagram. In this representation,
points on the x-axis correspond to real numbers
and points on the y-axis correspond to numbers
of the form ib (where b is real). So the x- and
y-axes are often called the real and imaginary
axes, respectively. Note also that the points rep-
resenting a complex number z and its complex
conjugate z are reflections of each other in the
real axis.

complex quadratic field A field of the form
Q[/m] (the smallest field containing the ratio-
nal numbers and ./m) where m is a negative
integer.

complex quadratic form
the form

An expression of

n
Z aiZiz + Z aijzizj
i=1

i#j

where, for all i and j, z; is a complex variable,
and a; and a;; are complex constants.

complex representation A homomorphism
¢ from a group G to the general linear group
GL(n, C), for some n. (GL(n, C) is the group
of all n x n invertible matrices with complex
entries, the group operation being matrix multi-
plication.) n is called the degree of ¢. Complex
representations of degree 1 are called linear.



complex root A root of an equation that is a
complex number but not a real number. For ex-
ample, the equation x3 =1 has roots 1, e27i/3,
e¥i/3. Of these, 1 is called the real cube root
of unity, while ¢27//3 and ¢**/3 are called the
complex cube roots of unity.

complex semisimple Lie algebra A complex
Lie algebra that is semisimple, i.e., does not have
an Abelian invariant subalgebra.

complex semisimple Lie group A complex
Lie group whose Lie algebra is semisimple, i.e.,
does not have an Abelian invariant subalgebra.

complex simple Lie algebra A complex Lie
algebra that is simple, i.e., not Abelian and hav-
ing no proper invariant subalgebra.

complex simple Lie group A complex Lie
group whose Lie algebra is simple, i.e., not
Abelian and having no proper invariant subal-
gebra.

complex special orthogonal group  See com-
plex orthogonal matrix.

complex sphere A complex n-sphere with
center zq and radius r is the set of all points at
distance r from zg in the n-dimensional com-
plex metric space C". (C" is the set of all n-
tuples (ay, a2, ..., a,), where each qg; is a com-
plex number.)

complex spinor group  The universal cover
of SO(n,C) ={A € GL(n,C) : A’A = I and
det A = 1} it is denoted Spin(n, C).

complex structure A complex analytic struc-
ture on a differentiable manifold. Complex
structures may also be put on real vector spaces
and on pseudo groups. See analytic structure.

complex symplectic group  The setof all n x
n matrices A with complex numbers as entries
and having the property that AT JA = J (where
AT is the transpose of A, J is the matrix

5 o]
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and I denotes the 5 x 75 identity matrix) forms
a group under matrix multiplication, called the
complex symplectic group Sp(5, C).

complex torus A torus of the form C"/ T’
where I is a lattice in C".

complex variable A variable whose values
are complex numbers.

component (1) When a vector or force is
expressed as an ordered pair (a1, az) in two di-
mensions, as a triple (aj, a2, a3) in three dimen-
sions, or as an n-tuple (aj, az, ... , a,) in n di-
mensions, the numbersay, ay, ... , a, are called
its components.

(2) When a vector v in a vector space V is
expressed in the form aje; + azex + - - -+ a,e,
where ay, as, ..., a, are scalars and e, e, ...,
e, is a basis of V, the scalars a1, az, ... , a, are
called the components of v with respect to the
basis e, ez, ..., e,.

(3) When a vector or force v is expressed as
w+X, where w is parallel to a given direction and
x is perpendicular to that direction, w is called
the component of v in the given direction.

(4) The word component is also used loosely
to mean simply a part of a mathematical expres-
sion.

composite field  The smallest subfield of a
given field K containing a given collection {k,, :
o € A} of subfields of K.

composite number  An integer that is not
zero, not 1, not —1, and not prime.

composition algebra  An alternative algebra
A over a field F (characteristic # 2), with iden-
tity 1 and a quadratic norm n : A — F such
that n(x, y) = n(x)n(y).
composition factor  See composition series.
composition factor series For a group G
with composition series G = Gg D G; D
- D G, = {e}, the sequence Go/Gr, ...,
G,_1/G;,.

composition series A series of subgroups
Go, Gy, ..., Gpofagroup G suchthat G = 1,



G, = G and, for each i, G; is a proper normal
subgroup of G4 such that G;41/G; is simple.

The Jordan-Holder Theorem states that if Hy,
Hi, ..., H, is another composition series for
G, then m = n and there is a one-one corre-
spondence between the two sets of factor groups
{Gi+1/G; :i=0,...,n— 1} and {H;11/H; :

i =0,...,n — 1} such that corresponding fac-
tor groups are isomorphic. The factor groups
Gi+1/Gi:i =0,...,n—1aretherefore called

the composition factors of G. There are similar
definitions for composition series and compo-
sition factors of other algebraic structures such
as rings. These are obtained by making obvi-
ous changes to the definitions for groups. For
example, in the case of rings, take the above
definitions, replace Go = 1 by Go = 0, and
replace the words group, subgroup, and normal
subgroup by ring, subring, and ideal throughout.

Composition Theorem (class field theory)
Let K; and K7 be class fields over k for the
respective ideal groups H; and H,. Then the
composite field K1 K> is the class field over k
for H; N H;.

compound matrix  Given positive integers
n,£ ({ < n), denote by Q¢ , the £-tuples of
{1,2, ..., n} with elements in increasing order.
Q¢,n has (j) members ordered lexicographically.
Forany m xn matrix Aand @ # o € {1, 2, ...,
m}, D # B C{1,2,...,n},let Al | B] denote
the submatrix of A containing the rows and col-
umns indexed by « and 8, respectively.

Given an integer £, 0 < £ < min(m, n), the
£th compound matrix of A is defined as the (}') x
(}) matrix

A® = (detAla | Baco, pe01, -

To illustrate this definition, if A = (a;;) is
a 3 x 4 matrix, then A® is a 3 x 6 matrix;
its (1, 1), (1,2), and (2, 1) entries are, respec-
tively,

ap  ap aipr a3
det | a1 ap |det|ax a3

a a
det 11 12 )
asy  as
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and

computation by logarithms  Thisis the name
given to a method of solving an equation A = B
where A and B are complicated expressions in-
volving products and powers. The method is to
take logarithms of both sides, i.e., to say that
log A = log B, and then to use the laws of log-
arithms to simplify and rearrange that equation
so as to obtain the logarithm of the unknown
variable and hence obtain that variable itself.

comultiplication  See coalgebra.

concave programming  The subject dealing
with problems of the following type. Suppose X
is a closed convex subset of R” and g1, ..., gm
are convex functions on X. Let f be a concave
function on X. Determine ¥ € X such that
f(x) = min{f(x) : x € X and g1(x) <
0 fori=1,...,m}

conditional equation  An equation involving
variable quantities which fails to hold for some
values of the variables.

conditional inequality = Aninequality involv-
ing variable quantities which fails to hold for
some values of the variables.

conditionnumber The quantity || A[|-]| A,
where ||A|| is the norm of the matrix A.

conductor (1) Of an Abelian extension K /&,
the product F = T[] o Jp (over all prime
ideals) of the conductors of the local fields
Ky /ko: Fp = 9", where n is minimal with the
property that the norm of every nonzero element
of K satisfies Ng/x(x) = 1(modp"). (f o is
infinite, 7, = g when K, # kg, and F, = 1
otherwise.)

(2) Of a character x of some representation
of the Galois group G of a local field K /k, the
function

l o
fO === x()—x,
Gol =5 o<,

where G; are the ramification subgroups
{a eG :v(o(x)—x)>i+1forallx € K+} ,

v the discrete valuation on K (with respect to
which K is complete) and K™ = {x € K :



v(x) > 0}. The ideal pf(X), where g is the
maximal ideal of the ring of integers in K, is
also called the (Artin) conductor of x.

Conductor Ramification Theorem (class field
theory) If F is the conductor of the class field
K /k, then it is prime to all unramified prime
divisors for K / k, and F factors as F = ]_[p Fos
where each Fy, is the gp-conductor of the local
field K,/ k,, at some ramified prime gp. See
conductor, class field.

conformal transformation A mapping of
Riemannian manifolds that preserves angles in
the respective tangent spaces. In classical com-
plex analysis, the same as a holomorphic or an-
alytic function with nonzero derivative.

congruence A form of equivalence relation
of two sets or collections of objects. The term
will have different specific meanings in different
contexts.

congruence zeta function The (complex val-
ued) function {g (s) = ) N_(LlT where the sum
is over all integral divisors A of the algebraic
function field K over k(x) where k is a finite
field.

congruentintegers  Withrespect to a positive
integer (modulus) m, two integers a and b are
congruent modulo m, written a = b (mod m),
when a — b is divisible by m.

conjugacy class  Assume S is a set. A binary
relation R on S is a subset of S x S. The con-
Jjugacy class determined by an elementa € S is
the set of elements b € § so that (a, b) € R. In
case R is reflexive ((a,a) € R for all a € §),
symmetric (if (a, b) € R then (b, a) € R) and
transitive (if (a, b), (b, ¢) € R then (a, ¢) € R),
then distinct conjugacy classes are disjoint and
the union of all the conjugacy classes is S.

conjugate (1) Of a complex number z =
a + bi (a, b real), the related complex number
Z=a — bi.

(2) Of a group element &, the group element
ghg™!, where g is another element of the group.
See also conjugate radicals.
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conjugate complex number Forz = x +iy
acomplex number, the complex conjugate of z is
writtenas z or z* andis givenby z = x—iy. This
operation preserves multiplication and addition
in the sense that 7 + w = 7 + w and Zw = Zw.
A consequence is that, if P is a polynomial with
real coefficients, then P (z) = P(Z), sothatroots
of P occur in complex conjugate pairs.

conjugate field  To the field extension F over
a base field £ (within some algebraic closure k),
any subfield F’ of k isomorphic to F. In one
of the fundamental theorems of Galois theory,
it is found that if F is a subfield of a normal
extension E of k, then the conjugate fields of F
inside E are precisely those fields F’ for which
the Galois groups Gal(E : F) and Gal(E : F')
are conjugate subgroups of Gal(E : k).

conjugate ideal  To a fractional ideal A of a
number field K/ k, the image ideal ¢(.A) of the
conjugate field ¢ (K ) under some k-isomorphism
¢ k—k.

conjugate radicals  Expressions of the form
Ja + /b and /a — +/b. More generally, the
expressions Ya — ' ¥b,i =0,1,...,n—1,
where ¢ is an nth root of unity, are conjugate
radicals.

conjugate subgroup  For a subgroup G’ of
a group G, any of the subgroups gG'g~! =
{ghg™' :h e G'}.

conjugation mapping  An automorphism of
a group G of the form a > gag~! for some
g€G.

conjugation operator  Given a uniform al-
gebra (function algebra) A on some compact
Hausdorff space X with ¢ in the maximal ideal
space of A, and u a representing measure for
@, the operator that assigns to each continuous
real-valued function u € NA, the continuous
real-valued function *u so thatu +i xu € A
and [ sudp = 0. See function algebra, maxi-
mal ideal space, representing measure.

connected graded module A graded module
M = Y72y My, over a field k, for which My is
isomorphic to k. See graded module.



connected group  An algebraic group which
is irreducible as a variety. See algebraic group,
variety.

connected Lie subgroup A Lie subgroup
which is connected, as a differentiable manifold.

connected sequence of functors A sequence
F' : C — (' of functors between Abelian cat-
egories for which there exist connecting mor-
phisms

8, : FI(C) »> FI71(A)

(or . _
9* 1 F'(C) — F'M(A)),

for every exact sequence) - A - B — C —
0 of objects in C that turns

oo FIHLey 25 FlA) — Fi(B)

— FI(C) 25 FI7(A) —> -

(respectively,
oo Fil) 2 Fl(A) — Fi(B)

— FlC) L Fitl(A) — )

into a chain complex, and, whenever

0 — A — B — c — 0
Vf lg Lh
O — A — B — ¢ — 0

is a morphism of exact sequences, then
9,0 Fi(h) = FI=1(f) 0 0,
(respectively,
3* o Fi(h) = FIT'(f) 0 d%).
See chain complex.

connecting homomorphism
homomorphism

The boundary

05 : Hy (K, L; G) - Hy—1(L; G) ,
connecting the homology groups of the simpli-
cial pair (K, L) with coefficients in the group G

and, dually, the coboundary homomorphism

3 :H"(L: G) > HY(K,L: G),
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connecting the corresponding cohomology
groups.

connecting morphism See connected se-
quence of functors.

consistentequations A setof equations which
have some simultaneous solution.

constant A function F : A — B such that
thereis a c € B with F(x) = ¢, for all x € A.

constant of proportionality The constant
k relating one quantity to others in a relation
of direct, inverse, or joint proportionality. For
example, quantity x is directly proportional to
quantity y if there is a constant k # 0 such
that x = ky. In this case, the constant k is
the constant of proportionality. See also direct
proportion, inverse proportion, joint proportion.

constant term  Given an equation in a vari-
able x, any part of the equation that is inde-
pendent of x is a constant term. If g(x) =
sin(x) + x2 + 37, then the constant term is 37.

constituent A Z-representation of a finite
group G, Z the rational integers.

constituent  Let Z denote the rational inte-
gers and Q the rational field. Let 7 be a Z-
representation of a finite group G. Then T is
called a constituent of the group G.

constructible sheaf A sheaf F on a scheme
X, decomposable into locally closed sub-
schemes so that the restriction of F to each sub-
scheme is locally constant.

continuation method of finding roots A
method for approximating roots of the equation
f(x) = 0 on the closed interval [a, b] by intro-
ducing a parameter ¢, so that f(x) = g(x, 1)|;=p
and so that g(x, a) = 0 is easily solved to ob-
tain x = xo. We partition the interval to give
a=ty<t <---<t, =Db,then successively
solve g(x,t) = 0O to obtain x = x; by some
iterative method that begins with the previous
solution x = x;_j.



continued fraction A number of the form

1

ap +
ay + 1
a + —

az+ .

where the a; are real numbers and aj, as, ...
are all positive. A continued fraction is simple
if all the a; are integers and finite, as opposed to
infinite, if the sequence of a; is finite. For typo-
graphical convenience, the continued fraction is
often written as [ag; a1, az, ... ].

continuous analytic capacity  Of a subset A
of C, the measure sup| f! (oo)| over all contin-
uous functions on the Riemann sphere S? that
vanish at co, are analytic outside some compact
subset of A, and have sup norm || f|| < 1 on S2.

continuous cocycle A matrix that arises as
the derivative of a group action on a manifold.

contragredient representation  Of a repre-
sentation p of a group G on some vector space
V, the representation px of G on the dual space
Vs defined by p * (g) = p(g~)*. See repre-
sentation, dual space.

contravariant  See functor.

convergent matrix  Ann X n matrix A such
that every entry of A™ converges to 0 as m ap-
proaches co. Convergent matrices arise in nu-
merical analysis; for example, in the study of
iterative methods for the solution of linear sys-
tems of equations. It is known that A is conver-
gent if and only if its spectral radius is strictly
less than 1; namely, all eigenvalues of A have
modulus strictly less than 1.

convex hull  The smallest convex set contain-
ing a given set. (A set S is convex if, whenever
x,y € S, then the straight line joining x and
y also lies in S.) If E is a vector space and
el, ..., e are elements of E, then the convex
hull of the set {ey, ..., et} is the set {YF cje; :
cj = 0 and ZC]‘ =1}

convex programming  The theory that deals
with the problem of minimizing a convex func-
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tion on a convex set obtained as the solution set
to a family of inequalities.

coordinate ring  Of an affine algebraic set X
(over a field k), the quotient ring
k[X] = k[x17 -x25 ceey xn]/I(X)

of the ring of polynomials over k by the ideal of
polynomials that vanish on X.

coproduct  Of objects A; (i € I) in some
category, the universal object [ [ A;, with mor-
phisms ¢; : A; — | ] A, satisfying the condition
that if X is any other object and ¥; : A; — X
are morphisms, there will exist a unique mor-
phism ¢ : [[A; — X sothat ¥; = ¢ o ¢;. If
the category is Abelian, the coproduct coincides
with the direct sum Y A;.

coradical Of a coalgebra, the sum of its sim-
ple subcoalgebras. See coalgebra, simple co-
algebra.

coregular representation = The contragredi-
ent representation of the right regular represen-
tation reciprocal to a given left regular represen-
tation. See contragredient representation.

Corona Theorem If fi,..., fu belong to
H®°, the set of bounded analytic functions in
the unit disk D in the complex plane, and if
| f1@)|+-+-+|fn(2)| =8 > 0in D, then there
exist g1,...,8, € H*® with ) f;g; =1in D.

In functional analytic terms, the theorem says
this. H is a vector space under pointwise ad-
dition and scalar multiplication and a Banach
space with the norm || f|| = sup | f(2)|, for z €
D. Further, since the pointwise product of two
bounded functions is bounded it is an algebra
with pointwise multiplication. As a Banach
space, H® has a dual space H>’, which is
the set of all continuous linear mappings from
H® into the complex numbers C. A functional
) € H°' may have the added property of being
multiplicative, L(fg) = A(f)A(g). We denote
the set of all such multiplicative linear function-
als by M. For example, ifa € D, then the linear
functional A(f) = f(a) is in M and is called a
point evaluation. The set H> has a topology
whereby 1, converges to A if, foreach f € H*,



the numbers A, ( f) converge to A(f). M inher-
its this method of convergence from H*' and
the Corona Theorem states that the “point eval-
uations” are dense in M in this topology. This
was proved by Carleson.

correspondencering  Of anonsingular curve
X, the ring C(X) whose objects, called corre-
spondences, are linear equivalence classes of
divisors of the product variety X x X, mod-
ulo the relation that identifies divisors if they
are linearly equivalent to a degenerate divisor.
The addition in this ring is addition of divisors,
and the multiplication is defined by composi-
tion, that is, if C1, C; are correspondences of X
and x € X, then C; o C; is the correspondence
C1(C2(x)) where C(x) is the projection on to
the second component of C(x, X).

cosecant function
function, denoted csc 6. Hence, csc 8 =
See sine function.

The reciprocal of the sine
1
sinf *

cosecant of angle  The reciprocal of the sine
of the angle. Hence, cscf = ﬁ. See sine of
angle.

cosemisimple coalgebra A coalgebra which
is equal to its coradical. See coalgebra, coradi-
cal.

cosine function One of the fundamental
trigonometric functions, denoted cos x. Itis (1)
periodic, satisfying cos(x + 27) = cosx; (2)
bounded, satisfying —1 < cosx < 1 for all
real x; and (3) intimately related with the sine
function, sin x, satisfying the important identi-
ties cosx = sin(F — x), sinx + cos?x = 1,
and many others. It is related to the exponen-

tial function via the identity cosx = %

(i = +/—1), and has series expansion

x2  x* x®

COSXZI—E—I-?—E—F
valid for all real values of x.
See also cosine of angle.

cosine of angle  Written cos«, the x-coor-
dinate of the point where the terminal ray of the
angle o whose initial ray lies along the positive
x-axis intersects the unitcircle. If0 < o < % (a
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in radians) so that the angle is one of the angles
in a right triangle with adjacent side a, opposite
side b, and hypotenuse c, then cosa = %

cospecialization  Let A and B be sets and
® : A — B a function. Cospecialization is
a process of selecting a subset of B with refer-
ence to subsets of A, using the mapping @ as a
referencing operator.

cotangent function = The quotient of the co-
sine and the sine functions. Also the reciprocal
of the tangent function. Hence, cot6 = % =
ﬁ. See sine function, cosine function.
cotangentof angle = Written cot «, the x-coor-
dinate of the point where the terminal ray of the
angle o whose initial ray lies along the positive
x-axis intersects the line £ with equation y = 1.
If @ measures more than 7z radians (= 180°), the
terminal is taken to extend back to intersect the
line £. If 0 < a < 7 (« in radians), so that the
angle is one of the angles in a right triangle with
adjacent side a, opposite side b, and hypotenuse
¢, then coto = %.

coterminal angles Directed angles whose
terminal sides agree. (Their initial sides need
not agree.)

cotriple A functor 7 : C — C on a category
C for which there exist natural transformations
e :1dc — T, 8 : T — T?, for which the
following diagrams commute:

Tx)y <2 rxy " rx
€T(X) \ Sx | v T(ex)
T(X)

TX) X TXX)

Sx | ddrx)

T2x) "% 13(x)

countable set A set S such that there is a
one-to-one mapping f : S — N from S onto
the set of natural numbers. See also cardinality.

counting numbers
2,3,...

The positive integers 1,



Courant-Fischer (min-max) Theorem Let
A be an n x n Hermitian matrix with eigenvalues

A=A == Ay
Then
A; = max min  x*Ax
dim X=i xeX, x*x=1
and
A= min max x*Ax.
dim X=n—i+1 xeX, x*x=1

This theorem was first proved by Fischer for
matrices (1905) and later (1920) it was extended
by Courant to differential operators.

covariant A term describing a type of func-
tor, in constrast with a contravariant functor. A
covariant functor F' : C — D assigns to every
object ¢ of the domain category C an object F(c)
of the codomain category D and to every arrow
a:c— cof Canarrow F(a) : F(c) — F(c)
of Dinsuchaway that F (id¢) =idp, whereidc
and idp are the identity arrows of the respective
categories, and that T (Boa) = T(B) o T () (o
represents composition of arrows in both cate-
gories) whenever B o« is defined in C. See also
contravariant.

covering  Of a (nonsingular) algebraic curve
X over the field k, a curve Y for which there
exists a k-rational map ¥ — X which induces
an inclusion of function fields k(x) — k(Y)
making k(Y) separably algebraic over k(X).

covering family A family of morphismsin a
category C which define the Grothendieck topol-
ogy on C.

coversine function  The function

coversa =1 —sina .

Coxeter complex A thin chamber complex in
which, to every pair of adjacent chambers, there
exists a root containing exactly one of the cham-
bers. When C C C’ wesay that C isaface of C'.
Two chambers are adjacent if their intersection
has codimension 1 in each: the codimension of
C in C’ is the number of minimal nonzero faces
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of C’ lying in the star complex St(C) of objects
containing C. A root is the image of the complex
under some idempotent endomorphism, called a
folding.

Coxeter diagram A labeled graph whose
nodes are indexed by the generators of a Cox-
eter group which has (P;, P;) as an edge la-
beled by M;; whenever M;; > 2. Here M;j
are elements of the Coxeter matrix. Also called
Coxeter-Dynkin diagrams. These are used to
visualize Coxeter groups.

Coxeter group A group with generators r;,
i € I, and relations of the form (r;r;)%/ = 1,
where all a;; = 1 and wheneveri # j, a;; > 1
(a;; may be infinite, implying no relation be-
tween r; and r; in such a case).

Cramer’srule Assume we are given n linear
equations in n unknowns. That is, we are given
the linear equations L;(X) = >, Cij X},
where the C;; are given numbers, the X; are
unknowns and i = 1,...,n. We are asked
to solve the n equations L;(X) = b;, where
j =1,...,n. One can write these equations in
matricial form AX = B, where A is a square
n x n matrix and X = (X,...,X,) and B =
(b1, ..., by,) are vectors in R". Cramer gave
a formula for solving these equations provid-
ing the matrix A has an inverse. Let | - | de-
note the determinant of a matrix, which maps a
square matrix to a number. (See determinant.)
The matrix A will have an inverse provided the
number |A| is not zero. So, assuming A has an
inverse (this is also referred to by saying that A
is non-singular), the solution values of X ; are
given as follows. In the matrix A, replace the
ith column of A (that is, the column made up of
Ci1, ..., Ciy) by B. We again obtain a square
matrix A; and the solution numbers X; = %.
If X is the n vector made up of these numbers,
it will solve the system and this is the only so-
lution.

Cremona transformation A birational map
from a projective space over some field to itself.
See birational mapping.

cremona transformation A birational map
of the projective plane to itself.



criterion of ruled surfaces A theorem of
Nakai, characterizing ample divisors D on a
ruled surface X as those for which the inter-
section numbers of D with itself and with every
irreducible curve in X are all positive. See am-
ple, ruled surface, intersection number.

crossed product  Of a commutative ring R
with a commutative monoid G (usually a group)
with respect to a factor set {ag,h €eR:g,he€
G}. If G acts on R in such a way that the map-
ping r > r& is an automorphism of R, then the
crossed product of R by G with respect to the
factor set is the R-algebra with canonical basis
elements b8 for g € G and multiplication law

> o rébs (ZMM)

geG heG
= Z ag,hrg(shgbgh).
g,heG

To ensure that this multiplication is associative,
the elements of the factor set must satisfy the
relations ag pden k = af!kag,hk forall g, h, k €
G. Further, if e € G is the identity element,
the unit element of the algebra is b°, which also
requires that, in the factor set, @, g = ag . equals
the unit element in R for all g € G.

Crout method of factorization A type of
LU-decomposition of a matrix in which L is
lower triangular, U is upper triangular, and U
has Is on the diagonal.

crystal family A collection of crystallo-
graphic groups whose point groups, I, are all
conjugate in GL3(R) and whose lattice groups
are minimal in their crystal class with respect
to the ordering (A, ") < (A’, ), defined as:
there exists a g € GL3(R) so that (A") = g(A),
I" = gI'g~! and B(A) € B(A') where B(A)
is the Bravais group {g € O(3) : (A) = (A)}.
See crystallographic group, Bravais group.

crystallographic group A discrete group of
motions in R” containing » linearly independent

translations. See also crystal system.

crystallographicrestriction  The proper sub-
group Hy of the point group H of a crystallo-
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graphic group I is cyclic of order g, where the
only possible values of g are 1, 2, 3, 4, or 6.

The terms used are defined as follows. The
group I' is a discrete subgroup of the Euclidean
group E(2) = R2 x O(2). Letj : EQ2) —
O(2) be the homomorphism (x, A) — A. Then
H = j(I') is a subgroup of O(2), called the
point group of I'. Let L be the kernel of j, a
discrete subgroup of R?. If the rank of L is 2,
then T' is called a crystallographic group. Then
Hypis HN SO(2).

crystallographic space group A crystallo-
graphic group of motions in Euclidean 3-space.
See crystallographic group.

crystal system A classification of 3-dimen-
sional crystallographic lattice groups. Where
the lattice constants a, b, ¢ represent the lengths
of the three linearly independent generators and
a, B, y the angles between them, the seven crys-
tal systems are (where x, y are distinct and not
1, and 6 # 90°):

Name a:b:c (o, B,7)
cubic 1:1:1 (90°, 90°, 90°)
tetragonal 1:1:x (90°,90°, 90°)
rhombic l:x:y (90°, 90°, 90°)
monoclinic l:x:y (90°, 6, 90°)
hexagonal 1:1:x (90°,90°, 120°)
rhombohedral 1:1:1 ©,6,0)
triclinic other than above

See crystallographic group.

cube (1) In geometry, a three-dimensional
solid bounded by six square faces which meet
orthogonally in a total of 12 edges and, three
faces at a time, at a total of eight vertices. One
of the five platonic solids.

(2) In arithmetic, referring to the third power
x3 = x - x - x of the number x.



cube root Of a number x, a number ¢ whose
cube is x: 13 = x. If x is real, it has exactly one
real cube root, which is denoted t = \3/} .

cubic (1) A polynomial of degree 3: p(X) =
ag+a1 X + a2X2 + a3X3, where a3 # 0.

(2) A curve whose analytic representation in
some coordinate system is a polynomial of de-
gree 3 in the coordinate variable.

cubicequation  Anequation of the form ax>+
bx%2+cx+d = 0, where a, b, ¢, d are constants
(and a # 0).

cup product (1) In a lattice or Boolean alge-
bra, the fundamental operation a V b, also called
the join or sum of the elements a and b.

(2) In cohomology theory, where H" (X, Y;
G) is the cohomology of the pair (X, Y) with
coefficients in the group G, the operation that
sends the pair (f,g), f € H' (X,Y;Gy), g €
H%(X, Z; G3), to the image

fUge HT(X,YUZ;G3)
of the element f ® g under the map
H'(X,Y;G)® H (X, Z; G)

— H'™™(X,YUZ;G3),
induced by the diagonal map

A:(X,YUZ)— (X,Y) x (X, Z).

Cup Product Reduction Theorem A theo-
rem of Eilenberg-MacLane in the theory of co-
homology of groups. Suppose the group G can
be presented as the quotient of the free group F
with relation subgroup H, so that 1 — H —
G - F — 1isexact. If A is a G-module,
then the induced extension of G given by 1 —
H/I[H,H] - F/[H Hl - G — lisa?2-
cocycle ¢ in H*(G, A). Let K = H/[H, H].
If ¢ € H'(G,Hom(K, A)), the cup product
@ U € H2(G, A) (which makes use of the
natural map Hom(K, A) ® K — A) determines
an isomorphism

H'(G,Hom(K, A)) = H™ (G, A) .

cuspidal parabolic subgroup A closed sub-
group G1G,G3 of a connected algebraic group
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G which is the product of (i.) a reductive Lie
subgroup G 1, stable under the Cartan involution,
(ii.) a vector subgroup G, whose centralizer in
G is G2G1, and (iii.) a group G3 = exp(}_ Go)
where G is the Lie algebra of GG, = {X €
G:[H,X] =a(H)X forall H € 7—[} where
‘H is the Lie algebra of G, « is some functional
on H, and the sum that defines G3 is over all
positive « for which G, is nonzero.

cycle (1) In graph theory, a graph C,, on ver-
tices v, v2, ... , v, Whose only edges are be-
tween vy and vy, v and v3, ..., v, and vy.

(2) In a permutation group S, a permutation
with at most one orbit containing more than one
object.

(3) In homology theory, any element in the
kernel of a homomorphism in a homology com-
plex.

cyclic algebra A crossed product algebra of
a cyclic extension field F (over a base field k)
with its (cyclic) Galois group G = (g) with
respect to a factor set that is determined by a
single nonzero element a of k. The elements
of this algebra are uniquely of the form «q +
arb+ -+ a,_1b"" L, where the «; come from
F, {1, b, b2, ..., b"_l} are the formal basis el-
ements of the algebra, and n is the order of G.
The multiplication is determined by the relations
ba = a8b, b'b/ = btV and b" = a.

cyclic determinant A determinant of the

form
ao al ap—1
anp—1 Qo ap-2
ai a e agp

in which the entries of successive rows are
shifted to the right one position (modulo 7).
Also called a circulant.

cyclic group A group, all of whose elements
are powers a" (n = 0, 1, ...) of a single gen-
erating element a. Such a group is finite if, for
some d, a? equals the identity element. The
group is often denoted (a).

cyclic representation A unitary representa-
tion p of a topological group G, having a cyclic
vector x, i.e., an element x of the representation



space for which the span of vectors p(g)x, as g
runs through G, is dense. See representation.

cyclic subgroup  Any subgroup H of a group
G in which all elements of H are powers a”"
(n=0,1,...) of asingle element a € H, the
generator of the subgroup.

cyclotomic field  Any extension of a field ob-
tained by adjoining roots of unity.
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cyclotomic polynomial  Any of the polyno-
mials @, (x) whose roots are precisely those
roots of unity of degree exactly n. That is,
®;(x) =x —1and, forn > 1,

x"—1

b, ==,
S TCES))

where the product is over the proper divisors d
of n.



D

Danilevski method of matrix transformation
A method for computing eigenvalues of a matrix
M , involving application of row and column op-
erations that produce the companion matrix of
M.

decimal number system  The base 10 po-
sitional system for representing real numbers.
Every real number x has a representation of the
form

dp—1dy—---didy-d—1d—---

in which the d; are the digits of x; dyp and d_;
are separated by the decimal point (.). The digits
of x are determined recursively by the formulas
dy_1 = Ll()fcﬁj and fork > 1,

x = Ty 107
dn—k = - I

107k

where  is the unique integer that satisfies 10"~
< x < 10" and [7] is the floor function (the

greatestinteger < ). Forexample, ifx = 2382,
thenn = 3,dy = 2,dy = 3,dy = 8,d_| =
7,d_> = 5. The only possible digits are 0, 1, 2,
3,4,5,6,7,8,9. The digit dy is called the ones
digit, d; the fens digit, d» the hundreds digit, d3
the thousands digit, etc.; also, d_1 is the tenths
digit, d_» the hundredths digit, etc. It can be
shown that, precisely when x is rational, the se-
quence of digits of x eventually repeats. That is,
there is a smallest integer p for whichd;_, = d;
for every i less than some fixed index. Here we
call the string of digits d; _1d;—2---d;i—p a re-
peating block and p the period of the represen-
tation of x. In the special case that the repeating
block is the single digit 0, the convention is to
drop all the trailing zeros from the representation
and say that x has a finite or terminating decimal
expansion. Further, it is possible in this case to
give a second, distinct expansion of x: if x has
finite decimal expansion with final nonzero digit
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d;, then another representation of x can be ob-
tained by replacing d; with d; — 1 and defining
di—1 =di—y = ---=9. For example, 238.75 =
238.74999. - ..

decomposable operator A bounded linear
operator T, on the separable Hilbert space L>
(T, w; H) of square-integrable, measurable, H-
valued functions on some measure space (I", )
where H is also a Hilbert space, so that for each
measurable &£(y), the function y — T (y)&(y)
is measurable, and so that, for each & € L2(F,
w; H), T can be represented as the direct inte-
gral

T = /r ST (VEN() .

decomposition field  Let the ring A be closed
in its quotient field K. Suppose that B is its
integral closure in a finite Galois extension L,
with group G. Then B is preserved by elements
of G. Let g be a maximal ideal of A and B
a maximal ideal of B that lies above g. Now
Gp is the subgroup of G consisting of those
elements that preserve B. Observe that G acts
in a natural way on the residue class field B/B
and it leaves A/gp fixed. To any 0 € Gp, we
can associate an element ¢ € B/B over A/g;
the map
o+—>0

thereby induces a homomorphism of G into
the group of automorphisms of B/B over A/g.

The fixed field in G g is called the decompo-
sition field of B, and is denoted [ dec,

decomposition field Let the ring A be closed
inits quotient field K. Suppose that B is its inte-
gral closure in a finite Galois extension L, with
group G. Then B is preserved by elements of
G. Let p be amaximal ideal of A and B a maxi-
mal ideal of B that lies above gp. Now Gp is the
subgroup of G consisting of those elements that
preserve B. Observe that Gp acts in a natural
way on the residue class field B/B and it leaves
A /g fixed. To any 0 € G we can associate an
element o € B/B over A/; the map

o+—>0
thereby induces a homomorphism of Gp into the
group of automorphisms of B/B over A/g.



The fixed field in Gp is called the decompo-
sition field of B, and is denoted L9¢

decomposition group  Of a prime ideal g for
a Galois extension K /k, the stabilizer of g in
Gal(K / k). See stabilizer, Galois group.

decomposition number  The multiplicity of
an absolutely irreducible modular representa-
tion of a group G, in the splitting field K (for
which it is the Galois group) as it appears in a
decomposition of one of the irreducible repre-
sentations of G in some number field for which
K is the residue class field. See absolutely irre-
ducible representation, modular representation.

Dedekind cut  One of the original ways of
defining irrational numbers from rational ones.
A Dedekind cut (L, R) is a decomposition of
the rational numbers into two sets L and R such
that (i.) L and R are nonempty and disjoint; (ii.)
if x € L and y € R then x < y; (iii.) L has no
largest element. Thus, a rational number can be
identified with a Dedekind cut (L, R) for which
R has a least member and an irrational number
can be identified with a Dedekind cut (L, R) for
which R has no least element.

Dedekind domain  Anintegral domain which
is Noetherian, integrally closed, and whose
nonzero prime ideals are all maximal. See inte-
gral domain, Noetherian ring, integrally closed.

Dedekind’s Discriminant Theorem Let
F = Q(Jd) be a pure cubic field and let d =
ab® with ab square-free. If F is of the first
kind, then the discriminant of F is given by
d(F) = —27(ab)? and if F is of the second
kind, then d(F) = —3(ab)>.

Dedekind zeta function Let £ be a number
field and Oy be the ring of all algebraic integers
in k. If I is a nonzero Og-ideal, we write N (1)
for the finite index [Oy : I]. The Dedekind zeta
function is then defined by

G =Y N =[](1-NDH) ",
1 J

where x > 1 and the sum extends over all non-
zero ideals of Oy, while the product runs over
all nonzero prime ideals of O.
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defect If k is a field which is complete under
an arbitrary valuation, and if E is a finite exten-
sion of degree n, with ramification e and residue
class degree f,then ef dividesn: n = ef 8, and
4 is called the defect of the extension.

defective equation An equation, derived
from another equation, which has fewer roots
than the original equation. For example, if x> +
x = 0 is divided by x, the resulting equation
x + 1 = 0 is defective because the root 0 was
lost in the process of division by x.

defective number A positive integer which
is greater than the sum of all its factors (except
itself). For example, the number 10 is defective,
since the sum of its factors (except itself) is 1 +
2+5=8.

If a positive integer is equal to the sum of
all its factors (except itself), then it is called a
perfect number. If the number is less than the
sum of its factors (except itself), then it is called
abundant.

deficiency Let R — F +— G be a free pre-
sentation of a group G. Let {x;} be a set of
generators of F' and {r} be a set of elements
of F generating R as a normal subgroup. Then
the data P = ({xx}, {rx}) is called a group pre-
sentation of G, xj are called generators, and ry
are called relators. The group presentation P is
called finite if both {x;} and {ry} are finite. A
group G is finitely presentable if there exists a
finite group presentation for G.

The deficiency of a finite group presentation
P is the integer

def(P) = #{generators} — #{relators} .

The deficiency of a finitely presentable group G,
denoted def(G), is the maximum deficiency of
finite group presentations for G.

defining relation A defining relation for a
quantity or property t is an equation or property
that uniquely determines t.

definite Hermitian form  Let H be a (com-
plex) Hilbert space. A Hermitian form is a func-
tion f : H x H — C, such that f(x, y) is lin-
ear in x, and conjugate linear in y, and f(x, x)



is real. A Hermitian form f is called posi-
tive definite [resp., nonnegative definite, nega-
tive definite, nonpositive definite] if, for x #£ 0,
f(x,x) > 0[resp., >0, < 0, <0].

definite quadratic form Let E be a finite di-
mensional vector space over the complex num-
bers C . Let L be a symmetric bilinear form on
E. (See bilinear form, symmetric form.) The
quadratic form associated with L is the func-
tion Q(x) = L(x,x). If Q(x) > O, [resp.,
Q) = 0, < 0, < 0] the form is called posi-
tive definite [resp., nonnegative definite, nega-
tive definite, nonpositive definite]. As an im-
portant application, assume F'(x, y) is a smooth
function of two real variables x and y. Let f be
the quadratic part of the Taylor expansion of F

flx,y) = ax® + 2bxy + cy2 ,

where a, b, and ¢ are determined as the appro-
priate second partial derivatives of F', evaluated
at a given point. Questions involving the mini-
mum points of F' can be solved by considering
the two by two matrix

A= ,
c d

with its determinant and the upper left one by
one determinant a both positive. In this case we
are considering

oA 3] = rew.

deflation A process of finding other eigenval-
ues of a matrix when one eigenvalue and eigen-
vector are known. More specifically, if A is an
n x n matrix with eigenvalues A1, ..., A,, and
Av = A1v, with v a nonzero (column) vector,
then, for any other vector u, the eigenvalues of

the matrix B = A — vu? are

A.]—UTV,)\.Q,...,)\.n.

By choosing u’ to be a multiple of the first row
of A and scaled so that u” v = Ay, the first row
of B becomes identically zero.

deformation A deformation is a transfor-
mation which shrinks, twists, expands, etc. in
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any way without tearing. Additional conditions,
such as continuity, are usually attached to a de-
formation. Thus, one can talk about a continu-
ous deformation, or smooth deformation, etc.

degenerate A term found in numerous sub-
jects in mathematics. For example, in algebraic
geometry, when considering the homogeneous
bar resolutions of Abelian groups, one uses sub-
groups generated by (n + 1)-tuples (yo, y1, - - -,
vn) With y; = y;41 for at least one value of i;
such an (n 4 1)-tuple is called degenerate.

degree of divisor
factored as follows:

If a polynomial p(x) is

p(x) =ap(x —x)" - (x —x)™ |

where x1, ..., x; are distinct. Then each x — x;
is called a divisor and the corresponding n; is
called the degree of the divisor.

degree of equation In a polynomial equa-
tion, the highest power is called the degree of
equation. In a differential equation, the highest
order of differentiation is called the degree of
equation.

degree of polynomial
expression of the form

A polynomial is an

px) =ap+aix +---+apx", an #0.

The integer n is called the degree of polynomial
p(x).

degree of polynomial term
polynomial.

See degree of

De Moivre’s formula  See De Moivre’s The-

orem.
De Moivre’s Theorem  For any integer n and
any angle 6 the complex equation (De Moivre’s
formula)

(cosO +isinf)" = cos(nf) + i sin(nd)
holds.

denominator  The quantity B, in the fraction
% (A is called the numerator).



density Weight per unit (volume, area, length,
etc.).

dependent variable Inafunction y = f(x),
x is called the independent variable and y the
dependent variable.

derivation A map D : A — M, from a
commutative ring A to an A-module M such
that

D(a + b) = D(a) + D(b)

and
D(ab) = aD(b) + bD(a)

forall @ and b in A.

derivation of equation A proof of an equa-
tion, by modifying a known identity, using cer-
tain rules.

derivative  If a function y = f(x) is defined
on areal interval (a, b), containing the point x,
then the limit

. f ) — f(x0)
m —-

li
X—=>X0 X — X0

if it exists, is called the derivative of f at xo and
may be denoted by

d
[’ (x0), % (x0) . Dy f (x0) » fx (x0) , etc.

If the function y = f(x) has a derivative at
every point of (a, b), then the derivative function
S (x) is sometimes simply called the derivative

of f.

derived equation  See derivation of equation.

derived functor  If T is a functor then its
left-derived functors are defined inductively as
follows: Let Tp = T. If S, is any connected
sequence of (additive) functors, then each natu-
ral transformation Sy — Ty extends to a unique
morphism {S, : n > 0} — {T,, : n > 0} of con-
nected sequences of functors. The right derived
functors are defined similarly.

derived series Given a Lie algebra G, we
define its derived series Gg, G1, . . ., inductively
by Go = G, Gu4+1 =[Gy, G,], n > 0, where,
for any subsets S and T of G, [S, T'] denotes the
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Lie subalgebra generated by all [s, t] fors € S
andr e T.

Descartes’s Rule of Signs A rule setting an
upper bound to the number of positive or nega-
tive zeros of a function. For example, the pos-
itive zeros of the function f(x) cannot exceed
the number of changes of sign in f(x).
descending central series  The series of nor-
mal subgroups

G=No2NI 2N 2 -+,

of a group G, defined recursively by: No = G,
Nit1 =[G, N;], where

|G, Ni] = {x_ly_lxy 1xeG, ye Ni}

is acommutator subgroup. See also commutator
subgroup.

descending chain of subgroups A (finite or
infinite) sequence {G;} of subgroups of a group
G, such that each G, is a subgroup of G;. See
also subgroup.

determinant A number, defined for every
square matrix, which encapsulates information
about the matrix. Common notation for the de-
terminant of A is det A and |A|. Foral x 1
matrix, the determinant is the unique entry in
the matrix. For a 2 x 2 matrix,

apr an

ay axy
the determinant is a11a>» — ajpaz;. For a larger
n X n matrix A, the determinant is defined recur-
sively, as follows: Let A; ; bethe (n—1)x (n—1)

matrix created from A by removing the ith row
and the jth column. Then

n
det A=) (—1)""a;;det A, ;
i=1

This sum can be computed, and is the same, for
any choice of j between 1 and #n.

determinant factor  If A is a matrix with ele-
ments in a principal ideal ring (for example, the
integers or a polynomial ring over a field), then



the determinant factors of A are the numbers
di, ..., d, where d; is the greatest common di-
visor of all minors of A of degree i and r is the
rank of A.

determinant of coefficients The determi-
nant of coefficients of a set of n linear equations

anxi+---+apx, = b

a1 X1+ -+ apxn = by

in n unknowns over a commutative ring R is
denoted by

arl Aln
det oo )
danl Qnn
or by
arl e Aaln
apl -+ dun

Its value is Zp(sgnP)a]pl -+~ Qyp,, Where the
sum is over all permutations P = (p1, ..., pn)
of 1,2, ..., n. Usually, R is the real or the com-
plex numbers. The set of equations is uniquely
solvable if and only if the determinant of the
coefficients is nonzero.

diagonalizable linear transformation A lin-
ear transformation from a vector space V into
another vector space W which can be repre-
sented by a diagonal matrix (with respect to
some choice of bases for V and W). See diago-
nal matrix. See also diagonalizable operator.

diagonalizable operator A linear transfor-
mation of a vector space V into itself which can
be represented by a diagonal matrix with respect
to some basis of V. An operator is diagonaliz-
able if and only if there is a basis for V made
up entirely of eigenvectors of the operator. See
also Jordan normal form.

diagonally dominant matrix Ann x n ma-
trix A = (a;;) with entries from the complex
field is called row diagonally dominant if

laii| > Z |kl

ki
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foreachi € {1,2, ..., n}. When the inequality
above holds strictly for every i € {1, 2, ..., n},
we say that A is strictly row diagonally domi-
nant. Similarly, we can define diagonal domi-
nance with respect to the sums of the moduli of
the off-diagonal entries in each column.

diagonal matrix
ajj = 0ifi 75 ]

Ann x n matrix (a;;) where

diagonal sum  The sum of the diagonal en-
tries of a square matrix A, which also equals the
sum of the eigenvalues of A. If the entries in
A are complex and the diagonal sum is positive
(negative), then at least one of the eigenvalues
of A has a positive (negative) real part. Also
called spur or trace.

difference  The (set theoretical) difference of
two sets A and B is defined by:

A\B={x:x€A and x ¢ B}.

The (algebraic) difference of subsets A and B
of a group G is defined by:

A—B={xeG:x=a—b,acA, be B}.

difference equation  An equation of the form

'xl’l+1 =F(xn7xn71w-',x0) ’

which defines a sequence of numbers, provided
that initial values (e.g., xo) are given. Difference
equations are the discrete analog of differential
equations. The difference equation known as
the logistic equation, x,+1 = ax,(1 — x,), a
constant, is one of the original examples of a
system that exhibits chaotic behavior.

difference group  The quotient group of an
additive group G by a subgroup H (written as
G — H). For example, the additive group of
integers has the even integers as a subgroup, and
the difference group is the mod2 group {0, 1}.
See quotient group.

difference of like powers  The factorization:
a" —b" =(a—-b) (a”_l +a" b

+an73b2+“.+abn72+bn7]) )



difference of the nth order If y(x) is a func-
tion of areal variable x and Ax is a fixed number,
then the first order difference Ay(x) is defined
by Ay(x) = y(x + Ax) — y(x). Scaling Ax to
1, the difference of the nth order is defined by

ATy(x) = A (A y)

=> (=t < Z )y(x +k).
k=0

difference of two squares  The factorization:
a* — b* = (a — b)(a + b). See also difference
of like powers.

difference product  The polynomial defined
over an integral domain by p(xi,...,x,) =
[Ti- (i —x;). Also called simplest alternat-
ing polynomial in x1, ...,x,. The difference
product p is invariant with respect to even per-
mutations of x1, ..., x, and becomes —p with
respectto an odd permutation. If the characteris-
tic of the integral domain is different from 2 and
q is any alternating polynomial in xi, ..., X,
then ¢ = ps, where s is symmetric.

different Suppose that K is an algebraic num-
ber field and Q denotes the rational subfield of
the complex number field. Let M = { A € K :
trace(A®) C 6, where ® and 6 are the prin-
cipal orders of K and Q, respectively}. Then
the different Dk g of K is M~!. See algebraic
number field, principal order.

differential automorphism An automor-
phism A of a differential field F such that A
commutes with each derivation of F" and leaves
the ground field fixed. Kolchin has determined
the structure of the group of differential auto-
morphisms. See differential field.

differential extension ring If R is a differ-
ential ring and S is a differential subring of R,
then R is a differential extension ring of S. For
example, the differential ring of all real-valued
differentiable functions on the real line is an ex-
tension of the subring of polynomials. See dif-
ferential ring, differential subring.

differential field A differential ring which
also forms a field. See differential ring.
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differential form of the first kind  Suppose
that I is a nonsingular curve and that » is a
differential formon I'. If (w) is a positive divisor
of the free Abelian group generated by points of
I, then w is a differential form of the first kind
(or a regular 1-form). If, for any point P of T,
there is a rational function fp such that w —dfp
is a regular 1-form, then w is a differential form
of the second kind. If w has nonzero residues,
then it is a differential form of the third kind.

differential form of the second kind See
differential form of the first kind.

differential form of the third kind
ferential form of the first kind.

See dif-

differential ideal = Suppose that R is a differ-
ential ring with derivations D1, ..., Di. Then
an ideal a of R is a differential ideal if D;ja C a
for all i. See differential ring.

differential index  Suppose that I'; and I'>
are nonsingular curves, that w : 'y — ['p is
singular, and that #; and #, are local parameters
at P on I'; and Q = 7 (P) on I'y, respectively.
The differential index at P is the nonnegative
integer vp(ds/dt), where vp is the valuation at
P.

differential polynomial  Suppose that X,
..., X, belong to a field which is a differential
extension (ring) of a differential field K, with
derivations Dy, ..., D;. Then Xy, ..., X, are
differential variables. If s1, ..., sx are nonneg-
ative integers and Dfm ‘e D,i‘wX ; are algebra-
ically independent over K, then a polynomial in
these elements is a differential polynomial.

differential representation  Suppose that U
is a unitary representation of a Lie group G with
Lie algebra g, that X € g and that x is an an-
alytic vector with respect to U. Suppose that
V(X)x is the derivative at t = 0 of Uexprx (x).
Then the linear mapping V : X — V(X)) is the
differential representation of U.

differential ring A commutativering R, with
unit, together with a finite number of commuting
derivations on R. (A derivation on R is a map-
ping D : R — Rsuchthat D(x+y) = Dx+Dy



and D(xy) = Dx-y+x-Dy,forx,y € R.) The
ring of all real-valued differentiable functions of
areal variable is a differential ring.

differential subring If R is adifferential ring
with derivations Dy, ..., Dy, then a subring of
S of R is a differential subring if D;S C S for
all i. See differential ring.

differential variable
nomial.

See differential poly-

differentiation (1) In a chain complex, a
map, usually denoted d,, or §,, from one module
to the next. An example of a differentiation is
the boundary operator encountered in the study
of simplicial complexes. See also chain com-
plex, boundary operator.

(2) Of a function f(x) of areal variable, at a
real number x = a, the limit

. fla+h)— f(a)
(@) = lim ————F—— "
f@ = lim Y
Many generalizations to other topological spaces
exist.

digit A symbol in a number system. For
example, in the binary number system, the only
digits that are used are O and 1. See also duodec-
imal number system.

dihedral group  Analgebraic group D, gen-
erated by two elements: a, which is a rotation
of the Euclidean plane about the origin through
angle of 2’—1”, and b, which is reflection through
the y-axis. D, is the group of symmetries of the
regular n-gon, and has order 2n.

dimension  The number of vectors in the ba-
sis of a vector space V. If the basis is finite,
then V is called finite dimensional. In this case,
if V is a vector space of dimension n over the
real numbers R, then it is isomorphic to the Eu-
clidean space R". If the basis is infinite, then V
is called infinite dimensional. See also basis.

Diophantine equation  An equation in which
solutions are restricted to the integers.

direct decomposition
rect decomposition G = Hy x Hy x - -

A group G has a di-
x Hy,

© 2001 by CRC Press LLC

if each H; is a normal subgroup of G, G =
H H,.. H,,and H, ... H_| N H; = {e},i =
2,...,1.

directed set A set X equipped with a partial
ordering and such that if x, y € X then there
exists z € X suchthatx < zandy < z.

direct factor  Either H or K, in the direct
product H x K or H @ K. See direct product.

direct integral  See integral direct sum.
direct limit  Suppose {G .} e/ is an indexed
family of Abelian groups, where [ is a directed
set. Suppose that there is also a family of ho-
momorphisms ¢, : G, — G, defined for all
u < v, such that: ¢, : G, — G, is the iden-
tity, and if u < v < « then @y 0 @y = Q.
Consider the disjoint union of the groups G,
and form an equivalence relation by x,, ~ x,,
x, € Gy and x, € G, if for some upper bound
K of pand v we have ¢, (x,1) = v (xy). Then
the direct limit is defined to be the set of equiv-
alence classes and is denoted by

lim G, .
— pel

See also directed set.

direct product (1) A group G is called the
internal direct product of subgroups H and K
if the following three conditions hold: H and
K are normal subgroups of G, H N K contains
only the identity element, and G = HK. This
internal direct product is denoted H x K.

(2) If H and K are any two groups, then the
external direct product of H and K, denoted
H ® K, is the Cartesian product: {(h, k) : h €
H, k € K}. H®K isagroup, defining multipli-
cation componentwise, i.e., (h1, k1) - (h2, k2) =
(h1 - ha, k1 - k2). See also internal product, ex-
ternal product.

direct proportion  Quantity x is directly pro-
portional to quantity y, or varies directly as y,
if there is a constant k # 0 such that x = ky.
(k is called the constant of proportionality.) See
also inverse proportion, joint proportion.

direct sum (1) In the case where Vi, V5, ...,
V,, are all vector spaces over the same field F,



one can define the direct sum V to be a vector
space made up of n-tuples of the form (vy, va,

., Up), where v; € V;. The common notation
for this direct sum is:

V=VieWVe --aV,.

(2) In the case where Vi, Vo, ..., V, are all
vector subspaces of the same vector space W,
and V; LV; if i # j, we can define the direct
sum V to be a vector space made up of sums of
the form: vy + vy + -+ 4+ v, where v; € V;.
The same notation is used as above. See also
orthogonal subset.

(3) In the case where H;, Hy, ... , H, are all
subgroups of the same Abelian group G, we can
define the direct sum H to be a subgroup of G
made up of sums of the form: k1 +hy+---+h,
where h; € H;, provided that each x € H has
a unique representation as the sum of elements
from the subgroups {H;}. The same notation is
used as above.

@ If Aisak x [ matrix and Bisanm x n
matrix, then the direct sum of A and B is the
(k +m) x (I + n) partitioned matrix

(5 5)

direct trigonometric functions The usual
trigonometric functions (sine, cosine, tangent,
etc.) as opposed to the inverse trigonometric
functions.
direct variation  See direct proportion.
Dirichlet algebra A closed subalgebra A of
the continuous complex-valued functions C (X)
on a compact Hausdorff space X such that (i.)
A contains the constant functions, (ii.) A sep-
arates points of X, and (iii.) {M(f), f € A} is
dense in CRr (X), the space of all real-valued and
continuous functions on X.

Dirichlet L-function
fined by

The function L(s), de-

L) =) xm/n*,
n=1
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where y is a character of the group of classes
coprime to some positive integer m and

x((n)) if (n,m)=1
x(n) = {Oif (n,m)#1 ,

where (n) is the residue class of n(mod m).
The function L(s) converges absolutely for
N(s) > 1, and is used widely in the study of
rational number fields and of quadratic and cy-
clotomic number fields. See also L-function.

Dirichlet Unit Theorem  Suppose that & is
an extension field (of first degree) of the rational
subfield Q of the complex number field. Then
the group of units of k is the direct product of
a cyclic group and a free Abelian multiplicative

group.

discrete filtration A finite collection
{F',.... F"} of submodules of a module A
such that F' > Fitland F" = 0.

discrete series Suppose that G is a con-
nected, semisimple Lie group, with a square in-
tegrable representation. The set of all square
integrable representations of G is the discrete
series of the irreducible unitary representations
of G.

discrete valuation A non-Archimedean val-
uation v is discrete if the valuation ideal of v is
a nonzero principal ideal. In this case the valu-
ation ring for v is also said to be discrete.
discrete valuation ring  See discrete valua-
tion.

discriminant (1) For the quadratic equation
ax?+bx +c = 0, the number A = b2 —4dac. If
A > 0, then the equation has two real-valued
solutions. If A < 0, then the equation has
two complex-valued solutions which are com-
plex conjugates. If A = 0, then the equation
has a double root which is real valued.

(2) For the conic section Ax%+ Bxy+Cy*+
Dx+Ey+F =0, the number A = B2 —4AC.
If A > 0, then the conic section is a hyperbola.
If A < 0, then the conic section is an ellipse.
If A = 0, then the conic section is a parabola.
The discriminant is invariant under rotation of
the axes.



discriminant of equation  See discriminant.
disjoint unitary representations A pair, U;
and U,, of unitary representations of a group
such that no subrepresentation of one is equiva-
lent to a subrepresentation of the other.

disjunctive programming  In mathematical
programming, the task is to find an extreme value
of a given function f, which maps a set A into
an ordered set R. Usually A is a closed subset
of a Euclidean space and (usually) A is defined
by a collection of inequalities or equalities. In
disjunctive programming, the set A is not con-
nected.

distributive algebra A linear space A, over
a field K, such that there is a bilinear mapping
(or multiplication) A x A — A. If the multipli-
cation does not satisfy the associative law, the
algebra is nonassociative.

distributive law A law from algebra that
states that if a, b, and ¢ belong to a set with
two binary operations + and -, then it is true that
a-(b+c) =a-b+a-cand (b+c)-a =b-a+c-a.

dividend  The quantity a in the division al-
gorithm. It is a quantity which is to be divided
by another quantity; that is, the number a in 7.
See division algorithm.

divisibility relation = Suppose that a, b, and
c lie in a ring R and that a = bc. Then we
say that b divides a (written b|a), and call this a
divisibility relation where b is a divisor or factor
of a.

divisible  An integer a is divisible by an inte-
ger b if there exists another integer k such that
a = bk.

divisible group  An Abelian group G (under
the operation of addition) such that, for every
g € G and every n € N, there exists x € G
such that g = nx. In other words, each element
in G is divisible by every natural number. An
example of a divisible group is the factor group
G/T,where T is the torsion subgroup of G. See
torsion group.
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division (1) Finding the quotient ¢ and the
remainder r in the division algorithm. See divi-
sion algorithm.

(2) A binary operation which is the inverse of
the multiplication operation. See also quotient.

division algebra  An algebra such that every
nonzero element has a multiplicative inverse.

division algorithm  Given two integers a and
b, not both equal to zero, there exist unique
integers ¢ and r such that a = ¢b + r and
0 < r < |q|. q is called the quotient and r
is called the remainder. Also called Euclidian
Algorithm.

The division algorithm is used in the develop-
ment of a number of ideas in elementary num-
ber theory, including greatest common divisor
and congruence. There are other situations in
which a division algorithm holds. See greatest
common divisor, congruence, division of poly-
nomials, Gaussian integer.

division by logarithms
compute ¢ = log, x — log;, y. Then ’;C = b°.
This can be an aid to computation, when a table
of logarithms to the base b is available. See also
logarithm.

To compute £, first
Y

division by zero .38

not defined.

For any real number x

division of complex numbers  For real num-

bers a, b, ¢, and d

a + bi

c+di

ac + bd
2 +d?

bc —ad .
62+d21

This formula comes from multiplying the nu-
merator and denominator of the original expres-
sion by ¢ — di.

division of polynomials  If polynomials f(x)
and g(x) belong to the polynomial ring F[x],
and the degree of g(x) is at least 1, then there
exist unique polynomials ¢ (x) and r(x) in F[x]
such that

f @) =q(x)gx) +rx)

where r (x) = 0 or the degree of 7 (x) is less than
the degree of ¢g(x). The process is sometimes



called synthetic division. See also division al-
gorithm, degree of polynomial.
division of whole numbers  See division al-
gorithm. See also divisible.

divisor (1) The quantity b in the division
algorithm. See division algorithm.

(2) For an integer a, the integer d is called a
divisor of a if there is another integer b so that
a = bd. Colloquially, d is a divisor of a if d
“evenly divides” a.

divisor class  An element of the factor group
of the group of divisors on a Riemann surface
by the subgroup of meromorphic functions. The
factor group is called the divisor class group.

divisor class group If X is a smooth alge-
braic variety, then the divisor class group is the
free Abelian group on the irreducible codimen-
sion one subvarieties of X (these are called “di-
visors”), modulo divisors of the form (f) =
(f)o — (f)oo, for all rational (or meromorphic)
functions f on X; here (f)o is the divisor of
zeros and (f)o is the divisor of poles.

If X is not smooth, “divisor” in “divisor class
group” means Cartier divisor, i.e., adivisor which
is locally given by one equation; that is to say,
one which is locally of the form ( f) for arational
function f on X.

Divisor class groups also exist in commuta-
tive algebra, and in geometry for singular germs.

See divisor class.

divisor of set  Let X be a non-singular vari-
ety defined over an algebraically closed field k.
A closed irreducible subvariety Y € X having
codimension 1 is called a prime divisor. An ele-
ment of the free Abelian group generated by the
set of prime divisors is called a divisor on X.

domain  The domain of a function is the set
on which the function is defined. For example,
the function f(x) = sinx has domain R since
the sine of every real number is defined, while
the domain of the function f(x) = ./x is the
non-negative real numbers. See also integral
domain, unique factorization domain, range.
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Doolittle method of factorization An“LU-
factorization” method for a square matrix A.
The method concerns factoring A into the prod-
uct of two square matrices: L is alower triangu-
lar matrix and U is an upper triangular matrix.
All of the diagonal elements of L are required
to be 1. Explicit formulas can then be created
for the rest of the entries in L and U. See also
Gaussian elimination.

double chain complex A double complex
of chains B over I" is an object in M%XZ, to-
gether with two endomorphisms 8’ : B — B
and " : B — B of degree (—1, 0) and (0, —1),
respectively, called the differentials, such that

3'90'=0, 979" =0, 3"9'+9'9" =0.

In other words, we are given a bigraded family
of I'-modules { B4}, p, ¢ € Z, and two families
of I'-module homomorphisms

ro. "o
{0hq : Brg = Bpoig) - {0 Boa > Bpgr} -

such that the earlier three equations involving
the operators 9" and 8" hold.

doubleinvariance LetI” be adense subgroup
of the additive group R of real numbers, with the
discrete topology. Let G be the character group
of I'. Any element @ € T', as a character of G,
defines a continuous function x, on G. Let o be
the Haar measure of G. A closed subspace M of
L2(0) is called invariant if x,M C M, for all
a € I'witha > 0. M is called doubly invariant
if x,M C M for all @ € I". Such invariance is
called double invariance.

Douglas algebra  Let L°° be the space of
bounded functions on the unit circle and H*
be the subspace of L°° consisting of functions
whose harmonic extension to the unit disk is
bounded and analytic. An inner function is a
function in H°° whose modulus is 1 almost ev-
erywhere. A Douglas algebra is a subalgebra
of L generated by H°® and the conjugates
of finitely many inner functions (in the uniform
topology).

A theorem of Chang and Marshall asserts that
every uniform algebra A, with H*® C A C L™
is a Douglas algebra.



downhill method of finding roots  To find

the real roots of

fx,y)=0, gx,y) =0,

find points (a, b) where ¢ = f + g has its ex-
treme values. In the downhill method the co-
ordinates of (a, b) are approximated by choos-
ing an estimate (xo, yo), selecting a value for A,
evaluating ¢ at the nine points x; = xo + €14,
Yk = Yo + €xh where ¢, = —1,0, 1, and con-
structing the quadratic surface, ¢; = ag+ajx +
azy+as (3»)c2 —-2) —|—a4(3y2 —2)+asxy, where
the values of the coefficients a; are calculated
by applying the method of least squares and us-
ing the values of ¢ at the nine points (x;, yi).
Then replace the Oth approximation (xg, yg) to
(a, b) by the center (x1, y1) of the quadratic sur-
face defined by ¢1. The process is repeated with
smaller and smaller values of 4.

Drazin inverse  See generalized inverse.
dual algebra  Suppose that (A, i, ) is an
algebra over a field k (with multiplication u and
unit mapping 1), and (C, A, €) is a coalgebra of
(A, u,n). Then (C*, u, n) is the dual algebra
of (C, A, ¢€) if C* is the dual space of C and
u, n and A, € are correspondingly dual.

dual coalgebra  Suppose that (A, u, ) is an
algebra over afield k and that A° is the collection
of elements of the dual space A* whose kernels
each contain an ideal I where A/I is finite di-
mensional. Then (A°, A, €), where A and € are
induced dually by © and 7, respectively, is the
dual coalgebra.

dual curve  Suppose that I" is an irreducible
plane curve of degree m > 1 in a projective
plane. The dual curve I in the dual projective
plane is the closure of the set of tangent lines to
I" at its nonsingular points. The dual of [isT.

dualgradedmodule  Suppose A =), _, A,
is a graded module over a field k. If A* is the
dual of the module A, then A* = )" A% is the
dual graded module of A.

dual homomorphism A mapping¢ : L1 —
L, of one lattice to another, such that ¢ (xNy) =

¢(x)Uo(y) and ¢p(x Uy) = ¢ (x) Np(y).
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dual Hopf algebra  Suppose that (A, ¢, V)
is a graded Hopf algebra. Then (A*, ¢*, ¥*) is
also a graded Hopf algebra which is called the
dual Hopf algebra. See graded Hopf algebra.

duality If X is a normed complex vector
space, then the set of all bounded linear func-
tionals on X is called the dual of X and is usu-
ally denoted X*. The dual space can be de-
fined for many other classes of spaces, includ-
ing topological vector spaces, Banach spaces,
and Hilbert spaces. An identification of the dual
space is usually referred to as duality. For ex-
ample, the duality of L? spaces, where LP* =
L, p'4+qg'=1,1<p<occ.

duality principle in projective geometry
Suppose that P” is a finite dimensional projec-
tive geometry of dimension n. Suppose that T
is a proposition in P and P*~"~! (0 < r < n)
and that “contains” and “contained in” are re-
versed, in the statement of 7', obtaining in this
way a new statement f” called the dual of T.
Then 7 is true if and only if 7" is true.

Duality Theorem A theorem in the study
of linear programming. The Duality Theorem
states that the minimum value of c;x; + coxp +
-« ++cp X, in the original problem is equal to the
maximum value of byy; + byy2 4+ - -+ 4+ by ym
in the dual problem, provided an optimal solu-
tion exists. If an optimal solution does not exist,
then there are two possibilities: either both fea-
sible sets are empty, or else one is empty and
the other is unbounded. See dual linear pro-
gramming problem.

dual linear programming problem (1) An-
other linear programming problem which is in-
timately related to a given one. Consider the
linear programming problem: minimize cjx; +
X2 + - - - 4 cpxy, where all x; > 0 and subject
to the system of constraints:

anxy +apxa+---+apmx, = by
anxy +anxy +---+aux, > b

v

am1X1 + amaX2 + -+ - + AunXn b .

The following linear programming problem is
known as the dual problem: maximize b;y; +



byys + - -+ by ym where all y; > 0 and subject
to the system of constraints:

anyr+aiy2+---+amym = c1
apyr+any +---+amym =
apy1 +amy2 + -+ admnym = Cn.

The Duality Theorem describes the relation be-
tween the optimal solution of the two problems.
See Duality Theorem.

(2) The definition above may also be stated
in matrix notation. If ¢ is an 1 x n vector, b is
am x 1 vector, and A is an m X n matrix, then
the original linear programming problem above
can be stated as follows: Find the n x 1 vector
X which minimizes cX, subject to X > 0 and
AX > b. The dual problem is to maximize yb
subjectto y > 0 and A < c.

(3) The dual of a dual problem is the original
problem.

dual module For a module M over an ar-
bitrary ring R, the module denoted M*, equal
to the set of all module homomorphisms (also
called linear functionals) from M to R. This
dual module is also denoted Homg (M, R) and
is, itself, a module. See also homomorphism,
linear function.

dual quadratic programming problem
Suppose that P is the quadratic programming
problem:

maximize z=clx — (1/2)xTDx ,

subject to the constraints Ax < b,x > 0, x in
R".

Then the dual quadratic programming prob-
lem PD is:

minimize w =b"y+ (1/2)x” Dx ,

subject to the constraints AT y+ Dx > ¢, all
components x; > 0, y; > 0.

It can be shown that if x* solves P, then PD
has solution x*, y*, and max z = max w.

dual representation Letnw : G — GL(V)
be a representation of the group G in the linear
space V. Then the dual representation 7~
G — GL(V¥)is given by 7V (g) = m(g~H*.
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dual space (1) For a vector space V over a
field F, the vector space V*, equal to the set of
all linear functions from V to F. V* is called
the algebraic dual space.

(2) In the case where H is a normed vector
space over a field F, the continuous dual space
H* is the set of all bounded linear functions from
H to F. By bounded, we mean that each linear
function f satisfies

sup | £ ()]
£0
20X

This type of dual space is the focus of theorems
in functional analysis such as the Riesz Repre-
sentation Theorem.

duodecimal number system A number sys-
tem using a base of 12 rather than 10. The Ara-
bic numerals O through 9 are utilized, along with
two other symbols X and X, which are used to
represent 10 (base 10) and 11 (base 10). The
number 12 (base 10) is then represented in the
duodecimal system as 10.

Durand-Kerner method of solving algebraic
equations A method of solving an algebraic
equation f(z) =" + a1z '+ +a, =0
(with complex coefficients and a,, # 0) using an
iteration formula for approximating the n roots
Z1y ..+, 2n Of fi:

n

Zigt1 = zik — f (zik) / l_[ (zik — 2jk) »

j=1

j#i,i=1,....nk=0,1,2,.... The
method approximates all n roots of f(z) simul-
taneously. Speed of convergence is second or-
der.

dynamic programming  An approach to a
multistep decision process, in which an outcome
is calculated for each stage. In Richard Bell-
man’s approach to dynamic programming, an
optimal policy has the property that, for each ini-
tial state and decision, the subsequent decisions
must generate an optimal policy with respect to
the outcome of the initial state and initial deci-
sion. This is now the most widely used approach
to dynamic programming.



E

e One of the most important constants in
mathematics. The following are two common
ways of approximating this number:

l n
e = lim (1 + —>
n—00 n

e ¢]

and
1

|
n:
n=0

’

wheren! =1-2-3-..n is the factorial.

The number e is transcendental and its value
is approximately 2.7182818 ... . The letter e
stands for Euler.

effective divisor  See integral divisor.

effective genus Suppose that I is an irre-
ducible algebraic curve and I is a nonsingular
curve that is birationally equivalent to I". Then
the genus of I is the effective genus of I'. An al-
gebraic curve I is rational if its effective genus
is 0 and elliptic if its effective genus is 1.

eigenfunction A function f which satisfies
the equation T (f) = Af, for some number A,
where T is a linear transformation from a space
of functions into itself. For example, if T is
the linear transformation on the space of twice
differentiable functions of one variable:
d*f

T(f)="3
then cos(x) is an eigenfunction of 7', with A =
—1. Eigenfunctions arise in the analysis of par-
tial differential equations such as the heat equa-
tion. See also eigenvalue.

eigenspace  For an eigenvalue A of a matrix
(or linear operator) A, the set of all eigenvectors
associated with A, along with the zero vector.
The eigenspace is the space of all possible solu-
tions of the vector equation

I —A)x=0.
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See also eigenvalue, eigenvector.

eigenspace in the weaker sense Suppose
that L is a linear space, T is a linear transfor-
mation on L, and A is an eigenvalue of 7. Then
the collection of all elements v in L such that
(T — kl)kv = 0, for some integer k > 0, is the
eigenspace in the weaker sense, corresponding
to the eigenvalue A. Such an element v is some-
times called a root vector of T.

eigenvalue  For an n x n matrix (or a linear
operator) A, a number A, such that there exists a
non-zero n X 1 vector v satisfying the equation
Av = lv. The product of the eigenvalues of a
matrix equals its determinant. See also eigen-
vector.

eigenvector A non-zero n x 1 vector v that
satisfies the equation Av = Av for some num-
ber A, for a given n x n matrix A. See also
eigenvalue.

Eisenstein series  One of the simplest exam-
ples of a modular form, defined as a sum over
a lattice. In detail: Let I" be a discontinuous
group of finite type operating on the upper half
plane H, and let 1, ..., k; be a maximal set
of cusps of I" which are not equivalent with re-
spect to I'. Let I'; be the stabilizer in I" of «;,
and fix an element 0; € G = SL(2, R) such that
0;00 = k; and such that ale,-oi is equal to the
group ['g of all matrices of the form

(")

with b € Z. Denote by y(z) the imaginary part
of z € H. The Eisenstein series E;(z, s) for the
cusp «; is then defined by

Ei(z,s) =) y(o; '02), o el \T,
where s is a complex variable.

Eisenstein’s Theorem If f(x) = ap+ajx+
ar)x?+- - -+a,x™ is a polynomial of positive de-
gree with integral coefficients, and if there exists
a prime number p such that p divides all of the
coefficients of f (x) exceptay, andif p* does not
divide ag, then f(x) is irreducible (prime) over
the field of rational numbers; that is, it cannot



be factored into the product of two polynomials
with rational coefficients and positive degrees.

elementary divisor (of square matrix) For
a matrix A with entries in a field F, one of the
finitely many monic polynomials /;, 1 <i <,
over F', such that hy|hy| - - |hg, and A is simi-
lar to the block diagonal sum of the companion
matrices of the A;.

elementary divisor of a finitely generated
module  For a module M over a principal
ideal domain R, a generator of one of the finitely
many ideals I; of the polynomial ring R[X],
1 <i <s,suchthat I; € I, C --- C [
and M is isomorphic to the direct sum of the
modules R[X]/1;.

elementary Jordan matrix
matrix of the form

An n x n square

A0 O ... 0
I » 0 ... O
0 1

00 ... 1 A

In the special case where n = 1, every matrix
(A) is an elementary Jordan matrix. (In other
words, one can forget about the 1s below the
diagonal if there is no room for them.)

Itis easier to understand this if we phrase it in
the language of linear operators rather than ma-
trices. An elementary Jordan matrix is a square
matrix representing a linear operator 7" with re-
spect to a basis eq, ..., e,, such that Te; =
rei1+ex, Tey = Aex+es, ..., Te,—1 = Aey—1+
ey, and Te, = Ae,. Thus (T — AI)" = 0, that
is T — A1 must be nilpotent, but n is the smallest
positive integer for which this is true. Here, I is
the identity operator, and the scalar A is called
the generalized eigenvalue for T .

It is a theorem of linear algebra that every
matrix with entries in an algebraically complete
field, such as the complex numbers, is similar
to a direct sum of elementary Jordan matrices.
See Jordan canonical form. The infinite dimen-
sional analog of this theorem is false. How-
ever, shift operators, that is operators S such that
Se; = ejq1,fori =1,2,3,..., play a promi-
nent role in operator theory on infinite dimen-

© 2001 by CRC Press LLC

sional Hilbert and Banach spaces. The connec-
tion between shift operators and elementary Jor-
dan matrices is that the nilpotent operator 7 — A1
may be thought of as the finite dimensional ana-
log of the shift S.

elementary symmetric polynomial A poly-
nomial of several variables that is invariant un-
der permutation of its variables, and which can-
not be expressed in terms of similar such polyno-
mials of lower degree. For polynomials of two
variables, x + y and xy are all the elementary
symmetric polynomials.

elementary symmetric polynomials  For n
variables x1, ..., x,, the elementary symmetric
polynomialsare oy, - - - , 6, where oy is the sum
of all products of k of the variables x1, ..., x,.
For example, if n = 3, then 01 = x1 + x2 + x3,
0y = x1x2 + x1x3 + x2x3 and 03 = x1x2x3.

elimination of variable = A method used to
solve a system of equations in more than one
variable. First, in one of the equations, we solve
for one of the variables. We then substitute that
solution into the rest of the equations. For ex-
ample, when solving the system of equations:

2x+4y =10
8x+9y =47

we can solve the first equation for x, yielding:
x = 5—2y. Then, substituting this solution into
the second equation, we have 8(5 —2y) +9y =
47, which we can then solve for y. Once we
have a value for y, we can then determine the
value for x. See also Gaussian elimination.

elliptic curve A curve given by the equation

y2 +aixy +ayy = x3 +a3x2 + aax + as

where each a; is an integer. Elliptic curves were
important in the recent proof of Fermat’s Last
Theorem. See Fermat’s Last Theorem.

elliptic function field  The field of functions
of an elliptic curve; a field of the form
k(x, /f(x)), where k is a field, x is an inde-
terminant over k, and f(x) is a separable, cubic
polynomial, with coefficients in k.



elliptic integral
types of integral.
Type I:

One of the following three

/x dt _/‘f’ dt
0 Ja—2a—-k22 Jo V1_i2sini2s

Type 1I:

/ —dt:/ V1—Kk2sin’rdt .
0 1—t2 0

Type 1I:

/x dt
0 (12 —a)/ (1 —12)(1 —k22)

_ /¢ dt
0 (sin®t —a)v1—k2sin’¢ .
Here 0 < k> < 1 and a is an arbitrary con-
stant. The constant k is called the modulus. If
x = 1, or equivalently, if ¢ = m/2, then the
elliptic integral is called complete; otherwise, it
is incomplete.

elliptic transformation A linear fractional
transformation w = Tz of the complex plane
which can be written as

w—a Z—a

z—b

w—>b

for some unimodular constant k.

endomorphism (1) A function from a space
into itself, satisfying additional conditions de-
pending on the nature of the space. For exam-
ple, when one studies groups, an endomorphism
is a function F from a group G into itself such
that F(x +y) = F(x)+ F(y) for all x and y in
G.

(2) A morphism in a category, with the prop-
erty that its domain and range coincide.

endomorphism ring  The ring consisting of
all endomorphisms (from a space A with an
additive structure to itself) with addition given
by the addition in A and multiplication coming
from composition. See endomorphism.

entire algebroidal function  An algebroidal

function f(z) that has no pole in |z| < co. See
algebroidal function.
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entire linear transformation  Consider alin-
ear fractional transformation (also known as a
Mobius transformation) in the complex plane;
that is, a function given by

az+b
S(z) = ,
@ cz+d

where a, b, ¢, and d are complex numbers. If
¢ =0andd # 0, S(z) becomes a typical linear
transformation, which is also an entire function.

enveloping algebra  Let 3 be a subset of an
associative algebra A with multiplicative iden-
tity 1. The subalgebra B" of A containing 1 and
generated by B is called the enveloping algebra
of Bin A. See associative algebra.

enveloping von Neumann algebra Let A de-
note a C*-algebra and S denote the state space
of A. For each state ¢ € S, let (7y, Hp, Yy)
denote the cyclic representation of ¢. Here 7y
is arepresentation of A on the Hilbert space Hy.
The linear span of vectors of the form my(a) ¥4,
fora € A, is dense in Hy. Let Hg be the direct
sum Hilbert space of the spaces Hy, as ¢ varies
through S, and let g be the representation of
A on Hg obtained from the direct sum of the
representations 1y, for ¢ € S. The enveloping
von Neumann algebra of A is the closure A” of
s (A) with respect to the weak operator topol-
ogy. Because rg is a faithful representation, A
can now be viewed as a C*-subalgebra of the
von Neumann algebra A”.

The enveloping von Neumann algebra A”
of a C*-algebra A is isomorphic, as a Banach
space, to the second dual of A. If m is a von Neu-
mann algebra, G is a locally compact group and
ifa : G — Aut(m) is acontinuous group homo-
morphism, where the automorphism group
Aut(m) has the topology of weak convergence,
then the W*-crossed product algebra m x, G
arises as the enveloping von Neumann algebra
of a certain C*-crossed product affiliated with
the W*-dynamical system (m, G, o).

epimorphism A morphism e in a category,
such that the equation f o e = g o e for mor-
phisms f and g in the category implies that
f = g. In most familiar categories, such as
the category of sets and functions, an epimor-
phism is simply a surjective or onto function in



the category. A function e from set X to set
Y is surjective or onto if e(X) = Y, that is if
every element y € Y is the image e(x) of an el-
ement x € X. See also morphism in a category,
monomorphism, surjection.

Epstein zeta function A function, {¢ (s, M),
defined by Epstein in 1903. Let V be a vector
space over R having dimension n. Let M be a
lattice in V and Q(X) a positive definite qua-
dratic form defined on V. Then, ¢o(s, M) is
defined for complex numbers s by

1
Q)

Cos. M)y =)~

xeM\{0}

The Epstein zeta function is absolutely conver-
gentwhenis > 7. If Q(x) is a positive integer

for all x € M \ {0}, then

= a(k
Zo(s, M)zZ“]ES),

k=1

where a(k) denotes the number of distinct x €
M with Q(x) = k. The Epstein zeta function,
in general, has no Euler product expansion. See
also Riemann zeta function.

equal fractions  Two fractions (of positive
integers), % and ]Zf, are equal if m¢ = nk. If
the greatest common divisor of m and n is 1 and
the greatest common divisor of k£ and ¢ is also
1, then the two fractions are equal if and only if
m=kandn = ¢.

equality (1) The property that two mathemat-
ical objects are identical. For example, two sets
A, B are equal if they have the same elements;
we write A = B. Two vectors in a finite dimen-
sional vector space are equal if their coefficients
with respect to a fixed basis of the vector space
are the same.
(2) An equation. See equation.

equation  An assertion of equality, usually
between two mathematical expressions f, g in-
volving numbers, parameters, and variables. We
write f = g. When the equation involves one
or more variables, the equality asserted may be
true for some or all values of the variables. A
natural question then arises: For which values
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of the variables is the equality true? The task of
answering this question is referred to as solving
the equation.

equivalence class  Given an equivalence re-
lation Ronaset S andanx € S, the equivalence
class of x, usually denoted by [x], consists of all
y € S such that (x, y) € R. Clearly, x € [x],
and (x,y) € R if and only if [x] = [y]. As
a consequence, the equivalence classes of R in-
duce a partition of the set S into non-overlapping
subsets.

equivalence properties = The defining prop-
erties of an equivalence relation R € § x S;
namely, that R isreflexive ((x, x) € Rforallx €
S), symmetric ((x, y) € R whenever (y, x) €
R), and transitive ((x, z) € R whenever (x, y) €
R and (y, z) € R). See also relation, equiva-
lence class.

equivalence relation A relation R on a set
S (that is, a subset of S x S), which is reflex-
ive, symmetric, and transitive. (See equivalence
properties.) For example, let S be the set of all
integers and R the subset of S x § defined by
(x,y) € Rif x — yis amultiple of 2. Then R is
an equivalence relation because for all x, y, z €
S, (x, x) € R (reflexive), (x, y) € R whenever
(v, x) € R (symmetric), and (x, z) € R when-
ever (x,y) € R and (y, 7) € R (transitive).

equivalent divisors
lence of divisors.

See algebraic equiva-

equivalent equations  Equations that are sat-
isfied by the same set of values of their respec-
tive variables. For example, the equation x> =
3y— 1 is equivalent to the equation 6w —2z% = 2
because their solutions coincide.

equivalent valuations Let¢ : F — R™ be
a valuation on a field F (here R denotes the set
of all nonnegative real numbers). The valuation
¢ gives rise to a metric on F, where the open
neighborhoods are the open spheres centered at
a € F defined by

(beF|opb—a)<e}, ecRT.

Two valuations are called equivalent if they in-
duce the same topology on F.



error Inthe context of numerical analysis, an
error occurs when a real number x is being ap-
proximated by another real number x. A typical
example arises in the implementation of numeri-
cal operations on computing machines, where an
error occurs whenever a real number x is made
machine representable either by rounding off or
by truncating at a certain digit. For example, if
x = 4.567, truncation at the third digit yields
X = 4.56 while rounding off at the third digit
yields x = 4.57.

There are two common ways to measure the
error in approximating x by x: The quantity

lx — X|
is referred to as the absolute error, and the quan-

tity
lx — X|

(x #0)
x|

is referred to as the relative error. The concept
of error is also used in the approximation of a
vector x € R" by x € R”; the absolute value in
the formulae above are then replaced by some
vector norm. In particular, if we use the infinity
norm, and if the relative error is approximately
10~*, then we can deduce that the largest in ab-
solute value entry of x has approximately k cor-
rect significant digits.

étale Let X and Y be schemes of finite type
over k. A morphism f : X — Y is called érale
if it is smooth of relative dimension 0.

étale morphism A morphism f : X — Y is
said to be étale at a point x € X if d, f induces
an isomorphism C, X — Cy )Y of the corre-
sponding tangent cones (viewed as schemes).

étale site Let X be a scheme, let S/X be
the category of schemes over X and let C/X
be a full subcategory of S/ X that is closed un-
der fiber products and is such that, for any mor-
phism ¥ — X in C/X and any étale morphism
U — Y, the composite U — X isin C/X. The
category C/ X, together with the étale topology
of C/ X, is the étale site over X. See étale topol-

ogy.

étale topology  Let Y be a connected, closed
subscheme of a normal variety X and assume
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that Y is G2 in X. Let X ' be the normaliza-
tion of X in K(X), and let f : X' — X be
the natural map. Then there is a subvariety Y’

of X’ which is G3 in X’ and such that f| is
an isomorphism of Y’ onto ¥, and such thgt f
is étale at points of X’ in a suitable neighbor-
hood of Y’. Then (X', Y’) is an étale neighbor-
hood of (X, Y). The étale neighborhoods form
a subbasis for the érale topology. See also étale
morphism.

Euclidean domain  Let R be aring. Then R
is an integral domain if x,y € R and xy = 0
implies either x = 0 or y = 0. An integral
domain is Euclidean if there is a function d from
the non-zero elements of R to the non-negative
integers such that

(i.) For x # 0, y # 0, both elements of R, we
have d(x) < d(xy);

(ii.) Given non-zero elements x, y € R, there
exists s, € R such that y = sx + ¢, where
eithert = 0ord(t) < d(x).

Euclidian Algorithm  An algorithm for find-
ing the greatest common divisor g.c.d. (m, n),
of two positive integers m, n satisfying m > n.
It can be described as follows:

1. Divide n into m, i.e., find a positive
integer p and a real number r so that
m=pn+r, 0<r <n.
2. If r =0, then g.c.d. (m, n) = n.
3. Ifr #0, then g.c.d. (m,n) = g.cd. (n,r);
replace m by n and n by r and
repeat step 1.

After possibly several iterations, the process al-
ways terminates by detecting a zero remainder
r. Then g.c.d. (m, n) equals the value of the
last nonzero remainder detected. The following
example illustrates this algorithm:

954 =29 x 32 426,

32=1x26+6,
26=4x6+2,
6=3x2+4+0.

Hence g.c.d. (954, 32) = 2. The algorithm can
be modified so that the remainder in step 1 is the
smallest number r (in absolute value) satisfying
0 < |r| < n. This may lead to fewer required



iterations. For example, the modified algorithm
for the above numbers yields

954 =30 x 32 — 6,
32=5x%x6+2,
6=3x2+0.

Hence g.c.d. (954, 32) = 2 in three iterations.

Euclid ring  An integral domain R such that
there exists a function d(-) from the nonzero el-
ements of R into the nonnegative integers which
satisfies the following properties:

(i.) For all nonzero a, b € R, d(a) < d(ab).
(ii.) For any nonzero a,b € R, there exist
p,r € R such that a = pb + r, where either
r=0ord(r) <d().

The integers with ordinary absolute value as
the function d(-) is an example of a Euclid ring.
Also the Gaussian integers, consisting of all the
complex numbers x 4-iy where x, y are integers,
form a Euclid ring; d (x 4+ iy) = x> + y? serves
as the required function.

Also called Euclidian ring.

Euler class  The Euler class of acompact, ori-
ented manifold X, denoted by x € H"(X, X),
is defined by

x=WU1UU)/z.

Euler-Poincaré characteristic  Let K be a
simplicial complex of dimension n, and let o,
denote the number of r-simplexes of K. The
Euler-Poincaré characteristic is

n

X(K) = (=1,

r=0

x(K) is a generalization of the Euler charac-
teristic, V — E + F, where V, E, F are, re-
spectively, the numbers of vertices, edges, and
faces of a simple closed polyhedron (namely, a
polyhedron that is topologically equivalent to
a sphere). Euler’s Theorem in combinatorial
topology states that V — E + F = 2. See also
Lefschetz number.

Euler product  Consider the Riemann zeta

function

1 1
(&) =1 oot b b
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which converges for all real numbers s > 1.
Euler observed that

1

(o =[]7= =1
where p runs over all prime numbers. This in-
finite product is called the Euler product. One
of the main questions regarding zeta functions
is whether they have similar infinite product ex-
pansions, usually referred to as Euler product
expansions.

Euler’s formula  The expression

e'* =cosz4+isinz,

where i = /—1. This is proved by consider-
ing the infinite series expansions of ¢, sin z and
cosz forz € C.

See also polar form of a complex number.

even element Let O be a quadratic form with
nonzero discriminant on an n-dimensional vec-
tor space V, over a field F, of characteristic
not equal to 2. Let C(Q) denote the Clifford
algebra of Q. Then C(Q) is the direct sum
Ct(Q) + C~(Q), where

crQ =
c Q)
The elements of CT(Q) and C~(Q) are called

the even and odd elements, respectively, of the
Clifford algebra.

Fi+Vi+vig. ..,
VAV Vi

even number  An integer that is divisible by
2. An even number is typically represented by
2n, where n is an integer.

evolution  Another term for the process of
extracting a root. See extraction of root.

exactsequence Consider a sequence of mod-
ules {M;} and a sequence of homomorphisms
{h;} with

hl‘ . Mi—] e M,'
foralli = 1,2, ... The sequence of homomor-
phisms is called exact at M; if Imh; = Kerh; 1.

The sequence is called exact if it is exact at every
M;. For a sequence

h
O—>M1—2>M2,



it is understood that the first arrow (from O to
M) represents the 0 map, so the sequence is
exact if and only if 4, is injective.

exact sequence of cohomology (1) Suppose
G is an Abelian group and A is a subspace of
X. Then there is a long exact sequence of coho-
mology:

o> H"(X,A,G) - H"(X,G)

— H"(A,G) > H'"' (X, A,G) — -+ .

Here H™ are the cohomology groups.

2)If0 > A—- B — C — 0is ashort ex-
act sequence of complexes, then there are natural
maps 8’ : H (C) — Hitl(A), giving rise to an
exact sequence

.-~ — H'(A) - H'(B) — H'(C)
- HA) > ...
of cohomology.
exact sequence of ext (contravariant)  If
0—A—B—>C—0

is a short exact sequence of modules over a ring
R and M is an R-module (on the same side as
A), then the associated contravariant exact se-
quence of ext is a certain long exact sequence of

the form

0 - Hom(C, M) — Hom(B, M)
— Hom(A, M)

— Exth(C, M) — Exth(B, M)
— Exth(A, M)

— -+ = Bxth (C, M) — Exty(B, M)

— Exth (A, M) — ---

exact sequence of ext (covariant) If
0—A—>B—C—0
is a short exact sequence of modules over a ring

R and M is an R-module (on the same side as A),
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then the associated covariant exact sequence of
ext is a certain long exact sequence of the form

0 - Hom(M, A) - Hom(M, B)
— Hom(M, C)

— Exth(M, A) — Exth(M, B)
— Extk(M, C)

— .- = Exth(M, A) — Exty (M, B)
— Exthy(M,C) — --- .

exact sequence of homology (1) Suppose A
is a subspace of X. Then there exists a long
exact sequence

- —> Hy(A) - Hy(X)s

— Hy(X,A) > Hy_1(A) = -,

called the exact sequence of homology, where
H, (X) denotes the nth homology group of X
and H, (X, A) is the nthrelative homology group.

2)If0 > A — B — C — 0is a short ex-
act sequence of complexes, then there are natural
maps §; : H;(C) - H;_1(A), giving rise to an
exact sequence

... — H;(A) - H;(B) - H;(C)

- Hi_1(A) —> -
of homology.

exact sequence of Tor Let A be a right I'-
module and let B — B +~ B” be an exact
sequence of left ['-modules. Then there exists
an exact sequence

Torl (A, B') — Torl (A, B) — Tor! (A, B")
— ... — Torl (A, B') - Torl (A, B)
— Tor} (A,B") - A®r B' > A®r B
— AQr B" - 0.

exceptional compact real simple Lie algebra
Since compact real semisimple Lie algebras are
in one-to-one correspondence with complex
semisimple Lie algebras (via complexification),
the classification of compact real simple Lie al-
gebras reduces to the classification of complex
simple Lie algebras. Thus, the compact real



simple Lie algebras corresponding to the ex-
ceptional complex simple Lie algebras E; (I =
6,7, 8), F4 and G are called exceptional com-
pact real simple Lie algebras.

exceptional complex simple Lie algebra In
the classification of complex simple Lie algebras
o, there are seven categories: A,B,C,D.E,FG,
resulting from all possible Dynkin diagrams.
The notation in each category includes a sub-
script [ (e.g., E;), which denotes the rank of «.
The algebras in categories E; (I = 6,7, 8), Fa
and G, are called exceptional complex simple
Lie algebras (in contrast to the classical com-
plex simple Lie algebras).

exceptional complex simple Lie group A
complex connected Lie group associated with
one of the exceptional complex simple Lie alge-
bras E; (I = 6,7, 8), F4 or G.

exceptional curve of the first kind  Given
two mutually nonsingular surfaces F, F’ and a
birational transformation 7" : F — F’, the total
transform E of a simple point in F’ by 7!
is called an exceptional curve. 1t is called an
exceptional curve of the first kind if, in addition,
T is regular along E. Otherwise, it is called an
exceptional curve of the second kind. See also
algebraic surface.

exceptional curve of the second kind  See
exceptional curve of the first kind.

exceptional Jordan algebra A Jordan alge-
bra that is not special. See special Jordan alge-
bra.

excess of nines A method for verifying the
accuracy of operations among integers, also
known as the method of casting out nines. It
uses the sums of the digits of the integers in-
volved, in modulo 9 arithmetic. We illustrate
the method for addition of integers. Consider
the sum

683 + 256 = 939.
The sum of digits of 683,256, and 939 are 17 =

8mod9, 13 = 4mod 9 and 21 = 3 mod 9,
respectively. Indeed, 8 +4 = 12 = 3 mod 9.
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exhaustive filtration A filtration {M} : k €
Z} of a module M is called exhaustive (or con-
vergent from above) if

UMy =M .
See filtration. See also discrete filtration.

Existence Theorem (class field theory)  For
any ideal group there exists a unique class field.
See ideal group, class field.

expansion of determinant  Given ann X n
matrix A = (a;;), the determinant of A is for-
mally defined by

detA = Z sgn(o)ale(1)a262) - - - Ano(n) »

oges,

where S, denotes the symmetric group of de-
gree n (the group of all n! permutations of the

set{l,2,...,n}), and where sgn(o) denotes the
sign of the permutation o. (sgn(o) = 1 if o is
an even permutation and sgn(o) = —1 if o is

an odd permutation.) The formula in the equa-
tion above is referred to as the expansion of the
determinant of A.

exponent  Given an element a of a multiplica-
tive algebraic structure, the productofa-a-. . .-a,
in which a appears k times, is written as a* and
k is referred to as the exponent of aX. The sim-
plest example is when a is a real number. In
this case, we can also give meaning to negative
exponents by ¢ ¥ = 1/a* (assuming that k is
a positive integer and that a # 0). We define
a’ = 1. The basic laws of exponents of real
numbers are the following:

1) akam — k+m’

@) a*/a" =a"" (a #0),

3) (@)™ =a*",

where k and m are nonnegative integers. We
can extend the definition to rational exponents
m/n, where m is any integer and n is a positive
integer, by defining a”/" = "/a™. Synonyms
for the exponent are the words index and power.
See also exponential mapping.

exponential function of a matrix Let A be
an n x n matrix over the complex numbers C.
The exponential function f(A) = e4 is defined



by the infinite series

1 1
A _ L2 P
e _1+A+2!A +3!A +

o

1
=> EA" :
k=0 "
Letting || - || denote the Euclidean vector norm,

as well as the induced matrix norm, we can show
that the exponential function of a matrix is well
defined (i.e., the series is convergent) by show-
ing that it is absolutely convergent. Indeed, in-
voking well-known inequalities, and the defini-
tion of the real exponential function ¢, we have
that ||e? || equals

g
> gf‘k
k=0

[e.¢]

1 k

_ Al
—<Zk!”A” ¢ < 0.
k=0

One basic property of e is that its eigenval-
ues are of the form e*, where A is an eigenvalue
of A. Tt follows that e? is always a nonsin-
gular matrix. Also, the exponential property
eATB = ¢4¢B holds if and only if A and B
commute, that is, AB = BA.

The exponential function of a matrix arises
in the solution of systems of linear differential
equations in the vector form dx(¢) /dt = Ax (1),
t > 0, where x(¢) € C". If the initial condition
x(0) = xg is specified, then the unique solution
to this differential problem is given by x (1) =
e xp.

exponential mapping  The mapping (func-
tion) f(x) = e¢*, where x € R and e is the base
of the natural logarithm. (See e.) The expo-
nential mapping is the inverse mapping of the
natural logarithm function: y = ¢* if and only
if x = Iny. Mclaurin’s Theorem yields

o xk
R — J—
D
k=0
More generally, the exponential mapping to base

a (a # 1) is defined by f(x) = a”.

exponentiation The process of evaluating
a*, that is, evaluating the producta -a - ... - a,
in which a appears k times. See also exponent.
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expression A mathematical statement, using
mathematical quantities such as scalars, vari-
ables, parameters, functions, and sets, as well as
relational and logical operators such as equality,
conjunction, existence, union, etc.

exsecant function A trigonometric function
defined via the secant of an angle as exsecd =
secl — 1. Similarly, we define the excosecant
function as excosec = cscf — 1.

extension Given a subfield E of a field F,
namely, a subset of F' that is a field with respect
to the operations defined in F, we call F an
extension field of E. The field F can be regarded
as a vector space over E. The dimension of
F over E is called the degree of the extension
field F over E. If fi,..., f, € F, then by
E(f1, ..., fp) we denote the smallest subfield
of F' containing E and fi,..., fp. E(f1) is
called a simple extension of E.

If every element of E is algebraic over F, we
call E an algebraic extension. Otherwise, we
call E a transcendental extension.

The notion of extension also applies to rings.
See also number field.

extension of coefficient ring  Let R[¢] be the
ring of polynomials over the (coefficient) ring
R in the indeterminate ¢. As the notion of ex-
tension can also concern a ring, an extension of
R is usually referred to as the extension of the
coefficient ring of R[¢]. See extension, ring of
polynomials.

extension of valuation If v is a valuation on
a field F and if K is an extension of F', then an
extension of v to K is a valuation w on K such
that w(x) = v(x), for x € F. See valuation.

exterior algebra  Let V be a vector space
over a field F. Let also Ty(V) denote the direct
sum of the tensor products V& ...Q V. To(V)
is called the contravariant tensor algebra over
V and is equipped with the product ® as well
as addition and scalar multiplication. Let S be
formed by all elements of Ty (V) of the type v ®
v, as well as their sums, scalar multiples and
their products with arbitrary elements in Ty (V).
Then S is a subgroup of (the Abelian group)
To(V) and the quotient group Tp(V)/S can be



considered. This quotient group can be made
into an algebra by defining the operations - and
N\ as follows:

c-t+8=ct+S (ceF),

H+HN\w+SH=ton+s.

The operation /\ is called the exterior product
of the exterior algebra Tp(V)/S of V, which is
denoted by A V. AV is also known as the
Grassmann algebra of V. The image of v ®
... ® vp under the natural mapping To(V) —
/\ V isdenoted by vi A...A v, and s called the
exterior product of vy, ..., v, € V. In general,
the image of V ® ... ® V with p factors under
the above natural mapping is called the p-fold
exterior power of V and is denoted by A\ V.

The exterior product satisfies some important
rules and properties. For example, it is multilin-
ear, vy A...Avp, =0ifand only if vy, ..., v
are linearly dependent, andu Av = (—1)P? vAu
wheneveru € AP Vandve A\?V.

See also algebra, tensor product.

external product  Given two groups G1, G2,
the external (direct) product of G1, G, is the
group G = G| x G, formed by the set of all
pairs (g1, g2) with g1 € G and g2 € G»; the
operation in G is defined to be

(g1.82) (g1. 85) = (218} 8285) -

This definition can be extended in the obvious
way to any collection of groups Gp, Ga,....
The operation in each component is carried out
in the corresponding group. The external prod-
uct coincides with the external sum of groups if
the number of groups is finite. See also internal
product.
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Extgroup The Extgroupisdefinedin several
subjects. For example, if A is an Abelian group
and if

0—-R—->F—>A—->0

is any free resolution of A, then for every Abel-
ian group B, there exists a group Ext(A, B) such
that

0 — Hom(A, B) - Hom(F, B)

— Hom(R, B) — Ext(A, B) — 0

is exact; moreover, the group is independent of
the choice of the free resolution of A. The el-
ements of Ext(A, B) are equivalence classes of
short exact sequences0 - B - M — A — 0
and addition is induced by Baer sum.

The Ext group is also defined in homological
algebra, topology, and operator algebras. The
group Ext(A, B) is called the group of exten-
sions of B by A.

extraction of root  The process of finding a
root of a number (e.g., that the fifth root of 32
is 2) or the process of finding the roots of an
equation.

extraneous root A root, obtained by solving
an equation, which does not satisfy the origi-
nal equation. Such roots are usually introduced
when exponentiation or clearing of fractions is
performed.

extreme terms of proportion  Given a pro-
portion, namely, an equality of two ratios 7 =
%, the numbers a and d are called the extreme (or
outer) terms of the proportion. See proportion.
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factor (1) Aninteger n is a factor (or divisor)
of an integer m if m = nk for some integer k.
Thus, £1, &2, and 4 are all the factors of 4.
More generally, given a commutative monoid
M that satisfies the cancellation law, b € M isa
factor of a € M if a = bc for some c € M. We
then usually write b|a. See also prime, factor of
polynomial.

(2) A von Neumann algebra whose center is
the set of scalar multiples of the identity opera-
tor. The study of von Neumann algebras is car-
ried out by studying the factors which are type I,
IL, or III with subtypes for each. See also type-I
factor, type-II factor, type-III factor, Krieger’s
factor.

factorable polynomial A polynomial that
has factors other than itself or a constant poly-
nomial. See also factor of polynomial.

factor group Let G be a group and let H
denote a normal subgroup of G. The set of left
(or right) cosets of G, denoted by

G/H = {aH : a € G},

forms a group under the operation (a H)(bH) =
(ab) H and is called the factor group or the quo-
tient group of G relative to H.

The factor groups of a group G can be useful
inrevealing important information about G. For
example, letting C(G) represent the center of
G, if G/C(G) is cyclic it follows that G is an
Abelian group.

factorial  The factorial of a positive integer n
(read n factorial) is denoted by n! and is defined
by

n=nmn—-1)m-2)...321.

For example, 4! = 4 32 1 = 24. By definition,
0! = 1. An approximation of n! for large values
of n is given by Stirling’s formula:

m (2) .

e
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factorial series  The infinite series, involving

factorials,
L L
ZE oty t
k=0

This series converges to the number e. See fac-
torial.

factoring  The process of finding factors; of
aninteger or of a polynomial, for example. Given
an integer n > 1, the Fundamental Theorem
of Arithmetic states that n can be expressed as
a product of positive prime numbers, uniquely,
apart from the order of the factors. The process
of finding these prime factors is referred to as
the prime factoring or the prime factorization
of n. See also division algorithm, factoring of
polynomials.

factoring of polynomials The process of
finding factors of a polynomial f(x) € F[x]
over a field F. If f(x) has positive degree, then
f(x) can be expressed as a product

fx) =cg1(x)g2(x) ... g (x),

where ¢ € F and g1, g2, ..., & are irreducible
and monic polynomials in F[x]. This is referred
to as the prime factoring or the prime factoriza-
tion of f(x) and is unique apart from the order
of the factors.

If f(x) € F[x] is monic and has positive
degree, then there is an extension field E of F,
so that f(x) can be factored into

fO=x—-r)&x—r)...(x —rg)

in E[x]. The field E is the splitting field of f(x)
and it satisfies £ = F(ry,rp,...,rr), Where
r1,¥2, ...,y are the roots of f(x) in E. If
the field F is algebraically closed (for example
the complex numbers), then E = F. See also
Factor Theorem, division algorithm.

factor of polynomial A polynomial g(x) €
F[x] over a field F is a factor of f(x) € F[x]
if f(x) = g(x)h(x) for some h(x) € F[x]. For
example, g(x) = x — 1 is a factor of f(x) =
x? — 1. See also factoring of polynomials.

factor representation Consider a nontriv-
ial Hilbert space H and a topological group G



(i.e., a group with the structure of a topological
space so that the mappings (x,y) — xy and
x — x~! are continuous). Let U be a unitary
representation of G, namely, a homomorphism
of G into the group of unitary operators on H
that is strongly continuous. If the von Neumann
algebra M generated by {U, : g € G} and its
commutant M’ satisfy

MnNM ={z1 :ze C},

then U is called a factor representation of G.

factor set  Suppose A is an Abelian group
and G 1is an operator group acting on A. Then
every element o € G defines an automorphism
a — a° of Asuchthat (a’au)® = a’*. Afactor
set is a collection of elements {as ; : 0, T € G}
in A such that

o
Qo,1lo1,p = Qg plo,1p -

Factor Theorem  The linear term (x — a) is
a factor of the polynomial f(x) € F[x] over a
field F if and only if f(a) = 0.

Itis an immediate corollary of the Remainder
Theorem. ( See Remainder Theorem.) The Fac-
tor Theorem can be useful in finding factors of
polynomials: If f(x) = x* +x3 +x%4+3x —6,
then one knows that if a is an integer, then (x —a)
is a factor of f(x) only if a divides 6. Hence it
makes sense to search for integer roots of f(x)
among the factors of 6.

faithful function  Let V and W be partially
ordered vector spaces with positive proper cones
V* and W™, respectively. A function f : V —
W is said to be faithful if f(x) = 0, with x €
V+, occurs only in the case where x = 0.

As an example, let V be the complex vec-
tor space of n x n matrices with positive cone
VT consisting of all positive semidefinite ma-
trices. Let W be the complex field and W+ =
[0, 00), and let f : V — W be the trace func-
tion: f(x) = trace(x) = Y ;_,x;;, for all
x = (x;;) € V. Then f is a faithful function.

Faithful functions arise in the theory of C*-
algebras, as follows: Let A be a C*-algebra.
By a theorem of Gelfand, Naimark, and Segal,
there is a faithful C*-algebra homomorphism
p: A — B(H), where B(H) is the C*-algebra
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of bounded linear operators acting on a Hilbert
space H. See partially ordered space.

faithful R-module A module M over a ring
R such that, whenever r € R satisfies rM = 0,
then r = 0. Also called faithfully flat.

false position  The method of false position
(or regular falsi method) is a numerical method
for approximating a root r of a function f(x),
given initial approximations ro and r; that sat-
isfy f(ro) f(r1) < 0. The next approximation
rp is chosen to be the x-intercept of the line
through the points (rg, f(ro)) and (r1, f(r1)).
Then r3 is chosen as follows: If f(r1) f(r2) <0
we choose r3 to be the x-intercept of the line
through the points (r1, f(r1)) and (2, f(2)).
Otherwise, we choose r3 as the x-intercept
of the line through the points (rg, f(r9)) and
(r2, f(r2)), and swap the indices of pg and p;
to continue. This process ensures that succes-
sive approximations enclose the root . See also
secant method.

feasible region  The set of all feasible solu-
tions of a linear programming problem. See also
feasible solution.

feasible solution  In linear programming, the
objective is to minimize or maximize a linear
function of several variables, subject to one or
more constraints that are expressed as linear
equations or inequalities. A solution (choice)
of the variables that satisfies these constraints
is called a feasible solution. See also feasible
region.

Feit-Thompson Theorem Every non-
Abelian simple group must have even order. This
result was conjectured by Burnside and proved
by Feit and Thompson in 1963. It was an impor-
tant step and the driving force behind the effort
to classify the finite simple groups.

Fermat numbers  Integers of the form 22" +
1, where n is a nonnegative integer. For n =
1, 2, 3, 4, the Fermat numbers are prime inte-
gers. Euler proved, contrary to a conjecture by
Fermat, that the Fermat number for n = 5 is not
a prime.



Fermat’s Last Theorem There are no posi-
tiveintegers x, y, z, and n, withn > 2, satisfying
x}’l + yl’l — Zn.

Pierre Fermat wrote a version of this theo-
rem in the margin of his copy of Diophantus’
Arithmetica. He commented that he knew of a
marvelous proof but that there was not enough
space in the margin to present it.

This assertion is known as Fermat’s Last The-
orem, because it was the last unresolved piece
of Fermat’s work. A proof eluded mathemati-
cians for over 300 years. In 1993, A. J. Wiles
announced a proof of the conjecture. Some gaps
and errors that were found in the original proof
were corrected and published in the Annals of
Mathematics in 1995.

fiber (1) Preimage, as of an element or a set;
inverse image.

(2) Inhomological algebra,if f : X — Yisa
morphism of schemes, y € Y, k(y) is the residue
field of y, and Spec k(y) — Y is the natural
morphism, then the fiber of the morphism f over
the point y is the scheme

Xy =X xy Speck(y) .
Also spelled fibre.

Fibonacci numbers  The sequence of num-
bers f, given by the recursive formula f, =
foc1 + fap forn = 2,3,..., where fi =
f» = 1 (or sometimes f; = 0, f» = 1). It can
be shown that every positive integer is the sum
of distinct Fibonacci numbers. Any two con-
secutive Fibonacci numbers are relatively prime.

The ratios % form a convergent sequence
n

whose limitasn — oois the golden ratio, @
fibre  See fiber.
field A commutative ring F with multiplica-

tion identity 1, all of whose nonzero elements
are invertible with respect to multiplication: for
any nonzero a € F there exists ¢ € F such that
ac = 1. We usually write ¢ = a~!. Tt fol-
lows that if a, b € F are nonzero elements of a
field, then so is ab, namely, every field is an inte-
gral domain. Well-known examples of fields are
the rational numbers, the real numbers, and the
complex numbers with the familiar operations
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of multiplication and addition. Also the residue
ring modulo p, Z, is a field when p is a prime
integer. See ring.

field of quotients Let D # 0 be a com-
mutative integral domain and let D* denote its
nonzero elements. Consider the relation = in
D x D* defined by (a, b) = (¢, d) if ad = bc.
It can be shown that = is an equivalence relation.
(See equivalence relation.) Denote the equiva-
lence class determined by (a, b) as a/b (called
a quotient or a fraction) and let ' = {a/b} be
the quotient set determined by =. We can now
equip F with addition, multiplication, an ele-
ment 0, and an element 1 so that it becomes a
field as follows:

a/b+c/d = (ad + bc)/bd ,
(a/b) - (c/d) = ac/bd ,
0=0/1, and 1 =1/1.

It can be shown that the above operations +, -
define single-valued compositions in F and that
F with the above 0 and 1 is a commutative ring.
Moreover, if a/b # 0, then a # 0 and b/a is
the inverse of b/a. This shows that F is a field;
it is called the field of quotients or the field of
fractions (or rational expressions) of D.

field of rational expressions
tients.

See field of quo-

field of values  See numerical range.
field theory  In algebra, the theory and re-
search area associated with fields. See field.

figure (1) A symbol used to denote an integer.
(2) In topology, a set of points in the space
under consideration.

filtration A filtration of a module M is a
collection {M} : k € Z}, of submodules of M,
such that My 1 C My for all k € Z. See also
exhaustive filtration, filtration degree.

filtration degree  Suppose that M is a graded
module with differentiation d of degree 1, i.e.,
M is acomplex, and that the filtration { F' KMliez
of M is homogeneous. Define the graded mod-
ule Eg(M) to be the direct sum ) ;5 ES(M)



where E§ (M) = F*M/F**!1 M. Define

and Eg' (M) FRIM/FRLI=T0 0 where
k,l € Z. Then Eg(M) is doubly graded as the

. k,l
direct sum Zk,leZ Ey"(M). In the same way,

the module Eo(H (M)) is doubly graded by the
modules Ey'(H(M)) = FXHM(M)/F*!
H**H (M), where H (M) is the homology mod-
ule of M and FFH* (M) = FFLH(M).

For 1 <r < oo define

78 (M) = Im(H* (FkM/Fk+rM>
gk (FkM/Fk+1M>) ,

Bf’l(M) _ Im(Hkal (Fk7r+]M/FkM)
— gkt (FkM/Fk+1M>) ,

EN (M) = ZH (M BR (M)

Then E, (M) is doubly graded by identifying
E f (M) with the direct sum

Z ER (M) .
leZ

Finally, the differentiation operator d, : E, —

E, is composed of homomorphisms df’l : Ef’l
— EFI=F1 in other words, d; has bi-degree

(r,1—r).

In all of these doubly graded modules the first
degree k is called the filtration degree, the sec-
ond degree ! is called the complementary degree,
and k + [ is called the total degree.

fine moduli scheme A moduli scheme M,
of curves of genus g such that there exists a flat
family F — M, of curves of genus g such that,
for any other flat family X — Y of curves of
genus g, there is a unique map ¥ — M, via
which X is the pullback of F.

finer If 7 and U are two topologies on a space
X,and if T C U, then U is said to be finer than
T.

finite A term associated with the number of
elements in a set. A set S is finite if there ex-
ists a natural number n and a one-to-one corre-
spondence between the elements of S and the
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elements of the set {1,2, ..., n}. We may then
write | S| = n. The fact that a set S is finite is de-
noted by | S| < oo and we say that S consists of a
finite number of elements. See also cardinality,
finite function.

finite Abelian group A group G that s finite,
as a set, and commutative; namely foranya, b €
G, ab = ba. See also finite, Abelian group.

finite basis A basis of a vector space V over
afield F, comprising a finite number of vectors.
More precisely, a finite basis of V is a finite set
of vectors B = {vy, vz, ..., v,} C V with two
properties:

(i.) B is a spanning set of V, that is, every
vector of V' is a linear combination of the vectors
in B.

(ii.) B consists of linearly independent vec-
tors (over the specified field F).

A (finite) basis of a vector space is not, in
general, unique. However, all the bases of V
have the same number of vectors. This number
is called the dimension of V. Here the dimen-
sion of V is n and thus V is referred to as a finite
dimensional vector space.

The set of vectors {e; l’.’zl, consisting of the
vectors ¢; € R” whose ith entry is one and all
other entries equal zero, is a finite basis for the
vector space R". Itisusually called the standard
basis of R".

finite continued fraction Let g be a contin-
ued fraction defined by ¢ = p; + 1/q1, where
g1 = p2+1/92, g2 = p3+1/g3, ..., and
where p;, ¢; are numbers or functions of a vari-
able. See continued fraction. If the expression
q terminates after a finite number of terms, then
q is a finite continued fraction. For example,

1
2+

q=1+ ]
3

is a finite continued fraction usually denoted by
11
1 —‘l_ ﬂ 5.

finite field A field F which is a finite set. In
such a case, the prime field of F can be identified
with Z,, the field of residue classes, modulo p,
for some prime integer p. (See prime field.) It
follows that |F| = p" for some integer n. We



thus have the fundamental fact that the num-
ber of elements (cardinality) of a finite field is
a power of a prime integer. Moreover, all finite
fields of the same cardinality are isomorphic.

finite function (1) A function f : X — Y
which is finite, when thought of as a subset of
the Cartesian product X x Y. It follows that f
is finite if and only if its domain X is a finite set.

(2) A function from a set X to the extended
real or complex numbers (R U {00} or C U
{£o00}), never taking the values o00. See also
semifinite function.

finite graded module  See graded module.

finite group A group, which is finite as a set.
An example of a finite group is the symmetric
group, S,, of degree n, having n! elements. In
fact, any finite group with n elements is isomor-
phic to some subgroup of §,. See symmetric

group.

finitely generated group A group G that
consists of all possible finite products of the el-
ements of a finite set S. We usually write

G=(S)={s152...50:5, €8}

and we call S a set of generators of S. The
simplest example is a cyclic group, namely, a
group G generated by one element a. We then
write G = ({a}) = {a* : k € Z}.

finitely generatedideal Anideal /inaring R
such that I contains elements i1, ..., iy which,
under sums and products by elements of R, gen-
erate all of /.

finitely generated module Let A be a ring
and M an A-module. We say that M is finitely
generated if there is a finite set {x1, x2, ..., X}
of elements of M such that, for each element
x € M, there exist scalars a; € A, so that

k

x:E a;xXi .

i=1
We refer to {x1, x2, ..
erators of M.

., Xk} as a system of gen-

Let F be the free
.,a, and G be a

finitely presented group
group generated by ay, ay, ..
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group generated by by, by, ..., b,. Then there
is a homomorphism /4 of F onto G. If the ker-
nel of A is the minimal normal subgroup of F
containing the classes of words

wl(al---,an)y---ywm(al~--7an) ’
then
wi(br....,by)=1,...,wyu(by...,by) =1

are the defining relations of G. If m and n are
both finite, we call G a finitely presented group.

Finiteness Theorem (1) (Finiteness theo-
rem of Hilbert concerning first syzygies) There
are only finitely many first syzygies. See first
Syzygy.

(2) (Completeness of predicate calculus) If a
proposition H is provable (derivable) from a set
of statements X, then there exists a finite subset
X* C X from which H can also be derived.

finite nilpotent group A group G, which
is both finite and nilpotent. See nilpotent group.
The following conditions are equivalent to being
nilpotent for a finite group:

(i.) G has at least one central series.

(ii.) The upper central series of subgroups Z;
of G,

ley=2ZoCczZiyCZyC...

ends with Z, = G for some finite n € N.
(iii.) The lower central series of G

GEI:IoDl:IlD...

ends with H,, = {e} for some finite m € N.

(iv.) Every maximal (proper) subgroup is
normal.

(v.) Every subgroup differs from its normal-
izer.

(vi.) G is a direct product of Sylow p-sub-
groups of G.

finite prime divisor =~ An equivalence class
of non-Archimedean valuations of an algebraic
number field K.

finite simple group A group G of finite order
|G| (|G| > 1) that contains no proper normal
subgroup.



finite solvable group
composition series

A group G that has a

G=GopDG1D--DG, = e},

whose factor groups G;/Gi4+1, i =0,...,n —
1, are of prime order. Equivalently, the composi-
tion factors G; / G+ are simple Abelian groups
(i.e., cyclic groups of prime order).

first factor of class number  The class num-
ber h of the p-th cyclotomic field K ,,, where p
is a prime, is a product & = h1h; of two factors
h1 and hj, called, respectively, the first and the
second factor of the class number /.

If Ky = Q(€m), Em = €¥™/™ then h» is the
class number of the real subfield K, = Q(§ +
£~1). Explicitly

(_])r+l r+l1 (p-1

h = Xl() 9
= 1 Z:J ’

By = \El
2 Roy

where r = (p — 3)/2 gives the number of mul-
tiplicatively independent units, x;, i = 1, ...,
p — 1, are the multiplicative characters of the
reduced residue classes of Z modulo p, and
Xxi» i = 1,...,r — 1, are those characters for
which y;(—1) = —1. Further, 0 # E = R|[¢y,
., &—1] is the Dedekind regulator of multi-
plicatively independent units ¢; (i =0, ..., r —
1), also called circular units and Ry is the regu-
lator of K.
Remark: K, = Q&p), En = €¥1/™ is an al-
gebraic number field obtained by adjoining an
m-th primitive root of unity to Q. It is a Ga-
lois extension over Q of degree ¢ (m), where ¢
is Euler’s function [¢ (m) gives the number of
primitive roots of unity].

firstsyzygy LetR = k[xi, ..., x,]beapoly-
nomial ring of n variables x1, .. ., x, overafield
k and, relying on the natural gradation of R [i.e.,
deg (x;) = 1,deg (c¢) = 0 for ¢ € k], let M be
a finitely generated graded R-module. Desig-
nate by (f1, ..., fim) a minimal basis of M over
R consisting of homogeneous elements. Intro-
duce m indeterminates g; (i = 1,...,m) and
m

the free R-module F, F = ZRgi generated by
i=1
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them. Requiring that deg (g;) =deg (f}), j =
1,...,m, we supply F with the structure of a
graded R-module. The kernel of a graded R-
homomorphism ¢ : F — M, M = ¢(F), de-
fined by ¢(g;) = f; is referred to as the first
syzygy. It is uniquely determined by M up to a
graded R-module isomorphism.

(More generally: Let R be a Noetherian ring,
M afinitely generated R-module. Then one can
find a finitely generated free R-module F and an
R-homomorphism ¢ : F — M (onto), whose
kernel defines the first syzygy of M.)

fixed component  The maximal positive divi-
sor X that is contained in all divisors of a linear
system X is called the fixed component of X.

Let V be a complete irreducible variety, fo,
f1, ..., fu the elements of the function field
k(V) of V, and D a divisor ring on V such that
(f;) + D > 0, for all i. Then the set ¥ of the
divisors of the form (Xa; f;) + D, with a; € k
not all zero, is called a linear system.

flat dimension A left R module B, where R
is a ring with unit, has flat dimension n if there
is a flat resolution

0O—E,— - --—Ey—B—0,

but no shorter flat resolution of B. The defini-
tion of the flat dimension of a right R module
is entirely similar. See flat resolution. Flat di-
mensions have little relation to more elementary
notions of dimension, such as the dimension of
a vector space, but they are related to the idea of
injective dimension. See also injective dimen-
sion, projective dimension.

flat module  Let R be a ring and M a right
R-module. If for any exact sequence

0—>N —->N-—>N' >0,
the induced sequence
0> MErN - M N > MrN" =0

is exact, then R is a flat R-module.

Here M ®r N is a tensor product of a right
R-module M and a left R-module N.
Remark: In view of the isomorphism between
M ®pg N and N ® g M, we could drop the qual-
ifiers left and right.



flat morphism of schemes A morphism of
schemes f : X — Y such that, for each point
x € X,astalk Oy , atthat pointisaflat Oy, (x)-
module. If f is surjective, f is faithfully flat.

flat resolution Let B be a left R module,
where R is a ring with unit. A flat resolution of
B is an exact sequence,
ﬁ) E ﬂ) Ey ﬂ) B— 0,

where every E; is a flat left R module. (We
shall define exact sequence shortly.) There is
a companion notion for right R modules. Flat
resolutions are important in homological alge-
bra and enter into the dimension theory of rings
and modules. See also flat dimension, flat mod-
ule, injective resolution, projective resolution.

An exact sequence is a sequence of left R
modules, such as the one above, where every ¢;
is a left R module homomorphism (the ¢; are
called connecting homomorphisms), such that
Im(¢i+1) = Ker(¢;). Here Im(¢; 1) is the im-
age of ¢; 41, and Ker(¢;) is the kernel of ¢;. In
the particular case above, because the sequence
ends with 0, it is understood that the image of
o is B, that is ¢ is onto. There is a companion
notion for right R modules.

formal group  Formal groups are analogs of
the local Lie groups, for the case of algebraic
k-groups with a nonzero prime characteristic.

formal scheme A topological local ringed
space thatis locally isomorphic to a formal spec-
trum Spf(A) of a Noetharian ring A.

formal spectrum  Let R be a Noetherian ring
which is complete with respect to its ideal [/
(in the 7-adic topology), so that its completion
along I can be identified with R. The formal
spectrum Spf(R), of R, is a pair (X, Oy) con-
sisting of a formal scheme X = V (/) C Spec
(R) and a sheaf of topological rings O y defined
as follows:

—1i /TN
F(D()NX, Ox) =limyoRy/I"Ry, f€R.

Here V (I) is a set of primitive ideals of R con-
taining I, D(f) = Spec(R) — V(f), f € R
are elementary open sets forming a base of the
Zariski topology, and I'(Q, O) designates the
set of sections over Q of a sheaf space O over
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X. A section of O over Q is a continuous map
g:ACX — Osuchthat w oo = 14, where
7w : O — X issuch that 7(O;) = x, Oy being
a stalk over x.

formring Let (R, P) be a local ring and Q
its P-primary ideal. Set

F,=0/0"", i=0,1,...; Q" =R,
and for A = A’ (mod Q'*!) € F; B = B’ (mod
0/ith e Fj, require

AB = A'B’ (moni+-/+1> € Fi+j .

Then the form ring of R with respect to Q is
defined as a graded ring F generated by F; over
Fy and equal to the direct sum of modules

where F; is a module of homogeneous elements
of degree i.

formula (1) A formal expression of a propo-
sition in terms of local symbols.

(2) A formal expression of some rule or other
results (e.g., Frenet formula, Stirling formulas,
etc.).

(3) Any sequence of symbols of a formal cal-
culus.

forward elimination A step in the Gauss
elimination method of solving a system of linear
equations

n
Zaijszb,-, (i:l,...,n)

consisting of the following steps

gt _ gy () (m)/a(m)

aij aij Dim Cmj [ Amm >
b;m-"—l) _ bi(m) (’")b(m)/a(m) i
i,j=m+1,...,n, with
o = ais, b =i,



for all i, j. After the forward elimination, we
get a system with a triangular coefficient matrix

n
(m)
Z ST bﬁnm),

j=m

m=1,...,n

and apply backward elimination to solve the sys-
tem.
Also called forward step.

four group  The simplest non-cyclic group
(of order 4). It may be realized by matrices

+1 0

0 =+1
(any two elements different from the identity
generate V'), or as a non-cyclic subgroup of the

alternating group Ay, involving the permuta-
tions

(1), (12)(34), (13)(24), (14)(23) .

It is Abelian and, as a transitive permutation
group, it is imprimitive with the imprimitivity
system {12}, {34}.

Alsocalled Klein’s four group or Vierergruppe
V.

Fourier series
ries of the form

An infinite trigonometric se-

1 > .
an + Z [a, cosnx + b, sinnx]
n=1
with ag, ar,...,b1,--- € R, referred to as

(real) Fourier coefficients. Here

T
1
a, = — / f(t)cosnt dt ,
b4
—TT

g
1
m:-/memm,
T
—7T

n=20,1,2,..., with f(¢) a periodic function
with period 2. The relationship between f (x)
and the series is the subject of the theory of
Fourier series. The complex form is

00
Z Ckezkx )
k=—o00
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so that

1 . _
Ck = E(ak—lbk)zc—k-

Fourier’s Theorem
polynomial in x,

Consider an nth degree

fx) =apx" +ax" '+ +ap,

with @; € R and qp # 0, and the algebraic
equation

f(x)=0.

Designate by V(cy, ¢z, ..., cp) the number of

sign changes in the sequence cy, ¢z, ..., cp of
real numbers, defined by
14
14 (Cl, €2, .-.,Cp) =3 Z(l — sgnc,,jc,,jﬂ) ,
j=1

where ¢, ¢y, .. ., Cy, is obtained from cy, ¢3,
..., cp by deleting the vanishing terms ¢; = 0.
Defining, finally

W =V (£ F@). . fO)
and
N=N(a,b)y=W()—-Wb),

the number m = m(a, b) of real roots in the
interval (a, b) equals

m= N (mod2), m <N,

ie,m=Norm=N-—-2orm=N—4,...,
orm=0orl.

The precise value of m can be obtained us-
ing the theorem of Sturm that exploits the se-
quence f(x), f/(x)v Ri(x), ..., Ryy—1(x), Ry,
where — R; is the remainder when dividing R; _»
by R;_1, with Ry = f" and R_; = f. Then
m = W(a) — W(b).

Fourier’s Theorem (on algebraic equations)
is also called the Budom-Fourier Theorem.

fraction A ratio of two integers m /n, where
m is not a multiple of n and n # 0, 1, or any
number that can be so expressed. In general,
any ratio of one quantity or expression (the nu-
merator) to another nonvanishing quantity or ex-
pression (the denominator).



fractional equation  An algebraic equation
with rational integral coefficients.

fractional exponent = The number a, in an
expression x“, where a is a rational number.

fractional expression  See fraction.
fractional ideal (1) (Of an algebraic num-
ber field k) Let k be an algebraic number field
of finite degree (i.e., an extension field of Q of
finite degree) and I an integral domain consist-
ing of all algebraic integers. Further, let p be
the principle order of k (i.e., an integral domain
k N I whose field of quotients is k) and a an
integral ideal of k (i.e., an ideal of the principle
order p). Then a fractional ideal of k is a p-
module that is contained in & (i.e., pa C a) such
that oa C p for some o (@ € k, @ # 0). See
algebraic number, algebraic integer.

(2) (of a ring R) An R-submodule a of the
ring Q of total quotients of R such that there
exists a non-zero divisor q of R such that qa C
R. See ring of total quotients.

fractional programming  Designating: X an
n-dimensional vector of decisive variables, m
an n-dimensional constant vector, Q a positive
definite, symmetric, constant n X n matrix and
(, ) the scalar product, the problem of fractional
programming is to maximize the expression

(x, m)

Vi Qx)'

subject to nonnegativity of x (x > 0) and linear
constraints Ax < b.

fractional root A root of a polynomial p(x)
with integral coefficients

p(x) =apx" + aix""' 4+ +ay

that has the form r/s. One can show that r and s
are such that a,, is divisible by r and ag is divisi-
ble by s. Any rational root of monic polynomial
having integral coefficients is thus an integer.
Also called rational root.

free Abelian group  The direct product (fi-

nite or infinite) of infinite cyclic groups. Equiv-
alently, a free Abelian group is a free Z-module.
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An infinite cyclic group is one generated by a
simple element x such that all integral powers of
x are distinct. See cyclic group, direct product.

free additive group  The direct sum of ad-
ditive groups A;,i € &, such that each A; is
isomorphic to Z. See additive group.

free group A free product of infinite cyclic
groups. The number of free factors is called the
rank of the group F. Alternatively, (i.) a free
group F, on n generators is a group generated
by aset of free generators (i.e., by the generators
that satisfy no relations other than those implied
by the group axioms); (ii.) a free group is a group
with an empty set of defining relations.

To form a free group we can start with a free
semigroup, defined on a set of symbols § =
{ai, ay, ...}, that consists of all words (i.e., fi-
nite strings of symbols from S, repetitions being
allowed), including an empty word representing
the unity. Next, we extend S to S’ that contains
the inverses and the identity e

/ -1 —1
S —{e,al,a1 , a2,y ,}

Then a set of equivalence classes of words
formed from S’ with the law of composition de-
fined by juxtaposition (to obtain a product o8 of
two words « and 8, we attach § to the end of
«; to obtain the inverse of « reverse the order of
symbols a; while replacing a; by a; ! and vice
versa) is the free group F on the set S.
The equivalence relation (designated by “~”

used to define the equivalence classes is defined

via the elementary equivalences ee ~ e, a;a; !

~ e, ai_lai ~e, aje ~ a;, ai_le Nai_l,eai =
aj, ealfl = alf], so that  ~ B if « is obtain-
able from B through a sequence of elementary

equivalences.

free module
has a basis.
Remarks: (i.) If R is a field, then every R-
module is free (i.e., a linear space over R).

(ii.) A finitely generated module V is free if
there is an isomorphism ¢ : R" — V, where R
is a commutator ring with unity.

(iii.) A free Z-module is also called a free
Abelian ring.

For aring R, an R-module that



free product  Consider a family of groups
{Gi}ieg and their disjoint union as sets S. A
word is either empty (or void) or a finite se-
quence a1a; . . .ay, of the elements of S. Des-
ignate by W the set of all words and define the
following binary relations on W:

(i.) The product of two words w and w’ is
obtained by juxtaposition of w and w’.

(ii.) w > w’ if either w contains successive
elements aiay41 belonging to the same G; and
w’ results from w by replacing agay+1 by their
product a = agai+1, or if w contains an identity
element and w’ results by deleting it.

(iii.) w ~ w’ if there exists a finite sequence
of words w = wg, wy, ..., w, = w’ such that
foreachj (j =0,...,n—1)eitherw; > wjy;
Or Wjy1 > Wj.

Clearly, the definition of the product imme-

diately implies the associativity and “~” rep-
resents an equivalence relation that is compati-
ble with multiplication. We can thus define the
product for the quotient set G of W by the equiv-
alence relation ~, and take as the identity the
equivalence class containing the empty word.
The resulting group G is called the free product
of the system of groups {G;}icz.
Remarks: (i.) The free product is the dual con-
cept to that of the direct product (and is called
the coproduct in the theory of categories and
functors).

(i1.) If each Gj is an infinite cyclic group
generated by a;, then the free product of {G; }icz
is the free group generated by {a;};cz-

free resolution (Of Z) A certain cohomo-
logical functor, defined by Artin and Tate, that
can be described as a set of cohomology groups
concerning a certain complex in a non-Abelian
theory of homological algebras.

free semigroup  All words (i.e., finite strings
of symbols from a set of symbols § =
{a1, az, ...}) with the product defined by jux-
taposition of words [and the identity being the
empty (void) word when a semigroup with iden-
tity is considered]. See also free group.

free special Jordan algebra Let A = k[xq,

..., Xp] be anoncommutative free ring in the in-
determinates xp, ...x, (i.e., the associative al-
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gebra over k). Defining a new product by
xky=(xy+yx)/2,

we obtain a Jordan algebra A(/). The subalgebra
of A generated by 1 and the x; is called the
free special Jordan algebra (of n generators).
Remark: A special Jordan algebra AV) arises
from an associative algebra A by defining a new
product x % y, as above.

Frobenius algebra  An algebra A over a field
k such that its regular and coregular representa-
tions are similar.
Remarks: (i.) Any finite dimensional semi-
simple algebra is a Frobenius algebra.

(ii.) An algebra A is a Frobenius algebra,
if the left A-module A and a dual module A*
of the right A-module A are isomorphic as left
A-modules.

Frobenius automorphism  An element of a
Galois group of a special kind that plays an im-
portant role in algebraic number field theory.
Designate by K/ F a relative algebraic num-
ber field, with K a Galois extension of F' of
degree [K : F] = n, G = G(K/F) the cor-
responding Galois group, and 2 the principal
order of K. In Hilbert’s decomposition theory
of prime ideals of F, for a Galois extension K / F
in terms of the Galois group G, the subgroup

H={oeG:P° =P},

called the decomposition group of a prime ideal
‘P of Q over F, plays an importantrole. The nor-
mal subgroup H of H, called the inertia group
of P over F, is defined by

H={oe€H:a’ =amodP), a € Q} .

The quotient group H/H is a cyclic group
of order k, where k is the relative degree of P.
This cyclic group is generated by an element
0, € H that is uniquely determined (mod?{) by
the requirement

a% = a"™ (modP), aeQ

where  is a prime ideal of F that is being de-
composed. This element o, is referred to as the
Frobenius automorphism or the Frobenius sub-
stitution of P over F.



See also ramification group, ramification
numbers, ramification field, Artin’s symbol.

Frobenius endomorphism  For a commuta-
tive ring R with identity and prime characteristic
p, the ring homomorphisn F : R — R, defined
by

F(a) =a?, (foralla € R) .

Clearly, for any a, b € R, we have that
(a+ b)Y =a? +b” and (a-b)? =aPl - bP .

For a Galois extension K /F, over a prime field
F, of degree m := [K : F,] (with p” = ¢
distinct elements), referred to as Galois field F,
of order g, the Frobenius endomorphism

F:¥F,—>F, F:x—xP
is injective and thus an automorphism of Fj.
(See also Frobenius automorphism.) In fact, F
generates the cyclic Galois group G(F, /F)).

Generally, for a scheme X over a finite field
F, of g(= p") elements, the Frobenius endo-
morphism is an endomorphism ¢ : X — X
such that ¢ = Id (the identity mapping) on the
set of F,—points of X (i.e., on the set of points of
X defined over F,; ) and the mapping of the struc-
ture sheaf ¥* : Ox — Oy raises the elements
of Ox to the gth power.

Thus, for an affine variety X C A" defined
over F,, we have

Y (x1, ..

.,xn)z(xf,...,x,‘{) .

Frobenius formula  The characters X([;‘% of
the irreducible representation [A] = (Aq, A2,
..., M), associated with the class (@) = (1%
20239 | p%) of the symmetric (= permuta-
tion) group S,,, where the partitions [A] and («)
of n satisfy the relations

n n
ZK,’ZHZZZ'O(,‘,
i=1 i=1

AMZA =20 20,

are given by the following Frobenius formula:

Y xH A () = Fay(x)
A
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where F(y)(x) = A(x)s(q)(x) is the Frobenius
generating function (q.v.) and A (x) is a gen-
eralized Vandenmonde determinant

A () = ARR220) () g L x)

s -1 A -1 A -1
x11+n x21+l’l x"1+n
x}»z-}-n—z xA2+n—2 xkz+n—2

_ 1 2 n
A A A
X" X" - X"

An alternative form is

S =) X([SS[A](X) ;
P

where S[31(x) is Schur polynomial and 54 (x) =
]_[;’: 1 (s (x))% is the product of «;th powers of
Newton polynomials

n
sr(x) = Zx,’ .
i=1

See also Frobenius generating function.

Frobenius generating function  For an arbi-
trary partition (o) of n, written in the form

n
(a) = (1‘)“2"[2 ...n“"), Ziai =n,
i=1
the Frobenius generating function Fy)(x) =

Fa)(x1, ..., xy) is given by the product

Flay(x) = AX)s@)(x) ,

where A(x) is a polynomial, expressible as a
Vandermonde determinant

A) = A xg, . x) =[] (6 —x))

i<j
—1 n—1 n—1
X Xy X,
= 2 2 2 s
)Cl )C2 X,
X1 X2 Xn
1 1 1

and s()(x) = [[/_;(sr(x))% is a product of
a;th powers of power sums (or Newton polyno-

mials) s,
n
sr(x) = ler .
i=1



See also Frobenius formula.

Frobenius group A (nonregular) transitive
permutation group on a set M, each element of
which has at most one fixed point, i.e., the iden-
tity of the group is its only element that leaves
more than one element of M invariant. See reg-
ular transitive permutation group.

Frobenius homomorphism  (For commuta-
tive rings.) Let A be a commutative ring of
prime characteristic p, so that (a + b)?" =
a?" + bP" for any a,b € A and any n € N.
Thus, the map ¢ : a > a” is an endomorphism
of the additive group of A. Since further 17 = 1
and (ab)? = aPbP fora,b € A, this is also an
endomorphism of A, which is referred to as the
Frobenius homomorphism of A. It is injective
when 0 is the only nilpotent element of A, which
is the case when A is an integral domain. See
also Frobenius endomorphism for schemes.

Frobenius inequality Let f : X — VY, g:
Y - Z,andh : Z — V be linear maps of finite
dimensional vector spaces over a division ring
(a skew-field). Then

rank (hg)+rank (gf) < rank (g)-+rank (hgf) .

Frobenius morphism  See Frobenius auto-
morphism, Frobenius homomorphism, Frobe-
nius endomorphism.

Frobenius norm For an n x n matrix A,
the length, denoted || A||, of the n2-dimensional
vector

(a1, a2, ..
ie.,

L] all’ls CIZIs 6122, R aZn, MR ann)»

1/2

n
Hag = 3 Jay |’

i,j=1

Frobenius normal form  An n x n matrix
A = (a;;) that is block (upper) triangular, with
the diagonal blocks being square irreducible ma-
trices that correspond to the strongly connected
components of G(A). Here, G(A) is the di-
rected graph (digraph), G(A) = (V, E), con-
sisting of vertices V = {1,2,...,n} and di-
rected edges E = {(i,j) : a;j # 0}. The
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set V admits a partition into disjoint subsets of
vertices so that in each such subset the vertices
have access to each other via a directed path (se-
quence of edges). The subsets of this partition
are called the strongly connected components of
G(A).

If there is only one strongly connected com-
ponent, we call A irreducible. Otherwise, A
is reducible. If A is reducible, there exists a
permutation matrix P such that PAPT  is in
Frobenius normal form. For instance, if G(A)
has t strongly connected components, then its
Frobenius normal form is

Al Ap ... - Alr
0 Ay  Anz .. Ay,
o o0 . : ,
. At—l,t—l At—l,t
O ... .. O Alr
where each A;; fori = 1,2,...,t is square

and irreducible. The Frobenius normal form is
not, in general, unique. As for any permutation
matrix P, P~! = PT spectral properties of A
can be studied by studying spectral properties
of the irreducible blocks A;; in its Frobenius
normal form.

Frobenius Reciprocity Theorem Let G and
H be finite groups, I" and y some irreducible
representations of G and H, respectively, and
H asubgroup of G, H C G. Designate by (y 1
G) the representation of G induced by y and
by (I' | H) the representation of H subduced
(restricted) from I'. Then the multiplicity of "
in (y1G) equals the multiplicity of y in (I'{ H).
Equivalently,

(x D, x Y16 = (x T x Py

where x®) designates the character of the rep-
resentation = of X and

=) =/ l LVEN =/
(@ XE) =" x®@)x® ),

|X| xeX

is a normalized Hermitian inner product on the
class function space of X, X = H or G.
Frobenius substitution  See Frobenius auto-
morphism.



Frobenius Theorem  There are a number of
theorems associated with the name of Frobenius.
(See also Frobenius Theorem on Non-Negative
Matrices, Frobenius Reciprocity Theorem.)

(1) (Frobenius Theorem on Division Alge-
bras.) The fields R (the field of real numbers)
and C (the field of complex numbers) are the
only finite dimensional real associative and com-
mutative algebras without zero divisors (i.e., di-
vision algebras), while H (the skew-field of
quaternions or Hamilton’s quaternion algebra)
is the only finite dimensional real associative,
but noncommutative, division algebra.

For nonassociative algebras, the only alterna-
tive algebra without zero divisors is the Cayley
algebra. See Cayley algebra, alternative algebra.

(2) (Frobenius Theorem for Finite Groups.)
For a finite group G of order |G| = g, the num-
ber of solutions of the equation x” = ¢, where
¢ belongs to a class C having & conjugated ele-
ments, is given by g.c.d. (hn, g).

The original, simpler version of this theorem
states that the number m of solutions of x" = 1,
where n|g, is divisible by n, i.e., n|m.

(3) (Frobenius Theorem for Transitive Per-
mutation Groups.) For a transitive permutation
group G of degree n, whose elements, other than
the identity, leave at most one of the permuted
symbols invariant, the elements of G displacing
all the symbols form, together with the identity,
a normal subgroup of order n.

(4) (Also called Zolotarev-Frobenius Theo-
rem.) Let a be an arbitrary integer and b any odd
integer such that a and b are relatively prime,
ie., g.cd.(a,b) = 1. Further, let m, desig-
nate multiplication by a in the additive group
H :=Z/bZ. Then n, (regarded as an automor-
phism of H) represents a permutation of the set
H and as such possesses the parity (or sign) &

given by
5t = (3) -

where (%) is the Jacobi (generalized Legendre)
symbol.

(5) (Frobenius Theorem in Finite Group The-
ory.) Let H be a selfnormalizing subgroup of a
finite group G, Ng(H) = H, and

Hﬂxile:{e},

for all x € G. Then the elements of G that do
not lie in H, together with the identity element
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e, form a normal subgroup N of G,
N = (G\H) U {e},

suchthat G = NH, HN N = {e¢}and G/N =
H. See also Frobenius group.

(6) (Frobenius Theorem on Abelian Varieties.)
Let G be an additive group of divisors on an
Abelian variety A, X a divisor on A, and A the
Picard variety of A. Denote by ¢x a rational
homomorphism of A into A that mapsa € A
into the linear equivalence class of the divisor
X, — X, where X, is the image of X under the
translation A — A definedby b +— a+b. There
are elements ay, ..., a, such that the product
(intersection) X, e --- @ X, ,n = dim A is de-
fined. Designating the degree of the zero cycle
X4 0---0X, by (X®), the degree of ¢, is
given by (X™)/n!

(7) (Frobenius Theorem on Subduced Repre-
sentations.) Let G be a (finite) group having
r classes Cy, (¢ = 1,...,r) with rp elements
each, |Cy| = r¢. Further, let {I";} be the set of
irreducible representations (irreps) of G, and x;
the character of I';. Similarly, let H be a sub-
group of G having s classes Dy with s; elements
each, and having the irreps {A ;} and characters
¢ ;. Designate, furthNer, the representation of H
subduced by I'; by I'; = I'; | H and its char-
acter by ;. Then there exist rs nonnegative
integers c¢;; such that

f:i;@j:]CijAjv i=1,...,r)

and
N
Z’:ZC,’j(bj, (i:l,...,r).
j=1
Clearly,
1 N
i = T Y sXiod; (k) .
k=1

Finally,

d G
Zcij)(i(ﬁ) = % Zseffi’j(ﬁ/[ﬁ]) ,
l:1 [/

where ¢/[£] labels the classes D, of H that are
contained in (Cy N H) and have sy elements.



Frobenius Theorem on Non-Negative Matri-
ces (Also called Peron-Frobenius Theorem.)

Let A be an indecomposable (or irreducible),
non-negative n xn matrix over R, A = [|a;; |l xn
(i.e., all entries a;; of A are non-negative and
there are no invariant coordinate subspaces
when we regard A as an operator on R”; in other
words, a;; > 0 and there are no permutations of
rows and columns that would reduce the matrix
to the following block form

(A]Z Q >)
Ari Axp ’

Further, let Ag, ..., A,—1 be eigenvalues of A,
labeled in such a way that

p=lrol=Ial == 1| > 12nl = |ppi]

== |)\'I‘l—1|1

Then
(i.) If A majorizes a complex matrix B, i.e.,

1<h=<n).

bij| <aij. G.j=1.....n)
and
pB 1= max |ul
0<i<n
with uo, i1, . .., Ln—1 the eigenvalues of B, we
have that

PB =P .

(ii.) A always has a positive eigenvalue p that
is a simple root of the characteristic polynomial
of A and p majorizes the moduli of all other
eigenvalues as the above introduced notation (i)
implies. The coordinates ¢; (1 < i < n) of
an eigenvector ¢, ¢ = (¢, ¢2, ..., c,,)T that is
associated with this “maximal” eigenvalue p are
either all positive (¢; > 0) or all negative (¢; <
0).

(iii.) If A has h characteristic values Ao =
0, M, ..., Ap—1 of modulus r, as in (i), then
these eigenvalues are all distinct and are given
by the roots of the equation A — ph =0,i.e.,

r=w'p, (G=0,1,....,h—1)

where o is the Ath root of unity, w = e27i/",
Moreover, any eigenvalue of A, multiplied by
w, is again an eigenvalue of A. Thus, the entire
spectrum {A;, 0 <i < n} of A is invariant with
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respect to a rotation by 27/ h when represented
by points in the complex plane.

(iv.) Finally, if 2 > 1, the matrix A can be
brought to the following cyclic form

0 Ap 0 ... 0
0 0 Ay ... 0

A= 1 :
0 0 0 Ap_1n
App 0 0o ... 0

with square blocks along the diagonal, by a suit-
able permutation of rows and columns.

Fuchsian group A special case of a Kleinian
group, i.e., a finitely generated discontinuous
group of linear fractional transformations acting
on some domain in the complex plane. (See
Kleinian group, linear fractional function.)
Generally, a Fuchsian group is a discrete (or
discontinuous) transformation group of an open
disc X in C onto the Riemann sphere. More
specifically, one considers transformations of
the upper half-plane X, = {z € C: Iz > 0} or
of the unitdisc Xy = {z € C : |z| < 1} onto the
complex plane. In the former case (X = X,),
the elements of a Fuchsian group are Mobius
(linear fractional) transformations (or conformal

mappings)

az+b
H

———, a,b,c,deR, ad —bc=1,
cz+d

so that the relevant group is a subgroup of
PSL(2). In the latter case (X = Xy ), the group
elements are Mobius transformations with
pseudo-unitary matrices.

When one considers the disc X as a con-
formal model of the Lobachevski plane, then
a Fuchsian group can be regarded as a discrete
group of motions in this plane that preserve the
orientation. A Fuchsian group is referred to as
elementary if it preserves a straight line in the
Lobachevski plane (or, equivalently, some point
in the closure X of X). For a nonelementary
Fuchsian group I', one then defines the limit set
of T, designated as L(I'), as the set of limit
points of the orbit of a point x € X located on
the circle X and independent of x. We then
distinguish Fuchsian groups of the first and sec-
ond kind: for the former kind, we require that



L(T") = 0X, while in the second case L(I") is a
nowhere dense subset of 9.X.

For any z € C U {oo} (the extended com-
plex plane) and any sequence {y;} of distinct
elements of I", we define a limit point of T as a
cluster point of {y;z}. If there are at most two
limit points, I' is conjugate to a group of mo-
tions of a plane. Otherwise, the set £ of all limit
points of I' is infinite, and I" is called a Fuchsoid
group. Such a group is Fuchsian if it is finitely
generated.

Fuchsoid group  See Fuchsian group. Also
called Fuchsoidal group.

function  One of the most fundamental con-
cepts in mathematics. Also referred to as a
mapping, correspondence, transformation, or
morphism, particularly when dealing with ab-
stract objects. This concept gradually crystal-
ized from its early implicit use into the present
day abstract form. The term “function” was first
used by Leibniz, and it gradually developed into
a general concept through the work of Bernoulli,
Euler, Dirichlet, Bolzano, Cauchy, and others.
The modern-day definition as a correspondence
between two abstract sets is due to Dedekind.

Generally, a function f is a relation between
two sets, say X and Y, that associates a unique
element f(x) € Y to an element x € X. (See
relation.) The sets X and Y need not be distinct.
Formally, this many-to-one relation is a set of or-
dered pairs f = {(x, y)},x € X, y € Y, thatis,
a subset of the Cartesian product X x Y, with the
property that for any (x/, y") and (x”, y”) from
f, the inequality y’ # y” implies that x” # x”.
The first element x € X of each pair (x, y) € f
is called the argument or the independent vari-
able of f and the second element y € Y is re-
ferred to as the abscissa, dependent variable or
the value of f for the argument x.

The sets Xy and Y of the first and second
elements of ordered pairs (x, y) € f are called
the domain (or the set) of definition of f and the
range (or the set) of values of f, respectively,
while the entire set X is simply called the domain
and Y the codomain of f. For any subset A C
X, the set of values of f, {y = f(x) € Y :
x € A} is called the image of A under f and is
designated by f(A). In particular, the image of
the domain of f'is f(X),ie., Yy = f(Xy)or
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Yy = f(X), and the image of the element x €
X runder fisy = f(x). Often one simply sets
X = Xy. The setof ordered pairs f = {(x, y)},
regarded as a subset of X x Y, is referred to as
the graph of f. (See graph.)

The mapping property of a function f is usu-
ally expressed by writing f : X — Y, and
for (x,y) € f one often writes y = f(x) or
fi:xm—yoreveny = fxory=uxf. Inlieu
of the symbol f(xg) one also writes f(x)|x=x,,
and often the function itself is denoted by the
symbol f(x) rather than f : x +> y, since this
notation is more convenient for actual computa-
tions.

The set of elements of X that are mapped into
agiven yg € Y is called the pre-image of yp and
is designated by f~!(yp), so that

Floo=xeX: fx)=yo} .

For yg € Y\Y; we have clearly f 1) =0
(the empty set).

The notation f : X — Y indicates that the
set X ismapped infothesetY. When X =Y, we
say that X is mapped into itself. WhenY =Yy,
we say that f maps X onto Y or that f is sur-
Jjective (or a surjection). Thus, f : X — Y isa
surjection (or onto) if for each y € Y there ex-
ists at least one x € X such that f : x — y. If
the images of distinct elements of X are distinct,
i.e., if x’ # x” implies that f(x") # f(x”) for
any x’, x” € X, we say that f is one-to-one, or
univalent, or injective (or an injection). Thus, f
is injective if the preimage of any y € Yy con-
tains precisely one element from X, i.e., card
oy =1,y¢€ Yy. Themapping f : X — Y
that is simultaneously injective and surjective
(or one-to-one and onto) is referred to as bi-
Jjective (or a bijection). For a bijective func-
tion one defines the inverse function by f~1 =
(&, F7Y)), y e Yy. See inverse function.

For two functions f : X — Yandg:Y —
Z,with Yy C Y,, the function h : X — Z that
is defined as

h(x) = g(f(x)),

is called the composite function of f and g (also
the superposition or composition of f and g),
and is designated by h = g o f.

for allx € Xy,

function algebra  For a compact Hausdorff
space X, let C(X) [or Cr(X)] be the algebra



of all complex- [or real-] valued functions on X.
Then a closed subalgebra A of C(X) [or CRr(X)]
is referred to as a function algebra on X if it
contains the constant functions and separates the
points of X [i.e., forany x, y € X, x # y, there
exists an f € A such that f(x) # f(y)]. A
typical example is the disk algebra, that is, the
complex-valued functions, analytic in the unit
disk D = {|z| < 1}, which extend continuously
to the closure of D, with the supremum norm.

Alternatively, a function algebra is a semi-
simple, commutative Banach algebra, realized
as an algebra of continuous functions on the
space of its maximal ideals (recall that a com-
mutative Banach algebra is semi-simple if its
radical reduces to {0}, the radical being the set
of generalized nilpotent elements).

functionfield A type of extension of the field
of rational functions C(x) that plays an impor-
tant role in algebraic geometry and the theory of
analytic functions.

For an (irreducible) affine variety V(P),
where P is a prime ideal in C[x] = Cl[xy, ...,
X, 1, the function field of V (P) is the field of
quotients of the affine coordinate ring C[x]/P.
Similarly, for a projective variety V (P), where
‘P is a homogeneous prime ideal in a projective
n-space P", the function field of V (P) is the sub-
field of the quotient field of the homogeneous
coordinate ring C[x]/P of zero degree [i.e., the
ring of rational functions f (xo, x1, . .. x,)/g(xo,
X1, ..., %) (f, g being homogeneous polyno-
mials of the same degree and g ¢ P) modulo
the ideal of functions (f/g), with f € P]. See
also Abelian function field, algebraic function
field, rational function field.

function group A Kleinian group I" whose
region of discontinuity has a nonempty, con-
nected component, invariant under I".

functor A mapping from one category into
another that is compatible with their structure.
Specifically, a covariant functor (or simply a
functor) F : C — D, from a category C into a
category D, represents a pair of mappings (usu-
ally designated by the same letter, i.e., F).

F:00C— ObD, F :MorC — MorD,
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associating with each object X of C, X € Ob(C
an object F(X) of D, F(X) € ObD, and with
each morphisma : X — Y inC, @ € Mor(C, a
morphism F(«) : F(X) - F(Y)inD, F(x) €
MorD, in such a way that the following hold:

(i.) F(lx) = IF(X)s for all X € Ob(C and

(ii.) F(a o B) = F(a) o F(B) for all mor-
phismso € Homg (X, Y)and 8 € Home (Y, Z).

Note that a functor F : C — D defines a
mapping of each set of morphisms Hom¢ (X, Y)
into Homp (F (X), F(Y)), associating the mor-
phism F(«) : F(X) — F(Y)toeach morphism
o : X — Y. Itis called faithful if all these maps
are injective, and full if they are surjective. The
identity functor /d¢ or 1¢ of a category C is the
identity mapping of C into itself.

A contravariant functor F : C — D asso-
ciates with a morphism « : X — Y in C a mor-
phism F(«) : F(Y) — F(X) in D (or, equiva-
lently, acts as a covariant functor from the dual
category C* to D), with the second condition
(ii.) replaced by (ii.”) F(x o 8) = F(B) o F(x)
for all morphisms « € Homg(X,Y), B €
Home¢ (Y, Z).

A generalization involving a finite number
of categories is an n-place functor from n cate-
gories Cy, .. .C, into D that is covariant for the
indices iy, i2, ..., i and contravariant in the re-
maining ones. This is a functor from the Carte-
sian product ®;’ZIC~,- into D where C; = C; for
i =i, ...,igand G = C’ otherwise. A two-
place functor that is covariant in both arguments
is called a bifunctor.

fundamental curve A concept in the theory
of birational mappings (or correspondences) of
algebraic varieties. See birational mapping.

Consider complete, irreducible varieties V
and W and a birational mapping F between
them, F : V — W. A subvariety V' of V is
called fundamental if dim F[V'] > dim V’.

When V' is a point, it is called a fundamental
point with respect to F and, likewise, when V' is
a curve, it is referred to as a fundamental curve
with respect to F .

See also Cremona transformation for a bira-
tional mapping between projective planes.

Remarks: A variety V is irreducible if it is
not the union of two proper subvarieties and any



algebraic variety can be embedded in a complete
variety.

A projective variety is always complete, while
an affine variety over a field F' is complete when
it is of zero dimension.

fundamental exact sequence A concept in
the theory of homological algebras.

Let H'(G, A) be the ith cohomology group
of G with coefficients in A, where A is a left G-
module (that can be identified with a left Z[G]-
module). (See cohomology group.) Designate,
further, the submodule of G-invariant elements
in A by AC and assume that H* (H,A) =0, i =
1,...,n, for some normal subgroup H of G.
Then the sequence

0 — H" (G/H, AH> — H"(G, A)
~ H" (H, AG)
- H" (G/H, AH)
— H"(G, A)

(composed of inflation, restriction, and trans-
gression mappings) is exact and is referred to as
the fundamental exact sequence.

fundamental operations of arithmetic =~ The
operations of addition, subtraction, multiplica-
tion, and division. See operation. Often, extrac-
tion of square roots is added to this list.

Starting with the set N of natural numbers,
which is closed with respect to the first three
fundamental operations, one carries out an ex-
tension to the field of rational numbers Q rep-
resenting the smallest domain in which the four
fundamental operations can be carried out in-
discriminately, excepting division by zero. Ad-
joining the operation of square root extractions,
we arrive at the field of complex numbers C.

These operations can be defined for various
algebraic systems, in which case the commuta-
tive and associative laws may not hold.

fundamental point  See fundamental curve.
fundamental root system (of a (complex)
semi-simple Lie algebra g) A similar concept
arises in Kac-Moody algebras, in algebraic
groups, algebraic geometry, and other fields. Let
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IT be a subset of the root system A of a semi-
simple Lie algebra g, relative to a chosen Cartan
subalgebra h, IT = {&y, a2, ..., a,}. Then IT
is called a fundamental root system of A if

(i.) any root @ € A is a linear combination
of the «; with integral coefficients,

r
0[:2 m;d;, miEZ,

i=1

and

(ii.) the m; are either all non-negative (when
a € Ay is a positive root) or all non-positive.

The roots belonging to IT are usually referred
to as simple roots. They can be defined as pos-
itive roots that are not expressible as a sum of
two positive roots. They are linearly indepen-
dent and constitute a basis of the Euclidean vec-
tor space spanned by A whose (real) dimension
equals the rank of g.

fundamental subvariety See fundamental

curve.

fundamental system  (Of solutions of a sys-
tem of linear homogeneous equations)

n
Zaijxj=0, i=1....my. (1)
j=1

n
Let fi = Zai./xj’ (i =1,...,m) be linear
j=1

forms over a field F, f; : F* — F. Clearly,
the solutions of (1) form a (right) linear space
V over F, since if x, = (xfk),...,x,gk)) €
F", (k = 1,...,r) are solutions of (1), so
is their (right) linear combination Z;zl X;jcj,
¢j € F. Infact, V is the kernel of the (left) lin-
ear mapping G : F" — F™ givenby G : X >
(fix), ..., fm(x)). Designating the dimension
of Vbyd, d =dim V, we can distinguish the
following cases:

(1.) d = 0: In this case the system (1) has
only the trivial solution x = 0.

@ii.) d > 0: Choosing a basis {xi, ..., Xq}
for V, we see that any solution of (1) is a (right)
linear combination of the x¢, (k = 1,...,d).
One then says thatxy, . .., X; form a fundamen-
tal system of solutions of (1). Clearly, a nontriv-
ial solution is found if and only if r < n, r being



the rank of the matrix A = ||a;;|| [or, equiva-
lently, the number of linearly independent lin-
ear forms f;, (i = 1, ..., m)], and the number
of linearly independent fundamental solutions is
d = n —r. Since m > r, we see that a non-
trivial solution always exists if the number of
equations is less than the number of unknowns.

fundamental system of irreducible represen-
tations  (Of a complex semisimple Lie alge-
bra g.) Consider a complex semisimple Lie al-
gebra g and fix its Cartan subalgebra h. Let
k = dimh = rank g, h* the dual of h, consist-
ing of complex-valued linear forms on h, and h7,
the real linear subspace of h*, spanned by the
root system A. Let, further, [1 = {«y, ..., ag}
be the system of simple roots (see fundamental
root system) and define

20(,'

(ai, i)’

k
a;

where («, B) is a symmetric bilinear form on h*
defined by the Killing form K (-, -) as follows:

(a0, B) = K (ta 18) .

t, being a star vector associated to «, 1y = p]

(o), where v designates the bijection v : h —
h*. Let, further, Ay, ..., A be a basis of h},
that is dual to af, ..., a, i.e., (A;, a;‘f) = §;j.
Then the set of irreducible representations {I"y,
..., 'k} that have Ay, ..., Ay as their highest
weights is called the fundamental system of irre-
ducible representations (irreps) associated with
IT.

Fundamental Theorem of Algebra  Every
nonconstant polynomial (i.e., a polynomial with
a positive degree) with complex coefficients has
a complex root.

Also called Euler-Gauss Theorem.

Fundamental Theorem of Arithmetic  Ev-
ery nonzero integer n € Z can be expressed as
a product of a finite number of positive primes
times a unit (£1), i.e.,

n=Cpip2...pk,

where C = +1, k > Oand p;, i = 1,...,k
are positive primes. This expression is unique
except for the order of the prime factors.
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Fundamental Theorem of Galois Theory
Let K be a Galois extension of a field M with a
Galois group G = G(K /M). Then there exists
abijection H <> L between the set of subgroups
{H} of G and the set of intermediate fields {L},
K D L D M. Foragiven H, the corresponding
subfield L = L(H) is given by a fixed field
K™ of H (consisting of all the elements of K
that are fixed by all the automorphisms of H).
Conversely, to a given L corresponds a subgroup
H = H(L) of G that leaves each element of
L fixed, i.e., H(L) = G(K/L), so that [K :
L] = |H|. This bijection has the property that
[L : M] =[G : H], where [L : M] is the
degree of the extension L/M and [G : H] is the
index of H in G.

Also called Main Theorem of Galois Theory.

Fundamental Theorem of Proper Mapping
A basic theorem in the theory of formal schemes,
also called formal geometry, in algebraic geom-
etry. See formal scheme.

Let f : S — T be a proper morphism of
locally Noetherian schemes S and T', T’ a closed
subscheme of T, S’ the inverse image of T’
(given by the fiber product S x 7 T") and, finally,
Sand 7T the completions of S and 7 along S’ and
T’, respectively. Then f : § — T (the induced
proper morphism of formal schemes) defines the
canonical isomorphism

(R" (X)) ;7 = F" fe(X;5), n=0

for every coherent Og-module X on S, i.e., a
sheaf of Og-modules.

For a coherent sheaf X on S, X|s denotes
the completion of X along S’. R" f, is the right
derived functor of the direct image f,(X) of X.

Fundamental Theorem of Symmetric Poly-
nomials  Anysymmetric polynomial in 7 vari-
ables, p(x) = p(x1,x2,...x,), from a poly-
nomial ring R[x] = R[x1,x2,...x,], can be
uniquely expressed as a polynomial in the ele-
mentary symmetric functions (or polynomials)
S1, 82, ..., Sy inthe variables x;. See elementary
symmetric polynomial.

In other words, for each p(x) € R[x] there
exists a unique polynomial 7w (z) € R[z], z =
(z1,22, ..., 2Zn) such that
s Xp) =7 (81,82, ...

p(-xls-x29" 7SI1) )



where s; are the elementary symmetric polyno-
mials (functions)

S1= Y i1 %i,

§2 = Zz<] XiXj,

83 = Zl<.[<k XiXjXk

Sp = X1X2 Xy
Also called Main Theorem on Symmetric
Polynomials.

Fundamental trigonometric identities = Re-
call that in a plane R? with a Cartesian coordi-
nate system O —xy (i.e., with the origin O =
(0, 0) and the x- and y- axes representing the
abscissa and the ordinate), any point P € R? is
uniquely represented by its coordinates (x, y).
Designating the radial distance OP by r, r =
V/x2 + y2, and the angle POx (i.e., angle be-
tween the line PO and the x-axis) by o, we
define six ratios as follows:

sine =2, cosa =%,
tane = )y_c cotae = §
seca =L, csca =L

x y

These functions of « are called trigonometric or
circular functions. They are interrelated as fol-
lows

__ sina _cosa _ 1
tana = COfD[’ cota = sin o T tana’
SeCOl:COSDt, Csca:sina’

2

1+ tan? o = sec?a, 1 + cot? o = csca.

Furthermore, we have that
sina + cos?a = 1 ,

implying that the points P = (x, y) lying on
the unit circle x> 4 y? = 1 with its center at the
origin (0, 0) can be expressed in terms of the
angle o as P = (cos «, sin ).

The important addition formulas read
sin(e £ B) = sina cos B % cos & sin S,
cos(a £ B) = cosa cos B F sina sin B,
tan(o &= B) = (tan £ tan B)/(1 Ftan o tan §).
When o = 8 we have
sin2a = 2sina cos «,
cos2a = cos?a — sin>a = 2cosla — 1 =
1 — 2sin? o,

and for a general integral multiple of «
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sinna =

[(n—1)/2]

> ()

j=0

(— 1)/ sin?/*1 g cos =2+ o

cosna = Z/"/(z) (2/> (—1)/ sin® « cos" % q,
while the half-angle formulas are

51n2( )— 2(1 cosa),
C0S2( )— 2(l—f—cosoz)

tan’ (2) = %

The addition formulas are

sinoe—l—sinﬂ:2sinﬂcosT’S
sina—sinﬂ:Zcoswm zﬂ,
cosa+cosﬂ=2005wco ==,
cosoz—cos,3=—2sm#sm 2’3

and the product formulas are

2sina cos B = sin(a + B) + sin(a — B),
2cosa sin B = sin(o + B) — sin(a — B),
2cosa cos B = cos(a + B) + cos(a — B),
—2sina sin 8 = cos(a + B) — cos(a — B).

fundamental unit By Dirichlet’s Unit The-
orem, the unit group Ej of an algebraic number
field k is the direct product of a cyclic group of
a finite order and the free Abelian multiplicative
group of rank r (note that ¥ = r; +r, — 1, where
r1 and r, designate, respectively, the number of
real and complex conjugates x), i = 1,...,n
of any x € k, so that r{ + 2r, = n, n being the
degree of k over Q). A basis (eq, €2, ..., e,) of
this free Abelian group is referred to as a system
of fundamental units of k. See Dirichlet Unit
Theorem, unit group.

fundamental vectors The vectorseq, e, ...,
e, of an n-dimensional vector space V over F,
forming a basis of V, are referred to as funda-
mental vectors of V. Clearly, forany x € V, we
have thatx = ) _/_, &;e;, & € F, and the &; are
called the components of x, with respect to the
fundamental vectors e, ..., €,.



G

Galois cohomology Let K /k be a finite Ga-
lois extension with the Galois group G(K/k).
Suppose, further, that G(K/k) acts on some
Abelian group A. The Galois cohomology
groups H*"(G(K /k), A) = H"(K /k, A), n >
0 are then the cohomology groups defined by the
(cochain) complex (F", d), with F" consisting
of all mappings G(K /k)" — A and d designat-
ing the coboundary operator (see cohomology
groups). When the extension K /k is of an in-
finite degree, one also requires that the Galois
topological group acts continuously on the dis-
crete group A and the mappings for the cochains
in F" are also continuous.

One also defines Galois cohomology for a
non-Abelian group A, in which case one usually
restricts oneself to zero- and one-dimensional
cohomology groups, H® and H', respectively.
In the first case, HO(K/k, A) = AGK/K) repre-
sents a set of fixed points in A under the action
of the Galois group G(K/k), while in the sec-
ond case H! (K /k, A) is the quotient set of the
set of 1-dimensional cocycles.

The concept of Galois cohomology enables
one to define the cohomological dimension of
the Galois group Gy of a field k. See coho-
mological dimension. Non-Abelian Galois co-
homology enables the classification of principal
homogeneous spaces of group schemes and, in
particular, to classify types of algebraic varieties
(using Galois cohomology groups of algebraic
groups).

Also called cohomology of a Galois group.
See also Tamagawa number, Tate-Shafarevich

group.

Galois equation  Let K/k be a finite Galois
extension with the Galois group G (K /k). Then
K is aminimal splitting field of a separable poly-
nomial f(X) € k[X], and we call G(K/k) the
Galois group of f(X) or the Galois group of
the algebraic equation f(X) = 0. (See min-
imal splitting field, separable polynomial.) If
G (K /k) is Abelian or cyclic, we call the equa-
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tion f(X) = 0 an Abelian equation or a cyclic
equation, respectively. (See Abelian equation.)
When the extension field K can be obtained by
adjoining a root o of f(X) to k, K = kl[«],
then the equation f(X) = 0 is called a Galois
equation.

Galois extension A finite field extension K / k
such that the order of the Galois group G(K/k)
is equal to the degree [K : k] = dimy K of the
field extension K, i.e.,

|IG(K/k)| =K : k] =dim; K .

Remarks:

(i.) The degree [K : k] of the field exten-
sion K/k, k C K, equals the dimension of K
as a k-vector space, [K : k] = dimy K. One
distinguishes quadratic ([K : k) = 2), cubic
([K : k] = 3), biquadratic (K : k] = 4), finite
([K : k] < 00), etc., extensions.

(ii.) All quadratic and biquadratic extensions
are Galois extensions.

(iii.) For any finite field extension K /k, the
order of the Galois group g = |G (K / k)| divides
the degree of the extension [K : k], i.e., g|[K :
k].

(iv.) For a Galois extension K / k with the Ga-
lois group G (K / k), the fixed field K © is given
by k,i.e., K¢ = k. See also Galois theory.

Galois field  Finite fields F,, g = p", are
also called Galois fields. See finite field.

Galoisgroup For an extension K of a field k,
the group of all k-automorphisms of K is called
the Galois group of the field extension K / k and
is denoted by G(K / k).

Remarks:

(i.) A k-automorphism of an extension field
K is an automorphism that acts as the identity
on the subfield k. It is also referred to as an
automorphism of a field extension K.

(ii.) Since every Galois extension is a split-
ting field of some polynomial f(x) € k[x],
and any two splitting fields K of a polynomial
f(x) € k[x] are isomorphic, the Galois group
G (K /k) depends onlyon f (up toisomorphism).
See Galois extension. Thus, if K is the splitting
field of f(x) € k[x], the Galois group G(K /k)
is also referred to as the Galois group of the
polynomial over k.



Galois theory In a broad sense, a theory
studying various mathematical objects on the
basis of their automorphism groups (e.g., Galois
theories of rings, topological spaces, etc.). In a
narrower sense, it is the Galois theory of fields
that originated in the problem of finding of roots
of algebraic equations of higher degrees (e.g.,
quintic and higher). This problem was solved
by Galois in his famous letter that he wrote on
the eve of his execution (1832) and laid unread
for more than a decade. In today’s language,
this theory may be summarized as follows.

Consider an arbitrary field k. An extension
(field) K of k is any field containing k as a sub-
field, k C K, and may be regarded as a lin-
ear space over k (finite or infinite dimensional;
dim; K = [K : k] is called the degree of the ex-
tension K / k). One says that o € K is algebraic
over k if it is a root of a non-zero (irreducible)
polynomial p(x) € k[x] from a polynomial ring
k[x] (i.e., with coefficients from k). The small-
est extension of k containing « is usually de-
noted by k(«), and the smallest extension of k
that contains all the roots of an irreducible poly-
nomial p(x) € k[x] is called the splitting field
of p(x). The degree of such an extension is di-
visible by the degree of p(x) and is equal to this
degree if all the roots of p(x) can be expressed
as polynomials in one of these roots. A finite ex-
tension K /k is separable if K = k() and the
irreducible polynomial p(x) with «« as a root has
no multiple roots, and normal if it is the split-
ting field of some polynomial in k[x]. When
the extension is both separable and normal it is
called a Galois extension. See Galois extension.
If char k = 0O (e.g., k is a number field), any
finite extension is separable.

The group of all automorphisms of a Galois
extension K, leaving all elements of k invari-
ant, is the Galois group G(K /k). The relation-
ship between its subgroups H, H C G, and the
corresponding intermediate extension fields L,
k C L C K, is described by the Fundamental
(or Main) Theorem of Galois theory. See Funda-
mental Theorem of Galois Theory. In this way,
the difficult problem of finding all subfields of K
is reduced to a much simpler problem of deter-
mining the subgroups of G(K / k). Moreover, if
H is normal, L is a Galois extension. These re-
sults are then exploited in studying the solutions
of algebraic equations. If K is the splitting field
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of an irreducible polynomial p(x) € k[x] with-
out multiple roots, the Galois group G(K/k) is
referred to as the Galois group of the equation
(or polynomial) p(x) = 0. This group can be
computed without actually solving the equation
and can be regarded as a subgroup of the group
of permutations of the roots of p(x). In the gen-
eral case, it is simply the permutation group of
all the roots, i.e., the symmetric group of de-
gree n = deg[p(x)]. Since such a group is not
solvable for n > 5, there are no solutions in rad-
icals for the quintic and higher degree algebraic
equations. This theory can also be employed to
decide which problems of geometry are solvable
by ruler and compass (by reducing them to an
equivalent problem of solving some algebraic
equation over the field of rational numbers in
terms of quadratic radicals).

Galois theory had an enormous impact on the
development of algebra during the nineteenth
century. It was extended and generalized in var-
ious directions (Galois topological groups, class
field theory, inverse problem of Galois theory,
etc.), even though many important problems of
the classical Galois theory remain unsolved.

Galois theory of differential fields Let K be
a differential field and N a field extension. The
corresponding Galois group, G(N/K), is the set
of all differential isomorphisms of N over K.

gap value A concept from the theory of al-
gebraic functions.

Consider a closed Riemann surface R of
genus g. When R carries no meromorphic func-
tion whose only pole of multiplicity m is at a
point p € R, then m is called a gap value of
peR.

The Riemann-Roch Theorem implies that if
g = 0, then no point has gap values, while if
g > 1, then every p € R has exactly g gap
values. A point p € R is an ordinary point
if m at p equals 1,2, ..., g and a Weierstrass
point otherwise. See ordinary point, Weierstrass
point. See also Riemann-Roch Theorem.

gauge transformation A concept which
arose in Maxwell’s formulation of the electro-
magnetic field theory and was later extended to
more general field theories. In mathematics, it
is used to designate bundle automorphisms of a



principle fiber bundle over a (space-time) man-
ifold that is endowed with a group structure.
In general, gauge transformations (in both clas-
sical and quantum field theories) change non-
observable field properties (potentials) without
affecting the physically observable quantities
(observables).

In electromagnetic field theory, the gauge
transformation (also called gradient transfor-
mation or gauge transformation of the second
kind) has the form
/ af
P> =0+
where ¢ and A designate, respectively, the scalar
and vector potentials of the field and f is an ar-
bitrary (twice differentiable) scalar function of
space and time. Equivalently, using the formal-
ism of special relativity, the 4-component elec-
tromagnetic vector potential A (x), j =0, 1, 2,
3and x = (xo, xL, %2, x3), transforms as fol-
lows:

A— A=A —gradf,

/ af
Aj() > AG) = A0 + o

This transformation does not change the fields
involved implying the gauge invariance of the
underlying field theory. It may be used to sim-
plify the relevant field equations through a suit-
able choice of gauge, i.e., of a function f(x)
(Coulomb gauge, Lorentz gauge, etc.).

In Wey!’s unified field theory (which origi-
nated from the theory of Cartan’s connections),
one employs a space (time) whose structure is
defined by the fundamental tensor g;;, the co-
variant derivative of which is defined in terms
of the electromagnetic potential A; as follows:

Vigjk =2Aigjk -

This equation is invariant with respect to the
: 2

scale transformation g;; — glfj = p“gi; and

the gauge transformation

dlogp
oxt
For complex valued fields (required in quan-
tum field theories), the theory must also be in-
variant with respect to gauge transformations (of
the first kind) of the wave functions ®(x) in-
volved, which have the general form

Ai—>A;=Al‘—

D(x) > P (x) = 2D (x).
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For example, for the complex valued fields & (x)
interacting via the electromagnet field A; (x) that
is generated by the electric charges, the theory
(i.e., the field equations and the Lagrangians)
should be invariant with respect to gauge trans-
formations of the type

eif(X)q>(x) ,
e~ (X) p* (x),
Aj(x) + —af()?) .

ax/

P(x) > d'(x) =
d*(x) »> F(x) =
Aj(x) = A’j(x) =

Such gauge transformations form an Abelian
group of transformations [with the binary op-
eration f(x) = g(x) + h(x) for two successive
gauge transformations g and /].

The concept of gauge transformations has
been generalized to various field theories. In
mathematics, one employs this concept in ex-
ploring principle fiber bundles over a manifold
endowed with the group structure. A (gauge)
potential is then a connection on this bundle
and a gauge transformation is a bundle auto-
morphism that leaves the underlying manifold
pointwise invariant. These automorphisms form
a group of gauge transformations.

Gaussian elimination A method for succes-
sive elimination of unknowns when solving a
system of linear algebraic equations (%),

n
Zaijxj—aiozo, i=1,...,m, (Zo)
j=1

where a;; are elements of some field F. As-
suming that aj; # 0 (otherwise, renumber the
equations), the key algorithmic step can be de-
scribed as follows:

Multiply the first equation by (az;/ar1) and
subtract it (term by term) from the second equa-
tion. Next, multiply the first equation by (a31/
ai1) and subtract it from the third equation, etc.,
until the first equation is multiplied by (a;,,1/a11)
and subtracted from the last (i = m) equation
of the system (X).

Designate the resulting system of equations
with the first equation deleted by (X1), and carry
out the same set of operations on (%) obtain-
ing (%), etc. Assuming that the rank of the
coefficient matrix of (Xg) [which is also called
the rank of the system of equations (Xg)], r =
rank(Xg), is smaller than m, r < m, we obtain,



after the rth step, a system (X,) in which all the
coefficients of the unknowns vanish. The sys-
tem (Xg) [or (X,)] is called compatible, if in
(X,) all the absolute terms vanish as well (i.e.,
when the rank of the coefficient matrix equals
the rank of the augmented matrix); otherwise it
is incompatible and has no solution.

To obtain a solution of a compatible system,
we choose some solution (x, (O), B x,(,o)) of the
system (X,_1) and proceed by the back sub-
stitution to (X,_7), (X,_3), etc., until () is
reached. See back substitution. In general, we
can choose a solution for (X, _1) by assigning ar-
bitrary values to the n —r variables x, 11, . .., X,
sayxj =cj_r (j=r+1,...,n),sothat

1 _
> ey /s

j=r+1

X'EO) — (ar((l;fl)

andxﬁ.o) =cjforj=r+1,...,n The

(general) solution will then depend on r — n
arbitrary parametersc; € F, j =1,...,

Once we have a solution of (X,_1), the back
substitution proceeds by assigning the values
x,(O), .. (0) to the unknowns x,,..., x, in
the ﬁrst equatlon of (X,_3), obtaining x,_; =
(0)1, and thus a solution (xr(o)l, xr(o), e, x,(,O))
of (¥,_2). These values for x,_1, ..., x, are
then substituted into the first equation of (X, _3),

obtaining x,_» = xr(o)2, etc., until a solution

(x(o) xéo), .. xno)) of (Xg) is obtained. The
general solutlon results whenthec; (j =1, ...,
n — r) are regarded as free parameters.

This method can be generalized in various
ways. (See Gauss-Jordan elimination.) It can
also be formulated in terms of a general m x n
(orm x n+ 1) matrix A over F [representing the
coefficient (or augmented) matrix of a system
(Z0)], in which case it is normally referred to as
the row reduction of A. The algorithm can then
be conveniently expressed through the so-called
elementary row operations, which in turn can be
represented by the elementary matrices of three
basic types [( +ae;j), i # j,replacing the ith
row X; by Xi+an, I—i—e,-j—i-eji—ei,-—ejj,inter—
changingrowsi and j,and I +(c—1)e;;, ¢ # 0,
multiplying the ith row by c] acting from the left
on A. Clearly, the action of the elementary ma-
trices and of their inverses on the augmented
matrix A of a system (%) produces an equiv-

n—r.
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alent system of linear algebraic equations, and
the process of Gauss elimination can thus be
represented by a product of corresponding ele-
mentary matrices.

In practical applications, when numerical ac-
curacy is at stake, one can also require that the
diagonal coefficients (the so-called pivots) are
not only different from zero, but the largest ones
possible: in partial pivoting one chooses the ab-
solutely largest a;; (from the ith column), and in
complete pivoting the absolutely largest element
of the entire coefficient matrix (by appropriately
renumbering the unknowns).

Also called Gauss method, Gauss elimina-
tion method or Gauss algorithm for solving lin-
ear systems of algebraic equations. See also
forward elimination.

Gaussian integer A complex number (a +
bi) with integer a and b. The Gaussian inte-
gers are thus the points of a square lattice in the
complex plane, forming the ring

Zlil={a+bi:abel).

In fact, Z[i] is an integral domain (with four
units +1, +7) and, using the absolute value
squared as a size function, it is also a Euclidean
domain (and, hence, principal ideal domain and
thus a unique factorization domain). The prime
elements (called Gauss primes) are either ra-
tional primes that are congruent to 3 modulo 4
(i.e., 3,7, 11, 19, etc.), or the complex numbers
(a + ib) whose norm squared N = a? + b2 is
either a rational prime congruent to 1 modulo 4
or2(.e., 1+i,1+4+2i,3+4i,etc.).

(Also called Gauss integer or Gauss number.)

Gaussian ring A unique factorization do-
main. See unique factorization domain.

Gaussian sum Let x(n, k) be a numerical
character modulo k. Then a trigonometric sum
of the form

k—1
2mi(an)
Gla.x) =) x(nke t

n=0

is referred to as the Gauss(ian) sum modulo k. It
is thus fully defined by specifying the character
x (n, k) and the number a. Note that when a =
b(mod k), then G(a, x) = G(b, x).



The Gauss sum is exploited in number the-
ory where it enables one to establish a relation
between the multiplicative and additive charac-
ters.

Gauss-Jordan elimination A variant of the
Gauss elimination method, in which one zeros
out the elements in the entire column, rather than
only below the diagonal. See Gaussian elimina-
tion.

The initial step is identical with that of Gauss
elimination, while in the subsequent steps one
subtracts the ith equation multiplied by (a; /a;;)
from all the other equations. Consequently, the
upper left submatrix of the coefficient matrix
after the ith iteration is diagonal or, by dividing
each equation by the diagonal coefficient, it is a
unit matrix. In this way, one obtains the solution
of the system directly, without performing the
substitution. The coding of this algorithm is
simpler than for Gauss elimination, although the
required computational effort is larger.

Also called sweeping-out method.

Gauss-Manin connection A way to differ-
entiate cohomology classes with respect to pa-
rameters. See cohomology class.

The first de Rham cohomology group

H(}R(X/K)

of a smooth projective curve X over a field K
can be identified with the space of differentials
(of the second kind) on X modulo exact differ-
entials. Each derivative 6 of K can be lifted in a
canonical way to a mapping Vg of H (} r(X/K)
into itself such that

Vo(fw) = fVg(w) +0(fHw,

where f € K and w € H(}R(X/K). This im-
plies an integrable connection

V:HR(X/K) > QL ® Hl(X/K)

called the Gauss-Manin connection. This can be
generalized to higher dimensions as well as to
other algebraic or analytic structures. See also
Hodge theory.

Gauss-Seidel method for solving linear equa-
tions An iterative numerical method, also
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called the single step method, for approximat-
ing the solution to a system of linear equations.
In more detail, suppose we wish to approximate
the solution to the equation Ax = b, where A
is an n X n square matrix, and x and b are n
dimensional column vectors. Write A = L +
D + U, where L is lower triangular, D is di-
agonal, and U is upper triangular. The matrix
L + D is easy to invert, so replace the exact
equation (L + D)x = —Ux + b by the relation
(L + D)x = —Uxj_1 + b, and solve for x; in
terms of x;_1:

xk=—(L+D) 'Uxi1+(L+D)"'b.

This gives us the core of the Gauss-Seidel iter-
ation method. We choose a convenient starting
vector xo and use the above formula to compute
successive approximations xp, x2, x3, ... to the
actual solution x. Under suitable conditions, the
sequence of successive approximations does in-
deed converge to x. See also iteration matrix.
Gauss’s Theorem (1) See Fundamental The-
orem of Algebra.

(2)Let R be aunique factorization domain.
Every polynomial from R[X] or R[Xqy,...,
X,] (which are also unique factorization do-
mains) can be uniquely expressed as a product
of certain primitive polynomials and an element
of R. See primitive polynomial. Then a product
of primitive polynomials is primitive.

A number of other theorems in analysis are
associated with Gauss’s name, e.g., the so-called
“Theorema Egregium” or Gauss curvature for
regular surfaces in £ 3, Mean Value Theorem for
Harmonic Functions, Gauss-Bonnet Theorem,
etc.

GCRalgebra A generalization of CCR [com-
pletely continuous (= compact) representation]
algebras that are also referred to as liminal or
liminary algebras. See CCR algebra.

A GCR algebra is a C*-algebra having a
(possibly transfinite) composition series whose
factor algebras are CCR (i.e., if I, is a compo-
sition series of our C*-algebra, then 7,41/, is
CCR). See composition series. This is equiva-
lent to requiring that the trace quotients be con-
tinuous.

Equivalently, a C*-algebra is GCR if the im-
age of every nontrivial representation contains



some nonzero compact operator. Thus, starting
with alargest CCR ideal I of a given C*-algebra
A that consists of all elements a € A whose im-
age 7 (a) is compact for all irreducible represen-
tations r, we construct the factor algebra A/Ij.
Continuing this process, we eventually obtain
the largest GCR ideal of A. This will turn out to
be the C*-algebra A itself if it is GCR. Clearly,
any CCR algebra is GCR while the converse is
false.
Also called postliminary algebra.

Gel’fand-Mazur Theorem A complex Ba-
nach algebra is a field if and only if it coincides
with the field of complex numbers C.

See Banach algebra.

Gel’fand-Naimark Theorem Any C*-alge-
bra admits a faithful (i.e., injective) representa-
tion on some Hilbert space.

More precisely, any C*-algebra A is isomet-
rically x-isomorphic to a C*-subalgebra of some
algebra B(H) of bounded linear operators on a
Hilbert space H. Thus, a C*-algebra is a Ba-
nach algebra of (bounded linear) operators on
a Hilbert space H (with the usual operations of
addition, multiplication by scalars, and product
of operators) which is closed under the taking
of adjoints.

Moreover, if A is separable, then H can be
assumed to be separable as well.

Gel’fand-Pyatetski-Shapiro Reciprocity Law
Let G be a connected semisimple Lie group, I" a
discrete subgroup of G and T the regular repre-
sentation of G on I'\G [defined by (T, f)(x) =
f(xg), f € L>(I'\G)]. Then the multiplicity
of a unitary, irreducible representation y in the
regular representation 7 on I'\ G equals the di-
mension of the vector space formed by all auto-
morphic forms of I" of type y. See automorphic
form.

Gel’fand representation A correspondence
between the elements of a commutative Banach
algebra R and the continuous functions on the
space of regular maximal ideals M of R.
Recall that a maximal ideal M of R is called
regular if the quotient algebra R/M is a field,
in which case R/M is isomorphic to C, the field
of complex numbers. Thus, each coset x(M)
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[i.e., the coset containing x € R] can be re-
garded as a complex number and the functional
X : x +— x(M) is multiplicative and linear,
ie., xy(M) = x(M)y(M). Conversely, with
each multiplicative linear functional one can as-
sociate a regular maximal ideal. Designating by
X, the set of all multiplicative functionals on
R, endowed with Gel’fand topology, we obtain
the Gel fand representation, associating with an
element of R a continuous function on X vanish-
ing at infinity. See Gel’fand topology. In fact,
X is a locally compact Hausdorff space and,
when R has a unit element, a compact Haus-
dorff space.
Also called Gel’fand transform.

Gel’fand tableau A triangular pattern
(my)
(mp—1)
[m] = =
(m2)
(m1)
min map
mip—1 man—1
mi2
miy
Mpn
Mp—1n—1
ma

that is employed to label the basis vectors of the
carrier spaces for the irreducible representations
I"(m,,) of the unitary group U(n) [or SU(n) set-
ting my,, = 0] relying on the Gel’fand-Tsetlin
group chain. See Gel fand-Tsetlin basis. The
irreducible representations I"(m,) of U(n) are
uniquely labeled by their highest weight (m,) =
(my,myy, ...my,), where

Mip =My >+ > My, > 0.

The entries of the lexicographical Gel’fand
tableaux satisfy the so-called “betweenness con-
ditions”

mij = mjj—1 2 Mi41,j,



i=1,...,n—1;j=2,...,n,reflecting Weyl’s
branching law for the subduction of T
(my) from U(n) to U(n — 1). The ith row of
the Gel’fand tableau thus represents the highest
weight of those U(i) irreducible representations
that result by a successive subduction of I" (m,,),

implied by the Gel’fand-Tsetlin chain.
Arranging the basis vectors in a lexicograph-

ical order, we have, for example, for the (210)

irreducible representation of U(3) or SU(3),

210 210 210 210
21 s 21 s 20 s 20 s
2 1 2 1
210 210 210 210
20 s 11 s 10 s 10 .
0 1 1 0

Gel’fand topology = The weak topology on
the space of multiplicative linear functions on a

commutative Banach algebra R. See Gel’fand
representation.

Gel’fand transform
tation.

See Gel’fand represen-

Gel’fand-Tsetlinbasis A basis for the carrier
space of U(n) or SU(n) irreducible representa-
tions exploiting the group chain

Um) DUm-1)>---2>U0QR)D>UM), (1)

where U(i) D U(i — 1) represents schematically
the imbedding U(n — 1) & (1) [i.e., U(n — 1)
represents a subgroup of blocked n x n uni-
tary matrices (linear operators) consisting of a
(n — 1) x (n — 1) unitary matrix and the 1 x 1
matrix (1); clearly this subgroup of U(n) is iso-
morphic with U(n — 1)]. According to Weyl’s
branching law, each irreducible representation
of U(i) subduced to U(i — 1) is simply reducible.
Since, moreover, U(1) is Abelian, the canoni-
cal chain (1) provides an unambiguous labeling
for mutually orthogonal one-dimensional sub-
spaces spanning the carrier space of a given ir-
reducible representation of U(n) through a set of
highest weights characterizing the subduction at
each level. Collecting these highest weights we
obtain a Gel’fand tableau. See Gel’fand tableau.
Also called Gel’fand-Zetlin basis or canonical
basis.

general associative law  The associative law
for a given binary operation implies that (aaz)
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a3 = aj(araz) = ajaras (representing the bi-
nary operation involved by a juxtaposition). The
general associative law requires that any finite
ordered subset of n elements, say aj, a2, . . ., an,
ai € G, (i=1,...,n), n > 2, uniquely deter-
mines their “product” aja;y - - - a,, irrespective
of the sequence of binary operations employed.

general equation  See also Galois equation,
Galois group, Galois theory. Recall that the Ga-
lois group G (K /k) of the finite field extension
K/ k is also called the Galois group of the alge-
braic equation f(X) = 0, when K is a minimal
splitting field of a separable polynomial f(X)
€ k[X]. The algebraic equation f(X) = 0 is
also called a Galois equation when the exten-
sion field K can be obtained by adjoining some
rootof f(X)tok,i.e., when K = k(«) for some
root o of f(x). We also note that G(K / k) has a
faithful permutation representation based on the
permutation group of the roots of f(X). When
this representation is primitive, f(X) = 0 is
called a primitive equation. See primitive equa-
tion. See also affect (of f(X)).

Now, when a7y, oz, ..., o are algebraically
independent elements over k, then the equation
F™ (X) = 0 for the nth degree polynomial

FO(X)=X"—a X" ' + X"

—a3 X" k4 (=)

from k(oq, a2, ..., 0,)[X] is called a general
equation of degree n. See algebraic indepen-
dence. The Galois group of this equation is then
isomorphic with S,,, the symmetric (or permu-
tation) group of degree n. Moreover, if char k #
2, then the quadratic subfield L corresponding
to the alternating group .4, of the same degree
is obtained by adjoining the square root of the
discriminant D of F™ (X), i.e., L = k(v/D).

generalization Motto: Be wise! Generalize!
“Picayune Sentinel” and M. Artin’s Algebra.

(1) An extension of a statement (or a con-
cept, a principle, a theorem, etc.) that applies
or is valid for some system or structure A to
all members of a larger class of systems B con-
taining A as one of its elements (or a proper
subsystem).

(2) The process of inferring such a statement
(or concept, etc.).



(3) In logic, generalization implies the for-
mal derivation of a general statement from a
particular one by replacing the subject of the
statement with a bounded variable and prefixing
a quantifier (in predicate calculus). For exam-
ple, the statement “the hypothesis H (i) holds
for some i € Z” is the (existential) generaliza-
tion of “the hypothesis H (i) holds fori = 1
and 3.” A universal generalization applies to
all members of a given class while an existential
generalization applies only to some unspecified
members of such a class.

generalized Borel embedding A general-
ization of a Borel embedding of a symmetric
bounded domain to an embedding of an arbi-
trary homogeneous bounded domain. Let D be
a homogeneous bounded domain and let G, be
the identity component of the full automorphism
group G, (D) of D. Let g, be the Lie algebra of
Gy, then gj, is a j-algebra with a collection of
endomorphisms (j). Let g; be the complexifi-
cation of g, and let g,” = {x +ijx € g, : x €
gn, j € (j)}. If Gy, is the analytic subgroup of
the full linear group corresponding to g, and
G, is the complex closed subgroup of G}, gen-
erated by g, »then D can be embedded as the Gy,
orbit of the origin in the complex homogeneous
space G} /G, .

generalized decomposition number Let G
be a finite group of order |G| = g and K a split-
ting field of G of characteristic char K = p # 0
(i.e., K is a splitting field for the group ring
K[G]). If pis adivisor of g, p|g, we can gener-
ate modular representations of G. See modular
representation.

Let, further, L be an algebraic number field
that is a splitting field of G having a prime ideal
m dividing p,and A;, i =1, ..., n,bethenon-
similar irreducible representations of G in L and
Xxi, i = 1, ..., n, their standard characters.

Now, any x € G can be uniquely decom-
posed as follows:

X =yz=2y,

where y is the so-called p-factor of x (whose or-
der is a power of p) and z is a p-regular element
of G (whose order is prime to p). If, further,

d)fy ), e ¢g) are absolutely irreducible modu-
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lar characters of the centralizer Cg(y) of y in
G, then

%) =Y el @)
J

and the coefficients cl.(j).r) are referred to as the
generalized decomposition numbers of G.
When the order of y is a power p” of p, then
the coefficients ci(y ) are algebraic integers of the
field of the p"th roots of unity. See also de-
composition number, modular representation of

finite groups.

generalized eigenvalue problem  The prob-
lem of finding scalars A € F and vectors x (from
a linear space V over F) for linear operators (or
matrices) A and B on V satisfying the equation

AX = ABX . @))

Usually, A and B are required to be Hermitian
and, moreover, B to be positive definite. When
B = I, the identity (matrix) on V, the problem
reduces to the standard or classical eigenvalue
problem.

A further generalization examines the non-
linear problem

(Ank" + AT A+ AO) x = 0.
Clearly, for n = 1 we obtain (1).

generalized Eisenstein series Let ' C SL
(2, R) be a Fuchsian group, acting on the up-
per half-plane H of the complex plane C, and
designate by I'\ H the quotient space of H by
I'. See Fuchsian group. The Selberg zeta func-
tion Z,(s, A), defined for s € H and a matrix
representation A of I', has a number of inter-
esting properties when I'\ H is compact and I
is torsion-free. See Selberg zeta function. For
a more general case, when I'\ G is noncompact
(though has a finite volume), the decomposition
of L>(I'\G) into the irreducible representation
spaces has a continuous spectrum. Generalized
Eisenstein series (defined by Selberg) give the
explicit representation for the eigenfunctions of
this continuous spectrum. In the special case in
which T is the elliptic modular group, SL(2, Z)
(or the corresponding group of linear functional



transformations) I' = SL(2, Z), this series is

2

Z y
lct +d|*

(e,d)=1

where y = 3z, z € H.

Similar generalized Eisenstein series can be
defined for semisimple algebraic groups G and
their arithmetic subgroups. See also Eisenstein
series.

generalized Hardy class A concept arising
in the theory of function algebras (or uniform
algebras) generalizing that of the Hardy class
from the theory of analytic functions.

[Recall that the Hardy class H” (p > 0) con-
sists of analytic functions on the open unit disc
D = {z : |z| < 1} having the property

sup { [ IfrOPdp@)}? < oo,

O<r<l

where du = |d¢|/2m isnormalized Lebesgue
measure on the boundary 0D = {¢ : |¢| = 1}
of D. This concept is important for harmonic
analysis, theory of power series, linear opera-
tors, random processes, approximation theory,
control theory (in particular the so-called H*
control theory; note that H°° represents the class
of bounded analytic functions in D), etc. Their
importance stems from the fact that they are pre-
cisely the classes of analytic functions in D with
boundary values (of class L?) from which they
can be recovered by means of the Cauchy inte-
gral.]

For a function (uniform) algebra A with a
positive multiplicative measure p, one defines
the generalized Hardy classes H? as the closure
of Ain L?(u) for 1 < p < oo, while for p =
00, H®(w) represents the weak *-closure of A
in L (u).

Remark: Here one considers a fixed uniform
algebra A on a compact Hausdorff space X, the
maximal ideal space M4 of A, and a fixed homo-
morphism ¢ € M,. It is important to recall
that there exists a correspondence between non-
zero complex-valued homomorphisms ¢ of A
and maximal ideals Ay in A that are given by the
kernel of ¢. In fact, M 4 is a compact Hausdorff
space. Then, designating by © a measure for ¢,
one defines H? (1) as the closure of A in L? (i)
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and, similarly, H%°(u) as the weak-star closure
of A in L°°(u). Note that L°°(u) is a com-
mutative Banach x-algebra (with the pointwise
multiplication and the involution given by com-
plex conjugation), which is isometrically iso-
morphic to the algebra of complex-valued con-
tinuous functions on the maximal ideal space of

L% ().

generalized inverse  For an m x n matrix A,
with entries from the complex field, the unique
n x m matrix A satisfying

(i) AATA = A,

(ii.) ATAAT = AT,

(iii.) (AAT)* = AAT,

(iv.) (ATA)* = ATA.

This definition (by Penrose) is equivalent to
the definition (by Moore) that A™ is the unique
matrix so that

(1) AA isthe (orthogonal) projection matrix
onto the range of A,

(2) AT Ais the (orthogonal) projection matrix
onto the range of A™.

The matrix A" is also referred to as the Moore-
Penrose inverse (or pseudo inverse) of A.

There are other types of generalized inverses.
More usually encountered are the group inverse
A* of asquare matrix A (AA*A = A, A¥AA* =
A* AAY = A#A), and the Drazin inverse AP
(AP AAD AP, AAP = ADPA, AF =
AP ALk =0,1,...). AP is unique and A*
is unique if it exists.

All generalized inverses coincide with A~!
when A is invertible.

generalized law of reciprocity The main
theorem of class field theory, stating that, for
a finite Galois extension L /K, the reciprocity
map rr /K,

rok P G(L/K)™ — Ag /Npjk AL,
defined by
r/k(0) :== Ny (mx)mod (Nz/k AL) |
is an isomorphism. Here, ¥ is the fixed field of
a Frobenius lift 6 € ¢(L/K) of 0 € G(L/K)

and 7y € Ay is a prime element. For any field
K and a multiplicative G-module A one defines

AK=AGK:{aeA:cm=a,VU€GK},



where G is a closed subgroup of the profinite
group G that is associated with the field K and
AC /NGA is the norm residue group relative to
the norm group NGA = {Nga = ) .;0a :
a € A}. One further defines the Galois group of
L/K as
G(L/K)=Gk/GL,
assuming that G, is a normal subgroup of Gg.
In such a case, the extension L/K is called a
normal or Galois extension. See Galois exten-
sion. Note that for a finite extension L /K, when
Ak C Ay, there is a normal map
Npjk : AL — Ax, Npk(a) = 1_[061 ,

o
with o ranging over the right representatives
of Gx/Gr. When L/K is Galois, Ay is a
G(L/K)-module and Ax = AY"/5),

Recall also that a prime element 7x of Ak,
g € Ak, is an element with vy (7g) =
where vk designates a homomorphism

1 ~
vg = —voNgy:Ax > 7,
fk

with v a henselian valuation v : Ay — Z and k
the ground field for which Gy = G. Further, &
is a Frobenius lift of o if 0 = 7|,

& ep(L/K)
_ {5 € G(L/K) : degy(5) € N} ,

where degg is a surjective homomorphism

degy : G(L/K) — Z. 7 the Priifer ring
Z="m \Z/nZ,

where < denotes projective limit. In fact, 7=
]_[ Z,, where p is a prime.

Fmal]y, for every finite extension K /k of the
ground field, one defines K=K -k,

fx =[K Nk :k]
and 1
degK:—deg:GK—>z,
fx
where 5
K=K("K*)
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is the maximal Kummer extension of exponent
n.
Also called generalized reciprocity law.

generalized nilpotent element  An element
from the kernel of the Gel’fand representation
of a commutative Banach algebra R, i.e., an el-
ement x € R such that

lim ”x Hl/n =0.

n—oo
The kernel of R is referred to as the radical of
R. When this radical reduces to {0}, R is said to
be semisimple.

generalized nilpotent group  An extension
of the concept of nilpotency to infinite groups,
in a nonstandard manner. Thus, a group G is a
generalized nilpotent group if any homomorphic
image of G that is different from {e} has a center
that is different from {e}. This definition reduces
to the standard one when G is finite, but not
when G is an infinite group.

generalized peak point A point x in a com-
pact Hausdorff space such that {x} is a gener-
alized peak set. See peak set, generalized peak
set.

generalized peak set  Anintersection of peak
sets of a compact Hausdorff space. See peak set.

generalized quaternion group A general-
ization of the quaternion group G, which is the
group of order 8 with two generators o and t
satisfying the relations 0% = e, 7> = 0% and
tot~! = ¢!, which is isomorphic to the mul-
tiplicative group of quaternion units {1, =i,
+j, £k}. The generalized quaternion group is
a group of order 2", (n > 3), again with two
generators o and t, which, however, satisfy the
following relations:

02”_1 =e, 2 = 02”_2 and tor ‘=01,
The standard quaternion group corresponds to
n=3.

generalized Siegel domain A domain D in
C*" x C™ (n,m > 0) with the following prop-
erties. (i.) D is holomorphically equivalent to
a bounded domain. (ii.) D contains a point of



the form (z, 0) where z € C". (iii.) D is in-
variant under the following holomorphic trans-
formations of C" x C™ for some ¢ € R, and
foralls e R"andr € R: (z,u) — (z+ s, u),
(z,u) — (z, €"u),and (z, u) — (e'z, e“'u). In
the above situation, D is said to be a generalized
Siegel domain with exponent c.

generalized solvable group  An extension of
the concept of solvability to infinite groups in a
nonstandard way. For example, a group G is a
generalized solvable group if any homomorphic
image of G that is different from {e} contains a
nontrivial (i.e., different from {e}) Abelian nor-
mal subgroup. As with generalized nilpotency,
this definition reduces to a standard one for fi-
nite groups but not in the case of infinite groups.
See generalized nilpotent group.

Generalized Tauberian Theorem A theo-
rem, due to Wiener, originating in the theory of
the Fourier transform. Here we give a version
that is pertinent for the exploitation of Banach
algebras in the theory of topological groups.
The theorem pertains to the following prob-
lem of spectral synthesis. See spectral synthesis.
Consider an Abelian topological group G and
its L'-algebra (or group algebra) R. Let, further,
G designate the character group of G. Then any
closed ideal I in R determines a set Z([) in
G consisting of common zeros of the Fourier
transforms of the elements of /. [Recall that
the Fourier transform of x € R is given by its
Gel’fand transform, in the present case by

) = / X7 @dus) .

where y is a character of G and u is a (left-
invariant) measure on G (with G regarded as a
locally compact Hausdorff group).] The above-
mentioned problem then asks whether the con-
verse also holds, namely, whether I can be
uniquely characterized by Z (7).

A special case when Z([I) is empty is ad-
dressed by the Generalized Tauberian Theorem
which states that / must coincide with R when
Z) = 0.

generalized uniserial algebra Consider a

finite dimensional, unitary (associative) algebra
A over a field F and designate its system of
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orthogonal idempotents by {el.(s) }, so that

n d;
D) ICAET

i=1 s=1
and

n d n

d;
A=) "4 =% "eVa,

i=1 s=1 i=1 s=1

the latter relationship providing a decomposi-
tion of A into a direct sum of indecomposable
left (right) ideals. Here n denotes the number of
simple algebra components A; in the decompo-
sition of the semisimple quotient algebra A/N,
N being the radical of A,

n
AIN=A=) "4,

i=1

each A; being a full matrix ring of degree d;,
which thus decomposes into the direct sum of
d; minimal left (right) mutually A-isomorphic
ideals A¢” @V A, i=1,...,nm55=1,...,
d;, where E[@ designate the orthogonal idempo-
(%)

;- in the above

. . —(5
are representatives from each residue class ef ),

which are chosen in such a way that the relations
) simply

i

tents of A;. The idempotents e

hold. In the following, we designate e
by e;.

We call A a generalized uniserial algebra if
each indecomposable left (right) ideal Ae; (e; A)
of A has a unique composition series. See com-
position series.

An algebra A is a generalized uniserial alge-
bra if its radical N is a principal left and right
ideal, and a uniserial algebra if and only if every
two-sided ideal of A is a principal left and right
ideal, i.e., if and only if every quotient algebra of
A is a Frobenius algebra. See uniserial algebra,
Frobenius algebra.

An algebra A is an absolutely uniserial al-
gebra if the algebra AK over K, where K is an
extension field of a field F, is uniserial for any
such extension K/F. This is the case if and
only if the radical N of A is a principal ideal
generated by an element from the center Z of A
and Z decomposes into a direct sum of simple
extensions Fla] of F.



generalized valuation
eral rank. See valuation.

The rank of an additive valuation (or simply
of a valuation) v : F — G U{oo} of the field F,
with G a (totally) ordered additive group and the
element oo is defined to be greater than any ele-
ment of G, is defined to be the Krull dimension
of the valuationring R, = {a € F : v(a) > 0}.
See Krull dimension.

A valuation of a gen-

general linear group  Ona finite dimensional
linear space V, with dimV = n, over a field K,
the group of (nonsingular) linear mappings of
V onto V, the group operation being defined
as composition of mappings, denoted GL(V).
More generally, the automorphism group
Autg (V) of the free right K-module V with n
generators, for K an associative ring with unit.

Equivalently, a general linear group of de-
gree n over K, usually designated GL(n, K)
or GL,(K), is a group of n x n invertible ma-
trices with entries in K. Clearly, GL(V) and
GL(n, K) are isomorphic. When viewed as an
affinite variety, GL(n, K) can also be regarded
as an algebraic group. See algebraic group. In
most applications, K is a field. The structure of
GL(n, K) over aring K is studied in algebraic
K -theory.

Also called full linear group. See also special
linear group, projective general linear group.

general linear Lie algebra  (Of degree n over
a commutative ring with unity [or over a field]
K), a Lie algebra, denoted gl(n, K), which re-
sults from the total matrix algebra M (n, K) of
(all) n x n matrices with entries from K, when
endowed with a Lie (or bracket) product defined
by the commutator [X, Y] := XY —Y X. SeeLie
algebra. A general linear Lie algebra gl(n, K)
is the Lie algebra of GL(n, K), a general lin-
ear group, and may thus also be regarded as the
tangent space to GL(n, K) at the identity (repre-
sented by the identity matrix). See also general
linear group.

general position  Let x, ..., x; be points in
Euclidean space. These points are said to be
in general position if they are not contained in
any plane of dimension less than k. This con-
cept may be generalized to geometric objects of
higher dimension.
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general solution  As arule, the general solu-
tion of a problem is a solution involving a cer-
tain number of parameters from which any other
solution (except for singular solutions) can be
obtained, through a suitable choice of these pa-
rameters.

Specifically, in analogy to differential equa-
tions, one understands, by a general solution of
a nonhomogeneous linear difference equation

D pi) y(x +1) = q(x) )

i=0

a solution of the form

Y = i) + Y (x)

i=1

where ¢;(x), i = 1,...,n are linearly inde-
pendent solutions of the corresponding homo-
geneous equation, 1 (x) is an arbitrary solution
of the nonhomogeneous equation (1), and ¢; (x)
are arbitrary periodic functions of period 1.

general term  (Of a series, of a polynomial,
of an equation, of a language, etc.) An expres-
sion or an object that forms a separable part of
some other expression or object, in particular
expressions separated by the plus sign (in a se-
ries or a polynomial), comma (in a sequence),
inequality or identity sign (in an inequality or a
chain of inequalities or equation(s)), etc. Also
called generic term.

generating representation  Let G be a com-
pact Lie group. Designate, further, the com-
mutative, associative algebra of complex-valued
continuous functions on G by C 0@G, 0 =
CO(G), and its subalgebra of representative
functions referred to as the representative ring
of G by R(G,C) = R(G). See representa-
tive function, representative ring. Note that,
with the supremum norm || f|| = Sup,eq 1/ (81,

C©(G) is a Banach space and the actions of

G on this space (given by left and right transla-

tions) are continuous. Atthe same time, C©(G)

may be completed with respect to the norm aris-

ing from the inner product (u, v) = f uv, yield-
G

ing the Hilbert space L%(G) of square integrable
functions on G. The actions of G on L2(G)
(again by left and right translations) are unitary.



In view of the Peter-Weyl theorem, R(G)
is dense in both C@(G) and L%(G) so that
there exists a faithful (i.e., injective) represen-
tation p : G — GL(n, C) of G and R(G) may
be regarded as a finitely generated algebra over
C. Thus, there exists a faithful representation
g +> {rij(g)} such that the functions r;; and 7;;
generate R(G). Such arepresentation is referred
to as a generating representation.

generator(s) (1) In group theory, the ele-
ments of a nonempty subset S of a group G such
that G is generated by S, i.e., G = (S), where
(S) consists of all possible products of the ele-
ments of S and of their inverses that are possibly
subject to a certain number of conditions (called
relations) of the type

ny _np

L —
Sl 52 8, =e,

sieS, nel.

When S is finite, G is said to be finitely gener-
ated or finitely presented. See relation, finitely
presented group. For a cyclic group, S consists
of a single element.

More precisely, let G be a group generated
by some set S = {s1, 52, ..., s, } and let us des-
ignate by F the free group on S. Further, let T
beasubsetof F, T = {t1,tr,...,t,} C F,and
N7 the smallest normal subgroup of F contain-
ing T (given by the intersection of all normal
subgroups of F containing 7'). Then, G is said
to be given by the generatorss;, (i =1,...,n)
subject to the relations t) =tp =---=t, =e,
if there is an isomorphism G ~ F/Nr that as-
sociates s; with s; N7. This is usually expressed
by writing

h=h=-=t,=e),

ey
and one also says that G has the presentation
given by the right-hand side of (1).

Remarks: (i.) Although we have used a finite
number of generators and relations in the above
definition, this is not necessary.

(ii.) The relation r; = e, e.g., a~b2ab =
e, is often more convenient to write in the form
avoiding inverses, i.e., ab = b2a in our exam-
ple.

(iii.) Recall that a free group is “free" of
relations, so that we can regard any element in
Nr as the identity, as in fact the notation of (1)
suggests.

G=(s1,...,8:
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(iv.) Cyclic groups are generated by a single
generator (which, clearly, is not unique), e.g.,
Zg = (1) = (3)=(5) = (7).

(v.) See also finitely generated group.

(1a) In the analytic theory of semigroups,
one defines the infinitesimal generator F of an
equicontinuous semigroup T of class (Cp), T =
{T; |t = 0}, as a limit

Fx= lim " (T, —e)x .
t—0+

(2) In ring theory, we say that an ideal I of
a (commutative) ring R is generated by a finite
subset § = {s1,...,s,} of R, when

n
I = {Zrisi L r GR} s

i=1

in which case we also write
n
I =C(1,...,8,) or [ =ZRSi ,
i=1

and refer to the ring elements s;, i = 1, ..., n,
as generators of I. An ideal generated by a
single generator, I = (s), is called a principal
ideal. An extension to noncommutative rings is
obvious.

(3) An analogous definition also applies to
modules over a ring (or a field).

Consider an A-module M (i.e., amodule over
aring A) and a family X = {x;};c; of elements
of M. The smallest sub-A-module N of M con-
taining all the elements of X consists of all linear
combinations of these elements and we write

N:ZAxl-z{Zaixi tai €A, iel

iel iel

The family X is then referred to as a system of
generators for N. We also say that N is gener-
ated by X. When X is finite, i.e., Card(X) <
0o, N is said to be finitely generated, and an
A-module Ax, generated by a single element
x € M, is called a monomial.

When A is a field, the A-module M becomes
a linear space over A, and the same terminol-
ogy is sometimes employed even in this case, al-
though one often defines M to be spanned rather
than generated by X, and X is referred to as a
spanning set (or a basis, if linearly independent).



(4) The method of defining groups by gen-
erators and relations can be also applied to Lie
algebras. Let L be a Lie algebra over a field F
generated by a set X = {X;};c;. If L is free on
X (in which case the vector space V = Span(x)
can be given an L-module structure by assign-
ing to each x € X an element of the general
linear Lie algebra gl(V) and extending canon-
ically to L) and M is the ideal of L generated
by a family of elements A = {a;} ey, J being
some index set, then the quotient algebra L /M
is referred to as the Lie algebra with generators
X;, (i € I)and relations a; = 0, (j € J), with
X; the image of the element x; € X in L/M.
This is referred to as a presentation of L.

Remarks: (i.) For semisimple Lie algebras
L over an algebraically closed field F', charF' =
0, one can give a presentation of L in terms of
generators and relations that depends only on
the root system of L. (See Serre’s Theorem.)

(ii.) In the physics literature, one often refers
to the basis elements of the defining (or stan-
dard) representation of matrix Lie groups or al-
gebras as generators. Thus, for example, the
matrix units e;; = [|8;xd;¢|l of gl(n, F) are re-
ferred to as raising (i < j), lowering (i > j),
and weight (i = j) generators according as they
raise, lower, or preserve the weight of a repre-
sentation involved.

(5) In homological algebra, an object G of
an Abelian category .4 (with all functions be-
ing additive) is called a generator if the natural

mapping
Hom(A, B) — Hom (kg (A), hg(B))

is one to one. Here Hom designates the functor
defining the category A,

Hom : A x A — (Ab),

with (Ab) designating the category of Abelian
groups, and with

hg () := Hom(G, ) .
Similarly, one defines a cogenerator G when
Hom(A, B) — Hom (hG(B), hG(A))
is one to one, where now

hY () ;= Hom(-, G) .
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(6) In coding theory, with a linear code de-
fined as a subspace W of V, =1{0,1,...,q —
1}", with ¢ being a prime power ¢ = p“, one
associates with each element a € V), the poly-
nomial

aX)=ai+aX+ - +a, X"

over a Galois field G F(q) [note that V,, can be
regarded as an n-dimensional vector space over
G F(q)]. Then the cyclic code W modulo g(X)
is defined by

W =1{aeV,:alX)=0(modg(X))}

and g(X) is referred to as the generator of N.

generic point  Consider an irreducible vari-
ety V in K", where K is the universal domain
and designate by k a field of definition for V
(whichisasubfieldof K,k C K),having afinite
transcendence degree over the underlying prime
field. See irreducible variety, universal domain,
transcendence degree, prime field. Then a point
x) = (x1,...,x,) of V, (x) € V, with the
property that all points of V' are specializations
of (x) over k, is called a generic point of V over
k. See specialization. Note that in general a
generic point of V is not unique.

Remarks:

(1.) In some texts, generic point refers to an
arbitrary point of a nonempty Zariski open set
of a variety V. See Zariski open set.

(ii.) A generic point x in a topological (sub)-
space A is a generic point of A when A = {x}
(where the bar designates the closure in the hull-
kernel topology).

genus (1) For an algebraic variety, a discrete,
numerical invariant representing an important
parameter then enables a classification of such
varieties. These invariants may be defined in
various ways, the most useful ones being based
on the concept of differential forms on a vari-
ety and on the cohomology of coherent sheaves.
One distinguishes the algebraic genus p,(X)
and the geometric genus pg(X) of a variety X.
See geometric genus.

For a one-dimensional algebraic variety C
over a field k, referred to as an algebraic curve,
the genus g of C is defined as the dimension
of the space of regular differential 1-forms on



C, assuming that C is smooth and complete.
See algebraic curve. We recall here that an al-
gebraic curve can be transformed into a plane
curve with only ordinary multiple points by a fi-
nite number of plane Cremona transformations
(quadratic transformations of a projective plane
into itself). See Cremona transformation. A
plane algebraic curve C of degree n is a point
set in an affine 2-space defined by the zero set
f(X,Y) =0, ofannth degree polynomial f (X,
Y)in X and Y. Setting F(Xo, X1, X2) = X{
f(X1/Xo, X2/ Xo), the homogeneous polyno-
mial F defines an algebraic curve C of degree
n in a projective plane P>. We say that C is ir-
reducible if f(X,Y) is irreducible. Clearly, a
curve of degree 1 is a line. A point P = (a, b)
on C is an r-ple point if f(X +a, Y + b) has no
terms of degree less than r in X and Y. There
are r tangent straight lines (counting multiplic-
ity) at such a point: if these tangents are all dis-
tinct, P is referred to as an ordinary point and
an ordinary double point is called a node. An
r-ple point with r > 1 is called a multiple or a
singular point.

For anonsingular irreducible curve C, we de-
fine a divisor a as an element of the free Abelian
group G (C) generated by the points of C that is
of the form

a=) nP, (eZ M

and has a degree deg(a) = ) _; n;. We say that
the representation (1) forais reduced if P; # P;
fori # j. A positive or an integral divisor, writ-
ten as a > 0, involves only positive coefficients
n;, (n; > 0). We further designate by w a dis-
crete valuation whose value group is the additive
group of integers, thus representing a normal (or
normalized) valuation wp of K(C) defined by
a valuation ring Rp given by the subset of the
function field K(C) of C (K designating the uni-
versal domain) consisting of those functions f
that are regular at P. The integer wp (f) is re-
ferred to as the order of f at P, and P is said
to be a zero of f when wp(f) > 0 and a pole
when wp(f) < 0. The linear combination

Twp(f)P =:(f) @

is called the divisor of the function f, and the set
of all positive divisors that are linearly equiva-
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lent to a given divisor a is referred to as a com-
plete linear system determined by a and is des-
ignated by |a|. Further, one defines a finite di-
mensional vector space V(a) over K as follows:

V@) ={f e K() : (f)+a>0},

whose one-dimensional subspaces are in a bi-
jective correspondence with the elements of |a|.
We then define the dimension of |a|, dim|a|, by

dim|a| := dimgV(a) — 1,

and the genus of C, g = g(C), as the supremum
of non-negative and bounded integers deg(a) —
dim |a|,

sup (deg(a) —dim |a]) .
aeG(C)

g:=

One can show that for any ¢ > 0, g € Z,
there exists an algebraic curve of genus g. The
curves with g = 1 are the so-called elliptic
curves and those with g > 1 are subdivided into
the classes of hyperelliptic and non-hyperelliptic
curves. See elliptic curve, hyperelliptic curve.
See also specialty index, Riemann-Roch Theo-
rem.

For an r-dimensional projective variety Y in
P” (a projective n-space over an algebraically
closed field k), the arithmetic genus of Y can
be defined in terms of the constant term of the
Hilbert polynomial Py(X), X = (Xp, X1, ...,
X,), of Y, as follows:

pa(Y) = (=D"(Py(0)—1) .
It can be shown that p,(Y) is independent of

projective embeddings of Y. When Y is a plane
curve of degree d (see above), then

1
Pa(Y) = 3~ Dd ~2).
and when it is a hypersurface of degree d, then
) = (47) .

Equivalently, for a projective scheme Y over a
field k, the arithmetic genus p,(Y) can be de-
fined by

pa(Y)=(=D"[x (Oy) - 11,



where Oy designates a sheaf of rings of regular
functions from Y to k and y (F) is the so-called
Euler characteristic of a coherent sheaf F on
Y that is defined in terms of the cohomology
groups H' (Y, F) of F as follows:

X (F):=3(=1) dimg H (Y, F) .

See projective scheme. Thus, when Y is a curve,
we have that

pa(Y) = dimg H' (Y, Oy) ,

while for a complete smooth algebraic surface
Y, we have

pa(Y) = x (Oy) —1
= dimy H? (Y, Oy) — dimg H' (Y, Oy) .

On the other hand, the geometric genus p, (Y)
of a nonsingular projective variety Y over k is
defined as the dimension of the (global) section
of the canonical sheaf wy of Y (defined as the
nth exterior power of the sheaf of differentials
wheren =dimY), I'(Y, wy), i.e.,

pe(Y) :=dim; I' (Y, wy) .

For a projective nonsingular curve C, the arith-
metic and the geometric genuses coincide, i.e.,
Pa(C) = pg(C) = g, while for varieties of di-
mension greater than or equal to 2, they are not
necessarily equal, and their difference is referred
to as the irregularity of Y. See irregularity.

(2) For an algebraic function field K over
k of dimension 1 (or of transcendence degree
1) (i.e., a finite separable extension of a purely
transcendental extension k(x) of k such that k
is maximally algebraic in K), the genus of K /k
is defined similarly as for a curve C. Thus, it
is achieved by replacing C with K /k, K(C) by
K, and K by k, while points on C now become
prime divisors of K/ k.

We can also say that the genus of a function
field is given by the genus of its Riemann surface
(recall that the Riemann surface S of a function
field is homeomorphic to the complement of a
finite set of points in a compact oriented two-
dimensional manifold S, while the genus of the
latter is defined, loosely speaking, as the number
of “holes”in S, i.e., g=0 ifSisa sphere, g = 1
if S is a torus, etc.).
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(3) For quadratic forms Q over an algebraic
number field & of finite degree, one defines equiv-
alence classes of forms having the same genus
by requiring that Q and Q' be equivalent over the
principle order op in kj for all non-Achimedean
prime divisors p of k and, at the same time, that
they are equivalent over ky for all the Archime-
dian prime divisors p of k. (Recall that prime
divisors of k are equivalence classes of nontriv-
ial multiplicative valuations over k and are re-
ferred to as Archimedean or non-Archimedian
accordingly if these valuations are Archimedean
or not.) See valuation.

(4) For a complex matrix representation of a
finite group G. Consider a finite group G and
an algebraic number field K. Recall that there
exists a bijective correspondence between linear
and matrix representations of G and that every
linear representation of G over K is equivalent
to some linear representation of the group ring
K[G]. When K is the ring of rational integers, a
linear representation over K is called an integral
representation.

Further, for a given algebraic number field
K, every K[G]-module V contains G-invariant
R-lattices (called G-lattices for short), where R
is the ring of integers in K, that may be viewed
as finitely generated R[G]-modules, providing
an integral representation of G.

Designating by P a prime ideal of R and by
Rp the ring of quotients (or fractions) of the ring
R with respect to the prime ideal P, also called
the local ring at P, one can also explore the R p-
representations (this approach is closely related
with modular representation theory). Thus, with
any R[G]-module M we can associate a family
of Rp[G]-modules Mp = Rp ® M, with P
ranging over all prime ideals of R. Then, when,
for two G-lattices (or R[G]-modules) M and
N, belonging to a K[G]-module V, we have
that Mp = Np for all P, we say that M and N
have (or are of) the same genus. (See also class
number.)

(5) Similarly, for aconnected algebraic group
G over an algebraic number field k of finite de-
gree, we consider a ring R of integers in k and
designate by L a general R-lattice (also called a
transformation space) in the vector space V on
which G acts. Defining then an action of G4,
the adele group of G, on the set { L} of R-lattices



in a natural way, one defines the genus of L as
the orbit G 4 L of L with respect to G 4.

(6) For an imaginary quadratic field k. (See
also principal genus of k.) Each coset of the
ideal class group G of k modulo the subgroup
H of all ideal classes of k satisfying the condi-
tion (€1,...,€) = (1,...,1) is referred to as
a genus of k. See ideal class, ideal class group.
Here, €, = x;(N(a)),i = 1,...,t, where a
is an integral ideal with (a, (d)) = 1, N desig-
nates the norm, the x; are the Kronecker sym-
bols, and d is the discriminant of k. See Kro-
necker symbol. For each genus, the values of
€, =1,...,t)are unique and (€, ..., &) is
called the character system of this genus. See
character system.
genus of function field  See genus (2).
geometrical equivalence Let V be an n-
dimensional Euclidean space and let O(V) be
the orthogonal group of V. If T is an n-
dimensional lattice in V and K is a finite sub-
group of O(V), let (T, K) denote a faithful
linear representation of K on 7. Every pair
(T, K) corresponds to a set of crystallographic
groups. Two pairs (71, K1) and (T3, K») are
said to be geometrically equivalent if there ex-
istsa g € GL(V) such that K, = gK;g~!. This
equivalence relation is denoted by (77, K1) ~
(T», K»), and the equivalence classes are called
geometric crystal classes.

geometric crystal class
equivalence.

See geometrical

geometric difference equation A difference

equation of the form

y(px) = f(x,y(x)),

where p € C is an arbitrary complex number.
For example, the standard form of a linear dif-
ference equation,

Y ak(x) y(x +k) = b(x) ,

k=0
can be transformed to this form via the change
of variables z = p*, yielding

S Aoy (") = B .
k=0
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geometric fiber  The fiber X xy Spec(K) of
a geometric point Spec(K) — Y, where X and
Y are schemes and K is an algebraically closed
field.

Specifically, for a morphism of schemes ¢ :
X — Y and a point y € Y, the fiber of the
morphism ¢ over the point y is the scheme

Xy = X xy Speck(y) ,

where k(y) is the residue field of y. See fiber. A
point of Y with values in a field K is a morphism
Spec(K) — Y. Also, when K is algebraically
closed, such a point is referred to as a geometric
point. See geometric point.

A suitable embedding of k(y) in K is as-
sumed, in the above definition.

Also called geometric fiber.
geometric fibre  See geometric fiber.
geometric genus (Of an algebraic surface
S) a numerical invariant characterizing this sur-
face given by the number of linearly independent
holomorphic 2-forms on S.

More generally, for an n-dimensional irre-
ducible variety V, the geometric genus is given
by the number of linearly independent differen-
tial forms of the first kind of degree n.

See also genus.

geometric mean
bers ay, ..., a,, the positive number G =

Jaiaz - --ay.

geometric multiplicity ~ Given an eigenvalue
A of a matrix A, the geometric multiplicity of A
is the dimension of its eigenspace. It coincides
with the size of the diagonal block with diagonal
element A in the Jordan normal form of A. See
also algebraic multiplicity, index.

Given any n positive num-
n

geometric point A morphism Spec(K) —
X, where X isascheme and K is an algebraically
closed field.

geometric programming A special case of
nonlinear programming, in which the objective
function and the constraint functions are linear
combinations of (not necessarily integral) pow-
ers of the variables.



geometric progression A sequence of non-
zero numbers, having the form ar,ar?, ...,

ar(,...). See also geometric series.

geometric quotient Let Z and Y be alge-
braic schemes over a field. Suppose that G is
a reductive algebraic group that operates on Z,
and f : Z — Y is a G-invariant morphism of
schemes. Denote by f, the homological map-
ping induced by f, and by Oz and Oy the
sheaves of germs of regular functions on Z and
Y, respectively. The morphism f is called a
geometric quotient if

(1.) f is a surjective affine morphism and
f+(02)¢ = Oy,

(i1.) f(X) is a closed subset of ¥ whenever
X is a G-stable closed subset of Z, and

(iii.) for each z; and z7 in Z, the equality
f(z1) = f(z2) holds if and only if the G-orbits
of z1 and z are equal.

geometric series A series of the form

e.¢]
Zar-/zar+ar2+--~+ar"+~-.
j=0

Sometimes also referred to as a geometric pro-
gression.

If |r] < 1, the above series converges to the
sumar/(1 —r).

Gersgorin’s Theorem The eigenvalues of an
n X n matrix A = (a;;), with entries from the
complex field, lie in the union of n closed discs
(known as the GerSgorin discs),

n

UJjzeC:lz—aul = ) laul

i=1 ki

As a consequence of Gersgorin’s Theorem,
every strictly diagonally dominant matrix is in-
vertible. The latter fact is also known as the
Lévy-Desplanques Theorem. See also ovals of
Cassini.

Givens method of matrix transformation

A method for transforming a symmetric ma-
trix M into a tridiagonal matrix N = PM P!
Here P is a product of two-dimensional rotation
matrices.
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Givens transformation  See Givens method

of matrix transformation.

Gleason cover  The projective cover in the
category of compact Hausdorff spaces and con-
tinuous maps. In this category, the projective
cover of a space X always exists, and is called
the Gleason cover of the space. It may be con-
structed as the Stone space (space of maximal
lattice ideals) of the Boolean algebra of regu-
lar open subsets of X. A subset is regular open
if it is equal to the interior of its closure. Al-
ternatively, it may be constructed as the inverse
limit of a family of spaces mapping epimorphi-
cally onto X. See also epimorphism, projective
cover, Stone space.

global dimension  For an analytic set A, the
number dim(A) = supgea dim;(A), where
dimz(A) is the local dimension of A at z.

global Hecke algebra Let F be either an al-
gebraic number field of finite degree or an alge-
braic function field of one variable over a finite
field. Consider the general linear group GL; (F)
of degree 2 over F, and denote by G 4 the group
of rational points of GL, (F') over the adele ring
of F. For each place v of F, let H, be the Hecke
algebra of the standard maximal compact sub-
group of the general linear group of degree 2
over the completion of F' at v. Denote by ¢,
the normalized Haar measure of H,. The re-
stricted tensor product of the local Hecke alge-
bras H, with respect to the family {g,} is called
the global Hecke algebra of G 4.

G-mapping  Suppose that G is a group, and
X and Y are G-sets. A G-mapping is a mapping
f : X — Y such that f(gx) = gf(x) for each
g in G and each x in X.

GNS construction A means of construct-
ing a cyclic representation of a C*-algebra on
a Hilbert space from a state of the C*-algebra.
The letters G, N, and S refer to Gel’fand,
Naimark (Neumark), and Siegel (Segal), respec-
tively.

good reduction  For a discrete valuation ring
R, with quotient field K, and an Abelian variety
A over K, we denote by A’ the Neron minimal



model of A. Thus, A’ is a smooth group scheme
of finite type over Spec(R) such that, for every
scheme B’ which is smooth over Spec(R), there
is a canonical isomorphism

HomspeC(R)(B’, A"y - Homg (B'K, A) .

If A’ is proper over Spec(R), then we say that A
has a good reduction at R. See Neron minimal
model.

Gorensteinring  An algebraic ring which ap-
pears in treatments of duality in algebraic geom-
etry. Let R be a local Artinian ring with m its
maximal ideal. Then R is a Gorenstein ring if
the annihilator of m has dimension 1 as a vector
space over K = R/m.

graded algebra  An algebra R with a direct
sum decomposition R = Ry ® Ry & ... (so
that the R; are groups under addition) satisfying
Ry Ry € Ryyp, forall m, n > 0. The elements
of each R; are called homogeneous elements of
degree i.

graded coalgebra A coalgebra (C, A, ¢€)
such that there exist subspaces C,,, n > 0, such
that C = Co®C1 ... and A(Cp) C Dy j—y
C;®Cj,foralln > Oandsuchthate(C,) = {0},
foralln > 0.

graded Hopf algebra  Suppose that R is a
commutative ring with a unit, (A, €) is a supple-
mented graded R-algebra,and vy : A > A® A
is a map such that

ajo(lp®e)oy =1lp=a20(®14)0 Y,

with 14 denoting the identity mapping on A, oy
denoting an algebra isomorphism from A ® R
to A, and oy denoting an algebra isomorphism
from R ® A to A. Then A is called a graded
Hopf algebra.

graded module Let R =Ry® R D ...
be a graded ring. A graded R-module is an
R-module M which has a direct decomposition
M = @?":_OO M, suchthat R;M; C R;4j,for
i > 0and j € Z. The elements of each M; are
called homogeneous elements of degree i.
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graded object  An object O which can be
written as a direct sum O = @, 4 Oq, Where
A is a monoid.

graded ring A ring R with a direct sum de-
composition R = Ry@® R @ ... (so that the R;
are groups under addition) satisfying R, R, C
Ry4n for all m,n > 0. The elements of each
R; are called homogeneous elements of degree
l.

A primary example is the ring R = k[xy,
.+ Xn]hom of homogeneous polynomials in n
variables over a coefficient ring k. In this ring,
R, = 0,forn < Oand, forn > 0, R, consists of
the polynomials that are homogeneous of degree
n.

gradient method for solving non-linear pro-
gramming problem  An iterative method for
solving non-linear programming problems. Sup-
pose that the problem is to maximize the func-
tion f subjectto some constraints. Ateach stage
of the iteration, one uses the current iterate xy,
the gradient of f at xi, and a positive number
Mk to compute the point x4 according to the
formula x| = xx — Agng, where ny is the unit
vector in the direction of the gradient of f at the
point xy.

Gramian  For complex valued functions f; :
[a,b] — C,i =1, ..., n, the determinant of
the n x n matrix whose i, j entry is fab fifjdx.

Gram-Schmidt process A way of converting
a basis xq, ..., x, for an inner product space
V, (-, ) into an orthonormal basis vy, . .., vy, SO
that we have (v;, v;) = 0,ifi # jand (v;, v;) =

I,fori, j =1, ..., n. Therelationship between
{x1,...,x,} and {vy, ..., v,} is given by
X1
1=,
floc1

X — (x, v

ez = G, vl

o x3— (3, v)vg — (a3, 1)V
e = (3, v — (k3 vl

v2

v3

Here || x|| = +/(x,x),forany x € V.

Gram’s Theorem (1) Suppose that P is a
convex polytope in Euclidean 3-space. For k =



0, 1, 2, denote the kth angle sum of P by o (P).
Then ao(P) — o1 (P) + a2(P) = 1. More gen-
erally, if P is a d-dimensional convex polytope
in Euclidean d-space and o, (P) is the kth angle
sumof Pfork =0,1,2,...,d — 1, then

d—1
D (Diei(P) = (=D

i=0

(2) Suppose that F is a field of characteristic
zero, and denote by G the general linear group
of some degree over F. Consider matrix rep-
resentations o1, ..., pg of G over F, with n;
the degree of p;, such that each p; is either the
rational representation of G induced by some
element of G or is the contragredient map «.
Suppose that p; = « fori < s and p; # « for
i > s. Let{x(.’):lfifq,l < j < n;}be
algebraically independent elements over F. For
eachb=1,2,...,s,let Hy be a polynomial in
xj(.') for i > s that is homogeneous in x](l), .

x,(z’;.) foreach i, and suppose that the set V of com-
mon zeros of Hi, ..., Hy in the affine space of
dimension ngyy + --- + ny is G-stable. Then
there is a finite set C of absolute multiple co-
variants such that V is the set of (... , aﬁ-'), ..)
. ,a,(,f),... ,a}'),...) is

a zero point of C for each a,(,f ) with b <s.

for i > s such that (..

graph A simple graphis apair (V, E), where
V is a set and E is a set of distinct, unordered
pairs of elements of V. In a directed graph (or
digraph), the elements of E are ordered pairs
of distinct elements of V. Allowing multiplici-
ties for the elements of E or allowing loops (an
element of E of the form (v, v)) gives a gen-
eral graph, also called a graph. The elements
of V are called vertices and the elements of E
are called edges. Thus a pair (4, v) € E may
be visualized as a line segment joining points
u,veVv.

Graphs are used widely in combinatorics and
algebra since they model relationships of vari-
ous kinds among sets.

graphing
function.

See graph of equation, graph of

graph of equation For an equation £ =
E(x1, ..., x,) over the field K, in the variables
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X1,...,Xy, the set G(E) = {(ay,..
K" : E(ay,...,a,) =0}

S ay) €

graph of function  For a function f : V —
W, where V and W are sets, the set G(F) =
{(x, f(x)) : x € V}. Thus the graph G(f) is
a subset of the Cartesian product V x W of the
sets.

graph of inequality  For an equation £ =
E(x1, ..., x,), over the ordered field K in the
variables x1, ..., X, the graph of the inequality

E > Oisthe set G(E) = {(a1,...,ay) € K" :
E(ay,...,a,) > 0}.
greater than  If R isan Abelian group and R™

is a subset of R not containing 0, such that Rtis
closed under addition, R = RT U (—R1T) U {0},
and R*N(—R™)isempty, then, foralla, b € R,
we have eithera —b € RT ora —b € (—R™)
ora — b = 0. In the first case, we write a > b
and say that a is greater than b (or b is less than
a); in the second case, we write a < b and say
that b is greater than a; in the third case, we say
that a and b are equal and write a = b.
greater than or equal to  See greater than.
greatest common divisor  For integers a and
b, not both zero, the unique positive integer, de-
noted ged(a, b), which divides both a and b and
is divisible by any other divisor of both a and b.
Also called greatest common factor or highest
common factor.

greatest common factor
mon divisor.

See greatest com-

greatest lower bound  See infimum.

Grossencharakter  See Hecke character.
Grothendieck category A category C satis-
fying: (i.) C is Abelian; (ii.) C has a generator;
(iii.) direct sums always exist in C; and (iv.) for
any object P of C, any sub-object Q of P, and for
any totally ordered family {R;} of sub-objects,
we have (UR;) N Q = U(R; N Q).

Grothendieck topology  Suppose that C is
a category. A Grothendieck topology on C is a



collection of families of morphisms, indexed by
the objects of C (such a family that corresponds
to an object S of C is called a covering family
of §), such that

(i) {¢ : T — S} is a covering family of S
whenever ¢ : T — § is an isomorphism,

(i1.) if I is an index set and {¢; : R; —
S}ier is a covering family of S, then, for each
morphism ¢" : §' — S, the fiber product R;
defined by R, = R; x 5§’ exists and the induced
family {¢; : R — S’} is a covering family of
S’, and

(iii.) if 7 is an index set, A; is an index set
for each i in I, the family {¢; : Ri — S}ies
is a covering family of S, and the family {s; , :
Si.a —> Rilaea,; 1s a covering family of R; for
eachi in I, then the family {¢; 05 4 : Si.q — S}
is a covering family of S.

ground field (1) If E is an extension field of
a field F, then F is called the ground field (or
the base field).

(2) If V is a vector space over a field F, then
F is called the ground field of V (or field of
scalars of V).

ground form Consider the general linear
group of some degree over a field F' of charac-
teristic zero. A finite number of homogeneous
forms with coefficients in F that are algebrai-
cally independent is called a set of ground forms.
See general linear group.

group  One of the basic structures in algebra,
consisting of a set G and a (composition) map
m: G x G — G, usually written as m(g, g') =
gog', g+ g org-g, satisfying the following
axioms:

(i.) (associativity) go(g'og”) = (gog’)og”
forall g, ¢’, ¢" € G;

(ii.) (identity) there is an element e € G such
thateog=g=goe, forallg € G.

(iii.) (inverses) for each g € G, there is g’ €
G (called the inverse of g) such that g o g’ =
e=g'og.

One can think of a group as describing sym-
metries of certain objects.

group algebra  Let R be a commutative ring

with identity and let G be a group with ele-
ments {gy}o. The R-group algebra is the R-
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algebra freely generated by the g, so that an el-
ement is a (formal) finite sum r, o + 7y 8y +
-+ + 7, 8a,- When multiplying such elements
one simplifies by writing g, gg as g, for some
unique y, and then collecting terms.

group character A representation of a group
G is a homomorphism « : G — H, where H
is a linear group over a field F. The charac-
ter of « is the function X, : G — F, de-
fined by X, (g) = trace(x(g)). In the case of
finite groups G, characters characterize repre-
sentations up to equivalence.

group extension  The group G is an extension
of the group H by the group F if there is a short
exact sequence | - H - G — F — 1. See
exact sequence. See also Ext group.

grouping of terms  The rearranging of terms
in an expression into a form more convenient for
some purpose. For example, one may group the
terms involving x in the expression 5x2+e¥ +3x
to produce the expression (3x + 5x2) + 7.

group inverse  See generalized inverse.

group minimization problem  Suppose that
A 1s an m x n matrix with real entries, b a vec-
tor in Euclidean m-space R™, and ¢ a vector in
R”". Consider the vector xp of basic variables
associated with a dual feasible basis of the linear
programming problem of minimizing ¢’ x sub-
ject to the conditions that Ax = b and x; > 0
for j = 1,...,n. Denote by S the set of vectors
x suchthat Ax =b,x; >0forj=1,...,n,
and some of the coordinates of x are restricted
to be integers. The problem of minimizing ¢’ x
subject to the condition that x is an element of
the group generated from S by ignoring the non-
negativity constraints on the coordinates of the
vector xp is called a group minimization prob-
lem. One may solve this problem by finding
the shortest path on a directed graph that has a
special structure. If each coordinate of the vec-
tor of basic variables for the optimal solution of
the group minimization problem is nonnegative,
then that solution is optimal for the original lin-
ear programming problem; otherwise one may
use a branch-and-bound algorithm to investigate



lattice points near the optimal solution for the
group minimization problem.

group of automorphisms A one-to-one map-
ping ¢ : A — A, where A is an algebraic ob-
ject, for example an algebra or a group, such
that o preserves whatever algebraic structure A
has. Any such « has an inverse which also pre-
serves the structure of A. The composition of
two such automorphisms does this as well. The
set of all such « forms the automorphism group
of A (where the composition map in this group
is a composition of functions). See also auto-
morphism group.

group of classes of algebraic correspondences
Suppose that C is a nonsingular curve. Denote
by G the group of divisors of the product variety
C x C, and denote by D the subgroup of divi-
sors that are linearly equivalent to degenerate
divisors. The quotient group G/D is called the
group of classes of algebraic correspondences.

group of congruence classes Letm > 0 be
an integer. Two integers a and b are said to be
congruent mod m (written a = b mod m) if
a — b is divisible by m. This is an equivalence
relation. (See equivalence relation.) Denote the
equivalence class of the integer a by [a]; thus
[a] = {b : b = a mod m}. Then the set of
equivalence classes for this equivalence relation
is a group under “addition” defined by [a] +
[b] = [a + b]. This group is called the group of
congruence classes or group of congruences of
the integers modulo m.

group of inner automorphisms For each
element g of a group G, leti(g) : G — G be
the map defined by i(g)(g’) = gg’g~!. Then
we have i(gh) = i(g)i(h), forall g, h € G and
also i(g™") = i(g)~". It follows that i(g) is
an automorphism of G and the set of all such
i(g) (for all g € G) is called the group of inner
automorphisms of G. It is a normal subgroup of
the group of automorphisms of G.

group of outer automorphisms  The quo-
tient group Aut(G)/Inn(G), where Aut(G) is
the group of all automorphisms of G and Inn(G)
is the normal subgroup of Aut(G) consisting of
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all inner automorphisms if G. See group of inner
automorphisms.

group of quotients Let S be a commutative
semigroup with cancellation (so that ab = ac
implies b = c), then there is an embedding of S
in a group G such that any g € G can be written
as g = st~ where s, t € G. Here G is called
the group of quotients of S.

group of symmetries If L is a geometric
object, then a symmetry of L is a one-to-one
mapping of L to itself which preserves the ge-
ometry of the object (e.g., preserves the metric,
if L is a subset of a metric space). The set of all
such symmetries forms a group called the group
of symmetries.

group of twisted type  Suppose that F is a
field. Denote by L a simple Lie algebra over
the complex numbers that corresponds to the
Dynkin diagram of some type X, and denote by
C the Chevalley group of type X over F. Con-
sider the Lie algebra Lz spanned by Chevalley’s
canonical basis of L over the ring Z of integers.
Then C is generated by linear transformations
X4(t) of the Lie algebra F ®z Lz, with a a root
of L,and ¢ in F.

(D If X equals A, Dy, or Eg, then the Dynkin
diagram of type X has a nontrivial symmetry 7.
If t(a) = b, and if F has an automorphism
o such that the order of o equals the order of
7, then denote by 6 the automorphism of C
that sends x,(¢) to xp(t°). Denote by U the
f-invariant elements of the subgroup of C gen-
erated by {x,(¢) : a > 0,t € F}, and denote
by V the f-invariant elements of the subgroup
of C generated by {x;(t) : b < 0,t € F}. The
group generated by U and V is called a group
of twisted type.

(2) Suppose that X equals either B, or F4 and
that the field F has characteristic 2, or suppose
that X = G, and the field F has characteris-
tic 3. If F has an automorphism o such that
(t°)° = tP for each t in F, then one may ap-
ply a procedure similar to that described in (1)
above to obtain in each case another group of
twisted type.

groupoid A small category in which all mor-
phisms are invertible. See category.



group scheme A group scheme over ascheme
S isascheme X, together with a morphism to the
scheme S such that there is a sectione : § — X
(thought of as the identity map), a morphism
r : X — X over S (thought of as the inverse
map), and amorphismm : X x X — X (thought
of as the composition map) such that (i.) the
composition m o (Id x r) is equal to the pro-
jection X — S followed by e and (ii.) the two
morphisms m o (Id x r) and m o (r x Id) from
X x X x X to X are the same.

Group Theorem  Suppose that R is a ring.
The set of equivalence classes of fractional ide-
als of R that contain elements that are not zero
divisors forms a group.

group-theoretic integer programming A
method that involves transforming an integer
linear programming problem into a group mini-
mization problem. If each coordinate of the vec-
tor of basic variables for the optimal solution of
the corresponding group minimization problem
is nonnegative, then that solution is optimal for
the original programming problem; otherwise
one may use a branch-and-bound algorithm to
investigate lattice points near the optimal solu-
tion for the group minimization problem.

group theory  The study of groups. Group

theory includes representation theory, combina-
torial group theory, geometric group theory, Lie
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groups, finite group theory, linear groups, per-
mutation groups, group actions, Galois theory,
and more.

group variety A variety V, together with a
morphism m : V x V — V such that the set
of points given by V is a group and such that
the inverse map (v — v~ is also a morphism
of V. Here a morphism of varieties X, Y (over
a field k) is a continuous map f : X — Y,
such that, for every open set V in Y, and for
every regular function g : V — k, the function
go f: f~Y (V) — kisregular.

G-set  Aset S forwhichthereisamap f : G x
S — S such that f(gg’,s) = f(g, f(g,s))
and f(Id,s) = sforall g, g’ € Gands € S.
Here, G is a group.

Guignard’s constraint qualification Sup-
pose that X is a closed connected subset of real
Euclidean n-space, g is a vector-valued function
defined on X, and C is the set of all points in X
such that g; (x) < Oforeachi =1,...,n. Sup-
pose that x is a point on the boundary of X that
is not an extreme point of X, denote by Vg, (x)
the gradient of g; at x, and denote by Y the set
of vectors y for which Vg;(x) -y < 0 foreachi
such that g; (x) = 0. If Y is a subset of the con-
vex hull spanned by the vectors tangent to C at
x, then g is said to satisfy Guignard’s constraint
qualification at the point x.



H

Hadamard product  Given two m X n ma-
trices A = (a;;) and B = (b;;), the Hadamard
product (or Schur product) of A and B is their
entrywise product, usually denoted by

AoB = (a,-jb,-j) .

half-angle formulas  The trigonometric iden-
tities cos? 60 = (1 4 cos(20))/2 and sin?9 =
(1 4 cos(260))/2.

half-side formulas  Suppose that «, 8, and y
are the angles of a spherical triangle. Denote by
a the side of the triangle that is opposite o, and
put S = (e + B+ y)/2 and

—cos S

k= \/COS(S —a)cos(S — B)cos(S —y)

The formulas

(1 —cos Scos(S — )
sin| =a | = - ; )
2 sin B sin y

(1 ) \/cos(s — B)cos(S — y)
COS| —a = )
2 sin B siny

and

1
tan <Ea> = Rcos(S — )
are called half-side formulas.

half-spinor =~ An element of the representa-
tion space of either half-spin representation of
the complex spinor group. See half-spin repre-
sentation.

half-spin representation  Suppose that V is
a vector space of dimension 2n and Q is a qua-
dratic form on V. Write V as a direct sum of
two n-dimensional isotropic spaces W and W’
for Q. The representations corresponding to the
sum of all even exterior powers of W and to the
sum of all odd exterior powers of W are called
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the half-spin representations of the complex or-
thogonal Lie algebra so,,, C.

Hall subgroup Let P be a set of prime num-
bers. A P-number is a number all of whose
prime divisors are in P. A P’-number is a num-
ber none of whose prime divisors are in P. A
finite group G isa P-group if |G|is a P-number.
A subgroup H of a finite group G is a Hall P-
subgroup if H isa P-group and [G : H]isa P’
number. Further, H is a Hall subgroup if H is
a P-subgroup for some P. This is equivalent to
the condition gcd(|H|, [G : H]) = 1.

Hamilton-Cayley Theorem A matrix sat-
isfies its characteristic polynomial. That is, if
p(x) is the characteristic polynomial of a matrix
M, then p(M) = 0. Also called the Cayley-
Hamilton Theorem.

Hamilton group A non-Abelian group in

which each subgroup is normal. See normal
subgroup.
Hamilton’s quaternion algebra  The non-

commutative ring generated over the real num-
bers by 1,1, j, k where 1 is the identity, i* =
—1,j> = —1,k* = —1 and ijk = —1. Thus,
an arbitrary element has the form ¢ = a +
bi + cj + dk, where a, b, ¢, d are real num-
bers. The conjugate of g is the quaternion g =
a — bi — cj — dk, which has the property that
qq = a®> + b*> + ¢* + d*>. This allows one
to show that each non-zero g has an inverse
g~ ' = §/(qq). Thus, we have an example of
a non-commutative division algebra. The set
of quaternions of norm 1 (gg = 1) forms a
group under multiplication which is isomorphic
to SU(2).

harmonic mean  Given n non-zero real num-
bers x;, i = 1, ..., n, their harmonic mean is
H,where l|/H = (1/x1+---4+ 1/x,)/n.

harmonic motion  Simple harmonic motion
is the motion of a particle subject to the differ-
ential equation

2

dx_ 2
— =X,
dt



where n is a constant. Its solution may be writ-
ten as x = Rcos(nt 4+ b), where R and b are
arbitrary constants. Damped harmonic motion
is the motion of a particle subject to the differ-
ential equation

d*x dx 5

— +2p— +nx=0,

az P
where 2 p‘g’l—f is a resistance proportional to the
velocity and p is a constant.

harmonic progression  See harmonic series.

The series

I+ : + : + : +
2 3 n '

It is well known that this series diverges; a proof
is given by Bernoulli. One can also see this by
noting that1/2 > 1/2, 1/34+1/4 > 1/2, 1/5+
1/6 +1/7+1/8 >1/2, 1/9+1/10+--- +
1/16 > 1/2, etc., showing that the series is at
least as big as n(1/2) for any n.

harmonic series

Hartshorne conjecture If X; and X, are
smooth submanifolds with ample normal bun-
dles of a connected, projective manifold Z such
that

dimX; + dimX,; > dimZ ,

then is X1 N X2 nonempty?

Hasse invariant  Let E be an elliptic curve
over a perfect field k of characteristic p > 0
and let F : E — E be the Frobenius mor-
phism (induced by the p-power map). Let F* :
H'(E,Op) - H'(E, O) be the induced map
on cohomology. If F* = 0, then E has Hasse
invariant 1; otherwise E has Hasse invariant 1.
Here H'(E, OF) is a one-dimensional vector
space over k, since E is elliptic, and Of is the
sheaf of regular functions on the variety E.

Hasse-Minkowski character  Let A be an
n X n non-singular symmetric matrix with ra-
tional elements and let D; (i = 1,2, ...,n) be
the leading principal minor determinant of order
i in the matrix A. Suppose further that none of
the D; is zero. Then the integer

n—1

cp =cp(A) = (=1, =Dp), [ [(Di, =Dit1),
i=1
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is the Hasse-Minkowski character of A. Here p
isaprime and (a, b) , is the Hilbert norm residue
symbol.

Hasse-Minkowski character Also called
Hasse-Minkowski symbol, Hasse symbol, and
Minkowski-Hasse character. An invariant of a
quadratic form which, when considered together
with the discriminant of the form and the number
of variables, determines the class of a quadratic
form over a local field. Let F be either a com-
plete archimedean field or a local field of charac-
teristicnotequalto2. Let (a, b) = lifax?+by?
represents 1, otherwise let (a, b) = —1. If f is
a nondegenerate quadratic form over F equiv-
alent to a1x12 + agx% + -4 a,,x,%, then the
Hasse-Minkowski character is usually defined
as either

xp(f) = H(ai,aj) or
i<j

x,(f) = l—[(ai,aj) .

i<j

Note that X; = xp - d(f),d(f)) where d(f)
is the discriminant of f. The Hasse-Minkowski
character depends only on the equivalence class
of the form f and not on the diagonalization
used. It may also be defined in terms of the
Hasse algebra of f by setting x,(f) = 1 if the
Hasse algebra associated with f splits and -1 if
it does not. The Hasse-Minkowski character is
sometimes called the Hasse invariant, since the
Hasse invariant is either 1 or the unique element
of order 2 in the Brauer group of F. See also
Hasse invariant, Hasse-Minkowski Theorem.

Hasse-Minkowski symbol See Hasse-
Minkowski character.
Hasse-Minkowski Theorem If g is a qua-

dratic form over a global field F, with charac-
teristic not equal to 2, then ¢ is isotropic over F
if and only if ¢ is isotropic over all F,, where
F, is the completion of F at the place p.

If F and F), are defined as above, this the-
orem leads to the following statement: Two
quadratic forms are equivalent over F if and
only if they are equivalent over all F,, if and
only if they have the same dimension, discrim-
inant, the same Hasse-Minkowski character for



non-archimedean Fj,, and the same signature
over the real completions of F. See Hasse-
Minkowski character.

Hasse principle  Let X be a smooth projec-
tive variety over an algebraic number field k. A
fundamental Diophantine problem for X is to
decide whether there are any k-rational points
on X and, if so, to describe them. When X is a
geometrically integral quadric, the Hasse prin-
ciple affirms that if X has rational points in every
completion of k, then it has rational points in k.

Hasse’s conjecture  Let m, my, and m3 be
coprime integers greater than 2. If A(mq, my,
m3) denotes the number of lattice points (x1, x2,
x3) with (x;, m;) = 1 in the tetrahedron

3
2max (xj/m;) < Zx,-/mi <1,

i=1

then A(my, my, m3) is even. In 1943, Hasse
made the conjecture, which arose in his inves-
tigations of class numbers of Abelian number
fields.

Hasse symbol  See Hasse-Minkowski char-
acter.
Hasse-Witt map  See Hasse-Witt matrix.
Hasse-Witt matrix  Given acomplete smooth
algebraic variety X of dimension n defined over
aperfect field k of positive characteristic p, there
is a natural Frobenius morphism F : X — X,
whose action on the structure sheaf Ox of X is
just as the pth power map. This action induces
another action on the nth cohomology group
H"(X, Oyx), called the Hasse-Witt map of X
and denoted also by F. The group H" (X, Oyx)
is a finite-dimensional k-vector space and the
matrix corresponding to F' is called the Hasse-
Witt matrix of X.

Hasse zeta function  The function ¢ (s), of a
complex variable s, defined as follows. Suppose
that V is a nonsingular complete algebraic vari-
ety defined over a finite algebraic number field
F. For each prime ideal P of F, denote by Vp
the reduction of V modulo P, denote by Fp the
residue field of P, and denote by N, the number
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of F}'-rational points of Vp. Denote by Zp the
formal power series defined by

o0

Npuu™
ZP(M):CXP(Z mu )

m=1

Denote by P the set of all prime ideals P of F
such that Vp is defined, and denote by N (P) the
absolute norm of P. Then

t) =[]z (NP, VE) .

PeP

Hausdorffspace A topological space X such
that, whenever p, g are points of X, then there
is an open neighborhood U of p and an open
neighborhood V of ¢ suchthat U NV = .
Also called T>-space.

haversine  The complex valued function /(z)
= (1 —cosz)/2.

Hecke algebra (1) Let H be a subgroup of
a group G, and suppose that for each g in G,
the index of H N gH g~ in H is finite. Denote
by H\G/H the set of double cosets of G by
H. If R is a commutative ring, then the module
RH\G/H has an R-algebra structure and is called
the Hecke algebra of (G, H) over R.

(2) Let H be a subgroup of a finite group G.
Suppose that F is a field, and e is an idempotent
in F H such that the left ideal F He affords an
F-character. Then the subalgebrae - FG - e is
called a Hecke algebra.

Hecke character  Consider an algebraic num-
ber field of finite degree, denote its idele group
by J and its idele class group by C. A char-
acter of J that is a character of C is called a
Hecke character (or Grossencharakter). See
idele class, idele group.

Hecke L-function A function L(s), of acom-
plex variable s, defined as follows. Suppose that
F is an algebraic number field of finite degree,
and m is an integral divisor of F. Denote by x
the character of the ideal class group of F mod-
ulo m. For each integral ideal a of F', denote its
absolute norm by N (a). Denote by I the set of
all integral ideals of F'. Then

L(s) =) x(@/N@)’ .

acl



height (1) Let R be anon-trivial commutative
ring with an identity. A prime chain of length
nisasequence Ip D Iy D Ih D -+ D I,
(proper inclusions) of prime ideals (i.e., I; €
Spec(R)). If I € Spec(R), then the supremum
of the lengths of such prime chains is called the
height of the prime ideal /. If I is a (proper)
not necessarily prime ideal of R, by height(/)
we will mean the minimum of the heights of the
prime ideals which contain /.

(2)If ® C R"isarootsystemand A is a base
for @, then, for € ®,wehave 8 = ), ¢ koo,
where the k, are integers. Then the height of B

is ) e Ka-

Heisenberg group  The group of all upper-
triangular integral (or sometimes real) 3 x 3 ma-
trices with 1s on the diagonal. The Heisenberg
group is nilpotent.

Held group
4,030,387,200.

A finite simple group of order

Hensel’s Lemma  Let A be a complete lo-
cal ring with m its maximal ideal. Assume that
A is m-adically complete. Let f(x) € Al[x]
be a monic polynomial of degree n. Let w :
A — A/m be the canonical map and extend
mtom : Alx] - (A/m)[x]. If gi(x) and
g2(x) are relatively prime monic polynomials
over A/m of degree r and n — r (respectively),
such that w ( f(x)) = g1(x)g2(x), then there ex-
isthi(x), ha(x) € A[x]having degreer andn—
r such that f(x) = h1(x)hy(x) and w(h; (x)) =
gi(x), fori =1,2.

Herbrand quotient Let G = {g1,..., gn}
be a finite group and let M be a G-module. Let
N : M — M be the norm defined by N(m) =
gim+ ---+ gpym. Then N(M) is contained in
MC . Lethg = MY /N (M) andlet | be the first
cohomology group H' (G, M). If hy and h; are
finite, then the quotient of their orders is h (M),
the Herbrand quotient. The Herbrand quotient
is multiplicative for short exact sequences of G-
modules: if wehave | > M’ - M — M" —
0, then h(M) = H(M"Yh(M").

Herbrand’s Lemma Let G be a finite group.

If M’ is a sub-G-module of a G-module M and
the Herbrand quotient #(M’) exists, then h(M)
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also exists and h(M) = h(M’). See Herbrand
quotient.

Hermitian form A form(,:):V xV —
C, where V is a real or complex vector space,
such that (1, v) = (v, u), forall u,v € V. The
standard Hermitian form on C”" is defined by

(u,v) =D 7 uiv; .

Hermitian matrix A matrix M, such that its
transpose and its complex conjugate (the matrix
with entries equal to the complex conjugates of
the entries of M) are equal. See transpose.

Hermitian operator  An operator M, on a
real or complex vector space, such that M* =
M, where M* is the adjoint operator. Thus, if the
Hermitian form is the standard Hermitian form,
then M* = MT, where T stands for transpose.

Hessenberg method of matrix transformation
A method for transforming a matrix into a matrix
(bij) by means of a triangular similarity trans-
formation so that b;; = 0 wheneveri — j > 2.

Hessian  The Jacobian of the first order deriva-
tives of a differentiable function f = f(x1, ...,
Xxy) of n real variables; i.e., H(f) = J(df/dx1,
e O [0xy) = |02 f/3x; x|

Hey zeta function = The function ¢(s), of a
complex variable s, defined as follows. Sup-
pose that A is a simple algebra over an algebraic
number field of finite degree, o is a maximal or-
der of A, and a is an integral left o-ideal. Denote
by N (a) the number of elements in 0/a, and by
I the set of all integral left o-ideals. Then

() =) Na™.

ael

higher algebra
uate level.
(2) Modern, or abstract, algebra.

(1) Algebra at the undergrad-

higher-degree Diophantine equation  Anal-
gebraic equation of degree three or higher whose
coefficients are integers, such that the solutions
sought are to be integers. See also Diophantine
equation.



higher differentiation For a commutative
ring R with a unit and N the nonnegative inte-
gers, a sequence

{6 : R = R}ieN

of maps such that, for every x and y in R and
every i and j in N,
(i) 8i(x +y) =é&ix +diy;
(ii) 81 (x3) = X, geN:prqmi p% + 80
(iii.) 8:(8;x) = ("F/)8i1;x; and
@iv.) Sgx = x.

highest common factor
mon divisor.

See greatest com-

highest weight (1) Suppose that g is a com-
plex semisimple Lie algebra, £ is a Cartan subal-
gebra of g, and O is a lexicographic ordering on
the real linear subspace of the complex-valued
forms on &, spanned by the root system of g rel-
ative to h. If p is a representation of g, then the
maximal element of the set of weights of p with
respect to O is called the highest weight of p.

(2) If V is a vector space over the field C of
complex numbers, g is a semisimple Lie algebra
over C, 7 is an irreducible finite-dimensional
representation of g in V, and # is a Cartan sub-
algebra of g, then g has a Cartan decomposition
g = h ® (®uygq), with each « being an eigen-
value of the action of # on m. Such an eigen-
value is called a weight of w. A nonzero vector
v € V is called a highest weight vector of m if
v is an eigenvector for the action of 4 on 7 and
if g4 (v) = O for each positive root « of g. The
highest weight of  is the weight of the highest
weight vector of 7.

Higman-Sims group
of order 44,352,000.

A finite simple group

Hilbert-Hasse norm residue symbol  For a
fixed prime p, let ¢, be a primitive p"th root of
1 in some algebraic closure of Q,. Let L, =
Q,(&n), and let (-, -), be the p”th Hilbert norm
residue symbol of L.

Hilbert modular group If M € PSL(2, Oy)
is a matrix and M stands for the matrix ob-
tained by replacing each entry of M by its Galois
conjugate, then the map M — (M, M) sends
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PSL(2, Oy) to an irreducible lattice in G (where
G = PSL(2,R) x PSL(2,R)). This last is
called a Hilbert modular group. It is known that
any irreducible lattice in G is commensurable to
one of the Hilbert modular groups.

Hilbert modular group If M € PSL(2, Oy)
is a matrix and M stands for the matrix ob-
tained by replacing each entry of M by its Galois
conjugate, then the map M — (M, M) sends
PSL(2, Oy) to an irreducible lattice in G (where
G = PSL(2, R)xPSL(2, R)). Thislastiscalled
a Hilbert modular group. It is known that any
irreducible lattice in G is commensurable to one
of the Hilbert modular groups.

Hilbert modular surface Denote by G a
Hilbert modular group, and denote by H? the
product of the upper half-space with itself. After
adding a finite number of points to H>/G and
obtaining the minimal resolution of the space,
one obtains a nonsingular surface over the com-
plex numbers. This surface is called the Hilbert
modular surface.

Hilbert norm-residue symbol  Suppose that
F is an algebraic number field that contains a
primitive nth root of unity, that a and b are
nonzero elements of F, and that P is a prime
divisor of F. Put

where the symbol on the right is the norm-residue
symbol. The symbol (%) defined by
n

(5), - ()

is called the Hilbert norm-residue symbol. See
also norm-residue symbol.

Hilbert polynomial Let R be an Artinian
ring and let R[xy, ..., x,] be the (graded) poly-
nomial ring (graded by degree). Let M = My &
M & ... be a finitely generated graded R[x,
..., Xp]-module. Let Ly (n) = L(M,) denote
the length of the R-module. Then there is a
polynomial f(x) with rational entries such that
Ly (n) = f(n), for sufficiently large n. This



is the Hilbert polynomial of the R[x1, ..., x,]-

module M. See length of module.

Hilbert’s Basis Theorem If R is a Noethe-
rian ring, then so is the polynomial ring R[x].
See Noetherian ring.

Hilbert scheme  Let k be an algebraically
closed field. The Hilbert scheme parametrizes
all closed subschemes of P;' . Here, if R is a
ring, then P}’ is the projective n space over the
ring R. It satisfies the following condition: to
give a closed subscheme S in Py which is flat
over T (for any scheme 7T') is the same as giving a
morphism f : T — H. Here the map f acts on
t € T by f(t) = the point of H corresponding
to the fiber S; in P]f(T).
Hilbert’s Irreducibility Theorem  Suppose
that P is an irreducible polynomial in the n vari-
ables x1, ... , x, over an algebraic number field
F, and suppose that 0 < m < n. Then there is
an irreducible polynomial in the m variables x1,
..., Xp that is obtainable from P by assigning
appropriate values in F to the n — m variables

Xm+1s -+ 5 Xn-

Hilbert space A linear space with a norm
that is induced by a complex Hermitian inner
product, and which is complete.

Hilbert-Speiser Theorem Supposethat E/F
is a finite Galois extension with Galois group G,
denote by E* and F* the multiplicative groups
of the field E and F, respectively, and denote by
N the norm Ng,r. Then HO(G, F*) is isomor-
phic to E*/N(F*), and H'(G, F*) = 0.

Hilbert’s Syzygy Theorem (1) Let R be the
graded polynomial ring in n indeterminates of
degree 1 over a field, and let M be a finitely
generated graded R-module. If My, ..., M,
are finitely generated graded R-modules,

O—-M, - M,_|—---—>My—M—0

is an exact sequence, and My, ..., M,_ are
free, then M,, is free.

(2) Let R be a regular local ring of dimen-
sion d, and let G be a finitely generated R-
module. Then there are finitely generated free
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R-modules Fy, Fi, ..., F; and there are R-
homomorphisms fo : Fp — G and f; : F; —
Fiyqfori =1,2,...,d such that the sequence

0—>Fdﬁ>-~-ﬁ>F0£)>G—)0

is exact.

Hilbert’s Zero-point Theorem For any field
F, any finitely generated F-algebra A and any
ideal I of A, the radical of [ is the intersection
of all the maximal ideals of A which contain /.

Hirzebruch surface  The CP!-bundle over
CP! with cross-section C where C? = —n.

Hochschild’s cohomology group  Suppose
that A is an algebra over a commutative ring.
If M is a two-sided A-module, then consider
the complex obtained from the module of all
n-cochains and the coboundary operator. The
cohomology of this complex is called the nth
Hochschild’s cohomology group of A relative to
M. See also cohomology group.

Hodge’s conjecture  Suppose that V is a pro-
jective nonsingular variety over a finite algebraic
number field F', and denote by A the group of al-
gebraic cycles of codimension 7 on V ®  C mod-
ulo homological equivalence. Then the space
of rational cohomology classes of type (r, ) on
V ®F Cis spanned by A.

Hodge spectral sequence If V is a nonsin-
gular connected algebraic variety over the field
of complex numbers, and 27 denotes the sheaf
of germs of regular differential forms of degree
q, then the spectral sequence

El? = HI(V,Q%) = HP*(V,C)
is called a Hodge spectral sequence.

Hodge structure  Suppose that L is a lattice,
and V is a finite-dimensional real vector space
that contains L. Denote the complexification of
V by C. A Hodge structure of weight m on C
(or on V) is a decomposition of C as a direct

sum
® cPa

p.q:p+q=m

C =



of complex vector spaces CP+9 such that the
complex conjugate of C?¢ is isomorphic to
Ca-p,

Hodge theory A body of results concern-
ing cohomology groups of manifolds. Three of
these results are listed here.

(1) Suppose that X is a closed oriented Rie-
mannian manifold. Then each element of a co-
homology group of X with complex coefficients
has a unique harmonic representative.

(2) Suppose that V is a compact complex
manifold of dimension n that is the image of
a holomorphic mapping from a compact Kéhler
manifold of dimension n. If ¢ = max(n — p +
1, 0),then H"(V, C) carries the Hodge structure
induced by the type (p, g)-decomposition of the
space of differential forms on the manifold.

(3) If X is a smooth noncomplete irreducible
variety, then H" (X, C) carries a mixed Hodge
structure that is independent of the choice of
complete algebraic variety X such that X — X
is a subvariety.

See Hodge structure.

Holder inequality Ifp #0,1,1/p+1/q =
1 and g;, b; > 0, then we have

1/p 1/q
ens(2) (£)"

if p > 1and

1/p 1/q
San=(2) (T#)
i i i
if 0 < p < 1. See also Holder integral inequal-
ity.

Holder integral inequality  Suppose that f
and g are measurable positive functions defined
on a measurable set E, and suppose that p and g
are positive real numbers such that 1/p+1/g =
1. If p > 1, then

Jore= (L) (L) ™

If0 < p <1, then

Jors= ()" (L)
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In each case, equality holds if and only if there
exist two real numbers a and b such that ab # 0
and af? = bg? almost everywhere.

Holder’s Theorem Ifn # 2, 6, then the sym-
metric group S, is complete. See symmetric
group, complete group.

holomorphic function  See analytic function.

holomorphic functional calculus If X isa
complex Banach space (a complete normed vec-
tor space), T : X — X is a bounded linear
operator and f(z) is a holomorphic function on
(a neighborhood of) the spectrum of T (the set
of eigenvalues of 7', if X is finite dimensional),
then one can define f(7') via a Cauchy type inte-
gral. The map f — f(T) is a homomorphism
from the algebra of holomorphic functions in a
neighborhood of the spectrum to 7 into the Ba-
nach algebra of bounded linear operators on 7.

holosymmetric class  Suppose that T is an n-
dimensional lattice in n-dimensional Euclidean
space, and that K is a finite subgroup of the or-
thogonal group. Denote by A, B, and G the sets
of arithmetic crystal classes, of Bravais types,
and of geometric crystal classes of (7, K), re-
spectively. There are surjective mappings s :
A — Bands; : A — G, and there is an in-
jective mapping i : B — A such that s; o is
the identity mapping on B. A holosymmetric
class is a class that belongs to the image of the
mapping sz o i.

See arithmetic crystal class, Bravais type, ge-
ometric crystal class.

homogeneous Of the same kind. For ex-
ample, a homogeneous polynomial is a polyno-
mial each of whose monomials has the same de-
gree. See homogeneous polynomial. See also
homogeneous bounded domain, homogeneous
coordinate ring, homogeneous equation, homo-
geneous ideal, homogeneous n-chain.

homogeneous bounded domain A bounded
domain D in C”" such that the group of all holo-
morphic transformations of D acts transitively
on D.



homogeneous coordinate ring Let K be a
field, V aprojective variety over K and I (V) the
ideal of K[xo, ..., x,] generated by the homo-
geneous polynomials in K [xo, . . ., x,,] that van-
ish on V. Then K[xg, ..., x,]/1(V) is called
the homogeneous coordinate ring of V.
homogeneous difference equation A linear
difference equation of the form

Xp+C1Xp—1+ -+ cpxo =0,

wherecy, .. ., ¢, are given real or complex num-
bers and {x;} is an unknown infinite sequence.
The notion is similar to that of homogeneous
linear equation except that difference equations
are often written in terms of x,, and powers of the
difference operator Ax, = x, — x,_1, so that
they can be considered as analogs of differential
equations.

homogeneousdomain A domain with a tran-
sitive group of automorphisms. In more de-
tail, a domain is a connected open subset of
complex N space CV. A domain is homoge-
neous if it has a transitive group of analytic
(holomorphic) automorphisms. This means that
any pair of points z and w can be interchanged,
i.e., $(z) = w, by an invertible analytic map
¢ carrying the domain onto itself. For exam-
ple, the unit ball in complex N space, {z =
(21, zn) szl 4 ..o+ |zn|? < 1}, is ho-
mogeneous. See automorphism, invertible func-
tion, invertible map. See also bounded homo-
geneous domain, Siegel domain.
homogeneous element  See graded ring.
homogeneous equation  An equation, in an
unknown function f, having the form L[ f] =
0, where L acts linearly (L[c1 f1 + c2f2] =
crl[fi] + ca L[ f2]). Thus, L could be a linear
differential operator (ordinary or partial). See
also homogeneous difference equation.

homogeneous function Let F be a field. A
function f = f(x1,..., xy) : F* — F, such
that, for all ¢ € F and all (xy,...,x,) € F",
we have f(cxy,...,cx,) = ckf(xl, e, Xp) 1S
called a homogeneous function of degree k. See
also homogeneous polynomial.
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homogeneous ideal  An ideal / in a graded
ring R such that / is generated by homogeneous
elements. See graded ring.

homogeneouslinear equation A linearequa-
tion in the variables x, . . ., x,, having the form

cixp 4o+ cnxn =0,
where the ¢; are constants.

homogeneous n-chain  Let G be a group and
let G act on G™*! diagonally: g(go, ..., gn) =

(ggo,--.,88n). Define a boundary oper-
ator by d(go,...,8g1) = (g1,---,81) —
(80» 825 -+ gn) +---+ (_l)n(g()v L] gn—l)~

Then the free Abelian group with basis the ele-
ments of G"T1, with this action of G on G"*!
and with boundary operator d is called the group
of homogeneous n-chains of G.

homogeneous polynomial A polynomial
P(x1,...,x,), which is also a homogeneous
function (of some degree k). See homogeneous
function. Thus,

P(x1,...,x3)

— E My, M
= lemz...mnxl Xp oo
m1+---+mn=k

homogeneous ring  See graded ring.

homogeneous space A smooth manifold M
with a Lie group G, such that there is a transitive,
smooth action of G on M.

homological algebra  Originally called mul-
tilinear algebra, this branch of algebra deals
with the category of left (or right) R-modules
over some ring R (generally assumed to be as-
sociative and to possess an identity element).
A left R-module is an Abelian group A, to-
gether with a ring homomorphism of the ring
R into the ring of endomorphisms (homomor-
phisms) of A intoitself. A right R-module is de-
fined similarly except the ring homomorphism
is replaced by a ring anti-homomorphism (i.e.,
the order of products is reversed). When R is
commutative, a structure as a left R-module in-
duces a structure as a right R-module and vice
versa. The morphisms of this category are the



R-homomorphisms f : A — B for a pair of R-
modules A and B. By an R-homomorphism we
mean a group homomorphism of A into B with
the property that f(Aa) = Af(a),forall A € R
and a € A, when A and B are left R-modules
and, when A and B are right R-modules, we
assume that f(aA) = f(a)A. These categories
have two fundamental functors, both of which
take their values in the category of all Abelian
groups (which is, in the terminology of this def-
inition, the category of left Z-modules). We
describe them separately.

Given two left R-modules A, B, Homp (A,
B) denotes the Abelian group of all R-homo-
morphisms of A into B. When R is commuta-
tive, Homg (A, B) is also both a left and right
R-module. This functor is covariant in the sec-
ond variable and contravariant in the first. By
covariant in the second variable we mean that if
B — C is a morphism then there is an induced
morphism

Hompg(A, B) - Homg(A, C) .

By contravariant in the first variable we mean
that there is an induced morphism

Homg(B, A) < Homp(C, A) .

This functor is left exact in both variables. By
this we mean that, given any exact sequence
B — C — 0, the induced group homomor-
phisms

0 — Hompg(C, A) - Hompg (B, A)

forms an exact sequence and that any exact se-
quence 0 — B — C induces an exact sequence
0 — Homg(A, B) — Homg(A, C).

When A is aright R-module and B is aleft R-
module then there is an Abelian group A Qg B
called the tensor product of A and B that con-
sists of formal sums of pairs (a, b) where a is
a member of A and b is a member of B and is
subject to the relations

((a1 +a2) , b) = (a1, b) + (a2, b)

(a, b1+ b2) = (a,b1) + (a, by)
(ar,b) = (a,Ab) forall L € R .

A ®pg B is covariant in both variables and right
exact in both. When R is commutative, A Qg
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B can be regarded as both a left and right R-
module.

Further development of these ideas leads to
certain derived functors called Ext},(A, B) in
the case of the Hom functor and Tor’, (A, B) in
the case of the tensor product functor. There is
one such functor for each n > 0 and, in case
n = 0, these coincide with Hom and the ten-
sor product. This development is too lengthy
and technical to describe further here. See Ext
group, Tor.

homological dimension  Let C be the cate-
gory of left R-modules where R is an associa-
tive ring with identity. We construct a projective
resolution of an R-module A by first taking a
projective module Py, together with an epimor-
phism Py - A — 0 and kernel Ky. There
always exists such a projective module since a
free module on any set of generators for A will
work. If Ky is not projective, repeat this proc-
ess with an epimorphism P; — Ky — 0 and
kernel K. Continue until a kernel K,, which
is projective is obtained. The index n is called
the projective dimension or homological dimen-
sion of the module A. Two facts must be proved
before this notion makes sense: (i.) A has ho-
mological dimension 0 if and only if A is, itself,
projective and (ii.) the index n is independent
of the particular sequence of projective modules
used. See projective module.

homological functor A sequence of additive
covariant functors of Abelian categories H =
{H; : A — A’} defined for —0o0 < i < 400
with the following properties. For each short
exact sequence 0 - A’ - A - A” — 0in
A, and morphism of exact sequences f, there
exist connecting morphisms 8, : H;(A”) —
H;_1(A)suchthat§,o H; (f") = H;_1(f)0ds.
The sequence

= Hi (A7) 5 Hi(A') — Hi(A)
— Hi(A") % Hi(A) - -
is a complex which is always exact.
homological mapping A homomorphism of

homology modules induced by a chain map-
ping. Let A be a ring with unit, and let (X, §)



and (Y, §') be chain complexes over A with ho-
mology modules H(X) and H(Y). The A-
homomorphism f, : H(X) — H(Y), of degree
zero, induced by a chain mapping f : X — Y,
is called the homological mapping induced by

f.

homology Let {A, : n € Z} be a set of R-
modules over some ring R. Assume that there
is a family of R-homomorphisms f;, : A, —
Ay, —1 with the property that the composite ho-
momorphisms f,_1 f,, = 0 for all n. This data
defines a chain complex. The latter condition
implies that Im( f;;) CKer(f;,—1), where Im(f)
is the image of f and Ker(f) is the kernel of
f. Then the factor module ker( f;,—1)/Im(f;) =
H,_1 is the (n — 1)st homology module of the
complex. The sequence of these modules is
called the homology of the complex.

homology class  The residue class of a cycle
modulo a boundary in the group of chains. Let
A be an Abelian category and let C = (Cy, dy)
be achain complexin A. Let Z,, =Kerd, and B,
=Imd, 4. A residue class of Z,,/B,, is called a
homology class.

homology group  When a chain complex of
Abelian groups is given, then its homology con-
sists of a sequence of homology groups. See
chain complex.

homology module = When a chain complex of
R-modules over some ring R is given, then its
homology consists of a sequence of homology
modules. See chain complex.

homomorphism  Algebraic structures such
as groups, rings, fields, and modules are all de-
fined with one or more binary operations. Sup-
pose that o : § x § — S is one such binary
operation which is, simply, a function from the
Cartesian product S x S to §. We customarily
write a o b instead of the more standard func-
tional notation o(a, b) to describe the action of
this function. Then a homomorphism is a func-
tion f : § — T from one such object to another
with the property that f(a o b) = f(a) o f(b)
for all a,b € S. Additional qualifiers such
as group homomorphism, ring homomorphism,
or R-homomorphism are used to describe ho-
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momorphisms defined on groups, rings, or R-
modules.

Homomorphism Theorem of Groups Let
G be a group and let H and N be subgroups of
G such that N is normal (aNa—! € N for all
a€G.)Then(i.) HN=NH={xe€G:x =
nh, for some n € N} is a subgroup of G, (ii.)
N 1is a normal subgroup of NH, (iii.) NN H
is a normal subgroup of H, and (iv.) the factor
group N H/N is isomorphic to the factor group
H/(NNH).

homotopy Let X and Y be topological spaces
and let f and g be continuous functions from
X to Y. We will say that f is homotopic to g
(often written f ~ g) to mean that there is a
continuous function F : X x I — Y defined,
on the Cartesian product of X with the unit in-
terval I = [0, 1], such that F(x, 0) = f(x) and
F(x,1) = g(x) for all x € X. The relation
of being homotopic is an equivalence relation.
The function F that defines the relation is often
spoken of as the homotopy.

When X is the unit interval (i.e., when we
are talking about paths in the space Y), it is cus-
tomary to make the additional assumption that
F@O,s)= f(0)=g©)and F(1,s) = f(1) =
g(.

homotopy associative  Let G be a topologi-
cal space carrying the structure of an H -space,
defined by the continuousmap u : G xG — G.
See H-space. Given points x, y, z € G, we can
define the maps f(x, vy, z) = u(x, n(y, z)) and
gx,y,2)=pu(ux,y),z)fromG xG x G —
G. We say that u is homotopy associative if f
and g are homotopic as maps.

homotopy commutative Let G be atopolog-
ical space carrying the structure of an H-space,
defined by the continuousmap it : G xG — G.
(See H-space.) Given points x,y € G, we
can define the maps f(x,y) = u(x,y) and
g(x,y) = u(y,x) from G x G to G. We say
that u is homotopy commutative if f and g are
homotopic as maps.

homotopy identity Let G be a topological
space carrying the structure of an H-space, de-
fined by the continuous map 1 : G x G — G.



(See H-space.) A constant map e(x) = e is
called a homotopy identity if the maps defined
by u(x,e) and (e, x) are both homotopic to
the identity map i on G defined by i (x) = x for
allx € G.

homotopy inverse  Let G be a topological
space carrying the structure of an H-space, de-
fined by the continuous map u : G x G —
G and having a homotopy identity e. See H-
space, homotopy identity. A continuous map
v : G — G defines a homotopy inverse if the
maps defined by wu(x, v(x)) and u(v(x), x) are
both homotopic to the homotopy identity e.

Hopf algebra  Two types of Hopf algebras
have been defined. The first one was introduced
by Hopf and is used in the study of homology
and cohomology of Lie groups. The second type
was introduced by Sweedler and has applica-
tions in the study of algebraic groups.

(1) A (graded) Hopf algebra (A, ¢, ) over
a field & is a graded algebra with multiplication
¢ which is also a graded co-algebra with comul-
tiplication ¥ such that ¢ : (A, ¢¥) ® (A, ) —
(A, ¥) is a homomorphism of graded co-alge-
bras. This type of Hopf algebra is frequently
assumed to be connected, commutative, cocom-
mutative, and of finite type.

(2) A Hopf algebra with an antipode S is a
bialgebra with antipode S. See also antipode.

Hopf algebra homomorphism A bialgebra
homomorphism f, between a Hopf algebra H
with antipode S and a Hopf algebra H’ with
antipode S’ such that S’ f = fS. See also Hopf
algebra.

Hopf comultiplication A degree preserv-
ing linear map defined as follows. Let X be
a topological space with a base point xg and let
1 be a continuous base point preserving map-
ping from X x X to X. Let ¢1(x) = (x, x0)
and 1(x) = (xg,x). If u oy is homotopic
to 1y, then p induces a degree preserving linear
map, (¥, from the cohomology group H*(X) to
H*(X) ® H*(X) via a Kiinneth isomorphism.
In this situation u* is called a Hopf comultipli-
cation and (X, w) is called an H-space. If o is
an element of H*(X), then u*(«) is called the
Hopf coproduct of «.
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Hopf coproduct  The image of an element
under a Hopf comultiplication. See Hopf co-
multiplication.

Horner method of solving algebraic equations
An iteration method for finding the real roots of
an algebraic equation. Locate a positive root
between two successive integers. If a; is the
greatest integer less than the root, use the sub-
stitution x; = x — a1 to transform the equation
into one that has a root between 0 and 1. Lo-
cate this root between successive tenths. Use
the substitution x» = x; — ap to transform the
equation to one that has a root between 0 and
one-tenth. Continue this process. The desired
root is then approximately a; + az + - - - + a,.

Householder method of matrix transforma-
tion A method of transforming a symmet-
ric matrix A into a tridiagonal matrix B. The
method uses a similarity transformation of the
form A — H 'AH, where H represents an
orthogonal matrix of the form I — 2uu™ with
u*u = 1. Inthe above situation, I represents the
identity matrix and u* is the conjugate transpose
of u.

Householder transformation The matrix
transformation # = Hv where H is a symmet-
ric and orthogonal matrix of the form H =
I —2xxT, where xTx = 1. In the above sit-
uation, x7 represents the transpose of x, and
represents the identity matrix.

Since the nth factor of a Blaschke

l—[ a, ap —72

lan| 1 —ay,z

can be written in the form 1 + C(z, a,), where
C(z,a) = (1-lal)/lal—(1—|al*)/lal(1-az),
the Blaschke product converges absolutely at a
point z¢ if and only if Y C(z¢, a,) converges
absolutely. Thus, in complex analysis, an H-
series is a series of the form

ch/(l —anz),

where 0 < |ay| <1 (n=1,2,---)and ) (1 —
lan|) < oo. The set of points on C at which
the H-series converges is called its set of con-
vergence. The subject of representation theory
also considers H -series.

H-series
product




H -series

H-space A topological space G, together
with a continuous map £ : G x G — G, from
the Cartesian product of G with itself to G. In
practice, various additional conditions are im-
posed on such maps that make them imitate the
properties normally associated with a multipli-
cation. See homotopy.

hull-kernel topology A topology on the set
of primitive ideals (the structure space 7) of a
Banach algebra R. Under this topology, the clo-
sure of a set U/ is the set of primitive ideals con-
taining the intersection of the ideals in /.

Hurwitz’s relation A relation between the
Riemann matrices of two Abelian varieties T}
and T that implies the existence of a homo-
morphism from 77 to 7». Let 71 and 7> be
Abelian varieties with Riemann matrices 2 =
@, .. oY) and Q0 = @2, ..., 0?).
1 2n 1 2m
There is a homomorphism A : T — T> if and
only if there is a complex matrix W, and a ma-
trix M with integer entries, such that WQ; =
QoM. In particular, for every homomorphism
A 1 Ty — T, there is a representation matrix
W (A) with complex coefficients, and a represen-
tation matrix M (1) with respect to the real coor-

1 2
L0y and (07, ...,

dinate systems (wil), .
a)éiz), that has coefficients in Z, such that W (1)

Q= QMO).

Hurwitz’s Theorem  If every member of a
normal family (of analytic functions on a con-
nected, open, planar set €2) is never zero on
2, then the limit functions are either identically
ZEero or never zero on 2.

A family of analytic functions on a set €2 is
normal on 2 if every sequence from the fam-
ily contains a subsequence that converges uni-
formly on compact subsets of €.

Hurwitz zeta function  The function

[e¢]

1
“S’“)Zz—(n+a)s ,0<a<l1.
n=0

A generalization of the Riemann zeta function
considered by Hurwitz (1862).
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hyperalgebra A bialgebra, whose underly-
ing co-algebra is co-commutative, pointed, and
irreducible.

hyperbolic cosecant function
bolic function.

See hyper-

hyperbolic cosine function
function.

See hyperbolic

hyperbolic cotangent function
bolic function.

See hyper-

hyperbolic function
tions:
hyperbolic sine: sinh(z) =

The six complex func-

exp z—exp(—z)
2

hyperbolic cosine: cosh(z) = w

hyperbolic tangent: tanh(z) = 55?28
hyperbolic cotangent: coth(z) = (;?;E((ZZ))
hyperbolic secant: sech(z) = —COS%,(Z)

hyperbolic cosecant: csch(z) = m

Due to the fact that sinh(iz) = i - sin(z) and
cosh(iz) = cos(z), where sin(z) and cos(z) are
the ordinary sine and cosine of the complex an-
gle z, the hyperbolic functions are rarely used
outside of certain specialized applications.

hyperbolic secant function
function.

See hyperbolic

hyperbolic sine function
function.

See hyperbolic

hyperbolic tangent function
function.

See hyperbolic

hyperbolic transformation A linear frac-
tional function f(z) = f;jr'z where a, b, ¢, and
d are complex constants with ad — bc # 0 has
a pair of (not necessarily distinct) fixed points.
(See linear fractional function.) This is so be-
cause the equation z = ZZZIS is linear or qua-
dratic in z. When the two fixed points coin-
cide, the transformation is said to be parabolic.
When there are distinct fixed points, say « and
B, then we can write the transformation in the
form =% = ki=%. When k is real (necessarily
non-zero) the transformation is said to be hyper-
bolic. When |k| = 1, the transformation is said

to be elliptic.




hyperbolic trigonometry One of the two
classical types of non-Euclidean plane geom-
etry, which are distinguished from each other
and from Euclidean plane geometry by the form
of the parallel axiom that holds. For Euclidean
geometry, there is, through any point P not on
a line L, exactly one line parallel to L. For el-
liptic (also Lobachevskian) geometry there is,
through any point P not on a line L, no line
parallel to L. For hyperbolic geometry there is,
through any point P not on a line L, more than
one (actually infinitely many) lines parallel to
L.

Within the language of Riemannian geome-
try these three types of spaces are those of, re-
spectively, zero, positive, and negative constant
curvature. Models that exist within Euclidean
geometry are given by the following construc-
tions. For elliptic geometry, the space is the
surface of a sphere and the lines are great cir-
cles on the sphere. We must regard antipodal
points on the sphere as being identified in order
that lines intersect in no more than one point.
For hyperbolic geometry, the space is the inte-
rior of a disk and the lines are arcs of circles
that intersect the boundary of the disk at right
angles or are straight lines through the center
of the disk. An alternative model is the upper
half plane (y > 0) and the lines are arcs of cir-
cles centered on the real axis or straight lines
orthogonal to the x-axis.

An important property of these geometries
concerns the sum of the angles of a triangle. In
Euclidean geometry, the sum of the angles of
any triangle must be exactly equal to 7 (that is
to say, a straight angle). In elliptic geometry the
sum of the angles is always greater than 7 while
in hyperbolic geometry the sum of the angles is
always less than .

If the non-Euclidean plane is embedded in a
Euclidean space of sufficiently high dimension,
then it becomes possible to measure areas of re-
gions on the plane using the Euclidean measure
of area relative to the enveloping space. It was
shown by Gauss that the area of a triangle, so
measured, equals the difference between 7 and
the sum of the angles of the triangle.

hyperelliptic curve An algebraic curve,

over a ground field k, is defined by an ir-
reducible polynomial F (X, Y) in the polyno-
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mial ring k[X, Y]. Since F(X,Y) generates
a maximal ideal in k[X, Y], the factor ring
k[X,Y]/(F(X,Y)) = K is also a field and con-
tains a canonical copy of k. If we denote the
canonical images of X and Y in K by x and
y, respectively, then K = k(x, y) is the field
extension of k£ generated by x and y. The field
K = k(x, y) is called the field of algebraic func-
tions on the algebraic curve defined by F (X, Y).
A hyperelliptic curve is an algebraic curve of the
special form Y= P(X), where P(X)isapoly-
nomial that has no repeated roots.

It is also usually assumed that k is algebrai-
cally closed in K. That is to say, every element
of K that is not in k is transcendental over k.
When this is so, k is said to be the exact con-
stant field for the curve.

hyperelliptic integral  Let F(X,Y) = Y2 —
g(X) define a hyperelliptic curve over the field
C of complex numbers, where the polynomial
g(X) is square free and of degree n. Let K =
C(z, w) be the function field for this curve. Here,
z and w are the canonical images of X and Y in
theresidue class field K = C[X, Y]/(F(X, Y)).
The branch points of the function field K over the
projective line C(z) are the roots of g(X) and,
also, the point at infinity, when n is odd. When
n is even, the point at infinity is not a branch
point. We can, however, move one of the roots
of g(X) to oo by a linear change of variable in
z. Thus there is no loss of generality in assum-
ing that n is odd. The Riemann surface X" for
this curve has genus g = 1 —2 + %(n + 1), ac-
cording to the standard formula for the genus in
case [K : C(z)] = 2 and there are n + 1 branch
points of index 2. According to the Riemann—
Roch Theorem, there are g linearly independent
holomorphic differential forms defined on the
Riemann surface. A holomorphic differential
form is an expression of the form f(z)dz, such
that, if 7 denotes a local parameter at a point P
on the Riemann surface, then f(z) j—fr, which is
a member of K, has no pole at P. These are
commonly referred to as differentials of the first
kind. Each of them gives rise to an Abelian inte-
gral that is defined everywhere on the universal
covering surface for the Riemann surface. These
are hyperelliptic integrals of the first kind. They
are more commonly referred to as Abelian inte-
grals of the first kind. For hyperelliptic curves,



these integrals can be given quite explicitly as

f z dz
A/ 8(2)

for<r<g-—1.

There are also differentials of the second and
third kinds. Differentials of the second kind
have poles but the residue vanishes at each of
these poles. Differentials of the third kind pos-

sess at least one pole with anonvanishing residue.

Since the sum of the residues is always zero,
there must be at least two poles for a differential
of the third kind. To each of these is associ-
ated an Abelian integral, which, in the case of
differentials of the second kind, is also defined
on the entire universal covering surface for X
although it can have poles. For differentials of
the third kind, the singularities at points where
there are nonvanishing residues are logarithmic
singularities and are, thus, essential. The Abel-
ian integral associated with a differential of the
third kind is defined everywhere on the univer-
sal covering surface for X', except on curves that
pass through points that lie above these singu-
larities.

hyperelliptic surface = The Riemann surface
for a hyperelliptic curve defined over the com-
plex field. See hyperelliptic curve.

hyperfinite factor A factor of type I /1 which
is generated, in the weak topology, by an in-
creasing sequence {.A,}° , of finite dimensional
#-subalgebras. In addition, each element in the
sequence {A,}.2 | may be assumed to be a sub-
factor of type I»». Sometimes the term hyperfi-
nite refers both to the factors defined above and

to factors of type I,,, where n < co.

hypergroup A set S with an associative mul-
tiplication that assigns to any @ and b in S a non-
empty subset ab of S, such that, for each a and
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b in S, there exist elements x and y in S such
that b € ax and b € ya.

hypergroupoid A set S, withamultiplication
that associates every two elements a and b in S
with a nonempty subset ab of S.

hypersurface A term with slightly different
meanings within algebraic geometry and analy-
sis:

(1) Algebraic Geometry: If X denotes affine
n-space over a field k, then any subvariety of
dimension n — 1 is referred to as a hypersurface
in X. The hypersurface is defined by a single ir-
reducible polynomial in # variables. This latter
fact is an expression of the algebraic fact that a
polynomial ring over a field is a unique factor-
ization domain.

(2) Analysis: If X denotes a manifold of di-
mension n, then any n — 1 dimensional subman-
ifold can be referred to as a hypersurface. In
many cases, the hypersurface can be represented
by a single relation f(xy,...,x,) = 0. How-
ever, due to the fact that the coordinate system
changes from point to point, the general defini-
tion is necessarily more complicated.

hypo-Dirichlet algebra A uniform algebra
A with some properties that occur in concrete
examples. Let 91 f be the real part of f and let
N(A) = {Nf : f € A}. Let Cr(X) be the space
of all continuous real-valued functions on X and
letlog|A~!| = {log|f|: f, f~! € A}. A uni-
form algebra A on a compact Hausdorff space
X is hypodirichlet on X if the uniform closure
of M (A) has finite codimension in Cr(X), and
the linear span of log |A~!| is dense in CRr(X).
A uniform algebra A is hypodirichlet if it is hy-
podirichlet on its Shilov boundary. The fun-
damental work on hypo-Dirichlet algebras was
done by Ahern and Sarason in 1966.



|

I-adic topology A topology that endows a
ring (module) with the structure of a topological
ring (module). Let I be an ideal in aring R and
let M be an R-module. The /-adic topology on
M is formed by taking the cosets x + "M, x €
M, n a positive integer, as a base of open sets.
The I-adic topology on R is formed by letting
M =R.

icosahedral group  The group of rotations
of a regular icosahedron. It is a simple group
of order 60 and is isomorphic to the alternating
group of degree 5.

ideal In any ring (usually associative with
identity), any subgroup J of the additive group
of R is called aleftideal if RJ C J andis called
a right ideal if JR € J and, if both of these
conditions hold, is called, simply, an ideal.

idealclass Let R be an integral domain (com-
mutative ring with no divisors of zero). Two
ideals J and K are said to be linearly equivalent
if there exist nonzero elements @ and b in R such
that aJ = bK. This establishes an equivalence
relation on the collection of all nonzero ideals
of R which we can write as J ~ K. Any equiv-
alence class under this relation is said to be an
ideal class.

These classes respect multiplication in the
sense thatif J; ~ J, and K| ~ Ky, then J;J, ~
K1 K>. In most cases, this notion is only applied
to the collection of invertible ideals of R. Thatis
to say, those ideals J for which there is another
ideal K such that JK is linearly equivalent to
the unit ideal R. For this case, the collection
of classes of invertible ideals forms an Abelian
group referred to as the ideal class group of the
ring.

An alternative and more modern way of defin-
ing this construction is contained in the notion
of fractional ideals. A fractional ideal of an in-
tegral domain R is a nonzero R-submodule F
of the quotient field of R with the property that
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aF C R, for some nonzero a € R. This in-
cludes all ordinary nonzero ideals. A fractional
ideal is principal if it is of the form aR where
a is some nonzero member of K. A fractional
ideal F is invertible if there is another fractional
ideal G such that FG = R. The invertible frac-
tional ideals form an Abelian group under ordi-
nary multiplication and this group contains the
group of principal fractional ideals. The fac-
tor group is isomorphic to the ideal class group
defined earlier.

ideal class group  The group of ideal classes
of invertible ideals of an integral domain R or,
equivalently, the group of invertible fractional
ideals of R, modulo the subgroup of principal
fractional ideals. See ideal class.

ideal class in the narrow sense  Let /; be the
Abelian group consisting of the fractional ideals
of an algebraic number field k. Let P,:r be the
subgroup of I; consisting of all the principal
ideals generated by totally positive elements of
k. An ideal class of k in the narrow sense is a
coset of I modulo P,j .

ideal group Let K be an algebraic number
field and let R be its ring of algebraic integers.

(1) The group of fractional R-ideals of K
forms an Abelian group called the ideal group
of K.

(2) Let m be an integral ideal and let K, =
{a/b : a,b € R,aR and bR relatively prime
to m}. Denote the group of all ideals of K that
are relatively prime to m by Ix (m). Let m* be
a formal product of m and a finite number of
real infinite prime divisors of K, then m* is an
integral divisor of K. Fora € K, let @1 and a»
be elements of K, N R such that « = o1 /3.
Let S(m™*) be the group of all principal ideals
generated by elements « of K, such that o) =
ar(modm) and ¢ = 1(mod p) for all the real
infinite prime divisors p included in the formal
product above. Any subgroup of Ik (m) which
contains S(m™) is called an ideal group modulo
m*.

(3) Sometimes the definition given above is
called a congruence subgroup. In this case an
ideal group is an equivalence class of a congru-
ence subgroup under the following equivalence
relation. Two congruence subgroups H; and



H,, modulo m’lk and m§ respectively, are said
to be equivalent if there is a modulus n* such
that H) N Ix(n) = Hy N Ix(n).

idele  Let K be a global field. By this we
mean either an algebraic number field (a finite
extension of the rational field Q) or a field of al-
gebraic functions in one variable over a ground
field k (a finite separable extension K of the field
k(x) of rational functions over the ground field
k, such that k is itself algebraically closed in
K). These are also referred to as product for-
mula fields since each of these types possesses
a class of absolute values, which are real valued
functions, defined on K with the properties that
la| = 0 foralla € K, |a| = 0 if and only if
a=0and|a+b| <|a|+|b|,foralla,b € K.
See also valuation.

Moreover this class of absolute values sat-
isfies, for each nonzero a € K, the relation
[an o lalp = 1. Consider now the direct prod-
uct of copies of the multiplicative group K* of
K, indexed by absolute values. That is to say,
functions from the set of absolute values to the
group K*. We will denote such a function by a,
and its value at g by a,. Anidele is such afunc-
tion with the additional property that |ag,| = 1,
for almost all g. Since each element of K* gives
rise to such a function (a, = a for all p) we
may regard K* as a subgroup of the group of all
ideles. These are called principal ideles and the
factor group is called the idele class group of the
field.

idele class  Members of the idele class group
of a global field. See idele.

idele class group The group of all idele
classes of a global field. See idele.

idelegroup The group of all ideles of a global
field. See idele.

idempotent element  An element a of aring,
with the property that a® = a.

idempotent subset A subset S of a ring hav-
ing the property that $> = S.

Idempotent Theorem If E is an open-closed
subset of the maximal ideal space of a unital
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commutative Banach algebra A, then there is a
unique element f of A such that f> = f and
the Gel’fand transform of f is 1 on E and 0
everywhere else. This theorem is sometimes
referred to as Shilov’s Idempotent Theorem.

identity (1) Anequation. For example, a true
formula such as

N(N+ 1)
Z

is an identity.

(2) That element of a group, usually denoted
by the symbol 1, with the property that la =
al = a for all a in the group (or denoted 0, with
0+ a = a + 0 = a, in the case of an additive
group).

identity character  The character on a group
G with the property that x (g) = 1forallg € G.
See character.

identity element A membereofaset S witha
binary operation xoy, such thatxoe = eox = x.
If the binary operation is not commutative, a left
and right identity may be defined separately. A
left identity e satisfies e o x = x and a right
identity e satisfies x o e = x.

identity function A function i with a domain
set X such thati(x) = x forall x € X. See also
identity map, identity morphism.

identity map  See identity function.
identity matrix  The identity element £ in the
ring of n X n matrices over some coefficient ring.

The entries of E are given by the Kronecker
delta-function

1
5,']':{0

identity morphism Let C be a category, let
AbeanobjectinC,andleti : A — A be amor-
phisminC. (A morphism is a generalization of a
function or mapping.) i is the identity morphism
for the object A if f oi = f for every object B
and morphism f : A - BinC,andiog =g
for every object C and morphism g : C — Ain

ifi=j
if Q.



the category C. One of the axioms of category
theory is that every object in a category has a
(necessarily unique) identity morphism.

In most familiar categories, where objects
are sets with some additional structure and mor-
phisms are particular kinds of functions, the
identity morphism for an object A is simply the
identity function i; that is the function i such
that i(a) = a for all a € A. See also identity
function, morphism.

Ihara zeta function  Let R be the real num-
bers, k, be a p-adic field, and let I" be a sub-
group of G = PSL,(R)x PSL;(k,) for which
the following properties hold: (i.) I" is discrete;
(ii.) the projection, I'g, of " in PSL, (R) is dense
in PSL,(R); (iii.) the projection, I'p, of I" in
PSL,(k)) is dense in PSLy(kp); (iv.) the only
torsion element of I" is the identity; (v.) the quo-
tient '\ G is compact. Let H be the upper half
plane, {x+iy : y > 0}, and, forevery z € H, let
', ={y €eT':y() =z}, where I acts on H
viaTg. Let P(I) = {z € H : ', = Z} and let
P(') = P(I)/T. If Q € P(I) is represented
by z € H and y is a generator of I';, then y
is equivalent to a diagonal matrix in I", whose
diagonal entries are A and A~!. Let deg(Q) be
[v(A)| where v is the valuation of k. The Ihara
zeta function of T is

Zrwy = [] 1 —u@)~",
0eP()

ill-conditioned system A system of equa-
tions for which small errors in the coefficients,
or in the solving process, have a large effect on
the solution.

image  For a function f : § — T from a
set S into a set T', the set Im( f) of all elements
of T of the form f(s) for some s in S. Another
popular notation is f(S). Also called range.

imaginary axis in the complex plane = Com-
plex numbers x + iy, where x and y are real and
i = +/—1, can be identified with the points of
the real plane with Cartesian coordinates (x, y).
The plane is then referred to as the complex
plane. The coordinate axis x = 0 is called the
imaginary axis. Similarly, the axis y = 0 is
referred to as the real axis.
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imaginary number  Any member of the field
of complex numbers of the form iy, where y is
a real number and i = +/—1 . The field of
complex numbers is the set of numbers of the
form x + iy, where x and y are real.

imaginary part of acomplex number Ifz =
x+iy is acomplex number, then the real number
y is called the imaginary part of z, denoted y =
3z, and the real number x is called the real part
of z, denoted x = Nz.

imaginary prime divisor ~ One of two types
of infinite prime divisors on an algebraic number
field K. Leta € K and let o be any injection of
K into the complex number field which does not
map K into the real number field. The equiva-
lence class of an archimedean valuation on K,
given by v(a) = |o (a)|?, is called an imaginary
(infinite) prime divisor. See also real prime di-
visor, infinite prime divisor.

imaginary quadratic field A field K which
is a quadratic (degree two) extension of the ra-
tional number field Q is called a quadratic num-
ber field. Since K = Q(4/m), for some square
free integer m, we may further distinguish these
fields according to whether m < 0 or m > O.
In the first case, the field is called an imaginary
quadratic field and, in the second, a real qua-
dratic field.

imaginary root A rootof a polynomial f(z),
i.e., a number r such that f(») = 0, which is an
imaginary number. See imaginary number.

imaginary unit = Any number field K (finite
extension of the field Q of rational numbers)
contains a ring of integers, denoted R. This ring
consists of all roots in K of monic irreducible
polynomials f(x) € Z[x], where Z is the ring
of rational integers. Alternatively, this ring is
the integral closure of Z in K. The units of R
are those elements ¥ € R for which there is
an element v € R such that uv = 1. In an
isomorphic embedding of K into the field of
complex numbers, if the image of a unit u is
imaginary, then u is called an imaginary unit.
Note that this depends on which embedding is
used.



imperfect field  Any field that admits proper
inseparable algebraic extensions. This is the op-
posite of perfect. The simplest example of such
a field is the field k(x) where k = GF(q) is a
finite field. The extension given by the equation
t7 — x = 0 is inseparable. Fields of character-
istic zero are perfect as are all finite fields.

implicit enumeration method of integer pro-
gramming A method of solving zero-one
linear programming problems. Values are as-
signed to some of the variables; if the solution
of the resulting linear program is either infeasi-
ble or not optimal, then all solutions containing
the assigned values may be ignored.

Implicit Function Theorem A theorem guar-
anteeing that an implicit equation F(x,y) = 0
can be solved for one of the variables. One of
many different forms of the theorem is the fol-
lowing assertion. Let F(x1, ..., x,, y) beacon-
tinuously differentiable function of n + 1 vari-
ables. Let P be apointinn+1 space and assume
that F(P) = c and %(P) # 0. Then, there is
a neighborhood of P and a unique continuously
differentiable function f (x1, ..., x,) defined on
this neighborhood, such that

Fxp X f (X1, .. ) =c¢

on this neighborhood.

imprimitive transitive permutation group

A permutation group G on a set X with the fol-
lowing two properties: (i.) foreach x and y in X
thereisat € G such that7(x) = y; (ii.) the sub-
group of G consisting of all permutations which
leave x fixed is not a maximal subgroup. See
also permutation group, transitive permutation

group.

improper fraction A rational number m/n,
where m and n are integers and m > n > 0.
Such a fraction can be written in the form - =
+ + g where r < n where r and g are also
integers (for simplicity we have assumed that
all of these numbers are positive). The numbers
r and g are obtained by long division. That is,
we write m = nq +r where r < n.
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incommensurable Twomembersa, b € S of
a partially ordered set S such that neithera < b
norb <a.

incomplete factorization A method of pre-
conditioning the system of equations Ax = b,
in which A is approximated by LU, where L is
a lower triangular matrix and U is an upper tri-
angular matrix. In an incomplete factorization,
small elements are dropped, making the approx-
imation sparse.

inconsistent system of equations A set of
equations for which there does not exist a com-
mon solution (in an appropriate solution space).

increasing directedset A set S, together with
abinary relation <, having the properties (i.) a <
aforalla € S, (il.) a < b and b < c implies
a < c, and (iii.) for all a,b € S, there is an
element ¢ € S suchthata < cand b < c¢. Also
called directed set.

indecomposable group A group G (G #
{e}), that is not isomorphic to the direct product
of two subgroups, unless one of those subgroups
is {e}.

indecomposable module A module M over
aring R such that M is not the direct sum of two
proper R-submodules.
indefinite Hermitian form A Hermitian
form equivalent to

p
E )El-xi —
i=1 J

q
Xp+jXp+i
1

in which x is the conjugate transpose and neither
p nor q is zero.

indefinite quadratic form A quadratic form
over an ordered field F, which represents both
positive and negative elements. If every positive
number in F is asquare (for example, if 7 = R),
then an indefinite quadratic form is equivalent to
the form

2 2
in _prﬂ"

i=1 j=1



in which neither p nor ¢ is zero. The rank of
the quadratic form is p + g where p and g are
uniquely determined by the quadratic form.

indefinite sum A concept analogous to the
indefinite integral. Given a function f(x) and a
fixed quantity Ax (Ax # 0), let F(x) be a func-
tion such that F(x + Ax) — F(x) = f(x) - Ax.
If c(x) is an arbitrary function, periodic, with
a period Ax, then F(x) + c(x) is an indefinite
sum of f(x).

Independence Theorem A corollary of the
Approximation Theorem. Let eq, ez, ..., e, be
real numbers and let vy, v2, .. ., v, be mutually
nonequivalent and nontrivial multiplicative val-
uations of a field K. If [[; vi(a)¥ = 1 for all
a € K\{0},thene¢; =0fori =1,2,...,n.

independent linear equations A system of
linear equations in which deleting any equation
would expand the solution set.

independent variable A symbol that rep-
resents an arbitrary element in the domain of
a function. If the domain of the function is a
Cartesian product set X1 x Xp X --- X X}, then
the independent variable may be denoted (x,
X2, ... ,Xp), where each x; represents an arbi-
trary elementin X;. In addition, each x; is some-
times called an independent variable. See also
dependent variable.

indeterminate form  An expression of the
form 0/0, co/00, 0-00, 00— 00, 00, 00, or 1°°,
Such expressions are undefined. Indeterminate
forms may appear when a limit is improperly
evaluated as the quotient (product, etc.) of lim-
its and not the limit of a quotient (product, etc.).
But the term may properly appear when such
limits are classified, so that they can be evalu-
ated.

indeterminate system of equations A sys-
tem of equations with an infinite number of so-
lutions.

index (1) Most commonly, a subscript which
is used to distinguish members of a set S. Thus,
in this sense, a function defined on a set (called
the index set) and taking its values in the set S.
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For example an infinite sequence {ay, ..., a,}is
a set indexed by the natural numbers.

(2) There are many theorems in mathematics
that are referred to as “index theorems" and these
generally describe properties of certain special
types of indices. For example, the index of a lin-
ear function 7 : X — Y between two complex
vector spaces is, by definition, dim ker(7") — dim
ker T*, where T* is the adjoint, or conjugate
transpose, of T. See also index of specialty.

index of eigenvalue (1) The number

dim ker(A — AI) —dim ker (A* — A1) ,

where A is a square matrix (or a Fredholm lin-
ear operator on a Banach space), I is the identity
matrix of the same size as A, and A* is the con-
jugate transpose (Banach space adjoint) of A.
(2) The order of the largest (Jordan) block
corresponding to X in the Jordan normal form of
A. The index of A is the smallest positive integer
m such that rank(A — AT)™ =rank(A — A1) t1.

index of specialty Let D be a divisor on
a complete nonsingular curve over an algebrai-
cally closed field k, and let K be a canonical di-
visor of X. The index of specialty of the divisor
D is dimy HO(X, O(K — D)) =dimyH*(X, O
(D)), where O (D) is the invertible sheaf associ-
ated with D. This definition also applies to divi-
sors on nonsingular surfaces. If D is a divisor on
acurveon genus g, then the Riemann-Roch The-
orem may be applied to give a second formula
for the index of specialty. In this case, the spe-
cialty index of D is equal to g—degD+dim|D|,
where | D] is a complete linear system of D.

Index Theorem of Hodge Let M be a com-
pact Kéhler manifold of complex dimension 2n
and let 477 denote the dimension of the space of
harmonic forms of type (p, g) on M. The signa-
ture of M is Zp’q(—l)ph”’q. The sum may be
restricted to the case where p + ¢ is even since,
on a compact Kahler manifold, h”9 = h?-?.
Any complex, projective, nonsingular, algebraic
variety is a Kahler manifold, and the follow-
ing application of the Riemann-Roch Theorem
is also called the Hodge Index Theorem.

Let H be an ample divisor on a nonsingu-
lar projective surface X, and let D be a divisor
which has a nonzero intersection number with



some divisor E. If the intersection number of
D and H equals zero, then the self-intersection
number of D is less than zero. This implies that
the induced bilinear form on the Neron-Severi
group of X has only one positive eigenvalue, and
that the rest of the eigenvalues are negative.

induced module  An example of a scalar ex-
tension. Let K be a commutative ring, and let
G be a group with a subgroup H. The canonical
injection H — G induces a homomorphism of
group rings K[H] — K[G]. Let M be a K[H]
module. The induced module of M is the K[G]
module K[G] ®g[x] M. See also induced rep-
resentation.

induced representation A representation of
agroup G obtained by “extending” a representa-
tion of a subgroup H of G. Let K be a commu-
tative ring; the canonical injection H — G in-
duces ahomomorphism of grouprings K[H] —
K[G]. Let M be a K[H]-module, the represen-
tation of G associated with the induced K[G]
module K[G]®g[#] M is the induced represen-
tation of G. It is also called the induced repre-
sentation of the representation of H associated
with M. See also induced module.

induced von Neumann algebra Let Mbea
von Neumann algebra which is a *-subalgebra of
the set of bounded linear operators on a Hilbert
space H. Let M’ be the set of operators that
commute with every A € M and with the ad-
joint of every A € M. If E is a projection
operator in M’, then the induced von Neumann
algebra of M on the subspace EH is the restric-
tion of EM E = EM to EH.

induction  The Principle of Induction is a the-
orem that concerns well-ordered sets. A well-
ordered set is a linearly ordered set in which
every nonempty subset has a smallest member.
The natural numbers are a primary example of
such a set. Other examples are the transfinite or-
dinal numbers. The principle of induction states
that if S is a well-ordered set and T is a subset
of § with the property: whenever {a € S : a <
b} C T implies b € T, then we can conclude
that T = S. Indeed, the condition implies that
the smallest member of S isin 7. If the comple-
ment of 7 were not empty, then it would have a
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smallest member. Call this member b. This is
not the smallest member of S as we have seen.
However, T contains all a such that a < b, so it
must contain b as well which is a contradiction.

Certain well-ordered sets such as the natural
numbers have the property that every element
of S (aside from the smallest) has an immedi-
ate predecessor. The principle of induction for
such sets can be rephrased as follows: any sub-
set T C S, such that (i.) T contains the smallest
element of S and (ii.) whenever T contains a
then it also contains the next smallest element
of S, then T = S. The proof is much the same
since the smallest member b of the complement
of T could not be the smallest member of S and,
therefore, would have an immediate predecessor
whichisin 7. Therefore, the immediate succes-
sor of b would also be in T which is, again, a
contradiction. In this form the principle is called
the principle of finite induction. Otherwise it is
referred to as transfinite induction.

This theorem is commonly applied as a meth-
od of proof for statements that can be indexed by
some well-ordered set. For example, the state-
ments P(n) : 1 +2+---+n = "("TH) are
indexed by the natural numbers. This can be
proved by finite induction. On the other hand,
a theorem such as the assertion that every ideal
J of a ring R is contained in a maximal ideal
requires (for most rings) transfinite induction.

For most proofs that involve transfinite in-
duction, the method is replaced by a logically
equivalent method called “Zorn’s Lemma” or,
simply, “Zornification.” In order to be applied,
a basic axiom of mathematics itself (called the
“Axiom of Choice") must be assumed. This has
a number of formulations but the one of interest
here is the one that asserts that all sets possess a
well ordering. It can then be shown that every
partially ordered set has a maximal chain (sim-
ply ordered subset). As an example, the class
of proper ideals that contain a given ideal J of a
ring R is a partially ordered set under ordinary
set inclusion. By Zorn’s Lemma there is a max-
imal chain of these and the union of the member
of such a chain is a maximal and proper ideal (it
does not contain the identity element) of R.

The fact that this sort of argument is logically
equivalent to one using transfinite induction is
not particularly trivial to prove. Both types of
arguments circulated in mathematics for many



years until it was realized just in this century that
they were equivalent.

inequality  An expression thatinvolves mem-
bers of some partially ordered set, commonly
taking the form a < b or a < b. The so-called
triangle inequality involving real numbers is an
example and it asserts that |a + b| < |a| + |b|,
for all real numbers a, b.

inequality relation  Let < denote a relation
onaset S (i.e., a < b, whenever (a, b) belongs
to the relation). (See relation.) If it is true that
(i)a < aforalla € S, (ii.)ifa < b and
b <athena = b, and (iii.) ifa < band b < ¢
then a < c, then the relation is called a partial
ordering or inequality relation. Extensions of
this are the linear ordering, which is a partial
ordering satisfying property (iv.) for all a, b €
S,a < borb < a, and the well ordering which
is a linear ordering in which every nonempty
subset of S has a smallest member.

inertia field A valuation ring R in a field K
has the property that it has exactly one maximal
ideal. (See valuation ring.) When this ideal is
principal, then every other nonzero ideal of R is
a power of this ideal. Thus, a discrete valuation
ring is a unique factorization domain in which
there is only one irreducible element. If L is
a finite extension field of K (usually assumed
to be separable), then the integral closure S of
the discrete valuation ring R in L has the prop-
erty that it is the intersection of a finite set of
discrete valuation rings of L and, equivalently,
is a unique factorization domain with only a fi-
nite number of irreducible elements. The orig-
inal maximal ideal of R, which is 7 R, has the
property that 7 can be factored in S in the form
m=ullj, nj_’, where u is a unit of S and the
elements 7 ; run over the finite set of distinctirre-
ducible elements of S. Let S; denote the discrete
valuation ring that is associated with the element
7 j. There are then three indices associated with
this construction. The number r, above, is the
decomposition index, the numbers ey, ..., e,
are the ramification numbers, and the numbers
fi = [Sj/n;S; : R/mR] are the residue class
degrees. When the field extensions that give
rise to the residue class degrees are not separa-
ble, then certain adjustments have to be made
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in these definitions. If L is a Galois extension
of K with Galois group G, it can be shown that
e:el:...:erandfzflz...:fr’
S0, in this case, [L : K] = efr. Now, for each
J» there is a subgroup G; of G consisting of
those automorphisms o of L over K that have
the property that (77;8)° = m;§. It is easily
shown that the G; form a complete conjugacy
classin G. These are called decomposition sub-
groups. Let Z; denote the intermediate field that
is associated with G ; under the Galois corre-
spondence. The fields Z; form a complete class
of conjugate subfields. In the important case that
G is Abelian, all of the Z; coincide. The fields
Z; are called decomposition fields. Now, the
residue class fields S;/m;S; = §/m;§ are also
Galois over R/ R and there is a natural homo-
morphism of G; onto the Galois group of this
extension. The kernel is a normal subgroup H;
of index f in G;. The subgroups H; are called
inertial subgroups. The subfields T; associated
with H; are called inertial fields. The inertial
groups H; are members of a complete conju-
gacy class as are the inertial fields 7. Note that
we have a chain of fields K € Z; C T; C L
with the relative degrees [L : T;] = e, [T} :
Z;jl = f,and [Z; : K] = r. There is a further
refinement of the field extension T; C L into a
chain of intermediate fields called ramification
fields and these are the fields that are associated
with subgroups of G ; that leave various powers
of 7r;§ invariant.

inertia group (1) Let K /k be a finite Galois
extension of fields and let G be its Galois group.
If R is the ring of integers of K and P is a prime
ideal of R, then the inertia group of P over k
is{oc € G: P° = P and a° = a(modP) for
all a € R}. This group is a subgroup of the
decomposition group of P.

(2) Let k be a local field, K a normal exten-
sion of finite degree, and G be the Galois group
of K/k. Let P be the valuation ideal of K and
let p be a generator of P. The inertia group is
{o € G: p° = p(modP)}.
inertia of (Hermitian) matrix = The ordered
triple

i(A) = (i4+(A),i-(A),io(A)) ,



wherei; (A), i_(A), ip(A) are, respectively, the
number of positive, negative, and zero eigenval-
ues (counting multiplicities), of a given Hermi-
tian matrix A.

Sylvester’s Law of Inertia states that two Her-
mitian matrices A and B satisfy i (A) = i(B) if
and only if there exists a nonsingular matrix C
such that A = CBC*.

The notion of inertia can be extended to ar-
bitrary square matrices with complex entries,
whereiy (A),i_(A), ip(A) are, respectively, the
numbers of eigenvalues with positive, negative,
and zero real part.

infimum  The greatest lower bound or meet
of a set of elements of a lattice. The term is most
frequently used with regard to sets of real num-
bers. If A is a set of real numbers, the infimum of
A is the unique real number b = inf A defined
by the following two conditions: (i.) x > b for
allx € A; (i) if x > cforallx € A,thenb > c.
The infimum of a set of real numbers A may not
exist, that is there may be no real number b sat-
isfying conditions (i.) and (ii.) above, butif A is
bounded from below, the infimum of A is guar-
anteed to exist. This fact is one of the several
equivalent forms of the completeness property
of the set of real numbers. See meet. See also
supremum.

infinite continued fraction
of the form

An expression

by
by

b3
as+ -

ao +
a; +
ar +

Infinite continued fractions may be used to ap-
proximate an irrational number.

infinite Galois extension = Let K be a sub-
field of the field L and assume that L is an al-
gebraic extension of K. L is a Galois extension
if it is a normal, separable, algebraic extension
of K. (See normal extension, separable exten-
sion, algebraic extension.) L is said to be normal
over K if, whenever an irreducible polynomial
P(x) € K[x] has arootin L, then P(x) splits
into linear factors in L[x]. Those of nonfinite
degree are infinite Galois extensions. Alterna-
tively, the Galois group of L over K has the
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property that its fixed field is precisely K. (See
Galois group.) The fixed field is the subfield of
L that is left elementwise fixed by the Galois

group.

infinite height (1) An element a in an Abel-
ian p-group A is said to have infinite height if
the equation p¥y = a is solvable in A for every
nonnegative integer k.

(2) A prime ideal p is said to have infinite
height if there exist chains of prime ideals pp <
p1 < p2 < --- < pp—1 < p with arbitrarily
large h. If p is a prime ideal in a Noetherian
ring R, and p # R, then p does not have infinite
height.

infinite matrix A matrix with an infinite
number of rows and an infinite number of col-
umns. Such a matrix may be infinite in only two
directions, as (a;;), 1,7 =0,1,2,...:

apo 4ol 4oz
app air a2
azp azr ax

or it may be infinite in all directions, as (a;;), i,
j=0,%+1,£2,...:

a—i-1
ap—1  doo Aol
a-1  aipp  an

a-10 a-ii

infinite prime divisor ~ An equivalence class
of archimedean valuations on an algebraic num-
ber field.

infinitesimal automorphism A complete
holomorphic vector field on a manifold. On
a Lie group the definitions of infinitesimal au-
tomorphism and derivation coincide. See also
Killing form.

infinite solvable group A solvable group
which is not finite. There are also generaliza-
tions of the concept of solvability for infinite
groups. See solvable group. See also general-
ized solvable group.



infinity (1) The symbol 0o, used in the nota-
tion for the sum of an infinite series of numbers

00
E dan ;
n=0

an infinite interval, such as
[a,00) ={x:x >a};
or a limit, as x tends to oo,
lim f(x).
X—>00

(2) The point at oo as, for example, the north
pole of the Riemann sphere.

inflation =~ A map of cohomology groups in-
duced by lifting the cocycles of a factor group
G/H to G. Let G be a group, M a G-module,
H a normal subgroup of G, M" = {m € M :
hm = m, for all h € H}, m the canonical epi-
morphism from G to G/H,and i : M7 — M
the inclusion map. The inflation map is the map
of cohomology groups

inf =(1, i)y : H" (G/H, MH)
— H"(G, M),

(for n > 1), which is achieved by lifting the
homomorphism of pairs (, i) : (G/H, MHEy -
(G, M).

inflection point A point on a plane curve at
which the curve switches from being concave to
convex, relative to a fixed line; a non-singular
point P on a plane curve C such that the tan-
gent line to C at P has intersection multiplicity
greater than or equal to 3. See also intersection
multiplicity.

inhomogeneous difference equation A lin-
ear difference equation of the form

aoYik+n + @1 Yk4n—1+ -+ anyYk = 1k,

where ry differs from O for some values of k. In
the opposite case where ry is identically equal
to 0, the linear difference equation is homoge-
neous. These notions are directly analogous
to the corresponding ones for linear differential
equations.
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inhomogeneous polarization (1) The alge-
braic equivalence class of a nondegenerate divi-
sor on an Abelian variety.

(2) Let X be a proper scheme over an algebra-
ically closed field k and let Pic(X) be the Picard
group of X. Let Pic™(X) be the subgroup of
Pic(X) consisting of the set of all the invertible
sheaves F' on X, for which there exists a non-
zero integer n, such that F” represents a point of
the Picard scheme of X in the same component
as the identity. A coset of Pic” (X) in Pic(X)
consisting of ample invertible sheaves is called
an inhomogeneous polarization of X.

injection A functioni : A — B such that
i(a1) # i(ap) whenever a; # ap. Injections
are also called injective functions, injective map-
pings, one-to-one functions, and univalent func-
tions. The notion of an injection generalizes to
the notion of a monomorphism or monic mor-
phism in a category. See monomorphism. See
also epimorphism, surjection.

injective class A class of objects in a cate-
gory, each member of which is injective. The
word “class” is used here rather than “set” be-
cause we cannot talk about the set of all injec-
tive objects in most categories without running
into the sort of logical difficulties, for example
Russell’s paradox, connected with the “set of all
sets.”

injective dimension A left R module B,
where R is a ring with unit, has injective di-
mension n if there is an injective resolution

0O—B—Ey—---—>E, —0,

but no shorter injective resolution of B. The
definition of the injective dimension of a right
R module is entirely similar. See injective res-
olution. See also flat dimension, projective di-
mension.

Injective dimensions have little to do with
more elementary notions of dimension, such as
the dimension of a vector space, but they are
related to a famous theorem called “Hilbert’s
Theorem on Syzygies.” Suppose the ring R is
commutative. Define the global dimension of
R to be the largest injective dimension of any
R module, or oo if there is no largest dimen-
sion. Let D(R) denote the global dimension of



R, and let R[x] be the ring of polynomials in x
with coefficients in R. Then in modern termi-
nology, Hilbert’s Theorem on Syzygies states
that D(R[x]) = D(R) + 1. See also syzygy.

injective envelope  An object E in a cate-
gory C is the injective envelope of an object A
if it has the following three properties: (i.) E
is an injective object, (ii.) there is a monomor-
phismi : A — E, and (iii.) there is no injective
object properly between A and E. In a gen-
eral category, this means that if j : A — E’
and k : E/ — E are monomorphisms and E’
is injective, then k is actually an isomorphism.
See also injective object, monomorphism, pro-
jective cover.

In most familiar categories, objects are sets
with structure (for example, groups, topological
spaces, etc.), morphisms are particular kinds of
functions (for example, group homomorphisms,
continuous functions, etc.), and monomor-
phisms are one-to-one functions of a particu-
lar kind. In these categories, property (iii.) can
be phrased in terms of ordinary set containment.
For example, in the category of topological
spaces and continuous functions, property (iii.)
reduces to the assertion that there is no injective
topological space containing A as a topological
subspace, and contained in E as a topological
subspace, except for E itself.
injective mapping  See injection.
injective module  An injective object in the
category of left R modules and left R module
homomorphisms, where R is a ring with unit.
Symmetrically, an injective object in the cate-
gory of right R modules and right R module
homomorphisms. See injective object. See also
flat module, projective module, projective ob-
ject.

In the important case where the ring R is a
principal ideal domain, the injective R modules
are just the divisible ones. (An R module M is
divisible if for each element m € M and each
r € R, there exists m, € R suchthatrm, = m.)
Thus, for example, the rational numbers, Q, are
an injective Z module, where Z is the ring of
integers. See also flat module, injective object,
projective module, projective object.
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injective object  An object / in a category C
satisfying the following mapping property: Ifi :
B — C is amonomorphism in the category, and
f : B — I is amorphism in the category, then
there exists a (usually not unique) morphism g :
C — [ in the category such that g oi = f.
This is summarized in the following “universal
mapping diagram”:

B — C

S\ v’ 38
I

See also injective module, monomorphism, pro-
jective module, projective object.

In most familiar categories, objects are sets
with structure (for example, groups, Banach
spaces, etc.), and morphisms are particular
kinds of functions (for example group homo-
morphisms, bounded linear transformations of
norm < 1, etc.), so monomorphisms are one-
to-one functions (injections) of particular kinds.
Here are two examples of injective objects in
specific categories: (1) In the category of Abel-
ian groups and group homomorphisms, the in-
jective objects are just those Abelian groups
which are divisible. (An Abelian group G is
divisible if for each ¢ € G and each integer
n, there exists a group element g, € G such
that ng, = g.) Thus, for example, the rational
numbers Q are an injective object in this cat-
egory. (2) The Hahn-Banach Theorem asserts
that the field of complex numbers, thought of as
a one-dimensional complex Banach space, is an
injective object in the category of complex Ba-
nach spaces and bounded linear transformations
of norm < 1.

injective resolution Let B be a left R mod-
ule, where R is a ring with unit. An injective
resolution of B is an exact sequence,

0— B2 By B

where every E; is an injective left R module.
There is a companion notion for right R mod-
ules. Injective resolutions are extremely impor-
tant in homological algebra and enter into the
dimension theory of rings and modules. See
also flat resolution, injective dimension, injec-
tive module, projective resolution.



An exact sequence is a sequence of left R
modules, such as the one above, where every
¢; is a left R module homomorphism (the ¢; are
called “connecting homomorphisms’), such that
Im(¢;) = Ker(¢;+1). Here Im(¢;) is the image
of ¢;, and Ker(¢; ) is the kernel of ¢; 1. In
the particular case above, because the sequence
begins with 0, it is understood that the kernel
of ¢ is 0, that is ¢ is one-to-one. There is a
companion notion for right R modules.
inner automorphism A group automor-
phism of the form ¢,(g) = aga™'. In more
detail, an automorphism of a group G is a one-
to-one mapping of G onto itself which preserves
the group operation, ¢(g182) = ¢(g1)¢(g2) for
all g1 and g7 in G. If a is a fixed element of G,
the mapping ¢, defined above is easily seen to
be an automorphism. Automorphisms of this
form are rather special and form a group under
composition called the group of inner automor-
phisms of G.

inner derivation A derivation of the form
D,(x) = xa — ax. In more detail, a deriva-
tion is a linear mapping D of a (possibly non-
associative) algebra A into itself, satisfying the
familiar product rule for derivatives, D(xy) =
D(x)y + xD(y). Thus, derivations are alge-
braic generalizations of the derivatives of calcu-
lus. Now let A be associative. If a is a fixed
element of A, the mapping D, defined above is
easily seen to be a derivation. Derivations of
this form are rather special, and are called inner
derivations.

The concept extends to Lie algebras, but in
this case inner derivations are derivations of the
form D, (x) = [x a], where [x a] is the Lie prod-
uct.

inner topology  The topology of a Lie sub-
group H, as a submanifold of a Lie group G.
This topology need not be the relative topol-
ogy of H, viewed as a subspace of a topological
space G.

inseparable element  An element of an ex-
tension field with an inseparable minimal poly-
nomial. In more detail, let G be an extension
of a field F. (This means that G is a field and
G D F.) Let o be an algebraic element of G
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over F. (This means that « satisfies a polyno-
mial equation P (o) = 0 with coefficients in F.)
Among all polynomials P with coefficients in
F such that P(«) = 0, there is one of smallest
positive degree, called the minimal polynomial
of a. The algebraic element « is inseparable if
its minimal polynomial is inseparable. See also
inseparable polynomial. Antonym: separable
element.

Inseparable elements can only occur if the
field F has characteristic n # 0. In particular,
inseparable elements can never occur if F is the
field of rational numbers, or an extension of the
rationals. See also inseparable extension.

inseparable extension  An algebraic exten-
sion field containing an inseparable element.
See inseparable element. Antonym: separable
extension.

inseparable polynomial  Anirreducible poly-
nomial with coefficients in a field which factors
over its splitting field with repeated factors or,
more generally, a polynomial which has an in-
separable polynomial among its irreducible fac-
tors.

In more detail, let F be a field and let P be a
polynomial of positive degree with coefficients
in F'. P may or may not factor into linear factors
over F (for example, x2 —2 does not factor over
the rationals), but there always exists a smallest
extension field of F over which P does factor
(for example, x2—2 factors as (x — ﬁ) (x+ «/E)
over the field G formed by adjoining +/2 to the
rationals). This smallest extension field is called
the splitting field for P.

Let F[x] denote the ring of polynomials with
coefficients in F. Suppose first that P is irre-
ducible in F[x], that is P does not factor into
two or more polynomials in F[x] of positive de-
gree. P is called separable if its factorization
over its splitting field has no repeated factors. In
the general case where P is not irreducible, P
is called separable if each irreducible factor is
separable. Finally, P is called inseparable if it
is not separable. Antonym: separable polyno-
mial.

integer (1) Intuitively, an integer is one of the
signed whole numbers 0, 1, £2, 43, ..., and



a natural number is one of the counting num-
bers, 1,2,3,....

(2) Semi-formally, the ring of integers is the
set Z consisting of the signed whole numbers,
together with the ordinary operations of addi-
tion, +, and multiplication, -. The ring of in-
tegers forms the motivating example for many
of the concepts of mathematics. For example,
the ring of integers, (Z, 4+, -), satisfies the fol-
lowing properties for all x, y, and z € Z: (1)
x+yelZ QOQx+y+2=x+y +z
(3) x + 0 = 0+ x, (4) given x, there exists an
element —x such thatx + —x = —x +x = 0.
These are precisely the axioms for a group, so
the integers under addition, (Z, +), form the first
example of a group. Furthermore, addition is
commutative, (5) x + y = y + x. Properties
(1) through (5) are precisely the axioms for an
Abelian group, so the integers under addition
form the first example of an Abelian group. In
addition, the integers satisfy the following ad-
ditional properties for all x, y, and z € Z: (6)
x-yeZ. Mx-(y+z20=x-y+x-g2
and (y +z)-x = y-x + z-z. Properties (1)
through (7) are precisely the axioms for a ring,
so the ring of integers, (Z, +, -), form the first,
and one of the best, examples of a ring. Further-
more, the integers satisfy (8) 1 -x =x -1 = x.
The number 1 is called a unit element because
it satisfies this identity, so the ring of integers
forms one of the best examples of a ring with
unit element, or ring with unit for short. In ad-
dition, the ring of integers satisfies the commu-
tative law, (9) x - y = y - x, so it forms one of
the best examples of a commutative ring.

The ring of integers has a far richer structure
than described above. For example, the ring of
integers is an integral domain, or domain for
short, because it satisfies property (10) x -y =0
implies x = 0 or y = 0 (or both). Thus, the
ring of integers satisfies the familiar cancella-
tion law: If we know x - y = x - z for x # O,
then we know y = z. Finally, the integers form
one of the best examples of a Euclidean domain,
and of a principal ideal domain. See also Abel-
ian group, commutative ring, Euclidean domain,
principal ideal domain, ring, unit element.

Many of the most profound open (unsolved)
questions in mathematics revolve around the in-
tegers. For example, a prime number is a (pos-
itive) integer divisible only by itself and 1. Eu-
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clid proved centuries ago that there are infinitely
many prime numbers. But it is still unknown
whether there are infinitely many pairs of prime
numbers, p, and p,41, which differ by 2, i.e.,
Pn+1 — Pn = 2. The conjecture that there are
infinitely many such pairs of primes is called
the twin prime conjecture. Perhaps the deepest
and most important unsolved question in math-
ematics is the Riemann hypothesis. Although
the Riemann hypothesis is stated in terms of the
behavior of a certain analytic function called the
Riemann zeta function, it too involves the prop-
erties of the integers at its heart. For example, if
the Riemann hypothesis were true, then the twin
prime conjecture (and most of the other great un-
solved conjectures of number theory) would be
true.

(3) Formally, an integer is an element of the
ring of integers. The ring of integers is the small-
estring containing the semi-ring of natural num-
bers. The semi-ring of natural numbers is de-
fined in terms of the set of natural numbers. The
set of natural numbers is any set N, together with
a successor function S carrying N to N, satisfy-
ing the Peano postulates:

(1) There is an element 1 € N.

(2) § : N — N is a function, that is the
following two properties hold: (a) givenn € N,
there is only one element S(n), and (b) for each
n €N, S(n) € N.

(3)Foreachn e N, S(n) # 1.

(4) S is a one-to-one function, that is if S(m)
= S(n) thenm = n.

(5) (The axiom of induction) Suppose [ is a
subset of N satisfying the following two prop-
erties: (a) 1 € I, and (b)ifi € I then S(i) € 1.
Then I = N.

Addition and multiplication, + and -, are de-
fined inductively in terms of the successor func-
tion S, so that S(n) = n + 1, and the semi-ring
of natural numbers is defined to be the set of
natural numbers N, together with the operations
of + and -.

Mathematical logic shows us that there are
fundamentally different models of the natural
numbers, and thus of the ring of integers. (A
model of the natural numbers is simply a par-
ticular set N and successor function § satisfying
the Peano postulates.) For example, if we begin
by believing we understand a particular model of
the natural numbers, and call this object (N, ),



then it is possible to construct out of our pre-
existing (N, S) a new object (N*, $*) with the
following remarkable properties:

(1) (N*, S*) also satisfies the Peano postu-
lates, and thus equally deserves to be called “the
natural numbers.”

(2) Every n € N also belongs to N*.

(3) If n € N, then S*(n) = S(n).

(4) There exist elements of N* larger than any
element of N. (These elements of N* are called
“infinite elements” of N*.)

Warning to the reader: One also has to rede-
fine what one means by ser and subset for this
to work. Otherwise, (4) could not be true and
(N*, §*) would simply equal (N, S).

This construction forms the basis of Abra-
ham Robinson’s non-standard analysis, and re-
lated constructions lie at the heart of the Godel
undecideability theorem.

(4) Other usage: In algebraic number theory,
algebraic integers are frequently called integers,
and then ordinary integers are called rational
integers. An algebraic integer is an element «
of an extension field of the rationals which is
integral over the rational integers. See integral
element.

integer programming The general linear
programming problem asks for the maximum
value of a linear function L of »n variables, sub-
ject to linear constraints. In other words, the
problem is to maximize L(xy, x2, ... , X,) sub-
ject to the conditions AX < B, where X is the
column vector formed from xq,...,x,, Bisa
column vector, and A is a matrix. The general
integer programming problem is the same, ex-
cept the solution (x1, ..., Xx,) is to consist of
integers.

Integer programming problems frequently
arise in applications, and many important com-
binatorial problems, such as the travelling sales-
man problem, are equivalent to integer pro-
gramming problems. The formal statement of
this equivalence is that integer programming
is one of a class of hardest possible problems
solvable quickly by inspired guessing; in other
words, integer programming is N P complete.
(Technically, the N P complete problem is the
one of determining whether an integer vector
(x1,...,x,) exists, subject to the constraints
and making L(xy,...,x,) > a predetermined
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constant K.) There are several efficient solu-
tion methods for particular classes of integer
programming problems, but it is unlikely that
there is an efficient solution method for all in-
teger programming problems, since this would
imply NP = P, a conjecture widely believed
to be false.

integrable family of unitary representations
Let G be a topological group. A unitary rep-
resentation of G is a group homomorphism L
from G into the group of unitary operators on
a Hilbert space H, which is continuous in the
following sense: For each fixed &1 and /> in H,
the function g — (L(g)h1, h2) is continuous.
Here, (L(g)h1, hy) denotes the inner product of
L(g)h1 and h; in the Hilbert space H. (In other
words, L is a continuous map from G into the
set of unitary operators endowed with the weak
operator topology.) See unitary representation.
In the theory of unitary representations, it is
frequently desirable to express a given unitary
representation L as a direct integral or integral
direct sum of simpler unitary representations,

L=/ I(x)du(x)
X

where X is a set and p is a measure on X, or,
more precisely, where X is a set, B is a o-field
of subsets of X, and u is a measure on 3. See
integral direct sum. Here, /(x) is a unitary rep-
resentation of G for each x € X. If L’ is another
unitary representation of G, and if L’ can also
be represented as a direct integral,

L= / U dp(x)
X

and if /' (x) is unitarily equivalent to /(x) except
possibly on a set of & measure 0, then L’ is uni-
tarily equivalent to L. In other words, direct
integrals preserve the relation of unitary equiv-
alence. See unitary equivalence.

This leads to the consideration of functions
from X into the set E of unitary equivalence
classes of unitary representations of G. (Here,
two representations are equivalent if they are
unitarily equivalent.) Such a function £ is said
to be an integrable family of unitary represen-
tations, or an integrable unitary representation
for short, if the following holds: There is a func-
tion / defined on X such that (1) /(x) is a unitary



representation in the equivalence class £(x) for
each x € X, and (2) for each pair of elements
h1 and h; in the Hilbert space H, and group ele-
ment g € G, the function x — (I[(x)(g)h1, h2)
is u measurable.

An integrable family of unitary representa-
tions, £, and any of its associated functions, /,
are exactly what is needed to form a new unitary
representation via the direct integral,

L:/ I(x)du(x) .
X

Because of the aforementioned preservation of
unitary equivalence, one may write

L = / Ldu(x)
X
instead.

integrable unitary representation  See inte-
grable family of unitary representations.

integral (1) Of or pertaining to the integers,
as in such phrases as “integral exponent,” i.e.,
an exponent which is an integer.

(2) In calculus, the anti-derivative of a con-
tinuous, real-valued function. In more detail, let
f be a continuous real-valued function defined
on the closed interval [a, b]. Let F be a func-
tion defined on [a, b] such that F/(x) = f(x)
for all x in the interval [a, b]. F is called an
anti-derivative of f, or an indefinite integral of
f, and is denoted by [ f(x)dx. The number
F(b) — F(a) is called the definite integral of f
over the interval [a, b], or the definite integral
of f from a to b, and is denoted by fab f(x)dx.
By the Fundamental Theorem of Calculus, if
f(x) = 0forall x in [a, b], the definite integral
of f over the interval [a, b] is equal to the area
under the curve y = f(x),a <x <b.

There is a sequence of rigorous and increas-
ingly general definitions of the integral. In order
of increasing generality, they are

(i.) The Riemann integral. Leta = xo <
x] < -+ < x, = b be a partition of [a, b].
Choose intermediate points 1, t2, . . ., #; so that
X0 <1t <X1,X] < X2, ...,X—-1 =l <
xp. The sum, Y7 f(#)(x; — xi—1) is called a
Riemann sum. The Riemann integral of f over
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the interval [a, b] is defined to be

n

> fw)

i=1

(X —xi—1) ;

b
/ f(x)dx = lim|

[xi —xi—1|—>0

in other words, the Riemann integral is defined
as the limit of Riemann sums. It is non-trivial to
prove that the limit exists and is independent of
the particular choice of intermediate points #;.

(ii.) There are several variants of this defini-
tion. In the most common one, f(%;) is replaced
by the supremum (least upper bound) of f on
the interval [x;_1, x;] to obtain the upper sum
U(f,P), and by the infimum (greatest lower
bound) of f on [x;_1, x;] to obtain the lower
sum L(f,P). (Here, P refers to the partition
a=xy<x1 =<...<x, =b>b.) The upper and
lower integrals of f are

b
/ f(x)dx:i%fU(f,P)

and

b
/ f(x)dx =supL(f,P).
Ja P

(Here, inf stands for infimum and sup for supre-
mum. See infimum, supremum.) The function
f is defined to be Riemann integrable if the up-
per and lower integrals of f are equal, and their
common value is called the Riemann integral
of f over the interval [a, b]. It is a theorem
that all continuous functions are Riemann inte-
grable. This definition has the advantage that
it extends the class of integrable functions be-
yond the continuous ones. It is a theorem that
a bounded function f is Riemann integrable if
and only if it is continuous almost everywhere.

(iii.) Definitions (i.) and (ii.) generalize
from intervals [a, b] to suitable regions in higher
dimensions.

(iv.) The Stieltjes integral. Everythingisasin
(ii.), except that x; — x;_1 is replaced by «(x;) —
a(x;_1) in the definition of upper and lower
sums, where « is a monotone increasing (and
possible discontinuous) function. The Stieltjes
integral of f is denoted by |, ab f(x)da(x). The
Stieltjes integral is more general than the Rie-
mann integral, not in that the class of integrable
functions is enlarged, but rather in that the class



of things we can integrate against (the functions
«) is enlarged.

(v.) The Lebesgue integral. Let u be a count-
ably additive set function on a o-field of sets.
The set function u is called a measure. See
sigma field, measure. Examples are:

(a) X is a finite set, and if A is a subset of X,
then 1 (A) = the number of elements in A. & is
called counting measure on X.

(b) X is any set, finite or infinite. The o -field
of sets is the set of all subsets of X. Let a be
a fixed point of X. If A is a subset of X, then
u(A) = 1lifa € A, and u(A) = 0 otherwise.
wu is called a point mass at a, or the Dirac delta
measure at a.

(c) X istheinterval [a, b]. The o-field of sets
is the set of Borel subsets of X. (The Borel sets
include all subintervals, whether open or closed,
of [a, b], and many other sets besides.) If I is
an interval, then p(7) is the length of 7. w is
called Lebesgue measure on [a, b].

(d) X and the o-field are as in (c). Let « be
a monotone increasing function on [a, b], and
for convenience suppose it is continuous from
the right. If I = (x1, x»] is a right half closed
subinterval of X, then (/) = a(x2) —a(x1).
is called a Lebesgue-Stieltjes measure on [a, b].

(e) X is an open subset of n-dimensional Eu-
clidean space, R". The o-field is the o -field of
Borel subsets of X. If C is a small n-dimen-
sional cube contained in X, then w(C) is the
n-dimensional volume of C. (In the familiar
case n = 2, an n-dimensional cube is simply a
square, and the n-dimensional volume is simply
the area of the square. In the equally familiar
case n = 3, an n-dimensional cube is an ordi-
nary 3-dimensional cube, and the n-dimensional
volume is the ordinary 3-dimensional volume of
the cube.)

A simple function on X is a function which
takes only finitely many values. If g is a sim-
ple function taking values c1, . .. , ¢, on the sets
Al,...,A, (so cq,...,c, exhaust the finite
set of values of taken by g) and A; = {x €
X, g(x) = cj}, then

/Xg(X)dM(X) = cin(A) .
i=1

(This assumes, of course, that the A; belong to
the o-field, i.e., that the w(A;) are defined. Such

© 2001 by CRC Press LLC

a simple function is called measurable.) Now
suppose f is a bounded function on X. Define
the upper integral of f on X as

/ FOOdp(x) = inf / g du(x)
X geG Jx

where G equals the set of measurable simple
functions g such that g > f. Define the lower
integral of f on X similarly,

ff(x)du(X) = SUP/ h(x)dx ,
JX heH JX

where H equals the set of measurable simple
functions & such that » < f. The bounded
function f is Lebesgue integrable, or simply in-
tegrable, if the upper and lower integrals agree,
and then their common value is called the
Lebesgue integral of f with respect to the mea-
sure [, or simply the integral of f with respect
to the measure 1, and is denoted by [ f(x) dx.

The Lebesgue integral extends both the class
of integrable functions (all the way to bounded
measurable functions), and the class of things
we can integrate against (arbitrary measures).
The theory extends to unbounded functions as
well.

(vi.) The Denjoy integral. Similar to the
Lebesgue integral, except that the upper inte-
gral is defined as the infimum of the integrals of
an appropriate family of lower semi-continuous
functions, and the lower integral is defined as the
supremum of a family of upper semi-continuous
functions. See also lower semi-continuous func-
tion, upper semi-continuous function.

The Denjoy integral requires extra structure
on X, X must be a topological space, and the
measure (4 must be a Radon measure. However,
the Denjoy integral is particularly well suited for
dealing with certain technical difficulties con-
nected with the integration of functions taking
values in a non-separable topological vector
space.

(vii.) Definition (i.) of the Riemann integral
easily extends to continuous vector valued func-
tions f taking values in a complete topological
vector space. The analogous definition for the
Stieltjes integral also extends to this setting. See
also topological vector space.

(viii.) The Pettis integral, also called the
Dunford Pettis integral. Let f be a vector valued



function, and let u be a measure on a space X,
as in (v.) or (vi.). Suppose f takes values in a
locally convex topological vector space V. The
Pettis integral of f is defined by the conditions,

( / f(x)du(xxx) _ / (FG0, 1) du(x)
X X

for all A € V*. Here, V* is the dual of V,
consisting of all continuous linear functionals on
V. Of course, this presupposes that the scalar
valued functions (f(x), A) are integrable, and
that the infinite system of equations,

(e,2) = /X(f(X),)») dp(x),r € E*,

has a solution e € V. See also locally convex
topological space.

(ix.) The definition of the Stieltjes integral
extends to vector valued measures and scalar
valued functions, and even to operator valued
measures and vector valued functions. The Spec-
tral Theorem is phrased in terms of such an in-
tegral. See also Spectral Theorem.

(x.) Recently, a seemingly minor variant of
the classical Riemann integral has been discov-
ered which has all the power of the Lebesgue
integral and more. This new integral is variously
named the Henstock integral, the Kurzweil-
Henstock integral, or the generalized Riemann
integral. The Henstock integral is defined in
terms of gauges. Define a gauge to be a func-
tion y which assigns to each point x of the in-
terval [a, b] a neighborhood of x. (The neigh-
borhood may be an open interval containing x,
half open if x is one of the endpoints a or b.)
Leta = xo < x1 < --- < x, = b be a partition
of [a, b] with intermediate points #1, f2, . .. , t,,
as in the definition of the classical Riemann in-
tegral. Refer to such a partition as a ragged
partition, with the intermediate points #; as the
tags. Define a tagged partition to be y fine if
[xi—1,x;] € y(t) for each i. If f is a real
valued function on [a, b], define the Henstock
integral of f to be the (necessarily unique) real
number L such that for each € > 0, there is a
gauge y such that

=Y @) i —ximn)| <€
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foreach gamma fine tagged partition. Of course,
the Henstock integral of f is still denoted by

b
/ fx)dx .

If f is positive, then Henstock integrabil-
ity and Lebesgue integrability coincide, and the
Henstock integral of f equals the Lebesgue in-
tegral of f. But if f varies in sign, and | f]|
is not Henstock (and thus not Lebesgue) inte-
grable, then the Henstock integral of f may still
exist, even though the Lebesgue integral of f
cannot exist under these circumstances. Thus,
the Henstock integral is more general than the
Lebesgue integral. The Henstock integral ob-
tains its added power because it captures cancel-
lation phenomena related to improper integrals
that the Lebesgue integral cannot.

The Henstock integral extends to a Henstock-
Stieltjes integral in a rather simple way. Hen-
stock integration also extends to functions of
several variables. However, Henstock integra-
tion on subsets of n-dimensional space, R", is
still an open area of investigation, as is the exten-
sion of the Henstock integral to abstract settings
similar to measure spaces.

integral character In number theory, a char-
acter which takes on only integral values.

integral closure  Let S be acommutative ring
with unit, and let R be a subring of S. The
integral closure of R in S is the set of all elements
of S which are integral over R. See integral
element. R is integrally closed in S if R equals
its integral closure in S.

integral dependence Let S be acommutative
ring with unit, and let R be a subring of S. An
element o € S is integrally dependent over R if
« is integral over R. See also integral element.

integral direct sum (1) A representation of
a Hilbert space as an L? space of vector val-
ued functions. In more detail, let (X, F, u)
be a measure space. Here, X is a set, F is
a o-field of subsets of X, and p is a measure
on F. (See Hilbert space, integral, measure,
sigma field.) Let H(x), x € X, be a fam-
ily of Hilbert spaces indexed by X, and let H
be the union of the sets H(x), x € X. Let L



be a set of functions f defined on X such that
(@) f(x) € H(x) for all x € X; (b) the func-
tion x — | f(x)| is measurable; (c) there ex-
ists a countable family f1, f>, f3,... € L such
that the set {f1(x), f2(x), f3(x), ...} is dense
in H(x) for each x € X. Assume also the fol-
lowing closure property for L, (d) if g satisfies
property (a) and the function x — (f(x), g(x))
is measurable for each f € L, then g € L.
Here, || f (x)|| denotes the Hilbert space norm of
f(x) and (f(x), g(x)) the Hilbert space inner
product in the Hilbert space H (x).
Let

L*(L,dp)
= {f eL: /X £ QO dpn(x) < oo} :

The Hilbert space LZ(L, du) is called an inte-
gral direct sum, or a direct integral, and is fre-
quently denoted by

/ H(x)du(x) .
X

(2) The corresponding representation of a lin-
ear transformation 7 between two integral direct
sums,

/ Hi(x)dp(x)  and / Hy () dp(x)
X X

as an integral of bounded linear transformations
t(x). In more detail, let H{(x) and H>(x), x €
X, be two families of Hilbert spaces indexed by
X asin (1) above, andletz(x), x € X beafamily
of linear transformations from Hj(x) to H(x)
indexed by X. If f lies in [, H)(x)di(x), de-
fine T(f) by T(f)(x) = 1(x)(f(x)), except
possibly on a set of u measure 0. (Of course, the
domain of T will be all of f x Hi(x) du(x), that
is, T(f) will lie in [, Ha(x)du(x), only when
the family #(x), x € X is uniformly bounded,
except possibly on a set of u measure 0, that is
only when there is a constant K independent of x
such that the norm |7 (x)| < K, except possibly
on a set of u measure 0. In this case, the oper-
ator T will be bounded, with norm < K.) The
linear transformation 7 is called the integral di-
rect sum, or a direct integral of the family 7 (x),
x € X, and is frequently denoted by

f t(x)du(x) .
X
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integral divisor (1) In elementary algebra
and arithmetic, a factor or divisor which is an
integer, as in, for example, 3 is an integral divisor
of 12.

(2) In algebraic geometry, a divisor with pos-
itive coefficients. In more detail, let X be an
algebraic variety. (This simply means that X is
the solution set to a system of polynomial equa-
tions. See algebraic variety.) A divisor on X isa
formal sum D = a;C| + - - - + a; Cy, where the
a; are integers and the C; are distinct irreducible
subvarieties of X of codimension 1. (Codimen-
sion 1 means the dimension of C; is one less than
the dimension of X. Irreducible means C; is not
the union of two proper [i.e., strictly smaller]
subvarieties. In the simplest case where X is
an algebraic curve, the C; are just points of X.)
The divisor D is integral if all the coefficients
a; are positive. Integral divisors are also called
positive divisors or effective divisors.

The notions of divisor and integral divisor
extend to various related and/or more general
contexts, for example to the situation where X
is an analytic variety. See analytic variety.

Perhaps the clearest examples of integral di-
visors occur in elementary algebra and elemen-
tary complex analysis. Consider a polynomial
or analytic function f defined in the complex
plane. Let Cy, Cy, C3,... be a listing of the
zeros of f. The corresponding integral divisor
D =a;Ci +aCy +a3zCsz + - - - describes the
zeros of f, counting multiplicity, and one con-
siders such divisors repeatedly in these subjects,
for example in the statement that a polynomial
of degree n has exactly n zeroes counting multi-
plicity. Inelementary algebra and complex anal-
ysis, integral divisors are often called “sets with
multiplicity,” and one thinks of the coefficient
ay as meaning that the point Cy is to be counted
as belonging to the set a; times.

integral domain A commutative ring R with
the property thatab = Oimpliesa = Oorb = 0.
Here, a and b are elements of R. For example,
the ring of integers is an integral domain.

integral element  Let S be a commutative
ring with unit, and let R be a subring of S. An
element « € S is integral over R if « is the
solution to a polynomial equation P(«x) = O,
where the polynomial P has coefficients in R



and leading coefficient 1. (Such a polynomial is
called a monic polynomial. For example, x> +5
is monic, but 2x2 4 5 is not monic.)

The most important application of the con-
cept of an integral element lies in algebraic num-
ber theory, where an element of an extension
field of the rational numbers which is integral
over the ring of integers is called an algebraic
integer, or often just an integer. In this case,
ordinary integers are often called rational inte-
gers.

If both R and S are fields, an integral element
is called an algebraic element.

integral equivalence (1) For modules, Z-
equivalence. Here Z is the ring of integers. See
R-equivalence, Z-equivalence.

(2) For matrices, two matrices M| and M»
are integrally equivalent if there is an invertible
matrix P, such that both P and P! have integer
entries and M, = P'M, P. Here, P! denotes the
transpose of P.

(3) For quadratic forms, two quadratic forms
01(x) = x*Mx and Q>(x) = x'Myx are in-
tegrally equivalent if the matrices M| and M,
are integrally equivalent. In other words, Q1
and Q> are integrally equivalent if each can be
transformed to the other by a matrix with integer
entries.

integral extension A commutative ring S
with unit and containing a subring R is an in-
tegral extension of R if every element of § is
integral over R. See integral element.

In the important special case where R and
S are fields, an integral extension is called an
algebraic extension.

The classic example of an integral extension
is the ring S of algebraic integers in some al-
gebraic extension field of the rational numbers.
Here, the ring R is the ring of ordinary (i.e., ra-
tional) integers. See algebraic integer, integral
element.

If S is an integral domain, there is an im-
portant relationship between being an integral
extension and possessing certain finiteness con-
ditions. Specifically, an integral domain is an
integral extension of a subring R if and only if
S is module finite over R. Module finite sim-
ply means that S is finitely generated as an R
module. See also integral domain.
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integral form (1) A form, usually a bilinear,
sesquilinear, or quadratic form, with integral co-
efficients. For example, the form 2x% —xy+3y?
is integral.

(2) A form, usually a bilinear, sesquilinear, or
quadratic form, expressed by means of integrals.
For example, the inner product on the Hilbert
space L? of square integrable functions,

(f. g)=fxf(t)g(_t)du(t),
is an integral (sesquilinear) form.

integralideal A non-zero ideal of the ring R
of algebraic integers in an algebraic number field
F. See algebraic integer, algebraic extension,
ideal. See also integer, integral element, integral
extension. In the elementary case where F is
the field of rational numbers and R is the ring
of ordinary integers, an integral ideal is simply
a non-zero ideal of the ring of integers.

In algebraic number theory, a distinction is
drawn between fractional ideals and integral
ideals. An integral ideal is as defined above.
By contrast, a fractional ideal is an R module
lying in the algebraic number field F.

integrally closed  Let A be a subring of a
ring C. Then the set of elements of C which are
integral over A is called the integral closure of
Ain C. If A is equal to its integral closure, then
A is said to be integrally closed.

integral quotient  In elementary arithmetic,
a quotient in which both the numerator and the
denominator are integers. For example, 3/4 is
anintegral quotient, whereas 3.5/4.5 is not, even
though the latter represents (equals) the rational
number 7/9.

integral representation (1) A representation
of a group G is a homomorphism ¢ from G into
a group M, of n x n matrices. The representa-
tion is integral if each matrix ¢ (g) has integer
entries.

(2) Any representation of a quantity by means
of integrals. See integral.

integral ringed space A ringed space is a
topological space X together with a sheaf of
rings Ox on X. This means that to each open



set U of X, there is associated a ring Ox (U).
(The remaining properties of sheaves need not
concern us here.) The ringed space (X, Ox)
is integral if each ring Ox (U) is an integral do-
main. Forexample, if X is an open subset of C”,
complex n-space, or a complex analytic mani-
fold, and Ox (U) is the ring of analytic functions
defined on U, then (X, Oy) is an integral ringed
space. See integral domain.

integral scheme A scheme is a particular
sort of ringed space. See scheme. An integral
scheme is a scheme which is an integral ringed
space. See integral ringed space.

intermediate field Let ', G, and H be fields,
with F € G C H. G is called an intermediate
field.

internal product Let G| and G, be Abel-
ian groups, and let R be a commutative ring. A
group homomorphismr : G1 ® G2 — (R, +),
where (R, +) is the underlying additive group
of R, is an internal product if it satisfies 7 (g1 ®
g2) = m(g1) - m(g2), where - is the multiplica-
tion in the ring R. Here, G| ® G is the tensor
product of G| and G>. The notion is most fre-
quently used in homological algebra, in which
case 7 becomes a homomorphism of chain com-
plexes of groups, and the relation 7 (g ® g2) =
m(g1) - w(g2) only has to hold for cycles (or co-
cycles). See also chain complex, cocycle, cycle,
tensor product.

internal symmetry A symmetry that is an
invertible mapping of a set onto itself. If the set
has additional structure, then the mapping and
its inverse must preserve that structure. For ex-
ample, if the set is in addition a differentiable
manifold, then the mapping (and automatically
its inverse) must be differentiable. If the set is
in addition a topological space, then the map-
ping and its inverse must both be continuous.
If the set is in addition a metric space, then the
mapping (and automatically its inverse) must be
an isometry. See also inverse function, inverse

mapping.
interpolating subset  Let 7 be a set of func-

tions from aset X toasetY. Letay, az, a3, ...
be a finite or infinite sequence of elements of
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X, and let yi, y2, y3,... be a finite or infi-
nite sequence of elements of Y. The set A =
{a1,az,as,...} is an H interpolating subset
for the sequence yi, y2, 3, ... if there exists
a function 1 € H such that h(a;) = y; for
i = 1,2,3,.... In this case, the sequence
ay,az, as, ... is called an H interpolating se-
quence for yi, y2, y3, ....

The classic examples of interpolating se-
quences occur in the case where X is the field
of complex numbers and H is the set of all
polynomials with complex coefficients. The La-
grange interpolation theorem asserts that any fi-
nite sequence of complex numbers, ay, ..., a,,
all terms of which are different, is an A inter-
polating sequence for any sequence yi, ..., Y,
of complex numbers with the same number of
terms.

Although the notion of an interpolating sub-
set is usually reserved for discrete sets A as
above, it makes sense in greater generality. Let
A be an arbitrary subset of X, and let f be a
function from A to Y. Then A is an H interpo-
lating subset for the function f if there exists a
function & € H such that h(a) = f(a) for all
aeA.

intersection multiplicity A variety V is the
set of common zeros of a set / of polynomials.
In other words, V = {(x1,...,x,) : P(x1,...,
xy) = 0 for all P € I}. Intuitively, the inter-
section multiplicity of varieties Vi, ..., V, ata
point x = (xi, ..., x,) where they intersect is
the degree of tangency (or order of contact) of
the intersection at x plus 1. For example, the
parabolas

xz—x%=0 and xz—xlz—xlzo

have intersection multiplicity 1 at (x1,x2) =
(0, 0) because they intersect transversally (are
not tangent to each other) there. However,

xz—x12=0 and x2—5x12=0

have intersection multiplicity 2 at (x1, x2) =
(0, 0) because they intersect tangentially to first
order there. One must also include the possibil-
ity of x being a multiple point, in which case the
intersection multiplicity should be > the order
of the multiple point.

Rigorously, if Dy, ..., D, are effective divi-
sors on a smooth n-dimensional variety X and



are in general position at a point x € X, then the
intersection multiplicity of Dy, ..., D, at x is

(D],...,Dn)x =dlm(0x/(f171fﬂ)) .

Here is what all this means: X is smooth if it has
no singular points. A divisor on X is a formal
sum D = a;Ci+- - -+ayCy, where the a; are in-
tegers and the C; are distinct irreducible subva-
rieties of X of codimension n — 1. (Irreducible
means C; is not the union of two proper [i.e.,
strictly smaller] subvarieties. In the simplest
case where X is an algebraic curve, the C; are
just points of X.) The divisor D is effective (also
called integral or positive) if all the coefficients
a; are positive. Oy is the local ring of X at x.
The local ring of X at x consists of quotients of
polynomial functions, f/g, defined at and near x
(i.e., on an open subset of X containing x) where
g(x) # 0, and two such functions are identified
if they agree on an open subset containing x. (In
other words, Oy is the ring of terms of regular
functions at x.) Locally, each divisor D; is the
divisor of a function f;, and that is where the f;
come from. (fi, ..., fy)istheideal in Oy gen-
erated by fi,..., fu (by their terms actually).
The quotient ring O, /(f1, ..., f») isnot only a
ring but also a finite dimensional vector space.
The intersection multiplicity (Dy, ..., Dy) is
the dimension of this vector space. See general
position, term, integral divisor, quotient ring.
The intersection multiplicity of effective di-
visors not in general position at x is defined in
terms of the intersection multiplicity of equiva-
lent divisors which are in general position. The
intersection multiplicity of fewer than n effec-
tive divisors, say D, ..., Di, is defined in
terms of module length rather than the less gen-
eral concept of vector space dimension. Let C
be one of the irreducible components of the va-
riety () Ci,j, where D; = Y a; ;C; j. Then the

intersection multiplicity of D1, ..., Dy in the
component C is
(D1, ..., Di)c =€ (Oc/ (f1,---, f©)

where £(Oc/(f1, ..., fx)) is the module length
of the O¢ module O¢/(f1, ..., fr) and O¢ is
the local ring of the irreducible subvariety C.
See also local ring, module of finite length.

intersectionnumber A variety V is the set of
common zeros of a set I of polynomials. Inother
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words, V = {(x1,...,x,) : P(x1,...,x,) =0
for all P € I}. Intuitively, the intersection
number of varieties Vi, ..., V, is the number
of points of intersection, counting multiplicity.
Rigorously, if Dy, ..., D, are effective divisors
on a smooth n-dimensional variety X (see in-
tersection multiplicity for brief definitions of
these terms), then the intersection number of
Dy,...,D,is

(Di,....Dy) = (Di,.... Dy,

xes

in other words, it is the sum of the intersection
multiplicities over the finitely many points of
intersection of the divisors Dy, ..., D,,. Here,
S = ﬂ?:] S,‘, Si = Uj Ci’j, and D,‘ = Zj ai,j
Cj;.

It is also possible to define intersection num-
bers for fewer than n divisors, say Dy, ..., Dy.
Howeyver, this definition is the culmination of an
entire theory.

intersection product (1) Leti(A, B; C) be
the intersection multiplicity of two irreducible
subvarieties A and B of an irreducible variety
V, along a proper component C of A N B. The
intersection product of A and B is

A-B =Zi(A,B;Cn)C,,
n

where the sum is taken over all the proper com-
ponents C, of ANB. If X = ), aq,Ay and
Y = Zﬁ bgBg are two cycles on V such that
each component A, of X intersects properly
with each component Bg of Y, then the inter-
section product is

XY =" augbp(Aa-Bp) .
o« p

(2) If M is an oriented n-dimensional mani-
fold and @ and b are members of the homology
groups H,(M) and H,(M), then the intersec-
tion product of Lefschetz is a - b = D la ~
b=DD 'a—- Db e H), 4 where D is
the Poincaré-Lefschetz duality. See also inter-
section multiplicity, cup product, cap product,
Poincaré-Lefschetz duality.

intransitive permutation group A permu-
tation group G is a group of one-to-one and onto



functions from a set X to itself. The group oper-
ation is understood to be a composition of func-
tions, to(x) = T oo (x) = (0 (x)). Usually,
but not always, the set X is finite. The permu-
tation group G is intransitive if for some (and
hence for all) x € X, the set O(x) = {o(x) :
o € G}isnotequal to all of X. The set O(x) is
called the orbit of x, so we can say the permu-
tation group G is intransitive if the orbit of any
element x € X fails to be all of X. Synonym:
intransitive transformation group. Antonyms:
transitive permutation group, transitive trans-
formation group.

invariance  As in ordinary non-technical En-
glish, the property of being unchanged with re-
spect to some action or set of actions.

invariant (1) Let L be a set. Let G be an-
other set which acts on L. This means that there
is a binary operation - so that g - [ is an element
of L foreach g € G and! € L. Usually, but not
always, G is a group. An element/ € L is in-
variant under the action of G, or a G invariant,
ifg-l=1foreach g € G.

Here are some examples:

Example (a): Let G be a group of functions
from a set X toitself. Each g € G is assumed to
be one-to-one and onto, and the group operation
is a composition of functions, gi1g>(x) = gj o
g2(x) = g1(g2(x)). Let L be a set of functions
from X to some set Y. The action of G on L is
defined via a composition of functions: g -/ =
log,ie. g-l(x) =1(gk)).

Example (b): Let G equal the symmetric
group on n letters. In other words, G is the
permutation group of all permutations (one-to-
one and onto functions) of the set {1,...,n}.
The group operation is a composition of func-
tions. Let L be the ring of all polynomials in n
variables, x1, ... , x,. If g € G, and!/ is amono-
mial xlfl ~~-x,]f”, theng-[ = [ PRI ™

. g g(n)
other words, g - [ is formed from / by rearrang-
ing the variables. If / is an arbitrary polynomial,
then [ is a sum of monomials, I = Y a;l;. De-
fine g - / by linearity, g -/ = Y a;g - I;. The
polynomials which are invariant under the ac-
tion of g are called symmetric functions. Thus,
the symmetric functions are those polynomials
which remain unchanged after rearranging their
variables. It is a theorem that each symmet-
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ric function is a sum of elementary symmetric
functions, p; = 1, pa = the sum of all pairs of
variables, py = x7 +x1X2 + -+ - +X1%, + x5 +
X2X3 4+ ...+ x2x, +--~+x,%, p3 = the sum of
all triples of variables, p, = x1x2 - - - x;,.

Example (c): this is an important special case
of example (a). G is a group of conformal trans-
formations of the unit disk (in the complex plane)
into itself. (Thus, G is a group of linear frac-
tional transformations.) X is the unit disk, and
L is the set of analytic functions defined on the
unit disk. A function in L which is invariant
under the action of G is called an automorphic
function. See conformal transformation, linear
fractional transformation.

Example (d): Let G be an Abelian group. Let
K be afield and K G the group algebra over K.
Let L be a left KG module. Define the action
of G by module multiplication, g -/ = gl. In
the theory of group representations, the set of all
I € L which are invariant under the action of G
are called the G-invariants of L. The set of all
G-invariants of L forms aleft K G submodule of
L which plays a key role in the theory of group
representations. See also group algebra.

(2) Let G and L be as in (1). A subset V of
L is invariant under the action of Gifg-v eV
for all v € V. Here is an important example:
Let T be a bounded linear operator on a Hilbert
space H. Let G = {T}, the set consisting of
T alone. Let L = H. Define the action of
G on L by operator application, T - [ = T (I).
A subspace of L which is invariant under the
action of G is called an invariant subspace for
T. A famous unsolved problem is the invari-
ant subspace problem, often called the invariant
subspace conjecture: Does every bounded lin-
ear operator on an infinite dimensional complex
Hilbert space H have a proper (not {0}, not all
of H) closed invariant subspace?

(3) A bilinear form f on a Lie algebra L is
called an invariant form if f([ac],b) +
f(a,[bc]) = 0. Here, [ac] is the Lie algebra
product of @ and c.

(4) A quantity which is left unchanged un-
der the action of a prescribed class of functions
between sets is also called an invariant. For ex-
ample, the Euler characteristic is a topological
invariant because it is preserved under topolog-
ical homeomorphisms. (A one-to-one and onto



function from one topological space to another
is called a homeomorphism if both it and its in-
verse are continuous.)

(5) Let X be aset and let E be an equivalence
relation on the set X. Let f : X — Y be a
function from X to another set Y. If f(x1) =
f(x2) whenever (x1, x) € E, that is whenever
x1 is equivalent to x» modulo the equivalence
relation E, then f is called an invariant of E.
The function f is called a complete invariant of
E if (x1, x2) € E if and only if f(x1) = f(x2).
Finally, a finite or infinite set F of functions on
X is called a complete system of invariants for
E if (x1,xp) € E if and only if f(x1) = f(x2)
for all functions f € F.

Here is a well-known example: Let X be the
set of all m x n matrices with coefficients in a
field F. Define two such matrices M1 and M>
to be equivalent if there exist invertible square
matrices P and Q such that M, = PM,Q, and
let E be the resulting equivalence relation. It
is a theorem of linear algebra that the rank of a
matrix M is a complete invariant for E, that is
m x n matrices M and M are equivalent under
the above definition if and only if they have the
same rank.

invariant derivation Let D be a derivation
on the function field K (A) of an Abelian variety
A, where K is the universal domain of A. Let T,
be translation by an element a € A. If (Df) o
T, = D(f o T,), for every f € K(A), then D
is called an invariant derivation on A.

invariant element Let7 : X — X bea
function or mapping. If x € X has the property
that 7(x) = x, then x is called an invariant
element of the operator 7. This concept arises
in analysis, topology, algebra, and many other
branches of mathematics.

invariant element Let7 : X — X bea
function or mapping. If x € X has the property
that T(x) = x, then x is called an invariant
element of the operator 7. This concept arises
in analysis, topology, algebra, and many other
branches of mathematics.

invariant factor Let A be an n x n matrix

with distinct eigenvalues ;,, i = 1,2,...,k,
and Jordan normal form J. Consider the ma-

© 2001 by CRC Press LLC

trix B, obtained from J by taking the direct
sum of k Jordan blocks, one for each distinct
eigenvalue A;, having maximal order among all
Jordan blocks corresponding to A;. Next con-
sider B;, obtained similarly to By, but from the
remaining Jordan blocks in J. Continue in this
manner until all Jordan blocks of J have been
used, thus obtaining a sequence By, Ba, ..., B
of matrices whose sizes are non-increasing and
whose direct sum is by construction permuta-
tionally similar to J.

The characteristic polynomials of the matri-
ces Bj, j = 1,2,...,s are known as the in-
variant factors of A. It is worth noting that for
each j = 1,2, ..., s, by construction, the char-
acteristic polynomial of B; coincides with the
minimal polynomial of B;. In particular, the
minimal polynomial of Bj is the minimal poly-
nomial of A. It follows that two matrices are
similar if and only if they have the same invari-
ant factors.

invariant field Let G be a group of field au-
tomorphisms of a field F. A subfield H of F
is invariant for G, or G-invariant, if g(h) = h
for all g € G and h € H; in other words, the
subfield H is G-invariant if G fixes the elements
of H. Synonym: fixed field.

invariant form (1) A bilinear or quadratic
form which is invariant under the action of a set
of transformations. See invariant.

(2) A bilinear form f on aLie algebra L such
that f([ac],b) + f(a,[bc]) = 0. Here, [ac]
is the Lie algebra product of a and c.

invariant of group Let G be a finite Abelian
group. By the Fundamental Theorem of Abelian
Groups,

G=0@m)@om)® - Do(my),

where o (m;) is a cyclic group of order m; and
m; divides m;41. The numbersmy, ma, ... , mg
are uniquely determined by G, are invariant un-
der group isomorphism, and are called the in-
variants of the group G.

invariant of weight w  Let R be aring and let
L be aleft R module. Let G be a set which acts
on L. This means there is a binary operation -
so that g - [ is an element of L foreach g € G



and/ € L. Usually, G is a group. Let w be a
function from G to R. Anelement!/ € L is an
invariant of weight w under the action of G, or
a G invariant of weight w, if g - 1 = w(g)l for
each g € G.

Here is an example: Let L be the set of all
analytic functions in the upper half plane of the
complex plane. Let G be the modular group.
The modular group is the group of all linear
fractional transformations

_az+b

8(@) cz+d’

where a, b, ¢, and d are integers and the determi-
nant ad — bc = 1. G acts on L by composition
of functions,

az+b
. l = l = l = l .
8-1(2) 0 g(z) =1(g(2) <cz n d)
A modular form of weight k is a G invariant of
weight w, where w(g) = (cz + d)*. In other
words, [ is a modular form of weight k if [ € L

and
az+b X
l = d)1(2) ,
(cz+d> (cz+d)'l(z)

whenever a, b, ¢, and d are integers and ad —
bc = 1.

There is a companion notion of weight for
right R modules. Furthermore, the notion of a
G invariant of weight w extends to the situation
where R and L are simply sets, and R acts on
L.

inverse Let G be a set with a binary operation
- and an identity e. This means g1 - g»0 € G
whenever g1 and g belong to G, and g - e =
e-g=gforallg € G. Theelement h € G is
aninverseof g€ Gifg-h=eandh-g =e.

Often g is an element of a group G. What is
very special about this case is that (a) either of
the conditions gh = e and hg = e implies the
other, and (b) the inverse of g always exists and
is uniquely determined by g. The inverse of g is
frequently denoted by g~!. See group. See also
inverse function, inverse morphism.

inverse element Anelement of a set G which

is the inverse of another element of G. See in-
Verse.
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inverse function Let f be a function from a
set X to a set Y. Diagrammatically, f : X —
Y. The inverse function to f, if it exists, is the
function g : ¥ — X such that f o g = iy and
go f =ix. (Here, ix and iy are the identity
maps on X and Y, and o denotes composition
of functions.) In other words, f(g(y)) = y
forall y € Y, and g(f(x)) = x forall x €
X. The function f has an inverse if and only if
f is one-to-one and onto, and the inverse g is
defined by g(y) = the unique element x such
that f(x) = y. The inverse function to f is
frequently denoted by f~!. See also identity
map, inverse mapping, inverse morphism.

Example: Let f(x) = 10%, for x real. The
inverse function to f is g(x) = log;q x, for x >
0.

inverselimit  Suppose (G}, is anindexed
family of Abelian groups, where I is a pre-
ordered set. Suppose that there is also a family
of homomorphisms ¢, : G, — G,, defined
for all © < v, such that if u < v < «, then
Qv © Puv = @ui- Consider the direct product
of the groups G, and define m, to be the pro-
jection onto the pth factor in this direct product.
Then the inverse limit is defined to be the sub-
group Goo = {x : u < v implies 7, (x) =
vy 0 my(x)}. See also preordered set.

inverse mapping  See inverse function.

inverse matrix The matrix B, if it exists,
such that AB = BA = I. In more detail, let A
be a square n X n matrix, and let I be the n x n
identity matrix, that is the n x n matrix with en-
try 1 in each diagonal position and 0 elsewhere.
Ann x n matrix B is the inverseof Aif AB =1
and BA = I. Either condition implies the other.
The inverse of A, if it exists, is uniquely deter-
mined by A and is denoted by A~!. It is a the-
orem of linear algebra that a matrix is invertible
(i.e., has an inverse) if and only if its determi-
nant is non-zero. There is a determinantal (in-
volving determinants) formula for the inverse of
A, A7! = det(A)~'adj(A), where det(A) is the
determinant of A and adj(A) is the classical ad-
Jjoint of A, that is the transpose of the matrix of
cofactors. See cofactor, determinant, transpose.



inverse morphism Let C be a category, let A
and B be objectsinC, andlet f : A — Bbea
morphisminC. (A morphism is a generalization
of a function or mapping.) A morphism g :
B — A is the inverse morphism of fif f o g
is the identity morphism on object B, and g o
f is the identity morphism on object A. The
inverse morphism of f, if it exists, is uniquely
determined by f.

There are also notions of left and right in-
verse morphisms. Morphism g is a left inverse
morphism of f if g o f is the identity morphism
on object A, and is a right inverse morphism of
f if f o g is the identity morphism on B. See
also identity morphism, inverse function.
inverse operation  See inverse function.
inverse proportion  Quantity a is inversely
proportional to quantity b, or varies inversely
with quantity b, if there is a constant k different
from O such that @ = k/b. For example, New-
ton’s law of universal gravitation, “The grav-
itational force between two masses is directly
proportional to the product of the masses and
inversely proportional to the square of the dis-
tance between them,” is given by the formula
F = GmM/rz, where G is a constant of nature
called the gravitational constant.

inverse ratio
b/a.

(2) Inverse ratio also means inverse propor-
tion, as in “a varies in inverse ratio to b.” See
inverse proportion.

(1) The inverse ratio to a/b is

inverse relation  The relation formed by re-
versing the ordered pairs in a given relation. In
more detail, a relation R is a subset of the Carte-
sian product X x Y, where X and Y are sets.
(The Cartesian product X x Y of X and Y is
simply the set of all ordered pairs (x, y), where
x € X and y € Y.) The inverse relation to R is
the relation {(y, x) : (x,y) € R}. The inverse
relation to R is usually denoted by R~!. Note
that if the relation R is a subset of the Cartesian
product X x Y, then the inverse relation R~ ! isa
subset of ¥ x X. Example: An inverse function
is a special sort of inverse relation. See inverse
function.
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inverse transformation See inverse func-

tion.

inverse trigonometric function  The inverse
functions to the trigonometric functions sin, cos,
tan, cot, sec, and csc; that is, the arcsin, the arc-
cosine, the arctangent, the arccotangent, the arc-
secant, and the arccosecant, respectively. They
are denoted by arcsin, arccos, arctan, arccot,
arcsec, and arccsc, or by sinfl, cos~ !, tan~ !,
cot™!, sec™!, and csc!. Note that, in formulas
involving trigonometric functions and inverse
trigonometric functions, sin_l(x) is not equal
to the number 1/ sin(x), but rather to the value
of the arcsin of x. Similar comments apply to
cos™1(x), etc.

Because the trigonometric functions sin, cos,
etc. are not one-to-one, the inverse trigonometric
functions are really inverse relations, although
they may be thought of as multiple valued func-
tions. Thus arcsin(x) is any angle y such that
sin(y) = x, and similarly with arccos
(x), etc. To make the inverse trigonometric
functions into single valued functions, one must
specify a branch or, equivalently, an interval in
which the trigonometric function is one-to-one.
For example, the principal branch of the arcsin
is the inverse of sin(x) restricted to the inter-
val =7 < y < 7; itis denoted by Arcsin or
Sin~!, with a capital letter. Thus Arcsin(x) is
the unique angle y in the interval -5 <y < 7
such that sin(y) = x. The principal branches
of the other inverse trigonometric functions are
also denoted by capital letters, Arccos = Cos™ L,
Arctan = Tan™!, etc. The principal branch
of the arctan takes values in the same interval
as the principal branch of the arcsin, namely
—7% <y = 7, but the principal branch of the
arccos takes values in the interval 0 < y < 7.
inverse variation  See inverse proportion.
inversion
See inverse.

The act of computing the inverse.

inversion formula  Any of a number of for-
mulas for computing the inverse of a quantity.
The two most celebrated probably are:

(i.) the inversion formula for computing the in-
verse of a matrix, A~! = det(A)_ladj(A),
where det(A) is the determinant of A and adj(A)



is the classical adjoint of A, that is the transpose
of the matrix of cofactors. See inverse matrix.
(ii.) The Fourier inversion formula,

fx) =
= I rooePar] du

The Fourier inversion formula is really a state-
ment that if f has Fourier transform,

F(u) = fFe M dn,

1 +00
A/ 277.’ [oo
then the inverse Fourier transform is given by
the inversion formula,

f(x) = F(ue™ du .

1 +o0
v 2 /;oo
(There have to be hypotheses on f, say f €
LN L2, for this to work.)

invertible element (1) An element with an
inverse element. See inverse, inverse element.

(2) Let R be a ring with unit e. An element
r of R, for which there exists another element
a in R such that ar = e and ra = e, is called
an invertible element of R. This is, of course,
a special case of (1) above. The element a, if
it exists, is uniquely determined by r, and is
denoted by r~!. See unit.

If only the condition ar = e holds, then r is
said to be left invertible. Similarly, if only the
condition ra = e holds, then r is said to be right
invertible.

invertible function A function f : § > T
such that there is a function g : T — § with
fog=1idr and g o f = idg. Often the word
“function” is used to specify that T is a field.

invertible map A function f : § — T such
that there is a function g : T — S with fo g =
idr and g o f = idg. Often the word “map” is
used to specify that 7 is not a field of scalars.

invertible sheaf A locally free sheaf of rank
1. In more detail, a ringed space is a topological
space X together with a sheaf of rings Ox on X.
This means that to each open set U of X, there is
associated aring Ox (U). (The remaining prop-
erties of sheaves need not concern us here.) A
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sheaf of Ox modules is defined similarly, except
that to each open subset U of X, there is asso-
ciated an Ox module F(U). A sheaf F of Ox
modules is locally free of rank 1, or invertible,
if X can be covered by open sets Uy, o € A,
such that F(U,) is isomorphic to Ox (Uy). See
also ringed space, sheaf.

involution (1) A function ¢ from a set X
to itself, such that 2 = ¢. Here, ¢%(x) =
P op(x) =p(P(x)).

(2) Let A be an algebra over the complex
numbers. A function ¢ from A to itself is an
involution if it satisfies the following four prop-
erties for all x and y in A and all complex num-
bers A1 (i) ¢(x +y) = ¢(x) + ¢(y), (1)
¢ (hx) = Ap(x), (iii.) ¢ (xy) = P (¥ (x), (iv.)
¢((@(x)) = x.

¢ (x) is frequently denoted by x*, and then
the four properties take the more familiar form:
() (x4+y)* = x*+y*, (1) (x)* = ax*, (iii.)
(xy)* = y*x*, (iv.) x™ = x.

Examples: (i.) A is the complex numbers.
x* = X, the complex conjugate of x. (ii.) A
is the algebra of bounded linear operators on a
Hilbert space. T* is the adjoint of T'.

irrational equation  An equation with irra-
tional coefficients. See also irrational number.

irrational exponent  An exponent which is
irrational. For example, the expressions 27 and
€™ involve irrational exponents. See also irra-

tional number.

irrational expression  An expression involv-
ing irrational numbers. See also irrational num-
ber. Although the word expression is often used
loosely in elementary mathematics without a
rigorous definition, it is possible to define ex-
pression rigorously by specifying the rules of a
formal grammar.

irrational number A real number r which
cannot be expressed in the form p/q, where p
and ¢ are integers. Equivalently, a real num-
ber which is not a rational number. It was the
great discovery of the ancient Greek mathemati-
cian and philosopher Pythagoras that v/2 is irra-
tional. The numbers e and 7 are also irrational.
These last two are irrational in a very strong



sense, they are transcendental, but it took until
the nineteenth century to prove this. See also
transcendental number.

irreducible algebraic curve  An algebraic
curve is a variety of dimension 1 in 2-
dimensional affine or projective space. (A vari-
ety is the solution set to a system of polynomial
equations.) An algebraic curve is irreducible
if it is not the union of two proper (strictly
smaller) subvarieties. For example, the parabola
y— x2 = Ois an irreducible algebraic curve, but
the pair of lines x> — y> = 0 is a reducible
algebraic curve because it can be decomposed
into the union of the two lines x — y = 0 and
x+y=0.

irreducible R-module Let R be a ring and
let M be a module over R. We say that M is
irreducible over R if R has no submodules. In
some contexts, we say that M is irreducible if
M cannot be written as a direct sum of proper
sub-modules. These are also sometimes called
simple modules.

irreducible character A character of a finite
group which is not a sum of characters different
from itself. Every character of a finite group is a
sum of irreducible characters. See also character
of group.

irreducible co-algebra A co-algebra in
which any two non-zero subco-algebras have
non-zero intersection. A co-algebra C is irre-
ducible if and only if C has a unique simple
subco-algebra.

irreducible component (1) In algebraic ge-
ometry, a variety is the solution set of a system
of polynomial equations, usually in more than
one variable. A variety is irreducible if it is not
the union of two proper (strictly smaller) subva-
rieties. An irreducible component of a variety
is a maximal irreducible subvariety. That is, a
subvariety W C V is an irreducible component
of a variety V if (i.) W is irreducible, and (ii.)
there is no irreducible variety W’ properly be-
tween Wand VW Cc W Cc V, W # W/,
W’ # V). Every variety is the finite union
of its irreducible components. Example: V =
{(x,y) : x> — y? = 0}. The irreducible com-
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ponents of V are the two lines x — y = 0 and
x+y=0.

The notion of an irreducible component ex-
tends to varieties in other contexts, for example
to analytic varieties.

(2) In combinatorial group theory, every Cox-
eter group can be written as the direct sum of
(possibly infinitely many) irreducible Coxeter
groups, called the irreducible components of
the Coxeter group. See also irreducible Cox-
eter group.

irreducible constituent Let Z denote the
rational integers and Q the rational field. Let T
be a Z-representation of a finite group G. If T
is Q-irreducible, then T is called an irreducible
constituent of the group G.

irreducible constituent  Let Z denote the ra-
tional integers and Q the rational field. Let T
be a Z-representation of a finite group G. If T
is Q-irreducible, then T is called an irreducible
constituent of the group G.

irreducible Coxeter complex A Coxeter
complex for which the associated Coxeter group
is an irreducible Coxeter group. In more detail,
let (W, S) be a Coxeter group. For now, it suf-
fices that W is a (possibly infinite) group and
S is a set of generators for W. Define a spe-
cial coset to be a coset of the form w{S’), where
we W, 8 C 8§, and (') is the group gener-
ated by S’. The Coxeter complex X associated
with (W, S) is the partially ordered set of special
cosets, ordered by reverse inclusion: B < A if
and only if B © A. ¥ is an irreducible Cox-
eter complex if its Coxeter group (W, S) is an
irreducible Coxeter group. See also irreducible
Coxeter group.

Although Coxeter complexes are abstractly
defined, there is a rich geometry associated with
them, resembling the geometry of simplicial
complexes.

irreducible Coxeter group A Coxeter group
which cannot be written as the direct sum of two
other Coxeter groups. In more detail, Coxeter
groups are generalizations of finite reflection
groups. Let W be a (possibly infinite) group,
and let S be a set of generators for W. The pair
(W, S)iscalled a Coxeter group if two things are



true: (i.) Each element of S has order 2 (s = s
if s € S), and (ii.) W is defined by the system of
generators and relations: set of generators = S
set of relations = {(s¢)"™ ") = 1}, where m (s, 1)
is the order of the element st in the group W,
and there is one relation for each pair (s, #) with
sandtin S and m(s, t) < o0.

A Coxeter group is irreducible if it cannot
be written as the direct sum of two other Cox-
eter groups. In other words, the Coxeter group
(W, S) is irreducible if it cannot be written as
(W, 8) =W x W"” §"US”), where (W, S
and (W”, 8”) are themselves Coxeter groups.
(Equivalently, a Coxeter group is irreducible if
its Coxeter diagram is connected.) Every Cox-
eter group can be written as the direct sum of
(possibly infinitely many) irreducible Coxeter
groups, called the irreducible components of the
group. See also Coxeter diagram, irreducible
Coxeter complex.

irreducible decomposition Informally, a de-
composition of an object into irreducible com-
ponents or elements. See irreducible compo-
nent, irreducible element.

irreducible element (1) An element a of a
ring R with no proper factors in the ring. This
means that there do not exist elements b and
c in R, different from 1 and a, such that a =
bc. Example: If R is the ring of integers, the
irreducible elements are the prime numbers. See
also prime number.

(2) A join or meet irreducible element of a
lattice. See join irreducible element, meet irre-
ducible element.

irreducible equation A polynomial equa-
tion P(x) = 0, where the polynomial P is irre-
ducible. See also irreducible polynomial.

irreducible fraction A fraction a/b, where
the integers a and b have no common factors
other than 1 and —1. In other words, a fraction
reduced to lowest terms.

irreducible homogeneous Siegel domain

Siegel domains are special kinds of domains in
complex N space, CV. An easy way to con-
struct new Siegel domains is to take the Carte-
sian product of two given Siegel domains. Thus
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if S and $; are Siegel domains, S = S| x $> =
{s = (s1,82) : 51 € 81,5 € S} will also
be a Siegel domain. A Siegel domain is irre-
ducible if it is not the Cartesian product of two
other Siegel domains. A Siegel domain is ho-
mogeneous if it has a transitive group of analytic
(holomorphic) automorphisms. An irreducible
homogeneous Siegel domain is a homogeneous
Siegel domain which is not the Cartesian prod-
uct of two other homogeneous Siegel domains.
See homogeneous domain, Siegel domain.

irreducible linear system A system of linear
equations where no equation is a linear com-
bination of the others. It is a theorem that a
system of n linear equations in n unknowns is
irreducible if and only if the determinant of the
matrix of coefficients is not 0. The methods of
row and column reduction provide computation-
ally efficient tests for irreducibility. Synonym:
linearly independent system of linear equations.
See also linear combination, linearly indepen-
dent elements.
irreducible matrix See Frobenius normal
form.

irreducible module = The module analog of a
simple group. Specifically, an R module,
where R is a ring, is an irreducible module if
it contains no proper R submodules. For ex-
ample, Z,, the integers modulo a prime number
p, is an irreducible Z module. (Here, Z is the
ring of integers.) In the case where the ring R
is not commutative, the notion of irreducibility
extends to left and right R modules.

irreducible polynomial A polynomial with
no proper factors. In greater detail, if R is a ring
and R[x] denotes the ring of polynomials with
coefficients in R, then a polynomial P in R[x]is
irreducible if it is an irreducible element of the
ring R[x]. Seeirreducible element. Example: If
R is the field of real numbers and C is the field
of complex numbers, the polynomial P(x) =
x2 + 1 is irreducible in R[x] but reducible (it
factors as (x +i)(x —i)) in C[x].

irreducible projective representation A
projective representation of a group G is a func-
tion T from G into the group GL(V) of invertible



linear transformations on a vector space V, sat-
isfying two additional axioms. (See projective
representation.) T is irreducible if there does
not exist a proper (# 0, # V) subspace W of
V such that T(g)(w) € W for all g € G and
w € W. See also irreducible representation,
irreducible unitary representation.

irreducible representation A representa-
tion of a group G is a homomorphism 7 from G
into the group GL(V) of invertible linear trans-
formations on a vector space V. T is an irre-
ducible representation if there does not exist a
proper (# 0, # V) subspace W of V such that
T(g)(w) e Wiorallge Gandw € W.

The notion extends to other contexts. For ex-
ample, V may be a Hilbert space and GL(V)
may be replaced by the topological group of in-
vertible bounded linear operators on V. In this
case, the homomorphism 7 is required to be con-
tinuous, and the subspaces W are required to be
closed. See also irreducible unitary representa-
tion.

irreducible R-module  Let R be a ring and
let M be a module over R. We say that M is
irreducible over R if R has no submodules. In
some contexts, we say that M is irreducible if
M cannot be written as a direct sum of proper
sub-modules. These are also sometimes called
simple modules.

irreducible scheme A scheme whose under-
lying topological space is irreducible. In more
detail, a scheme is a particular type of ringed
space, (X, Ox). Here, X is a topological space
and Oy is a sheaf of rings on X. The scheme
(X, Oy) is irreducible if X is not the union of
two proper (# @, # X) closed subsets. See also
ringed space, scheme.

irreducible Siegel domain  Siegel domains
are special kinds of domains in complex N space,
CV. An easy way to construct new Siegel do-
mains is to take the Cartesian product of two
given Siegel domains. Thus if S; and S, are
Siegel domains, S = S1 X S2 = {s = (51, 52) :
s1 € S1, 52 € $»} will also be a Siegel domain.
A Siegel domain is irreducible if it is not the
Cartesian product of two other Siegel domains.
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See Siegel domain. See also irreducible homo-
geneous Siegel domain.

irreducible tensor  An element of the tensor
product V ® W of two vector spaces, which
cannot be written as v @ w, forv € Vand w €
W. Also called irreducible tensor operators or
spherical tensor operators.

Classically, let [a,b] = ab — ba and let
Jx» Jys jz be the x-, y-, and z- components of
the angular momentum j. An irreducible ten-
sor of rank k is a dynamical quantity qu , where
qg =k, k—1,...,—k, that satisfies the follow-
ing commutation relations:

[jZ,qu] =qT)

Lix £ijy] = VkF @)k £q + DT, .

irreducible unitary representation A uni-
tary representation of a (topological) group G
is a (continuous) homomorphism 7 from G into
the group U (H) of unitary operators on a Hilbert
space H. T is anirreducible unitary representa-
tion if there does not exist a proper (# 0, # H)
closed subspace W of H such that T(g)(w) €
W forall g € G and w € W. See also irre-
ducible representation.

irreducible variety A variety is the solution
set of a system of polynomial equations (usu-
ally in several variables). An irreducible vari-
ety is a variety V which is not the union of two
proper (# @, # V) subvarieties. For example,
the parabola y —x2 = 01is an irreducible variety,
but the variety x> — y? = 0 is reducible because
it can be decomposed into the union of the two
linesx —y=0andx +y =0.

irredundant  In a lattice L, a representation
of an element g as a joina = a; V --- V a,
is irredundant if omitting any of the elements
a; from the join produces an element b strictly
smaller than a. There is a dual notion for meets:
A representation of an element @ as a meet a =
aiA---Aay is irredundant if omitting any of the
elements a; from the meet produces an element
b strictly larger than a. See join, lattice, meet.
Example: R is a Noetherian ring (a commu-
tative ring satisfying the ascending chain condi-
tion). L is the lattice of ideals of R, ordered



by inclusion. It is a theorem of ring theory,
the Lasker-Noether Theorem, that every ideal
in R has an irredundant representation as an in-
tersection of primary ideals. This theorem al-
most completely describes the ideal theory of
Noetherian rings, including such rings as the
ring of polynomials in several variables with co-
efficients in a field, and the ring of terms of holo-
morphic (analytic) functions in several complex
variables. See also Noether, Noetherian ring.

irregularity  In algebraic geometry, the di-
mension of the Picard variety of a non-singular
projective algebraic variety. See also Picard va-
riety.

irregular prime A prime number p which
divides the numerator of one or more of the
Bernoulli numbers B, B3, ..., B,_3. Aprime
number which is not irregular is called a regular
prime. Irregular primes were of interest because
they were the class of exceptional primes for
which Kummer’s proof of Fermat’s Last Theo-
rem does not work. Wiles’ recent proof of Fer-
mat’s Last Theorem probably makes the distinc-
tion between regular and irregular primes unin-
teresting, but one never knows. See Bernoulli
number, Fermat’s Last Theorem.

irregular variety A non-singular projective
algebraic variety with non-zero irregularity. A
variety of zero regularity is called a regular va-
riety. See also irregularity.

isogenous Abelian varieties A pair of Abel-
ian varieties of equal dimension, for which there
is arational group homomorphism from one va-
riety onto the other. In more detail, an Abelian
variety is, among other things, an algebraic va-
riety which is also an Abelian group. A rational
group homomorphism from one Abelian variety
to another is a rational map which is also a group
homomorphism. See also rational map.

isogenous groups A pair of topological
groups (usually Lie groups) for which there is an
isogeny from one to the other. See also isogeny.

isogeny (1) A Lie group map (a continuous,

differentiable group homomorphism) ¢ : G —
H, where G and H are Lie groups, which is
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a covering space map of the underlying mani-
folds. The map ¢ is a covering space map if
it is continuous and, for each h € H, there ex-
ists a neighborhood U of A such that ¢_1(U )
is a disjoint union of open sets in G mapping
homeomorphically to U under ¢.

(2) A topological group homomorphism (a
continuous group homomorphism)¢ : G — H,
where G and H are topological groups, which
is a covering space map of the underlying topo-
logical spaces.

(3) An epimorphism ¢ : G — H of group
schemes (over a ground scheme ) such that the
kernel of ¢ is a flat, finite group scheme over S.
See also epimorphism, scheme.

isolated component  Let / be an ideal in a
commutative ring R, andlet / = Q1 N---N Qg
be a short representation of / as an intersection
of primary ideals. (See short representation.)
Let P, ..., Px be the prime ideals belonging
to Q1,..., Q. (The easiest way to specify
P; is to note that P; is the radical of Q;, i.e.,
P, ={p e R: p" € Q; for some integer n}.)
Renumbering the primary ideals Q; if necessary,
anideal J = Q1N---NQ, (withl <r <k)is
an isolated component of I if none of the prime
ideals Py, ... , P, contains a prime ideal P; not
in the set {Py, ..., P.}.

Isolated components are of interest because
they introduce uniqueness into the representa-
tion theory of ideals in commutative Noetherian
rings. Although there are often many different
short representations of an ideal /, the isolated
components of / are uniquely determined. See
also isolated primary component, Noetherian
ring, primary ideal, prime ideal, radical, short
representation.

isolated primary component An isolated
component J of an ideal / in a commutative
ring, such that J is a primary ideal. Isolated
primary components are of interest because they
must occur among the primary ideals of every
short representation of /. See also isolated com-
ponent, short representation.

isomorphic  Two groups G and H are iso-
morphic if there is an isomorphism ¢ : G - H
between them. Isomorphic groups are regarded
as being “abstractly identical,” or different re-



alizations of the same abstract group. The no-
tion extends to other algebraic structures such as
rings, to the completely general algebraic struc-
tures defined in universal algebra, and even to
the theory of categories. See also isomorphism.

isomorphism (1) In group theory, a map-
ping ¢ : G — H between two groups, G and
H, which is one-to-one (injective), onto (sur-
jective), and which preserves the group opera-
tion, that is ¢ (g1 - g2) = ¢(g1) - #(g2). The
notion extends to rings, where ¢ is required to
preserve the ring addition and multiplication, to
vector spaces, where ¢ is required to preserve
vector addition and scalar multiplication (i.e.,
d(A1v1 + A2v2) = A9 (V1) + A2¢(v2)), and to
completely general algebraic contexts (see (2)
below).

(2) In universal algebra, a mapping ¢ : G —
‘H between two (universal) algebras G and H,
which is one-to-one (injective), onto (surjec-
tive), and which preserves the operations of G
and H. In more detail, G = (G, Fg) and H =
(H, F3;), where G is a set and Fg is a set of
functions from finite Cartesian products of G
withitself to G (Fg is called the set of operations
on G), and similarly for . Thus the functions
in Fg are G-valued functions f (g1, ..., g:) of
n G-valued variables, and the value of n may
vary with the function f. To be an isomor-
phism, ¢ is required to be a one-to-one and onto
function from the set G to the set H, and for
every function f € Fg, there must be a func-
tion h € Fy, such that ¢(f(g1,...,8n) =
h(¢(g1),...,¢((gn)), and vice-versa. (This is
what is meant by “preserving the operations of
Gand H.”)

In the special case where G and H are groups,
Fg equals the singleton set containing the group
operation of G (the group multiplication), and
similarly for F;. We thus recapture the moti-
vating case of group isomorphisms.

(3) In category theory, a morphism ¢ : A —
B between two objects of a category with an
inverse morphism. In other words, for ¢ to be
an isomorphism, there must also be a morphism
¥ : B — A (the inverse of ¢) such that{y o ¢p =
ta and ¢ o y = 1p. Here, 14 and (p are the
identity morphisms on A and B, respectively.

The category theoretic definition captures all
of cases (1) and (2) above, and also includes
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such examples as isomorphisms of topological
groups, where it is required that an isomorphism
¢ be a group isomorphism and that ¢ and ¢ be
continuous. See also category, homomorphism,
morphism, identity morphism.

Isomorphism Theorem of Class Field Theory
Let k be an algebraic number field. Let 7 (m) be
the multiplicative group of all fractional ideals
of k which are relatively prime to a given integral
divisor m of k. The Galois group of a class field
K / k for an ideal group H (m) is isomorphic to
I(m)/H (m). Therefore, every class field K/k
is an Abelian extension of k.

isomorphism theorems of groups  The three
standard theorems describing the relationship
between homomorphisms, quotient groups, and
normal subgroups. Let G and H be groups, and
let ¢ : G — H be a homomorphism with ker-
nel K. (The kernel of ¢ is the set K = {g €
G : ¢(g) = e}, where e is the group identity el-
ement in H.) The First Isomorphism Theorem
states that K is a normal subgroup of G (i.e.,
gK = Kg for every g € G), and the quotient
group (factor group) G/K is isomorphic to the
image of ¢. Let S and T be subgroups of G, with
T normal. The Second Isomorphism Theorem
states that SN T isnormal in S, and S/(SNT)
is isomorphic to TS/T. Let K ¢ H C G,
with both K and H normal in G. The Third
Isomorphism Theorem states that H/K is a nor-
mal subgroup of G/K, and (G/K)/(H/K) is
isomorphic to G/H.

There is an additional theorem which is some-
times called the Fourth Isomorphism Theorem,
but is more commonly called Zassenhaus’s
Lemma. Let Ag, A1, Bo, and B be subgroups
of G. Suppose Ag is normal in Ay, and By
is normal in Bj. Zassenhaus’s Lemma states
that Ag(A; N By) is normal in Ag(A; N By),
By(Ag N By) is normal in Byg(A; N By), and
Ao(A1 N By)/Ao(A1 N Byp) is isomorphic to
Bo(A1 N By)/Bo(Ag N By). See also factor
group, normal subgroup.

isotropic (1) In physics and other sciences,
a material or substance which responds the
same way to physical forces in all directions is
isotropic. Antonym: anisotropic.



(2) Let V be a vector space equipped with
a bilinear form (, ). A subspace W of V is
isotropic (sometimes called totally isotropic or
an isotropy subspace) if W € W+, where W+
is defined in the usual way, Wt = {v € V :
(v, w) = O0forallw € W}. Forexample,if V =
R2, 2-dimensional real space, and (, ) is the
Lorentz form, ((x1, t1), (x2, 1)) = x1x3 — t1 12,
then each of the lines forming the edge of the
light cone, {(x, ) : x> —t? = 0}, is an isotropic
subspace.

(3) If a differentiable manifold M has enough
additional structure so that its tangent space
comes equipped with a bilinear form, for exam-
ple if M is a symplectic manifold, then a sub-
manifold S of M is isotropically embedded if at
each point s € S, T'S; is an isotropic subspace
of TM;. Here, T S; is the tangent space of S at
s, and similarly for T M. See also symplectic
manifold, tangent space.

isotropy subgroup A group of transforma-
tions leaving a given point fixed. In more detail,
let G be a group of transformations acting on a
set X, andlet xo € X. The subgroup of transfor-
mations 7 € G leaving xg fixed (T (xo) = xp)
is called the isotropy subgroup of G at the point
xo. The isotropy subgroup is also called the sta-
bilizer of x¢ with respect to G.
isotropy subspace  See isotropic.
iteration (1) Repetition; step-by-step repeti-
tion of a mathematical operation or construction.
(2) The use of loops as opposed to recursion
in computer algorithms or programs.

iteration function  In numerical analysis, a
function ¢, used to compute successive approx-
imations x1, x2, x3, . . ., to a quantity x, accord-
ing to the formula x, = ¢ (x,—_1). For example,
if we choose ¢ (x) = x — f(x)/f’(x) as an iter-
ation function and then select a suitable start-
ing point xp, we obtain the Newton-Raphson
method for approximating a zero of the func-
tion f (approximating a solution to the equation
f(x) = 0). See also Newton-Raphson method
of solving algebraic equations.

iteration matrix Innumerical analysis, a ma-
trix M used to compute successive approxima-
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tions x1, x2, X3, ... to a vector x, according to
the formula x; = Mx;_1 + c. (Of course, one
must have a conveniently chosen starting vec-
tor xp.) For example, suppose we wish to solve
the equation Ax = b approximately, where A
is an n X n square matrix, and x and b are n-
dimensional column vectors. Write A = L +
D + U, where L is lower triangular, D is diag-
onal, and U is upper triangular. If we choose
the iteration matrix M = —D~'(L 4+ U) and
¢ = D~ !p, we obtain the Jacobi method for
solving linear equations. On the other hand, if
we choose the iteration matrix M = —(L+D)U
and ¢ = (L + D)’lb, we obtain the Gauss-
Seidel method for solving linear equations. See
also iteration function, Gauss-Seidel method for
solving linear equations, Jacobi method for solv-
ing linear equations.

iterative calculation A calculation which
proceeds by means of iteration. See iteration.

iterative improvement (1) Any one of the
many algorithms for the approximate numerical
solution of problems which proceed by obtain-
ing a better approximation at each step.

(2) See iterative refinement.

iterative method  An algorithm or calcula-
tional process which uses iteration. A classic ex-
ample is the Newton-Raphson method for com-
puting the roots of an equation. Another classic
example is the Gauss-Seidel iteration method for
solving systems of linear equations. See iter-
ation, iteration function, Gauss-Seidel method
for solving linear equations, Newton-Raphson
method of solving algebraic equations.

iterative process  See iterative method.

iterative refinement
provement (1).

(1) See iterative im-

(2) In numerical analysis, a process for solv-
ing systems of linear equations which begins
by obtaining a first solution using elimination
(Gaussian elimination or row reduction) which
is somewhat inaccurate due to roundoff errors,
and then improves the accuracy of the solution
using one of many iterative methods.



Iwahori subgroup If G is a reductive group
defined over a local field, then in addition to
the standard BN-pair structure G has a second
BN-pair structure whose associated building is
Euclidean. In this case, the subgroups conjugate
to B are called Iwahori subgroups.

Iwasawa decomposition (1) A decomposi-
tion of a semisimple Lie algebra g over the field
of real numbers as ¢ = k + a + n, where k
is a maximal compact subalgebra of g, a is an
Abelian subalgebra of g, @ + n is a solvable Lie
algebra, and  is a nilpotent Lie algebra.

(2) A decomposition of a connected Lie
group G as G = K AN, where K is an (essen-
tially) maximal compact subgroup, A is an Abel-
ian subgroup, and N is a nilpotent subgroup.
Here, G has Lie algebra g which is semisimple,
g = k + a + n is the Iwasawa decomposition
of g asin (1) above, K, A, and N are analytic
subgroups of G with Lie algebras k, a, and =,
and the mapping (x, y, z) — xyz is an analytic
diffeomorphism of K x A x N onto G. Further-
more, the groups A and N are simply connected.

The classic example of an Iwasawa decompo-
sition is provided by the group G = SL(m, C),
the group of m x m matrices with determinant
1 over the complex numbers. In this case, K =
SU(m), the group of m x m unitary matrices of
determinant 1, A = the group of m x m diagonal
matrices of determinant 1 with positive entries
on the diagonal, and N = the group of m x m up-
per triangular matrices with 1 in every diagonal
entry. See Lie algebra, Lie group, semisimple
Lie algebra, semisimple Lie group.

Iwasawa invariants
v defined by the relation

The integers A, u, and

|CL k)| = p
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where e +n = An + up™ ™, for all sufficiently
large n. Here, p is a prime, k is an algebraic
number field; ko is a Z, extension field of k (an
extension field with Galois group isomorphic to
Z,, the integers modulo p); kj, is an intermedi-
ate field of degree p" over k, Cl(k,) , is the pth
component of the ideal class group of the field
kn, and |Cl(ky)p| is the number of elements in
Cl(k,) p. For cyclotomic Z, extensions, the in-
variant u = 0.

Iwasawa’s Main Conjecture (1) A conjec-
ture relating the characteristic polynomials of
particular Galois modules to p-adic L-functions.
The conjecture is an attempt to extend a classic
theorem of Weil, which states that the character-
istic polynomial of the Frobenius automorphism
of a particular type of curve is the numerator of
the zeta function of the curve. The conjecture
was originally written over the field Q, although
it has been reformulated as a conjecture over
any totally real field. It has been proved for real
Abelian extensions of Q and odd primes p by
Mazur and Wiles. Some work has also been
done in the general case.

(2) A conjecture in number theory, relating
certain Galois actions to p-adic L-functions.
The conjecture asserts: fx (T) = gy (T). Iwa-
sawa’s Theorem, which describes the behavior
of the p-part of the class number in a Z ,-exten-
sion, can be regarded as a local version of the
Main Conjecture.

Iwasawa’s Theorem The characteristic p #
0 case of the Ado-Iwasawa Theorem: Every
finite dimensional Lie algebra (over a field of
characteristic p) has a faithful finite dimensional
representation. The characteristic p = 0 case of
this is Ado’s Theorem. See Lie algebra.



J

Jacobian variety The Picard variety of a
smooth, irreducible, projective curve. See Pi-
card variety.

Jacobi identity  The identity (x - y) -z + (y -
2)-x + (z-x) -y = 0 satisfied by any Lie alge-
bra. For example, if A is any associative alge-
bra, and [x, y] denotes the commutator, [x, y] =
xy—yx, then the commutator satisfies the Jacobi
identity [[x, yl, z1+[[y, zl. x]+[lz, x], y] = 0.
See Lie algebra.

Jacobi method for solving linear equations
An iterative numerical method, also called the
total-step method, for approximating the solu-
tions to a system of linear equations. In more
detail, suppose we wish to approximate the solu-
tion to the equation Ax = b, where Aisann xn
square matrix. Write A = L + D + U, where L
is lower triangular, D is diagonal, and U is up-
per triangular. The matrix D is easy to invert, so
replace the exact equation Dx = —(L+-U)x+b
by the relation Dx; = —(L + U)x;—1 + b, and
solve for x; in terms of xj_1:

xik =—-D Y L+U)x_1+D7'b.

This gives us the core of the Jacobi iteration
method. We choose a convenient starting vec-
tor xo and use the above formula to compute
successive approximations xp, x2, X3, ... to the
actual solution x. Under suitable conditions, the
sequence of successive approximations does in-
deed converge to x. See iteration matrix.

Jacobi method of computing eigenvalues

Any of the several iterative methods for approxi-
mating all of the eigenvalues (characteristic val-
ues) of a Hermitian matrix A by constructing
a finite sequence of matrices Ag, A, ..., Ay,
where Ag = A and, for0 < k < N, A, =
U Ak—1Uy, Uy is a unitary matrix, and U} de-
notes the conjugate transpose of Ux. The method
ends with a nearly diagonal matrix Ay (all en-
tries off the diagonal are small) with good ap-
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proximations to the eigenvalues of A down the
diagonal. The name is most frequently applied
to the Jacobi rotation method, where the ma-
trices Uy are chosen to be particularly simple
unitary matrices called planar rotation matri-
ces. See Jacobi rotation method.

Jacobi method of finding key matrix A step
in solving a linear system Ax = b by the linear
stationary iterative process. If the linear sta-
tionary iterative process is written as x*+1) =
x® 4+ R(b — Ax®), then the Jacobi method
chooses R to be the inverse of the diagonal sub-
matrix of A. See also linear stationary iterative
process.

Jacobirotationmethod  Aniterative method
for approximating all of the eigenvalues (char-
acteristic values) of a Hermitian matrix A. The
method begins by choosing Ag = A, and then
produces a sequence of matrices A, Az, ...,
Ay, culminating in a nearly diagonal (all entries
off the diagonal are small) matrix A y with good
approximations to the eigenvalues of A down
the diagonal. At each step, Ay = U Ax—1 U,
where Uy is the (unitary) matrix of a planar rota-
tion annihilating the off diagonal entry of A;_1
with largest modulus, hence the name rotation
method, and Uy is the conjugate transpose of

Uy. The matrix Uy = (u(k?) differs from the

i,j
identity matrix only in four entries, uﬁ,k)p, uf]]f)q,

ug‘,)q, and u((]k),, The formulas for these entries
are particularly simple in the case where the

original matrix A is a real symmetric matrix: If
_ (k=1 k _ () _
A1 = la.". sthenuy ), = ug 4y = cos(¢),

l,]

(k) (k)

andupy = —ug p = sin(¢), where
(k—=1)
_ 4p.q
an(29) = ——5 D
Ap.p 444

and —% < ¢ < Z. In the commonly oc-
curring case where the original matrix A has
no repeated eigenvalues, the method converges
quadratically. The method is named after its
originator, Gustav Jacob Jacobi (1804-1851).

Jacobi’s inverse problem  The problem of
inverting Abelian integrals of the first kind on
a compact Riemann surface R of genus g > 1.



Let (w1, ..., wg) be a basis of Abelian differen-
tials of the first kind on R and let Py, ..., P, be
a given set of fixed points on R. For any given
vector (1, ..., ug) € CP, the problemis to find
arepresentation of all of the possible symmetric
rational functions of Q... Q, as functions of
ui, ..., ug that satisfy

8 0
Z w; = Uj .
j=1 Pj

In the above situation the path of integration is
the same in each of the g equations. If the path
is not assumed to be the same, then the system
is actually a system of congruences modulo the
periods of the differentials (w1, ..., w,).

Jacobson radical The set of all elements
r in a ring R such that rs is quasi-regular for
all s € R. In more detail, let R be an arbi-
trary ring, possibly non-commutative, possibly
without a unit element. An element r € R is
quasi-regular if there is an element r’ € R such
that » + ' + rr/ = 0. (In the special case
where R has a unit element 1, this is equiva-
lentto (1 +7)(1 +r") = 1.) For example, every
nilpotent element (" = 0 for some n) is quasi-
regular, but there are often other quasi-regular
elements. The Jacobson radical of R is the set
J of all elements r € R such that rs is quasi-
regular for all s € R.

The Jacobson radical is a two-sided ideal, and
it generalizes the notion of the ordinary radical
(the set of all nilpotent elements) of a commuta-
tive ring, though even in the special case where
R is commutative, the Jacobson radical often
differs from the ordinary radical. Both derive
much of their importance from the following
theorem: Let R be commutative. Then (i.) R is
isomorphic to a subring of a direct sum of fields
if and only if its radical vanishes, and (ii.) R
is isomorphic to a subdirect sum of fields if and
only if its Jacobson radical vanishes. See also
radical, subdirect sum of rings, Wedderburn’s
Theorem.

j-algebra A concept which reduces the study
of homogeneous bounded domains to algebraic
problems. Let G be a Lie algebra over R, H a
subalgebra of G, () a collection of linear endo-
morphisms of G, and w a linear form on G. The
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system {G, H, (j), o} is called a j-algebra if
the following conditions are satisfied: (i.) j =
j mod H and jH C H for j and j in (j),
(ii.) j> = —1 mod H, (iii.) [k, jx] = j[h, x]
mod H forh € H and x € G, (iv.) [jx, jy] =
Jljx, y1+jlx, jyl+[x, yl mod H forx and y
inG, (v.)w([h,x]) =0forh € H, (vi.) w([jx,
JyD = o([x, y]), (vii) o([jx,x]) > 0if x ¢
H.

Janko groups  Any of the exceptional finite
simple groups Ji, J», J3, and J4. Jp has order
23.3.5.7-11-19. J, hasorder 27 - 33 .52 .7
and is also called the HJ or Hall-Janko group.
Js has order 27 - 33 .5.17-19 and J, has order
221.33.5.7.113.23.29.31-37-43.

Janko-Ree group  Any member of the family
of all finite simple groups for which the central-
izer of every involution (element of order 2) has
the form Z, x PSLy(gq), g odd. These groups
consist of the Ree groups 2G2(3”), for n odd,
and the Janko group Ji. See Janko groups, Ree

group.

Jensen measure (1) A positive measure i
on the closure of an open subset €2 of C" (C the
complex numbers) such that for x € €,

log | £ ()] < f log | £ (1)] du(r) ,

for all f belonging to some appropriate class of
holomorphic functions (such as the holomorphic
functions on 2 with continuous extensions to the
closure of 2). Jensen measures are named after
Jensen’s inequality, which states that normal-
ized Lebesgue measure on the unit circle (1/2n
times arclength measure) is a Jensen measure.
In this case, €2 is taken to be the open unit disk
{z € C: |z| < 1} in the complex plane.

(2) More generally, a positive measure (£ on
the maximal ideal space M of a commutative
Banach algebra A is called a Jensen measure
for an element £ € M if

log |£(f)] < / log 1 (/)] du(r)

forall f € A. Seealso Banach algebra, Jensen’s
inequality, maximal ideal space.

Jensen’s inequality (1) In complex variable
theory. Let f be holomorphic on a neighbor-



hood of the closed disc D(0, r) in the complex
plane. Assume that f(0) # 0. Then Jensen’s
inequality is

1 2 .
log | FO)] < 5 / log | f ()| dt .
7 Jo

(2) In measure theory. Let (X, ©) be a mea-
sure space of total mass 1. Let f be a non-
negative function on X. Let ¢ be a convex func-
tion of a real variable. Then Jensen’s inequality
is

¢<f f(X)du(x)) < / ¢o fx)du(x).
X X

join (1) In a lattice, the supremum or least
upper bound of a set of elements. Specifically,
if A is a subset of a lattice L, the join of A is
the unique lattice element b = \/{x : x € A}
defined by the following two conditions: (i.)x <
bforallx € A; (ii.) if x < cforall x € A, then
b < c. The join of an infinite subset of a lattice
may not exist; that is, there may be no element
b of the lattice L satisfying conditions (i.) and
(ii.) above. However, by definition, one of the
axioms a lattice must satisfy is that the join of
a finite subset A must always exist. The join of
two elements is usually denoted by x V y.
There is a dual notion of the meet of a sub-
set A of a lattice, denoted by Af{x : x € A},
and defined by reversing the inequality signs in
conditions (i.) and (ii.) above. The meet is
also called the infimum or greatest lower bound
of the subset A. Again, the meet of an infinite
subset may fail to exist, but the meet of a finite
subset always exists by the definition of a lattice.
(2) In relational database theory, the join (or
natural join) of two relations is the relation
formed by agreement on common attributes.
Specifically, a relation is a set R of functions
f A — X, from some set A, called the set of
attribute names, to a set X, called the set of pos-
sible attribute values. (In relational database
theory, the set A is always finite, so database
theorists make the gloss of identifying a rela-
tion with a set of n-tuples, that is, a relation in
the ordinary mathematical sense, and they then
sneak the attribute names in under the table.) If
R and § are two relations, with sets of attribute
names A and B, respectively, and set of possi-
ble attribute values X and Y, then the join of R
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and S is the relation Re<iS, with set of attribute
names A U B and a set of possible attribute val-
ues X U Y, defined as the set of all functions
f:AUB — X UY such that f|4 € R and
flB € S. Here, f|4 is the restriction of f to A,
and f|p is the restriction of f to B. Thus the
formation of the natural join reduces to the fa-
miliar and ubiquitous mathematical problem of
extending classes of functions. See restriction.

join irreducible element  An element a of
a lattice L which cannot be represented as the
join of lattice elements b properly smaller than
a( <a,b #a). Seejoin.

There is a dual notion of meet irreducibility.
Anelementa of L is meet irreducible if it cannot
be represented as the meet of lattice elements b
properly larger thana (a < b,a # b). See meet.

joint proportion  Quantity x is jointly pro-
portional to, or varies jointly with, quantities y
and z if there is a constant k such that x = kyz.
See also direct proportion, inverse proportion.

joint spectrum  Letay, ..., a, be elements
of a commutative Banach algebra A, and let M
be the maximal ideal space of A. M can be
identified with the space of multiplicative linear
functionals on A, that is the space of linear map-
pings £ of A into the complex numbers C such
that £(ab) = €(a)f(b). The joint spectrum of
ai, ... ,ay is the subset

o(ay,...,ay) =
{L(@),...,L(ay)) : L e M}

of C". Animportant and useful theorem is that if
ai, ..., ay actually generate the Banach algebra
A, then M is homeomorphic to o (ay, ..., a,),
and o (ay, ..., ap) is polynomially convex. See
Banach algebra, maximal ideal space, polyno-
mial convexity, spectrum.

joint variation  See joint proportion.

Jordanalgebra A commutative, usually non-
associative, algebra A satisfying the identity (a-
b)-a =a? - (b-a). The model for a Jordan al-
gebra is the algebra of n x n matrices with the
multiplication A- B = %(AB + BA), where AB
denotes the usual matrix product. The theory of
Jordan algebras is somewhat analogous to the



theory of Lie algebras, which is modeled on the
algebra of n x n matrices with the multiplication
[A, B] = AB — BA. See also Lie algebra.

Jordan canonical form A matrix of the form

Ji 0 ... 0
o J, ... 0
o 0 ... &

where each J; is an elementary Jordan matrix,
is in Jordan canonical form. It is a theorem of
linear algebra that every n x n matrix with en-
tries from an algebraically complete field, such
as the complex numbers, is similar to a matrix
in Jordan canonical form. See also elementary
Jordan matrix.

Jordan decomposition (1) The decomposi-
tion of a linear transformation 7 : V — V,
where V is a vector space, into a sum 7 =
Ts + T,, where T; is diagonalizable, 7}, is nilpo-
tent, and the two commute. (Nilpotent means
T¥ = 0 for some integer k, and diagonalizable
means there is abasis for V with respect to which
T can be represented by a diagonal matrix.) Ty
and T, if they exist, are uniquely determined
by T. It is a theorem of linear algebra that if
V is a finite dimensional vector space over an
algebraically closed field, such as the complex
numbers, then Ty and 7,, always exist, that is T
always has a Jordan decomposition. However,
this need not be true if the field is, for example,
the field of real numbers which is not algebrai-
cally closed. The Jordan decomposition of T is
equivalent to the representation of 7' by a matrix
in Jordan canonical form. See Jordan canonical
form.

(2) The decomposition of an element a of a
Lie algebra A into a sum a = s + n, where
s is a semisimple element of A, n is a nilpo-
tent element of A, and s and n commute. This
decomposition is called the additive Jordan de-
composition of a. The elements s and n, if they
exist, are uniquely determined by a. Itis a theo-
rem that if A is a semisimple finite dimensional
Lie algebra over an algebraically complete field,
such as the complex numbers, then s and n al-
ways exist. See semisimple Lie algebra.
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(3) The decomposition of a linear transfor-
mation 7 into a product 7 = SU, where S is di-
agonalizable, U is unipotent, and S and U com-
mute. (Unipotent means that U — [ is nilpotent,
where I is the identity transformation.) This de-
composition is called the multiplicative Jordan
decomposition of T. S and U, if they exist, are
uniquely determined by 7', and then the multi-
plicative Jordan decomposition is related to the
additive Jordan decomposition T = Ty + T,, by
S=T,,U=1+S5"'T,.

(4) The decomposition of a linear transfor-
mation 7 into a product T = EHU, where E is
elliptic, H is hyperbolic, U is unipotent, and all
three commute. (Elliptic means E is diagonal-
izable and all complex eigenvalues have mod-
ulus = 1. Hyperbolic means H is diagonaliz-
able and all complex eigenvalues have modulus
< 1.) This decomposition is called the com-
pletely multiplicative Jordan decomposition of
T. E, H, and U, if they exist, are uniquely
determined by T'.

(5) In analysis, the decomposition of a
bounded additive set function w (defined on a
field of sets X) into the difference of two non-
negative bounded additive set functions, u =
wT — u~, via the formulas

ut(E) = sup u(F),
FCE

u(E) =— I;IéfEM(F) ,

where F is restricted to belong to X. Here sup
and inf refer to the supremum and infimum, re-
spectively. (See supremum, infimum.) The set
functions T and ™ are called the positive or
upper variation of (, and the negative or lower
variation of . The sum || = ut 4+ p= is
called the rotal variation of . See also additive
set function.

(6) In analysis, the decomposition of a func-
tion of bounded variation into the difference of a
monotonically increasing function and a mono-
tonically decreasing function.  (Sometimes
stated monotonically non-decreasing and mono-
tonically non-increasing.) This is a special case
of (5). See also bounded variation, monotone
function.

Jordan-Holder Theorem (1) The theorem
that any two composition series of a group are



equivalent. A composition series of a group G
is a finite sequence of groups
G=GypDGD--DG,={1},

such that each group G, is a maximal normal
subgroup of G;. (Equivalently, each G;41 is
a normal subgroup of G; and the factor group
G;/Gi41 is simple and not equal to {1}.) Two
composition series of G are equivalent if they
have the same length and isomorphic factor
groups. The theorem extends to groups with
operators, thus to R modules, for example, and
even to lattices (see (2) below). See also factor
group, normal subgroup, simple group.

(2) The theorem that any two composition
chains connecting two elements a and b in a
modular lattice are equivalent. A lattice is mod-
ular if it satisfies the weakened distributive law,

XA(YVZ=(xAY)V((XxAZ)

whenever x > y .

Here, y V z denotes the lattice join or supremum
(least upper bound) of y and z, and y Vv z de-
notes the lattice meet or infimum (greatest lower
bound) of y and z. (See join.) A composition
chain connecting a to b is a finite sequence of
lattice elements, ¢ = ap > a1 > ---a, = b,
such that there is no lattice element x strictly
between a; and a;4+1. (Equivalently, each in-
terval [a;+1, a;] is a two element lattice.) Two
composition chains are equivalent if they have
the same length and projective intervals. Two
intervals [w, x] and [y, z] are projective if there
is a finite sequence of intervals,

[w, x] = [wy, x1], [waz, x21, ..., [wy, x,]

= [y, z]

such that each pair of intervals [w;, x;] and
[wit1, xi+1] are transposes. Finally, two inter-
vals are transposes if there are lattice elements
¢ and d such that one interval is [c, ¢ V d] and
the otheris [c A d, d].

If G is a group, the lattice of its normal sub-
groups is a modular lattice. Thus, the Jordan-
Holder theorem for lattices gives us several
Jordan-Holder like theorems for groups, for in-
stance for chief series and characteristic series.
(The isomorphism of factor groups comes from
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the projectivity relation and the second isomor-
phism theorem for groups.) Unfortunately, the
classical Jordan-Holder theorem for composi-
tion series of groups (see (1) above) is not so
easy to derive from the lattice theorem because
the lattice of all subgroups may not be modu-
lar. See also characteristic series, isomorphism
theorems of groups.

Jordan homomorphism A mapping ¢ be-
tween Jordan algebras A and B which respects
addition, scalar multiplication, and the Jordan
multiplication. In other words, ¢(a + b) =
¢(a) + o), ¢(ha) = Ap(a), and ¢(a - b) =
¢(a)-¢(b), for all scalars A and foralla, b € A.
See Jordan algebra.

Jordan module Let A be a Jordan algebra
over a field of scalars K. A Jordan A module is
a vector space V over the same field K, together
with a multiplication operation - from A x V to
V satisfying (i.) a - (v+w) =a-b+a - w;
(ii.) a - (Av) = A(a -v),and (iii.) (a - b) -v =
la-(b-v)+1b-(a-v),foralla,b e A,v,w eV,
and scalars A.

Property (iii.) seems odd; indeed the reader
familiar with R modules (R a ring) would think
it should be replaced by (a - b) - v =a - (b - v).
However, property (iii.) is easier to understand
if one realizes that the Jordan multiplication -
induces a mapping a — T, between elements a
of the Jordan algebra and linear transformations
T,. Givena € A, T, isdefined by T,(v) = a - v.
Property (iii.) is chosen to guarantee that 7.,
will be the Jordan product % (T, Tp + TpT,) in
the Jordan algebra of linear transformations of
the vector space V.

In fact, the mapping a — T, is a Jordan
homomorphism of A into the Jordan algebra of
all linear transformations on V. A homomor-
phism between a Jordan algebra A and a Jor-
dan algebra of linear transformations is called
a Jordan representation of A. The definition
of a Jordan module has been designed so there
is a one-to-one correspondence between Jordan
representations and Jordan modules. See also
Jordan algebra, Jordan homomorphism, Jordan
representation.
Jordan normal form  See Jordan canonical
form.



Jordan representation A Jordan homomor-
phism between a Jordan algebra A and a Jor-
dan algebra of linear transformations on a vec-
tor space V, equipped with the standard Jordan
product, T-S = %(TS—i— ST). Thereis a one-to-
one correspondence between Jordan representa-
tions and Jordan modules. See also Jordan al-
gebra, Jordan homomorphism, Jordan module.

Jordan-Zassenhaus theorem Let A be a fi-

nite dimensional semisimple algebra with unit
over the field of rational numbers, Q. Let Z be
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the ring of integers, and let G be a Z-order in
A. Let L* be a left A module, and let o (L*) be
the set of all left G modules L, having a finite Z
basis, which are contained in L*, and such that
QL = L*. The Jordan-Zassenhaus Theorem
states: The set o (L*) splits into a finite number
of classes under Z-equivalence.

The Jordan-Zassenhaus Theorem is a far
reaching generalization of the theorem that the
number of ideal classes in an algebraic number
field is finite. See class field, ideal class, Z-basis,
Z-equivalence, Z-order.



K

K3 surface A class of algebraic surface in
abstract algebraic geometry, defined in a pro-
jective space over an algebraically closed field.
In projective 3-space they can be regarded as de-
formations of quartic surfaces. A K3 surface is
characterized as a nonsingular, nonrational sur-
face, in several ways including:

(i.) irregularity, Kodaira dimension, and the
canonical divisor are zero;

(ii.) irregularity is zero and the arithmetic,
geometric, and first plurigenus are all one;

(iii.) as a compact complex analytic surface,
the first Chern class is zero and it has Betti num-
bersbg=1,b; =0,by =22,b3=0,b4 = 1.

The space of one-dimensional differential
forms on a K3 surface is zero. An example of a
K3 surface is any smooth surface of order four
in projective three-dimensional space.

K3 surfaces were early examples of surfaces
satisfying Weil’s conjecture concerning the ana-
log of the Riemann Hypothesis for algebraic va-
rieties.

Kakeya-Enestrom Theorem Let f be a
polynomial with real coefficients, say

@) =apx" +a,1x"" 4 Fao,
for each real number x. Suppose

ap > ay—1 = --->a9>0.
Let r be any root of the polynomial. Then |r| <
1.

Kaplansky’s Density Theorem A funda-
mental theorem from the theory of von Neu-
mann algebras proved by Kaplansky in 1951.
The closure M with respect to the weak oper-
ator topology of a C*-subalgebra A of the set of
bounded linear operators on a separable Hilbert
space is a von Neumann algebra. Furthermore,
if A; is the set of elements of A with norm < 1
in A (unit ball of A) and M is the set of ele-
ments of M with norm < 1 (unit ball of M),
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then M is the closure of A with respect to the
weak operator topology.

The theorem remains true if restated using
the strong operator topology instead of the weak
operator topology. Sometimes, the statement of
the theorem includes the following additional
information. The set of self-adjoint elements of
A1 is strongly dense in the set of self-adjoint
elements of M, the set of positive elements of
A1 is strongly dense in M1, and if A contains 1,
the unitary group of A is strongly dense in the
unitary group of M.

k-compact group A connected algebraic
group defined over a perfect field £ whose k-
Borel subgroups are reduced to the identity
group. The name k-anisotropic group is used
also. See also k-isotropic group.

k-complete scheme Let f: X — Y bea
morphism of schemes X, Y. When f has a prop-
erty, it is customary to say that X has the prop-
erty over Y, or that X is a Y -(property) scheme.
The property of being complete is connected
with the property of being proper. A morphism
f : X — Y is proper if it is separated, of fi-
nite type, and is universally closed. Then X is
called proper over Y. See separated morphism,
morphism of finite type.

Now, let k£ be an algebraically closed field.
Let X be a scheme of finite type over k which is
reduced (i.e., for any element x the local ring at
x has no nilpotent elements) and is irreducible
(i.e., the underlying topological space is not the
union of proper closed subsets). If X is proper
over k (actually over the spectrum of k), then X
is called a k-complete scheme.

kernel (1) In algebra, where a homomor-
phism f is defined between two algebraic sys-
tems A and B, if the group identity of B is de-
noted by e, then the kernel of f is

ker(f)={x € A: f(x) = ¢e}.

Alternately, ker( ) may be denoted f “1ed.
The kernel is a subset of A that usually has
special properties. If A and B are groups, then
the kernel of a homomorphism is a normal sub-
group of A. If A and B are R-modules over a
ring R, the kernel is a submodule of A. If A and
B are topological linear spaces, then the kernel



of a continuous linear operator is a closed linear
subspace. The kernel of a semi-group homo-
morphism is the smallest two-sided ideal in the
semi-group. Similar remarks hold for kernels of
homomorphisms or morphisms in category the-
ory, sheaf theory, and kernels of linear operators
between spaces.

(2) In topology, for a nonempty set S in a
topological space, the kernel of S is the largest
subset 7" of S such that every element of T is an
accumulation or cluster point of T'.

(3) The word kernel is used in various other
areas of mathematics to denote a function. In
the study of integral equations, for example, the
function K in the integral

b
/ K(x, ) () dy
a
is called a kernel.

k-form (1) Inlinear algebraic group theory, a
k-form of an algebraic group G defined over an
extension field K of a field k is another algebraic
group H defined over k that is K-isomorphic
to G. Much work has been done in classify-
ing the “k-forms” of various types of algebraic
groups defined over K (e.g., semisimple alge-
braic groups or almost simple algebraic groups).

(2) More generally, if G is an algebraic group
defined over k and K /k is a finite Galois exten-
sion, an algebraic group G is saidtobe a K / k-
form of G if there is a K-isomorphism from G
onto G1. For example, let k be a field and 2
a universal domain containing k. Let 7' be an
n-dimensional algebraic k-torus with splitting
field K. Then since T is K-isomorphic to the
direct product of n copies of GL(1) (the multi-
plicative group of non-zero elements of 2), T is
a K/ k-form of the n-dimensional K -split torus
GL(1)".

See also quadratic form.

Killing form  In Lie algebra theory, a sym-
metric bilinear form associated with the adjoint
representation of a Lie algebra. Specifically, if
g is a Lie algebra over a commutative ring K
with 1, p is the adjoint (linear) representation
of g and Tr denotes the trace operator, the sym-
metric bilinear form B : g x g —> K given
by B(x, y) = Tr(p(x)p(y)) is called the Killing
form.
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It is named after W. Killing who studied it in
1888. The Killing form is fundamental in the
study of Killing-Cartan classification of semi-
simple Lie algebras over fields of characteristic
0.

k-isomorphism (1) Let k be a field and
K, L extension fields of k. An isomorphism
o : K — L such that o(x) = x for all
x € k is called a k-isomorphism. Alternately,
a k-isomorphism from K onto L is an isomor-
phism of the k-algebra K onto the k-algebra L.
(2) For other algebraic structures over a field
k, a k-isomorphism is essentially an isomor-
phism (a bijective map that preserves the bi-
nary operations) and a “regular” mapping (pre-
serving the particular structure on the sets).
For example, for linear algebraic groups a k-
isomorphism is an isomorphism that is also a bi-
rational mapping. For homogeneous k-spaces,
a k-isomorphism is an isomorphism that is an
everywhere defined pre-k-mapping.

k-isotropic group A connected algebraic
group, defined over a perfect field k, whose k-
Borel subgroups are nontrivial. For a reductive
k-group G defined over an arbitrary field k, G
is k-isotropic if the k-rank of G is greater than
zero. See k-compact group. See also k-rank.

Kleinian group A subgroup G of the group
of linear fractional functions defined on the ex-
tended complex plane C such that there is an
element x in C which has a neighborhood U
such that g(U) N U = @, for each nontrivial
g € G. Such groups were first studied by Klein
and Poincaré in the 19th century and were named
by Poincaré. See linear fractional function.

KMS condition A condition originally con-
cerning finite-volume Gibbs states and later pro-
posed for time evolution and the equilibrium
states in quantum lattice systems in statistical
mechanics (mathematically, within the frame-
work of C*-dynamical systems and a one-
parameter group of automorphisms that describe
the time evolution of the system). The condition
was first noted by the physicists R. Kubo in 1957
and C. Martin and J. Schwinger in 1959. The
letters K, M, and S are derived from their names.
The equilibrium states are called KMS states.



Let M be a von Neumann algebra. Let ¢
be a faithful normal positive linear functional
on M. Let {0y} be a strongly continuous one-
parameter group of x-automorphisms of M. Let
S be the closed strip in the complex plane {z :
0 < J(z) < 1}. Then the group {o;} will be said
to satisfy the KMS conditionifforany x, y € M,
there is F : § —> C such that F is bounded
and continuous on §, analytic in the interior of
S, and satisfies the conditions

F() =¢ (o1(x)y) and
F(t+i) = ¢ (yoi (x)) .

The theory of Tomita-Takesaki shows the exis-
tence of such a group {o;} and also that such
groups are characterized by the condition. The
KMS condition is a very important concept in the
construction of type-III von Neumann algebras.
See type-III von Neumann algebra.

Kostant’s formula A formula (named after
B. Kostant) that gives the multiplicities of the
weights of a finite dimensional irreducible rep-
resentation constructed from a root system of a
complex semisimple Lie algebra. It is a con-
sequence of the Weyl character formula. See
Weyl’s character formula. In order to under-
stand the (very explicit) formula, some defini-
tions are in order. Let g be a complex semisim-
ple Lie algebra. Let V be a C-module and p
a linear irreducible representation of g over V.
Let A be the set of positive roots. Let § be the
half sum of the positive roots (§ = % D e Ay ).
Let W be the Weyl group of the root system. Let
A be the highest weight of p. Let P be a non-
negative integer valued function (called the par-
tition function) defined on the lattice of weights.
For each weight u, P () is the number of ways
W can be expressed as a sum of positive roots.
Let m 5 (A) denote the multiplicity of a weight A
of p. Then Kostant’s formula is

ma(d) = Y det(w)P(w(A+8) — (A +9)).
weW

This sum is very difficult to compute in practice
and is thus of more theoretical than computa-
tional use. See also positive root, Weyl group.

k-rank Let K be an algebraically closed

field, k an arbitrary subfield of K, and G a re-
ductive linear algebraic group defined over k.
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(See reductive; examples of reductive groups are
semisimple groups, any torus, and the general
linear group.) Let T be a k-split torus in G of
largest possible dimension. The dimension of
T is called the k-rank of G. The k-rank is O if
and only if G is anisotropic.

The nonzero weights of the adjoint of T are
called k-roots. In case T is a maximal torus,
k-roots are the usual roots of G with respect to
T.

Let Z denote the centralizer of T in G;i.e.,

Z=()ixeG

yeT

Dxy=y}.

Let N denote the normalizer of T in G; i.e.,
N=[xeG : xTx—1=T} .

Then the finite quotient group Z/N is called
the k-Weyl group. The group is named after the
German mathematician H. Weyl (1885-1955).

k-rational divisor (1) Let K be the alge-
braic closure (Galois extension) of a finite field
k (with g elements) and let X be an algebraic
curve defined over k. Then the automorphism
o0 : k —> k defined by o (x) = x4 defines an
automorphism o : X —> X defined by

q CI)

o(xl,xz,...,xn)z(xf,xz,...,x,,

that leaves all k-rational points in X fixed (called
the Frobenius automorphism). Let

d= Zaxx

xeX

be a divisor in X. (Recall that all a; € Z (inte-
gers) and all except at most a finite number are
zero.) Then d is a member of the free Abelian
group of divisors with base X, called Div(X).
The divisor d is a k-rational divisor if

d=o0(d) = Zaxa(x) .

xeX

The set of k-rational divisors is a subgroup of
Div(X).

(2) Another use of the term k-rational divi-
sor involves a finite extension k of the field of
rational numbers Q. A divisord = Y ;| P;
is a k-rational divisor if all rational symmetric



functions of the coordinates of the points P; with
coefficients in Q are elements of the field k.

k-rational point  The term k-rational point
occurs in several areas of algebraic geometry,
algebraic varieties, and linear algebraic groups.
Examples of how the term is used follow.

(1) Let K be an algebraically closed field and
k a subfield of K. Let A% be the set of pairs
(a, b) of elements a, b € K (the affine plane).
Let f be a polynomial from A2 into K with
coefficients from K. Recall that a plane alge-
braic curve is {(x,y) € A? : f(x,y) = O}.
Then P = (x,y) € A? is a k-rational point if
x,y € k. If K = C and k = Q, then a point
(x, y) is a k-rational point if both coordinates
are rational numbers.

(2) If K is the finite field consisting of p” ele-
ments (p aprime number) and K is the algebraic
closure, then the set of k-rational points of a
curve with coefficients in k coincides with the set
of solutions of f(x,y) =0,x,y k. If r =1,
so that k is a prime number field, then the set of
k-rational points is equivalent to the set of solu-
tions of the congruence f(x, y) = 0 (mod p).

(3) More generally, let k be a subfield of an
arbitrary field K. Let x = (xq,...,x,) € A"
Then x is a k-rational point if each x; € k,
i=1,...,n. Next,letx = (x1,...,x,) € P"
(projective space). Then x is a k-rational point
if there is a (n + 1)-tuple of homogeneous co-
ordinates (Axg, AX1, ..., AX,), A # O such that
Ax; € k,foreachi =0, 1,...,n. Ifx; # 0, this
isequivalentto x;/x; € k,Vj=0,1,...,n.

(4) Let G be a linear algebraic group defined
over a field k. An element p that has all of its
coordinates in k is called a k-rational point.

(5) If X is a scheme over k, a point p of X
is called a k-rational point of X if the residue
class field (with respect to the inclusion map of
k into X at p) is k.

(6) If K is an algebraically closed transcen-
dental extension of k; V is an algebraic variety
defined over k; and k' is a subfield of K, then
a k’-rational point of V is an element of V that
has all of its coordinates in k.

Krieger’s factor  The study of von Neumann
algebras is carried out by studying the factors
which are of type I, II, or III, with subtypes for
each. (See factor.) Krieger’s factor is a crossed
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product of a commutative von Neumann alge-
bra with one x-automorphism. A Krieger’s fac-
tor can be identified with approximately finite
dimensional von Neumann algebras (over sepa-
rable Hilbert spaces) of type Illy. Krieger’s fac-
tor was named after W. Krieger who has studied
them extensively.

Kronecker delta A symbol, denoted by §; ;,
defined by

5 — 1 ifi=j

T 0 ifi £

It is a special type of characteristic function de-
fined on the Cartesian product of a set with itself.
Specifically, let S be a set. Let D = {(x, x) :
x € S}. The value of the characteristic function
of Dis 1if (x,y) € D (meaning that x = y)
and is O otherwise.

Kronecker limit formula (1) If ¢ is the ana-
lytic continuation of the Riemann ¢-function to
the complex plane C, then

. 1
i [s0- 5] -

n—1
1
li —_— 1—1 =

where y is called Euler’s constant. This can be
expressed by saying that “near s = 17

{(s)=ﬁ+]/+0(s—l).
This last formula is called the Kronecker limit
formula.

(2) In the theory of elliptic integrals, modular
forms, and theta functions, the function E(z, s)
(with z = x 4 iy) defined by the Eisenstein type

series ,

Z y
Im(z) + n|?

m,n
(where x € R, y > 0, the summation is over
all pairs (m,n) # (0,0), and R(s) > 1) can
be extended to a meromorphic function on C
whose only pole is at s = 1. The Kronecker
limit formula for E(z, s) is

S”Tl+zn(y—log<2>>—4n log [7(2)|+0(s—1)



where

oo
n(z) — eﬂiZ/lZ l—[ (1 _ eZm’zn) .
n=1

The formula can be generalized to arbitrary num-
ber fields. More general Eisenstein type series
lead to similar (but more complicated) limit for-
mulas.

Kronecker product (1) Let A = (a;;) de-
note an m X n matrix of complex numbers and
B = (b;j) anr x s matrix of complex numbers.
Then the Kronecker product of the matrices A
and B is defined as the mr x ns matrix described
by the mn blocks C;; given by

Cij=aijB, 1§i§m,1§j§n.

Sometimes other permutations of the mnrs el-
ements arranged in mr rows and ns columns is
called the Kronecker product. This product is
used, for example, in studying modulii spaces
of Abelian varieties with endomorphism struc-
ture.

(2) Let V and W be finite dimensional vec-
tor spaces over a field k with bases {x1, ..., x,}
and {y1, ..., yr} for V and W, respectively. Let
L be a linear transformation on V and M a lin-
ear transformation on W. Let Abe ann X n
matrix associated with L and B an r X r ma-
trix associated with M, determined by using the
stated ordering of the basis elements. If lexico-
graphic ordering is used for the tensor products
of the basis elements in determining a basis for
the tensor product of V and W, then the ten-
sor product V @ W of the linear transformations
has the nr x nr Kronecker product matrix de-
scribed in (1) as its matrix representation. See
lexicographic linear ordering.

(3) Now let V and W be arbitrary vector
spaces over a field k. Let U be a vector space
whose basis vectors are elements of the Carte-
sian product of V and W, i.e., let the elements
of U be finite sums of the form

n
Zav (X, yv) .
v=I

Let N be the subspace of U such that

Y L () M (3,) =0,

v=1
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for each linear functional L : V — k and each
linear functional M : W — k. Define the
Kronecker product of V and W with respect to
k as the quotient space U/N. If V and W are
rings with unity instead, and multiplication in U
is defined componentwise, then N becomes an
ideal of U and the Kronecker product becomes
a residue class ring.

(4) Sometimes, the tensor product of algebras
is referred to as their Kronecker product.

Kronecker’s Theorem  Several theorems in
several fields of mathematics honor L. Kronecker
(1823-1891).

(D) If f isamonic irreducible element of k[x]
over a field k, there is an extension field L of k
containing a root ¢ of f such that L = k(c).
Sometimes such an L is called a star field. For
example, the polynomial x> + 1 over the real
number field has the field of complex numbers
as a star field. Further, if f has degree n, there is
an extension field of k in which f factors into n
linear factors, so f has exactly n roots (counting
multiplicities).

(2) A field extension of the field of rational
numbers which has an Abelian Galois group is
a subfield of a cyclotomic field.

(3) Kronecker was among several mathemati-
cians who studied the structure of subgroups and
quotient groups of R" generated by a finite num-
ber of elements. The following theorem was
proved by him in 1884 and is also called Kro-
necker’s Theorem. Let m, n be integers > 1. In
the following i will denote an integer between 1
and m while j will denote an integer between 1
and n. Let a; = (a;1, ai2, . . ., aim) be m points
of R" and b = (by, by, ..., b,) € R". Forev-
ery € > 0 there are m integers g; and n integers
pj such that for each j

m
> giaij—pj—b;
i=1

if and only if for every choice of n integers
rj such that )} a;yr; is an integer, the sum
Y/ byry is an integer.

This theorem involves the closure of the sub-
group of the torus 7" generated by a finite num-
ber of elements. Generalizations of the theorem
have been studied in the theory of topological
groups.

< €




Kronecker symbol (1) An alternate name
for the Kronecker delta. See Kronecker delta.

(2) In number theory, a generalization of the
Legendre symbol, used in solving quadratic con-
gruences

ax>+bx+c=0 (mod m)

where a, b, ¢ are integers (members of Z) and
m is a positive integer (m € Z™).

Let d € Z, d not a perfect square, d =
0 or 1 (mod 4) and m € Z™. For the following,
recall that d is a quadratic residue of m if x> =
d (mod m) is solvable. Then the Kronecker sym-
bol for d with respect to m, denoted by ( %), isa
mapping from {d} x Z+ onto {0, *1, ~1} defined

by:
(5)
=1,
1

d 0 ifdiseven
(-): +1 ifd = 1 (mod 8)
2 1 d=5(mod8)

if m is an odd prime and m|d, then

d
(_) - 0 ’
m
if m is an odd prime and m /d, then

*1 ifd is a quadratic
residue of m

if d is not a quadratic
residue of m

if m is the product of primes pi, p2, ..., pr,

then
-3
m pi) \p2 pr)

The Kronecker symbol is used to determine the
Legendre symbol, which in turn is used to find
quadratic residues. For certain values of d and
m the Kronecker symbol can be used to count
the number of quadratic residues.

(3) The Kronecker symbol has uses and gen-
eralizations in more advanced areas of number
theory as well; e.g., quadratic field theory and
class field theory.

k-root  See k-rank.
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Krull-Akizuki Theorem Let R be a Noethe-
rian integral domain, k its field of quotients, and
K a finite algebraic extension of k. Let A be a
subring of K containing R. Assume every non-
zero prime ideal of R is maximal (i.e., assume
R has Krull dimension 1). Then A is a Noethe-
rian ring of Krull dimension 1. Also, for any
ideal g # (0) of A, A/g is a finitely generated
A-module.

Here, the integral closure of a Noetherian
domain of dimension one is Noetherian. This
remains true for a two-dimensional Noetherian
domain but not for dimension three or higher.

Krull-Azumaya Lemma  Let R be a com-
mutative ring with unit, M # 0 a finite R-
module, and N an R-submodule of M. Let J be
the Jacobson radical of R. The Krull-Azumaya
Lemma is a name given to any of the following
statements:

()HMJ+N=M,then N =M;

(i) M #MJ;

(iii.) If M/MJ is spanned by a finite set
{x; + M J}, then M is spanned by {x;}.

This lemma is also known by the name
Nakayama’s Lemma and by the name Azumaya-

Krull-Jacobson’s Lemma. Itis abasic tool in the
study of non-semiprimitive rings.

Krull dimension The supremum of the
lengths of chains of distinct prime ideals of a
ring R. It is sometimes called the altitude of R.
The definition was first proposed by W. Krull in
1937 and is now considered to be the “correct”
definition not only for Noetherian rings but also
for arbitrary rings.

With this definition any field « has dimension
zero and the polynomial ring « [x] has dimension
one.

One reason for the acceptance of this def-
inition for rings comes from a comparison to
the situation in finite dimensional vector spaces.
In a vector space of dimension n over a field
Kk, the largest chain of proper vector subspaces
has length n. The corresponding polynomial
ring k[x1, ..., x,] has adecreasing sequence (of
length or height n) of distinct prime ideals

X1y .oy Xn),..ns (x1), (0)



where the notation (x, ..., x,) denotes the ideal

generated by the elements xi, ..., x,. This se-
quence is of maximal length.
Krull Intersection Theorem Let R be a

Noetherianring, / anideal of R, and M a finitely
generated R-module. Then
(i.) there is an element a € [ such that

OO .
(1—a) ﬂlfM =0.
j=1

(ii.) If O is a prime ideal or if R is a local ring,
and if / is a proper ideal of R, then

I/'=0.

s

I
_

J

In some formulations, part (i.) is given as:

I'M =

DL

~.
Il

{xeM:(1—a)x =0, forsomex € [}.

The theorem is important for the theory of
Noetherian rings and is an application of the
Artin-Rees Lemma concerning stable ring fil-
trations. See Artin-Rees Lemma.

Krull-Remak-Schmidt Theorem  The the-
orem arises in various branches of algebra and
addresses the common length and isomorphisms
between elements of the decomposition of an al-
gebraic structure.

(1) In group theory. Suppose a group G satis-
fies the descending or ascending chain condition
for normal subgroups. If G| x G2 x --- X Gy
and Hy x Hy x - - - X Hy, are two decompositions
of G consisting of indecomposable normal sub-
groups, then n = m and each G; is isomorphic
to some H;.

(2) Inringtheory. Let A = A1 xAax---X A,
and B = B} x By x --- x B, be Artinian and
Noetherian modules where each A; and B; are
indecomposable modules. Then m = n and
each A; is isomorphic to some B;.

(3) The theorem may be formulated for other
algebraic structures, e.g., for local endomor-
phism modules or for modular lattices.
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Combinations of the names W. Krull, R.
Remak, O. Schmidt, J.H.M. Wedderburn, and
G. Azumaya are used to refer to this theorem.
Wedderburn first stated the theorem for groups,
Remak gave a proof for finite groups, Schmidt
gave a proof for groups with an arbitrary sys-
tem of operators, Krull extended the theorem
to rings, and Azumaya found extensions of the
theorem to other algebraic structures.

Krullring A commutative integral domain A
for which there exists a family {v; };<; of discrete
valuations on the field of fractions K of A such
that the intersection of all the valuation rings of
the {v;}icsis Aand v; (x) = Oforallnonzerox €
K and for all except (possibly) a finite number
of indices i € I. A Krull ring is also called a
Krull domain. Every discrete valuation ring is
a Krull ring as is a factorial ring and a principal
ideal domain.

Krull rings were studied by W. Krull. They
represent an attempt to get around the problem
that the integral closure of a Noetherian domain
is (generally) not finite. Since the valuations
described above may be identified with the set
of prime ideals of height one, a Krull ring may be
defined alternately using prime ideal of height
one.

Krull’s Altitude Theorem Also called
Krull’s Principal Ideal Theorem. This theorem
has several forms and characterizations.

(1) Let R be a Noetherian ring, let x € R
and let P be minimal among prime ideals of
R containing x. Then the height of P (or the
codimension or the altitude of P)is < 1. See
Krull dimension.

(2) Let R be a Noetherian ring containing

Let P be minimal among prime
Xx,,. Then the

XlyeoosXn.
ideals of R containing x1, X3, .. .,
height of P < n.

(3) Let R be a Noetherian local ring with
maximal ideal m. Then the dimension of R is
the minimal number n such that there exist n
elements x1, x2, ..., x, not all contained in any
prime ideal other than m.

Consequences of the theorem include the fact
that the prime ideals in a Noetherian ring sat-
isfy the descending chain condition so that the
number of generators of a prime ideal P bounds



the length of a chain of prime ideals descending
from P.

Krull topology A topology that makes the
Galois group G(L/K) (for the Galois extension
of the field L over the field K) into a topological
group. A fundamental system of neighborhoods
of the field unity element of L is obtained by
taking the set of all groups of the form G(L/M)
where M is both a subfield of L and a finite
Galois extension of K.

The Krull topology is discrete if L is a finite
extension of K. This topology is named after
W. Krull, who extended Galois theory to infinite
algebraic extensions and laid the foundations for
Galois cohomology theory.

k-split A term used in several parts of linear
algebraic group theory and homology theory.

(1) Let k be an arbitrary field. Let 2 denote a
universal domain containing k, that is, an alge-
braically closed field that has infinite transcen-
dence degree over k. Let G, denote the alge-
braic group determined by the additive group of
Q and let G, denote the algebraic group deter-
mined by the multiplicative group of non-zero
elements of Q2. Let G be a connected, solvable
k-group. Then G is k-split if it has a composi-
tion series

G=Gy>G; DD G,=1{0}

composed of connected k-subgroups with the
property that each G;/ G4 is k-isomorphic to
G, or G,.

(2) If a k-torus T of dimension » is k-isomor-
phic to the direct product of n copies of G, then
T is said to be k-split. For a k-torus, definitions
(1) and (2) are equivalent.

(3) Let A be a k-set, G be a k-group, M
be a principal homogeneous k-space for G, and
I"x,x be the set of k-generic elements of the k-
components of any k-set X. For any k-mapping
h from A into G, let §h denote the k-mapping
from A x A into G defined by

8h(x,y) =h(x)"'h(y),
forall (x,y) € y2/y.
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Recall that a one-dimensional k-cocycle f is a
k-mapping from A x A into G such that

fx,2) = flx, ) f(y, 2,
forall (x,y,2) € FA3/k .

If f is a one-dimensional k-cocycle such that
there exists a k-mapping 4 from A x A into M
such that f = 8h, then f is said to k-split in M.
This definition is used in k-cohomology.

(4) There is a similar definition used in the co-
homolgy of k-algebras involving the k-splitting
of singular extensions of k-algebras bi-modules.

(5) If G is a connected semisimple linear al-
gebraic group defined over a field k, then G is
called k-split if there is a maximal k-split torus
in G. Such a G is also said to be of Chevalley

type.

Kummer extension  Any splitting field F' of
a polynomial

(x” — al) (x” — az) ... (x” — ar) ,
where for each i = 1,2, ..., r the a; are ele-

ments of a field k that contains a primitive nth
root of unity. A Kummer extension is character-
ized by the property of being a normal extension
having an Abelian Galois group and the fact that
the least common multiple of the orders of ele-
ments of the Galois group is a divisor of n.

Kummer’s criterion The German mathe-
matician E. Kummer’s attempts in the mid-19th
century to prove Fermat’s Last Theorem gave
rise to the theory of ideals and the theory of cy-
clotomic fields and led to many other theories
which are now of fundamental importance in
several areas of mathematics. Among his many
contributions to the mathematics that was devel-
oped to prove (or disprove) Fermat’s Last The-
orem, Kummer obtained congruences

d' =" log(x + evy)
By dvyl—2n

for n = 1,2,...,% where B, is the nth

Bernoulli number. The congruences are called
Kummer’s criterion in his honor. In 1905 the
mathematician D. Mirimanoff established the
equivalence of these congruences to the condi-
tions (which also are called Kummer’s criterion)
of the following theorem.

j| =0 (modl)
v=0



Let x, y, z be nonzero integers. Let [ be a
prime > 3. Suppose x, y, z are relatively prime
to each other and to . If {x, y, z} is a solution
to the Fermat problem

xl —+ yl = Zl R
then
By fi—2n (1) =0 (mod ),

forallte {—5, —%, -2, —%, =%, — %} and for

n:l,2,...,%where

-1

om—1.i

fm(@) = § "
i=1

for m > 1, and Bernoulli number B,,.

Kummer surface A class of K3 surface
in abstract algebraic geometry first studied by
E. Kummer in 1864. It is a quartic surface which
has the maximum number (16) of double points
possible for a quartic surface in projective three-
dimensional space. It can be described as the
quotient variety of a two-dimensional Abelian
variety by the automorphism subgroup gener-
ated by the sign-change automorphism s(x) =
—x. See also K3 surface.

In projective three-dimensional space, the
surface given by

Myttt =0
is a Kummer surface.

Kiinneth’s formula  See Kiinneth Theorem.

Kiinneth Theorem  The theorem is formu-
lated for several different areas of mathemat-
ics. Occurring in the statement of the theorem
are one or more formulas concerning exact se-
quences known as Kiinneth formulas. The theo-
rem itself is sometimes called Kiinneth formula.
All Kiinneth-type formulas are related to study-
ing the theory of products (e.g., tensor products)
in homology and cohomology for various math-
ematical objects and structures. Examples fol-
low.
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(1) The first Kiinneth Theorem exhibits the
Kiinneth formula for complexes. Let A be aring
with identity, L acomplex of left A-modules and
R a complex of right A-modules. Assume that
for each n the boundary modules B, (R) and cy-
cle modules C,(R) are flat. Then for each n
there is a homomorphism g such that the se-
quence

0— Z Hm(R)®Hq(L)£>Hn(R®L)—ﬁ>
m+q=n
£ > Tor|(Hu(R) ® Hy(L)) > 0
m+qg=n—1

is exact.

(2) The next Kiinneth Theorem exhibits the
isomorphism. Let A be a ring with identity. Let
L be a complex of left A-modules and R be
a complex of right A-modules. Assume that
for each n the homology modules H, (R) and
cycle modules C,, (R) are projective (in this case
Tory (H,,(R) ® Hy(L)) = 0). Then for each n
there is an isomorphism « such that the sequence

> Hu(R)® Hy(L) = Hy(R® L) .
m—+q=n

(3) Let G be an Abelian group. For simplicial
complexes L and R and Cartesian product L X R,
the homology group H,(L x R; G) splits into
the direct sum

Hy(L x R;G) = Y~ Hy(L) ® Hy(R)
m-+q=n

® Z Tor (Hu (L) ® Hy(R)) .
m+g=n—1

(4) Similar Kiinneth formulas and Kiinneth
Theorems generalized (e.g., to spectral se-
quences) or stated with other criteria on
the groups (e.g., torsion free groups) have been
studied.

k-Weyl group  See k-rank.



L

l-adic coordinate system Let A be an Abel-
ian variety of dimension n over a field k of char-
acteristic p > 0. Let/ be a prime number, Q; the
[-adic number field, Z; the group of /-adic inte-
gers, and P; the direct product of the 2n quotient
groups of Q;/Z;. Let B;(A) denote the group
of points of A whose order is a power of [. If
| # p, then P; is isomorphic to B;(A). The iso-
morphism yields the [-adic coordinate system of
Bi(A).

l-adic representation  Let A, B be Abelian
varieties of dimensions n and m, respectively,
over a field k of characteristic p > 0. Let/ be a
prime number different from p and A : A — B
a rational homomorphism. Let B;(A), B;(B)
denote the group of points of A, respectively B,
whose order is a power of / and y : B;(A) —
B;(B) the homomorphism induced by A. Then
the 2m x 2n matrix representation (with respect
to the /-adic coordinate system) of y is called
the [-adic representation of A.

Lagrange multiplier  To find the extrema of
a function f of several variables, subject to the
constraint g = 0, one sets Vf = A - Vg. The
scalar X is called a Lagrange multiplier.

Lagrange resolvent  Let k be a field of char-
acteristic p containing the nth roots of unity such
that p does not divide n. Let k(®) be an exten-
sion field of degree n over k with cyclic Galois
group. Let o be a generator of the Galois group.
Let ¢ be an nth root of unity. Then the Lagrange
resolvent, denoted by (¢, ®) is defined by

(£,0) = Oy +¢0) +---+ "0,

where ®; = 0/@, foreachj =1,2,...,n—1
and ®, = ¢"O = Oy = O.

Since 0®; = ©j, for each j, the La-
grange resolvent has the property that o (¢, ®)
= ¢ (¢, ®). This implies that o (¢, ®)" =
(¢, ©)", meaning that (£, ®)" € K. The ©;
can be determined from the equations ¢ ¢/
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(¢,®) = n0Oj, since p does not divide n. So,
k(®) is generated by (¢, ©).

Lagrangian density It is customary in the
fields of mathematical physics and quantum me-
chanics to honor the Italian mathematician
J.L. Lagrange (1736-1813) by using his name
or the letter L to name a certain expression (in-
volving functions of space and time variables
and their derivatives) used as integrands in varia-
tional principles describing equations of motion
and numerous field equations describing phys-
ical phenomena. Thus, a “Lagrangian” occurs
in the statements of the “principle of least ac-
tion” (first formulated by Euler and Lagrange for
conservative fields and by Hamilton for noncon-
servative fields), as well as in Maxwell’s equa-
tions of electromagnetic fields, relativity theory,
electron and meson fields, gravitation fields, etc.
In such systems, field equations are regarded as
sets of elements describing a mechanical system
with infinitely many degrees of freedom.

Specifically, let 2 C R™, [tg, t;) denote a
time interval, and f = (fl, fz, o M 1 oo,
t;1) —> R denote a vector valued function.
Let L be an algebraic expression featuring sums,
differences, products, and quotients of the func-
tions of f and their time and space derivatives.
L may include some distributions. Define

L(t):/de,
Q

2

where x = (x!, x2, ..., x™) and

131
V) =/ L(t)dr .
0]

Field equations are derived from considering
variational problems for V (f). In such a setup,
L is called the Lagrangian and L the Lagrangian
density.

Lanczos method of finding roots A proce-
dure (or attitude) used in the numerical solu-
tion (especially manual) of algebraic equations
whose principal purpose is to find a first ap-
proximation of a root. Then methods (espe-
cially Newton’s method) are used to improve
accuracy (by iteration). For equations with real
roots, the basic idea is to transform the equation
into one which has a root between 0 and 1; then



reduce the order of the equation by using an ap-
proximating function (e.g., a Chebychev poly-
nomial); solve the reduced associated equation
exactly for a root between 0 and 1 and convert
the root found back to aroot of the original equa-
tion by using the transformation functions. For
complex roots the procedure is similar but finds
a root of largest modulus.

As an explicit use of the ideas consider a
cubic equation with real coefficients a, b, ¢, d
(with ad # 0)

ax>+bx>+cx+d=0.

First change the polynomial to a monic polyno-
mial
x> —l—b]xz—l—clx—i—d] =0

where by = b/a,c1 = c/a,dy = d/a. If
di > 0, transform the equation by replacing x
everywhere by —x obtaining

x3+b2x2+czx—d2:0,

with d» > 0, where by = —bj, ¢ = ¢1,dy =
di. Now, by dividing by d> and setting y =
x/Jdr, by = by/Jdr,c3 = c2/(Jd>)?, one

gets the equation
Y 4biytfey—1=0.

Now f(0) < 0. Also, for large positive y,
f(y) = 0. If f(1) > O, there is a root be-
tween 0 and 1. If f(1) < 0, there is a root > 1.
In this case substitute t = 1/y into the equation
obtaining

33—t —byt—1=0.

In either case, substitute for #3 or y3 the quadrat-
ic term of the Chebychev polynomial

£ = (1/32) <48t2 181 + 1)

and solve the resulting quadratic equation ex-
actly. Discard any negative root and use the
remaining root. Convert it back to the origi-
nal equation using all the conversions. This is
the Lanczos method for cubic equations. There
are Lanczos methods for fourth and higher de-
gree equations with real coefficients and ones
for complex coefficients.
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Lanczos method of matrix transformation

In the numerical solution of eigenvalue prob-
lems of linear differential and integral operators,
matrix transformations play a fundamental role.
Lanczos’ method, named after C. Lanczos who
introduced it in 1950, was developed as an iter-
ative method for a nonsymmetric matrix A and
involves a series of similarity transformations
to reduce the matrix A to a tri-diagonal matrix
T with the same (but more easily calculable)
eigenvalues as A.

Specifically, given an n x n matrix A, a tri-
diagonal matrix 7T is constructed so that T =
S~1AS. Assume that the n columns of § are
denoted by x1, x2, ..., x, which will be deter-
mined so as to be linearly independent. Assume
that the main diagonal of matrix 7' = {#;;} is de-
noted by t;; = b; fori =1, 2, ..., n; the super-
diagonal t;;41 =¢; fori = 1,2,...,n—1;and
the subdiagonal #;;_1 = d;, fori =2,3,...,n.
In this method the d; will all be 1. The method
consists of constructing a sequence {y;} of vec-
tors such that yl.Txi =0,ifi # j.

Let xo, yo, co be zero vectors and let x; and
y1 be chosen arbitrarily. Define {x;} and {yx}
recursively, by

Xk+1 Axg — brxp — cp—1Xk—1 ,
T
Yet1 = Ay —bryr — ck—1Yk—1,
with .
Vi AXk
by = 2K
Vi Xk
and ,
Vi—1 A%k
Ch—1 = —p -
Yie—1Xk—1

Assuming that yij # 0 for each j, it can be
shown that yl.ij = 0ifi # j, the {x;} are
linearly independent, and that if the recursions
are used for k = n, that the resulting x,,+1 = 0.
These results lead to the equations

Ax1 = xp + bix

Axp = Xgy1 + bexg + cr—1Xk—1
fork=2,3,...,n—1and

Axy = bpxp + cp—1Xn—1

which yield the desired tri-diagonal matrix 7.



Problems with the method involve a judicious
choice of x; and y; so that ijx i # 0 for each
j=1,2,...,n—1. Numerically, the weakness
of the method is due to a possible breakdown in
this biorthogonalization of the sequences {x;}
and {y;} even when the matrix A is well condi-
tioned. The numerical procedure is likely to be
unstable, for example, when yl.Tx,- is small.

For symmetric matrices with x; = y; the
sequences {x; } and {y; } are identical. In this case
the numerical stability is comparable to either
Givens’ or Householder’s methods resulting in
the same tri-diagonal matrix — but with more
cost in deriving it.

Theoretically, the indicated algorithm occurs
in the conjugate-gradient method for solving a
linear system of equations, in least square poly-
nomial approximations to experimental data, and
as one way to develop the Jordan canonical form.

Lanczos method is sometimes called the
method of minimized iterations.

Laplace Expansion Theorem A theorem
concerning the finite sum of certain products of
determinants of submatrices of a given square
matrix. The theorem delineates which products
yield a sum equal to the determinant of the whole
matrix, so the expansions described are com-
monly used to evaluate determinants.

Let A be an n x n matrix with elements
from a commutative ring, where it can be as-
sumed that n > 1. Let A have elements a; ;
where i denotes the row and j the column. Let
1 <r < n. Suppose r rows of A, denoted by
i1, 102, ...,1I, are chosen where it is assumed (al-
ways) that i1 < ip < --- < i, (lexicographic
ordering). See lexicographic linear ordering.
Let R denote this lexicographically ordered r-
tuple (i1, i2,...,i,). Suppose also that r col-
umns ji, j2, ..., jr are chosen (lexicographi-
cally ordered). Let C be this lexicographically
ordered r-tuple (j1, j2, ..., jr). Bychoosingel-
ements of A from the chosen rows and columns,
an r x r submatrix Agc = (bpn) = (ai, j,)
is determined. If R’ denotes the lexicograph-
ically ordered (n — r)-tuple iy41,ir42,...,10n
consisting of the rows of A not chosen and
C’ the columns not chosen, then Ag ¢/ is an
(n — r) x (n — r) submatrix. Let Ap¢c =
iy +ir+---+i+j1+ j2+---+ j-. Finally,
let S be any lexicographically ordered r-tuple
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chosen from the n numbers 1, 2, ...,n. Then
the Laplace Expansion Theorem says:

Z(—l)“c det (Ag ¢) det (Ag ) = det(A)
C

if R = S (and = 0, if R # S), where the sum is
taken over the (') selection of columns C. Also,

Z(—l)*RC det (Ag ) det (Ag s) = det(A)
R

if R = S (and = 0, if R # S), where the
sum is taken over the ('r') selection of rows R.
The summations resulting in the sum det(A) are
called Laplace expansions of the determinant. If
r = 1, the “usual” expansion of a determinant
is obtained.

large semigroup algebra  Let R be a com-
mutative ring, S a semigroup, and RS the set
of sequences of elements of R where in each
sequence only a finite number of elements is
different from zero. Then RS is the direct sum
of isomorphic copies of R using S as the index
set. A canonical basis of RS consists of {bi}ies
where for a given i € S, b; has the component
indexed by i equal to 1 and the rest of the com-
ponents equal to 0. The product
biijb,‘j for alli,jeS

determines the multiplication in RS and makes
RS into an algebra called a semigroup algebra
of S over R. Now suppose S has the property
that for any s € S there are only a finite number
of pairs {i, j} of elements of S such thats = ij.
If one defines multiplication of sequences o =
{ai} and B = {B,} of RS tobe y = {yx} where

ve= Y aifj,

k=ij

kelS,

then the resulting algebra is called a large semi-
group algebra and contains R as a subalgebra.

largest nilpotent ideal = The nilpotent ideal
which is the union of all nilpotent ideals of a Lie
algebra defined on a commutative ring with unit.
In aleft Artinian ring, the radical is nilpotent and
is the largest nilpotent ideal. In aleft Noetherian
ring, the prime radical is the largest nilpotent
left ideal. For a ring which has the property



that every nonempty set of left ideals contains a
minimal element (with respect to inclusion), the
Jacobson radical is the largest nilpotent ideal.

lattice (1) A system consisting of a set S
together with a partial ordering < on § and two
binary operations A and Vv defined on S such
that, for all a, b, c € S,

avb<cifandonlyif (¢ <c and b <c¢),
and
c <anb ifandonlyif (c <a and ¢ < b).

The element a Vv b is called the supremum
of a and b and the element a A b is called the
infimum of a and b.

The set of all subsets of a nonempty set S
ordered by the subset relation together with the
operations of set union and set intersection form
a lattice. The whole numbers, ordered by the
relation divides, together with the operations of
greatest common divisor and least common mul-
tiple, form a lattice. The real numbers, ordered
by the relation less than or equal to, together
with the operations of maximum and minimum,
form a lattice.

(2) Let R" denote the set of all n-tuples of
real numbers. Let R” be endowed with the
(usual) Euclidean metric space structure. Call
this metric space E". Let V" denote the (usual)
n-dimensional real vector space defined over R
by adding componentwise and multiplying by
scalars componentwise. Let Z denote the set of
integers. Let o denote the mapping between E”
and V" that identifies points in E” with vectors
in V", Let L be the set of points

n
PcE" :a(P):Zajvj, ajely
j=1

for some basis {v, va, ..., v,} of V. Then L
is called an n-dimensional homogeneous lattice
in E".

lattice constant  Let L denote the lattice group
of an n-dimensional crystallographic group de-
fined on n-dimensional Euclidean space. Then
L is generated by n translations. Each inner
product of two of the generating translations is
called a Lattice constant. See lattice group.
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lattice group (1) The subgroup of transla-
tions of the n-dimensional crystallographic
group C defined on n-dimensional Euclidean
space E". The lattice group is a commutative
normal subgroup of C. Recall that C is adiscrete
subgroup of the group of motions on E” that con-
tains exactly n linearly independent translations.
The lattice group is generated by these transla-
tions. In applied areas of crystallography, the
group of motions is called a space group. Then
the lattice group is called the lattice of the space
group.

(2) Let L be an n-dimensional homogeneous
lattice in E". (See lattice.) Then

{veV":v=0(P), forsome P € L}

is called the lattice group of L. This lattice
group is a free module generated by the basis
{vi,v2, ..., ).

lattice ordered group A lattice which is also
an ordered group. See lattice.

law A property, statement, rule, or theorem in
a mathematical theory usually considered to be
fundamental or intrinsic to the theory or govern-
ing the objects of the theory. Elementary exam-
ples include commutative, associative, distribu-
tive, and trichotomy laws of arithmetic,
DeMorgan’s laws in mathematical logic or set
theory, and laws of sines, cosines, or tangents in
trigonometry.

Law of Quadrants  Also called rule of spe-
cies. In spherical trigonometry, if ABC is aright
spherical triangle, with right angle C and sides
a, b, and ¢ (measured in terms of the angle at
the center of the sphere subtended by the side),
then: (i.) if @ and A are both acute or both ob-
tuse angles (said to be of like species), then so
are b and B; (ii.) if ¢ < 90°, then a and b are of
like species; (iii.) if ¢ > 90°, then a and b are
of unlike species.

This law is used whenever one has a formula
which gives two possible values for the sine of
the side or angle, since it indicates whether the
side or angle is acute or obtuse.

Law of Signs In arithmetic, a rule for sim-
plifying expressions where two (or more) plus
(“+”) or minus (“—"") signs appear together. The



rule is to change two occurrences of the same
sign to a “4-”” and to change two occurrences of
opposite signs to a “—.”

In using the Law of Signs, one is ignoring the
different usages of the minus sign; namely, for
subtraction, for additive inverse, and to denote
“negative.” The same is true for the plus sign;
namely, for addition and to denote “positive.”

Thus, x — (—y) or x — —y becomes x + y;
x + (—y) or x + —y becomes x — y; 4 — 73
becomes 4+ 3; 44 ~3 becomes 4 —3; x + (+y)
or x + +y becomes x + y, etc.

Law of Tangents  In plane trigonometry, a ra-
tio relationship between the lengths of sides of
a triangle and tangents of its angles. For a trian-
gle ABC, where A, B, and C represent vertices
(and angles) and a, b, and c represent, respec-
tively, the sides opposite the angles,

a—b tan}(A-B)
a+b_tan%(A+B).

Laws of Cosines  In plane and spherical trigo-
nometry, relationships between the lengths of
sides of a triangle and cosines of its angles. For
a triangle ABC in plane trigonometry, where
A, B, and C represent vertices (and angles) and
a, b, and c represent, respectively, the sides op-
posite the angles,

2 =a’>+b>—2ab cos(C) .

Here, the length of a side is determined by the
lengths of the other two sides and the cosine of
the angle included between those sides.

In spherical trigonometry, using the above
designations for the angles and for the sides
(measured in terms of the angle at the center
of the sphere subtended by the side), there are
two relationships:

cos(C) = — cos(A) cos(B)
+ sin(A) sin(B) cos(c)

and

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C) .

Laws of Sines  In plane and spherical trigo-
nometry, the ratio relationship between the
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lengths of sides of a triangle and sines of its
angles. For a triangle ABC in plane trigonom-
etry, where A, B, and C represent vertices (and
angles) and a, b, and c represent, respectively,
the sides opposite the angles,

a _ b _ c
sin(A)  sin(B)  sin(C)

In spherical trigonometry, using the same
designations for the angles and for the sides
(measured in terms of the angle at the center
of the sphere subtended by the side),

sin(a) _ sin(b) . sin(c)
sin(A)  sin(B)  sin(C)

leading coefficient = The nonzero coefficient
of the highest order term of a polynomial in a
polynomial ring. In the expression

anx" + a1 X" '+ +aix +ag

ay is the leading coefficient. There are situations
when it is appropriate to consider an expression
when the leading coefficient is zero. In this case,
such a coefficient is called a formal leading co-
efficient.

least common denominator In arithmetic,
the least common multiple of the denominators
of a set of rational numbers. See least common
multiple.

least common multiple (1) In number the-
ory, if a and b are two integers, a least common
multiple of a and b, denoted by lcm{a, b}, is a
positive integer ¢ such that a and b are each di-
visors of ¢ (which makes ¢ a common multiple
of a and b), and such that ¢ divides any other
common multiple of a and b. The product of
the least common multiple and positive greatest
common divisor of two positive integers a and
b is equal to the product of @ and b.

The concept can be extended to a set of more
than two nonzero integers. Also, the definition
can be extended to a ring where a least common
multiple of a finite set of nonzero elements of the
ring is an element of the ring which is a common
multiple of elements in the set and which is also
a factor of any other common multiple.



(2) In ring theory, the ideal generated by the
intersection of two ideals is known as the least
common multiple of the ideals.

Inapolynomialring k[x1, ..., x,]overafield
k, the least common multiple of two monomials

m my ny ny .
xp c-oeexpand x| - --- - xp " is defined as
max(mi,ny) max(my,n,)
X, p .

least upper bound  See supremum.
Lefschetz Duality Theorem Let X beacom-
pact n-dimensional manifold with boundary X
and orientation U over the ring R. For all R-
modules G and non-negative integers g there
exist isomorphisms

Hy(X;G) < Hy(X\ X; G) — H" 9(X, X; G)

and

Hy(X,X;G) — H" 1 (X\X; G) < H" 9(X; G).

[Here j : X \ X C X.]

Lefschetz fixed-point formula  One of the
main properties of the /-adic cohomology. It
counts the number of fixed points for a mor-
phism on an algebraic variety or scheme.

Let X be a smooth and proper scheme of fi-
nite type of dimension n defined over an alge-
braically closed field k of characteristic p > 0.
Let I be a prime number different from p. Let
Q; be the quotient field of the ring of [-adic
integers. For each nonnegative integer i, let
H'(X, Q;) denote the [-adic cohomology of X.
Let f : X — X be a morphism that has iso-
lated fixed points each of multiplicity one. Let
/™ be the induced map on the cohomology of X.
Let Tr be the trace mapping. Then the number
of fixed points of f is equal to

S (1 x. o) -

i=0

Lefschetz number (1) A concept applica-
ble in several fields of mathematics, first intro-
ducedin 1923 by S. Lefschetz (1884-1972) after
whom it is named. The idea is as follows. Let
X be a topological space. Let f : X — X
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be a continuous map. For each nonnegative in-
teger k, f induces a homomorphism fj of the
homology group Hj (X; Q) (with coefficients in
the rational number field Q). If the ranks of the
homology groups (considered as vector spaces
over Q) are finite, then there is a matrix repre-
sentation for each f; and a trace #; of the matrix
which is an invariant of f;. The Lefschetz num-
ber of f, denoted by L(f), is then given by

L(f)=) (=D .
k=0

If everything is well defined, then L( f) is an in-
teger and, if different from zero, guarantees that
f has a fixed point. Everything will be well de-
fined, for example if X is a finite complex. Alter-
natives for X include a chain or cochain complex
of free Abelian groups (f an endomorphism of
degree 0) or a finite polyhedron of degree n with
integral coefficients ( f continuous, sum from 0
to n). There is a similar result if X is a closed
orientable manifold. Also, if f is the identity
map, then L(f) is the Euler characteristic.

(2) For complex normal Abelian varieties, the
difference between the second Betti number and
the Picard number is sometimes called a Lef-
schetz number.

Lefschetz pencil Let X be a smooth com-
plete (thus projective) algebraic variety over an
infinite algebraically closed field k. In the the-
ory of algebraic varieties it can be shown that
there is a birational morphism

T:X — X

from a smooth complete (projective) variety X
and a mapping

f:)N(—>P,1(

that is singular at most a finite number of points.
An inverse image f~!(x) is called a fiber and
contains at most one singular point which, if it
exists, is an ordinary double point. The family
of fibers is called a Lefschetz pencil of X. Some-
times the map f is called a Lefschetz pencil. In
the theory establishing the existence of X, itis
shown that fibers are hyperplane sections of X.
Sometimes it is said that Lefschetz pencils “fiber
a variety.”



Lefschetz pencils are involved in the proof of
the Weil conjecture. They are named in honor of
S. Lefschetz (1884—1972) who studied, among
many other things, nonsingular projective sur-
faces.

left A-module Let A be a ring. A left A-
module is a commutative group G, together with
amapping from A x G into G, called scalar mul-
tiplication and denoted here by juxtaposition,
satisfying forall x, y € G and all r, s € A:

Ix =x,

rx+y)=rx+ry,
(r+s)x =rx+sx,

and
(rs)x =r(sx).

Right A-modules are defined similarly.
Sometimes the term left or right is omitted. If
the ring is denoted by R, then the terminology
is left R-module. If addition and scalar multipli-
cation are just the ring operations, then the ring
itself can be regarded as a left A-module. If the
ring is a field, then the modules are the vector
spaces over the field.

left annihilator ~ The left annihilator of an
ideal S of an algebra A (over a field k) is a set

{a e A:aS=0}.

The left annihilator is an ideal of A. Similarly,
the left annihilator of S in R where S is a subset
of an R-module M (where R is a ring) is the set

{r e R:r§=0}.

left Artinianring A ring having the property
that (considered as a left module over itself) ev-
ery nonempty set of submodules (meaning left
ideals in this context) has a minimal element.
For such a ring, any descending chain of left
ideals is finite. Compare with left Noetherian
ring.

For a left Artinian ring, the radical is the
largest nilpotent ideal. See largest nilpotent
ideal. For a left Artinian ring, any left module
is Artinian if and only if it is Noetherian.
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Artinianrings are named after E. Artin (1898—
1962).

left balanced functor Let Ry, Ry, and R be
rings. Let Cg,, Cg,, and Cg be categories of
Ri-modules, R;-modules, and R-modules, re-
spectively. Let T : Cg, x Cr, — Cg be an
additive functor that is covariant in the first vari-
able and contravariant in the second variable.
Let A € Cg,. Let 4T : Cr, —> Cr be the
functor defined by

AT(B) =T(A, B) forall B € Cg, .

Let B € Cg,. Let Tp : Cp; —> Cg be the
functor defined by

Tp(A) =T(A, B)forall A € Cp, .

Then T is called left balanced if (i.) 4T is exact
for each projective module A € Cg, and (ii.) Tp
is exact for each injective module B € Cg,.
The definition can be extended to additive
functors T of several variables (some of which
are covariant and some contravariant) as fol-
lows. T is called left balanced if: (i.) T be-
comes an exact functor of the remaining vari-
ables whenever any one of the covariant vari-
ablesisreplaced by a projective module; and (ii.)
T becomes an exact functor of the remaining
variables whenever any one of the contravariant
variables is replaced by an injective module.

left coset  Any set, denoted by a S, of all left
multiples as of the elements s of a subgroup §
of a group G and a fixed element a of G. Every
left coset of S has the same cardinality as S. For
each subgroup S of G, the group G is partitioned
into its left cosets, so that for a finite group the
number of elements in the group (order) is a
multiple of the order of each of its subgroups.

left derived functor Let Ry, R, and R be
rings. Let Cg,, Cr,, and Cr be categories of R;-
modules, Ry-modules, and R-modules, respec-
tively. Let T : Cr, x Cr, — Cp be an additive
functor that is covariant in the first variable and
contravariant in the second variable. Let X be a
definite projective resolution for each module A
of Cg, and let Y be a definite injective resolution
for each module B of Cg,. From homology the-
ory, T(X,Y) is a well-defined complex which



can be regarded as being over T (A, B). Also,
because of the homotopies involved, up to natu-
ral isomorphisms, 7 (X, Y) is independent of the
chosen resolutions X and Y and depends only on
A and B. Therefore, the nth homology modules
H,(T(X,Y)) are functions of A and B.

If f:A—> A" and g : B —> B, there
exist chain transformations F : X —> X’ and
G :Y' —> Y over f and g. Any two such are
homotopic. The induced chain transformation

T(f,g): T(X,Y) — T(X',Y)

is determined up to homotopy, is independent
of the choice of F and G, and depends only on
f and g. This yields a well-defined homomor-
phism

H,(T(X,Y)) — H,(T(X',Y").

Define the nth left derived functor L,T :
Cr, xCg, = Cr by

L,T(A, B) = H\(T(X,Y))

and let L,T(f, g) be the well-defined homo-
morphism of the last paragraph

LnT(f9 g) : LI‘IT(A9 B) — LnT(A/, B/) .

left global dimension  Foraring A with unity,
the supremum of the set of projective (or homo-
logical) dimensions (i.e., the set of minima of
the lengths of left projective resolutions) of el-
ements of the category of left A-modules. It
is also equal to the infimum of the set of in-
jective dimensions of the category. A theorem
of Auslander (1955) shows that the left global
dimension is also the supremum of the set of
projective dimensions of finitely generated left
A-modules. As simple examples of left global
dimension, the left global dimension of the in-
tegers is 1, while the left global dimension of a
field is 0. See projective dimension, homologi-
cal dimension, injective dimension.

left G-set  Let G be a group with identity e
and juxtaposition denoting the group operation.

Let Sbeaset. Let p: G x § — S satisfy, for
eachx € S,

plab,x) = p(a, p(b, x))
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and
ple,x) = x.

Then S is called a left G-set and G is said to act
on § from the left. If juxtaposition ax is used
for the value p(a, x), then the two conditions
become (ab)x = a(bx), ex = x.

left hereditary ring A ring in which every
leftideal is projective. Alternately, aring whose
left global dimension is less than or equal to one.
See left global dimension.

If aring A is left hereditary, every submodule
of a free A-module is a direct sum of modules
isomorphic to left ideals of A. The converse is
also true.

left ideal A nonempty subset L of a ring R
such that whenever x and y are in L and r is in
R,x—yandrxarein L. Forexample, if R is the
ring of n x n real matrices, the matrices whose
first column is identically zero is a left ideal.
Ideals play a role in ring theory analogous to
the role played by normal subgroups in group
theory.

left invariant  Used in various fields to indi-
cate not being altered or changed by a transfor-
mation, usually a left translation. For example,
(in linear algebra) a subalgebra S of a linear al-
gebra A is called left invariant if S contains, for
any x € S, all left multiples ax for each a € A.
If the linear algebra A has a unity element, then
the left invariant subalgebra is a left ideal. In Lie
group theory and transformation group theory
there are left invariant measures, left invariant
integrals, left invariant densities, left invariant
tensor fields, etc.

left inverse element  Let S be a nonempty set
on which is defined an associative binary oper-
ation, say *. Assume that there is a left identity
element e in the set with respect to *. Let a de-
note any element of the set S. Then a left inverse
element of a is an element b of S such that

bxa=c¢e.

If every element of the set described above
has a left inverse element, then the set is called
a group. For a group, a left inverse element is
unique and is also a right inverse element. For



commutative groups, the inverse element of a is
usually denoted by —a. Otherwise, the notation
a~!is used. An element that has a left inverse

is sometimes called left invertible.

left Noetherianring A ring having the prop-
erty that (considered as a left module over itself)
every nonempty set of submodules (meaning /eft
ideals in this context) has a maximal element.
For such a ring, any ascending chain of left ide-
als is finite. Compare with left Artinian ring.

For a left Noetherian ring, the prime radical
is the largest nilpotent ideal. See largest nilpo-
tent ideal. For a left Noetherian ring, any left
module is Artinian if and only if it is Noethe-
rian.

Noetherian rings are named after A.E.
Noether (1882-1935).

left order  Let g be an integral domain in
which every ideal is uniquely decomposed into
a product of principal ideals (i.e., a Dedekind
domain). Let F be the field of quotients of g.
Let A be a separable algebra of finite degree
over F. Let L be a g-lattice of A. Then the set
{x € A:xL C L} is an order of A called a left
order of A. See order. See also ZG-lattice.

left projective resolution A left resolution
X of an A-module M (where A is a ring with
unity) such that each X, in the exact sequence

e Xy > Xy 1> > Xo—>M—>0

is a projective A-module, and is called a left pro-
Jjective resolution of M. See also left resolution.

left regular representation  Let R be aring,
M aleft R-module, and Homz (M, M) the ring
of module endomorphisms (where M is viewed
as a module over Z). For each r € R, let p, :
M — M be aleft translation (i.e., p, (x) = rx
for all x € M). If the ring homomorphism
o : R - Homz(M, M), givenby p(r) = p, for
all » € M is an injection, then p is called a left
regular representation of R in Homz (M, M).
Left (and right) regular representations are very
important tools in ring theory with many appli-
cations throughout the theory.
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left resolution  Let A be a ring with unit and
M an A-module. If the sequence

9, On—1
---—)Xn—n>Xn_1 n—)

A xS Mo
is exact, where X is a positive chain complex
of A-modules X, then the homomorphisms i
have the property that the composition 0 0g+1 =
0 for all k, and € : X — M is a sequence
of homomorphisms €; : Xy — M such that
€x—10r = O for all k, then X is called a left reso-
lution of M. This concept is used in homology
theory in the computing of extension groups.

left satellite  Let R; and R be rings. Let
Cr, and Cg, be categories of Ri-modules and R-
modules, respectively. Let T : Cr, — Cg be an
additive functor. A left satellite of T is an ad-
ditive functor defined over the same categories
as T and having the same variance (contra- or
co-). Once one left satellite of T (to be denoted
by S$17T) is determined, a sequence {S, T’} of left
satellites may be defined by iteration.

In order to define the functor S; 7 by describ-
ing its action on modules and homomorphisms,
some background notation and remarks on ho-
mology theory need to be presented. Left satel-
lites may be defined for covariant functors and
contravariant functors. Here, the procedure for
creating a left satellite from a covariant functor
will be described in some detail, with the cor-
responding procedure for contravariant functors
only sketched. There is also a parallel develop-
ment for right satellites.

Let A be an Rj-module. From homology
theory, it is always possible to construct an exact
sequence

o-msprlaso

with P projective. For what follows, since the
module S17(A) (to be defined) is only unique
within isomorphism (with respect to the choice
of P), a particular choice of exact sequence
needs to be prescribed (which can always be
done).

(i.) Suppose T is covariant. Let A € Cg,.
Let T(a) : T(M) — T(P). Define S;T(A) to
be Ker(T («)). Then the sequence

0— $iT — T(M)— T(P)



is exact. Let A, A" € Cg,. Letg : A - A’
Then there are exact sequences

0> M 3P L aso
g
0—>M’1>P’£>A’—>O

(with P and P’ projective) and ahomomorphism
f : P — P’ suchthat g8 = B'f. f defines
uniquely a homomorphism f” : M — M’ such
that fa = a’ f’. One then gets the commutative
diagram

Ty ™ 1Py
T I T
Ty 9 Tpy.

T (f") induces a homomorphism
O(g) : Ker(T (a)) — Ker(T (o)) .

It can be shown that ®(g) is independent of the
choice of f. Define

S1T(8) : S1(A) — Si(A)

by S1T(g) = ©(g). With this definition, S| T
becomes a covariant functor called the left satel-
liteof T.

(ii.) If T is contravariant, the procedure starts
with an exact sequence

O—>A—ﬁ>Qﬁ>N—>O,

with Q injective. Similar reasoning to the co-
variant case yields S; 7 (A) = Ker(7 («)) where
T(a): T(N) — T(Q)and $1T(g) : $;T(A")
—> S1T(A). Here, S;T is contravariant.

(iii.) The sequence of function S, T is defined
recursively from the exact sequences

O M—-P—>A—->0

and
0>A—-Q0—>N-—->0,

with P projective and Q injective as follows:
SoT =T,

S1T as given above .

© 2001 by CRC Press LLC

If T is covariant,

Sn+1T (A) = $, T (M)), n>1.
If T is contravariant,
Sn+1T (A) = S, T (N)), n>1.

Left satellites may also be defined for general
Abelian categories in a similar fashion.

left semihereditary ring A ring in which
every finitely generated left ideal is projective.
Compare with left hereditary ring.

Every regular ring is left semihereditary (and
right semihereditary).

left translation A left translation of a group
G by an element @ of G is a function f, : G —
G defined by

fa(x) = ax,

foreachx € G.

Lehmer’s method of finding roots A meth-
od, developed in 1960 by D.H. Lehmer, for find-
ing numerical approximations to the (real or com-
plex, simple or multiple) roots of a polynomial
using a digital computer. Lehmer’s method pro-
vides a single algorithm for automatic computa-
tion applicable for all polynomials, in contrast to
other methods, the choice of which, for a partic-
ular polynomial, is dependent on human judg-
ment, experience, and intervention.

Lehmer’s method includes a test for deter-
mining whether or not the given polynomial has
a root inside a given circle. The test is applied
at each iteration of the process (to be described
next) on circles of decreasing size.

Assume that zero is not a root. Starting (in
the complex plane) with the circle with center
0 and radius 1 apply the test to look for a root
inside the circle. If one is found, halve the radius
and retest for the smaller circle. If a root is not
found, double the radius and apply the test. In a
finite number of steps, an annulus

{x :R < |z| < 2R}

will be determined (where R is a power of 2) that
contains a root in the disk of radius 2R but not
in the disk of radius R. Next, cover the annulus



with 8 overlapping disks of radius 5R /6 and cen-
ters (SR/3)exp(2mi/8), for k = 0,1,...,7.
Test each of the 8 circles until a root is found
trapped in a new annulus centered at (say) o
with radii Ry, 2R;

{x Ry <|z—a| <2Ry},

with R| = 6?% for some s. The new annulus
is similarly covered by 8 disks and tested. After
(say) k iterations of this process, one gets a circle
of radius < 2(5/12) which contains aroot. One
continues until a prescribed accuracy is reached.
The strength of Lehmer’s method is its uni-
versality. The weakness is the rate of conver-
gence of the method which in practice may be
several times slower than less general methods
developed for specific types of roots.

length of module = The common number of
quotients M; /M; 1 of submodules of a module
M over aring R in a Jordan-Hélder or compo-
sition series

M=MyD>M D---DM;={0}

of M, if M has such a series. Any such chain
has the same number of terms. A necessary and
sufficient condition that M have such a series
is that it be both Artinian and Noetherian. See
composition series, Artinian module, Noethe-
rian module.

Leopoldt’s conjecture  The assertion in the
study of algebraic number fields that the Z,-
rank of the p-adic closure of the group of units
of a number field is the same as the Z-rank of the
group of units. This conjecture is an open ques-
tion in many cases. There are Abelian analogs
of the conjecture and analogs for function fields
of characteristic p. The conjecture is named af-
ter H.-W. Leopoldt, an extensive contributor to
the study of p-adic L-functions.

less than  See greater than.

less than or equal to  See greater than.

level structure A notion occurring in the
study of modulii spaces of Abelian varieties.
Usually a letter intrinsic to the variety discussed
is appended to the term.
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(1) Let A be an Abelian variety of dimension
n over a field k of characteristic p > 0. Letm be
a positive integer that is not a multiple of p. An
m-level structure with respect to A is a set of 2n
points on A which form a basis for the abstract
group By, (A) of points of order m on A.

(2) For polarized complex Abelian varieties,
the concept of a level structure can be consid-
ered as areplacement of all or part of the concept
of a symplectic basis. If the variety is of type
D, then the D-level structure for the variety is a
certain symplectic isomorphism.

There are generalized level m-structures, or-
thogonal level D structures, etc. The precise
definitions are quite detailed and require consid-
erable background and notational development.
Thus, they will not be given here. The associ-
ated modulii spaces for polarized Abelian vari-
eties with level structures are used in studying
properties of geometry and arithmetic.

Levi decomposition Let g be a finite dimen-
sional Lie algebra over the field of real or com-
plex numbers. Let radg denote the Lie subal-
gebra of g, called the radical of g. (See radi-
cal.) Let [ be any subalgebra of g. Then the
direct sum of vector spaces radg and / (radg @ 1)
forms a Lie subalgebra of g. If [ exists such that
radg @/ = g, then the sum radg @ [ is called
the Levi decomposition of g. The decomposi-
tion is named after E.E. Levi. The subalgebra
[ involved in the splitting is called a Levi sub-
algebra of g. A theorem of Levi (1905) states
that g has such a decomposition and a theorem
by Malcev (1942) establishes the uniqueness of
the decomposition.

There is a similar Levi (product) decompo-
sition in algebraic group theory given by G =
RadG x H where G is an algebraic group, RadG
is a unipotent radical of G, and H is an alge-
braic subgroup of G called the reductive Levi
subgroup of G. It is useful in reducing many
problems to the study of reductive groups.

Levi subgroup Let G be a Lie group. Let
RadG denote the radical of G. A Lie subgroup
L of G is called a Levi subgroup of G if (i.) the
identity imbedding of L into G is a Lie group
homomorphism, (ii.) G = (RadG) L, (iii.) the
dimension of (RadG) N L is zero. If the Lie



group is connected, there is always a (connected)
Levi subgroup. See Levi decomposition.

lexicographic linear ordering  Sometimes
called dictionary order, an ordering which treats
numbers as if they were letters in a dictionary.
Suppose, for example, S is a set of monomials
of degree n in m variables: that is,

_ ki ko k _
S=1x'x, X, Zk]—n
j=l1
kl k2 km -
then x| 'x,” ... x," is less than or equal to (<)

xi‘ xéz .. .x,l,'{’ if the first nonzero difference of

corresponding exponents k; — [; satisfies k; —
l; < 0. For example,

xl)sz%xi < X1XQ)C;X4 < x%xgxyu.
A lexicographic ordering for the field of com-
plex numbers C is defined as follows: if z; =
x1+y1i, 22 =x2+ yi € C, then z1 < 22 if
and only if

(x1 <x2) or (xy =x2andy; < y2) .

Since in both of these cases the order < is re-
flexive, antisymmetric, transitive, and satisfies
the trichotomy law, the order is a linear order, so
the order is called a lexicographic linear order.
More generally, if O1, O3, ..., O, are ordered
sets, the product set p = ]_[;”: 1 Oj is given a
lexicographic ordering < as follows: if a =
(ar,an,...,ay) and b = (by,ba, ..., b,) €
p, then a < b if and only if the first non-zero
difference of corresponding coordinates a; —
bj < 0. When each O; is linearly ordered, so

is p.

L-function Generally, a function of a com-
plex variable that generalizes the Riemann ¢-
function. L-functions are meromorphic on the
complex numbers C, exhibit both a Dirichlet se-
ries expansion and a Euler product expansion,
and satisfy similar functional equations. Some
generalizations of the ¢-function retain the ¢
identifier instead of an L. L-functions are im-
portant in the analytic study of the arithmetic
of objects in their corresponding mathematical
structures, including rational number fields, al-
gebraic number fields, algebraic varieties over
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finite fields, representations of Galois groups,
p-adic number fields, etc.

(1) The most direct generalization of the Rie-
mann ¢ -function is the Dirichlet L-function. Let
Z denote the integers. Let m € Z with m > 0.
Let x : Z —> C be a Dirichlet character mod-
ulo m (i.e., x # 0, x(a) = 0 if @ and m are
not relatively prime, x (ab) = x(a)x(b), and
x(a+m) = x(a)). Lets € C with Re(s) > 1.
Define L(s) as

o]

L(s) = Z x(n) '

nS

n=1

The definition exhibits the Dirichlet series ex-
pansion which converges absolutely and makes
L a holomorphic function for R(s) > 1. Itis
equal to the Euler product

1

p P

over primes p. It can be extended as a mero-
morphic function over C. If x is defined to be
identically 1, the Riemann ¢-function itself is
obtained. The two functions have many sim-
ilar properties. For example, the study of the
location of zeroes of the L-function leads to a
generalized Riemann hypothesis.

(2) Hecke L-functions and Hecke L-functions
with grossencharakters are generalizations of
the Dirichlet L-functions to algebraic number
fields. Other L-functions that can be considered
generalizations of these include those of Artin
and Weil involving Galois extensions of an al-
gebraic number field. There are L-functions as-
sociated with algebraic varieties defined over fi-
nite fields, p-adic L-functions defined over the
p-adic number field Q,, and automorphic L-
functi