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Preface

Finite difference (on rectangular networks) and finite element meth-
ods are the two most important classes of numerical methods for
partial differential equations. The finite difference method is partic-
ularly preferred for hyperbolic equations, especially quasi-linear ones
which admit discontinuous solutions. The main defects of the differ-
ence method are: the considerable geometrical error of the approxi-
mation of curved domains by rectangular grids; the lack of a united
and effective approach to deal with natural and internal boundary
conditions; the difficulty to construct difference schemes with high ac-
curacy, unless we allow the difference equation to relate more nodal
points (which will in turn further increase the difficulty in dealing
with boundary conditions). In 1953, R.H. MacNeal used integral
interpolation (or integral balance) methods to establish difference
schemes on irregular networks. These schemes reduce the geometri-
cal error and, in particular, provide a united and effective approach
to handle natural and internal boundary conditions, marking a sig-
nificant advance in the development of difference methods. But in
the following two decades, MacNeal’s method did not attract much
attention, perhaps because people had turned their attention to finite
element methods. Among the few people doing research in the field
at that time, I would like to mention A.M. Winslow (1967) and the
engineering and mechanics group at Dalian Institute of Technology
(1973). They employed the linear finite elements to construct differ-
ence schemes on arbitrary triangulations (besides the circumcenter
dual grid discussed by MacNeal, they also considered the barycenter
dual grid), and applied them to the computation of the electromag-
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iv Preface

netic fields and the stress of elastic bodies. Since the late seventies,
there have been series of papers on difference methods on irregular
networks in the former Soviet Union and the former East Germany.
Basica.lly they followed MacNeal’s approach to construct difference

PR adamdad tlha Paninaurmanls Af alaacinanl Aiavanna mathadag
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to establish a priori estimates (especially the extremum principle),
convergences and error estimates. These results were included in B.
Heinrich's monograph: Finite Difference Methods on Irregular Net-
works, ISNM 82, 1987.

Although the difference method on irregular networks has suc-
cessfully reduced the geometrical error and overcome the difficulty
in dealing with natural boundary conditions, it has not resolved the
problem of constructing high accuracy difference schemes, and hence
cannot match finite element methods in this respect. Besides, its
error estimates require too many restrictions and are usually not op-
timal. Therefore, the theory of finite difference methods is still not
as perfect ag that of finite element methods. In 1978, the first author
of this book utilized finite element spaces and generalized charac-
teristic functions on dual elements, i.e., the common terms of the
local Taylor expansions, to rewrite integral interpolation methods in
a form of generalized Galerkin methods, and thus obtained a gen-
eralization of difference methods on irregular networks, that is, the
go-called generalized difference methods (GDM for short). Since then,
extensive research has been carried out on the theory and applica-
tion of GDM, such as constructing linear and high order difference
schemes for elliptic, parabolic and hyperbolic equations, establishing
optimal error estimates in Sobolev norms, and applying GDM to un-
derground fluids, electromagnetic fields and other practical problems.
Both the theoretical observations and the computational experiments
show that GDM enjoy not only the simplicity of difference methods
but also the accuracy of finite element methods. To elaborate, the
advantages of GDM are summarized as follows:

1. The grid is flexible (allowing, e.g., triangular and quadrilat-
eral grids), the geometrical error is small, and the natural boundary
conditions are easy to deal with.

2. The computational effort is greater than in (classical) finite



Preface v

.difference methods and less than finite element methods, while the
accuracy is higher than with finite difference methods and nearly
the same as with finite element methods. (The orders of the error
estimates of GDM are the same as those of finite element methods,
but nractical computations show that finite element methods nerform
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slightly better than GDM, perhaps due to the different magnitude of
the constants in the error estimates.)

3. The mass conservation law is maintained, which is fairly desir-
able for, e.g., fluid and underground fluid computations.

4, The theory of GDM is almost as perfect as that of finite element
methods. On the other hand, a special case of first order GDM leads
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irregular networks.

5. The variational form of GDM (the generalized Galerkin form)
is helpful to connect the theories and algorithms of finite element and
finite difference methods.

Therefore, GDM are meaningful generalization of difference meth-
ods and their further development seems promising. In 1994, the first
two authors of this work wrote a book Generalized Difference Methods
for Differential Equations, published (in Chinese) by Jilin University
Press, in which is summarized the research of Chinese researchers on
this topic in the preceding ten years.

At the end of the seventies and the beginning of the eighties, some
computational fiuid researchers (e.g., S. V. Patankar and A. Jameson
among others) proposed to apply the difference method on irregular
networks to the computation of compressible and incompressible fluid
equations. Due to its many advantages, in particular its inheritance
of the mass conservation law, this method developed rapidly, and
by the end of the seventies, it had become one of the most efficient
methods for fluid computation. This method appeared under many
different names in the literature. But by the end of the eighties,
people usually called it the finite volume method, or finite control
volume method, indicating that it is a discrete approximation of the
control equation in an integral form. This method is basically equiv-
alent to the generalized difference method with piecewise constant
and piecewise linear elements. Using the finite volume method to
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construct numerical schemes for nonlinear conservative equations ac-
tually amounts to generalizing the classical difference schemes (such
as Godunov or TVD schemes) to arbitrary grids (including triangu-
lar and tetrahedral grids). Not until the end of the eighties, did the
numerical analysts get involved in the research of the finite volume
method, and by now they have taken it as one of their favorite topics.
For the convenience of international communication, we rewrote the
Chinese edition of this book in English, and supplemented it with
some new materials and recent important references. The original
name Generalized Difference Methods for Differential Equations sur-
vives, but we have added the subtitle Numerical Analysis of Finite
Volume Methods. In this way we expect to indicate that, on one hand,

the generalized difference method is an extension and a development
of the finite volume method, and on the other hand, it also provides
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from another angle a theorstical basis for the finite volume method.
This book is divided into eight chapters and arranged as follows.

Some preliminary materials are gathered in Chapter 1, such as a
discussion of Sobolev spaces and the basic results of variational prob-
lems and their approximations. In particular, an abstract framework
of the generalized difference method is provided in this chapter for
later use. '

Chapters 2 (except §7) and 3 discuss GDM for one- and two-
dimensional second order linear elliptic equations, construct the gen-
eralized difference schemes with first-, second- and third-order ele-
ments, and establish some fairly comprehensive H! and L? error es-
timates, including certain superconvergence estimates. These results
are basically parallel to those of finite element methods, but usually
more difficult to prove.

GDM are extended to second-order nonlinear elliptic equations
and biharmonic equations in Chapter 4 (and §7 of Chapter 2). As
the orders of the partial differential equations increase, the noncon-
forming feature of GDM becomes more evident, making it more dif-
ficult to construct schemes and estimate errors. We introduce in this
chapter the GDM based on mixed variational principles (§§2-3) and
certain modified variational principles (§§3-4). The corresponding
error estimates are also presented.
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The GDM for parabolic equations are treated in Chapter 5 in a
way similar to the corresponding finite element methods.

The GDM for hyperbolic equations, especially the first order sys-
tems, are considered in Chapter 6. The GDM for elliptic equations
cannot be directly extended here. Instead we modify a discontinuous
finite element method to obtain a generalized upwind scheme with
high accuracy. The convergence order is shown. §4 of this chapter
discusses briefly the finite volume method for nonlinear conservative
equations, and the corresponding references are provided.

Chapter 7 presents the GDM for convection-dominated diffusion
equations. The basic idea is to use GDM to discretize the diffusion
term, and upwind or high accuracy upwind schemes to the convection
term. For the sake of comparison, we also outline in §1 of this chapter
the characteristic difference method proposed by Douglas and Russel
in the early eighties.

Chapter 8 is devoted to the applications of GDM to plane elas-
ticity problems, electromagnetic fields, groundwater contaminations,
Stokes equations, coupled sound-heat fiows, and the regularized long
wave equations. By virtue of the variational form of GDM, we are
also able to extend the hierarchical basis methods for finite element
equations to difference equations.

A Bibliography and Comments section is attached to the end of
each chapter. A complete (to the best of our knowledge) bibliography
is provided at the end of the book, which is divided into three groups:
A in Chinese, B in English (including a few papers in German and
French), and C in Russian.

We would like to thank Jilin University Press for its kind permis-
sion for the English edition of this book. Particular recognition is
due to Prof. Yuesheng Xu of the North Dakota State University for
his enthusiastic encouragement and support. We are grateful to the
referees of this manuscript for their careful reading and many valu-
able suggestions. The research of the authors is partly supported by
the National Natural Science Foundation of China. The third author

also thanks The Third World Academy for financial support.
Ronghua Li
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Chapter 1

PRELIMINARIES

1.1 Sobolev Spaces

Sobolev spaces and their interpolations are basic tools for numerical
solutions of partial differential equations. The main related results
are outlined in this section, cf. [A-19] and [B-1] for details.

1.1.1 Smooth approximations. Fundamental lemma of
variational methods

Let R™ be an n-dimensional Euclidean space and 2 a region in R".

LP(Q) (1 £ p < o0) denotes the set of all the functions defined on

Q of which the p-th powers are integrable, and L*°(Q) all essentially

bounded (i.e. bounded except on a zero measure set) measurable

functions. LP(Q2) becomes a Banach space if supplied with a norm

sz . P 1/
([ 1o)Pes) ™, 1<p < oo
Ielle = sns [u(z) inf sup |u(z)| 00
ess sup |u(z)| = inf su = 00.
zeg me=0menge P
Here me denotes the Lebesgue measure of the set e. Denote by C™(Q) -
the set of m-th continuously differentiable functions defined on £,
and C*®(Q) of infinitely differentiable functions. C°(Q) is simplified
as C(Q). The closure of the set {z € Q : u(z) # 0} is called the
support of the function u and denoted by supp u. C§*(2) and C§°(2)

1
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are subsets of C™(Q) and C*®°(R), respectively, containing functions
with compact supports in .
Take any function j(z) satisfying the following conditions:

(i) (=) € CF°(R");
(u) j(z) 20, j(z) = 0 when |z| > 1;

(1if) /R jle)dz =1

For example, we can set

where ‘ '2
x

= -2 __Vdg.

7 |m|<1e""( o)

Definition 1.1.1 An integral operator J,

with a kernel )
v . (T =Y :
Je(z,y) = ;;;J("—e—‘) (€>0)

18 called a smoothing operator, and Jou an averaging function.

The following theorem summarizes the main properties of the
averaging function.

Theorem 1.1.1 (Average approximation theorem) For any function
u € LP(Q) (1 £ p < ), we define its value to be zero outside of Q.
Then we have

(i) Jeu € C®(R™) N LP(N), and Ju € C§°(R™) when supp v is
bounded;

(i) [1Jeull, < lull

(@) T Jcu — ul, = 0
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Theorem 1.1.1 indicates that the functions in LP(Q) (1 < p <
00) can be approximated by sufficiently smooth functions. In other
words, C®(R") is dense in LP(Q) for 1 < p < co. Furthermore, we
have the following theorem.

Te . ) NODLNN g e emsean
P <00, then Lg-{iL) 18 aense in L7(3L).

Mmoo i 4 N -
lneorem i.1..4 1 1

IA

The following theorem can be proved by the average approxima-
tion theorem.

Theorem 1.1.3 (Fundamental lemma of variational methods) If u €
LP(Q) (1 < p < 00) satisfies .

/n ugds = 0, Vé € C(Q),

then u = 0 almost everywhere on Q.

Proof In fact, je(z,y) € C°() forany 0 < e< dand z € Q5 =
{z € Q: dist(z,09) > d}. So we have

- Jeu(z) = /ﬂ Je(z, y)u(y)dy = 0, Vz € Q5.
It follows from Theorem 1.1.1 that
lullzeqs) = lu = JeullLo(as) < llu — Jeul|Lo(n) — 0 (as € = 0).

This leads to the desired conclusion. |

'1.1.2 Generalized derivatives and Sobolev spaces

Write the partial derivative of the function v as

[¢]
Dau = _M___
Y
terh Ozn
where a = (a1, '+,q,) is an n-index, oy, ++, 0 are non-negative

integers and |a| = a1 + -+ + ap.
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Definition 1.1.2 Let L} () be the local Lebesgue integrable func-
tion space and u € L} (Q). If there exists a v € L () such that

fn védz = (~1)lo! /ﬂ uD®¢dz, Vo € CP(Q),

then we call v an |a|-th generalized derivative of u and write v = D%u.

By the fundamental lemma of variational methods, a generalized
derivative must be unique as long as it exists. It is easy to show
that if a classical derivative of u exists and belongs to L%(f), then
its generalized derivative also exists and is identical with the classical
derivative. Hence the generalized derivative is indeed a generalization
of the clagsical one. '

Generalized derivatives enjoy the following properties:

(i) D*(au + bv) = aD%u + bD®v (a, b are constants),

(ii) D*y = D*(DPu),

(iif) D(uv) = vDu+uDv (D = 52")’

(iv) D% = 0 for all @ with |a| = mfif and only if u equals to an
(m — 1)-th polynomial almost everywhere.

Definition 1.1.3 Let m be a non-negative integer and 1 < p < oo.
Set

WmP(Q) = {u € LP(Q) : D% € LP(Q), Yo, 0 < |a] < m},

and supply it with a norm || - |lm,p
1
ID=ulfp) P tori<p<oo,
0<faf<m

o -
o3 D%l oos for p = oo.

ullm,p =

Define W"P(Q) as the closure of C§°(Q) with respect to the norm
| * limp- The normed linear spaces W™P(Q) and Wy () are called
Sobolev spaces on Q.

In particular when p = 2 we write W™P(Q) and Wg"P(Q) as
H™(Q) and HJ*(Q) , respectively. It is an easy matter to see that
WoP(Q) = LP(Q) and HO(Q) = L3(Q).
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W™P(Q) and Wy “P(Q) are obviously Banach spaces, and H™(Q)
and H{*(Q) are Hilbert spaces equipped with an inner product

(wv)m= Y (D%,D%)pq), u,v € H™(Q).
0Z|al<m

The norm || - |lmp is written as || - ||mp,n When the region needs
to be specified, and as || - ||, when p = 2 and there is no danger of
confusion. We can also introduce a | - |, , semi-norms

1
( P ”Dau“g,p) /P’ for1 < p < oo,

la|=m

max ||D%ljp,.0,  forp = oo.
|a|=m

[ulm,p =

The following theorem on equivalent norms can be proved by the
compact imbedding theorem given later on.
Theorem 1.1.4 (Equivalent norm theorem) Suppose & C R" is a
bounded L-region; m 2 1; 1 < p < 0o; and Iy, ++,In are bounded
linear functionals on W™P(Q) and they are not simultaneously equal

to zero on any nonzero polynomial of degree less than or equal to
m — 1. Then the functional

N
lull = (ulmp + 2 13 (w)]
j=1
on W™P(Q) is an equivalent norm, that is, there exist constants

a, 8 > 0 such that
allul| < Jlullmp < Bllull, Yu € W™P(Q).

Remark By an L-region 2 we mean that © has a local Lips-
chitz boundary, that is, there is a neighborhood U, for each point
z on the boundary of Q such that Q2 N U, can be expressed as a
Lipschitz continuous function with respect to certain local Cartesian
coordinates.

By virtue of the above theorem and the trace theorem (Theorem
1.1.9 below) we know that |jul| = |u|ip + l Jan uds' is an equivalent

norm for W(Q). So there exists 8 > 0 such that
[ulop < Blulyp, Yu € Wy (Q).
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Using this and the inductive method leads to the following theorem.

Theorem 1.1.5 Let Q € R™ be a bounded L-region and m 2 0, 1 <
p < 00, then |u|mp is an equivalent norm for W5 P (Q).

Some important properties of Sobolev spaces are given in the
following theorem. -

Theorem 1.1.6 Let Q € R™ be a region and m > 1. Then we have
the following: ,

(i) wm?(Q) (1 < p < o0) is separable.

(i) W™P(Q) (1 < p < o0) is reflezive and uniformly convez.

(iii) {u € C®(Q): ||lullmp < o} is dense in W™P(Q) (1 <p <
00); 80 C®(Q) is dense in W™P(Q) (1 < p < x); and C®(Q) s
dense in W™P() (1 £ p < o0) when Q is a bounded L-region. -

Property (iii) enables us to make an equivalent definition when Q
is an L-region:

W™P(Q) = the completion of C*°({?) under the norm || - || p-

Next we introduce the Sobolev spaces with negative index. For
1<p<oo,letp =p/(p—1) be its conjugate index. Write

(u, ) =/nu(m)'v(m)da:.

For any v € L* () we define a bounded linear functional L, on
Wo P Q)
Ly(u) = (u,v), Yu € W(;n’p(ﬂ),

(Lol = sup | Lo (u)-
uEWGF (0),]lullm,p <1

It can be verified that V ={L,: v € L7 (9)} is dense in (W™P(Q))',
and hence its closure V = (Wg"?(2))’. (The notation B’ denotes the
dual space of a Banach space B.)
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Definition 1.1.4 Let1 <p < oo, p' =p/(p— 1) v € L7 (Q). Define
a negative norm of v by |lv||_pp

"'U”—m,p’ = sup [, v)|.
EWR" P (Q),]lullm <1
Oarrespom'iingly we define the Sobolev spaces with negative indez:
WP (Q) =the completion of L¥ (Q ) in the norm ||« ||—mp.
When p' = 2 we write H-™(Q) = W~m¢'(Q).

Notice that L? (Q) and V are isometrically isomorphic, so we have
the identification

1192 Trnh
LeXod ALXID

The next two theorems reveal some more profound properties of
Sobolev spaces.

Definition 1.1.5 Let X and Y be two normed linear spaces. We say
that X is imbedded in Y, writien as X = Y, if

(i) XY,

f38N ML 1Y _..al

\li} Ln€ taenui
continuous, i.e., &

camrdmai: T oo ot o~ YV 4 T, o~ 2
Crawor 4 jnapping & © A o Il T I 18

constant M > 0 such that
Mzlly S Mlz||x, Vz € X.

o S
@
a
v
8
D,
@

- I is called an imbedding operator and M an imbedding constant.

Theorem 1.1.7 (Sobolev imbedding theorem) Suppose that Q@ C R™
is a bounded L-region, that m,k are nonnegatwe constants and that
1< p<oo; then
Wmtkp(Q) - Whe(Q) for 1 < g < npf(n — mp) and m < n/p;
wmtke(Q)  Wk(Q) for 1 < g < oo and m =n/p;
wmtke(Q) — C*(Q) for m > n/p.
In particular, '

W™P(Q) = LI(Q) for 1 < g < np/(n — mp) and m < n/p;
W™P(Q) = LI(Q) for 1 £ g < oo and m = n/p;
WwmP(Q) — C(Q) for m > n/p.
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Theorem 1.1.8 (Compact imbedding theorem) Under the assump-
tion of Theorem 1.1.7, the following imbedding operators are compact:
Wmtke(Q) — W9(Q) for 1 £ g < np/(n — mp) and m < n/p;

Wmtkp(Q) — Whe(Q) for 1 < q < oo and m = n/p;
Wwmtkp(Q) — CF(@Q) form > n

NS \Il(d’ A\ IO I(d,tl.l
It should be pointed out that the elements of W™?(Q2) are in fact
equivalent classes. Almost equal functions are said to be equivalent
and classified into an equivalent class. W™?(Q) — C(Q) means that
any u € W™P(Q) must be equivalent to a function in C(Q), i.e., the

equivalent class u € W™P(Q) contains an element belonging to C'(Q?),
and that there exists a constant M such that

Now let us consider the boundary value of the functions of H™((2),
i.e., the trace ulsn of u. Suppose a bounded region Q possesses an
m~th smooth boundary 9. Since 92 has zero measure in R", it
is meaningless to talk in the usual sense about the value of v on
the boundary 8Q. Some precise and reasonable definition must be
introduced. The idea is to employ the density of ('vm(()\ in Ffm(O\

to generalize the definition.

Definition 1.1.6 Assume that Q& C R™ is a bounded region with an
m-th smooth boundary 0Q and that u € C™(Q). The linear operator
(0,725 ** y¥Ym~1) 18 called a trace operator, where

u )
7ju:3—n789’ OS]Sm_l)

and 3-8’-:-]- denotes the j-th directional derivative on the outer normal
direction of 0%2.

Lemma 1.1.1 For the above mentioned region we have a constant
C > 0 such that

lvjulloen < Cllullj+1,0, Yu € C™(@), 0<j < m—1.
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For u € H™(Q) we can choose a sequence {ux} C C™(Q) such
that |lu — ugljma — 0 as k = oco. It follows from the lemma that
{~jux} is a Cauchy sequence in L?(90). So there is a limit v; €
L?(89Q). v; is obviously independent of the choice of {u}. Thus, we
can define the trace of u € H™(Q) on 9 as

= v; = lim Yy;u.
W J Ic-)co% k

Theorem 1.1.9 Suppose that Q C R™ is a bounded region with an
m-th smooth boundary and that u € H™(Q)). Then there exists a
constant C > 0 independent of u such that

Iv;ullope € Cllullj+1,0, YO<j < m—1.

In particular,
llullo,oe < Cllulli,o.

The last inequality (the imbedding H(Q) — L%(6Q)) only requires
O to be a Lipschitz continuous surface. , '

Finally we point out that it follows from the definition of the trace
operator that ‘

Bp(@) = {u€ B™Q): yu=22 =0,0<j<m-1}.

gu
onilan
1.1.4 Finite element spaces

Essentially a numerical method for differential equations means dis-
cretizations of the infinite dimensional function spaces and approxi-
mations of the original equations by equations in finite dimensional
spaces. The interpolation is a basic method to construct these finite
dimensional spaces, and the error estimates of the approximate solu-
tions and the true solutions often rely on the error estimates of the
interpolate approximations. QOur interpolate approximation problem
involves Sobolev spaces, with the approximating finite dimensional
spaces being piecewise polynomial spaces (finite element spaces) sub-
ject to certain constraints. The related concepts and results consti-
tute the so-called interpolation theory of Sobolev spaces.
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In this subsection, let us first introduce the finite elg:r_nent spaces.
Let T, be a decomposition of a region 2, dividing ? into finite
bounded closed sets K’'s which possess Lipschitz continuous bound-

aries, share no common inner points and have nonempty interior. So
Q= U K. Here K is called an element of T and A stands for the

ALATLT An am (22 3] ¥ VA ag Qeale Jv wuRalaN VA valT

largest element diameter.

Definition 1.1.7 A finite dimensional space V}, is called a finite el-
ement space with respect to the decomposition T}, if we have the fol-
lowing:

(i) For each K € Ty, the set Px = {p : p = uvp|k, Vvp €
Vi} is a family of polynomials. And there exists a set of freedoms
Yk = {li;1 £i < N} (namely a set of linearly independent linear
functionals, often presented as a group of parameters {a;,1 <t < N},
c.f. the examples below), which is Pk -uniquely solvable: for any given
{1 <1 < N} there exists ¢ unigue function p € P satisfying

li(p)=ai9 1<i<N;

(i) The functions of Vj, possess certain smoothness on Q, e.g.,
‘f C ﬂmfn\ /Inn ie o non- manntiaa ambonam)

TeUTv=ivbywrve vivevyur /.

The tmple {K, Pk, >k} specifies a finite element space.

We observe the following fact:
Vi = {vn € C™(Q) : wp|k € Pk, K € Ty} C H™}(Q).

Next we give some examples of finite elements.

Triangulation. Suppose I C R? can be decomposed into finite
triangles such that different triangles have no overlap interior region,
and a vertex of any triangle does not belong to the interior of a side
of any other triangle. All such triangles form a decomposition of 2,
called a triangulation and denoted by Tj, = {K}. The element K
with vertexes a1, a2 and ag can be expressed as

K={(@y): @y = Z/\.a,,0<)\1<1(1<z<3 Z,\,_l}

i=1 i=1
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Ai = M(z,y) (i = 1,2,3) are called area coordinates of the point
(z,y). Denote by Py(K) the set of polynomials on K of degrees less
than or equal to k.

Example 1 Lagrange linear element.
K = Aajazas (cf. Fig.1.1.1);

Py =P1(K), dim Pg = 3;

Yk = {p(a;) :i=1,2,3}.

Any p € Px is determined uniquely by its values on the vertexes

a1,a2 and ag:
3

p=> pla)k

i=1
It is easy to see that the corresponding finite element space Vj, C
C(Q), and hence V;, C H}(Q).

Example 2 Lagrange quadratic element.
K = Aajagas, and the midpoints a;; = -21-(047 +a;) (see Fig.1.1.2);
Pg = Po(K), dim Px = 6; ‘
Tk ={p(ai),1 L1 < 3;p(ai5),1 £i <j <3}
Any p € Pk is determined uniquely by its values on the vertexes and
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the midpoints:

p= 23: Ai(22 — L)p(as) + D 4hiAsp(aij)-
i=1 i<j
The corresponding finite element space V;, C C(2) N H().
Example 3 Hermite cubic element.
K= Aa1d2a3, and the barycenter ajo3 = %—(al + ag + a3);
Py = P3(K), dim Px = 10;
Op(ai) Op(ai)

do= {P(az'), ) _Ty_—’l <i< 3;10(0123)}-
K

Any p € Px has the following expression:

3
p= 3 (=27 + 327 = Thrdeda)p(ai) + 27A1 A2 A3p(a12s)

i=1
+Z)\5)\j(2)\,’ + Aj = 1)Dp(a;) « (aj — as),
i#j
_ (9p(a) 0p(a) e
where Dp(a) = ( % oy ) The corresponding finite element

space V; C C(Q) N HY(Q).

Example 4 Restricted Hermite cubic element (Zienkiewicz el-
ement).

K = Aajagag;
1 13
W SRSy VISR I o WSV L v MUV SNL Y S |
Fr=pers(i&):plarzs) =3 2 plai)=g 2 Dpgi) - (ai—a1z3) f,
i=1 i=1

dim Pg =9, Px D Pa(K);

k= {p(ai), ?-%i—:l, a’;(:‘),l <ig 3}.

The expression of p € Pk can be obtained by inserting the constraint
condition on p(aiz3) in the definition of Px into the second term of
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the expression in Example 3. The correspondmg ﬁmte element space
Vi C C(Q) N HY(Q).

Rectangular grid. Suppose the region Q C R? can be divided
into a sum of finite number of rectangles with each side of the rect-
angles being parallel to the axes of coordinates. Any two different
rectangles either are disjoint or share a common side or vertex. All
the rectangles constitute a grid of , called a rectangular grid. The
affine mapping.

€= (z—m)/Az, n=(y—yi)/Ay
maps the rectangle
K={(z,9):2; <z <2+ Az, <y < yi + Ay}

onto a unit square [0, 1;0,1]. Denote by Qj the set of polynomials of
z and y with degrees less than or equal to k. Note Py, C O C Pay.

K = rectangle ajazagay;
Py = Qi(K), dimPx = 4;
Tk = {p(ai),1 <i <4}

4
VpE Pk, p= _le(ai)m,
1=
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where

pr=1—-E)1—n), yp=E1—1), pa=En, pa=(1-En.
The corresponding finite element space V;, C C(Q2) N H(R).
Example 6 Lagrange bi-quadratic element (Fig. 1.1.6).
K = rectangle aia3agay4, midpoints as, ag, a7, ag, barycenter ag;
Pg = Q3(K), dimPx = 9;
Tk ={p(ai),1 <i< 9}
Vp€ Pg, p= 'élp(ai)#ia
where
p=(26-1)(¢-1)2n —1)(n - 1),
pe =¢(26 - 1)(2m - 1)(n-1),
p3 = §(2£ — 1)n(2n — 1),
pa = (26 = 1)(€ ~ D20 — 1),
ps =4£(1—&)(2n - 1)(n - 1),
pe = 4£(26 — 1)n(1 - n),
pr = 4£(1 = &)n(2n - 1),
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=4(2¢£ - 1)(¢ = 1)n(1 ~n),
po = 166(1 - &)n(L — n).
The corresponding finite element space Vi, € C() N H1().

Example 7 Hermite bi-cubic element (Bogner-Fox-Schmidt
rectangular element).

K = rectangle a;aza3a4;
Py = Q3(K), dim Px = 16;

dp(a;) Op(as) 8? (a;) ,
i = {pla), 2500, S8, SEE 1< i < 4},

The corresponding finite element space Vi, C C*(Q7) N H2(Q).

Examnle 8 Hermite i

A AR RS

gular element).
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K = rectangle ajasagay;
Px = {p = ps(z,y) + az’y + By’ :
pS(m,y) € P3(K) a,B € R}a dim Px = 12;

. SV 6p(a.) dp(a;)
ZK-—ipa@), By 1<z<4}

The corresponding finite element space Vj, C C(Q) N H(R).
In the above examples, the set of freedoms }, is composed of
the following ”interpolation functionals”:

1% : p - D%(a;),

where a;’s are nodes of the finite element, o = (a1, ag), and the orders
of the derivatives |a| = 0,1,2. Other kinds of freedoms can also be
considered. For more examples of finite elements see, e.g., [A-2) and
[B-17].

1.1.5 Interpolation error estimates in Sobolev spaces

The main results of the interpolation theory in Sobolev spaces -are
given in this subsection.
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Definition 1.1.8 For a given finite element {K,Pk,) g}, we call
Uxv o Px-interpolation of v € C*(K) (where s is the highest order
of the partial derivatives in 3 5 ), if

IIgv € Py,
I(Tlgv) =1l(v), Vi€ g

Ik : C*(K) — Py is then called a Py -interpolation operator. Let Vi
be the finite element space related to the grid T, = {K}. We define
[,v, the Vj-interpolation of v € C*(Q0), by

IIpv € Vy,

I, : C4(Q) — V,, is referred to as a Vi -interpolation operator.

Now our main task is to provide the error estimates, in the norm
| * llm,q,k» of v € Wk+LP(K) and its Pk-interpolation Igwv, under
the imbedding conditions W*+1P(K) — C*(K) and WH+lP(K) —
Wm4(K). First we show a relationship between the norm and semi-
norm of quotient spaces.

Theorem 1.1.10 Take a quotient norm

Hollk+1.0 = piengk lv + pllk+1,p0, 0 € WHI”’(Q)/?’M

in the quotient space W*+LP(Q) /Py, where v is any element in the
equivalent class ¥. Then there exists a constant C = C(Q) such that

19lk+1,0,0 < Clolks1,p,0, VO € WEHLP(Q) /Py

An easy consequence of Theorem 1.1.10 is the following abstract
estimation for linear operators invariant with polynomials of degree
at most k.

Theorem 1.1.11 Let Q be a bounded open set with a Lipschitz con-
tinuous boundary. If

(1) Whbe(Q) » w™e(Q),



Preliminaries ' 17

(ii) IT is a bounded linear operator from WE+LP(Q) to W™(Q),
and is invariant on Py: '

Ilp = p, Vp € Py,
then there ezists a constant C = C(Q) such that
fu = To|mga < CI =TI - [v]k+1,0,0, Yo € WHHLP(Q).

The constants C and ||I — II|| in the above estimate depend on
the region © and the operator II respectively. To obtain an error
estimate for a family of finite elements, we need to relate these finite
elements with a special finite element through an affine mapping.

~ A

N it 1.1.9 Two finite al
101 11

Uellll cr LedeoJ £ wu Ilb uwc c e oL
aid to be (affine) equivalent, if there exists an invertible affine map-
pz’ng F:2eK-z= F(%) € K satisfying

ambo Y amd (DY ama
i Habﬂ ‘L.ll’l- ,I-JI wrow 111,1 ,u! wro

K = F(K),

P={p=poF ' peP},

E={:p— ii(p), Yp=po F L, € o).
A family of finite elementsb is referred to as an affine family, if all the
finite elements in the family are (affine) equivalent to a certain finite

element, called the reference element of the family. An affine family
i said to be regular if there exists a constant o such that for all K

hx/px < o, and hg — 0,
where hg =diam(K), px = sup{diam(9) : the ball § C K}.

The next result reveals a relationship between the Sobolev semi-
norms of a function before and after an affine mapping,.

Theorem 1.1.12 Let Q and Q be two affine equivalent open sets in
R", i.e., there is an invertible affine mapping

F:2eQ—-F@#)=Bi+beq,



18 Chapter 1

such that
Q= F(f),

where B is an n X n nonsingular matriz and b an n-dimensional

vector. Then there exists a constant C. = C(m,n,p) independent of

O amd B ah +hat fam nma a1 & 'I'/Tfm Dfn\
ez GNG o auwh that jorany v e w \8e)

9lm g, < CILBI™| det BI™/*[u|mp,0,

where 9(2) = v(F(2)). Conversely, for any & € W™P()
[vllmz,a < CIIB~|™| det B|'/?|9|
where v(z) = 9(F~(z)). Besides,
IBIl < ha/pg, 1Bl < ha/pa,
| det B| = meas(f2)/meas({2),
where hg = diamQ, po = sup{diam$ : the ball S C Q}.

Transfer, by virtue of Theorem 1.1.12, the estimate for the inter-
polation error v—IIxv of the finite element { K, P, X} to the reference
element {K, P, 3}, and apply the abstract estimate given in Theorem
1.1.11 to the reference element, then we have the following important
result,

m,p,S

Theorem 1.1.13 For a given regular family of finite elements, sup-
pose the reference element {K, P, )3} satisfies

Wk+1m( ) Y Cw( )
WH2(R) » W (K),
Pr C P c W™I(K),

where 8 is the highest order of the derivatives in i); m,k are non-
negative integers; and 1 < p,q < 0o. Then there exists a constant C
independent of K such that for -every finite element K in the family
and any function v € WhtLe(K)

I'U - HK'Ulm,p,K S C(h’?f)
In particular, if p=q = 2 then
|v ~ xvlm,k < CRE ™ [vlks1,k-

1.1
q Ph,k +1- ml”|k+1,p,K
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Finally we present an inverse property of the finite element. To
this end we need further assumptions for the grid.

Definition 1.1.10 A family of grids {T,,} is said to be quasi-uniform
if there are constants o and v such that

h.".’/,o.".' <o h’/h.’{ <7.VKeT, h>0.

Theorem 1.1.14 (Inverse property) Let a family of finite elements
with quasi-uniform grids be given. Assume that V}, is o finite element
space related to a grid T), that I, m are nonnegative integers, that
1< r, g £ o0, and that

I <m, PCWW(E)NW™I(R).

Then there exists o constant C = C(a,7v,l,m,r,q) such that for all
v, €V

1/q C 1/r
( > IUhIgz;q,.K) S ( > lvhlﬂr,x) -
Ker, o i =

Here we make a convention for ¢ = oo that
/g
> (val?, oK) = 18X [Unlm,co k-
(KGTh ) KeTh

In particular, when r = q = 2 we have
{o— o \1/2 femi = 1 3 \1/2
( 2 lvalmi) S CHT™( ) lwlik) -
KEeTy KeTy,
1.2 Variational Problems and Their Approx-
imations

1.2.1 Abstract variational form

Let H be a real Hilbert space, equipped with an inner product (-, )
and the corresponding norm ||« ||. V is a subspace of H satisfying
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V = H according to the norm | - ||. V becomes a Hilbert space
with respect to an inner product [-, ] and its related norm |- |. The
imbedding of V in H is continuous, that is, there exists a constant
~ > 0 such that

Suppose A is a linear operator from a dense linear subspace D(A)
- of V to the dual space V' of V, satisfying D(A) = V (in the norm
| 1). For f € V' consider an operator equation

Au = f. (1.2.1)

In many cases, equation (1.2.1) does not necessarily have a solution
in D(A). Thus we need to extend the operator A in some sense and
then to discuss the generalized solution of the problem. To this end,
we construct a bilinear form:

a(u,v) = (Au,v) = Au(v), Yu,v € D(A)

(where the notation (-, -) denotes the dual pair of V' x V), and make
the following basic hypothesis:

(H) afu. ») is 8 bounded bilinear form on D{
(1) aly, v) 18 a bounded bilinear Iorm on D{

exists a constant M such that
la(u, v)| £ Mlu|lv|, Yu,v € D(A).

Now we consider the problem in the space V. For any u € D(4),
(Au,v) is a bounded linear functional of v on V. By the Riesz repre-
sentation theorem there is a unique element Au € V satisfying

(Au,v) = [Au,v], u € D(4), vE V.
Si'milarly for each f € H we have a unique Rf € V such that |
(fa'u) = [Rf)v]’ veV.

Proposition 1.2.1 Let (H) hold. Then A : D(A) = V can be
uniquely extended into a bounded linear operator T : V — V, and
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the corresponding bilinear form can be (uniquely and continuously)
extended onto V x V.

a(u,v) = [Tu,v], w,v €V,

and we haove

Wivw Wi jvwuw

la(u, v)| < Mlu| o], Yu,v € V.

Proof Foranyu €V, ifu € D(A), then set Tu = Au; If u ¢ D(A),
set Tu = jl_i)l{.loAUj (in V), where {u;} C D(4), jl_i_)rgouj =y (in V).

Such a sequence {u;} does exist since D(A) = V (according to |- |),
and {Au;} converges in V' by condition (H). The limit T'u is obviously

indenandant aftha shaice .-\4‘ Inl 1 T+ 3g easy to n]nnn‘r l']'lnf‘ tha hi ‘unna‘r

Ju.uul.l\.uxucu.u Vi ViU Uiy ¢ AV A0 Uaoy VIAV VAIU WALLILG

form remains to be bounded a.fter the extension, and hence T is a
bounded linear operator:

[Tul = sup |[Tu,v]] < Mlu|, Vu V.

veV, <1
Finally, this continuous extension is apparently unique. This com-
pletes the proof. a
Now in place of (1.2.1), we consider the operator equation
Tu = Rf,

or equivalently
[Tu,v] = [Rf,v], YW EV,

that is,
a(u,v) = (f,v), Yve V. (1.2.2)

Deafinition 1.2.1 The anlutinn = V of the eguatio m /1.9 9) 4o called

............................. of the egquation (1.2.2) is ca.
the Galerkin generalized (or weak) solution of the original equation
(1.2.1), and the solution of (1.2.1) in D(A) the classical solution.

The following conclusion is obvious.

Theorem 1.2.1 Ifu € D(A) is a classical solution of (1.2.1), then it
is also a Galerkin generalized solution. Conversely, if u is a Galerkin
generalized solution of (1.2.1) and u € D(A), then it is also a classical
solution.
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The above result is called a variational principle in Galerkin form,
and equation (1.2.2) a variational problem in Galerkin form with
respect to (1.2.1). In mechanics, v stands for the virtual displacement,
a(u,v)—{(f,v) the virtual work, and (1.2.2) the virtual work equation.

So we also call Thegrem 1.2,1 a virtual work orincinle

VU NAOU WNAL & AUV ATLLE drdird N VA UMCNA VYA LR JUA RALVE AT

Assume that a(,) is symmetric. Let us introduce a quadratic
functional

I) = 3a(o,9) = (f,v), VeV,

and consider the following functional minimization problem: Find
u € V such that

J(u) = 1)12‘{; J(v). _ (1.2.3)

Many practical problems (e.g. the elastic problems) can be deduced
into this form.

Definition 1.2.2 The solution u € V of the problem (1.2.8) is re-
ferred to as a Riesz generalized (or weak) solution of the original
equation (1.2.1).

Theorem 1.2.2 Assume that a(-,-) is symmetric and positive defi-
nite:
a(u,v) = a(v,u), Yu,v € V, (1.2.4)

a(v,v) 2 av|?, Yv € V (o a positive constant). (1.2.5)

Then the problems (1.2.8) and (1.2.8) are equivalent. So under the
above assumptions, if u € D(A) is a classical solution of equation
(1.2.1), then it is also a Riesz geneneralized solution; and conversely,
if u is a Riesz generalized solution of (1.2.1) and u € D(A), then it
is a classical solution.

Remark It is the condition (1.2.5) that is called the V-elliptic
condition, also often referred to as a coercive, or positive definite
condition.
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Proof We consider for u,v € V

¢(t) = J(u+tv)

1 .
= Ea(u + tv, u + tv) — (f,u+ tv)

= J(6) + tlau,v) - (£,0)] + a(o,0)

The symmetry condition (1.2.4) is used in the last equality. It follows
from the positive definite condition (1.2.5) that u is the minimum
function of the functional J(u) if and only if ¢'(0) = 0 i.e.

a‘(uav) = (f)'u)’ VweV.
The second half of the theorem results from Theorem 1.2.1. This

samnlatas tha Broo ~f m
\JUIILPIUI‘UB UILU P A9 4] Lt

Theorem 1.2.2 is called a Riesz variational principle, and prob-
lem (1.2.3) a Riesz variational problem corresponding to (1.2.1). In
mechanics, the quadratic functional J(u) represents the energy of the
system. The above conclusion illustrates that in all the possible dis-
placements satisfying the given boundary constraints, the displace-
ment that makes the balance minimizes the total potential energy.

aaay VILLGY AliGAAURN  VaAT GAtNadUT ALLllllliidfTl valT WUV Sa LVSlivasl TAil

Therefore, Theorem 1.2.2 is also called the minimum potential en-
ergy principle.

The virtual work principle is more general and has wider appli-
cations than the potential energy principle. It applies not only to
symmetric and positive definite problems (corresponding to conser-
vative field equations) but also to asymmetric and nonpositive definite
problems (nonconservative field equations).

109 n nla Favmiila nd
Lodiosd A& v i a

For differential equations, the continuous extension of the operators
and the bilinear forms as well as the deduction of the variational
forms mentioned in the above subsection are realized by integrations
in parts or by the use of Green’s formulas.

Let Q be a bounded open region in RV with a Lipschitz continuous
boundary I’ = 99, and n = (ny,- -, nn) the unit outer normal vector.
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Then the following Green’s formula holds:

Ou Ov 1
-/s;aa'udm— _/s;ub;;dm—-/ruvn,ds, Yu,v € H'(Q). (1.2.6)

Rehlurunn- a1 her Sy and grymming far 2 laad ¢~ tha rat (Iroon’a for.
pacing v Dy g,; and sumiming Ior 1 16ad 10 e LISt wrlccil's 101
mula N
ou ou .
—/ Auvdm—-/z-—————-— /—-vds,
o 2 8z: 0z~ Jp n
Yu € H3(Q), v € H'(Q). (1.2.7)

Exchange the positions of 4 and v to get another equality, and sub-
tract the above equality from it, then we have the second Green’s
formula:

_[(Ou_ Ov 2
/n('uAu—uA'u)dm = /p(an” - Zou)ds, Vu,u € HX@). (128)

If we replace u above by Au, then we obtain another Green’s formula:

0Au v
2 = indhmsbal? PR —
/n'uA udz = /nAuAvdm+/( 5 Auan)ds,
(9]

bo
(=)

~~
[y
~——

It is easy to show for N = 2 that

/ ( cac i 22'262 0% B )da: dz

07107, 021077  0z2 0z% 0x30z2/ b 2
2

= A( 0%y Ov 3 (/) a'U)d Yu € HS(Q),U € Hz(Q) (1.2.10)

~5720n  9ron o7

Here 7 = (7, 72) is the unit tangent vector along I, 38; the derivative
along the tangent direction, and

au 2
57 = D%y (1,7) = Z 'r,r,a ,63:

$,J=1
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As an example of variational problems, let us consider the mixed
boundary value problem of the Poisson equation:

—Au= f(.’E, Y), (z,y) € Q, (1'2'113')
ulr, =0, (1.2.11b)
l (.g_.g. + au) '1"2 = 0’ (1.2.110)

where {2 is a bounded plane region. Its boundary I' is a piecewise
smooth simple closed curve, divided into two disjoint parts I'; and
I's. a>0and f € L3(Q).

Set '
V = Hh(Q) = {v: v € HY(®), vlr, =0},

6u 61; ou Bv
a(u,v) // 63:&1: 6y6 )d dy+/ auvds,
(f,v) = / fvdzdy.

Multiply (1.2.11a) by v e V, integrate it on €, and employ Green's
formula (1.2.7) and the boundary conditions (1.2.11b,c) to obtain

I —vAudzdy = [/{émav Buau\
JJa "~ JJa\Bz 8z " Oy dBy/

Now the variational problem corresponding to problem (1.2.11) be-
comes: Find u € V such that

dzdy

o«
S
1

N

§
§
<.
{
<

a(u,v) = (f,v), Ywe V. (1.2.12)

Here a(u,v) is a continuous extension of (—Awu,v) thanks to Green's
formula. This kind of continuous extension on V' x V' is unique and
hence (1.2.12) is identical with the variational form mentioned in the
above subsection.

Note that |« |; is an equivalent norm of HL L, and that a(-,*) is
symmetric and positive definite:

a(u,v) = a(v,u), Yu,v € V,

a(v,v) = |v|2, Yo e V.
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As an example of high order equations, we consider the first
boundary value problem of the biharmonic equation:

8*u 8*u 0ty

2, _Ou  , Fu  Ou_ N

Alu= Ozt + 23.’1:281;2 + Ayt [y (zy) €9Q, (1.2.13a)

U =0, (1.2.13b)
Ou '

| b'ﬁlr =0 (1.2.13¢)

where f € L?(92).
It follows from Green’s formula (1.2.9) that

//n'quudwdy = //n Aulvdzdy, v € HF(R).

Write
V = H3 (%),

a(u,v) / AuAvdzdy,

= / / Fudady.

Then the variational problem related to (1.2.13) becomes: Findu € V
such that
a(u,v) = (f,v), Yw e V. (1.2.14)

These kind of problems arise particularly in fluid mechanics.
Obviously a(:, ) is a symmetric bilinear form, As for its positive
definiteness, we first note

ator0) = 8ol = [ [ [(Z3)" +2( )" + (53) oo

vy

Apply twice Green’s formula (1.2.6), then we have

/ / 6w6y / / g:: ai;ﬂ

0% 5% o
// 5 2= dzdy, Vv € C(Q).
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The density of C°°(Q) in H?(Q) implies that

0%v 6%y
// 6w3y mdy—// 323y dedy, Yv € HZ(Q).

So we have

/

A 1A 12
a\v,v) = |Avp,n

—_ 'fal

2 \
veE 0( l}.

NHO

a=lvlzg
Now the positive definiteness of a(:,-) follows since |- |2, is an equiv-
alent norm on HZ(1).

By Green’s formula (1.2.10) and boundary conditions (1.2.13b,c),
the above bilinear form can be rewritten as

a(u,v)

Pu v Pudv  Pud
—//n {AUA’U + (1—0‘)(2"——"amay —_——Bmay - @‘a—ya - -a'-y—i'a?')]dmdy

Pu 8% 0% %y 8% b
——//ﬂ[a’AUAU-i-(l—O’)(Z———away-—-——6may+‘0;2'W+'6—?;§-6—y§)]dwdy,

where o is the Poinsson ratio satisfying 0 < o < % This corresponds
to the variational form for the clamped plate problem and it also
applies to the plate bending with other boundary constraints. The
bilinear form is again symmetric and positive definite:

a(v,v) = olAvff o + (1 - 9)vl3q.

1.2.3 Well-posedness of variational problems

The following important and widely used result concerns the well-
posedness of variational problems, namely the solution’s existence,
uniqueness and continuous dependence on the right-hand side term.

Theorem 1.2.3 (Lax-Milgram) Let V be a real Hilbert space and
a(:,+) a bilinear form defined on V x V, satisfying the followzng con-
ditions:

(i) Boundedness: There ezists a constant M > 0 such that

la(u,v)| < Mlullv|, Vu,v € V.



28 - Chapter 1

(ii) Positive definiteness: There exists a constant > 0 such that
la(v,v)| 2 alv]?, Yo € V.

Then, the variational problem (1.2.2) has a unique solution u € V
for any given f € V' and

1
< - .
ul < 21l
The next theorem is a generalization of Theorem 1.2.3.
Theorem 1.2.4 (Babuska) Let U and V be two real Hilbert spaces,
supplied with inner producis [, |y, [',"]v and norms |- |v, | |v re-
spectively. a(-,') is a bilinear form on U x V, satisfying the following

conditions:
(i) Boundedness: There exists a constant M > 0 such that

la(u,v)| £ Mlu|ylvly, Vu e U, v e V. (1.2.15)

(i) Weak positive definiteness: There exists a constant o > 0
such that

inf sup |a{u,v)| 2 q, (1.2.16)
(=124 vev
luly=1 jvly=1
sup |a(u,v)| > 0, Yv € V,v #0. (1.2.17)
u€l

Then, for any given f € V! there erists a unique u € U such that

'a(u, v) = {f,v), Yo €V, {1.2.18)

and )
luly < = fllv. (1.2.19)

Proof For any u € U, the boundedness guarantees that a(u,:) is
a bounded linear functional on V. So by the Riesz representation
theorem there is a Tu € V such that

a(u,v) = [Tu,v]y, Yo e V.
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Similarly for f € V' there exists an Rf € V such that
(fyv) = [Rf, v}y, YveV.

Therefore, (1.2.18) is equivalent to a bounded linear operator equa-
tion:

, Tu = Rf. (1.2.20)
The weak positive deflniteness implies
11‘25 ITUIV 2a>0,
luly=1

which indicates that the operator 7' has a bounded inverse operator
T-! satisfying

In particular, the range of T is a closed linear subspace of V.

Now we claim that the range of 7 is indeed the whole space V. If
this is not true, then by virtue of the projection theorem there must
be a vg € V, v # 0 satisfying

[Ty, vo] = a{u, ) =0, Yu € U.

But this contradicts (1.2.17). Therefore, (1.2.18) or (1.2.20) must
have a unique solution u = 7"!Rf. Finally (1.2.19) holds since
luly <o Y|Rfly =a™! sup |[Rf,v]v]|
» =1,
=o™" sup [froll =™ (I fllv.
foly =1

This completes the proof. o

1.2.4 Approximation methods. A necessary and suffi-
“cient condition for approximate-solvability

Next we discuss the approximation methods. Notice that the ab-
stract variational problem is equivalent to a bounded linear operator
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equation. So in this subsection, we discuss in a more general set-
ting the approximation methods for bounded linear operator equa-
tions and present a necessary and sufficient condition for the unique
approximate-solvability.

Quarvrs Aan IT and 17 ava twrna naflavivea Dananh anasaag WMo donnta
(o] I-I.IJPUBU v aliu v ALlT VWU 1UTLICALYD Jalidauvil uyabcn . YYU UvTiilvve
both the norms by || - ||.- Let T be a bounded linear operator from

U to V. We consider the approximation methods for the operator
equation

Tu =g, (1.2.21)

where g € V is given.

The essence of the finite dimensional approximation is to dis-
cretize the problem and replace the original equation by an approx-
imate equation in a finite dimensional space. First we need to dis-
cretize the solution space and the range space, and accordingly to con-
struct an approximation of the original equation. Different strategies
.of discretization and construction lead to different numerical meth-
ods. Generally, we will choose in a certain way finite dimensional
subspaces U, and V,, of U and V, and the mappings P, : U — U,
and Qp : V — Vp,, respectively. Then set T, = @Q,T|y, and take

Tn'Uﬂn = Qng (Un € Un) (1.2.22)

as the approximation equation of (1.2.21).

P, and @, are linear operators for most of the approximation
methods. If we choose P, and @, as linear projection operators,
then we end up with the so-called projection methods. They become
the usual Galerkin methods if U =V, U, = V,,. If T' is a differential
or integral operator, and Uy is a spline function space (or a piecewise
polynomial space), then we have the finite element method. If U and
V are function spaces on Q, and @, : V — V,, is an interpolation
operator:

N

Qnv(z) = Zv(mi)wi(w), vEeY,

i=]1

where z1,-+-,zy € Q, and {3, --,%n} is a basis of V,, then the
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approximation equation (1.2.22) reads

N ’ N
Z(Tun)m=m;¢i(m) = Z(g)m=m¢¢‘i(m)’

i=1 i=1
which is equivalent to
(Tun)z=e; = (9)a=a;, ¢ =1,2,+++,N. (1.2.23)

This is the so-called collocation method. If U and V are Hilbert
spaces; (-,) is the inner product of V; U, = span{¢1,:--,¢n} and
Vo = span{#, -, ¥n}; P, and @, are orthogonal projection opera-
tors; then the approximation equation (1.2.22) is equivalent to

(Tu‘ﬁ—nizrbi-)=0ii=1727'.'iNi (1224)
which is the Petrov-Galerkin method, also called the generalized
Galerkin method. There are many different choices for {¢;} and
{4i}. Choosing 9; = M¢; for some suitably chosen linear operator
M leads to a moment method. If in particular ¢; = T'¢;, then it
becomes the least square method, since in this case (1.2.24) is equiv-
alent to the problem of finding u € U, to minimize || Tu, — g||. The
case of U = V, 9; = ¢; corresponds to the Galerkin method.

Now we turn to discuss the approximate-solvability. Let {U,}
and {V,} be sequences of finite dimensional subspaces of U and V,
respectively. P, : U — U, and @y : V — V,, are respectively the
linear projection operators, satisfying P, Py, = P, and Qp,Q@Qm = Qn
for n < m and the following properties: :

(1) Uy C'Un+1a Vo C Vn+1’ n= 1’27"';

8

v

—y

C

2}
n Yy VTR v

1 n=1 .
(3) 1Pall < C, |@nll < C, n=1,2,-+. (C is a constant.)

(2
&

N

Proposition 1.2.2 Under the above assumptions we have
(i) Vu € U, Pyu — u, as n — oo;
(ii) Yo € V, Qnv — v, a8 1 — 00;
(iii) Vi e U', P]l = I, as n — oo
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(iv) e V', @l =1, asn — oo;
where U’ and V' are the dual spaces of U and V, and P;, and Qp, are
the dual opemtora of P and Qn, respectively.

Proof To show (i), we note from conditions (1) and (2) that for
any u € U there exists a u, € U, (n =1,2,- ) satisfying '
llu — unll = G, n — oo.
Then it follows from the triangular inequality and condition (3) that
1Pnw =l < [1Pa(u = n)| + flun — ul
< (C+1)|Jup —ul| = 0, n — o00:
Now we deal with (ifi). Write W,, = PLU". Tt results from Py

m
. 1.2 D/ DI o P! Warno U7 17 H
F,, when n'< m that Fp Iy = £, LENCE Wy T Wiy \"’ < m;, and i

particular W, C Wy41.
By the reflexivity of the space U, if US; Wy = U’ does not hold,
then there exists a ug € U, ug # 0 such that

=]

(l,ug) =0, VI € fj Wh.
n=1
So for any [ € U’ and n > 1 we have
(lv PnU‘O) = PT’Lli'U'O) = 01
which implies P,ug = 0. But Pyug — ug as n — '00. So ug =0,
yielding a contradiction. Therefore we must have oLj W, =U"

n=1
It follows from condition (3) that ||P.|| < C. Thus, we can show
(iii) as in the proof to (i).
(ii) and (iv) can be similarly proved. This completes the proof.00

Proposition 1.2.3 Under the above conditions we have (— stands
for the weak convergence):

(1) If {u;} cU and uj =~ w €U (j - o0), then Tu; ~Tu € V.

(ii) If u € U, then TpPpu — Tu (n = 00). :

(iif) If {u;} C U, uj € U, (j = 1,2:+1), nj = 00 (j = 00); and
uj = u €U (j — 00), then T, uy —kTu (4 = 00).
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Proof (i) For any 1€V’ and u; = u (j — 00) we have
(l, Tu) = (T'lu) = (T'hu) = (I, Tw),

which means Tu; — Tu (j = o0).
(ii) For u € U it follows from Proposition 1.2.2 that

”Tnpnu - Tu“
< N@nT(Pou — u)|| + ||Q@nTu — Tyl
< ClIT| Pow = ull + |QnTu —Tul| - 0 (n — o0).

. (iii) We know by (i) that Tu; — Tu (j — o00). By Proposition
1.2.2 we have for any ! € V' that Qp,{ — ! (j — 00). This gives

(1, Tngus) = (@b, Tug) = (1, Tu) (5 — o0).

This implies T;,;u; — T (§ — o0) and completes the proof. o

Definition 1.2.3 Equation (1.2.21) is said to be uniquely approxi-
mate-solvable, if there exists an integer N > 0 such that forn > N
equation (1.2.29) possesses a unique solution u, € U,, and {u,}
converges in U as n — oo, of which the limit u € U is the unique
solution of (1.2.21).

Theorem 1.2.5 Let U and V be reflezive Banach spaces, T : U — V
a bounded linear operator, and Uy, Vy,, P, Qn as above. Then, a suf-
ficient and necessary condition for equation (1.2.21) to be uniquely

approzimate-solvable for any given g € V' is that there exists an in-
teger N > 0 and a constant a > 0 such that

1@nTull 2 a|lul|l, Yu € Uy, n > N, (1.2.25)
or equivalently
lim inf {M‘-‘ﬂ} >0,
rowueUn . |ull
us£0

In this case, we have the following error estimate for u,

C ) .
llw = wnll < (14 Z171) inf flu~ wi] (1.2.26)



34 Chapter 1

Proof Necessity. That for any g € V equation (1.2.22) always
has a unique solution u, € U, means that there exists an inverse
operator T,;! : V, — U, and the range of T, is V;;. Moreover,

T, ! is bounded by the inverse operator theorem. For the operator
Tn_lQn . YV A TT I wo nate

1 4 -r Un N U, LAAYAR YAV ]I\ v}
Vg €V, T,;‘lQng=un—+u (n — 00),

where u, and u are the solutions of (1.2.22) and (1.2.21) respectively.
So it follows from the resonance theorem that the sequence of opera-
tors {Z7;7*@p} is uniformly bounded, namely, there exists a constant
B > 0 such that

1T @nll S B (n < N).
So (1.2.25) is valid: '

I Toull ;‘;—nun, Vu€Up n3N.

Sufficiency. Condition (1.2.25) implies that when n > N, for any
g € V equation (1.2.22) has a unique solution u,, € U, and

lomll < gl

The reflexivity of the space U gives the existence of a weakly conver-
gent subsequence {un, } satisfying

Un; € Upyy Un; = u €U (j = 00).
By (iii) of Proposition 1.2.3 we have
Tnyun; = Tu (§ = 0).
On the other hand
Tojun; = Qn;g — g (J = 00).

Hence u is the solution to (1.2.21).
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'Let us show un = u (j = o0). In fact, by Qirtue of (1.2.25) for
any i€ Un

IA

[un = @l + |5 — ull

2 QuT(un ~ D) + 1~ o]

llun = ull

IA

Il

~1QnT (= )] + flu ~

IA

(i +1)u - al.

This gives (1.2.26). Setting @ = P,u yields u, — u (n — ).

Finally we claim that condition (1.2.25) guarantees the uniqueness
of the solution to (1.2.21). In fact, if w € U satisfies Tw = 0, then it
follows from (1.2.25) and (ii) of Proposition 1.2.3 that

_ 1
| Pow] € -0—£||TnPn'w|| — 0 (n — 00),

which gives w = 0. This completes the proof. a

1.2.5 Galerkin methods

Let us recall the framework of the abstract variational problem in
§1.2.1. Suppose H and V are the Hilbert spaces mentioned there,
A is the linear operator from a dense subset D(A) of V to V', and
f € V'. Consider the operator equation

Au= f. (1.2.27)

We assume the bilinear form a(u,v) = {(Au,v) is bounded on D(A4) x
D(A):

la(u, v)| < Mlu|jv], Yu,v €V,
which enables us to continuously extend a(u,v) to V x V. Thus we
have obtained a variational, or a weak, form:

a(u,v) = (f,v), Vve V. (1.2.28)
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It is equivalent to an operator equation: ,
Tu = Rf. (1.2.28")

A relationship between them is revealed by the Riesz representation
theorem: :
a(u,v) = [Tu,v], u,v €V,
(frv) = [Rf,'u]a feVivew
Apparently T : V — V is a bounded linear operator with ||T'|| < M.
Let V' be a separable Hilbert space. Then one can choose a se-
quence of finite dimensional subspaces {V,} of V such that

o0
VaCVap1 (n=1,2,--), |JVa=V
n=1
Denote by II, the orthogonal projection operator from V' to V,,. Then
I1,, is a self-adjoint linear operator satisfying ||II,|| = 1 and
lim [y —v| =0, Vv e V.
n—oo

The Galerkin method for the variational problem (1.2.28) is: Find
Un € V such that

a(un,vn) = (f,vn), Yun € Vp, - (1.2.29)
or equivalently
Thup = Han (Tn = HnTIVn)- (1~2'29’)
‘Let {¢1,+++,¢n} be a basis of V,;. Write uy, as '
N
Up = ;cﬂbi:
i=

insert it into (1.2.29), and take v, = ¢; (1 < j < N), then we have
N .

> alei, éi)ei = {f.#5), 5 =1,2,-++,N.. (1.2.297)

i=1

Solving it for ¢; (1 < i < N) yields an approximate solution us.

(1.2.29) (or an equivalent form) is called a Galerkin approximate
equation, and u, a Galerkin approximate solution.
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Theorem 1.2.8 Let V be a separable real Hilbert space, V, a finite
dimensional subspace of V, anda(,-) a bilinear form defined on VXV
possessing the following properties:

(i) Boundedness: There is a constant M > 0 such that:

|a(u, v)| < Muljv|, Yu,v € V;
(ii) Positive definiteness: There exists a constant a > 0 such that
a(v,v) 2 ofv)?, Ywe V.

Then, both the variational problem (1.2.28) and the approzimation
problem (1.2.29) have unique solutions u and uy,, respectively. More-
over, the following error estimate holds:

M
lu—un| < — inf |u—wp|. (1.2.30)
& Unkvn
Proof By Theorem 1.2.3, (1.2.28) has aunique solution. It follows
from (ii) that the homogeneous equation
a(Un,'Un) = 0, V'Un € Vn

corresponding to (1.2.29) admits only the trivial solution. Thus
(1.2.29) has a unique solution for any given f. (1.2.28) and (1.2.29)
lead to the error equation '

a(u = Un, 'Un) e 0, V'Un € Vn. (1-2-31)
So (1.2.30) follows from

1
[u - un|? < ~a(t = tn, U = tn)

= éq(u - Up U —Up) < %/!—]u — Upllu — vpl, Yup € Vy.

This completes the proof. O

Theorem 1.2.6 can also be deduced from Theorem 1.2.5 by noting
that the positive definiteness implies (1.2.25).

(1.2.30) gives an error estimate of the approximate solution uy
in |+ | norm, i.e., a V-estimate. Next we turn to discuss the error
estimate of uy, in || - || norm, namely the H-estimate. To this end we
use the Aubin-Nitsche dual argument.
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Theorem 1.2.7 Let the assumptibns of Theorem 1.2.6 hold. Then

1 -
U — Up|| £ Mlu — up|{sup ~— inf |¢ — ¢|). (1.2.32)
| ol | nl(yeH lgll deva | ¢!')
Here for any g € H, ¢ € V is the unique solution to the dual varia-

tional problem:
a(v,6) = (9,0), W € V. (1.2.33)

Proof The unique solvability of the dual problem (1.2.33) can be
proved similarly to Theorem 1.2.6. To show (1.2.32) we use

l(g’u_un)l‘ (12.34) .

U — Up|| = sup
Ifu = unl| = sup ===

9

So setting v = u — u, in (1.2.33) yields
au = Un, $) = (g, — tn).
By virtue of (1.2.31) we have
(9, = tn) = a(t ~ Un, ¢ ~ 8), Y € Vp.

Now, employ the boundedness and take the infimum for q~5 € V, to
get .
(g, — un)| SMlu—Unl$i§§ |6 -4l (1.2.35)

Finally, a combination of (1.2.34) and (1.2.35) leads to the desired
result and completes the proof. ]

1.2.6 Generalized Galerkin methods

Let H be a separable real Hilbert space equipped with an inner prod-
uct (-,-) and the corresponding norm || - ||. U and V are dense linear
subsets supplied with new inner products [-, "]y, [-,]v and related
norms |- |y, |+ |v, respectively. U and V respectively become Hilbert
spaces under these new inner products. We also assume that the
imbeddings of U and V in H are continuous.
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Suppose A is a linear operator from a linear dense subset D(A)
of U to V'. For f € V' let us consider the operator equation:

Au=F (1.2.36)
Assume the bilinear form a(u,v) = (Au,v) on D(A) x V satisfies
la(u, v)| £ Mlulyjvly, Yu € D(A),v € V. (1.2.37)

Then as in Proposition 1.2.1 we may continuously extend a(u,v) onto
U xV such that the above estimate is still valid for any (u,v) € Ux V.
This results in a variational form of (1.2.36): Find v € U such that

a(u,v) = (f,v), Yv e V. (1.2.38)
It is equivalent to a bounded linear operator equation
Tu=Rf, (1.2.38')

where T : U = V and R: V' — V are determined respectively by
the Riesz representation theorem:

a(u,v) = [Tu,vly, u e U,v €V,
(f,v) =[Rf,v], fEV veEV.

It is obvious that ||T| < M.

The separability of the spaces enables us to choose two families of
finite dimensional subspaces {Uy,} and {V,,} of U and V respectively
such that

o0 o
Un CUntt, Va C Vo, n=12,; JUn=U UVa=V.

U, is referred to as the trial function space, and V;, the test function
gnace. The generalized Galerkin method for (1.2.38) is: Findu, € U,

BT ddT BUAATAGLALTL RAGATA idl LTIV AV A miuYy adia Wi S VTE

such that
a(umvn) = (f, 'Un), Yvp € Vi, (1-2~39)

or equivalently
Toun = @ng, . (1.2.39')

where T, = QnT'|v,, 9 = Rf, and @y is the orthogonal projection
operator from V to V.
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Theorem 1.2.8 Let U and V be separable real Hilbert spaces, Up, and
Vi, their subspaces respectively, and a(-,-) the bilinear form defined on
U x V satisfying

la(u,v)| < Mu|ylvly, YueUv eV, (1.2.40)

inf  sup |a(un,vn)| 2 a>0, (1.2.41)
un€ln  unevy .
IuﬂlU"—‘l |v,,|y=1
where M and o are constants. Then, (1.2.38) and (1.2.89) possess
unique solutions u and u, respectively, and the following error esti-
mate holds:

. Ar

|[u — uply < (1+ %) wiéxg_' ju - w|y. (1.2.42)

Proof Note that

lTnUnIV = sup l[TnUn,'U]I 2 sup I[TUn,Un]I.
vEV vn€Vn
[vlv=1 jvn|y=1

So it follows from (1.2.41) that
ITnunIV 2 alunan Yy € Up.

This together with Theorem 1.2.5 gives the desired result and com-
pletes the proof. . O

The estimate (1.2.42) in the above theorem indicates that the
convergence order of u — uy, i8 determined by the trial function space
U, while the test function space V;, only influences the constant in
the right-hand side of the estimate. This motivates us to speed up
the convergence by choosing the trial function spaces with better
approximate properties, and to simplify the approximation scheme
by choosing simple and flexible test function spaces. It is this idea
that the generalized difference method discussed in this book is based
on.



Preliminaries 41

Theorem 1.2.8 is difficult to apply in practice. So we shall modify
the above framework to suit the need for the numerical analysis for
the generalized difference method.

Let H be a separable real Hilbert space supplied with an inner
product (-, ) and the related norm || - ||. U is a dense linear subset of
H, and is a Hilbert space with an inner product [-,:] and the related

NAYrYN l . ' I \ ‘ﬂ o ]’\f\ 'llebA B“A mAGY +.‘ O Aﬁg“:*ﬂ 1‘\ |“ﬁf\" cf\“w\
norm |- . ag-, 1S & COuNGeq ana posivive Geiillive slindar iorin on

U xU. For f E H, consider the equation
a(u,v) = (f,v), YveU. (1.2.43)

Set D = {u € U : the linear functional a(u,-) is continuous on
U with respect to the topology induced by H}. In other words; D
is such a subset of U that for each element u of D there exists a-
constant M (u) > 0 such that

la(u, v)| £ M(u)|jv||, Yv € U.

The density of U in H enables us to continuously extend a(u,-) to
a bounded linear functional on H, and by the Riesz representation
theorem there is a unique Au € H such that

a(u,v) = (Au,v), ue D,v € H. (1.2.44)
Nheinsialey A g o0 llnann ananatan funm T) +4~ IT
UUVIUUDLJ L3I0 QU AT OL UPULG‘UUL LAVILL L/ VU 22,

Choose a trial function space U, € U and a test function space
Vi € H with dimensions dim U}, = dim V), = N, where h is a param-
‘eter. Construct a discrete bilinear form ay(-,-) defined on Uy x V4
satisfying

ap(w,vp) = (Au,vp), Yu € D,vp, € V3. (1.2.45)
The approximation scheme is: Find uy € Uj, such that
ap(un,vn) = (f,vn), Yop € V3. (1.2.46)

Let I';, be a linear operator from U to V}, satisfying 'y Uy = Vj. Then
(1.2.46) is equivalent to

an(un, Thwn) = (f, Thws), Ywp € Un. (1.2.46')
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Theorem 1.2.9 Suppose ap(,Iy+) is uniformly positive definite in
the following sense: There ezists a constant a > 0 independent of the
subspace Uy, such that

ah(‘wh;rhwh) > a|wh] , Ywy, € Uy, (1.2.47)

Then (1.2.46) has a unique solution up € Uy. If in addition the
solution to (1.2.48) belongs to D, then we have the following error
estimate:

la'h(u - 4, Phwh)l
u—uy| < inf {|u~—a +— su . 1.2.48
I hl BEU {I I awhegh Iwhl } ( )

Proof Consider the homogeneous equation related to (1.2.46)
an(up,vp) =0, Yo, € Vp.

Then we have up = 0 by setting v, = I'yu), and using the uniformly
positive definite condition (1.2.47). Thus the homogeneous equa-
tion admits-only the trivial solution and consequently (1.2.46) has a
unique solution.

Now let v € D and uh E Us, be the solutions to (1.2.43) and
(1.2.46) respectively. B ( ) (1 2.45) we know that

( (1 940\

l||
‘h
‘EZ
i}
<

Subtracting (1.2.46) fro (1 ) ields an error equation
ap(u — up,vp) =0, Yo, € V. (1.2.50)
For any i € Uy, by (1.2.47) and (1.2.50) we have
ali — upl? < ap(@ — up, Tp(f — up)) = ap(@i — u, Th(% — up)).

Hence

1 T
G- < g sup lan (@ — u, Trwn)]
O el Iwhl
Combine this equality with the triangular inequality
[u—up| < |u— 18]+ |G~ ual,

and take the infimum with respect to @i € Uy, then we obtain (1.2.48).
This completes the proof. m]
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Bibliography and Comments

For the convenience of later use and the reader’s reference, we provide
in this chapter an outline of the Sobolev spaces and some basic results
on their interpolation theories, variational problems and approxima-
tion methods. Most of the materials can be found in [A-27,26,19,2].
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[B-1] for Sobolev space theory, [B-17] for the finite element method
and the interpolation theory of Sobolev spaces, [A-26,3] and [B-47]
for the generalized Galerkin method and the projection method. An
original form of the general framework (Theorem 1.2.9) for the theory
of generalized difference methods has been given in [A-30,53).
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TWO POINT
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PROBLEMS

In this chapter we first illustrate the basic ideas of the generalized
difference method by applying it to a second order ODE , i.e., a two
point boundary value problem. It is shown how the generalized dif-
ference schemes are derived from the generalized Galerkin variational
form. Then we present several examples of generalized difference
schemes, and discuss their existence, uniqueness and convergence.
Finally a fourth order problem is considered.

2.1 Basic Ideas of the Generalized Difference
Method
2.1.1 A variational form

Consider the boundary value problem of the second order ODE on
an interval I = [a, b]
Lu= -—( du)+r-—+qu = f, £€(a,b), (2.1.1a)

(P1) ' dz d:L’ dz (2.1.1b)
u(a) = 0, ¥/'(b) =0,

45
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where p € CI(I)’ p(z) 2 Pmin > 0, and r,q, f € C(I).

Let u € C[a,b] N C%(a,b) be the solution of (P1), and HE(I) =
{v e HY(I) : v(a) = 0}. Use any function v € Hg(I) (called a test
function) to multiply (2.1.1a) and integrate it on [a,b], then we have

/ Luvdz = / fvdz.
a a .
By integrating by parts and the boundary condition (2.1.1b) we have

b b
/ Luwwdz = / (pu'v' + ru'v + quv)dz — pu'v|]
a . ab
= / (pu'v' + ru'v + quu)dz.
a
Write b :
a(u,v) = / (pu'v' + ru'v + quv)dz (2.1.2)
a

and denote by (--) the inner product of L2, then we find that u is
the solution of the following problem:
P2) { Find u € HE(I) such that
a(u,v) — (f,v) =0, Vw € HIIE(I)

On the other hand, if u is a solution of (P2) and u € C{a, )jNC?(a, b),
then integrating (2.1.3) by parts leads to

(2.1.3)

/b[—(pu')' +ru' + qu — flvdz +p(b)d’(b)v(b) =0, Vv € Hy(I).
‘ (2.1.4)
In particular

b
f (Lu— f)vdz = 0, Vv € C(1).
. /
So u satisfies (2.1.1a) by the fundamental lemma, of variational meth-
ods (Theorem 1.1.3). Now using (2.1.4) again we find that
p(b)u' (b)u(b) =0, Yv € HE(I).

Hence, setting v(b) # 0 shows u/(b) = 0. Therefore u satisfies (2.1.1b)
as well and is the solution of (P1).
To sum up we have the following theorem.
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Theorem 2.1.1 (Variational principle) Suppose that u € C'[a, ] N
C?(a,b) is the solution of (P1), then it is the solution of (P2). Con-
versely, if u is the solution of (P2) and u € C[a,b] N C%(a,b), then
it is the solution of (P1).

(P1) is a differential form and (P2) is its Galerkin variational
form. Solutions of (P1) are called classical solutions, while those of
(P2) generalized solutions or weak solutions. In mechanics, the left
hand side of (2.1.3) represents virtual work, and hence Theorem 2.1.1
is also referred to as a virtual work principle. There are significant
differences between the two boundary conditions in (2.1.1b). The
right boundary condition u'(b) = 0 needs not to be satisfied by the
functions in HE(I). But it will be satisfied naturally by the solution
of the variational problem. Therefore, it is called a natural boundary
condition. In mechanics, this boundary condition corresponds to the
force. On the contrary, the left boundary condition u(a) = 0 must be
imposed on HE(I). Hence it is called an essential boundary condition.
It is a geometrical condition. Variational principles are commonly
used to describe physical phenomena and also lay the foundation of -
the numerical methods for differential equations. Compared with the
differential forms, the merit of the variational problems is that, for
instance, the second derivative of 4 is not involved in the problem
(P2), and the natural boundary conditions are much easier to deal
with,

2.1.2 Galerkin methods

It is usually difficult to directly solve the variational forms to get
the precise solutions. The main trouble lies in the fact that H(I)
is an infinite dimensional space. The idea to overcome this is to
approximate infinite dimensional spaces by finite ones.

Let us choose a finite dimensional subspace Uy, in U = HE(I),
and use it to replace U in (P2) to obtain an approximate problem:

Find up, € Uy, such that

(2.1.5)
a(uhavh) = (fv vh)a V'Uh € Up,.

P2 {
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This is precisely the so-called Galerkin method, or the variational
method, and uy, is the Galerkin approximation of u.
Galerkin methods in the early stages use smooth functions (usu-

ally algebraic or triangular polynomials, or special functions related
to certain specific problems) to construct the finite dimensional space
Un. There are some disadvantages to follow this approach in prac-
tice. Mainly they are: the difficulties in constructing globally defined
polynomials to satisfy the boundary conditions for multidimensional
irregular regions; the big computing work for calculating the integrals -
to form the Galerkin equation; and the non-sparseness and the large
condition number of the coefficient matrix of the Galerkin equation.
Therefore the classical Galerkin methods cannot match finite differ-
ence methods which possess, on the contrary, advantages such as

sparse ¢o affiniant matrinog lags ramniting warlr and o nla nracram.
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ming. The finite element method, initiated by R. Courant (1943)
and developed in the fifties, provides a new approach for Galerkin
methods to construct the subspace Up. It decomposes the solution
region into a network like the difference method, and utilizes spline
functions to construct the subspace U, which contains low order
piecewise polynomials satisfying the essential boundary conditions as
well as certain global smoothness. Such kinds of Galerkin methods
are called finite element methods or Galerkin finite element methods,
and Up’s the finite element spaces. The coefficient matrices of the
finite element method are sparse, and their computation is simple
and flexible. It is particularly powerful in dealing with irregular re-
gions and natural boundary conditions. Therefore, the finite element
method is an effective numerical method for elliptic and parabolic
equations.
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Our generalized difference methods are based on the traditional dif-
ference methods and have absorbed certain ideas of finite element
methods (mainly the variational forms and the finite element spaces).
We will see that the generalized difference methods enjoy the advan-
- tages of both the difference methods and the finite element methods.
To set up the generalized difference method and its theoretical foun-
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dation, we need to design a new variational principle of generalized
Galerkin type. In this chapter we only take a one-dimensional prob-
lem as an example to illustrate the idea.

Let us discretize the interval I = [a,b] into a set of points (or
nodes) ' :

a=20<21<23< <2y =b.

The subintervals I; = [z;-1, z;] are called elements. All these elements
compose a discretization of I, denoted by o0 = {I; : 1 < i < n}.
Denote by I? the interior of I;, and Py the set of all the polynomials
of degrees less than or equal to k. Write

SNI) = {v e LA(I) : v|pp € Py, i =1,2,-+,m}
and call it the set of piecewise polynomials of degree k£ with respect
to o. Similarly call
¥ = s

4

the piecewise polynomials of degree k£ on I, In particular, it is called
the set of piecewise constant (or step) and piecewise linear functions

shanm L N e L 1 A n oo sermida
WhHEeli X =vana s =1 Lcupcuuvtuy YYT aldu wWlilo

S = {v e SP(I) : v(a*) =0},
s® 1) = Js& ).

UseanyveV = S(k)(I) to multiply equation (2.1.1a), and inte-
grate it on I. Then by integrating by parts we have

n

o n :
(Lu,v) =) (pu'v’ + ru'v + quu)dz — Y pu'v ‘

i
4
i=1 Y Ti-1 :

(2.1.6)

Ti-1

Noticing b(a"‘) =0 and v/(b) = 0, we know that u satisfies

ad(uiv) = (f,’U), Yv eV, (2'17)
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where
o(u,v) = Z (pu'v' + ru'v + quv)dz
e ‘ (2.1.8)
+Zp zi)u! (i) [v(z7) — v(z])].
t=1

Let us introduce a generalized function d(z) defined as the deriva-
tive of the following jump function:

0, forz <0,
o(z) =
1, forz>0.
" So formally we have
v 4 [0, forz#0
5(z) = o'(a) = "o
o0, forz =0,

For any smooth function g(z) we have

/g )6(z)de = g(0), & < 0 < B.

The piecewise polynomlal functionv € V mentioned above can be

expressed as the sum of a continuous function v; and a step function
vy
Vv = 1 + vy,
n~1
= _Z;[v(w?) = v(z])]o(z — =i).
==

So if u' is continuous or u € H?(I), then in the sense of generalized
functions we have

b
a(u,v) = / (pu'v’ + ru'v + quv)dz
Ja
n w‘l .
= Z/ (pW'v' + ru'v + quuv)dz
g1 Y %i-1
-1

+Zp zi)u' (zi)[v(e]) — v(a7))]

=1

(2.1.9)

= aa(u,'v).
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Now, it follows from (2.1.7) and (2.1.9) that the solution u of (P1)
also solves the following problem '

Find u € HE(I) N H?(I) such that

(Ps) rs \ eyl A Y ~ () -
- a{u,v) - (f,v) =0, Ywe V.

(2.1.10)

On the other hand, if u is a solution of (P3) and u € C[a, })NC?(a, b),
then it follows from (2.1.6) and (2.1.7) that

(Lu — f,v) + p(b)u'(b)v(d™) =0, Yv € V. (2.1.11)

In particular

IS £ N 0 A ot L 7 AN
\vy — J,v)=v, Vv

veE{veV: v ) =0}

Since the set {v € V : v(b~) = 0} is dense in L%(I), the above
equation is valid for any v € L%(I). This verifies (2.1.1a). Now
(2.1.11) becomes

p(b)u' (B)u(b™) =0, Yu € V.

Taking v € V with v(b~) # 0 implies «'(b) = 0. Finally, we note
u € Hg (I), so (2.1.1b) is valid and w is the solution of (P1).
The above discussion leads to the following theorem.

Theorem 2.1.2 Suppose that u € C[a,b] N C?(a,b) is the solution
of (P1); then it is the solution of (P3). Conversely, if u is the solution
of (P3) and u € C[a,b] N C?(a,b), then it is the solution of (P1).

We shall call (P3) the generalized Galerkin variational problem
with respect to (P1), and Theorem 2.1.2 the generalized Galerkin
variational principle.

Now we make a convention that in the sequel the bilinear form
a(u,v) is understood according to (2.1.9), which coincides with the
original definition when v € HL(I), and that (2.1.2) should be inter-

preted in terms of generalized functions when v € VS(;) .
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2.1.4 Generalized difference methods
Let us decompose the interval I = [a, b] into a grid T}, with nodes
a=20<01<23< " <Tp=>b
Accordingly we place a dual grid
a=129< Ty <Tga < ' <Tp-1/2 <Tn =1,

where z;_1/3 = (Ti-1 + 2:)/2, 1 = 1,2,+.-,n. Write I§ = [0, %3],
I: = [mi—1/2a .’.E,'+1/2] (‘l- = 1, 2, e, n— 1) and I;; = [a:n_l/g,a:n]. Then,
these dual elements I} (i =0,1,2,:--,n) lead to a dual grid, written
as Ty.

Choose the trial function space U, C U = HE(I) as a finite
element space with respect to T}, and the test function space Vj;, C
V= S’g“)(I) as a piecewise polynomial (of low order) space s},’i’,E
with respect to the dual discretization o* induced by T;. Now we
propose an approximation problem of (P3)

(P3) { Find u, € U, such that
a(up,vh) = (f,vh), Yo, € Vi

Different choices of Uj and V}, lead to different schemes. In particular,
selecting Uy, and V}, as piecewise linear and constant functions respec-
tively yields the usual difference scheme, as we shall see in the next
section. This explains why we call (P3); the generalized difference
method.

Let us elaborate on the general considerations in constructing
the test function space- V,. The choice of V}, certainly should be
somehow related to Uy. For instance, V}, should have the same degree
of freedom as Up. But it is not required for the functions in Vj to
possess global continuities, so we can choose V;, as low order piecewise
polynomial spaces to reduce the computation effort. Usually when
the values du(z;)/dz? (j > 0) make sense at the node z; for the
functions in Uy, one can choose the basis function ¢,§j) of V;, with
respect to the point z; to satisfy the following conditions:

(i) The support of ¢1(J ) belongs to the dual element I} containing
ZTi.

(2.1.12)
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(ii) On Iy

d 0, forl#j,
w0~ _
z T=a4 1, forl=j.

These conditions imply that .

; (z—zi) /!, ze€lf,
¥ (z) = ”
0, z &I

Finally, we point out that the generalized difference methods are
different from the usual generalized Galerkin finite element methods
or the nonstandard finite element methods, in that we only have V}, €
T2 cntlbine dlica 17 = IFPLIPN can d hlin mmcvmgmmin e dlanee Td i a e O Lo 4
s 1LAULICL viladl Vi T J1 \1} alil Liic buuwpuuuuxs puuwu 10F11L Ilad L0
be understood in the sense of generalized functions. So the variational
forms of the generalized difference methods differ essentially from the
usual ones, causing difficulties in theoretical analysis.

2.2 Linear Element Difference Schemes

Consider the two point boundary value problem

Lu= —di'( %) = f, z € (a, b), (2.2.1a)
u(a) = 0, u'(b) =0, - (2.2.1b)

where p € CY(I), p(z) > Pmin > 0, and f € L2(I).
In this section we deduce a linear element difference scheme by
choosing the trial and the test function spaces as linear finite element

and niecewise constant function snaces respectively, This will result

CUAALE PJEDUTI AUU VULIDUALY 444U UAVAL DU 4 VTP U ui VUa y o ass Al &TW e

in the usual difference scheme as we have promised.

2.2.1 Trial and test function spaces

Discretize the interval I = [a, b] into a grid T}, with nodes

a=29<1 < - <Tp="b



54 ' Chapter 2

Denote the length of the element I; by h; = z; — z;—1 and write h =
max hi. We assume the grid satisfies the quasi-uniform condition
hi > ph (i =1,2,.-.,n) for some positive constant p.

" The trial space U}, is taken as the linear element space with respect
to T, which consists of all the functions uy, satisfying

(i) up € C(I), up(a) =0 and '

(if) wp, is linear on each I; and is determined uniquely by its values
at the endpoints of the element.

Obviously Uy, is an n-dimensional subspace of Hg(I).

To construct the nodal basis functions we consider an interpola-
tion problem on the reference element [0,1): Find a linear function
No(€) such that

No(0) =1, No(1) =0.
Then, Ny(¢) = 1 — €. Notice that the affine mapping
T — T
hi
maps the left interval I; = [2;-1, 2;] of the node z; onto the reference
element [0,1] with z; — 0, z;—; — 1. Thus, on the interval [z;—1, z;]
the basis function ¢; of the node z; is of the form '

¢i(z) =1 - m";""
Similarly the affine mapping
T -
~ hin

maps the right interval I; = [2;, 2;41] of the node z; onto the reference
element [0,1] with z; = 0, z;+1 — 1. Thus, on the interval [z;, z;+1]
¢; can be expressed as
T —
¢1(m) = 1 = h : *

i+1

Therefore, the basis function with respect to z; is

1-hMo — 2|, 2o S <
¢,(-’B) =< 1- ’7';--}.11"z - mil! -'ti <z £ Tiq1y (22'2)

0, elsewhere.



Two Point Boundary Value Problems 55

The functions {¢;(z) : ¢ = 1,2,--+,n} form a basis of U, and any
up, € Uy, has the following expression

Up = zn:ua‘fﬁi(m),

i=]

where u; = up(z;). On the element I; we have
up = ui~1(1 — ) + wié, (§ = w—_hﬁi) - (2.2.3)
{1

up = (u; — ui—1)/hiy z € I;y i =1,2,-+,m. (2.2.4)
Next we place a dual grid T} with nodes
a = 2o <Z’1/2<-’£3/2 < "'<$n_1/2<$n=b,

where z;_1/9 = (Ti-1 + 24)/2, ¢ = 1,2,--+,n. The dual elements
are I = [zo,z1p9), I} = [Ti-1/2:%it1p2) (0 = 1,2,+--,n — 1) and
It = [%p_1/2,%n). Accordingly we choose the test function space
Vi as the piecewise constant function (step function) space, which
contains all the functions vy, € L%(I) satisfying

(i) vp(z) =0, for z € I and

(ii) vy, is a constant on each I} (i =1,2,--.,n).

The basis functions of V}, are

p@={" *5 o1, (2.25)
H(z) = =1,2,--+,n. 2.
g 0, zgl},

Any vp, € V}, has the form
. n
v =D vit(z),
=1

where v; = vy (z;). .
Typical basis functions of U and V}, are depicted in Fig. 2.2.1.
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1
T+ 1 T~ 1 Xn

—— u(z) ()
-zi:- /2 Zi 1—'1.* 12 1‘:— 1/2 Zn
Fig. 2.2.1

2.2.2 Difference equations

Following (P3); in Subsection 2.1.4, the linear element difference
n

scheme is: Find up = Y u;¢i(z) such that
i=1

a('U;h,’lpj) = (f: l‘pj), j =1,2,:,n,. (2'2'6)

where (cf. (2.1.9))

b
a(un, ¥;) = /a pupld(z — zj_1/5) = 6(x — zj41/9)]dz

= Pj-1/2h(®j-1/2) = Pjt1/2Un(541/2)

= pj-1/2(uj — uj-1)/hs = pjr1/2(uit1 — u5)/hye1,
i=12,--,n-1,
ug = 0,

a(up,¥n) = pn—l/z(un—"yuln-l)/hn-

This results in a difference equation
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Ti+1/2

pj—1/2(u5 = wj—1)/hj = pjr1/2(Wir1 — ug) [hjpa = ; fdz,
§-1/2
j=1,2,"',ﬂ—'1, u0=0a
T
Pr—-1/2(Un = Un—1)/hn = / fdz.
Trn-1/2
(2.2.7)

The left-hand side of this equation coincides with the usual finite
difference method. Furthermore, if we use f; = f(z;) and f, = f(zn)
respectively to approximate the integrals in (2.2.7), then we end up
with precisely the usual finite difference scheme. Therefore, we see
that a finite difference scheme has been derived from the generalized
difference method.

(2.2.7) is a linear system for the unknowns w3, ug,+,u, with a
symmetric tridiagonal coefficient matrix:

r pg -
mR

Py Pz Py Pg
ho hy  hg h3

s RS s %

hs hs  hy hy

hp-1 hp-1 hn hn
P} Pn-}
b B hn hn -l

2.2.3 Convergence estimates

There have been thorough discussions for the convergence of the fi-
nite difference scheme corresponding to (2.2.6) (or (2.2.7)). Here we
consider the error estimates of (2.2.6) in a Sobolev norm.
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First, for up € Uy we have by (2.‘2.4) that

b 1/2 U 1/2
|unly = [/ (uﬁ)2dz] = [Z(uI - u,-_1)2/h,~] . (2.2.8)
a i=1
Next, we define an interpolation operator II} : U — V}, by
n
Mhu =) ujyj, YueU.
j=1

Finally we examine the positive definiteness of a(up, IT}us).

a(un, Mun) = 3 uja(un, %)

=1
n~1
= Y uypjo1/2(uj — uj—1)/h; — Piyrj2 (g1 — i)/ hj]
=1 :

‘tlunpn—l/z(un - "{'n—l)/h'n

= 3 pj-1/2(t5 — uj-1)%/hj > Prain]unl3-
=1

"This gives the following theorem.

Theorem 2.2.1 The discrete bilinear form a(up,II}uy) is positive
definite, that is, there exists a constant a > 0 such that

a(up, un) > afupl3, Yun € Up. (2.2.9)

We notice that the seminorm |- |; and the norm || - ||; are equiv-
alent in the space H}(I). Thus the existence and uniqueness of the

AiBavanan anharma (99 8Y fallavwes Fram Thanvam 9 9 1 Nawe wea e
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to the convergence estimate.

Theorem 2.2.2 Let u € H?(I) be the solution of the differential
equation (2.2.1) and uy, the solution of the difference scheme (2.2.6),
then the following estimate holds:

ju — uply < Chlule. (2.2.10)
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Proof It is obvious that
a(%"ﬁj) = (f)"/’j)a .7 = 1,2a ARY (2

a(un,¥5) = (i), 5 =1,2,-++ .

So
a(u_uhs"pj) =0,7=12,---,n

59

(2.2.11)

Let IIpu be the interpolation projection of u onto the trial function

space Up. Then, by Theorem 2.2.1 and (2.2.11) we get

lup, — Opul?

Thus

lup — Myuly < _]; sup la(u — Mhu, Hiwh)l.
T Cwuely lwalr

L3
Write w; = wi(2;), then we have IIfwy, = ¥ w;9; and
i=1

n
a(u — Opu, Ojwy) = z wja(u — ITyu, ;)
i=1

(2.2.12)

= Y wilpj1ye(u — Tpw)i_y o — Piyrya(v = Mpu)iyy
=1

+wnpn~1/2(u - Hh“);—l/z

n—1
= 2”1 o(u — Hh’Ua) (;"'wj-l)-

i1

o,

By the Cauchy inequality we have
la(u — Hpu, Diwa)|

< of3 I =Ty} (D

it

-
ca
n—a

1
v

n 1/2 2.2.13
—— e (2.2.13)
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[=2)
(]

By (2.2.4)
(u— Hhu);--uz = “;'—1/2 = (uj — uj-1)/hy.

By the mean value theorem there exists §p € I; such that

’“'(fo) = (uj — uj-1)/hi, ie (u—IHu) (&%) =0
Hence,
Tj-1/2 j-1/2
(u - Hh’u,)J_l/z = /5: (u - HhU)”dw — / "da:,
0 0
which yields
l(u_ Hhu)’-- 2'2 < h[/fmj (u”)idw],
j-i/2t = 251
- b 212 12
(VM- it} <Al (22.14)
i=1

Combining (2.2.13), (2.2.14) and (2.2.8) we get

This together with (2.2.12) yields
fup, = Dpul|1 < Chlula.
By the interpolation theory in Sobolev spaces
lu — puly < Chluls.

These two estimates imply (2.2.10) and complete the proof. a
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2.3 Quadratic Element Difference Schemes

Consider the two point boundary value problem:

dz
| u(a) =0, '(b) =0, (2.3.1b)

where p,q € CY(I), p(2) > pmin > 0, ¢ > 0 and f € L¥(I).

In this section we derive a quadratic element difference scheme
by choosing the trial and the test spaces as the quadratic element
space of Lagrangian type and the piecewise constant function space
respectively.

{ Lu=—2(p g &) bqu=1, 2 € (), (2.3.12)

2.3.1 Trial and test spaces

Perform the same discretization as in §2.2 to get the grid Tj,. But
now the interpolation points include, besides the nodal points x;, the
midpoints of the elements z;_1/3 = (%7 +2;-1)/2 (j = 1,2,--+,n) as
well,

Select the trial function space U as the quadratic element space
of Lagrangian type with respect to T». So any function up in Up
satisfies the following conditions:

(i)uh € C(I)’ uh(a') =0

(ii)up, is a quadratic polynomial at each element I; and it is deter-
mined uniquely by its values at the two endpoints and the midpoint
of the element.

Obviously Uy, is a 2n-dimensional subspace of U = H}(I).

To obtain the basis functions, let us first construct the quadratic -
functions No(€) and Ny j5(€) such that

No(0) =1, No(0.5) = No(1)

= 0
Nij2(0.5) =1, Nyyp(0) = Nypp(1) =

It is an easy matter to get

No(€) = (26 - 1)(€ - 1),
Nyja(€) = 46(1 - €).
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Setting £ = (z — z;)/hi+1 and & = (z; — x)/h; respectively in No(£),
we end up with the right and left halves of the basis function with
respect to the node z;. So we have

([ (2z - zil/hi — 1) (|2 — @ilhi — 1),
Ti-1 £ ¢ < Tiy :
$i(@) = (2lz = @il/hit1 — 1)(jz = zilhisr - 1),
Zi ST £ i1y

| 0, elsewhere.

Similarly set £ = (z — 2;-1)/hi in Ny/3(€) to get the basis function
with respect to the node z;_;/3

4(1 — (z — zi—1)/hi)(z — ®i-1) /b,
$i-1/2(z) = zi-1 £ 7 < 3.

0, -elsewhere.

The set {$i(2), $i-12(2);1 < i < n} is a basis of Uy and any uy € Uy,
can be uniquely written as

n
up = ) [uii(@) + vi126i-1/2(2)];
i=] :
where u; = ux(2i) and ui_13 = up(Ti—1y2). In the element I; =
[Ti-1, 2]

up = ui1(26 = 1)(€ — 1) + dui_1/2€(1 — €) + ui(26 — 1)¢
EEEIEY

= (E"»E,l) -3 4 -1 1~ )

l_ 1 0 0 J [uu:/z J ,

(2.3.2)
up, =wu—3(4¢ - 8)/hi + u,;_l/g(—8§ +4)/hi + ui(4€ - 1) /h;

_ ~4 4 [ (g —wic)/bi |
-en[ 3 ][ el )

(2.3.3)
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“where € = (z — z;-1)/h;.
Next, we place a dual grid Tj; with nodal points

e=20 <y <Tgpy < < Bp_gfy < Tp-1/4 < Tn =10,

where z;_j/4 = T; — gh,: (k=1,3, i =1,2,.+,n). The test function
space corresponding to T} is taken as the piecewise constant func-
tion space, which is a 2n-dimensional subspace spanned by the basis
functions of the nodes z;

Pi(z) = {

and the ones of z;_1/2

1, %14 £ < Tiga/a

0, elsewhere,

L %ica/e ST < Timys
1 0, elsewhere.
Any v, € V}, can be uniquely expressed as

n

vn = Y _[vj1hi(2) + vjo1/2%i-1/2(2)].

J=1
pical basis functions ¢; of Uy and ; of V}, are depicted in Fig.
4

ods

R
Yi~1/2\2)

o

a
&

2.3.2 Difference equations

" The quadratic difference scheme corresponding to the subspaces Uy,
and V}, given in the last subsection is: Find uy € Up such that

{ ol bs) = U ) J=12-,m (2.3.4)
a(un, Pj-1/2) = (Fidj-1/2)s =12y
where
! ' Zi+1/4
a(un, %)) = Ps-1/aUn(Z5-1/8) = Py41/aUn(Ts1/) + /m . Tunds
= 2p;_1/4(uj — uj-1/2)/hs = 2P541/4(uj11/2 — u5)/him
Ljt1/4
+/ qundz,
Tj-1/4

(2.3.5)
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Zi- | \/x:- 172 Zi Zi + 1/;\/‘2%1 xx-l\{u- I/zx"

i~ ] i __591_

| L
. Zi=¥4 Ti~1/4 i+ 1/4 Tn=1/4 Tn

Fig. 2.3.1

a(up, ¥j-1/2)

Tj-1/4
! !
= pj-3/4uh(Tj-3/4) = Pj~1/4Un(Tj-1/4) + / qupdz
R (2.3.6)
= 2pj-s/a{j—1/z — Uj~1)/hy = 2pj—1/4(uj — uj-1/2)/ s
Tj-1/4
-+ qupdz.
Tj-3/4

In the above expressions up = 0 and, when j = n, the quantities on .
the right-hand side of z, = b should be dropped. For this reason we
make the convention that ppy1/4 = 0 and Tp41/4 = Tn.
Exploiting the numerical quadrature formula
/%’+1/4 1

qupdz = —(h; + h

1),
-/wj.-1/4 4

4
JUSragy g

Tj-1/4 1
f qundz = 5h;gj-1/2%5-1/2
2j-8/4

leads to the following difference equation corresponding to z;
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a'h(uh';"/)j)
. 2uj ~ug1p) 2w —ty) by hyy
Pj-1/4 Ry Djt1/4 | hyst + 1 q;us
Ti41/4
= [ fde, j=1,2,1n, (2.3.7)
Tj~1/4
and the one to ;_;/;
an(Un, ¥j-1/2)
2(11,’_1 9 = Uj~1 2(’0,'-'1};'_ 2
= Pj-3/4 ! /h,' ! )-“27;'—1/4'-————"'—"‘J h_J 1/)
i j
hj (2.3.8)
1'5'(]’1-1/2711—1/2
. Ti-1/4
= f fdz, j=1,2,-,n.
Tj-3/4

This gives a finite difference scheme on the given grid. If the un-
knowns are arranged in the order wy/s,u1,ugje, U2, **,Un—1/2, Un,
then the coefficient matrix of the resulting linear system

agy  Go ]
ajp a11 ai12
a1 Gz2 023

is a symmetric tridiagonal matrix, where

2
2 2 P3/4
ago = -%‘i + —”,ﬁﬁ + %’*fh/z, apy = @10 = ——,TI/-,
2 2 hi+hy 2
P Pa/s | 2Ps/4 201, G1p=ag1 = — P5/4’
2h1 2h2 A 4 2{;«2
4 4
Qg2 = I;;M + —I;g—— + -2'2-.43/2, a3 = agy = -—,—Ez/—,
. _ 2p1y 2P9/4+h2+h3q2 b3 = a4 _ 2y
8= s 7 y 03 3 !
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2.3.3 Convergence order estimates

Inspired by (2.3.2) and (2.3.3), we introduce the following discrete
norms

n oy 1/2
= (12 2 2
luslos = {E;hz(uf;—1 + Ui+ “’} ; (2.3.9)
=
i 1/2
lunlin = {3 [(uimrje = vie1)? + (ws —wie1p)?)/hi} . (23.10)
i=1

Theorem 2.3.1 Within Uy, the norms |-|o, and |-|1,n are equivalent
to |- |o and |- |y respectively, namely, there exist positive constants
C1,C,,Cs and Cy independent of Uy, such that

Chlunlon < lunlo < Calunlon, Yun € U, (2.3.11)
Csluplin < luph < Cilunlip, Yun € Us, (2.3.12)

Proof By (2.3.3)

2___” T e ST a5,
[unlt Z - _('u‘h) dw"'zh161 As;,

i=1 Y @i-1 i=1

where

_ | (Wic1ye = ui-1)/hy AT
6‘—[ (ui —ui_1p9)/hi |’ A=G A,

o= d]oam [ [€ e[} 1]

A is positive definite since Ay is positive definite and G is nonsingular.
PR I N Y Y 1P L2nle nwen Sun PRC pRev s
L

Mlicen L1 e PR .. . L 7Y a3 Y L . P PR .y
L HUD LIICIT CAIDY PUSILLIYE LULISLALILS /3 alll U4 WHILI 4lt 1uUospoiucil

of Uy, and satisfy

= Dl

C3676; < 67 Asi < C34] ;.

This implies (2.3.12). Similarly one can prove (2.3.11). This com-
pletes the proof. , ]
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Define an interpolation projector Il : U — V}, as

n

Miu= Z(‘U,j_Uz’lpj_l/z + Uj'l,bj), Yu e U. o (2.3.13)
J=1 '

Py T rogitine de
Theorem 2.3.2 For sufficiently small h, u\uh,uhuh, is positive def-

inite, that is, there exists a posztwe onstant o such that
alun, Mup) > alusl?, Yuy € Uy, (2.3.14)
Proof First we show that ap(up,II}uy) is positive definite:

an(un, Mhup)
n

= Y [uj_1/00n(un, Yi—1/2) + ujon(un, ¥5)]
Jj=1

n

_ , e Y2 /R

- ‘;—1[2})‘7_3/4('&]_1/2 u]"l) /h.7 (2-3.15)
+2p;j-1/a(us — uj-1/2)*/hj]

Bk hyt+hjy
+1§1(“th1—1/2“§—1/2+ 2 1‘11“?)

2 2Pmin[uh|%,h 2 aoluhlf (ag > 0).
Next, we deal with a(up,II}jup). Notice
laun, Thup) — an(un, 5 up))
Tj-1/4

= lzi: Uj—1/2 (/ quadz — %sz—1/2“3’—-1/2)

Zj~3/4

n Z uj (/zj+1/4 hdm _ ﬁﬁfiﬂqju‘iﬂ
j=1 Tj-1/4

{Zn:[(/:j—m (qun — %-1/2“,’4/2)@)2

=1 U%j-3/a

+(/mj+1:4(quh - quj)dw)2] }1/2{i1(“§-1/2 + u?)}m'
ZTi-1 = |
"y g (2.3.16)

IN
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By the Cauchy inequality we have

lqup — qj—1/2uj—1/2|2 =

z , 2
/ (qun) dwl
Tj~1/2

hi [%Bi-1/4.
= [(qun)?dz, Tj-3/4 ST < Tiy/4s

2 Tj-3/4

IA

z;- 1/4
[ / (qun = gj-1/2u;- 1/2)d$]
Z'j ~3/4

; [Ti-1/4
El/z (qun — gj-1/9uj-1/2)*dz

j~3/4

AN

IA
|
g
&
I "
o
~
[
—
—
)
g
&
g

Similarly,

Tj41/4 Tiy1/4
[ tqun - gup)aa]” <L [ l(qua)Paa.
T T

=174 i—1/4
So we have

n

{Z[(/mj 1/4(quh'"‘11 ~1/2%; 1/2)dw)2

j=1"V%j-3/4

/’:J+1/4 qun — gju;) dw)z] }1/2

3-1/4

T -1/4 j41 /4 1/2
{Z —1(/ " llqua) ]2dw+/ quh)’]zdw)} /
i=1 Zj-8/4 Bj~1/4

< Chs/zlquhll.

IN

| (2.3.17)
Notice ¢ € C*(I) and the equivalence of the seminorm | - |; and the
full norm | - {|; in HL(I), then we have

lgualt < lg'"unlo + |guhlo < Clupls. (2.3.18)
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It follows from the quasi-uniformity of the grid and (2.3.11) that

= - ’ (2.3.19)
lunlo < Ch™ Y upls.

Combining (2.3.16)-(2.3.19) leads to
la(un, Thun) — an(un, Mhun)| < Chlunl.

This together with (2.3.15) implies the desired result. o

Theorem 2.3.3 Suppose u € H3(I) and uy, are the solutions of the
problem (2.8.1) and the quadratic element difference scheme (2.8.4)
respectively, then the following estimate holds:

lu = upli < Ch2[uls. (2.3.20)

Proof Noticing

N S Y ..\\_/ - 17
a\U,Vh) = \J1Vh);s t Vh,

a(un,vp) = (f,v4), Yop € Vi,

a(u — up,vp) =0, Vv, € V. (2.3.21)

Let ITpu b the interpolation projection of  onto the trial space Up.
Then using (2.3.14) and (2.3.21) we find that

lup, — Tpul? a(up, — Dpu, I} (up, — Ipu))

a{u — Hpu, I} (up — ITu)).

Ql'—‘QI'-'

This gives

lup, — Ipuls < 2 sup lafu = Iy, Miwn)|

2.3.22
O wpels |wal1 ( )
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Notice

a(u — Hpu, Mjwy,)
n

C= Y [wieyypa(u — Mhu,i-1/0) + wia(u — Ohu,¢y))]
=1

.

n
= Z{wj—l/Z[pj—SM(u - nhu);'-3/4 = pj-1/4(u~ Hhu)}_1/4]
j=1

Ziw-1/4
+'U.)j_.1/2 /w.‘7 q('u. - Hhu)dw}

n
-+Z!w4fm_1/4(u—ﬂhu)',-,14 D; 1/4(’Ul Hhu) ]

1
Tj41/4
+wj/m " g(u — Hhu)d.'z:}

j—1/4

= Z[pa 3/4(“ Hhu)]-3/4(wj—1/2—wy—1)
1

[
1}

3

2j {as — T1. 4.}/ (o3 — a3 i SN
1/4\"‘ “nwu 1/ 4\% wi- / /1

+Z[w,_1/2/ =i g(u — Myu)dz

Tj-38/4

Ti41/4
+w; g{u - Hhu)dx] .

Zj_1/4
Then, we use the Cauchy inequality and (2.3.12), (2.3.19) to get
a(u — Ipu, I} wy)

< ol 300 — Tyt _gya)? + ((u = T _)]}

j=1

1/2

1/2

-{En:[(wj_1/2 — wy1)? + (w5 = wj12)?]}
i=1 .
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W,

/[ TiH1/4 2111/2 [,
Wy

ju - Hhuidw) ]} 12

Tj-1/4 j=1

Chl/z{_i:[(u ~ Tpu)j_g/a)* + ((u - Hh“);'—ll‘i)z]}l/zlwhh
‘7= .

+C’h‘1/2{i[( f

j=1 Zj-8/4

+( /zj+1/4 ‘u _ Hhu|da:)2] }1/2|wh|1‘

N T 174 s 1l

L2 )
1/2+wj)j

IA

Tj-1/4

fu — Myulds)”

(2.3.23)
The interpolation property gives

u.—Ilpu =0, when z = Z;-1,%;-1/2, T;

So by Rolle theorem there exist 71 € (zj-1,2j-1/2), 2 € (j-1/2 %)
and 73 € (n1,72) satisfying

(u—Tpu)'(m) =0, i=1,2,

(u — Txu)"(73) = 0.

Thus,
(u =)y = fn fj"s’ ‘(4 - Myu)"do
= J/ﬂ Tj w8/ \Jé :(u - Hhu)"'da:) dz,
o= gl < [ lde <H2([7 (u"Pds) v

Similarly we have

z
I(U — Hhu)9_1/4| < h3/2 (/ e |Umvl2d£c)1/2_

Bj—1
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Hence

{ ) [(u=Thhw))_/a)+(u=Tpu) g1} < CH2Juls. (2:3.24)
j=1

On the other hand,

n - ) , /
(L e me)” ([ o) )
n

Tj+1/4

{Zh[ Tj-1/4 lu — Hh'u.|2da; + = Hhulzdw] }1/2

j=1 YTj-3/4 Tj-1/4
h1/2|u —Ipulp £ h7/2l'u.|3.

Substituting (2.3.24) and (2.3.25) into (2.3.23) yields

IA

IA
—
[ )
Sa.?
[~
ot
N

o(u — My, ws) < Ch?lulslwnly,
which together with (2.3.22) implies
lup, — Dpuly £ Ch?|uls.
This together with the interpolation estimate
|u — Tpuly < Ch?|uls

gives (2.3.20) and completes the proof. 0o

2.4 Cubic Element Difference Schemes
Consider a more general two point boundary value problem

dz \"dz dx
u(a) = 0’ ’u.l(b) - 0’ . (241b)

where p € C1(I), p 2 pmin > 0, ¢, € C(J), f € L(I).

{ Lus—i(pdu)ﬂ-rg"—b—!—qu:f, a<z<b (241a)
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In this section we shall deduce a generalized difference scheme
with higher accuracy by choosing trial and test spaces as the cubic fi-
nite element space of Hermite type and the piecewise linear function
space respectively. As in the last two sections, a numerical analy-
sis indicates that this method enjoys the same convergence order as

idditabkos Lild 4448 AGLUOL BV 110 sl LO11

the usual cubic finite element method while its computation is more
economical.

2.4.1 Trial and test spaces

As in §2.2 we place a quasi-uniform grid T}, with nodes
a=20< 2 <2<+ <2, =0

The trial space U}, is chosen as the cubic finite element space of Her-
mite type, so each function uy, in U}, satisfies the following condition:

(i) un € CH(I), un(a) =0,

(ii) up, is a cubic polynomial on each element I; = [z;-1, ;] and
is determined uniquely by its values and derivatives at the two end-
points of I;. :

Uy, is a (2n + 1)-dimensional subspace of U = H%(I) N Hj(I). To
construct the basis functions, we first seek for the cubic polynomials
to satisfy

No(0) = 1, Ny(0) = No(1) = Ny(1) =0,
Ni(0) =1, N1(0) = Ny(1) = Ni(1) = 0.
It easily follows that

No(¢) = (1 - &*(2¢ +1),

Mi©) = 1= (e=(5)7).

Setting £ = (z — 2;)/hi+1 in No(€) and Ni(€), we obtain the right
halves of the two basis functions ¢§°)(m) and ¢§1)(w) respectively.
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Similarly, setting ¢ = (2; — z)/hq we get the left halves. So we have
( (1 -~z — 24])2(2hilz — 23] + 1),

zio1 S T < @y,

¢O(z) =4 (1 —hikile — zil)?(2hisale — @i + 1),

Z; LT < Tigl,s

| 0, elsewhere,

[ (& — ) (hi Mz — 2| — 1),
Zi-1 S ¢ £ T,

$M (@) =4 (= - m)(hihle — =l - V2,
Zi <% < Tit+1,

. 0, elsewhere.

Any uy, € Uy can be written uniquely as
' L0
un = it (@) + uig{" (@),
=0

where ug = 0, u; = up(2;), v} = vy ().
On the element I; = [2;-1, Z;]

up = uici(1 = €)2(26 + 1) + uig?(3 - 2¢)
+uj_1hi€(1 — €)% + uihi(€ - 1)€°

A 2 =2 1 1] wa (2.4.2)
e84 -3 3 -2 -1 U
- (g !£ 1€7 1) 0 0 1 0 hiué—l )
1 0 0 0 hiu
wh = ui-1h; 1 (6€% — 6€) + ush; ' (—6€ + 6)
+uf_1 (367 — 46 + 1) + uj(3¢2 ~ %)
(2.4.3)

‘- -6 3 3 ‘l [ (ui —ui—1)/hs ‘]
—@en| 6 -4 -2 ’
1

ol WL
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where § = (z ~ zi-1)/hi. -.
Now we place a dual grid Ty with nodes

6=30 3Ty < T3 < < Tp-y/2 < Tp = b,

where Z;_; /9 = (z;+2;-1)/2. The test function space V}, is chosen as
the piecewise linear function space with basis functions at the point
a:j: ‘
(0) () = { 1, @172 £ 2 < Tjyay

0, elsewhere,

¢('1)($‘) _ [ 2% %~ L < By,
1 0, elsewhere.
Any v, € V}, has a unique expression

n

vn = 3 ol (@) + vl (2)),

3=0

where vg = 0, v; = vp(2i), v} = v},(2:). Vi is clearly a (2n + 1)-
dimensional subspace of L?(I). Typical basis functions of U} and V},
are shown in Fig. 2.4.1,

7N\
0)
¢.',(I)
2 -, _I/\l
Ziel Ziv1

‘/‘P)
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2.4.2 Generalized difference methods
The cubic element difference scheme approximating (2.4.1)‘ is: Find
up, € Uy, such that

fay. ~—~ 1/,
YUR T Vhy

—
8o
N
i
N’

~far: N — (8 4 )
G\UhyVUh) = \JsVh)>»

olnd?) = (h07) g1
(uh"‘p(l)) ( )a i=0,1,---,n.
Now we deal with the high order part of a(up,vp)

or

b duy dy
b('u.h,'l)h) d$h d;

Use (2.4.2), (2.4.3) and note & = 1/2 when 2 = ;_j /9, then we have

1 1 1,
Uj-12 = Uh(Tj-1/2) = FUj-1 + 5U5 + 8"1“: 1- ghiu  (2.45)

j= 1,2,"‘,"1,
3 3 1 1
“;—1/2=“51( j-1/2) = =5 h Uj-1+ 2h Uj — 4u] -1 Zu;,
Jj= 1’2’ 3 0.
. (2.4.6)
So we obtain for j =1,2,.--,n -1,
(0)
duy, d
uha ¢(0) / mh
= pj—1/2uj—1/2 "Pj+1/2“j+1/2
3 3 (2.4.7)
= 5Pi-1/20u5 = uj-1)/hs = 524172 (g1 — u) /By
1 1 1
"‘ij—l/Z'u';'-—l + Z(pj+1/2 -Pj-1/2)u3 + ij+1/2u9+1,
b dup dul® _
('u'hv (0)) p"d}’l g; dz =pn—1/2u;—1/2
(2.4.8)

3 1
3Pn—1/2(tn = Un-1)/hn ~ an—1/2(”4;-1 +ul),
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b dup dy”

1y = —
h h'+1 Zj41/2 .
= ——2110,'-1/2%_1/2——'J2 Pj+1/2u;+1/2+ / pupds
Tj~1/2
3 3

41’3'—1/2(“1' = uj-1) = ij+1/2(uj+1 - u;)
1 1
+§Pi—1/2hj“§'—1 + '8'(1”1—1/2"1 + Pjy1/2hgt1)u;
1 Tjp1/2
+-8-Pj+1/2hj+1u;-+1 + / pupdz.
ZTj-1/2

: (2.4.9)
Let us approximate the last integral in (2.4.9) in a symmetric fashion:

Ti+1/2 : Bip1ja Ti+1/2
/ puhdz = pupz Ty - / punde
Tj—1/2 ZTj-1/2

Dj+1/2Yj+1/2 = Pj-1/2Y%i~1/2 — U5 (Pj4+1/2 — Pj-1/2)

2

1 1 1
= 5Ps-1/2(uj = vj-1) + 5Ps41/2(Us41 — Ug) — gpj_z/zhju9_1

. 1/ P 2 [’ 1 s !
+gWPim1/205 + Pjv1/2Ri41)U5 = gPjv1/2Ri 41U 41
Insert this into (2.4.9) to get an approximation of b(uy, g-l)):

1 1
bh(uh,%(-l)) = —7Pi-1/2(u5 —ug-1) = 7Pjis1/a(uger — ug)

+31'(Pj—1/2h'j +Djrzhir g, =12 n -1,
(2.4.10)
Similarly for the two endpoints:
b Wy __h_
w(un, iy ) = —_'5'101/2“1/2 + p1/2u1/2 — Poko uo(P1/2 ~ Ppo)

1 ;1
= Zpl/2h1“o = 7P1/2u1, :
(2.4.11)
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h
(uh,¢(1)) = ""élpn—uzu' -1/2
+Pnlin — Pn-1/2Up—1/2 — Up (P — pn—1/2)
1 1
= ":‘_Pn—l/z(un - un-—l) + an—1/2h’nu;1'

(2.4.12)
If we define p_; 3, Pny1/2: B—1, hn+1,u__1, Un+1 and vy, as zero, then
(2.4.8), (2.4.11) and (2.4.12) can be expressed in terms of (2.4.7) and
(2.4.10) respectively, that is, (2.4.7) is valid for j = 1,2,+-.,n, and
(2.4.10) for j = 0,1, -,n. Write

bu(un, 9{”) = b(un,p”), §=1,2,-++,n,

then we have the following bilinear form approximating 5(up, vp)

! ! ! ! ! '\T
b (tn, vh) = (Vg V1,07, Uy U) A, U1, U1, * 5 Uny Uy)
(2.4.13)
where A is a symmetric matrix of the form
[ a0 apr O 1
610 611 012 G13. G14
0 am axp ags O
631 G32 033 O34 G35 Q36 '
L as1 0 a43 ags ags O
where
1 1
ago = 4P1/2h1, Go1 = 610 = = 2P1/2:
P12 pa 2
a1 = "( - ”ﬁ ) a12 = G21 = Z(Ps/z ~P1/2))
a3 =a ———M 014 = Q41 = —093 = —Q —lp
13 = ag1 3 hy 14 = Q41 23 32 = 7P3/2)
b3 2
ag = -(P1/2h1 +p3seha), as = ( hg -ﬁé-)
3D5/2

03¢ = a43 = 7(Ps/2 — Paja), G35 = T3y

1
Qa3 = —Q45 = ZPE/Q’ Q44 = Z(p3/2h2 +p5/2h’3)'
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These give the leading terms (corresponding to the highest order
derivative) of the matrix of the generalized difference equation. We
see that the coefficient matrix of the generalized difference equation
is sparse, and .of the same bandwidth as the finite element method,
but it is much more economical to obtain the discrete equation for
the generalized difference method than the finite element method.

2.4.3 Some lemmas
First let us introduce a discrete norm for uy € Up:

m[(US) v, + o]} @4y

7

v

s

]
-

|unlip = {
4

The proof of the following lemma is similar to that of Theorem 2.3.1
by noting (2.4.3).

Lemma 2.4.1 The norms |- |14 and |- |1 are equivalent, i.e. there
ezist constants Cy and Cy independent of the subspace Uy, such that

Cﬂuh[l’h <luph £ CZ'“hll,h, Vup, € Up,. (2.4.15)

Next we show the positive deﬁmteness of the leading term of the
difference equation.

Lemma 2.4.2 The bilinear form b(up, I} uy) is positive definite,i.e.,
8 a CO

= il bt (3] -'—n,*'w/
there exists g constant 5 >0 zndependent of the .mbspace Uh such that

blup, un) > Blusl?, Yun € Up. (2.4.16)

Proof First we show the positive definiteness of by (up, II}uy). By
(2.4.7), (2.4.10) and the definition for the quantities outside the end-
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points, we have

ba (un, Mhun)
n
R o VNN NTY (1) N R JRL ¢ 5 V!
= LAY Yh\Yhy ¥y ] T WiCh\ YAy Y5 )]
J=0
n
3 Uj — Uj—1 3 Uj4l — Uj
= - uj — = Lu;
fz.:l[zp] 27} ] 2pj+1/2 hivy  ?
1

1
*ij—x/z("}—l + uj)u; + ZP;'+1/2(“3'+1 + u;)uj]

n 1 ,
Zl——m ~1/2(uj — uj—1)uj — ij+1/z(“j+1 = uj)uy
j=
1

1
+ij_1/ghju§-2 + ij+1/2hj+1u}2]

n
3 Uj — Uj1 3 Ui — Ujul
=2 ['2'1’:'—1/2-ng—’—u7 = 3Pi-1 /a1

i=1
1 ! ", 1 ! A

= 7Pi-1/2(U5-1 + 43)us + 3pj-172(t5 1 + uj)uj—l]

noeol , 1 - ,

+ 3 [~ 3Pi-1/2(us = w0 ~ 3pj-a(us = vj-1)ujy
j=1 , } .
1 1

+ZPj—1/2hjU}2 + ZPj-—l/Zhju;?—l]

2 3 ruj — Uj_1\2 luj—uj_l ' ’
= S hpsmp[5 () - R g )

>
(2.4.17)
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Next we estimate

E(up, Mhup) = b(un, ITjup) — by (us, Dfus)

i Tj41/2
= Zug / p'(uj — up)dz
j==0

JEj~1/2

n

Zi+1/2
= Eu&/ p'up (&) (z — z;)dz.
j=0 Tj-1/2

It follows from (2.4.3) that on the interval I; = [z;_1,;]
Uj = Uj '
Jup(@)] < o(l—f—,—,-j—’——ll + ] + 1)

This together with the quasi-uniformity of the grid leads to

{Z[uﬁ(ﬁj)]z}l/z < OR™Plup 1 p,
i=0

d 1/2
{2} " <Ch=Yjupls .
j=0

So we have

|B(un, Wyun)| < Chlual?. (2.4.18)
Combining (2.4.17) and (2.4.18) yields (2.4.16). This completes the
proof. O

Denote by P, the orthogonal projector from L? to Vj,. Then the
cubic element difference scheme (2.4.4) is equivalent to

(Lun, Pyv) = (f, Pav), Yo € L3(1), (2.4.19)

or
Lypun = fhy
where Ly, = P, L, fr = B,f.
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Lemma 2.4.3 Suppose the homogeneous equation
a(u,v) =0, Yv € HL(I) (2.4.20)

admits only the trivial solution, then there exzists a constant a > 0
independent of the subspace Uy, such that for sufficiently small h

I Lnunl|] = sup |(Lup, Tjws)] 2> aluplr, Yup € Us.  (2.4.21)
¢ WhEU .

jwali=1
Proof First write L as

L =1L, +L, (2.4.22)

d ; du du :
Liu = —a(pd—x-) +ro-+ (g + N,
Lzu = —-)\u,

where A is a positive constant to be chosen. We find

(L1un, Mhus)

. d 4 duh * 3 4 duh * \ .
(_Q(Pa),ﬂhuh) + (r—d—;,ﬂhuh) + (g + f\)“haﬂhuh)
2 Blunlf ~maxirl - fuals - [Mhunlo + (A ~ max )

~(A *up ~ .
( +Igg}f|fI|)|Uh|0|HhUh uplo

' (2.4.23)
By the interpolation theory
| up — ulo < Ch%|uls, Yu € U. (2.4.24)
The inverse property of the finite elements irﬁplies
lunlz < Ch~Hup|y < Ch™2|uplo, Yup € Up. (2.4.25)

Hence

[I‘I;;uhlg < Iuhlo + IH;uh - uhlo < Cluhln. (2.4.26)
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Then we combine (2.4.23)-(2.4.26) to obtain
(L1un, TTiun) 2> Blunl? + Cslunld — (C4 + Csh)|un|ilunlo,

where the constants C3 and Cj increase with A. Exploiting the e-

inantialiter ~h <& gnz AL ;’-‘2 {fe N DY wn ann that thans aviata o rnActdieran
drGjuQuiivy wy 2w T v \l: -~ U}, WU DUC VMOV VUIGLUT TAIDW v PUQJU]VU

2¢
constant 4 such that for sufficiently small h

(L1un, Iun) > vlunl?, Yuy, € Uy, (2.4.27)

where 7 is independent of U},.
Next we turn to show (2.4.21). Suppose by contradiction that
there exists a sequence {i}, Gy € Uy, satisfying

ltnly =1, ||| Laiin]|] = 0 as h — 0. (2.4.28)

Since H}(I) is weakly sequentially compact, {iis} has a subsequence
(again written as {fis}) which converges weakly to some @ € H}(I).
Take any w € U and write IIpw as the interpolation projection of
w onto Up. It is clear that IT}(w — IIyw) = 0. It follows from the
interpolation theory that when A is sufficiently small

[Tpwli < |lwly + |[Tpw — wjy < |wh + Chlw|s < |w|lz.  (2.4.29)
Now by (2.4.28)
|(Lan, Mhw)| = |(Liip, T} ITpw)|

< OlEainll| - {Dywly < CYl|Latalll - fwll =0 (2 —0).
(2.4.30)
On the other hand, it follows from (2.4.24) and (2.4.25) that
|(Lin, Thw — w)| < Cllinll2|Thw — wlo
< Chllanlllwllz < Chilwllz 0 (A~ 0).

Combining (2.4.30) and (2.4.31) leads to
a(fip, w) = (Liy, w) = 0 (h = 0). (2.4.32)

(2.4.31)

For fixed w € H(I), a(u,w) is a bounded linear functional on Hy,(I),

which implies
a(tip, w) = a(i,w) (h—0). (2.4.33)
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By (2.4.32) and (2.4.33) we have
a(t,w) =0, Yw e U. (2.4.34)

In fact, the above equality is valid for any w € H}(I) since U is dense
in H} (I). The assumption of the lemma then implies % = 0. So the
sequence {#p} converges weakly to zero. By the compactness of the
imbedding of H} (I) in L? we know that {fi;} converges strongly to
zero in L?, which gives '

|Ladiplo = 0 (h — 0).
Furthermore, it follows from (2.4.26) that
|(Latin, ITfn)| < ClLatinlolnlo = 0 (h — 0). (2.4.35)
Finally by (2.4.28) and (2.4.35) we conclude |
|(L1iin, T3 )]

< (LA, Mhdin)| + | (Latin, Mhiin)| (2.4.36)
< L]l + |(Latin, I dn)| = 0 (A — 0).

This contradicts (2.4.27) and completes the proof. DO

2.4.4 Existence, uniqueness and stability

Theorem 2.4.1 Assume that the homogeneous equation (2.4.20) ad-
mits only the trivial solution. Then for sufficiently small h, the cubic
element difference scheme (2.4.4) has a unigue solution for any given
f e L¥(I).

Proof By virtue of the well-known results in linear algebra theories,
one only needs to show that the homogeneous equation

Lhuh =0

admits solely the trivial solution, which follows from (2.4.21). o
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The stability problem of the scheme considers the difference
between the solutions of equation (2.4.19) and its perturbed equation

(Lh + Bp)in = fu + gh, (2.4.37)

where Ej, = P,E, E being a linear perturbation of L, and gy = Pyg,
g a perturbation of f.

Definition 2.4.1 Let equation (2.4.19) be uniquely solvable, for any
f€LYI) and 0 < h < hg. (2.4.19) is said to be stable, if there exist
positive constants op, By and &y independent of the subspace Uy, and
the function f such that the perturbed equation (2.4.37) always has a
unique solution 4p € Uy, for any gn = Prg € Vp, BEp = P,E : Up, =
Vi, and |||Bp)|| < 0o, provided 0 < h < ho; and that this solution
satisfies

[Gn — unlt < ol Enllllunls + Bolllgnllls (2.4.38)
where ' '
HIBnlll = sup |||Enunll,
up€Up
luphi=
Eslll = sup (B, Ty,
whEUh
Jwpli=
(llgnlll = sup |(g,IT5wn)l.
wpel,
Jwp|1=1

Theorem 2.4.2 Let the conditions of Theorem 2.4.1 hold. Then the
cubic element difference scheme (2.4.4) is stable.

Proof By Theorem 2.4.1 we know that (2.4.19), and hence (2.4.4),
is uniquely solvable. Choose dy such that 0 < dp < . Then it follows
from Lemma 2.4.3 that there exists hg such that for 0 < h < hg and
| Er|l| < dp we have

Lk + En)unlll = sup |((Ln + En)un, Thws))

wp €U

lwpl1=1 (2.4.39)
> aluplt = ||| Brunl|] 2 (o = o)lunly, Yun € Up.
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Thus (2.4.37) has a unique solution 4. By (2.4.19) and (2.4.37) we
have :
(Ln + Bn)(@n — un) = gn — Entn.

Hence,
| (a = do)lin — unlr < ||[(Ln + En)(@n — un)ll|
= ||lgn — Enunlll < Wlgalll + [ Enll] - lunls.
Therefore, (2.4.38) holds for ap = Fy = (o — &)~ L.. ]

2.4.5 Convergence order estimates

Theorem 2.4.3 Let the conditions of Theorem 2.4.1 be satisfied, and
let u be the solution of (2.4.1) satisfying u € H*(I) and uy, the soiu-
tion of the cubic element difference scheme (2.4.4). Then the follow-
ing error estimate holds for sufficiently small h:

[u — ugly < Ch3luls. (2.4.40)
Proof Clearly we have
(Lu, Ijwp) = (Lup, DEwy), Yw, € Uy, (2.4.41)
By Lemma 2.4.3, (2.4.41), (2.4.24) and (2.4.25) we deduce that
ITIhu — w1
< Oll|ZLa(Thw ~ w)jl]
< C sup |(L(Tpu = u), Mjwp)|
R
< C sup {(L(Mpu — w), wp)| + (L(Tpu — w), wp, — Tiwy)|}
whl1=1 '
< C(pu -yl + wi\égh R2|| Ty — ullg|wp]2)
lwhl1=1
< C(IThu = ult + Al|Tau — ull2)
< C’h3lu|4.

(2.4.42)
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This leads to (2.4.40) and completes the proof. ]

We remark that the error estimate (2.4.40) is of the optimal order
precisely as the cubic finite element method of Hermite type.

Definition 2.4.2 In the deduction of the error estimates of general-
ized difference methods in §2.2, §2.8 and this section, the key point
is to show that the bilinear forms a(up,I}uy) (up € Uy) satisfy the
inequalities (2.2.9), (2.8.14) or (2.4.16) respectively. Henceforth in
such a case we say that the bilinear form a(uh,Hhuh) is uniformly
positive definite or Uy —elliptic.

2.4.6 Numerical examples

The usual second order central difference method (FD), the cubic
finite element method (FE) and the above three generalized difference
methods (GD1, GD2, GD3) are used to solve the following boundary
value problem

—u'(z) = 2%, z € (0,1), (2.4.43a)
u(0) =0, /(7)) = 0. (2.4.43b)
The true solution (TS) of (2.4.43) is
_1a 1 4
u=3me - ot

Take the step length h = m/n and write z; = in /16, i = 1,2,..-,16.

The numerical results of the five methods are given in Table 2.4.1.

We recall that (GD) is more economical than (FE). Table 2.4.1 shows

that these (GD)’s are much more accurate than (FD), and (GD3) is
nearly accurate as (FE).
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Table 2.4.1 Numerical results

nmeth.] 22 T4 . s zs Z10 Z12 214 216
FD 18.26438 30.44063
GD1} - 15.98118 25.36695
2| GD2 8.10157| 15.79093) - 21.926566 24.605694
GD3 16.70229 24.36250
FE 15.71638 24.35250
FD 8.37117 16.36184 22.83047 25.87453
GD1 8.101567 15.79093 21.92656 24.60594
4{GD2 [4.056772[8.08968]12.02453[15.74336(19,07971(21.81954|23,70125|24.41569
GD3 8.08401 15.72572 21.78229 24.35250
FE 8.08492 15.72666 21.78320 24.35250

FD 14.09046{8.15714(12.12869|15.88020]19.26321/22.0456723.97199/24.73301
GD1 }4.05772[8.08968]12.02453{15.74336[19.07971/21.81954/23.70125/24.41569
81GD2 |4.05698]8.08671|12.01784]15.73147|19.06113|21.79279|23.66484|24.36813
GD3[4.05666(8.08507|12.01660]16.72753]19.06499]21.78395(23.65281{24.35250

I'E [4.056671{8.08513]12.01565[15.72759]19.05505]21.78401]23.65287|24.352560

FD [4.06519(8,10363(12.04336/15.76729]19.10714/21.84047|23,73269{24.44763
GD1 [4.05698(8.08671|12.01784]15.73147|19.06113|21.7927923.66484|24.36813
16/ GD2 [4.06697|8.08596{12.01617[15.72850[19.05649{21.78610|23.65573|24.35624
GD3 14.056676(8.08578(12.01572[15.72765[19.06511(21.78407|23.65291/24.35250

FE [4.06676(8.08579(12,015672[15.72765[19.065611(21.78407]23.65292{24.35250
TS |4.06677|8.08579[12.01672/15.72766|19.05512|21.7840723.66292(24.35250|

2.5 Estimates in L2 and Maximum Norms

2.5.1 L*-estimates

First let us consider the linear element difference scheme introduced
in §2.2 for the two point boundary value problem (2.2.1).

Theorem 2.5.1 Let up, be the solution to (2.2.6), and u to (2.2.1)

with u € HL (I) NW3Y(I). Then the following estimate holds:
Il = unllo < CA?|lulla,1- (2.5.1)

Proof Let usintroduce an auxiliary problem: For given g = u—uyp,
find w € HE (I) such that

a(v,w) = (g,v), Yv € H; (I). , (2.5.2)
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By the differential equation theory we know that problem (2.5.2)
possesses a unique solution satisfying

lwll2 < Cligllo. (2.5.3)
It follows from'(2.5.2) and (2.2.11) that

llu = unlif = a(u — up, w)
= a(u—up, w — Mpw) + a(u — up, Tw) — a(u — up, [w).

(2.5.4)
By (2.2.10) and (2.5.3) we have
la(u — up, w — Hpw)| < Clu—upli|lw —Hpw); 25.5)
< Ch?{ulaflu — upllo.
Next we compute
a(u — up, Hpw)
= / p(u = up) (Tpw) dz
a
n 2j , (2.5-6)
= Z[ (p- Pj-l/z)(u - up)'dz
j=1" %=1
+ [~ pj-1/2lu — “h)[dx] &t --'w,-_1,
‘/T'j—l -1/ ] h;
a’(u = Uh, th)
>
= wja(u = Up, "/’3)
= (25.7)
= Zpg—uz u - u‘h«)] 1/2( — wj-1).
j=1
Thus
a(u — up, Dpw) — a(u — up, Miw)
o[ 1a Wi — Wi-1
— - u — up) dp—L——mIi2
) / ™ G- w) et 258

n
/ Wi — Wji-1
Z pj-1/2(uj — uj-1 _hiuj—1/2)_'—hj .
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It follows from (2.2.10) and (2.5.3) that

DL (% v — Wi~
> [ - pr)u— un) e
j=17%5-1 4 (2.5.9)

< Chlu — up)1|w)y < CR?|uls|lu — upllo.
Using the Taylor expansion with an integral remainder we have

p uj — uj1 — hju; —
lgl o~ 1/2 j-1 5 1/2) h, (2.5.10)

< Chulaafwlieo < CRPluls,iflu — ualo-

Combining (2.5.4),(2.5.5),(2.5.8)-(2.5.10) and noting the imbedding
relation W31(I) — H?(I), we have

| — unlig < CR2||ulls,y]lu — uallo.

This validates the estimate (2.5.1) and completes the proof. ]

Theorem 2.5.1 indicates that the solution of the linear element

A!'Frnrnnnn nn]nnmn naagoaaoag an nnl-nrnn] I\‘V‘f‘n" nclwmni'n l" r2 noarm
aaaaaaaa VU DULLIVAIEY  UCOVLOUE il Ul VAELOUE VIUL UOVIAQUY  Si1 &S dasiaisy

but it requires higher smoothness of the true solution v than the cor-
responding finite element method. Maybe it is a reasonable punish-
ment for taking only piecewise constant functions as the test space.
The deduction of the Lz-estimate for the quadratic element differ-
ence scheme is rather tedious and is left as an exercise for interested
readers. '

In the next theorem we give an L? estimate for the cubic element
difference scheme, which is more like the counterpart for the finite

alarmant maathad ainon hava $ha +acdk anans hoa o hatdiar anneaw!

adin
Clclllcltb a.ucuuuu. DIV 1LIULT LIIT vORDUu Bpabc ad a UTuLiLTi appil UAI.I.I.JGI\JAUJ.I

property..

Theorem 2.5.2 Let uy, be the solution to the cubic element differ-
-ence scheme (2.4.4) and u to (2.4.1) with u € Hy.(I)NH4(I). Then
the following estimate holds:

llw = uallo < Ch*luls. (2.5.11)
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Proof As in the proof of Theorem 2.5.1 we introduce an auxiliary
problem: For given g = u — uy, find w € H} (I) such that

a(v,w) = (g,v), Yo € H (I).
This together with (2.4.1) and (2.4.4) implies

llu = unll = a(u - un, w)
(L(u — up),w = Ipw) (2.5.12)

< Cllu = upll2flw — Miwllo.

By the approximation theory, the inverse property of the finite ele-
ments and (2.4.42) we have

lu = upllz - < |lu— Hpulle + |Thu — upl2

< Ch%ulg + CR™Y|II), — upy (2.5.13)
< Ch?luls.
Also note
= Twllo < CR2juls < CH¥lu - urlo (25.14)

(2.5.11) now follows from (2.5.12)-(2.5.14). This completes the proof.
]

2.5.2 Maximum norm estimates

The L2-estimates easily results in the L*-estimates which indicate
the uniform convergence of the approximate solutions to the true
solutions.

Theorem 2.5.3 Under the assumptions of Theorem 2.5.1, the solu-
tion of the linear element scheme (2.2.6) satisfies the following error

estimate:
llu = unllo,o < CAY?|lulls,1. (2.5.15)
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Proof Clearly we have

Jlw = unllo,co < llu ~ Mhttllo,co + ITa% — unllo,co- (5.16)

Taw tha Brat tavm in tha wicht aida wa have he tha Sahalav interna-

A'UL ULIT L1IDLV VOL1L 121 VUT LIRIIV DIUT WU LiayYu, UJ VLU WUNUEIDY iV PV
- lation theorem, for some I; € T}, that

llu = Mauflo,c0 = v — Tpulloeo,r; < CAlulzr, < Ch¥fulz. (5.17)

For the second term, we use the inverse property of the finite element
method and the L2-estimate (2.5.1) to obtain

[Mau — uplo,00

< Ch Y3 Mhu-—-u '

. 2|| h rllo (2.5.18)
< Ch P(|ju — upllo + Jju — Maullo)
< Ch¥uljs,.

Combining (2.5.16)-(2.5.18) yields (2.5.15) and this completes the
proof, ]

The next theorem can be similarly proved,

Theorem 2.5.4 Under the assumption of Theorem 2.5.2, the follow-
ing estimate holds for the cubic element difference scheme (2.4.4)

llu = wlloco < CA™?|julls. (2.5.19)

2.6 Superconvergence

In this section we first give an outline of the concept of optimal stress
points and then, in particular, we show some superconvergence results
for the generalized difference methods for two point boundary value
problems.
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2.6.1 Optimal stress points

In the error analysis, the determination of the upper bound of |Ju ~
Up||m is usually reduced to the estimation of {ju — Iyullym and a(u ~
Opu, Ipwy). By the approximation theory, in general we can only
obtain, limited by the degree k of the approximate polynomials, that

llu ~ Tpullm < CREF ™ luflqr.

In general this estimate can not be improved even if the solution u
possesses an higher smoothness. Therefore,

llu = unllm = O(R**+1=™)

is the optimal order error estimate. But this fact does not exclude
the possibility that the approximation of the derivatives may be of
higher order accuracy at some special points, called optimal stress
points. The following definition describes an example of such points.

Definition 2.6.1 Point zo is called a optimal stress point if there
- ezists a q € [1,00] such that

- k+1-4 '

[7(u = Mpu)(@0)| < CH* 7 lullesagp, Yu € WH(E), (26.1)
where E denotes the union of ail the elements coniaining o, 7v{(xo)
the arithmetic mean of the values yv(zo) at every element in E, N

the dimension of the region, and C a constant independent of the grid
Ty and the solution u.

The superconvergence theory of finite elements has clarified the
distribution of the interpolation optimal stress points for some most
in use finite elements. For instance, the set of the interpolation opti-
mal stress points for the one-dimensional Py type Lagrange element

Npy=F Nk,
where F' is the invertible affine mapping from the reference element
K = [~1,1] to the finite element K, and Ny is the set of the interpo-
lation optimal stress points on [-1,1]:

Nl = {0}, NZ = {—\%,\—%}, Na = {"\s/gaoa \s/g}a
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For any z¢ € Ng,
[(u — Thu) (zo)] < Ch*|[ullet2,1,k-

For the two-dimensional linear tria,ngula,r elements, the interpo-
lation optimal stress points are the midpoints of the sides. For a
uniform mesh one has

|7 (u — TThu)(z0)] < Cluls sz (2.6.3)
In the case of nearly uniform mesh
| (u — TIpu) (z0)] < Ch* |juflgqm (g>2). . (2.64)

Further details can be found in the references on the superconvergence
of finite element methods.

Just as in the case of finite element methods, we can also obtain
superconvergence results for generalized difference methods, provided
we manage to get the super interpolation weak estimates. In detail -
we have the following theorem.

Theorem 2.8.1 Let v and up, be solutions of the boundary value
problem and its generalized difference scheme, respectively. Assume
tho hilimanm fawen af tha asmomalivnd Aiffamaman anhasma antichoe the
v veksreowr I,U”’ﬁ UJ (12147 yclﬂ:lunacw ull”DTGlllbD auivoiive UMUDI’JEDI’ (7213
following interpolation weak estimate: There ezists p € [1,00] such
that

la(us — Thyu, TTyun)|

(2.6.5)
< CW**ullpsapllwnlly, Yan € Us.

Then one has

ITThu — wnlls < CR**|lullgsa,p (2.6.6)

A/‘fare(l\uer let N:. bz the get of 4 internolatio
v N, 08 the gel of inierpolaiio

any zg € Ni, there ezists g € [1,00] such that

ontima
oprima

a~
[
3
to
o

|7(u - Thu)(zo)] < ohf**l‘%lluum,q,g. (2.6.7)

Then one has

BT Re-uwE]" < o e, (268)

ZoENy
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where r is the number of points in Ni. ( Uadally the number of super
points in each element is fized, so r = O(h~N) for an N—dimensional
problem.)

Proof It follows from the uniform Up—ellipticity of the bilinear
form and the weak estimate (2.6.5) that

IThu — ups )2
< Ca(Tlpu = up, I} (T u — up))
= Ca(Ilhu — v, I} (Thu — us))
< OR**Y|ullkta,pl Thu — tall1,

which implies (2.6.6).
The inverse property of finite element methods (Theorem 1.1.13)
leads to

| (Thw — un)(2o)| < Ch™N2||Tpu — uply, 5.
Noticing r = O(h~") and using (2.6.6), we have

['i‘ Y. v - Uh,)(ﬂﬂo)lzll/2
' moENy, ' (2.6.9)

< O|Hpu — uplly £ CRFYjullkiap.
(2.6.7) gives

17 (u = Mhu)(zo)] < CA*+ullkr2,00-

- 1/2
Y 19@-Tw)eol]” < OB fulleine.  (26.10)

T 20EN)
" Now (2.6.8) follows from (2.6.9) and (2.6.10). This completes the
proof. O

Remark Ifp=g¢=2in(2.6.5) and (2.6.7), then the right-hand
side of (2.6.8) can be replaced by Ch**+!||ulf42.
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2.6.2 Superconvergence for linear element difference
schemes

Let us consider the linear element difference scheme (2.2.6) for the
two point boundary value problem (2.2.1). We first deduce a relevant
interpolation weak estimate, then give a superconvergence result.

Theorem 2.6.2 For the linear element difference scheme (2.2.6) ap-
prozimating the two point boundary value problem (2.2.1), the follow-
ing interpolation weak estimate holds: .

la (u — Hpu, Thws) | < CA2||ullspllwnllp,

3 / 1 1 (2.6.11)
Vu € WOI), wp € Ui 1 < pop’ S tooi 4 5 =1,

Proof In §2.2 we have found that

a (u — Mpu, Mwy) = f:lpj-uz(u—HhU)'(fvj—x/z)[Wn(xj)—Wh(wj—l)]-
=

On I = [zj-1, ;]

By the Taylor expansion with integral remainder we have
u(z;) - w(zj-1)

1 [%;
= u/(zj_1/2)h; + 57/ ! w"(z)(z; ~z)%dz
Tj-1/2

__]; 71 uf"(.n)(.s] 1“~L')
2l -/fcj-m

Thus
(u— HhU)’(ﬂ?j 1/2)

. Tj— 1/2

Noting : ,
wh(@;) — wh(zj-1) = wh(z)hj, © € I,
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we have

n
la (u = Tpu, Miws) | < OB Y |ufap g [whlip g, < CR2ulsplwnliy.
i=1
Now, combining Theorems 2.6.1 and 2.6.2 leads to the following
superconvergence result for the linear element difference scheme.

Theorem 2.6.3 Let u € HE (I) be the solution of the two point
boundary value problem (2.2.1) and up, € Uy of the linear element
difference scheme (2.2.6). Assume in addition u € H3(I). Then

ITau ~ uplly < CH2|lulls, (2.6.12)

23 1= wn) (ayeay)]) 2 < OHYuls, (26.13)
j=1

2.6.3 Superconvergence for cubic element difference
schemes

Consider the cubic element difference scheme {2.4.4) for the two point
. boundary value problem (2.4.1). First we give a lemma.

Lemma 2.6.1 If u € H5(I), then for j =1,2,--+,n
(Mhu)(2j-1/2)
1 hy4
= u(wj—l/z) - __u(4) (%‘-—1/2)(-)

uO (z)( (z; — z)tdz

Y (2.6.14)
TPV”WM -1 -2)dd] B
Tj-1
h 1™ (@) e — )
AR OB

+/‘zj mu(s)( )(mj_]_""x)sdw],

Ty
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(Thw) (z-1/2)
= o 8 7O () (s 44
= Vo) pgglf, | O@e -

Tj—1/2
L ‘/.j Y MO TRY _.m\4r1m]
LA TG z)az;

" Jays it (2.6.15)
1 4

—_—— (®) - z)8

_ [Cia u(&)(x)(wj_1 - m)ad'x].
Tj—1

Proof By (2.4.2) and (2.4.3) we have

(Thu)(zj-1/2)

(o) + ulag)] ~ ol () — v (3-0)]
(Hhu)l(mj—-lﬂ)

= bulas) — ulas-1)) — 7l (e) + o/ (a0

Then the Taylor expansion with integral remainders leads to (2.6.14)
2.6.15). o

Theorem 2.6.4 Let T), be a uniform grid (h; = h, j =1,2,..-,n).
Then the cubic element scheme (2.4.4) for the two point boundary
value problem (2.4.1) satisfies the following interpolation weak esti-
mate:

la (u — Oy, Miws) | < Ch*||ullsl|lwall1, Yu € H3(I), wy € Up.
(2.6.16)

Proof First we have,

a (u — Ilpu, szh)

i
M=

(L(u ~ Myu), 937 ywn (z5) + i(L(u ~ ), 9 Y ().
—
' ’ (2.6.17)

j=1

B
it
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Using (2.6.15) and the equivalent norm (2.4.14), we find that

[3(-lp(u = T, §)wi(z5)]

g=1

= ,f:[p(mj—l/i’)(u — Tpu) (25-1/2)
j=1
=p(2141/2) (4 = TIx) (2141/2)]0n ()|

= 'ip(mj—lﬂ)(u =~ pu) (@ -1/2) [wn (25) ~ %(%‘-1)]'
I= .

IA

Ch*|uls|wh ;.
(2.6.18)
It follows from (2.6.14) that

(4= Tyt)y172) = (= Ty)my-0)] < OB [ ) (a)
” (2.6.19)

It is clear from (2.4.2) that the norm |lwp||o is equivalent to the dis-
crete norm

o = {37 hsltun(zs1))? + (wn(zs))?
Jj=1

z

(2.6.20)
(o (i-)? + (b ()2} .
So we find
I3 (e = o', 9 )|
Jj=1 '
= |3 )l = T (@472) = (0 = ) (o2 )n()
7=1
3 [ @) - el ~ Ty downa)
j=17%i-1/2 ,

< Ch*ullsllwnllo-

(2.6.21)



100 Chapter 2

It is obvious that

13" (alw = Ta), ¢)un(ay)|
J=1

Tj+1/2 (2.6.22)

cy lu = Hpu|dziws (z;)|
J=1 Tj~1/2

C7h4|u|4”10h”o.

IA

IA

Similarly as in (2.6.21) we use (2.6.15) to obtain
12 (u = Taw)'T, 92y ()|
=0

,Z [“%P(-’”jwz)(u ~ Mpu) (z41/2)
Fho (2.6.23)
~3 (@j-1/2)(u — Tu) (-1 /2)

. ./:L‘j+1/2 plu - Hhu)'d-’v] ’UI;;(-’UJ)'

j—1/2

< ChY|ulls|wnls.

It is an easy matter to deduce that

| (o - Tw)' + g(u — Tnu), ) (a5)|

n

- X / j”," (s = Ty’ + q(u — Tyw))(@ — 25)dawh (z)|
j= 1/2

Ch*|uls|wl1.

IA

, (2.6.24)
Now (2.6.16) follows from (2.6.17), (2.6.18) and (2.6.21)-(2.6.24).
This completes the proof. O

Theorems 2.6.4 and 2.6.1 imply the following superconvergence
estimate.
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Theorem 2.6.5 Let u be the solution of the two boundary value prob-
lem (2.4.1) withu € Hi (I)NH3(I), up, of the cubic element difference
scheme (2.4.4), and T}, a uniform grid. Then we have

IThe = wnll < ChYull,
1 1/2
2 3 I — wY@o)?] " < onuls

2.7 Generalized Difference Methods for a
Fourth Order Equation

As an example of high order equations, let us consider the beam
balance equation:

Iu= o (p%) = s ez <, (2.7.12)
u(a) = u(b) =0, (2.7.1b)
u'(a) = u'(b) =0, (2.7.1¢c)

where p > pin > 0, p € C(I), f € L%(I). In this section we shall
first derive a generalized difference scheme in terms of the Hermite
cubic element, then give its error estimates.

2.7.1 Generalized difference equations

The variational problem in accordance with (2.7.1) is: Findu e U =
HZ(I) such that .
a(u,v) = (f,v), eV, (2.7.2)

where ,
a(u,v) =/ puv'dz. (2.7.3)
a

Discretize I as in §2.4, and take the trial and test spaces U, and
Vi as Hermite cubic element and piecewise linear function spaces,
respectively. They and their derivatives are identically zero at the
boundary nodes a and b.
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The generahzed difference scheme approximating (2.7.1) is: Find
up = E (u ¢(°) + ul (1)) such that

g=1

a (up,vp) = (f,vn), Yop € Vi, (2.7.4)

_ or equivalently
)= (), ity ran
a(un,o)) = (f0f"), j=12,n-1 (27.4b)

As pointed out in §2.1.3, here we can explain a(u,v) either as (2.7.3)
in the sense of generalized functions, or as the following bilinear form
by piecewise integrating (Lu,v) by parts

O Y

J=0"%j- 1/2
n
- Z[( ,‘nyvr’j“/: [J+1/2Ju")')'dx:|‘
=0 i iy (2.7.5)
n
= Z[(puﬂ) l;+1/2 'pullvl i+1/2],
j=0 “" ~1/3 Zi1/2

v € W,

where we make the convention that .15 = zo and zpy1/5 = .
Next we calculate (2.7.4a) and (2.7.4b).

b
a(uh, ) / pull J(-O)”dm
, PUn!

b
= [ P8z = 2j172) — @ = 334110

= —(puk)j_1/2 + (PUR)j41/2

= —{p'ul); 1/ ('nu’”) 1 /0
w s j—ay /a

+@'up)jr1/2 + (PUf)j40/2-

(2.7.6)
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b
o) = [

b
= /a puj, [5(-"c — &j-1/2) = 0(% = Bj41/2)

ki Boiin .
=gy - B0 - 00

hj, h;
= (puh)j-yj2 = (pub)jsiza + 2 Pub) 10 + L2011 o

(2.7.7)
For sake of brevity we shall write ux(z;) = (up); = u; etc. when
there is no possible confusion. By (2.4.3) we have on [z;_1, z,]

uh = (126 - 6)hj2uj_1 — (12¢ — 6)h;2y;
+(66 — 4)h7 iy + (6€ - 2)h7 uj

= [5,1][ 63 ‘1)][{”3'~1+“9'2’1}1(%*“;‘—1)}/’11

(- wj_1)/hy ’

u;-_l + ’U,; - 2hj'1(uj ~ uj_1)
h? '
Substituting (2.7.8) and (2.7.9) into (2.7.6) and (2.7.7) yields

up =6

(2.7.9)

a(’U;h, 1/)3(0)) ‘

= —19p;_1/9h7%uj—1 + 12(?;’—1/2’1,'—3 +Pj+1/2'hj_f1)“j
~12pj41/2h5 2 w501 + (=6pj1/2h7 % + P ;o7 U
+(6pj1/2hity + Plprsehiin )
+(~6pj_1/2h7” = Pj_172h7 " + 6ps172h7 1 ~ Plyrjohiia el

(2.7.10)

a(un, ¥§V)
= 6pj_1/2h; 2uj—1 + (=6pj_1/2h7 % + 6pjs1/2h7 2 Uy
= 6p;j_1/2hy “uj—1 + (—6p;-1/2h; Dj41/2R541)U;

—2
—=6pj1/2h;f1U541
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- 1 _ 1
+(2pj-12h; " - 5Pj-1/2)45-1 + (2Pj+1/2hj_-4}1 + §P}+1/2)U§'+1

o1 L1
+(4pj-1/3h7" + 585 10 + 4Pir12hThn = 5Pe1/2)
(2.7.11)
where ug = uf = up, = uj, =0.

2.7.2 Positive definiteness of a(us, IT}us)

It is well-known that the seminorm |- |2 is equivalent to the full norm
|- |2 on the space HZ. Now we introduce an equivalent discrete norm.
Motivated by (2.7.8), we define

A + uf — 2h7 (uj — ujo1)\2
!'U'hlz,h = {Z hJ [(u -1 u J (U'J Uj 1))
j=1 nj. :
ul —ul_y\2771/2
+(—~——-—J——‘7 y ) ]} , up € Up.

(2.7.12)

The following lemma can be easily proved similarly as Theorem 2.3.1.

Lemma 2.7.1 The norms |- |2, and |- |2 are equivalent on Uy, i.e.,
there exist constants ¢; and ¢g independent of the subspace Uy, such
that :

cilunlz,n < |unlz < colunlon, Yup € Us. (2.7.13)

Using Lemma, 2.7.1 one can show the following uniform ellipticity
theorem.

Theorem 2.7.1 a(up, ITfuy) is positive definite for sufficiently small
h , i.e., there exists a positive constant o independent of Uy, such that

a(up, hun) 2 olupl3, Vuy € Up. (2.7.14)
Proof By (2.7.6) and (2.7.7) we find that

a(uh, H;‘,uh)

Z a(“h!"/’_y Uj + a(uh: ) J]

g=1

S,
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n

Z J+1/2 +1/z PJ~1/2U -1/2)“9
Jj=1

+(Pyr1/28541/2 — Pi-1/25-1 )y
‘(pj+1/2”j+1/2 - Pj—1/zU'-'_'1 /20
+5 (h;+1p,+1/2 1 ,2 + hgpl_q U1 72) 0

+5 (hy+1pj+1/2 172 + hiPj-1/25 12)05)
= Z[PJ 1/2%j-172(ti-1 = U5) + Pjo1/2ui 1 9 (U1 = ug)

1 .
21726517285 = U50) + SRt o + 1)

1
+§hjpj-1/2u}"—1/z(ug' + tjy)]
n

1 -
= Z[ihfp‘;—l/zu;’—l/z(u.; -+ U}_l - ZhJ l(uj - U’j—l-l))
j=1

1 -
+—thj-1/2U;"f-1/z(“9 + U9—1 - Zh,‘ 1(’“:' - j-1))

+Pj- 1/2“'] 1/2( 'U'J V]

(2.7.15)
By (2.7.8) one has
/ !
uf — u}
? '} j~1
U _y/g = (2.7.16)
5-1/ h;
Rinallv wa 11ge (27 18)Y (9270 and (9.7 18) tn conclude f.bn
- ll.l.wll-.’ WV uww \H-I J.\l’, \‘J UJ CALAVA \“l 1] ﬁ\l) NW VW aAVAWANG vasivy
a(un, up)
: 1 -1 . )
5l i—-1/2 .
ekt R ) hj
' ! ~Yfo . .
Lan h’{u3+uj_1-2hj (uj—u,_l)\z
1 %r_]-l/“z"‘j\ h:, ]
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u,‘ - ’U,,‘__l 2
+Pj-1/2hj(‘L"“L-h, ) ]
1
> 2, — ~hlug|? '(z)].
2 Pratn|un(3n — 7hlunlz,, max [p'(2)]
This leads to the desired result. 0

We remark that Theorem 2.7.1 implies the existence, unique-
ness, and stability of the solution of the generalized difference scheme

(2.7.4).

2.7.3 Convergence order estimates

Theorem 2.7.2 Let u be the solution to (2.7.1) satisfying u € HE(I)
NH4(I) and up € Uy to the generalized difference scheme (2.7.4).
Then the following error estimate holds for sufficiently small h

lu — uplz < CH?|ula. (2.7.17)
Proof Clearly we have
a(u — up, Miws) =0, Yw € Uh. (2.7.18)
By Theorem 2.7.1 _
alup—Ipu)3 < a(up—Iau, I (up ~hw)) = a(u—Iau, I (up — O u)).

Consequently

— £
lup — Hpul2 < C sup la{u = Thu, Mhwp)],

2.7.19
wh€UL |wp 2 ( )

Write ep, = u—IIpu and ep(j-1/2) = €j—1/2. Then, similar to (2.7.15)
we have

alen, I wy)

n
1 -
= Z[EP;'—1/2hje;"—1/z(w§‘—1 + w§ — 2h; Hwj = wj-1))
i=1 (2.7.20)

1 -~
+5Pj-1/2h5€5_1/2(Wj_1 + Wi — 2h; Hwj = wj-1))

+Pj—1/2€9'-1/2(w§ — wj_1)].
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By the Cauchy inequality we have

a(en, I wp)

n
< CLS ("1 10)2h3 + (", )2h3 + (e"_, )2h, )} /2
l‘L‘IL\ J—ij &7 J ANV At ¥ 2 24 J ARV AR ¥ & 14 JJJ
J=
n wh_ 4w —=2h7 N wi—wis1)\2  pwi—wh_\21y1/2
) J(¥i-17T% j_\Pg W1 J %1 /
(St ey (vimdeayy

(2.7.21)

By the interpolation condition and Rolle theorem we know that e} =

(u — TTpu)" has two roots &1, &2, and e}’ has one root 7 in (z;-1, ;).

Hence,
z z
e}{'(w)=/ e§,4)dm=/ udz,
" n
" 2 i (4)12
@P<h [ WPds, o€,
Tj-1

z
él(z) = /€ e} (z)dz,
1

Zj

(ch@)? <1 |

Zj-1

[u®|?de, = € I;.

Substituting these estimates into (2.7.21) and using Lemma 2.7.1 we
have

|a(en, TThwn)| < Ch?|ulqjwsl2. (2.7.22)
This together with (2.7.19) results in
lup — Mpulz < Ch2july. (2.7.23)

Finally, the desired result (2.7.17) follows from (2.7.23) and the in-
terpolation property

|u — Mauly < Ch?|uls, o
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2.7.4 Numerical examples

- The five point difference method (FDM), the cubic finite element
method (FEM) and the cubic generalized difference method (GDM)
discussed in this section are used to solve the following model prob-
lem:

u(4)(m)=z—-;-, 0<z<l,
u(0) = u(1) =0, ¥/(0) = u'(1) = 0.

Set the step length A = 0.1. The results of the three methods and the
true solution (TS) u = §z%(z — 1)?(z — 3) are given in Table 2.7.1
below. We see that (GDM) is much more accurate than (FDM) and
is nearly as accurate as (FEM), while we recall that (GDM) needs

The upper members of each pair in Table 2.7.1 stand for function
values and the lower ones derivatives.

Table 2.7.1 Numerical results
X FDM FEM GDM TS
0.1 | -0.00003882 | -0.00002700 | -0.00002710 | -0.00002700
-0.00041250 | -0.00041243 | -0.00041250
0.2 [ -0.00007976 | -0.00006400 | -0.00006401 | -0.00006400
-0.00026667 | -0.00026653 | -0.00026667
0.3 | -0.00008729 | -0.00007350 | -0.00007351 | -0.00007350
0.00087500 | 0.00087675 | 0.00087500
0.4 [ -0.00005588 | -0.00004800 | -0.00004807 | -0.00004800
_ 0.00040000 | 0.00040020 | 0.00040000
0.5 [ 0.00000000 [ 0.00000000 | 0.00000000 | 0.00000000
0.00052083 | 0.00052104 | 0.00052083

Bibliography and Comments

[A-25] is the earliest paper on the generalized difference methods.
(Before that, at the Conference of China Mathematical Society at
Chengdu in 1978, Ronghua Li gave a talk on the way to construct
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the generalized difference schemes.) The original motive is to gen-
eralize the usual finite difference method (including the difference
method on irregular networks) such as to possess the advantages of
both finite element and finite difference methods, in particular to en-
joy the same convergence order as finite element methods and less
computatlonal effort as finite difference methods, while including the
usual difference methods as its special case. The key step is to use
the general terms of the Taylor series as the basis functions of the test
function space so as to gain the computational simplicity at the price
of the loss of global smoothness. The error estimates for generalized
Galerkin methods by Babuska (see (1.2.42) in Chapter 1) give an in-
gpiration to the possible convergence orders to be reached, but it fails

to provide a rigorous and practical approach for further development.

'T"fln “A"ﬁ"ﬁ“nﬂﬂ rA K Qn] ﬁ“" r _KQ] hv‘l\!?!l”ﬂ, n ““nml\‘.rﬂ"" 'F 1\!\ ann_
-4 € ITCICNLes [Hi~doyuvu) &G Ln-uu ae & framework ior the er-

ror estimates of the generalized dlfference methods. It is indicated by
theoretical analysis as well as numerical experiments that the gener-
alized difference methods indeed have the same convergence order as
the finite element methods. The results in §§2.1, 2.2 and 2.4 come out
of {A-25] and [A-53]. For the generalization of the quadratic element

difference scheme to two-dimensional problems, see [A-41] and §3.4
of this book. Another form of rnmrlrnhr- alement diffarence scheme ig

TAAVT DAATALLT A

constructed in [A-54]. There are some difficulties in using the Nitsche
argument to estimate the L2-error when piecewise constant functions
are adopted as test functions: A higher smoothness, compared with
the finite element methods, is required to obtain the optimal order
estimates. It is an open question whether this result could be im-
proved (cf. [A-10]). The estimates in L? and maximum norms for
quadratic element difference schemes are rather tedious and are left
for interested readers.

[A-36] generalizes some superconvergence results of finite element
methods to generalized difference methods, resulting in certain super-
convergence estimates for the cubic element difference scheme for two
point boundary value problems. Superconvergence results for linear
element difference schemes are given in §2.6. The superconvergence
of quadratic element difference schemes remains to be tackled.
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When proceeding from second order to higher order differential
equations, the construction of the generalized difference method and
its theoretical analysis will encounter new difficulties. The results on
the generalized difference method for a beam balance problem in §2.7

nfthia chantar halana +a [A_2K] A alaaa af nancnanfarmine scanaralinad
Vi uilin b‘la‘yucl UUIUJ.IE ww Lﬂ'UUJ- £33 LAADO VL 11ViIIVULLLVL l‘lllls E_Ull\il [0 ¥ /AL VY

difference methods are presented in Chapter 4 for a two-dimensional
high order differential equation. '
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SECOND ORDER
ELLIPTIC EQUATIONS

3.1 Introduction

The research on the difference methods on irregular meshes over a
plane region can be traced back at least to MacNeal [B-65]. But it
did not develop very much theoretically or practically at that time.
In the last twenty odd years, there has appeared increasingly more
research on the theories and applications of the difference schemes
on irregular meshes. These methods are also called in the references
the finite control volume methods, or the finite volume methods. (See
the corresponding references at the end of the book.) The generalized
difference methods can be viewed as a generalization of the difference
methods on irregular networks by absorbing the idea of the finite
element methods. '

Let © be a bounded region with a piecewise smooth boundary 62
on the (z,y) plane. Consider the first boundary value problem of the
second order elliptic partial differential equation:

111
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_ [0 ou ou
Au = =[5 (augs +on ay) (3.1.1a)
0 Ou ou
+7—(a21 7~ + az +qu=f, (z,y) €D
("3 ) (3.1.1b)

{ Uian = Ua
where the coefficients a;(z,y) (4,7 = 1,2) and g(z,y) are sufficiently
smooth functions satisfying the elliptic condition: There exists a con-
stant 7 > 0 such that

n

> aij(z,y)et; 2rd €, qlzy) 20

ij=1 i=1

holds for any real vector (£1,£2) € R? and (z, y) € Q1. We also require
f e L*(Q).

The corresponding variational problem for (3.1.1) is: Find u €
U = H}(Q) satisfying

a(u,v) = (f,v), YweU, (3.1.2)
where
' r 8u Su S Su
a(u,v) = / }_(aug +a125u 5 (am 32 +a223y)6 +qqudxdy,
(3.1.3a)
v) = A fudzdy. (3.1.3b)

The solution to (3.1.2) is called the generalized solution or the weak

solution of (3.1.1).
Let Uy and Vj, respectivel

Y an
spaces with the same finite dimension. The generalized Ga
method is: Find up € U, such that

a(un,vn) = (f, 1), Vop € Vh. (3_-1-4)

If Uy, = V3 C U, then (3.1.4) becomes the standard Galerkin
method. Usually the (conforming) finite element methods use the in-
terpolation of spline functions to construct the piecewise polynomial
space Up = Vj, C U. Breach of the inclusion relationship, namely

be the suitably chosen trial

(-P

nd t-s
ler
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Un = V3 € U, leads to nonconforming methods. As mentioned in
§2.1.3, generalized difference methods choose Uy C U like finite ele-
ment methods, but choose V}, (# Uy) as lower order piecewise poly-
nomial spaces.

It should be pointed out that for the generalized difference meth-
ods, we always have V}, ¢ U. As in the case of nonconforming finite
element methods, this is due to the loss of continuity of the functions
in V, on the boundary of two neighbouring elements. So the bilinear
form a(u,v) must be revised accordingly. For nonconforming finite
element methods, the idea is to write the integral on the whole region
as a sum of the integrals on every element K, so (3 1.3a) is rewritten
as

17}
a(u,v) = T / [(au—— +alz - ) -+ (021—— +a 22—) k
oy’ dy/ dy
+qu'u]da:dy. _
(3.1.5)

Now a(u,v) is well-defined on U, x V;,. For the generalized difference
methods, we place a dual grid and interpret (3.1.3) in the sense of
generalized functions, i.e., d-functions on the boundary of neighbour-
1rmr dual elements. Or nmnvn]pnflv we take n('u a)\ ag the bilinear

RARANE TdTRiiTaausy N el ViaTaiuay VAT QS vidT RVALLACAL

form resulting from the piecewise integrations in parts on the dual
elements K*:

/ Ay vdzdy = Z/ Au - vdzdy.
Q e Ik

So we have

a(u,v)
_ ou Ou Ov
B 2“' jx~ ““am o2 6y) oz

+(a ou du
25~ 8y

- Z/ ana + alzg )vdy (agl—g% + agzg%)'udm],
(3.1.6)

+ ax— ) z + quv] dzdy



114 ‘ Chapter 3

where fyz. denotes the line integrals, in the counterclockwise direc-
tion, on the boundary 0K* of the dual element.

Now (3.1.4) is an algebraic system for the approximate solutions
of u and its derivatives. Different choices of Up and Vi, lead to dif-

fonnt anhamaa Tn wiiavilan 1F wen +alen I‘f +ha onngtant
1€ienv sCieiiies., il parviCuuar, ii We vake vp as tne Plcucwxnu consvant

function space with the characteristic functions of the dual elements
K* as the basis functions, then the above method becomes the in-
tegral interpolation method based on the integral conservation law
(the balance equation)

/ Audzdy
K*

= - [l vonz)a

(a215—+a22 )dz) / qudzdy

/ fdady,
K*

So the generalized difference method is a significant generalization of
the finite difference method.

In the following sections different generalized difference schemes
will be deduced and discussed by introducing different U, and Vj,.

3.2 - Generalized Difference Methods on Tri-
angular Meshes

3.2.1 Trial and test function spaces

The construction of the trial and test spaces is always related to a
certain mesh decomposition. Suppose  is a polygonal region with
boundary Q. Divide £ into a sum of finite number of small triangles
such that they have no overlapping internal region; that a vertex of
any triangle does not belong to a side of any other triangle; and that
each vertex of 92 is a vertex of a small triangle. Each triangle is called
an element and the vertexes of the triangles are called nodes. Two

elements are adjacent, if they share a common side. Two nodes are
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adjacent if they are the endpoints of the same side. All the elements
K constitute a triangulation of §, denoted by T}, where h is the
maximum length of all the sides.

The following definition will be used throughout this book.

Definition 8.2.1 We use PQ to denote the line segment with end-
points P and Q on the plane, which may bear a direction from P to Q
when, e.g., it is a path of line integral. We also identify PQ with the
corresponding vector of R? in the usual sense. Iis length is denoted

by [PQ).

Now we construct a dual decomposition T} related to Ty, Let
Py be a node of a triangle, P; (i = 1,2,---,6) the adjacent nodes of
Py, and M; the midpoint of PyP; (cf. Fig. 3.2.1). Choose a point
Q; in an element APyP;P;.; (P; = P;) and connect successively
My, G, -+, Mg, Qg, M to form a polygonal region K}‘,o, called a dual
element. The modification of the definition is obvious when P, is on
the boundary. All the dual elements constitute a new decomposition,
called a dual decomposition (or a dual grid). @; is called a node of
the dual decomposition. The following two dual decompositions are
most important for the triangulation Tj:

(1) Barycenter dual decomposition. Take the barycenter @; of the
triangle APy P;P;.1 as the node of the dual decomposition, as shown
in Fig. 3.2.1.

(2) Circumcenter dual decomposition. Assume that the interior
angles of any element of T}, are not greater than 90°. Then, take the
circumcenter @Q; of the element APy P;P;, a8 the node of the dual
decomposition. Now Q;Q;+1 is the perpendicular bisector of PyP; 1,
cf. Fig. 3.2.2. .

In the sequel we denote by 0, the set of the nodes of the decom-
position T, 2, = §,\ 89 the set of the interior nodes, and 2}, the set
of the nodes of the dual decomposition T}. For Q € (1}, Kq denotes
the triangular element containing Q. Let Sk, (or Sg) and Sp be
the areas of the triangular element K and the dual element K}, re-
spectively. It is easy to check that if Tj, and T} are quasi-uniform (cf.
Definition 1.1:10), then there exist constant c;, c2,c3 > 0 independent
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of h such that
ah? < Sqg<h? Qe (3.2.1a)

c2h2 < Sfa < c.ghz, PyeQy,. l (3.2.1b)

It can be readily shown that (3.2.1a) is actually a necessary and suffi-
cient condition for the triangulation 7}, to be quasi-uniform. Besides,
for barycenter and circumcenter dual decompositions, (3.2.1b) can
be deduced from (3.2.1a). In the sequel we always assume that the
decomposition is quasi-uniform.

Fig. 3.2.1 Fig. 3.2.2

The trial function space U}, is chosen as the linear element space
related to Tj. So Uy is the set of all the functions uy, satisfying the’
following conditions: .

(i) up € C(Q), unlon = 0;

(ii) upk € P1, namely uy, is a linear function of z and y on each
triangular element K € T}, determined solely by its values on the
three vertexes.

It is obvious that Uy C U = H}(Q).

Let K = AP;P;FP; be any triangular element and P(z,y) a point
in the element (cf. Fig. 3.2.3). Introduce the area coordinates
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(3.2.2a)

(3.2.2D)

(3.2.2¢)

where S;, 85, Sk and § are the areas of APP;P,, AP,PP,, AP,P;P,
and AD.D. D wvaanantivalyy Mha mianning 92 00 cvasme ADD T Al
QA Lz e fuajgy AUDPTLUIVTLY L UT MIAPPIUILE \9:4i&) LUAPS oL L4750, OIILO

a reference element K with vertexes £;(0, 0), P;(1,0) and B,(0,1) on

the (A\j, A\x) plane (cf. Fig. 3.2.4).

Ap

N

P,

X
Fig. 3.2.4

The area coordinates and the orthogonal coordinates have the

following relationship:

T = ZiAi + TjAj + T Ak,

Y = Yidi + Y5 A5 + YkAks

(3.2.3a)

(3.2.3b)
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Ait A+ A =1 (3.24)
It is easy to deduce that on the element K .
Up = A + Ui A + Ug Ak = Uy + (85 — U Aj + (ug — ui) Ak, (3.2.5)

Sup, i rOuy Oup,
JUh _ (vk — ¥i) + 57— (Wi — ¥5)
oz 25 [a)\ O ] (3.2.6)
| = .é_s;[ui(yj -—yk) +uj(yk —yi) +uk(yi "yj)]a
Oup, 1 [6uy
— IR — ( k) + CL‘:,)
dy 28 [6)\, ] (3.2.7)

= 23[%(5% ;) + uj wi-mk)+ws(wj—wi)],

.
where and in the sequel, when there is no da

write in short u; = uy, (m,,y,)
For u € U = H}(RQ), let l'Ihu be the interpolation projection of
u onto the trial function space U,. By the interpolation theory of
Sobolev spaces we have, if u € H?(Q), that
|t — Mpulm < ChT™|ulg, m =0,1,2. (3.2.8)
The test space V;

Lhe test space Vj 1s chosen as the plecewise

t
space with respect to Tp, spanned by the following basis functions:
For any point Py € Qi

s .
is chosen as the piecewise constant function

one)=f{ 0 T (3.29)
- L 0, elsewhere.
For any vy, € Vj,
wm= Y w(P)dr, (3.2.10)

Poefdp
For w € U, let II}w be the interpolation projection of w onto the test
space V3: -
Mw= > w(P)¢r. (3.2.11)
PoEQy,
By the interpolation theory we have

- |w —w|o < Chlw;. (3.2.12)
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3.2.2 Generalized difference equation

Choose the trial function space Uy, and the test function space V}, as
above, then the generalized difference scheme is: Find up € U, such
that

la(uhavh) = (f,vn), Yop € V4, (3.2.13)
or equivalently
~ a(up, $r,) = (£, 6p)s YPo € Oy, (3.2.13)
where
a(up,vn) = Y va(Po)a(un, ém,), (3.2.14a)
PoEQh
a(uh’¢Po) .
=— / [W,gl) cos(n,z) + W,Ez) cos(n,y)]ds + / qupdzdy
0K}, Kp,
= — / W(l)dy+ / W,gz)dw—% / qupdzdy,
Kp, JoKy, JK}
. (3.2.14b)
where n is the unit outer normal vector and
dup, du du u
wil) = a11-a—' tang - By bW = 213;“ + azz-a'f-

Qlan ig énlean oa +tha ahanaatan
oiiice (flfo I8 Caxell as tue Cnaraceer

in fact an integral conversation law ( €.
[, Audady= [ fdady.
Ky . Kk

We integrate in parts the left-hand side and then replace u by us,
that is, we use the piecewise linear interpolation of the solution u.
As in Figs. 3.2.1 or 3.2.2, we employ different numerical integra-
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tion formulas to approximate (3.2.14). For instance,

- / wldy + /_____ W dz
Q1 M3Q2 Q1 M32Q2

. 1)y N\ .
= —|Wp” s (YQe —¥Qi) + Wy ' IMa(2Q; — 2q,)
—up,

u up, — U
= - [au(Mz)-x-P’——xlfl + a12(M2)fyj:—Pg] (¥Q2 — ¥au)
, 0

Py~ Yp
up, — UPp, Up, — Up, _
+[a21(M2)w—____p, o T azz(Mz)'—"—“‘—yPB — ypo](sz %Q,)
(3.2.15)
or
- Wiyt [ WP
Mi@1 M3 M1Q1 M (3.2.16)

= —[ngl)]QI (yrt, — yaay) +-[Wi$,2)]Q1 (Tpy = 2py)

will lead to different conservative difference equations.

Next we take the Poisson équation
-Au=f

as an example to study in detail the generalized difference scheme
(3.2.13). Now '

8K, oK,
6
,é? jMiaiMi-f-l \ Oz Y /

| (3.2.17)
Since %“xi and %ﬁ are constants on each triangular element K, the
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above integral is independent of the position of Q;. Hence

a(uh, ¢P0)
Z[ 3Uh(Qz y Mip: — yM.-) + .?y-’%gyg—i-)-(mMiH - -’IJMi)]
i=1 ’ J

1
= ; ZS—Q:{[(UP‘ - UPO)(fo-p-: - yPo)

+(up,; —ur)(Wp — yR)l(YpP — YPiy1)
+[(up, — up)(zp, — TPiys)
+(up,,, —up) (TR — zR))(zPyy — 2R)}
where M7 = M; and Py = P,. For a triangular element Ky,, write

its side lengths |P11P%| = ai, |P;P| = b; and |[P+15| = ¢;. Then
the difference equation corresponding to B is

b ~c} - a?

a(un, $p,) = Z 43 [(“P;. upy) =

a2 - p?2 -~ ¢c?
+(upy, - up) | = /A fdzdy.
. “ ) v ﬁ

P (3.2.18)

On the other hand, we note that the integral is independent of the -
position of the point Q;. Therefore we can take Q; as the circumcenter
of the triangle. Then it follows from the piecewise linearity of up, that

6

3uh 3‘?1,;,, Up, 4 —Upy ———e
/8KP ‘on ; Qi ‘on E PP Qe

So the difference equation related to Py becomes
QinQs /

= dzdy. (3.2.19

Z Py U ~uR) = [, fdsd. (3219

(3 2. 18) and (3.2.19) are identical. In fact, it can be verified that
a .

-‘i_%*—_-gl-lP,;Pol and 9—'-'5%-:3‘4 P, 1P| are the distances from the cir-

cumcenter of APyP;P;.; to the sides PPy and P;y1 P respectively.

a’(uh, ¢Po
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For the triangulation over a non-uniform rectangular mesh as in Fig,.
3.2.5, a direct calculation leads to

a(umdr) == [ Fhas

oK}, on
_ k1 + k2 (3uh, ' Ouy, )
2 Oz Ipiy1sa; O pierya
hi + hy (6uh| Oup )
2 Oy pigersa Oy Ipig-1/2
kit ke puigng = uig | Uidlg = Ui
2 \" h b/
_h1+hy (Uz',j+1 T i | Yig-1 = Uz',j)_
2 ko k1
D-:i-l.l’l . hu
+
/// 2 o -
Pi-yy :lu rP,, Piv1ny Py
§ A///l4é : -
L -
Pi.l-m
Pi-yy-1 Pij-y Piiyy-1
” hl hz

Fig. 3.2.5



Second Order Elliptic Equations 123

So the difference equation corresponding to P;; is

k kot 1 1 hi+hy 1 1
B2+ 70) + 252G + )

k1 +k‘2u' L k1 +k2u' _ +h2u' o h1+h2u- .
_—_——2’1«1 i—1,5 ———_2h2 i+1,5 —2’91 2,5 =1 —_—2162 1,5+1

= / fdazdy.
K,
(3.2.20)

For the uniform decomposition (h1 = hg = k1 = ky), (3.2.20) reads

Uiy — Uj1,j = Uitlj — Uig—1 — Uil = / . fdzdy. (3.2.21)
KPij

‘This is precisely the five point difference scheme.

Now let us consider an equilateral triangulation as in Fig. 3.2.6.
Write |ByP;| = h (i = 1,--+,6), then |@;Qit1] = 7"5, and the differ-
ence equation related to Py reads

1 ‘ 6
%(suﬂ, - éuﬁ) = /K . Fdzdy.

PS Pz

MsQ

{// 2
50

P

Ps Ps
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3.2.3 a priori estimates

Let us introduce the following discrete zero norm, semi-norm and '
full-norm:

1/2
lfunllon = ( > Iuhlg,h,K) , (3.2.22a)
KeTy,
1/2
lunlin = ( 2 '“hl'f’,h,x) , (3.2.22b)
KeTy,
Nenllie = (lunlldp + lunl )2, (3.2.22c)
where K = Kg = AP, P;P; and
luh!g,h’;{ - [%{112 -l- 32 + ui)SQll/z

lunlinx = {[(3?4;;62))2 (3uh Q)) ] q2}1/2'

These discrete norms and the continuous norms of the Sobolev spaces
have the following relations,

Lemma 3.2.1 Forup, € Uy, |+ |14 and |- |1 are identical; ||+ ||o,n and
I+ |1, are equivalent with || -1lo and || - ||1 respectively, that is, there
exist positive constants ci, -+, cs independent of Uy, such that

cillunllon < Hunllo < ealjunllops Yun € Un, (3.2.23a)
“callunllip < llualli < callunllin, Yun € Up. (3.2.23b)

Proof The identification of the two norms |- |14 and |- |1 results

from the fact that %“—h and Qg‘-”- are constants on each element. Since
up, is linear in K we can use the numerical integration formula with

gecond order accuracy to compute that

A RAA VL aTL g Semaps MU Vasiliy

uidady

T

uh (Mi) + uh (M) + v (My))Sq

il

D] e O] =3
—

—~

uf 4+ uZ + uf + uiuy + uiug + ujuk)Sq

il

o=

[(u? + uf + ud) + (us + uy + ug)?]Sg,
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where M;, M; and M} are the midpoints of P;P;, P F; and P,F;
respectively (cf. Fig. 3.2.7). This equality gives

1
7/ualldn < luallf < flual s

This gives (3.2.23a), and leads to (3.2.23b) thanks to the identification

of |- |1 and | - |15 m]
" P
M M
P M J
Fig. 3.2.7

Theorem 3.2.1 a(up, I} uy) is positive definite for small enough h,
namely, there exist ho > 0, a > 0 such that for 0 < h < hg

a(up, Whun) = of|ua|ff, Yup € Up. (3.2.24)
Proof It follows from (3.2.11) and (3.2.14) that
a(un, Mhun) = D In(up, Iua), (3.2.25)
KeT;,

where
Ix (un, Thup)

= X[ f Wiy - W da) + f . qupdady|un(P),
per~ VOKINK KK
(3.2.26)
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where K denotes the set of the three vertexes of X = AP,P;Py.
First let us prove the positive definiteness of the approximate
bilinear form '

where

T (un, T up)

= W@, = i) + WD (@) @y — wag, un(B)
+HW (@ W, — v + WP Q) (@a, — maa)un(F)
+HWE (@) (wng; — yaa) + WP (Q)(@as, — zag)Jun (P)

+ Y q(P)un(P)Skpnk - un(P),
Pek :
(3.2.27)

where Sgxnx denotes the area of Kp N K. It follows from (3.2.6)
and (3.2.7) that

Tge (un, Thun)
= [ou@(Z22) 4 01(@ +en(@) 2D 22
+a2(@)( 222V 50 + 3 aPrE(P)Sxzor:

PcK
(3.2.28)

By the elliptic condition we have

Fac(un, Tiun) 2 r[ (2027 1 (22275

Hence, by Lemma 3.2.1 and the equivalence of the semi-norm and
the full norm on H§, there exists a constant ' > 0 such that

an(up, Thun) = 'l|usll3, Yun € Up. (3.2.29)
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Next we show the positive definiteness of a(up, ITjup). It is easy
to see that

I (up, hun) — Tx (un, T up)

1 1
= - [, (00 - WP @)y
Pek s

WP - wP(Q))da]

L TR T L) G R

~{ > [_w®-w @)y

l=1,5,k m

~W® -~ WP (@Q))da) (w2 — w)

+ % [ (aun = a(Pus(P)dady} - un(P)
= oo R

where. we et Uil = Uj, Ujp1 = Uk, Upsl = U4, and u; = up(P).
Since -a-h and %—} are constants in K we have

W - wd(Q)
duy, Oup, '
= |(an - an(Q)) 52 + (a2 - an(cz))@— (3:2.30)
< on(e]+[Gm) i- 1

Noticing the linearity of v, in K and employing the Taylor expansion
we have

|ur42 — w1

auh Oup,
= (xPl+2 wPH-l) + —é—y—(yPH.z - ?/P,.H)

NCITNIR

By (3.2.31), (3.2.32) and the quasi-uniformity of the decomposition
we have

(3.2.32)

IA
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| [l - W @y
~(Wi? = WP (Q))de) (w2 - uiga)|
on(5e ]+ 5]

o[(e) + () Ise

IA

IN

On Kp NK

ou ou
up, = up(B) + -égh(w —2zp) + #(y - YP)s

lqun = g(P)un(P)| < (g - a(P))un| + |q(P)(un — un(P))l;

(g - Q(Pl))uh,| < Ch(lﬂn(Pz |+h'BUh,|+h|3uhl

la(Py) (un = un(B))| (]a""l 3“"] JRETHA
So

|/ . (qus — q(P)un(Pr))dzdy - un(P)]
Ky nK (3.2.34)

< Chf(w)? + (%%’1)2+ (aa';") 2

It follows from (3.2.30), (3.2.33), (3.2.34) and Lemma 3.2.1 that

la(uh,HEUh) - ah(uh,nﬁuh)l

-: L llK\uh,thuh} "".lKlUdh’ .I.huh’]l (3.2.35)
keTy,
< Chllusllf.
Combining (3.2.29) and (3.2.35) leads to (3.2.24). o

From Theorem 3.2.1 it is easy to deduce the existence and unique-
ness of the solution to the generalized difference scheme (3.2.13).
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3.2.4 Error estimates

Theorem 3.2.2 Let u be the generalized solution to (3.1.1) and up,
the solution to the generalized difference scheme (8.2.18). Ifu €
H?(Q), then the following error estimate holds:

|lu — upl|y < Chluls. (3.2.36)
Proof It is obvious that
a(u — up, ¥p,) = 0, VP € Oy, (3.2.37)
which together with Theorem 3.2.1 yields

[Jup — o[

IA

1 » N
aa(uh — pup, Hp (up — Hpu))

1
= —a(u—Thun, ITj (up, — Mpu)).

1 la(u — Ipug, I} G,)|
up, — Hpulli < = su —
s wull < O‘ﬂhegh 1Tal)2
By (3.2.25) and (3226) we have
a(u — Mpup, T Z Ig(u— Hhuh,Hhuh) (3.2.39)
KeT),
I (u — pup, I33)

= W cos(ny, z) + Wg ) cos(ny, y)]ds
l:-%lc{ (3.2.40)

'(1—!’ o — 1 1)4— / (u—llhu)dmdy-ﬁh(ﬁ)},

an

where —W_(i) = a; 2 n L+ ago ﬂ-i‘i'g?—ﬁ—i‘l (i = 1,2) and n; is the unit
outer normal vector of Kp NK along M, 1@ (I = 4,5,k). It follows
from (3.2.32) that

[Tz — T ] < h(l%—ﬂwﬂl + |-‘%—fyﬁ|) < Clnl1p,k- (3.2.41)
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On the other hand,

l/M, [W( )cos(n;, ) + W( )cos(m,y)]ds&

of (18 =Thw))  10(u—Tu) )y,
_/m\l oz | Tl Oy |/

0h1/2{/ Q@‘__.Ilh.‘i)_l )ds}m.
e (3.2.42)

Set ¢ = -3“—'#!@- and ¢y = J-"—E-I—I-ﬂz The mapping (z,y) = (Xj) M)

maps the element K onto the reference element K the function ¢,
n\ fm ] 1 {)\ n*nri fhn

on K into the functio Y. Y. = 4 (m

1 L) J-LJ-\JU UJLG .I.UJ.I.UULUJ-L ({/m\/\],/\h} tpm\w, Ul \

points M;, B, Q into Mj, B, Q (I = 1,7, k) respectively. It 1s obvious
that

IA

(I O(u — I'Ih'u

IA

[ +]

fm|¢m|2d3 <h /ml$ml2d§, m=1,2.

By the trace theorem on K},l N K we have a constant C > 0 inde-
+1
pendent of K such that ~

[ Bml?d8 < Ol o m =12
Using Theorem 1.1.12 we have
bmlo,z < Ch 7 dmlox, 16mly g < Clémlik, m=1,2.
Hence
[ _I6mlPds < CHgmlo,x +|dmI1x)?

< C‘h(h"1|u - Hhull,K + Iu - Hh'u.lz,K)z < Chlul%’K, m=1,2.
(3.2.43)
It follows from (3.2.41)-(3.2.43) that

S Jor T contr, a) + WD ot )lda(Tis = Tiao)|
l=i.j,k

< Chlulo,x|Tn|1,x-
| (3.2.44)
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It is easy to deduce that

|3, [, s~ Ty TR

I=1,5,k

<0 j =~ Thuldady - [2,(P)| (3.2.45)
l=i,5,k KP,

< Ch*|ulg,x|Thlo,x-

It follows from (3.2.39), (3.2.40), (3.2.44) and (3.2.45) that
|a(u — Tpu, I;Th)| < Chlulz|[@h)):- (3.2.46)
A combination of (3.2.38) and (3.2.46) leads to
[lup — Mpulls < Chlula.

This together with (3.2.8) implies (3.2.36) and completes the proof.
a

3.3 Generalized Difference Methods on

Quadrilateral Meshes

3.3.1 Trial and test function spaces

Suppose € is a polygonal region, of which the boundary 99 is a
simple closed fold line. Divide £ into a sum of finite number of
strictly convex quadrilaterals such that different quadrilaterals have
no common interior point, that a vertex of any quadrilateral does
not lie on an interior of a side of any other quadrilateral and that
any vertex of the boundary is a vertex of some quadrilateral. Each
quadrilateral is called an element and denoted by K. All the elements
constitute a quadrilateral decomposition of §, denoted by T}, where
h is the largest diameter of all the quadrilaterals. The vertexes of
the quadrilaterals are called the nodes of the decomposition. Two
nodes are adjacent if they are the two endpoints of a certain side of
an element. Two elements are adjacent if they share a common side.
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Next we construct the dual decomposition related to Tj. As in
Fig. 3.3.1, let Py be a node of the decomposition Tp,, P; (1 = 1,-+,4)
the adjacent nodes of Py, M; the midpoint of Py P;, and P; ;1 (con-
vention: Py; = Py; = Py4) the vertex facing Py, in the quadrilateral

dth gidng DD, and D.D. Malia ane naint £). in +ha anadrilatoral
Wit 8iQes L7 ana 7o+ 1+1. 1488 ally y\.u.uu Wi i O QUalluaicias

PyP,P,;y1Piyy (Ps = Py), connect successively M1, Q1, M2, @2, -,
My, Qq4, My to form a polygonal region Kp , called a dual element.
All the dual elements constitute a new decomposition, the dual de-
composition, Ty of Q. Q; and M; are called the nodes of the dual
decomposition. The most important dual decomposition takes @; as
the joint of the two lines connecting the midpoints of the opposite
sides of the quadrilateral element. This is called the central dual
decomposition.

As in §3.2, let §;, be the node set of the decomposition T} and
Qn = 0, \ 09 the set of all interior nodes. ) denotes the node
set of the dual decomposition Tp. For Q € Qh, we denote by Kg
the quadrilateral element containing Q. Sg (or Sk,) and S, stand
for the areas of the quadrilateral element Kg and the dual element
K7, respectively. We shall always assume that T}, and T} are quasi-

uniform such that there exist constants c1,cy,c3 > 0 independent of
h such that

ah® < Sq < h? Qe (3.3.1a)
eh® < Sp, < csh?, Py € Oy, (3.3.1b)

We point out that for the central dual decomposition, (3.3.1b) can
be deduced from (3.3.1a).

The trial function space U}, is chosen as the isoparametric element
space of the bilinear functions on a quadrilateral decomposition T},
(cf. [B-17]). Its construction is as follows. Take the unit square
K={(¢&n): 0<¢&n<1)of the (é,n) plane as a reference element.
For a quadrilateral element Kg, suppose its vertexes are P;(z;,y;)
(i =1,.-+,4). Then there exists a unique invertible bilinear mapping

T =21 + a1§ + an + azén,
qu_{ 1+ a1 + agn + asén (3.3.2)

|y =1+ b1+ ban + bsé,
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where
a1 = T — T1, A3 = T3 — T1, 63 = T4 — T3 — T2 + T1,
bi=y2—y1, b =y3 —y1, b3 =ys — Y3 — y2 + Y1,
which maps K onto Kg (cf. Fig. 3.3.2).
For any u, € Uy, we have on Kg that
Up = PR’(E’ 77)

ur(L — €)(1 — ) +ugé(1 — n) + us(l — &) + ualn’

uy + (ug — u1)€ + (w3 — ur)n + (ug — ug — uz + ug )én.
- | (3.3.3)

i

So we have

Up = {us € C(0): Uh|KQ== Ppo FE;,U@‘89= 0, Py € Pu1},

where P11 is the family of bilinear functions.

74
P40.1) PA1,1) P, P,
FKq Q
K Ka
A - P, P
P(0,0) P{£1,0) ¢
Fig. 3.3.2

The finite element obtained through the transformation Fg, is
called the quadrilateral isoparametric element with four nodes. If
u € H2() and IT,u is its interpolation projection onto Up, then

lu = Mpulm < Ch*™|uls, m =0,1. (3.3.4)
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The test space V} is chosen as the piecewise constant function
space related to the dual decomposition, with the following basis
functions: For each Py € Qp,

Py = P 'PeKp,
=0, Peks,

So tp, is the characteristic function of the dual element Ky . For
any vy € Vy we have

vn= Y vh(Po)¥p, (3.3.5)
Poedty,
3.3.2 Generalized difference equation

The generalized difference equation corresponding to the above trial
-and test function spaces is: Find uy € Uj, such that

a(uhv’ ¢Po) = (f’ ¢Po)a VPO € Qh, (336)

where

wp)=—{ WOy -wDdg)+ [ dody, (3.3.7
| a(un, ¥p,) /3-"’}0( p 4y — Wy -"’)+/K;g0 qupdzdy, (3.3.7)

. where BK}O is the boundary of K, possessing a counterclockwise
direction, and
; Ou Oup,
wi = ail‘gf‘ + azrz—a'—y’l, i=12
Using different numerical integration formulas to compute the in-
tegrals of the right-hand side of (3.3.7) leads to different approxi-
mations ap(up,¥p,) of a(up,¥p,) and results in different difference

equations: .
an(ur, ¥pry) = (f,%¥R,), Po € Q. (3.3.8)

Let the dual decbmposition be as in Fig. 3.3.1. Then the first integral
of the right-hand side of (3.3.7) can be divided into a sum of line
integrals along M0, Q1M,, --,Q4M;. For each line integral on
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M;Q; (or QjMj1), if we use its value at M;, or Q;, or their average
respectively to replace the integral function, then we obtain three
approximations af (un, ¥p,) (k = 1,2, 3) of a(un, ¥p,), ending up with
three difference equations. One can also divide the line integral in
(3.3.7) into a sum of integrals on M'1Q1.M2, M,Q.Ms, M3Q3 My and
M,Q4Mj, and approximate W,Ei) by W,E’)(Qj) (t=1,2, j =1,2,3,4),
then we have the following difference scheme (cf. [B-32]):

—W(l)(Ql)(yMz — ya) = WD (Q2) (wngs — vasa)

”(stym — yns) - w,f, >(Q4)(yM1 )
( )(wMz Ta) + (Qz)(st—wMz) (33.9)

Qs) (@M, — Tus) + )(Q4)(wM1 ~ Za,)

F(Po)Sh,, VP € Q.

Define the following difference operators

(V19)p = [9(Q1) (s, — ynsy) + H(Q2)(ynts — YMa)

+6(Q3)(Yms — Ynss) + #(Qa) (yrs, — yM4)]/S;’o,
(V2d)r = [$(Q1)(@ay — Tagy) + ¢(Q2)(-’5M’2 ~ Tify)
+¢(Q3)(wMa - M4) + ¢(Q4)(-’17M4 = TM )]/S;’o

Then (3.3.9) can be rewritten as a conservation form:

2 2
0
=3 (Vi(E wgar)) p, + A(Po)un(Po) = £(Po), Py € i,
i=1 j=1 Zj
(3.3.9Y
where 2> = 2 and & = 2.

If Tzwlls a rectanguf;: decglrlnpomtmn and the sides of the rectangles

are parallel to the coordinate axes, then the dual decomposition is

also a rectangular decomposition (cf. Fig. 3.3.3), and the above
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. */

M, K”AV/Mz

P, 7/ Ik
//////,

Qs Q

mentioned three kinds of numerical integrations lead to the following
three difference schemes respectively.

Scheme I:

- (M5) ~ WD M)y, — 9ass)

=W (M) ~ W (M) s — yro)

+WD (M7 ~ W (M (e, - 20as)

+HWD (M) - WP (M), — o)

+4(Po)un(Po)Sh, = F(P)S%,, VP € (i,
where W(l)(M_\ and W(1)1M+\ (1 =2 4) denote the single-gided
limits of W(l) at M; from left and right sides respectively along
QiQiy1 (i = 1,3); W(z)( ,.') and W(2)(M+) (¢4 = 1,3) stand for
the single-51ded limits of W % at M; from down side and upside re-
spectively along Q4@ and Q2Q3, P can be viewed as an averaging
center of the rectangle K'p; and the meanings of the other notations

are self-evident. In particular, Scheme I becomes the well-known
five-point difference scheme when A is the Laplacian operator.
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Scheme II:
- (@1) - W (Qa)(wr, - var,)
~ W (@2) - WD (@a)(wass — ymy)
+tw,:"<cz4) W (@), — Tas,)

WD @) - Wi @2))(war, — omy)
+q(Po)un(Po)Sh, = f(P)Sh,, VP € O,

Scheme III:

[ W(Q1) + WD (M, M) - W (Qa) + WP (M) (yp, — yasy)

~3 WD (Qa) + WD (M5) — Wi (@s) = W (MF) sy — ymy)
+5[W‘2’( ) + W M7) = W (@s) - W (M) (@p, — a,)

+[ w2 (Qu) + W (M) - Ww(Qg) - W (M) (@r, - zm,)

+ f(:ﬁ) ;;- -/ eEQh;

4
T‘ Yupy (Q;)!
£y SNRE BRSSO

*
-
o

Lo
-
-

3.3.3 Convergence order estimates

Suppose that Tj, and T are a quasi-uniform arbitrary quadrilateral
grid and its central dual grid respectively, and that u and u are the
solutions to the Poisson equation and the corresponding generalized
difference scheme (3.3.6) respectively. Then under certain geomet-
rical restrictions on the quadrilateral grid, there holds the following
error estimate (see [B-62])

llu = uplly < Chlula. (3.3.10)

In the case of rectangular grid and under stronger assumptions on
the smoothness of the solutions, a higher order convergence estimate,
namely a superconvergence result, in a discrete norm as follows can
be obtained. (See [A-62] for details.)
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P, M P

4¥d3 Q M‘

P, M, P,
Fig. 3.34

Theorem 38.3.1 Let T}, and T} be a quasi-uniform rectangular grid
and its central dual grid respectively, and let u and u, be the so-
lutions to (8.1.1) and the difference scheme (3.3.6) respectively. If
u € C3(Q0), then the following error estimate holds:

llu — unll1,n < Ch2Mas, (3.3.11)

where Mas = max{|D?u|max, |D3u|max}, and the discrete norm is
defined by (cf. Fig. 3.8.4)

ullin = (uffp + [ulf )12,

vlulm,h.= ( Z Iul?’n,h,K) 2’ m=0,1,

KeT),

[ulo.n.x - {%[uz(Pl) +u¥(Py) + u¥(P3) + uz(P4)]SQ}1/2,

{[(au(Ml))2 + '(3u(Ma))2

lulyp,x =

Oz aa;
+(3Ug;"{2))n (UU:\.[V14)) ]S }

For the above Schemes I and II, if the difference of the squares of any
two successive step-lengths on 2 and y directions is O(h%*4), we have
the following error estimate:

flu — Uh”lh<0h1+d 8% |D"tlmax, 0 S d < 1. (3.3.12)
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For Scheme III, the following error estimate holds for the quasi-
uniform rectangular mesh:

|l ~ unllsp < Ch? mmax |D'ufmax. (3.3.13)

For Scheme (3.3.9) on arbitra.rjr quadrilateral meshes, the convergence
order is O(h) under suitable assumptions on the decomposition. (cf.
[B-32] and [C-T)).

3.4 Quadratic Element Difference Schemes

The following two sections will be devoted to the generalized differ-
ence methods based on higher order elements. For simplicity, we take
the boundary value probleni of the Poisson equation as an example
to illustrate the idea.

Let §) be a planar polygonal region with boundary 0Q and f €
L?(Q). Consider the first boundary value problem of the Poisson
equation:

~Au=f, inQ, (3.4.1a)
{ uloa = 0. (3.4.1b)

The corresponding variational problem is: Find u € H} () such that

a(u,v) = (f,), Yo € H}(Q), (3.4.2)
where o 0 9
v u Ov
a(u,v) = L(%% =+ Bgéa)dade - (3.4.3)

3.4.1 Trial and test function spaces

As in §3.2, let T, be a quasi-uniform triangulation of . T}, consists
of finite number of triangular elements Kq, Q being the barycenter
of the triangle. The vertexes of the triangles and the midpoints of
the sides are taken as the nodes. €}, denotes the set of the vertexes of
all the triangular elements, M} the set of the midpoints of the sides
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Fig. 3.4.1 Fig. 3.4.2

of all the elements, 2} the set of the barycenters of all the elements,
and Qy =0, \ 99, My =M, \ .

The dual decomposition of T}, is denoted by T}, consisting of the
polygons Kp surrounding the node Py € QO and K3}, surrounding
M € M. These small polygons are called dual elements. Their
detailed construction is as follows. _ ,

1) Construction of Kj . Suppose that Py € Q, that P (2 =
1,2,:-+,7) are its adjacent vertexes, and that Py; is a point on ByF;
such that PoPy; = 3B F;. Connect successively Po; (i = 1,2,:++,7)
to obtain a polygon Kp, surrounding Ps. (See Fig. 3.4.1.)

2) Construction of K};. Let M € M} be a midpoint of a com-
mon side of two adjacent triangular elements Kq, = APyP,P; and
Kq, = APyP,Ps. Denote by @Qi2,@13,Qo2, Qos the midpoints of
P31 Pyz, Py1 Pog, PioPj; and PyoPp3 respectively. A polygon K}, sur-
rounding M is obtained by connecting successively Pyo, Qos, @2, Q13,
Po1,Q12, @1, Qo2, Pio (see Fig. 3.4.2).

The trial space Uy is chosen as the Lagrangian quadratic el-
ement space related to the triangulation T},. For each Py € O
and My € M, the corresponding basis functions are the piecewise
quadratic polynomials satisfying the following interpolation condi-
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tions respectively:

¢10(1 ) { ’ (3-4- 1al)

So Uy, = span{op,, duo; Po € U, M € My},

The test function space V}, is taken as the piecewise constant func-
tion space r'elated to the dual decomposition T}. For each P € (o
and Mg € M}, the corresponding basis functions are the characteris-
tic functions of K} and Kj, respectively:

' 1, Pe K} '
Yry(P) = { ’ o (3.4.50)
0, P¢g Kpo,
1, Pe K},
Yrto(P) = { ! o (3.4.5b)
0, PgK}y,.

Hence Vj, = span{tp,, ¥a; Po € p, M € My}

3.4.2 Generalized difference equation

The quadratic element difference scheme corresponding to Uy, and Vj,
constructed above is: Find up € Uy, such that

a(un, vn) = (f,v1), Yop € Vh, (3.4.6)
or equivalently
[ a(‘U:h,’!/)PO) = (fa I‘/)Po)’ PO S Q_h» (3'4'6a‘)i
a(up, ¥u) = (f, M), M € My, (3.4.6b)'
where "
alun,vn) = Y va(Po)alun, ¥m) + 3 va(M)alun, ¥ur),
PoEQh MGM;; '

(3.4.7a)
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_ Ouy, Oup,
alun, ¥p) = —/ax;,o 5 Y By dz, (3.4.7b)
0 0
a(un, ¥m) = — Am —:Thdy - —’%'dx. (3.4.7¢)
JanM e ~ .

Note (cf. Figs. 3.4.1 and 3.4.2) that 8K} = Py Py U PaPy3 U
+++U Py Py and 8K} = Q1Qo2 U QozPro U -+ U Q12¢1. The right-
hand side integrals of (3.4.7b) and (3.4.7c) can be divided into a
sum of the easy-to-compute integrals on these segments, resulting
in a linear algebraic system with unknowns up(Pp) (P € %) and
un(M) (M € Mp).

There are two approaches to form the generalized difference equa-
tion: Directly compute the equation for each node, or first compute
the stiff matrix (see (3.4.13) and (3.4.17) below) for each element
and then form the whole matrix of the equation by summation of all
_ the stiff matrices. The latter approach is more convenient and suit-
able by computer, especially for two-dimensional high order difference
schemes and irregular meshes.

Take any a triangular element Kqg. Let P(z,y) (I = 4,4k,
counterclockwise) be the vertexes, M; the midpoint of P; P, P; the
point on P.P; such that [P;P;] = }|P,P;], Q; the midpoint of P;jPy
etc. (cf. Fig. 3.4.3).

. For up € Uy, write up = uy(P). Then on Kg

up, = Y (updm +unmdm).
I=i,4,k

Perform a linear transformation

1 1 z gy 1 1 2y
A=e=—11 25 Y|y =z 1 2 u|. - (3.4.8)
25011 4 y 29| 1 4 y

Then Ky is transformed into a reference element Kq with vertexes
Fi(0,0), F;(1,0), P (0,1) on AjA; plane; Mi, Py, Q; become M;, Byj,
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Ach
B0, 1)

.
Py,
.

M
P

Pi(ovo)
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P, M Py B(1,0)

Fig. 3.4.4

Q; etc. (cf. Fig. 3.4.4); and

up = 'dp,-(l = X5 = M) (1= 2X = 2)) + up; (225 — 1))
+up, (ZAl‘; - 1)/\[.; -+ 4uM‘.>\j)«k
+aupg, (1= Xj = M) Ap + dupg, (1~ Aj — Ag)Aj

By (3.4.8) and (3.4.9) we have

311.),__ 1 [Ouy ,__% o
B 25 [3)\_,' (Y — ¥i) W (¥ %)],
N 1 . ... ' A, =
Yup _ T Yuh. N YYR
oy 2 Q‘. EYY (z m,)-}-a/\k(w, m,)],
b _ (40 + 40 — 8) + up, (405 — 1)
OXj
+4upn Ak — 4qu)\k + 4up,, (1- 2X5 — M)
g%iﬁ = up,(4X; + 4 — 3) +up, (4 — 1)
k

+dupg A +4dun (1= A5 — 20;) ~ duag -

(3.4.9)

(3.4.10a)

(3.4.10b)

(3.4.11a)

(3.4.11b)

A
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The bilinear form a(up,vs) on Uy X V3 reads

alup,vn) = Y Ix(un,vn), (3.4.12)
KeTy,

( Bu ou
i) = 3 [on | (-5 )
(3.4.13)

; 9
+vM,/L2( Sdy + a‘;" z)];

where Ly = P Pga, L = Py Qu2QQis1Pryrgge, 41 =
4y j+1=k, k+1=1. It follows from (3.4.8) that

1
dAj = 5[ — vi)de — (25 — 2:)dy],

28 :
1" (3.4.14)
dg = ﬁ- (y; — vi)dz — (x5 — z;)dy],
dz = (z; — z;)dA; + (zx — z;)d g,
{ ( J 1) j ( k z) k (3.4_15)
= (y; — ¥)dXj + (Y — ¥i)dAe.

So

(v Gas)
sz/ﬁ au,, — )+ ‘3;% = )] [ (v — wi)d)g
e - yz-)d/\k] ¥ [-—g—/\-j-(wk _ )

+ g‘;h (25— 2)] [ (25 — 20)dA; + (2 — 2i)dNe] }

_ 1 ,29un 2 Oun

_250/[ a)\sz\ g
2412 _ .2

+a +b%—c¢ ( Ouyp,

9
2 o T )],

(3.4.16)
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where a = |P,P|, b= |P.Pj|, c = |P;jPy| and L is the image of L by
transformation (3.4.8). Using (3.4.16) to compute (3.4.13) results in

14
]

(3.4.17)
'[UPu UP;y UPy, VM, UMy, 'UM),]T,

where A = [aif] is a 6x6 matrix with

a3 = 10c?, ajp = ag; = a? — b% + ¢,
a13 = agy = —a? + b + c%, ayq = —4c?,
a15 = agg = 8a? — 86% — 4c?, a1g = a5 = —8a? + 8b% — 4¢?,
age = 10a?, ag3 = azg = a + b% — 2,
g4 = asg = —4a® — 8b% + 8¢2, ags = —4a?,
aze = ags = —4a? + 8b? — 8¢, a3 = 104%,
a3 = ags = —8a% — 4% + 8¢2, ags = ags = 8a® — 4b? — 8¢?,
ags = —4b%, ag = —2¢%, age = ~5a? ~ 3b? + 3¢?,
043 = —3a% — Bb? + 3¢%, ags = 8a® + 8b% + 4c2,
as1 = 3a® — 3b? — 5%, asy = —2a?, asz = 3a® — 5b? — 3¢,
ass = 40” + 86% + 8¢%, agy = —3a? + 3% — 5,
agz = —5a® + 3b% — 3c?, agy = —2b%, agg = 8a? + 4b* + 8¢

Here 56715‘5‘4 is the stiff matrix of the element.

3.4.3 apriori estimates

Let us introduce the discréte semi- and full-norms:

lunllon = (3 tunlBa) s (3.4.18)
KeTy,
funl = (5 lualBar) ™, (3.4.19)

KeT,
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lluallin = (luall3p + lualfp) 2, (3.4.20)

where
[unlop = [(ul, +uh, + ub, +ulg + uly, +ulg,)Sq/6]'?,

lunlipg = [(up, —unm)® + (up; — ungy)* + (up, — ung,)*

+(upg, — uag;)? + (uag; — ung, )
Lemma 3.4.1 On the space Uy, || - llb,h is equivalent with the L2-
norm ||« |lo, and | - |15 is equivalent with the H'—semi-norm (and

hence with the Hy~norm ||+ ||1), namely there exist constants ¢; (i =
1,2,3,4) independent of Uy, such that

cillunllon < |lunllo < collunllop, Yup € Up,  ~ (3.4.21)
cslunlip < |unly < cslunlipn, Yup € U, (3.4.22)
Proof For uy, € Uy

ol = 3 [ uhdody= ¥
K

25q / u2dgdAg.
KeTy Th

€
It is easy to show that [z uZd);d)y is a positive definite bilinear form
of up,, upy, Up,, UM, UM, M, Thus (3.4.21) holds.

Next let us turn to (3.4.22). Obviously we only have to prove the
equivalence of |+ |1,k and |- | 4, kx. Since up, is a quadratic polynomial

2 2
on K, (%”5:’*) + ( %%‘1) is also a quadratic polynomial. Hence

funlf =fK[(%%)2+ (6“") azdy

1 Oup (M, Oup (M
-5 3, [+ (P e

s=2y 79V

(3.4.23)

It follows from (3.4.10) that
Oupn\2 Oup\ 2
(%) + (3

4—;—6 [a2 (g—:’;)2 -+ bz(%‘l;‘—:)Q — 2abcos ZPjP,'Pk gzh g:"Z]
3.4.24)
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The quasi-uniformness of the decomposition leads to the exxstence of
o > 0 and 6y > 0 satisfying

BK < o, 0x 2 00, VK € T3, (3.4.25)

where px is the diameter of the inscribed circle of K, hx the maxi-
mum side-length of K, and 0k the minimum interior angle of K. By
(3.4.24) and (3.4.25) we have

1—cosbpr 8 )
(G ()]

9 9 9 9
< [(52)'+ (F) sa < 20°(52) "+ (i)')
By (3.4.23) and (3.4.26) there exist constants cj, ¢j > 0 such that

p dup (M, Bup (M,
4 3 [(Gudiiy . (Putiyy,

=i,k

it s, 3 (200" (20’

=0y

(3.4.26)

(3.4.27)

where M; is the image of M; by the transformation (3.4.8). Write
21 = Up; — UMy 22 = Upy — UM;,
23 = UPp, — UM,y 24 = UM; — UM, (3.4.28)
%y = uM‘ - UM}

By (3.4.11) we have

Bun(Mi)\2 | (Bun(Mi)y2

¥ (Gl outinyy

=ty

= (21 + 25+ 23 + 225)% + (21 + 23 + 224 + 25)° (3.4.29)
+(=21 — 22+ 324 — 2z5)2 +(~21+ 23— z5)2

(=21 + 22 — 28)* + (—21 — 23 + 325 — 224)°.
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It is easy to check that the right-hand side of the above equation
is a positive definite bilinear form of #1,23,'++, 25, and hence it is

5
equivalent to 3, z¢. Now by (3.4.27) |up|1,x is equivalent to |ua|in, k-
O j=1

Denote by IIw and IT{w the interpolations of w in Uy and V
respectively:

Mhw= 3 w(P)¢r+ 3 w(Mo)brmo, (3.4.30a)
Poety, MoeM;,

Mw= 3 wP)¢rn+ D wM ¢Mo, (3.4.30b)
Poefty, MoeM,,

Theorem 3.4.1 Suppose that the mazimum angle of each element of
the triangulation T}, is not greater than %, and that the ratio T of the

lengths of the two sides of the mazimum angle satisfies T € [\/g, \/§].
Then there exists a constant o > 0 independent of Uy, such that

a(un, Iyun) 2 allunll?, Yun € Un. (3.4.31)

Proof By (3.4.17)

I (up, Iup) = %TZTAZ (3.4.32)

where Z = [z, 2,23, 24, 25]7, and A = [@;] is a symmetric 5 x &
matrix with

an = 10¢%, fiz =a? - b2 + 2,
- 2 11942 2
f1s = —a? + b? + ¢, iy = 13a +;3b +7¢ ,
2 _ 13p2 2
5= I AT =07

do3 = 0'2 + b2 - 621 Gy = —7‘1‘25
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. Ta? — 13b% + 13¢2 5

a5 = ) ) 033 = 10b2,
—_ 2 2 2
ag = 13a“ + '27b + 13¢ s = =T,
G4 = 8(a® + b2 + %), d45 = —4(a® + b% + c?),

asy = 8(a2 + 5%+ cz).
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Next we prove the existence of a constant & > 0 independent of K

such that

Ix(un, Mup) > 627 Z = Gul} ;, x, Yun € Uy

Define
B = [b;] = GTAG,
where
100 -5/8 3/8
010 38 -5/8
G=|001 3/8 38
0 00 1 -1
000 1 O

Then B is a symmetric 5 X 5 matrix with

b1 = 10c2, big = —biz = a? - b2 +c? , big =

b15=?a2—--—b2 baz = 10a%, byg = a® + b* — ¢,

11, 11 3,
bos = -—2—62-}- 5 c?, by = 50 , bas = 10b%,
bag = —bgp = —}:l—a2 + Ecz.

2 2
35 2, 35,0, 187

b = 750" + 0" + 5 ¢
_ Bl %, 81,

bis = —ga” + 155" — 76°
180, B B,
bs = 159"+ 760 + 5%

NI

(3.4.33)
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Without loss of generality, we assume b is the largest side of K. Then
a - 2
ns =< m=\/;.
The matrix B is positive definite because

by — Z [b1s| = %cz - I%}«z2 - %]lbzl > c? > rac8inf = 2705,

i#1
b — 3 [bas] = Eaz |- 28+ e > 2m S0,
1#£2
bas — 3 |bai| = 86% — |11a® — 11c?| > 2mp(117p — 3)Sg,
i#3
46 18 170 11 11
b44—2|b4,|-—-— 2_ b2 ¢ ¢ -5 2+ | > 18,
i#£4
170 , _ 182 46 , 112 .
- = - = - |=a? - =H > .
bss #Zslbs‘" ¢ 150 ~16° "¢ 2 b | 2 18q
By the Gerschgorin theorem the smallest eigenvalue

Amin Z TOSQ. (3-4-34)
Thefefore, by (3.4.32) there exists a constant & > 0 such that

" 1 =1 -
I (up, I{up) > W(G 12)TB(G"'2)

(3.4.35)

2 35 =(G12)7(G™12) > 6272 = Glul} p x,
which gives (3.4.33). Combining (3.4.12), (3.4.19) and Lemma 3.4.1
leads to (3.4.31). _ O

3.4.4 Error estimates

Theorem 3.4.2 Suppose that the iriangulation T}, satisfies the con-
ditions in Theorem 3.4.1. Let u be the solution to (3.4.2) and up, to
the quadratic element difference scheme (8.4.6). If u € H3(Q), then
the following error estimate holds:

[lu = un||y < CR?|uls, , (3.4.36)
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Proof The proof is similar to that of Theorem 3.2.2. (3.4.2), (3.4.6)
and the a priori estimate (3.4.31) imply »

1 = I u. I*G
|| = unlls < ||u —IIaully + — sup |a(u — Thu, huh)l_
Q GhelUy “Uh]h

(3.4.37)

By (3.4.12) and (3.4.13) we have

a(u — pu, II}a,) = Z Ig(u—Tpu, 10} 4,), (3.4.38)
KeT,

Ig(u — pu, I3 4)

' O(u—1II O(u—1I _ _
= 2 [/m(" v s iy 2 By ) 40) (a0 ~T)

J=i!j’k )
_O(u = TIhu) Ou—TIhu) . .
* QP 142 ( oz dy + dy dw) ('U,p, HM(+1)
u ~ ITu) Au —Ihu) , \,_ ~
+ m("‘ 3z dy + By dm) ('u,MH_2 = UMy, )],

- (3.4.39)
where i+1 = §,j+1 = k,k+1 =1,up = Uy (P) etc. By the definition

of |1y b,k we have

'ﬁMHz - Ulei lﬂPx — UMy 4, |’ lﬁM¢+2 = ﬁMl+1| < Olﬂhll h,K- (3.4.40)

Let L = QiPiis1 (or QiPrirz, QQ)) and ¢y = ﬂ“—?ﬂ by =

o “';‘ %), Then

l/L (_‘%L";::I_h’.‘ldy_l_ Ou ;yﬂhu) dx)t

: (3.4.41)
N . Coa s 1l
< | (1] +Igal)ds < w72 [ @1+ #as]

11/2

Assume that the linear mapping (3.4.8) maps the element K onto the
reference element K, the segment L into L, and the function ¢; on
K into the function ¢,(/\,,/\k) éi(z,y), (z =1,2) on K. Then we
have

[ ghas<h [ Bds, i=1,2. (3.4.42)
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Let L be a part of the boundary of K};,. Employing the trace theorem
on K ;91: N K we have a constant C > 0 independent of K such that

/ﬁéb?dé SOl g 6= 1,2 (3.4.43)

After the affine transformation, the Sobolev semi-norms have the
following relationships: '

{ \Gilo & < Ch™"Iilo,x,
|Bil, & < Clilv,

By (3.4.42)-(3.4.44) and the interpolation approximation theorem we
have

i=1,2. (3.4.44)

r .
-/L ¢fds < Ch(h™Hdilo,x + |¢il1,k)?
< Ch(h_llu - nhull,K + Iu - Hhu|2,K)2 (3'4'45) '

, < CRPul3 k.
A combination of (3.4.39)-(3.4.41) and (3.4.45) yields
Ix (u — Tyu, II50,) < Ch®|uls,k [Ghl1,n.k- (3.4.46)
This tégether with (3.4.38) and Lemma 3.4.1 leads to
a(u — Mpu, II5a,) < Ch?|uls|asl;. (3.4.47)
Finally, (3.4.36) results from (3.4.37), (3.4.47) and the interpolation
approximation property. _ a

3.4.5 Numerical example

The following problem is approximated by the five point finite dif-
ference method (FDM), the quadratic finite element method (FEM)
and the quadratic element generalized difference method (GDM), re-
spectively:

{ —~Au = 2sinzsiny, on Q = (0,n) x (0, ),

3.4.48
[ ulag = 0. ( )
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Place a right triangular decomposition on 2 (see Fig. 3.4.5) with the
right-angle-side length h = %, z; = th,y; = jh, 4,j = 1,2,---,N.
The results of the three methods as well as the true solution (TS)
u(z,y) = sinzsiny are given in Table 3.4.1,

Ya

T

N

NARN

N

Fig. 3.4.5

Table 3.4.1. Numerical results ([A-41])

FDM(N=8) FEM(N=8) GDM(N=8) TS
(#1,91) | 0.148343  0.146418  0.146178  0.146447

0.935844 0.923702 0930291  0.923879
1.012950 0.999808 1.006940  1.000000

(z2,y1) | 0.274102 0.270546 0.271157  0.270598
(z2,y2) | 0.506475 0.499904 0.502044  0.500000
(z3,1) | 0.358132 0.353485 0.355223  0.353553
(z3,y2) | 0.661742 0.653156 0.656951 - 0.653281
(z3,ys) | 0.864607 .  0.853389 0.858948  0.853553
(z4,31) | 0.387639 0.382610  0.385339  0.382683
(z4,12) | 0.716264 0.706971 0.712014  0.707107

)

)
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P

P, “ Ko/’ M
/S X\
L X \p
Py P M, !
Fig. 3.5.2

3.5 Cubic Element Difference Schemes

In this section we discuss a generalized difference scheme based on a
cubic element of Hermite type for problem (3.4.1).

3.5.1 Trial and test function spaces

Let T}, be a quasi-uniform triangulation of Q as in §3.2 and A the
largest side length of all the.triangles. T}, consists of a finite number
of triangular elements Kg's, @ being the barycenter of the triangle.
Denote by 2 and €} the sets of the vertexes and the barycenters of
all the triangular elements, respectively, and 2 = {0, \ 8. Let Sg
be the area of Kg.

For the dual decomposition, we consider a vertex Fy of a trian-
gular element. Suppose P; (i = 1,2:-+,6) are the adjacent vertexes
of Py and M; is the midpoint of PoP; (cf. Fig. 3.5.1). Connect M;
successively to obtain a polygonal region K} surrounding Fy, as an
element of the dual decomposition. Suppose that @ is the barycenter
of a triangular element K = AP; P,. Py, and that M; M., M, are the

Le@Riin il TRy 2L Als gl Saals BIEGY Sy 2R sAR TS F VS

midpoints of P; Py, P P;, PP respectlvely (cf. Fig. 3.5.2). Connect-
ing M;, M; and M}, results in a triangular region K} surrounding @,
which is also taken as an element of the dual decomposition. These
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two kinds of dual elements form a dual decomposition, denoted by
T3, .
The trial function space is chosen as the Hermitian cubic element
space related to Tj,. There are three basis functions corresponding
to a node Py € O, denoted by ¢S§o) (k = 0,1,2) and satisfying the
following interpolation conditions:

65 (o) =1,

$S(P) =0, if P €T UL\ (P},

8 8 -
5t P) = 5 dR(P) =0, Pe Ty

5-0r (P) =0, fPel\{R},
¢§go)(p)=o, if PeQuy,
9 4(py=0, ifP ey

0
[ 552 =1,
J 9 @(p)=0, ifPe\{R}

oy P
¢Q(P)=0, fPeUO,

d ) —
| 52 gg(p)éo, if P € 0.

There is also a basis function ¢g,(P) related to the barycenter @ of
the triangular element, satisfying the interpolation condition

¢Q0(Q0) = 11
$g,(P) =0, if Pe Qr U\ {Qo},

a a . —
. 5E¢Q°(P) = @(ﬁQo(P) =0, if P €y,



156 ' Chapter 3

Taking into account of the boundary condition u|sn = 0, we choose
Un = span{¢s $qo : Po € Qn,k=0;Py € Ty, k = 1,2 Qo € 24 }.

The test function space is chosen as the piecewise constant and
piecewise linear function space. The three basis tunctlons related to
Py = (20, 40) € Oy are

1, if PeKp
wféi,’(P)={ ! v

0, if P& Kp;
z—m, ifPeKp
(1)(P) { N , if D d 7 B}
LY g Sy
(2)(P) Y — Yo, 1fPEKP0’
0, fPEK},.

The basis function related to Qg € Q}, is
(o)( P)= 1, if Pe Ky,
0, if P¢KQ,.

Similarly we require that the functions in V4, vanish on the boundary.
So we have

Vi = Span{‘!ﬁgf,)ﬂﬁczo t Py e nk=0,Py € O,k =1,2,Q € O}

.5.2 Generalized difference equations

3
"The cubic element difference scheme corresponding to U, and Vj,
defined above is: Find uy € Uy satisfying
| a(un,vn) = (f,vn), Yop € Va, (3.5.1)
or equivalently

a(un, i) = (f, 9, (3.6.22)

P e Qh,k =0; Ppe O, k=1,2,
a(uha"on) = (f, "on)’ Qo € Q;a (3.5.2b)
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where

Ouy, Oup,
(uh,¢ )y = /& s, ayd 5z Y (3.5.3a)
Wy_ [ ou Uuh (U 4y Wh (1) gy
a(un, ¥5)) = /K;o A dady + | s, By PP B Y
, (3.5.3b)
o v = [ Ghaody+ [ Fhofas - Shyday,
K3 Oy oKy,
5 3. (3.5.3c)
= 9Uh 4y . TUB
a(un, $Q,) = /a k3, OV dz — —-*dy. (3.5.3d)
Define an interpolation operator II}, : Uy — V3 by
0ty (P
Mm= 3 [mEu + 2oy
P°;Z“ (P) (3.5.4)
e’ 4 ) DR A(HITEN
Qoen;
Then, (3.5.1) is equivalent to
a(un, IT3Tx) = (f, II48), Vs € Un, (3.5.5)

To compute the element stiff matrix we write a(us, IT} %) as

a(up, I1}7,) = Z Ixc(up, 1T T4), (3.5.6)
KeT
where K = AP.P. P, {of e 35 9)
WIICLT I\ = Lol 3d '7‘ b \\all &L 15. U-U-‘l}’

Ik(uhanzuh)
> [ clun, ) + TP 1, )

I=1,j,k
ou (P
+ Th(P))
oy

(3.5.7)

I (wn, 92)] + Tn (@) ke (un, o),
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and each Ik (un,9p) is obtained by changing the integral regions
K} and 8K} in a(up,¥p) (cf. (3.5.3)) into Kp N K and K N K

respectively.
On K, uy, € Uy, can be expressed in. terms of (i, Aj, Ag) a8 (cf.
Example 3 in §1.1.4):
up = 2T 0un(Q)

+ 30 (=27 + 3AF = TR M )un(B)

I=ij,k
Oup (P,
+ > [(2,\,-,\,-,\,c — Mg — ’\‘2’\*)%12 (3.5.8)
l=j,k
+ D22 - N AjA .
mg.k " k) aAl ]
m;Zl

After the transformation (z,y) — (Aj, Ax), the triangular element &
becomes the reference element K (cf. Fig. 3.5.3), and the points
P, M; and @ become P, M; and Q) (I = 4,J,k) respectively. Also
note

Oun ) dup, ) . Ouyp,

bz 259 [(y’“ vi) B + (i yJ)a}\,'c]a (3.5.9a)

Oup _ 1 10 Oup, .\ Oun '

By _ 259 [(2i - 2h) gy, + (@3~ =) BAk]’ (3.5.9b)
dz = (z; — 2;)d); + (2 — 25)d)y, (3.5.10a)
dy = (y; = ys)dAs + (i — i)d M. (3.5.10b)

The integrals in I (us, I1;7%)) can be changed into the integrals on the
reference element K on (A, Ak) plane by the transformation (z,y) —
(Aj, Ak). Then the element stiff matrix can be obtained by computing
Ig(up, 1I}T5) as in §3.4.2.

3.5.3 a priori estimates

Let us introduce a discrete semi-norm

1/2 ‘
|lunl1n = ( ) Iuhlf,h,x) , (3.5.11)
KeTy,
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A ‘r
Pi(0,1)
v M,
‘Q \
i"(0.0) M. I.’;(I.O) A;
Fig. 3.5.3
where ‘
Oup(P) Ouy, (P,
= 3 [on(R) - un(@)F + (Ze)" o+ (AT,

l=i;.7)k

Lemma 3.56.1 The discrete semi-norm | - |14 18 equivalent to the
H'—gsemi-norm | - |y on Uy, namely there exist constants cy,cy > 0
independent of Uy, such that

cilunlin < lunlt < caluplip, Yup € Up. (3.5.12)

Proof For up € Uy,

lunl} = Y /K[(%z%)z+(%i)2]dwdy

KeT,
i € Bupnz B2 SR (3.5.13)
—KEZT/K[ %) +(5,) ] 25adxdx
It follows from (3.5.9) that
0 0 1 du Ou
G- GGGy
—2abcos LP; P, Py 7— gl,(h g;“;:]

where a = |PF;|,b = [B.P;| and ¢ = |P;P;|. The regularity of the
decomposition implies the existence of constants ¢ > 0 and 6q > 0
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such that "
=K < q, 0k > 6y, VK € T,
PK -

where pg is the diameter of the inscribed circle of K, hg the max-

.
imiym gida lanoth of V BY\A a-. +tha minimnm intarin
imum 8iGe aCxigva Ui tNe minimum Inierio:

(3.5.14)
LBy ()7
J
du du Ou du
<[22+ (2250 a2y + (227

2
It easily follows from (3.5. 8) that fK[(%’fﬂk) (%}‘:) ]d/\jd/\k is a
positive definite bilinear form of e

(3.5.15)

+

Z= [un(B) ~ un(Q),un(Br) ~ un(Q),un(B) — un(Q),

6uh(PJ) [‘)uh(Ph) Buh(R) Oup(Pj) Oup(Py) Oup(P)T

—~
N

3.5.16
This together with (3.5.13) and (3.5.15) leads to the desired conclu-
t

sion and completes

The norm | - |14 is also equivalent to the H'-norm || - |} on U,
since Uy C H}() and |- |; is an equivalent norm on H} ().

Theorem 3.5.1 Assume that the mazimum angle of each element of
the triangulation T}, is not greater than § and that the ratio T of the

two side lengths of the mazimum angle satzsﬁes TE [\/_ \/— . Then

AL mann mpedada ~ amanadand am A oond BT 2L .t
UIETE ETISLS G COTISLaGTIL O > U HHI;E[)CILUIC"L uJ Uh JMLH 231

a(un, Mun) 2 olupll, Yuy € Up. (3.5.17)

Proof Write Jx(up, I} uy) into a symmetric form

1
IK(Uh,H;‘,‘uh) = %gs—z AZ (3.5.18)
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where A is a symmetric matrix

Ay A A
A= Ag:z A%g Ass |,
Alg Az Ass

Ap =

400q? 96c% — 40a% ~ 40b% 9662 ~ 40a? — 40c?
96¢2 — 4002 — 4002 40042 9642 — 400% — 40¢2 | ,
96b% — 40a? — 40c? 9642 — 40b% ~— 40c? 400c?

Ap =

—964* 41¢? — Ta® — 206° 410 — 7a? — 20c%
13a? + 118% — 27 41¢% ~ 41a% + 4802 7c% - 14a% - 48% |,
| 130 - 2767 + 11%  T6® —14a® —4c® 410 - 41a® + 487 |

Ay =
[ 4802 — 4182 + 41c® 11a? +130% — 277 7c® —4a® — 146° ]
41¢* — 2002 - T¥° —96b? 41a® - 76° - 20 |,

7a? ~ 140% —4c®  136% — 27a% + 117 4la® - 416% + 48¢ |

Agg =
34a? 6?2+ 5% —11c®  a? - 118 + 52
a? + 562 ~ 11 7a® +Th% +15¢2 -202+ 82+ |,
@ —-112 +52 22+ +  Ta® +156% + 72

Ap =
~17a2 + 4b? — 42 ~3a2 — 32 +7c? 202 + 4b? ~ 2¢*
~2a% - 2% +13¢% 4a® - 170 -4 22+ 4% -32 |,
a?—20%2 —3c2  4a% - 282 - 22 —~11a2 — 118% + 10c?

A3z =
Ta? 4+ Tb% + 15¢2  5a? + b? — 11¢2 a? — 2% + 2
5a% + % — 112 34p? —11a? + 5%+ 5¢% |.

a2 2% +¢ ~11a® + b2 +5c% 15a2 + TH% + Tc?
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Let the shortest and the longest sides of K are F;P; and P;F;
respectively. Divide our discussion into the following two cases.

Case 1. Suppose ¢ < #(a? + b?). Take a® = b = ¢? =1 in the
subblocks A;j of A to obtain fi,-,-. Set

G=
I —Dyy Dia(Azs — ATyD12) " (Ags — Al Di3) — Dis
0 I —(1‘122 - fi{sz)—l(x‘iza - fiTZDw)
0 0 I

where I is the 3 x 3 identity matrix, Dj2 = z‘il_lljilz, Dz = Aﬂlx‘im.
It is easy to show that the inverses of the above submatrices indeed
exist. Perform the transformation '

B =GTAG,

then B = [b;;] is a symmetric matrix where

b1y = 25a2, biz = —2.5a2% — 2.5b% + 6¢2,

bz = —2.5a% + 6% — 2.5¢2, b4 = 0.06a2 — 0.036% — 0.03¢?,
bis = —4.04a% — 2.996% + 7.03¢%, b1 = —4.04a% + 7.036% — 2.99¢%,
bi7 = —6.84b% + 6.84¢2, bis = —0.51a® — 0.556% + 1.06¢2,
big = 0.51a® — 1.066% + 0.55¢2,  bgy = 2507,

bas = 6a? ~ 2.5b% — 2.5¢2, bas = 0.80a% + 0.17b? — 0.97¢2,

bos = —9.13a2 ~ 0.03b? + 9.16¢2, bgg = —6.07a® + 3.87b° + 2.20¢2
byr = —1.89a2 — 3.066% + 4.95¢2, bog = —1.84a — 0.28b2 + 2.12¢2,
bog = 1.74a% — 1.14b% — 0.60c2,  bs3 = 25¢7,

bss = 0.80a% — 0.976% + 0.17¢%,  bss = —6.07a2 + 2.200? + 3.87c2,
b3s = —9.13a% + 9.16b% — 0.03¢%, bgy = 1.89a2 — 4.956% + 3.06¢?,
bsg = —1.7a% + 0.606% + 1.14c%, b3y = 1.84a2 — 2.12b? + 0.28¢?,
bas = 10.93a% + 0.016% + 0.01c%, b5 = —0.85a% — 0.12b? — 0.74c?,
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byg = —0.85a% — 0.746% — 0.12¢%, byy = —6.086% + 6.08¢2,

bsg = 0.120% +0.495% — 0.61c?,  byg = —0.12a% + 0.615% ~ 0.49¢?,
bss = 15.750° + 2.79b? + 3.88¢%, bsg = 0.72a2 -+ 0.885% + 0.88¢2,
bsy = —2.48a% + 0.90b% + 1.58¢%, bsg = —2.10a% — 4.84b2 + 6.85¢2,

bsg = —0.04a? + 0.35b% — 0.31c%, bgg = 15.75a2 + 3.88b2 + 2.79¢2,
ber = 2.480% — 1.58b2 — 0.90c?,  bgs =0.04a? + 0.316? — 0.35¢2,
beg = 2.01a% — 6.8557 + 4.84c%,  byy = 0.75a2 + 8.425% + 8.42¢%,

brg = 0.91a% + 1.195% — 2.03¢2,  byg = 0.91a% — 2.035% + 1.19¢2,
bgs = —2.11a2 + 8.26b% + 3.31¢?, bgg = 0.53a — 0.364% — 0.36¢?,
bgg = —2.11a” + 3.315% + 8.36¢2.

Under our assumptions we have

by — 3 |b1s] > 20a? + 2267 — 22¢% > 3.5a% + 3.562,
j#1

J# ,
boa — 3 |boj| > 14.9502 + 28.55b% — 23.5¢% > 19.4642,
572

bsz — 3 |bs;| = ~17.950% + 13.56% + 21.45¢* > 3.5a2 + 13.55?,
J#8

bss — 3 |bsj| > 31.67a% + 13.16% — 26.54¢” > 4.9502,
i#5
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bes — z: |be;| > —8.31a2 + 31.0657 — 13.1c* > 1.02a2,

brr — 3 |brs] > 0.746% + 35.05b% — 18. 35¢% > 1.1742,

J#T

bas — D |bsj| > 4.394° + 16.166% — 11.35¢° > 0.97a°
J#8 '

bog — 3 |bos| > —8.61a% + 17.116% ~ 0.36¢% > 2.34a>.
J#9

Note a® > 25g. So the Gerschgorin theorem implies that the mini-
mum eigenvalue Ayin > 1.945g.

Case 2. Suppose ¢* > 3( + b%). Now we take a? = b* =

= 2, and perform the same transformation as in Case 1. Then we
can sxmlla,rly ghow that the minimum eigenvalue of B Apin > 0.145g.

Summarizing the above two cases and noticing (3.5.18) verify the
existence of a constant o' > 0 such that

I (up, up) > oo 1 0145 ZT( Wre-1z >d'Z¥ 2. (3.5.19)

bining (3.5.6), (3.5.19) and Lemma 3.5.1 yields (3.5.17).

3.5.4 Error estimates

Theorem 3.5.2 Let T}, satisfy the assumption of Theorem 8.5.1, and
let u and up, be the solutions to the variational problem (8.4.2) and
the cubic element difference scheme (8.5.1) respectwely Then zf u €

1o tha fallasnim errvor patie ndas
721+ Juuuwuby Criros l:-uuuu«bc.

llu — up|l1 < Ch3ulq. (3.5.20)

Proof By (3.4.2), (3.5.1) and the aprzam estimate (3.5.17) we have

1 — T, 11
lu = wally < |Ju~ Maulls + = sup a(u — Ty, TT3%,)|
O gely, Huhlll

. (3.5.21)
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where IIpu is the interpolation of u onto Uy. By the interpolation

approximation theorem,
||u - Hhqu S Ch3|u|4

Next we deal with the second térm of the right-hand si
It follows from (3.5.6) and (3.5.7) that
a(u — Tau, ITs) = Y Ix(u—Iyu, I4T,), (3.5.23)
KeT),
Ix (v — TIpu, I3 )
Ou —Ipu Ou—Ipu
= > {m@-n@)f ATty T,
I=i,4,k aKPInK y i
5:", \ADZ) u(’c‘i - Hn’b‘,) d:vdy

Oz l/K;,an Oz
O —Tht) 5 — gy)g - 2L 5 _ 5]

* fax;,lnx Ay
0un(Fy) [/ 8(u — Ilyu) dzdy
kynk O

oy Y
O(u — Ilpu) O(u — Tu)
+ / —_—_——(y - y)dz - ——— d

oKpnK Oy (v - y)ds et ) y]}

' (3.5.24)
By the definition of the discrete norm and (3.5.9) we have

[@h (1) — Tn(Q)] < ClB|1p.k, (3.5.25)
(3.5.26)

6‘h(Pt)| | (Pi)[ < Ch~Yaplip k-

Dy, gy = "’(“*{}h“) K= K3NK and L = 0K},NK.

Write ¢; =

Then, it is easy to see that

O(u — Ipu) _
|/ 3 NK - oz = dmdyl (3.5.27)

< & / ¢dody)"” < hlu - Tulsx < Ch¥fulex.
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Similarly
‘/ Pt dady| < Chlulsx. (3.5.28)
K AK Ay .
Also note
O(u — Txu) O(u — Mpu) 1/2 / o v 112
l/;K‘ nK Oy dz oz dy' <h [ L(¢1 + ¢2) ‘9] ,
(3.5.29)
Ou — pu) _ O(u - IMhu) _
I/BK;, nk Oy (¢ —@)dz ~ ——5——(z mz)dyl
< hs""[ﬁ(qﬁ%-kqﬁ%)ds]” g
) (3.5.30)
O(u — Ihu) O(u = Mpu
ot a2 PPN dp - 22— h7 d
|/8K},‘nK T w)dz el et ) yl
< W[ @ +ehas] "
(3.5.31)

After the transformation (z,y) — (Xj, Ax) we have
/ $2ds <h /L $2ds, i =1,2. (3.5.32)
L
Use the trace theorem on ka to obtain

|/, #3] < UL g < OB dilo,c + 18ils.x)?
< C(hYu ~Tpulyk + ju — Daulzk)? < ChAful} g, i = 1,2.

(3.5.33)
It follows from (3.5.24)-(3.5.33) that
[Tx (u = Mhu, T3TR)| < OB |ulg ke |dnlip k. (3.5.34)
This together with (3.5.23) and Lemma 3.5.1 gives
| la(u — apu, I5,)| < Ch3Jula|tnls. (3.5.35)

Combm1 g (3.5.21), (3.5.22) and (3.5.35) implies (3.5.20). This com-
T

Y A,

pletes the proof. (]
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3.6 L2 and Maximum Norm Estimates

Consider the boundary problem of the second order elliptic equation

2
r - Z :a—- (an_'j _:5_11;_\ +gu=f, 2z €Q, (3.6.1a)
1 ig=1 oz, \ Y 0z;/
ulon =0, ' (3.6.1b)

and its generalized difference scheme: Find uy, € Uy such that
a(up,vp) = (f,v1), Yo € V. (3.6.2)

Here € is a polygonal region; the functions a;; € WH®(Q) (4,5 =
1,2) and ¢ € L>®(f) satisfy the elliptic condition; f € L?*(Q); Uy
is the linear element space related to a quasi-uniform triangulation
Ty; and V;, is the piecewise constant function space corresponding to
the barycenter dual decomposition T}}. (See §3.2 for details.) In this

section we discuss the error estimates in L? and maximum norms.

3.6.1 L? estimates

=

(0]

o
=

& 133 - S aad, ana E

8 introduce an auxiliary problem: Find w €
a(v,w) = (g,v), Vv € H&(Q) (3.6.3)

Assume the problem is regular, namely for any g € L?(2) there exist
a unique solution w € H}(Q) N H?() and a constant C such that

+ lwll2 < Cligllo (3.6.4)

According to the theory of differential equations, problem (3.6.3) is
regular when € is convex and the coefficients a;; and the function g
are sufficiently smooth.

Theorem 8.8.1 Let u be the solution to problem (8.6.1), up to the
generalized difference scheme (3.6.2), and u € H}(Q)NW3#(Q) (p >
1). Then

llu = uallo < Ch?|Jullsp- (3.6.5)
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Proof We use (3.6.3) with g = u — uj, to get
u-wmB=au-uw). (366
Let IIyw and ITfw be the interpolation projections of w onto Uj, and
Vi, respectively. Then, obviously the error u — uj satisfies
a(u — up, Iw) =0, (3.6.7)
This implies
Hu — uplZ = a(u —up, w — Myw) + a(u — up, Daw) — a(u — up, Mw).
.(3.6.8)
Notice that the first two bilinear functionals of the right-hand side
of (3.6.8) are in the usual sense while the last one is in the sense of
generalized functions. It follows from the boundedness of the bilinear
functionals, the H'-estimate (3.2.36) and the interpolation estimates
(3.2.8) and (3.6.4) that
la(u — up, w — Mpw)|

< Ollu = unll1|jw — Mpwl|y (3.6.9)
< Ch*ullallu = unllo.

Nn tha Aathar han vy (dvann’la favmunla wa hasa

NJAL VMG UulTL I.‘.ull.iu, U'y NTLOGAL D AViLiiiuia WO lavo

2
= E Z aij o(u —.uh’) anhwdm + q(u — up ) Mpwdz
— 0x; Oz;

= Z/ Z [ai(z au(Q)]a(u Uh) 6g£iwd

r 2 82y
- Lj 3: ,3 z; Hpwdz
) (3.6.10)
+Z/ Z a‘](Q )cos(n, z;) I wds
K JOK i,j=1

+/nq(u - up) pwdz,
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a‘(u — Up, sz)

= —Z Z / (u _,uh) cos(n, z;) [T} wds
K pek OKPOK” 1 z.?

+/ Q(u - Uh)H;;’lUdm,

: 2
= -y Z/ > laij(z) - aii(Q)]

u — up) T wdz.

K g OKPNK (52
_ 3.6.11
O = un) cos(n, z;)II} wds ( )
Oz zj
2
Z/ > ay 2% mwde
K 'Kij= V52,22, ,
Z i h)
——cos(n z;)IT} wds
K j= Zj
A

Here @ is the barycenter of K, and K = KN $Y,. Hence
5
a(u — up, Mpw) — a(u — up, Mw) = Bi(u — up,w),  (3.6.12)
i=1 .

where

(u ~ up) Allpw

By(u — up,w) = Z/ Z[aU - a45(Q)] 7; B0, dz,

i,j=1
Ez(U—Uh,’LU)
--T% /ax,,nx,?l[“” 2) - (@)
O(u — up)

B2 cos(n, z;)IT; wds,

v
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2
0%u .
E3(u = up, w) = — ; /K 3;1 aij (Q)a:vgam,- (Mpw - Mw)dz,
E4(U — Up, w)
2 —
=/ aMQ\M cos(n, z;) (Ipw — [T} w)ds,
?{4 JaK ig;l '\ ’ d.’l?j ) Y

Es(u ~ up,w) = /QQ(U — up)(ITpw ~ IMjw)dz.
Noticing (3.2.36) and (3.6.4) we have
| B1 (u = up, w)| < Chlu = unlilw]s < Ch?|lulla|lu — unllo. (3.6.13)

Using the argument in §3.2.4 (cf. the symbols therein and (3.2.44))
we have A

m aar

- A I
|E2\U — Up, W)|

IZ Z /__ Z [aij(2) — ai(Q)]

K i=ijk MQ i,j=1
O(u—un)
az‘j

< CREY julgklwlnx < CA¥lullallu — tnllo.
K

(3.6.14)
cos{n, z;)ds(wi+2 — wz+1)|

In the case of the barycenter decomposition, we have for any element
K

/mw—mmm=u
K

Write v; = g%_ for j = 1,2, then v; € W2?(Q). By the above equality
and the fact that %ﬁ:’i is a constant on each element K, we have

Ea(u — Up, W )

Z/ z zJ(Q 6’0,7 aHh’UJ)(Hh —H}",w)dm.

zJ-l )
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Hence

2
|B3(u — up, w)| £ C Y [|lvj = Thv5ll1,p/l T — I wifo g,
i=1
where p, ¢ > 1, %+% = 1. Notice the imbedding relations W2?(Q2) —
C(Q) and H?(Q2) = W14(), and use the interpolation theorem and
(3.6.4), then we have

2 .
| Bs(u — un, w)| < Ch? Y [lvjllapllwllsg < Ch?|lullspllu — uallo.

Jj=1
(3.6.15)
Now let us estimate B4. A direct calculation shows that along
any a line L of an element K we have '

/L (Mpw — Mw)ds = 0.

Furthermore, since %%? cos(n, z;) is a constant on L,

2
0
5 o 3 om(@) g cos(n, ) My ~ Tw)ds = 0

lym=

So

2
o
E,= ;LKa,mZﬂGM(Q)—a_f": cos(n, z;) (ITpw — I} w)ds.

Because we have zero boundary condition on the outer boundary,
we only have to consider the integrals on the inner boundaries. Let
K = Kg (see Fig. 3.2.7), and K¢y is a neighbouring element sharing
a common side P,P; with Kg. Denote by ng the unit outer normal
direction of Kg along P;P;. Obviously, the two line integrals along
P,Fj differ in the sign. Note that %%‘;’i is also a constant on P, F;.

Therefore, we may write E4 in the form

B= XY [ > (am(@ - m(@) (s - T2

Kq B;F; " TFi m=1

-cos(ng, z1) (pw — I} w)ds.
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It follows from the smoothness of a;,, and the Cauchy inequality that
Ou  OMpu|2, \1/2
|By| < ChZZ Z/ - 0z _ah|d")
K m=1 m Zm

9 RF; (3.6.16)

1/2

: Myw — Mw|?ds) .

(fops v = ThwPds)

As in the proof to (3.2.43) we can use the interpolation property to
show that ‘

fFI?- |th - H;‘,wlzds

IN
1[
s

on{n- x
U’b\"l I n & hw
+|pw — Mwly, kgnky, + [Thw = H}'{wh,anK;,j)

< Chilywif g, < Chiwl3 k, < Chllu — uallf kq-

(3.6.17a)
Similarly
/'15,-‘15; aii arI"“| ds < Chlufl k. (3.6.17b)
Now we insert (3.6.17) into (3.6.16) to obtain
|Ea| < Ch?|lullz]lu — unllo. (3.6.18)
The estimate of Ej is simple:
| Es(u — up, w)]|
Cllu = up|[1[|TThw — Iiwllo (3.6.19)

<
< CR?|lulfzllu — unlo.
A combination of (3.6.13,14,15,18,19) yields
a0 = wp, Tw) = a(u = up, T0)| < CA?lullspllu = uall. (3.6.20)

Finally, (3.6.5) results from (3.6.8), (3.6.9) and (3.6.20). This com-
pletes the proof. O
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3.6.2 A maximum estimate and some remarks

Theorem 38.8.2 Under the conditions of Theorem 8.6.1 there holds
the following error estimate in mazimum norm

1w = unlloco < Chllullsp (p > 1). (3.6.21)
Proof First we note that
1w — unllo,co < || — Maullo,c0 + [ITIaw — unllo,c0- (3.6.22)

For the first term on the right-hand side of (3.6.22) there exists an
element K such that

|lu — Haulloe = [lu ~ Maulloeox- (3.6.23)
The Sobolev interpolation approximation theorem gives
llu = Tpullo,c0,x < Chlulz,x < Chlula. (3.6.24)

For the second term, the inverse property of the finite element implies
that

o
viicuu

Mau = uallo.co < CA~Y|TThu — ullo. (3.6.25)

The approximation theorem and the L? estimate (3.6.5) result in
|IThu = unllo < [ITau = ullo + ||u — unllo < CA?||ullsp.  (3.6.26)
Combining (3.6.22)-(3.6.26) yields (3.6.21). O

Remark 1 In Theorems 3.6.1 and 3.6.2 we obtain the error esti-
mates of precisely the same optimal orders as those of the linear finite
element method, but we require higher smoothness of the solutions.
The reason behind it may be that we can not obtain the approx-
imation order of the derivatives in the piecewise constant function
spaces. :

Remark 2 The conclusions of this section also hold for the
quasi-uniform rectangular mesh and the corresponding center dual
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decomposition. To do this we only have to slightly revise the ar-
gument by taking II, as the bilinear interpolation operator on the
rectangular mesh, and to note that on the rectangle KX we have

Remark 83 When the test function space V}; is the piecewise
linear function space, the dual argument of the finite element method
is still valid, and thus we can deduce the same L? estimates as those
of the finite element method. (cf. Theorem 2.5.2.)

3.7 Superconvergences

This section is devoted to the superconvergence of the solution to
the generalized difference scheme (3.6.2) approximating the second
order elliptic boundary problem (3.6.1). We take the linear element
space as the trial function space U. The test function space is chosen
as the piecewise constant function space related to the circumcenter
dual decomposition Tj. Our results in this section are also valid for
the case of the barycenter dual decomposition.

3.7.1 Weak estimate of interpolations

Now we derive an interpolation weak estimate of the bilinear form
corresponding to the generalized difference scheme.

Theorem 3.7.1 Suppose T}, is a uniform decomposition, that is, the
union of any a pair of adjacent triangular elements forms a parallel-
ogram. Also assume u € H}(Q) N H3(Q), wy, € Up. Then

a(u - Mpu, Miwp)| < CR?lulls|lwnll.  (3.7.1)
Proof Take any a triangular element Kg € Tj with vertexes

P(zy,z9) (I = 4,j,k), circumcenter @ and the midpoints M; (I =
i,J,k) (cf. Fig. 3.7.1). Then we have (cf. (3.2.39) and (3.2.40))

a(u — Hpu, Mwy) = Ey(u, wy) + Ea(u, wp), (3.7.2)
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Fig. 3.7.1

where
Eq (ua wh)

=3 > [wa(Py2) = wp(Pip1)]
K I=ijk (3.7.3)

2 —
/___ Z amnw cos{ny, Tpm)ds,
M 6mn

Ey(u,wp) = Z Z wy(P) / g(u — Mpu)dz, (3.7.4)
K I=igk JKpNK '

where n; is the outer normal vector along the boundary M;Q of the
region K_‘,*,‘ an K and we make the convention that i+l=4,j+1=
kk+1=1.

Employing the discrete norm (3.2.22) we have

|y (u,wp)| < C Y llu — Maullo,kllwallon,x < Ch?|ula|lwsllo.
K

(3.7.5)

In order to estimate F;(u,wp), we discuss the two cases where
the side P;P; belongs to the boundary of  or is the common side
of two adjacent elements Kg and K¢, respectively. In the former
case, the corresponding terms in (3.7.3) vanish since wp|sn = 0. So
we concentrate on the latter case. In this case Kg U K¢ is a paral-
lelogram by the uniformity of the decomposition (cf. Fig. 3.7.2). So
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P, P
QI
M,
Q
p.L N
Fig. 3.7.2
we have
Bwun) = _ S [wn(B) - wn(P)]
PP, ¢ o9
i é i ZE=TY) o )i, (3.7.6)
jL myn=1 3:1:,,

where Y  means the summation over all the sides P;P; which
PiP,z00
do not belong to 9, and L = Q'M; U M;Q. It is easy to see that
I / O(u — Ipu)
Omn——F——
IJL

cos(ny, mm)dsl
Umn I

= ’amn(Q)/L%é{Ih—ulcos(nhmm)ds
—Tau (3.7.7)
+/[amn(m) - amn(Q)]%ﬁ—h—l cos(n;,mm)dsl

<CZ|/‘0U Hhu) l+0h/| IIhu)Id

Ty = T + (wmj - mmi)/\l + (wmlc - mmi)/\2’ m= 1,2.

Then the parallelogram Kqg U K¢ becomes a square I = {(A1,A2) :
0< <L I’OAS,M < 1}. Suppose the points P, M; and @ are
mapped onto Fj, M; and & respectively; the segment L is mapped
onto L and the function u — IT,u onto % — [I,&. Then (cf. (3.2.6) and
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(3.2.7))
O(u — ITpu)
‘/L ——————&vnh dz

g
i1 s 8(4 ﬂ ~ . ‘
= l./f/ El(wmk - mmi)_\__gxr__) + (.’L‘m,; — mmj)___a_A_Z___

[(@mj = Zmi}dA1 + (@mp — 27m*12)d/\2]l-

<cC Z |f a(“ H"“ FE g,

my n=1
(3.7.8)
where Sk is the area of K. Write '
J(@) = / M‘ldxm. | (3.7.9)

For any P € P;(I), we note that gﬁ is linear and ng; is a constant
in Kq as well as in f(b Thus

L 6")(%")1:
/ﬂm m 6An my

(S

AP .\ _6ﬁhP‘A L 6HhP| Lm
L On ™ O ka3 ke

= [P(1, 0)—P(0,0)+P(1,1)— (0,1)]Lm/2

where Ly, = An(Q') = An(Q). Hence
J(P) =0, VP € Pa(I). (3.7.10)
This together with the trace theorem gives

|J(@)] = |J(@ = P)| < |l& — Plls,r-
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By the quotient space norm theorem and the relationship of the
Sobolev semi-norms before and after the affine transformation we
have

~ . ~ — N~ 2 .
@I <C i lla = Pllar < Clils,r < Chlulsxquicg- (37:11)
It follows from (3.7.8), (3.7.9) and (3.7.11) that
Ou—TI
/ (u AY) 4 dzm| < Ch2luls,kquicq- (3.7.12)

On the other hand, set ¢ = ﬁﬂ;—ﬂm,h = M;Q and ¢(A1,\2) =
&(z1,x3), then obviously

/z,l Hhu |ds < Ch / l¢|d3<0h / l¢l"’d . (3.7.13)

Using the trace theorem on K P, NK implies the existence of a constant
C independent of K such that (cf. §3.2.4)

( 180a8)" <

Blo.z < Ch 7 Iglox, 18, & < Clélik.

Note

Hence

II
[ |25 208 s < O(="glox + I6h,) < Ohlubc. (37.14)
' 1

It follows from (3.7.7), (3.7.12) and (3.7.14) that
ou - l'I
| [ e 20 o, 1) ds| < Ol i (37.19)

Notmg the lmearlty of wy, on K¢ we have
|lwn (Pr) — wh(F5)l

= Ir:_L__ (P.) — IP_\'Iawh Lo (P — @ (P)] 10w
[|Z1Lk) 1\ J)Jaml T T2\ ) 2\55)] 923 (3.7.16)
8wh 6wh
<h(|52|+|5=() < ©
(52 22) <t
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By (3.7.6), (3.7.15) and (3.7.16) we have
| By (u, wp)| < CH?||ulls]lwnll1. (8.7.17)
Finally (3.7.1) is obtained by (3.7.2), (3.7.5) and (3.7.17). o

Next, we try to relax the restriction on the decomposition. We say
that a quasi-uniform triangulation T}, is a C-uniform decomposition
if for each pair of adjacent nodes P and @, and the side PP' (P’ # Q)
with P as its endpoint, there exists a side Q@' of another triangular
element with @ as its endpoint such that PP'QQR’ forms a quasi-
parallelogram, namely there exists a constant C independent of A
such that

IIPP| - [Q@|| < O,

Theorem 3.7.2 Assume T}, is a C-uniform decomposition and u €
HH Q)N H3(Q) N WE®(Q), wy, € Up. Then

|a(s — Thu, Tiws)| < Ch*(llulls + [lullzc0) lwalli.  (3.7.18)

Proof SinceT} isa O'-uniform decomposition, the union of any two

adinnant alamant nd ig o mitaci.narallalasram Madife KA.
au_]auc.ub ClTlI1G1Y .ll.q ana .lx.q io a \iuaul'ymmlluxuaxnua. .LV.I.U\J.AL‘Y L2y

to get Kgv such that Kg N Kqn is a parallelogram. Then |@Q'Q"), the
distance between the circumcenters of K¢ and Kg~ respectively, is
O(h?). By Theorem 3.7.1, it only remains to estimate the following

Es(uywn) = Y. [wa(Pr) — wa(Py)]
P;Peg 60

Qm "—'————( ) COS(n T )d.s
/Q Jall L n a b Em
(3-;.19)

1Bs(u,w)| SC Y. hPlulzcolwnliix £ Ch?lulzcolwnlr. (3.7.20)
PPz o0

This implies the desired result and completes the proof. a
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The next theorem extends the weak estimation from the case of
C-uniform decomposition to the case of piecewise C-uniform decom-
position.

Theorem 38.7.3 Let T}, be a piecewise C-uniform decomposition, where
the pieces are divided by several line segments which connect some of

~ the vertezes of Q and do not intersect each other inside the region.
Assume u € HYH(Q) NW3R(Q), wy, € Up. Then

la(u — Hpu, Thws)| < CR?||ufls,coflwal:- (3.7.21)
Proof By Theorem 3.7.2 it only remains to show that
By (u, wp) E’[wh(Pk — wn(Fy)]

0 7
: du--u u (3.7.22
Z Gmn, { h )cos(m,mm)d.s,‘

myn=1 Zn

]
——

e

where ¥ denotes the summation for the cases where P;P; belongs
. to the line segments dividing the pieces. Since the number of these
line segments is finite, we only have to consider the case where P; Py
belongs to a certain segment and M;Q’s are on the same side of the
segment. So we suppose on one side of the segment Py Py there are
N elements as in Fig. 3.7.3 and correspondingly

N
EPwwn) = S fwn(Bi) - wn(Pi-1)]
t=1

0 I
/Ti_ Z amn“‘—‘—_“(uaxﬂ ) cos(7, Zm)ds

¢ myn=1

~1

= Z;'LUhPi [MIQT /m)

2
Ou—-1I
S oy (u = ITpu)

. cos(T, Zrm)ds,

myn=1

(3.7.23)

where we have used the boundary values wp(Pp) = wp(Py) = 0 and
the notation 7 = P, P;/|P,—1P;|. By the argument in the proof
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to Theorem 3.7.2 we can assﬁme without loss of generality that the
elements are all equal to each other. So Kg, will overlap Kgq,,, by
displacing it along Py Py:

Kiy1=Ki+ 1t (b =|P-1B)).

Qv

Py M; P M, P: Py, My Pn
Fig. 3.7.3

Thus

( ,[ - ,[ \amn—-—a(u — 1) cos{r
\"MiQi JMi+IQi+1/ ozy,

= /W[amn (z+ hw)w(m + hyT) (3.7.24)
O(u — Tpu)

5o
—amn () BT (:L‘)] co8(T, &y )ds.

Thus the fact am, € WH°(Q) implies that

- H ] \ 1
f -— If \amnu CoS(T, :t:m)a.si

/
\JMiQi I Mi11Qi+1 Ozn

O(u — Mpu) _ O(u —u)
< C/——I Ban O THIT) Bn ()]s (3.7.25)

M;iQ; .
O(u — xu)
+Ch ml-——a—m—:—-(wﬂds

< Ohs“”“3,oo-
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It results from (3.7.23) and (3.7.25) that

N-1

1B (4~ wn)] S OB Y fun(P)] - [lullsco < CH2|lulla,c0l w0
. i=1
This leads to (3.7.21) and completes the proof. o

3.7.2 Superconvergence estimates

Theorem 3.7.4 Let u be the generalized solution to the second order
elliptic boundary value problem (3.6.1) and up € U}, the solution to
tions of Theorems 3.7.1, 3.7.2 and 3.7.8, respectively, we have the
following estimates '

lfun — Draully < CRfulls, (3.7.26)
ljun = Taully < CR(lulls + flullage)y  (37.27)
llun = Taully < Ch2julls.co (3.7.28)
So
¢ ¥ Fa-wEr)” =om) (8.729)
PoeMy,

Here M}, stands for the set of the optimal stress points of the Uy
interpolation (cf. §2.6), V the average of the gradient over the ele-
menis containing Py, and r the number of poinis in My. Therefore,
the generalized difference method has the same optimal stress points
as the finite element method. :

Proof The conclusion follows directly from Theorems 3.7.1-3 of
this section, and Theorem 2.6.1. o
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Bibliography and Comments

The papers [A-30,62] (cf. [B-57]) extend the generalized difference
method to the boundary value problems of second order elliptic par-
tial differential equations on planar regions, discuss the generalized
difference methods on triangular and quadrilateral meshes respec-
tively, and propose the basic idea of the method. Error estimates are
derived for the cases where the trial function spaces are chosen as
piecewise linear and bilinear function spaces, and the test function
spaces as piecewise constant function spaces respectively (cf. §3.2
and §3.3). These results further support the following opinion: The
convergence order of the generalized difference method is determined
mainly by the trial function space, while the test function space in-
fluences only the coefficients in the error estimate. These papers
have drawn people’s attention to the generalized difference method
for multidimensional problems (cf. the related references in the end
of this book).

The paper [A-55] constructs, using the hierarchical meshes, sev-
eral generalized difference schemes (including a five-point quadratic
scheme, a nine-point bilinear scheme, and a nine-point bi-quadratic
scheme etc.) for second order elliptic equations. A numerical anal-
ysis is carried out there for the nine-point biquadratic scheme. Re-
cently, [B-62] discusses the generalized difference schemes on arbi-
trary quadrilateral grids and presents the optimal order convergence
estimates. The paper [B-58) applies the generalized difference method
to a nonlinear elliptic Dirichlet problem and gives an error estimate
(cf. §4.5). In paper [B-55), a W'P-estimate and an L?-estimate of
the generalized difference method for second order elliptic equations
are studied. Some high order element generalized difference meth-
ods on triangular meshes are discussed in [A-41] and [B-14], includ-
ing the schemes based on the Lagrangian quadratic element and the
Hermitian cubic element respectively. The same optimal order error
estimates as those of the finite element method are obtained (cf. §3.4
and §3.5). The paper [B-15] investigates the superconvergence of the
generalized difference method and shows that the linear element gen-
eralized difference method has the same optimal stress points as those
of the linear finite element method (cf. §3.7). An L2-estimate with an
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optimal order is proved fdr the linear element generalized difference
method in [A-10] (cf. §3.6). It can be seen from the discussion of
this chapter that generalized difference methods enjoy the same H'-

estimates as those of finite element methods, save that we require
a littla hit hichor smanthness of the aalution for the T2_agtimate ta

Q RVUWIT WiV LIRIAUL DLUUUUILIAUO0 Ul ViU SULUUIVIL AUL WiV 44 TURuiGuy v

hold for the linear element scheme.

Finite difference and finite element methods are the two most
effective and popular numerical methods for partial differential equa-
tions. The finite element method has several remarkable advantages
such as that its decompositions is flexible to effectively approximate
irregular regions; that it is easy to deal with the boundary conditions
as well as the intersection of different media; that it may use high

ta +n oat o hattar anctivane withant invalvine +an
G gt a curacy

ardar ala maner
Vi MUUUUL Qls WAVIIU UL JIVULV ARG UUU ddiouaty

nodes; that the approximate solution may converge to the generalized
solution but not necessarily the classical solution; and that one can
use the functional analysis and the Sobolev space theory to provide a
systematical numerical analysis. On the other hand, the finite differ-
ence method also possesses some useful advantages such as that the
construction of the schemes is simple, that the discretization near the
node is local and intuitive; and that the computational effort is much
less for the same accuracy. But the classical difference method does
not share these advantages mentioned above, of the finite element

method.

A lot of research has been devoted to the reformation of the clas-
sical difference method. A popular approach is to start from the
integral conservative forms of boundary value problems and to use:
numerical integrations to construct conservative difference schemes
on irregular networks. From various applied or theoretical points of
view, these difference schemes are given different names such as the
finite difference method on irregular networks, the box integration
method, the balance method, the finite control volume method, the
finite volume method, the discretization operator method, and the
multi-element balancing method (cf. the references in the end of this
book). Most of these methods have mechanical or physical back-
grounds and reflect the conservation or the balance of the mechanical
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system or other physical systems on the element. From the numerical
analysis point of view, these methods are basically regarded as the in-
tegral interpolation methods. These difference methods constructed
through the integration interpolation over irregular networks pos-

gogg manvy nrqtrnnl-nrrnn of tha finita alamant mothads and arva ofantiva
MNININT ' AV ) Wi VALY 34414V VIVIALVILY LAV VLIIVULD QUdIU QLT CLATLUULYD

" methods for the numerlcal computation of partial differential equa-
tions. But it is still difficult to construct through this approach the
difference schemes with high accuracy.
_ The generalized difference methods proposed in this chapter es-
sentially reform the integration interpolation methods by absorbing
- more ideas and tricks of the finite element methods. The first step
is to write the boundary value problem into a generalized variational
form (the generalized integral conservative form). The second step is

l'n nhnnan tha fnitae ala nt annnag ag +tha ¢nial finntinn annnraa (ha
Cad the finite element spaces as the frial uncuion spalecs \uuc

idea of the finite element method) and the common terms of the local
Taylor expansion as the test function spaces (the idea of the differ-
ence method). By doing so we keep to the utmost the simplicity of
the difference method, while we can construct the difference schemes
with high convergence order like the finite element methods and we
can employ more results and tricks of the finite element methods in
the error analysis.

We end this section by some problems for further investigation.

Problem 1. Further investigate the error estimates in L? and
maximum norms of the generalized difference methods (the high order
element schemes).

Problem 2. Further investigate the superconvergence theory of
the generalized difference methods, including the superconvergence
of the displacement and the optimal stress point theorem for high
order element difference schemes.

DPunhlamm 2 Annley tha avinanalatinn mathad ¢a canaralinad A3 -‘-;
A AVUMLTLIL U nPPl‘y VLG CA\JJ.CU!JU.I.I’IIMUII. AL VLIV UV acll.wl.aulacu il

ference methods and build up the corresponding theory.
Problem 4. Establish the general error estimates in Sobolev
spaces for higher order element generalized difference schemes.




Chapter 4

FOURTH ORDER AND
NONLINEAR ELLIPTIC
EQUATIONS

In this chapter we first consider the mixed and the nonconforming
generalized difference methods for fourth order elliptic equations, tak-
ing a biharmonic equation as an example. Then we discuss the gen-

2SI T VARRGA ARSRRR00 TRIRSNaLES OF Gas TAGLAI AT waiUal WU RRIPLRSS iU gvas

eralized difference method for a class of nonlinear elliptic equations.

4.1 Mixed Generalized Difference Methods
Based on Ciarlet-Raviart Variational
Principle

Consider the following Dirichlet problem of the biharmonic equation:

*u 8*u &*u : '
2
A%y = aj' +2W 6_.1:3' f, (:L‘1,.’L‘2) G Q, (4.1.13.)

8
u= ?a% =0, (z1,23) € 69, (4.1.1b)

where {2 is a convex polygon region on the plane with boundary <,
- n the unit outer normal vector of 6%, and f € L2(Q) This kind

Al hncor domee munhlam Aastiniag an Imnartant nagl 4-11\" in oo alaakin
Ul UUullum‘y PLUUIU‘J-* Ubbuyica @il ll‘lpul vaul. l PUD‘-\JJU l.l.l e 5 viaduiv
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mechanics and water kinetics. It is well-known that if f € H~}(Q),
then problem (4.1.1) is regular, i.e., there exists a unique solution
u € HE(Q) N H3() and a constant C such that

llulls < Cllfll-1, Vf € HTH(Q). (4.1.2)
Introduce a new unknown function v = —Au to reduce problem
(4.1.1) into a second order equation:
—-Au = v, (z1,22) € Q, (4.1.3a)
~Av = f, (z1,22) € Q, (4.1.3b)
u= g% =0, (z1,22) € 8. (4.1.30)

Multiply (4.1.3a) and (4.1.3b) by ¢ € H*(R2) and ¢ € H(Q) re-
spectively, integrate them on ,-and use Green’s formula and the
boundary condition (4.1.3c) to obtain a corresponding variational
form: Find (u,v) € H}(Q) x H'(Q) such that

{ a(u,9) = (v,9), Y€ H(Q), (4.142)
a(v,¢) = (f,9), V¢ e H5(Q), (4.1.4b)

where

a(u,v) = /n Vu - Vudz,

mm=£ww

We can use the regularity condition of (4.1.1) to show the equiva-
lence (the Ciarlet-Raviart variational principle [B-18]) of (4.1.1) and
(4.1.4), that is, if u is the solution to (4.1.1) and v = —Au then (u,v)
is the solution to (4.1.4); and if (u,v) is the solution to (4.1.4) then
u is the solution to (4.1.1) and v = —Au.

4.1.1 Mixed generalized difference equations

As in §3.2, let T}, be a quasi-uniform grid and T} the corresponding
barycenter dual grid. Suppose Up, is the piecewise linear function
space with respect to T}: '

Unw {un € C(Q): wplx € P1, VK €T3},
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and Vj, € L?(Q) is the piecewise constant function space correspond-
ing to Ty:

Vi = {vp : vp is a constant on the interior of each K* € T}}.
Set _
Uon = {un € Up : un(Po) =0, VP € 0} N 69},
Von = {vk € Vi : vp(Po) = 0, YRy € 0, N 80},

where Q, stands for the set of the nodes of T},.
Multiply (4.1.3a) and (4.1.3b) by ¢, € V;, and ¢, € Vpp respec-
tively, and integrate them on 2 to obtain

(—Au,¢n) = (v,9n),
(—Av! ¢h) = (f) ¢h)

. Applying Green’s formula to each dual element and noting the bound-
ary condition (4.1.2c) yield

(—Au,gy) = / Au- dz (4.1.58)
Poelty,
Ou
=- ¥n(Po) —ds= Y Ix(u,vn),
PE‘A / ko on KeT,
(~Av,dp) == 3. f Av- ¢pdz (4.1.5b)
Poeﬁh KPO
v
== ¢ (P) +-ds = I ('I),¢ )a
Pogﬁhhofa”an‘ Kze;hK "

where K = AP;P;P;, (cf. Fig. 4.1.1), and

Ix(u¥n) = Y [Pz — ¥a(Pi1)] /m-g;%ds, (4.1.6a)

l=i,j)k

k)= T n(Raa = daPusa)] [ ods,  (4160)

=i,k
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P,

Q

M,

Fig. 4.1.1

where 7; is the unit outer normal direction of Kp, i K along MQ,
and we make the convention that i +1=4,j+1=kk+1=1.
(4.1.5a) and (4.1.5b) can be respectively rewritten as

a(u, ) = /n Vu - Vpudz,

a(v, ¢p) =/an-V¢;,,dm.

Here the right-hand sides are in the sense of generalized functions
(cf. Chapter 3). Therefore, we have the following variational problem
related to (4.1.1): Find (u,v) € H}(Q) x H'(Q) such that

{ a(u, ) = (v,9), VWeS= %JV)», (4.1.7a)
aw.d) = (f.8). VYode 8=V, (4.1.7h)
l \¥I¥/ \J?‘l_"l’ Y = MV \}.:'UII. \ ]

We interpret (4.1.7) as a generalization of the variational form (4.1.1)
in the sense of generalized functions. Note that the density of S and
Sp in L2(Q) implies the equivalence of (4.1.7) and (4.1.1).

Based on the above variational form, we define a mixed gen-
eralized difference scheme approximating (4.1.1): Find (up,vs) €
Uon X Up, such that :
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{ (uhs¢h) (Uh,'l/)h) V"ph € Vh, (4.1.8&)
a(vn,dn) = (f,dn), Vb € Vo, (4.1.8b)

Obviously (4.1.8) is a linear‘system with order dim Upy, + dim Uy,
Let IT} be the interpolation projector from Uy to Vj:

Mwr= Y, wi(Po)xpo, Wh € Un,
Poefly,

where xp, is the characteristic function of the set K . Then (4.1.8)
is equivalent to

a(up, IT3Yn) = (vn, IT59n), Vipn € Up,
{a(vh, non) = (f, i), Vén € Ugh.
Lemma 4.1.1 The bilinear form a(:,II} ) is symmetric and positive
definite:
| a(un, Miwn) = awn, Iiun), Vup,wh € Up, (4.1.9)
a(un, Thup) = lupl?, Yup € Us. (4.1.10)

Proof Since up and wy, are piecewise linear functions, %% and %’ﬁh-
are respectively constants in each element K. Thus Ix(:,:) can be
expressed as (cf. §3.2)

IK(uh, II‘,",wh)

dup, Oup,
=£wh(1>)(fak,nx-5;;;d 2+ 3‘;“1-”’1)
- (520208 - 2200+ F2(61004) 06 n(P)
+[2 (@a(0) ~ 22(00) + 201 () ~ 22| un ()

0
+[ 22 (a0 - M) + G (M) = 31 (P
69:2

(3“h oy Bun Jun)
8z, Oz, = Ozy Oz ’
' (4.1.11)
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and
(uh,l'Ihwh)—'/ Vs - Vunda. (4.1.12)

So (4 1.9) and (4.1.10) hold. This completes the proof. o

Lemma 4.1.2 There hold the following statements:
(i) (un, II3Tn) = (@n, Mhun), Yun, Gy € Uh. | (4.1.13)
(ii) Write ([[unlllo = (un,hun)/2. Then ||l - [llo, Il - llo,» and
I| - llo are all equivalent on Up: There exist positive constant c1 and
cg. independent of Uy, such that

cillunllo < Jllunlllo < callunllo, Yun € Us. (4.1.14)

* Proof First we have

(un, @) = Y, Y. n(R) _/ updz.

KET, I=i,j,k

By the linearity of u; we have

g a9 = 5lon(P) +un(34) + un (@
+'1'[“h(Pi) + up(Mp) + un(Q)] - %}g

= 108 =X [22un(B,) + Tun(Py) + Tun(P)).

This gives
(un, TTR )

S | 22 7 71 uw(B)
Z Tuh(ﬂ)aah(Pj)’ﬁh(Pk)] 722 7 uh(Pj)
KeT, T 7T 22 up(Pr)

This together with Lemma 3.2.1 leads to the desired result and com-
pletes the proof. : o
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Theorem 4.1.1 The mized generalized difference scheme (4.1.8)
possesses a unique solution. '

-Proof We only have to show that the homogeneous equation
{ a(un, ITiYn) = (vn, I59m),  Vibn € Un (4.1.15a)
)
J

ol T ) =0 b e Tn (41 18k
\ Wiviasy2ap i) Yy v¥n < von \Teavavo

admits solely the trivial solution. In fact, if we set ¢y = vy, @, = up,
in (4.1.15a) and (4.1.15b) respectively, take their subtraction, and
use (4.1.9), then we have

a(up, Oiepn) = 0, Viby € U,

So setting ¥, = up, and using (4.1.10) yields up = 0. This completes
the proof. o

4.1.2 Error estimates

Let TIxu be the interpolation projection of u € H}(f2) into the linear
element space Upy,, and Pyo the elliptic projection of v € H!(Q) into
Uy, in the following sense:

a'(Ph'U, H;‘L"/)h) = a(’l),H;;’l/Jh), V"/Jh. € Uha (4'1'163')

[thdm= [vda:. (4.1.16Db)

4y Vil
For these projections we have
|t — Tptlm < CH*™ufg, m =0, 1, (4.1.17)
lv = Pyuljy < Chlvls. . (4.1.18)
Here (4.1.18) can be obtained as in §3.2.
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Lemma 4.1.3 Suppose that Th isa quasz-umform grid and that u €
HE(Q) N W3=(Q), then

la(u — Thu, yn)| < Ch?|lullscoltnls, Vobn € Up.  (4.1.19)

Proof Note
a(u — Mpu, IT}eps) D)
in

SN NGB B W

KeTyl —1,,1,
O(u — pu

= ¥'n(Pi2) — Yn(Pips ]/ -————-——-——( h )d
=t om0y o\l f a(u'—nhu)n-
T 2 (Yhll42) ”"Ph\ft+1lljmTﬂﬂ»

where 3/ and Z" denote the summations for P;..; P2 not belonging
to and belonging to the boundary 8%, respectively. In the former
case we have (cf. Theorem 3.7.2)

I ofp o v O —Tu)
2 1%n{Prr2) = Yl Pryr)] jTJTQ' B e——

|
< OW(lulls + ullzco)lls

In the latter case, P,,1P4+s belongs to the boundary Q2. Now we
expand 9—‘"—;?%”-’-‘1 at M; and use the boundary condition to obtain

1261 < O ully oo, & € TG
on

So we have

[ n(Bre2) = () s BTl

ds| < Ch?julls,coltnl1-

(4.1.22)
Finally, (4.1.19) follows from (4.1.20)-(4.1.22). o
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Theorem 4.1.2 Let T, be a quasi-uniform grid, (u,v) € HZ(Q) x
H?%(Q) the solution to (4.1.8), and (ux,v) € Uy x Uy, the solution
to the mized generalized difference scheme (4.1.8). Then

llu — wnlls + llv = vnllo < Ch(llulls,co + [v]2)- (4.1.23)
Proof It follows from (4.1.14,7,8,19,15) that
llvn = Pao|f§ < Ca(vp, — Py, T} (vs — Prv))
= Cla(un — Ipu, IO} (vp — Pyv)) + a(Ilpu — u, 1T} (va — Pao))
+(v = Py, I} (v, — Pyv))]
< Cla(vh — Pyv, ITf (up, — TTpu)) + Allulls,colvn — Phvly
+hjvl2/jvn = Pavllo-
1t follows from (4.1.7b), (4.1.8b) and (4.1.16a) that
a(vp — Ppv, I} (up, — Hpu)) = 0.

By the above two estimates and the inverse property of the finite
element we have

llon = Pavllo < Ch(lulls,c0 + [v]2)-
This together with (4.1.18) implies
llv = vnllo < Ch(jullz.c0 + [v]2). (4.1.24)
1t follows from (4.1.10,19,7a,8a,18,23) that
Mhu — up/}

= a(Ilpu — u,, I}, (TTpu — up)) + a(u — up, I (ITpu — up))

= a(Tlpu — u, , I} (Tau — us)) + (v — vp, T (TThu — ua))

< Ch?|[ull3,00|Tau ~ upl1 + Ch(ljulls,c0 + [v[2)[TTau — uallo.

Hence
Ipu — upl1 < Ch([|ulls,co + lvl2)- (4.1.25)

A combination of (4.1.24), (4.1.25) and (4.1.17) leads to (4.1.23).
This completes the proof. O
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4.2 Mixed Generalized Difference Methods
Based on Hermann-Miyoshi Variational

Principle
Again consider the biharmonic equat:on (4.1.1). Now let us introduce
a new unknown function vy = z24t- w, 5pe- (1, = 1,2) so as to rewrite
(4.1.1) into the following system of second order equations:
(O Q=12 (421
m = Vij, (z1,22) €Q, 4,5 = 1,2, (4.2.1a)
U % o aien (4.2.1b)
-';‘— amzawj—- ’ 1,42 ) b
=1
5
L u= —% =0, (z1,22) € ON. (4.2.1c)

Write
U=H1(Q)’ U0=H&(Q)$
U={v=(v;), 1<4,5 <2: 013 =va1,v5 € U}
Use ¢ € U and ¢ € Up to multiply (4.2.1a) and (4.2.1b) respec-
tively, integrate them on £ and employ the Green’s formula and the

boundary condition (4.2.1c), then we have the variational form cor-
responding to (4.2.1): Find (u,v) € Uy x U such that

a(u, ) = —(v,¢), Yy € U, (4.2.2a)
a(¢7v) = "'(f’ ¢)1 V¢ € Uy, (4'2'2b)
where '
,JZ"'].'/ a:s:ﬂdm vueUuvel, (4.2.3)
(U "/J Z / Utj¢zjdm, Vo, 'l,b € U (424)
1,J=1

$) = L féda, Vf, 6 € U. (4.25)
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We can also use the regularity of (4.1.1) to show the equivalence of
(4.2.2) and (4.1.1) [cf. [B-30] If u is the solution to (4.1.1) and
v = (vj;) with vy = BT&T (1,7 = 1,2), then (u,v) solves (4.2.2).

On the other hand, if (u vi is the solution to (4 2.2), then u is the

solution to {4.1.1) and v = (vy) = (3%5-;) (5,7 =1,2

\_/

4.2,.1 Mixed generalized difference equations

Let Uy, Vi, Uon, Von be defined as in the last section and

Un = {un = (u),1 < 4,5 < 2: 0 = uf!,uyf € Up},

‘f/h={vh._( 9,1 <4, <2:vp? —-vh,'uh € Va}.

- Based on the variational form (4.2.2), the mixed generalized difference
scheme for (4.1.1) is defined as: Find (up,vp) € Upp X Up such that

a(Un, Yn) = —(Vn, ¥n), Vin € Vi, (4.2.6a)

a(¢h’vh) = —(f,¢n), Yon € Von, (4.2.6b)

where a(:,*) is interpreted in the sense of generalized functions (cf.
Chapter 3), that is,

2 [ Ouy Oy
Uh,,'l/)h =Z/aw axh

j= 41

¢ B bRt

KLeTy

a’Uh, 12
I¢h (P)dml (4'2'7)

~ 2k g3 (P)daz + g“"w;‘?(mdwl),

up € UOha"/Jh € Vh,
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3¢h 6v
algn, vn) = Z/ 9a; Ba;

1,j=1
vl yl?
- “th o ZZh
P Ax (&m * Bz, )des (4.2.8)
erlh A 7
vt ovi?
+(8m1 + amz)d”’l’

on € Von, vn € Up.

Scheme (4.2.6) can also be deduced as in §4.1.

If we take 1, as the basis function of V}, i.e., for each P € @,
we take 9;; (1 < 4,7 < 2) as the characteristic function of K5, then
(4.2.6a) becomes

aUh / 11
= d 4.2.9a
/a xy 31 dzg = [ vy dg, (4.2.9a)
aUh 12
O e = - / dz, 4.2.9b
[31(;. By K} on G ( )
[ Du —dzy = / vilde, (4.2.9c)
Joxs, 022 .
duy,
OUh gy = — / 24, 4.2.9d
/ox;, B2y K} o ( )

If ¢y, is taken as the basis function of Vpu, namely, the characteristic
function of K} for each P € , then (4.2.6b) becomes

Suit | dup?y | ! av _
AK; —( 0z * Ozy >dw2 + (am 33: d:c1 / fdz.
(4 2.10)

Therefore, Scheme (4.2.6) becomes a system of linear algebraic equa-
tions (4.2.9) and (4.2.10) with order (dim Upp, + 3dim Up,).

4.2.2 Numerical experiments.

Consider the numerical solution to the biharmonic boundary value
problem:
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' Az"-"(“", y) = f(zy), (z,9) €2=(0,1)x (0, 1.)5 (4.2.11a)
ou

'U,"-:-‘%

=0, (z,y) € 69, (4.2.11b)

where

flz,y) = 8[3z%(1 — z)? + 3y%(1 — y)?
+(622 — 6z + 1)(6y? — 6y + 1)).

The true solution to this problem is

u(z,y) = 2% (1 — 2)(1 - y)2.

Thirteen point finite difference method

Place a square grid of Q with a mesh step size & = 1/n, the nodes
Pij = (z,y;) = (¢/n,j/n), 4,j =0,1,2, .+, n, and the mesh function
of the nodes u;; = up (i, y;).

The well-known thirteen point difference scheme is (cf. [c-6]):

h_4[20u¢j ~ 8(Uij—1 + Uij41 + Ui-1§ + Uit1,5)
F2(Uim1,4-1 + Uim1,541 + Uit1 i1 F Uit1,j41)

+(uij-2 + Ui g2 + Yim2g + Uita,g)] = F(@i,45),
1<i,j<n-1.

(4.2.12)

Here when ¢ = 1,n—1 or j = 1,n — 1, we need to define the values
on the virtual nodes P;; = (z4,y;) (for either i = —l,n+1or j =
—1,n+1) outside of Q. For instance, for P_1; = (2-1,y;) (0< j <n)
on the left side of 2, we may employ

u(@-1,y5) — u(z1,y;) . Ou

2h on

(w0,y5), 0<j<n
to define

ou )
U-1,j = U1j + 2h5n~(wo, yj) = u15, 0 <5 < n.
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Mixed generalized difference methods

On the square mesh with mesh step size h = 1/n, we use the diagonals
of every small square, parallel to the line y = z, to obtain a right angle
triangulation together wit;h a corresponding circumcenter dual grid.

Let uij = up (i, 5), v j = ”h, (whyj) (4,j=0,1,--+,n;k,1 =1,2)

enote the mesh function defined on the nodes P.; = (z:. u.:) (1,7 =

den
haddend VALY ZLIVDAL ALV VIVAL HULLAAVAA ViL VML AVMWY & J \w2y ¥j) \"sJ —
0,1,-,n). The generalized difference equation can be easily deduced
by a computation of (4.2.9) and (4.2.10). The equation related to the
interior point P;; reads:

h?

24 (14’011_71 + 2”3‘}.1,‘7’ + 2'UQ+1 J -+ 2‘1)1.1 1
+20130 + vty o+ ol e ) (4.2.9a)

= Uim1j — 205 + Uit

(14'0 + 2'“«—-%7 + 20}2, it 2u}2 -1

12
+2v, Fr oo+ v,+1,g+1) (4.2.9b)’

i

~Ui-1j Uikl = Y1 = Uigt),

h?
(141)21 + va_f P+ 208+ 2'u,,,j 1

+2'Ug,3+1 + vi—l,j—l + ”i+1,j+1) (4 5 gc),
1 2.
5(2“".1' + Ui-1,5-1 + Uit1,j+1
~Ui-1,j — Ui41,5 — Ui, j~1 — Uz‘,j+1),
h?
24(
+2075 11 + 02151 + o) (4.2.94)

47 + 202, ; + 202, 5 + 202

= Uig-1 — 2U45 + Uil
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G+ AUTLiTD

(i=-14) (i,j)§

(i+1,7)

(i-14,5-1) (i,j-1)
Fig. 4.2.1

11 11 11 22 22 22 12
2055 = Vit1 ~ Vikyg 205 — Vo1 — Vigen — 203

)12 12 12 12 12 12
TUiS1,i-1 T Vbt T Vs Vi Vo1 Vi
= = 2
= - [, fdo =~y
P‘j

(4.2.10)
(4.2.9b)" and (4.2.9¢c)’ are identical since v} = vl (0 < 4,5 < n).
So we should take only one of them. To save the space, we do not
present here the difference equations with respect to the boundary
nodes. We remark that the discrete equations obviously result in a

seven point scheme (cf. Fig. 4.2.1).

Numerical results

We use respectively the thirteen point finite difference scheme (FDM)
and the mixed generalized difference scheme (GDM) mentioned above
to approximate (4.2.11). For n = 10, the numerical results and the
true solution (TS) are listed in Table 4.2.1 for comparison. This
numerical experiment is done in [A-31].
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The numerical experiments indicate that the mixed generalized
difference method needs less computation time than the correspond-
ing mixed finite element method, while it enjoys a better accuracy as
well as a more flexible decomposition than the thirteen point finite

mmam Aa ia s

A, +hoad
alunerenie mounoa.

Table 4.2.1. Numerical Results

(z,9)

FDM
Uh

GDM
Uh

TS
U

(%1,91)
(z2,91)
(w2192)
(m:‘hyl)
(vay2)
{z3,¥3)
(w4,11)
(w4ay2)
(%4, 93)
(%4,y4)
(.’I}5,y1)
(wﬁayZ)
(m5,y3)
(5, v4)
({Ua,ya)

0.00009030
0.00026062
0.00075917
0.00043654
0.00127511
0.00214373
0.00056410
0.00164913
0.00277345
0.00358862
0.00061032
0.00178460
0.00300153
0.00388386
0.00420342

0.00006841
0.00021000
0.00065948
0.00036458
0.00114762
0.00198859
0.00048280
0.00151576
0.00261473
0.00342425
0.00053178
0.00166290
0.00285651
0.00372713
0.00404309

0.00006561
0.00020736
0.00065536
0.00035721
0.00112896

N nN1044R1
U

VALJTTUL

0.00046656
0.00147456
0.00254016
0.00331776
0.00050625
0.00160000
0.00275625
0.00360000
0.00390625

4.3

Nonconforming Generalized Difference

Method Based on Zienkiewicz Elements

4.3.1 Variational principle

Consider the Dirichlet problem of the biharmonic operator:

A%y = fy ({1711‘7;2)‘E Q,
U= '5% =0, (:1:1,:1:2) € 09,

(4.3.1a)
(4.3.1b)
where () is a bounded plane region with a Lipschitz continuous bound-

ary 01, and % the derivative operator along the outer normal direc-
tion, f € L?(Q).
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As mentioned earlier, the generalized difference method is a kind
of difference method based on a variational principle over an irregular
network. A basic idea of it is to choose the test function space to be
as flexible and simple as possible (usually the piecewise constant or
piecewise linear function spaces) so as to reduce the computational
effort, while keep the approximation order of the trial function space,
ending up with a scheme enjoying both the simplicity of the finite
difference method and the accuracy of the flnite element method. It
is obvious that the usual variational form (where the set of freedoms of
the test functions involves second order derivatives) of (4.3.1) requires
the test function space to contain piecewise quadratic polynomials,
increasing greatly the complexity of the computation. In order to
construct a simpler difference scheme we seek another form of the

vanintinnal nrinsinla
valiauiUlial PLililipic,

Let o be a decomposition of 2, dividing £ into a sum of finite num-
ber of closed subsets K which possess Lipschitz continuous bound-
aries, have nonempty interiors and share no common inner point:

n= |k,
Keo -

intKy NintKy, = @, VK1, Kj € 0, K1 # K».
Here int K denotes the interior of K. The family of functions
So(Q) = {v € L*(Q) : v)imik € Py, VK € 0}

is called the family of piecewise linear functions related to the decom-
position o, and the family of functions

5@ =U5(@)

the family of piecewise linear functions on 2.
Take any v € S,(2) to multiply (4.3.1a), integrate it on £, and
use the following Green’s formulas on each K € o (cf. (1.2.10))

/r( A%y vde = fk AuAvdz + LK(%%EU - Aug—;)ds, (4.3.2)
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/(9329?3 FPudy _, &u 6%')
k\0z? 0z '~ 02302 " Oz10z; O210%s
 Jox\0r26n Ondror/ "’

then we have the following variational form of (4.3.1): Find u €
HE(Q) N H4(N) such that

(4.3.3)

ag(u,v) = (f,v), Yv € S,(Q),0 € {0}, (4.3.4)
where
eo(u,v) = | vAZudz
g\wyv)J) jn
dAu ov 2udv Hu
= 3 [o[Gro-oug) +u(57 5 ~ e 5714

(4.3.5)
where gﬁ and 3; denote respectively the derivatives along the outer
normal and the tangent directions, the value of v on 8K is interpreted
as the continuous extension of the values of v|jyi 5 to K, and u is a
constant. The density of S(Q) in L%(0) 1mp11es that u solves (4.3.1)

as lcng as u satisfies {4 3 A). This ubser'vatluu 51vca the funuwuzs

variational principle.

Theorem 4.3.1 If u € H3(Q)NHA(Q) is a solution to (4.9.1), then
u solves (4.8.4), and vice versa.

4.3.2 Generalized difference schemes based on

Zianlkiowicz alaments

AN AAERANS VY ANsdd AILUA&UIJ

Let Q2 be a polygon region, T} a quasi-uniform triangulation of
(h stands for the largest element diameter), and T} a dual grid by
connecting the circumcenters of adjacent elements.

Furthermore, for simplicity we assume 7}, divide { into a sum
of finite number of right triangles, and the two right sides of each
triangle are parallel to the coordinate axes respectively. Now the
dual grid T}, can be regarded as a result of using the perpendicular
bisectors parallel to the right sides of the right triangles to divide
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Q. Each vertex P of the triangle element (called a node of T},) is
surrounded by a small polygon (in particular, a small rectangle for
inner nodes) called a dual element and denoted by Kp. (cf. Fig.
4.3.1, where the shaded part is K3).

(hnnca tha tuial fianadliam amana aa +ha Lo alaen ae nt space
U008€ ta€ trial 1uicuvion spavc ad IJuU l..l.l..l..lllU €ieilieny Pﬂlbﬂ Wlbll
respect to T},, the Zienkiewicz triangulation (cf. [p.68, B-17]), of

which the function uh satisfies, at each boundary node Po, up(Po) =

3’us !Po! du Po
T

7= P
T ///ﬂé

=

Z AP

= A
(a) (b)

I e B S S S —
A3 P
27 Z

(c) (d)
Fig. 4.3.1
The test function space V}, is chosen as the piecewise linear func-

tion space corresponding to T;. A function v, € V}, satisfies on the

boundary nodes vj,(Py) = _gi&l J.’g%’gl = 0. The basis functions
with respect to an inner node i’o are

l, Pe K},
VR (P) = {0, PgKh,
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(1)(P) - z1(P), P €K},
0’ 'P ¢ K;"o’

(2 __{ z2 — z2(R), P € Kp),
YR (F) = o P¢Kp,.

The generalized difference scheme approximating (4.3.1) then be-
comes: Find u; € Uy, such that

ah(uh,vh) = (fa vh)> Yup € Vp, (4'3'6)
where
an(un,vn) = Y Ix(un,vp), (4.3.7)
KeTy,
& (un, vn) Z /ax . a?:hvh - Auh%%
“N
Pek (4.3.8)

O%up Bup _ _6.31_‘_’_‘.99_".) d:
812 dn  ondr or
where K denotes the set of vertexes of the element K.

The trial functions are chosen as Zienkiewicz elements (cf. [p.68,
B-17)), so Uy ¢ H?*(f) and we only have U, € H(f2). The test
function V, is in L2(Q) but not H!(f). Therefore Scheme (4.3.6) is
nonconforming,. ‘

The computations of I, K(uh,zbgg) (! =0,1,2) give the element
matrices, and their summation gives the overall matrix, i.e., the co-
efficient matrix of the linear algebraic system of the approximation
problem. Here the computation of the element matrices is simpler
than the corresponding nonconforming finite element methods, since
the computation here merely involves some line integrals, of which
the mt;e%ral paths are parallel to the coordinate axes; the basis func-
tions 1/) ’s are extremely simple; many terms in I are zero; and the
nonzero terms are easy to compute,

We do not require the triangulation to satisfy the condition “the
three sides of the triangle are parallel to three given directions.” Var-
ious kinds of grids as illustrated in Fig. 4.3.1 are feasible. The ap-
proximation equation related to an inner node Py leads to seven point
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A h
Pi(0,1)

-

¥ 1’

AN

M B0 ¥

Pi(0,0)

Fig. 4.3.2

generalized difference schemes in the cases of (a) and (b) of Fig. 4.3.1;
to a five point scheme in case (c); and to a nine point scheme in case

).

4.3.3 Error analyses

Take any triangular element K € 7}, with vertexes P, (I = 4,j,k).
Let P; denote the right vertex, M; the midpoint of the side opposite
to P, Sk the area of K, and Ax = !Pg!z/jffklz Perform an affine

viE LG O1 L3, LU

transformation

1 B oot
N=ase | o) B
1 By ool
Aj — ml(Pk) x2(Pk)
28k z1(B) zo(P)
. z1 Z2
M = 55— ) wl)
K z1(Fy) za(Fj)
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Then K is mapped onto a reference element K on (/\j,Ak)Aplane
(Fig. 4.3.2), and accordingly, P, and M; are mapped into F; and
M (I =1, j,k), respectively. For any us € Uy, we have on K that

w= T (=2 + 33 + D ua(R) + Y [OF - A

I=1,7,k i=j,k
6uh(P1 9 Oup(Prm)
“AiNiAg) —— + AN+ = )\ Ajdg) —e"1|.
i oN ’“g‘:, i N ]
m
(4.3.9)

Define the interpolation operatbr 11}, from Uy to V; as follows

B Owp (P
g = Z an(Po)¢(°) 3wn( o)¢(1) um( o)¢(z)]
PoEﬂh
Vwp € U, (4.3.10)

where ), denotes the set of all the inner nodes of Tj.
A direct computation leads to

Tg (un, Thwp) = i’ég—dK(wh)TAKaK(uh) (4.3.11)
where '
[3‘;‘3 o(P) = B, T ) + o(R) = (P,
2 1 opy - o), 200+ o(B) - ol
J
2B 1 oty - o), Tt ), o(®) - (B,

“4130 24110 —4 6+6A—1 —6A 641 ]
4+6) 4+18\ 0 4+6x—-% 61 4+%
-2+X  2-X ¢4 -2-} 0 -243%
6-x+$ 6+x -% 6+ -4 244
~2-X 24X 0 -2+% 4 2-%
[ 4-2+8 4420 -8 448 0 441
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where we have written A = Ag for short.
Theorem 4.3.2 Define

1 1/2
hunlln = ( 3 §-5K(Uh)T5K(uh)) , Vup € Up.  (4.3.12)
KeT, VK
Suppose the triangulation T}, is quasi-uniform: There exists a con-
stant Ao > 0 such that Ay < Ax < A5l Then || - ||n is equivalent to
the following | - |o,5 norm

1/2
funlap = (X lunBBx) "> Yun € U, (4.3.13)
KeTy .
which means the existence of positive constants ¢; and ¢z independent
of Uy, such that
cillulln < funlo,n < callunlln, Yun € Up. (4.3.14)

Proof We only have to show the existence of constants c{, cj > 0
independent of Uy, and K such that

cI . /
5 Ok (wn) "0 (un) < funlf e < %5K(uh)T5K(uh), (4.3.15)
: Yup € Up, K € T},

8%y 9%y 8%y T .
Express S4, m, and ﬁf as mu}tlpllcatlons of vectors and ma-

Aj
trices, e.g.,
5%u 6 6 O0O0O00O0
-a—A-Th=(AJ,1’Ak) -4 =2 0 00O JK('U;);)-
i 3 2 -111 2

A simple calculation gives
1 Q%up\2 1 &up \2
2 = e a————— . ——
whe = | (mrraw) * (mrrmmons)

1 32uh 2

1
=5 S (un)T DgSxc (un),
K
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where 1
Dy = 5;G"diag(AxDo, Do, X' Do)G,
6 -4 3 3 -3/2 1 1 0 0]
6 -2 2 2 1 2 2 00
o |0 0 -1 -1 12 1 1 00
- 710 o 1 1 -32 3 3 -4 6]|’
0 0 1 1 1/2 -1 =1 0 0
0 0 2 2 -1 2 2 -2 6|

2 41
Dy=14 12 4 ].
1 4 2}
It is easy to verify that Dy is a positive definite matrix, and that the

column vectors of G are linearly independent. Now (4.3.15) holds
since A\g < Ax < Ay !, This completes the proof. O

Theorem 4.3.3 Suppose the triangulation T}, satisfies 2 £ <Ak <

3 (K e ’T'L\ then the bilinear form a; (. TI*.) 4s wrmfmwmlru nogitive
g\ then ne m ap, 11;¢) unsformiy positive

deﬁmte, i.e., there is a constant o > 0 independent of the subspace
Uy such that

an(up, Iun) = afupl3p, Yup € Up. (4.3.16)

Proof Replace wy, in (4.3.11) by up and write it into a symmetric
form: ‘

I (up, IMjup) = o JK(uh)TBKJ(uh), (4.3.17)

where BK Ag + A is symmetric. We might as well assume
2o <1gag<d Let us set A\x = 1 in Bg to obtam a matrix

B K, written in a block form:
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where each subblock is a 3 X 3 matrix. Write

_ I —Bﬁlém
o= 3

and define the symmetric matrix

2 1 7
)s

] ’ Gz = diag(g, '2"1» 1,1, §

By = GTGTBKG1G; = [bijlexs,

where

b1y = 11.56) + 5.33,

b1s = 0.67A - 4,

bys = —0.11) + 0.11,

522 =9\ + 2,

Bag = =317\ +4.17 = X~1,

bos = —3.92) + 3.05 + 0.87A7L,

bsg = —0.17A + 717 = 7TA7L,

bag = 0.03) + 4.34 — 4.37A71,

bys = 1.651 — 3.37 + 1.11A"1,

bss = —1.82) + 7.47,

bee = 2.51\ + 4.07 + 19.06)°1,
where we simplify Ax as A.

Notice

b1 = 5.67TA +2,
Big = —4.11) +0.78 + 3.331"1,
big = ~5.25) + 1.17 + 4.08)~1,

523 = —0.5) + 1,
bos = 0.02) — 0.02,
533 = 8’

bas = 0.20) — 0.20,

bag = 0.13) +8.93 + 10.22)"1,
byg = 2.20) + 2.66 + 3.11A~!
bsg = —0.20) + 3.63,

| = 0.17A+7.17 =727} < 0.17) + 6.49 — 6.66)7L,

|1.65) — 3.37 + 1.11A7}| £ 0.57X — 1.07 + 1.11A7™.
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Thus, under the given conditions it is easy to check that
by — Y byl > —2.91) + 1.39 + 7.41271 > 1.96,
I
bog — 3 |boj| > —2.64) +6.24 — 0.13A71 > 1.23,
n'—l-2

bs — § [Bas| = 0.771 — 7.63 + 11.03A~1 > 0.75,
i#3

bas — § |Ba;] > —10.09X + 5.8 + 14.99A~1 > 0.65,
jF4

Bss — X |Bsj| > —2.52) + 5.24 — 1.11A"1 > 0.72,
i

Bes — 3 |Bej| = —8.691 — 2.34 +25.27A"! > 1.46.
76

Hence the Gerschgorin theorem guarantees that the minimum eigen-
value of By is not less than 0.65. So by (4.3.17) there exists a constant
@ > 0 such that

I (un, Miup)

0.65 1 1y
2 oo (un)T (G GTYT(G7 ' GT V)oK (un)
3285k
> 'S?‘—dK(Uh)T5K(uh);' Yup, € Up.
K
Now the desired result follows from (4.3.7) and Theorem 4.3.2. This
completes the proof. a

The existence and the uniqueness of the solution to the general-
ized difference scheme (4.3.6) results from Theorem 4.3.3.
We pause to point out that a more careful estimation can relax

the regstriction on the valna of Mz Our nurnaoss to introdnece the last
TAe restricliion on tne vaiue ol Ax . Lur purpose 1o Introequcee e ast

two terms in (4.3.8) is to obtain the uniform ellipticity of the discrete
problem. If we multiply these two terms by a parameter y, then for
% <u< % we have the uniform ellipticity for Ax in a certain range.

‘Lemma 4.3.1 Let Ay, be a piecewise linear interpolation operator
with respect to Tp:

VK € Th, Ayw(Py) = w(Py) (Po € K); Apw|k € Pi(K).
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Then for any w € Uy, and on every K € T}, we have
I wp, — Apwp| < Ch,’whlz,K, (4.3.18)
| la%m;;wh — Apwn)| < Clunla, i =1,2. (4.3.19)
?

Here C denotes a constant independent of the subspace U and the
element K. '

Proof Let P;P; and PP, be the two sides of the triangle K =
AP, P; Py, parallel respectively to z; and z; axes. Then any linear
function Apwy on Kp N K can be expressed as

wp (P}) — wp(F)
z1(P;) — z1(F)

wp(Pe) — wa(B),
2(Py) —za(B) 2~ )

Hence it follows from (4.3.10) and (4.3.18) that on K N K

Apwyp = wi(P) + (z1 — z1(P))

(4.3.20)

H,";wh - Ahwh

Owy (P — 21 (P,
( wah)fj L+ wn(B) - w"(Pj)) m{:}j) 'a';‘lw.l(ll)i)
+(—-——-au:9h)ff) + wp(B) ~- 'UJh(Pk)) w;;:k_) fzgé)p,) '

This together with (4.3.15) gives

I wp, — Apwh) < 208k (w) Tk (wh))H? < Chlwpla k,

lg%;(ﬂlwh = Anwy)|

1
<
= ey (Py) -z (R)]
8

(6% (wn)T ok (wr))/? < Clwnlz,k.

Similarly we can show (4.3.19) for i = 2. This completes the proof.0
T L1 ciml arn ale o i o b s il dlhn antedbking ba dlan
In the sequel, W€ aiways US€ Up v0 GUeNoue wi€ Stiuiivn vo s
nonconforming generalized difference scheme (4.3.6).
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Theorem 4.3.4 If the grzd T, satisfies 2 £§< Ak < 3 g for every K €
Th, and the weak solution u € H3(Q)NHZ(Q), then we have a constant
C independent of the subspace Uy, such that

-
—~
'E."
£

_I-
==
b
<
A
~~

o

(4%

™o

Proof Let IIyu be the Uy-interpolation of u, and wy, = up, — I,u.
Then by the uniform ellipticity (4.3.16) and the generalized difference
scheme (4.3.6) we have

alup, — Hhulg,h < an(up — Mpu, I (up, — Hpu))

: (4.3.22)
(f, Iwp — Apwy) + (f, Apwn) — ap (TTau, T wp).

Note A%y € H™1(Q) since ue H3(9). In terms of Green’s formula
we have for any v € C§°(9)

(F,0) = (A%, v) = — /n VAu- Vods.

Due to the density of C “(‘,“‘( ) in H§(f2), the above equality is also
valid for v = Ajwy, € H} (Q):
(f, Apwy) = -/QVAu - VAywpdz. (4.3.23)

Use Green’s formula on each K* € T} and note IT}wp|x+ € P1(K*)
to obtain

> j VAu - VITywdz
K'GT*

Wh
= ¥ (- [ AuATGude+ [ auZi%as) g0,

K*eT*
= Z Aumds.
on

ke TOK
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By (4.3.7) and (4.3.8) we have
an (TInu, I wy)
*
= Z Z / aAHhU E wy, — Anhuanh'LUh
KeT, pek GKPnK on
0Ty Sy 32Hhu an;:w,,) q
0%  On ondr Ot s

(4.3.25)

Apply Green’s formula (4.3.3) on each K* N K‘(laé @), then we have

Budv % dv
Loy " 57750 * 5B 574
[ B B sy gy
T Jewnre \ 821010 8210z0 Ox2 Ox2  Hx? ﬁrrf)

"""""""""""""""""""""

The right-hand side vanishes if we take v = IT} wy. So

/ (@ MMwp 8%y 6thh) ds
Keery JOK 2 8n  Ondr Oor

' 2 * 2 "
= 3 > / (___Q__t; oIl wy, + *u Bﬂhwh)ds ~0.
K €T} KNK*#g 8KNK* or on onér Or

(4.3.26)
The last equality holds since here the contnbutxon of a line integral
is always null no matter whether 8K is a common side of two adja-
cent elements or it is on 09, thanks to the continuity of the integral

functions and the boundary condition.
A combination of (4.3.22)-(4.3.26) leads to

ofup, — Taul3 ,

4 4.3.27)
< (fThws — Apwn) + 3 > Ef (u,wp), (
i=1 KeT)

------

Wi€re

u, ’wh, Z / VAuy- V(H;‘,wh - Ahwh)dw,
Pek KpnK ) .
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I
B wun) = 3 [ -2,
pek VOKBNK

o2 II o1ty
X (u, wp) E/a —A(u—-l’[hu)—{- (67-2 hu)] a"whd

Pek KpnK

32(u H;,u) 3IIhwh
ds.
u wh) P%( /aKPnK ondr or

Now we estimate in turn these terms. It follows from the Cauchy
inequality, Lemma 4.3.1, (4.3.18) and (4.3.19) that

|(f, Thwn = Aw)|

1/2

S |f|0( Z /:’ IH}",wh - Ahwhlzds) (4.3.28)

KET}; v R / \ L,
< Ch2|flolwnlzp, |

|Bf (u,wn)| < Chluls xlwnlzk- (4.3.29)

It is apparent that
3A1'I A
EZK(U, 'LUh.) Z / Q__hu (H}',wh - Ahwh)da.
Pek JOKENK on

Write ¢ = 25[15% and Lp = 8Kp N K, and note (4.3.18), then we
have :

|E2K(u‘, wh)l
1/2 . 1/2
< X (/ ERE (/ T} wy, —Ahwh|2ds) /
Pek (4.3.30)
1/2
< OB unlex 3 ( / i¢;2ds) 2,
pek " LP
By the inequality (3.2.43) we have
1/2
([ 16Pas)" < CH2(01glo,x + Igl0)
Lp (4.3.31)

< Ch_l/zlnhula,}'( < Ch_l/zluI;;,K.
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1t follows from (4.3.30) and (4.3.31) that

| B (u, wn)| < Chiuls xlwhle,x- . (4.3.32)
Similarly we note
2(y —
Flu,wp) = Y / —A (u ~ Ipu) + _3_(..7‘_5%11.)]
pek BKPnK T
O wh — Apwn) 4
on

Set ¢ = —A(u — Myu) + ZE=TY note (4.3.19) and imitate (4.3.31)
to obtain

!Eg(('u, wy)!
|6 2d 1/2 B(thh—Ah'wh) ds 1/2
= ([, e (| [as)

CRMY2(h™Y|glox + [$l1,x) - h'/2|wnl2,k
Ch(h™|u ~ Thula,x + [u — Txuls, k) lwal2,x

Chluls k |whla,x.

IA

(4.3.33)

IANIN DA

milarly one can show that

|B{ (4, wn)| £ Chluls,x|whla,k. (4.3.34)
Combining (4.3.27)-(4.3.29) and (4.3.32)-(4.3.34) yields
olup — Oaulf, < Ch(luls + hlflo)lun — ITaulz,n,

lun — Haulzp < Chlluls + hlflo)-

.ogether with a standard estimate for Zienkiewicz elements

implies the error estimate (4.3.21) and completes the proof. O
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4.3.4 Numerical experiment

The above nonconforming generalized difference scheme (4.3.6) is
used to approximate the following biharmonic equation:

Ay = f, (z,9) € Q, (4.3.35a)
u= -g—:l‘-) =0, (z,y)€dQ, (4.3.35b)

where Q = (0,7) x (0, ) and f = 16 cos 2z cos 2y — 4 cos 2z — 4 cos 2y.

Place over Q a uniform square grid with a side size h = 7/16,
and then further decompose it into a right angle triangulation, as
illustrated in Fig. 4.3.3. Derive a discrete system of equations from
Scheme (4.3.6), and solve it by the Seidel iteration method. Table
4.3.1 provides a comparison of the numerical solution and the true
solution u = sin? z - gin? 1. We observe that the maximum relative

error of the function values is about 0.003, and that the first partial
derivative is also satisfactorily approximated.

y4

T

Fig. 4.3.3
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Table 4.3.1 Numerical results (z; = iw/8, y; = jn/8)

e[ w Tw B B -E % mog
) |0.02144 |-.00000 | 0.10642 | .00286 |.10642 | .00286
) |0.07328 | .00006 | 0.35783 | .00427 |.14882 | .00238
) {0.12495 |-.00005 | 0.60713 | .00357 |.10481 | .00126
)[0.14628 {-.00017 | 0.70843 | .00132 |.00019 { .00019
)10.25070 | .00070 | 0.50403 | .00403 |.50400 | .00400
Z2,ys)|0.42780 | .00102 | 0.85890 | .00535 |.35532 | .00177
)
)
)
)

S13

0.50081 | .00081 | 1.00482 | .00482 |-.00060| -.00060
0.73075 | .00220 | 0.60687 | .00332 |.60677 | .00322
0.85593 | .00238 | 0.71117 | .00406 |{-.00076| -.00076
1.00308 | .00308 |-0.00010| -.00010 |-.00027| -.00027
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4.4 Nonconforming Generalized Difference
Methods Based on Adini Elements

4,4.1 Generalized difference scheme

As in the last section, we again consider the Dirichlet problem of the
biharmonic equation:

A%y = f, (z1,22) € Q, (4.4.1a)
U= _g}‘_ =0, (z1,z2) €09, (4.4.1b)

Assume that each side of the polygon region Q0 is parallel to a
coordinate axis. So we can divide {1 to obtain a grid T}, consisting of
Adini rectangular elements (cf. [p.364, B-17]). Let h be the maximum
diameter of the elements, let the vertexes of the rectangles be the
nodes, let {3, be the set of all the nodes, and let ), = 0,\00. The
trial function space is chosen as the finite element space with respect
to the Adini rectangle, i.e., the incomplete bi-cubic, Hermite type,

polynomial space. Any functxon up, € U}, satisfies up(Pp) = bu zf" =

Q%-;’_ol = 0 at every boundary node F;.

In each rectangular element, connect the midpoints of every two
opposite sides. Then we re-divide {2 into a sum of some other small
rectangles or polygons. Each node Py of T}, has a surrounding small
rectangle (or possibly a small polygon if Py is a boundary node),
called a dual element and denoted by Kp (cf Fig. 4.4.1). The
entire dual elements constitute a dual grid Tj. The test function
space is taken as the piecewise linear function space, which has three
basis functions for each interior node Py of T}:

fﬁ“’)(P} [1, Pe Kp),
Py Lo, Pgky,
(1)(P _{ .’121—:171(P0), PGKPN
PgKPo!
g9 — 0 PGK}*:',
(2)(p) { *0
0, P;GK‘G.
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y

\

X

Fig. 4.4.1

Any function v, € V), also satisfies vp(Py) = % = a—”gé,f—*’l =0 at
any boundary node P;.

Based on the variational form (4.3.4), the generalized difference
scheme for (4.4.1) is: Find up € Uy, such that

ah(uhavh) = (f, 'Uh)$ V’Uh € Vha (4‘4'2)
where
an(un,vn) = Y Ix(tn,vn), (4.4.3)
KeTy, ‘
I (up,yvp)

_ 5 ohuwn A Ow, Bundu _ O ooy
) PXE;(/aK;nK( on " A% T 552 B Bndr o )dé’
(4.4.4).

where K denotes the set of all the vertexes of the element K.
Obviously U, C HY(Q), Vi € L?(Q). But U, ¢ H*(Q), Vi ¢
HY(). Thus (4.4.2) is a nonconforming scheme. We see from the
supports of the basis functions 'd;gﬁ) (! = 0,1,2) that the resulting
discrete equation is a nine point generalized difference scheme.
We can successively compute the discrete equation

Gh(’Mh,'tﬁ(Ptg) = (f5¢gg)a 1=0,1,2, Bhe Qh,

for every node Py € Q; or we can first compute IK(uh,ngg) (I =
0,1,2) to get the element matrices, and then pile them up to obtain
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an algebraic system of the discrete problem. Observmg that 1/;(')

very simple and that Ix only involves line integrals with the mtegral
paths being parallel to the coordinate axes, the computation here of
the element matrices is simpler and more economical compared with

tha enrreannndin nnnnn{-'nvminnr finite element method
the corresponding nonconicrmir finite element method,

4.4.2 FError estimate

Take any K € T}, with vertexes P,, (m = i,J,k,[), midpoints M;j;,
M, My, My; of the sides, the barycenter @ (c_f._Fig. 4.4.2(a)),
and the area Sk. Set Az; = |PPj|, Azy = |PP|, and Agx =
(Azy/Az1)? Then the mapping

£ = (x1 — 21(R))/ Az, o
(4.4.5)
0 = (29 — z2(P;))/Azg

maps the rectangle K onto a unit square K =[0,1] x [0,1], and the
nodes P;, M;,Q, -+ into B;, M;, @, - . (cf. Fig. 44.2(b).)

74

_ M - M, -

P ; Py P(0,1) - P(1,1)
My Q 1M Y - Q 1M
.|k K

P le P; - ' - d

i P(0,0) pp, ;i P(1,0)
(a) (b)
Fig. 4.4.2

. Introduce on U, a discrete norm

lunth = (T o) oxwn) s wa e Uy (448)
KeT,
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where

0x(v) = [vi-—'vj+vk v;,(ag) + v — Uj,(ae) + v — vj,

70V o O
(38), + = om (Gg), + 2= ve (50, + =
(g;) +vj — vk,(gn) + vy — 'vk,( ) +v‘-_v,.]T_

Here we write for short v; = v, (P;) etc..

/

Theorem 4.4.1 Suppose the grid T}, is quasi-uniform: There exists
a Ao > 0 such that \g < Ax < Ay}, VK € Ty. Then the norm | - Ita

18 aqugua!e" to tha norm # }z,n d ‘ﬁngd as 'P"’!u" 7]

1/2
lunlzn = (3 lunlBx) s vn € U,
KeTy

namely, there exist constants Cy,Cy > 0 independent of Uy, such that

e 2= . fA A M\
Up © Up (& ()

Proof We only have to show the existence of constants C{,Cy >0
satisfying

| c!
Sxc (un) ok (un) < lunfa g < —Ii-JK(uh)TJK(Uh),

Yuy € Uy, K € Th.

1
bt
Sk (4.4.8)

The definition of the Adini element on K is as follows:
(—2¢%n + 263 + 3¢ — 3¢2 — 2’
+3¢n? — én+ 203 — 397 + 1) (un )
—(—2¢3n 4 2¢3 + 3¢%n — 3¢% — 26n® + 3¢n® — £n)(un);
+(~2€3n + 3¢2n — 26n° + 3¢n® — &n) (un)k
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—(—28%n + 3¢%n - 2¢n® + 3¢n” — €n + 20 — 3n?) (un)

+(-g0n+ ¢+ 2600 - 262~ en + ) (G),

+(=€% + €% + €% — 52)(%“;)1 (€% — €% )(aa“f")

I¥N

P2 L ITRN
+(&%n — 26%n + én) (""), (4.4.9)

+(~¢n’ +2n* —n + 7’ ‘2’72“’)(%},&),-

ou
+(en® — 2n? + én) ( 6nh)a
end — 2y (OURY L (g +en? + 08— n?) (9uny
S 5"}\an/k'\ »' L2 L ) M \a /'

Let us express ‘%”}, %:51;; nd 872”,# as multiplications of vectors and

%] z3
matrices:
8uy, 1 0%uy,

am% = ALL‘% 652 = A.’L‘% (EU’E’W’I)GlaK(uh)’

62Uh _ 1 62Uh 1 2 9
8210z, = Az Az, 6667] = Az Azs (€ 1 7] aﬁ’n,l)G26K(uh)’
&y 1 6%
5 = Al ot sz (ém €,m,1)Gadxc (un),
where :
D -6 -6 6 60000
G: = 0 6 6 0 O0O0O000O0
'"1o 4 2 -2 40000}
l_ 0 -4 -2 0 00O0O0ODO0 J
0 -3 -3 3 3 0 0 0 O
o 0 0 0 0 -3 3 3 -3
Go=|({0 4 2 -2 -4 0 0 0 O},
0O 0 0 0 O 4 -4 -2 2
1 -1 0 0 1 -1 1 0 0O
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00000 -6 6 6 —6
G.w 00000 4 -4 -2 2
3100000 6 0 0 6

000O0O0-4 0 0 -2

A direct computation leads to

‘ 1 ;6 1 0
lunl3 g = /K[ 4( aguzh)z-i- Aw%Awg(aggg)z

1 /0%,
+A (a 3 ) ]A.’E1A$2d§d7]
1 . -
= '§;5K(Uh)TGleag(/\KDo, Dy, A}’{].IDO)G"(sK(ul‘l.)y
(4.4.10)

where

Dy = /R(Emﬁ, 7 1‘)(571, €, l)ngdTI,

Dy = /R(Ez,ﬂz,ﬁnm1)(€2g7]2’§’71,1)Td€dﬂ,
6" = [6fefef].

One can easily verify that Dy and D are positive definite matrices,
and that the column vectors of G are linearly independent. (4.4.8)
finally follows by use of the quasi-uniform condition of the decompo-
sition. This completes the proof. 0

Define an interpolation operator IT} : Uy — V}, as follows:

Gun= 5 [un(Poyyf® + 2200y, 2R 0. (4011
Poefyy, o

Theorem 4.4.2 Suppose the grid T}, satzsﬁea the condition £§<Ak<
2 for oll K € T),. Then the bilinear form an(,II}:) is uniformly
positive definite: There exists a constant o > O mdependent of Uy,
such that

an(un, hup) > elunllpy Vun € Up. (44.12)
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In the sequel we use u and up to denote the weak solution of
(4.4.1) and the solution of the nonconforming generalized difference.
scheme (4.4.2), respectively.

for all K € Ty, and that

Theorem 4.4.8 Assume that 2 < Ax < 3 fo
then there exists a canstant C

the weak solution u € H3(Q) ﬂﬂg(ﬂ)
independent of Uy, such that

|u — unla,p < Ch{luls + h|flo)- (4.4.13)

The proofs to Theorems 4.4.2 and 4.4.3 are omitted to save the
space, cf. [A-8].

AAD Nesmrr nselna 1 awvacmaela
- 2L T1V ] iNuiiIcL lbul CAALLLIIC

The nonconforming generalized difference method (4.4.2) is used to
approximate the following biharmonic equation:

A2u; [ (-171,.1:2) €,

U

U= a—‘= 0, (m1,m2) € 39,
bhana () e N =Y v N =) anAd

WHEre 3o = (U, W) X (v, T ana

f{z,y) = 16 cos 2z cos 2y — 4 cos 2z — 4 cos 2y.

Table 4.4.1 Numerical results (z; = in/8, y; = jn/8)

el [ w w—u] B B8 & -
(%1,%1){0.02135 [-0.00010 | 0.10306 | -0.00049 | 0.10306 | -0.00069
(%1,y2) |0.07289 (-0.00033 | 0.35232 | -0.00123 | 0.14589 | -0.00056
(z1,12)10.124481-0.00051 | 0.60188 | 0.00168 | 0.10326 | -0.00079
(z1,y4)|0.14587 {-0.00058 | 0.70529 | -0.00181 (-0.00010 | -0.00010
(z2,y2)|0.24924 |-0.00076 | 0.49923 | -0.00077 | 0.49921 | -0.00079
(2, ys) |0.42583 |-0.00095 | 0.85314 | -0.00041 | 0.35334 | -0.00022
(z2,y4) [0.49901 {-0.00099 | 0.99983 | -0.00017 |-0.00040 | -0.00040
(z3,y3)|0.72764 |-0.00091 | 0.60391 | 0.00036 | 0.60387 | 0.00032
(z3,14)0.85272|-0.00083 | 0.70774 | 0.00063 {-0.00006 | -0.00006
(z4,y4)|0.99932 |-0.00068 {-0.00002 | -0.00002 {-0.00006 | -0.00006
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We place a square grid over  with b = «/16, and use (4.4.2).
The resulting generalized difference solution is compared with the
true solution 4 = sin? zsin?y in Table 4.4.1. We observe that up,
%’l and %‘i’h are all good approximations. We note that this method
behaves better than the Ziekiewicz generalized difference method, cf.
the numerical example in §4.3.4.

4.5 Second Order Nonlinear Elliptic
Equations

In this section we are concerned with the following Dirichlet problem
of the second order nonlinear elliptic equation:

[ —V(a(z,y,u)Vu) = f(z,y), (z,p) €N, (45.1a)
{u(m,y)=0, © (z,y) €09, (4.5.1b)

where ) is a plane bounded region with a sufficiently smooth bound-
ary 0Q; a(z, y, u) is a twice continuously differentiable mapping from
) x R to [a1,02) (0 < o1 < a3); and all the second order partial
derivatives of a(z,y,u) are bounded on 2 X R. By the Schauder the-
ory and [B-25], if f € C® (ﬁ_) for some integer o > 0, then (4.5.1) has

a5 a7 22 AL oRAALE ALl A€l (F::0: 1

a unique weak solution u, and u € C?+2(10). Set

Alwiu,v) = (a(z,y, w)Vy, Vo)

(4.5.2)
= /n a(z,y, w)Vu - Vodzdy. ‘
Then, a weak form of (4.5.1) is: Find u € H§(f2) such that
Aly;u,v) = (f,v), Yve Hj(Q). . (45.3)

4.5.1 Generalized difference scheme

Write for short a(z,y, w) = a(w) and suppose £ is a convex polygonal
region. As in §3.2 we place a triangulation T and its dual grid T}
over §). Let h be the maximum diameter of all the triangular elements
of Tj,. Also assume T}, and T} are quasi-uniform, so that there exist
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constants ¢;,c > 0 such that
c1h? < Sk < coh?, VK € Th,
c1h? < Sg+ < coh?, VK* € T,

where Sx and Sk~ stand for the areas of K and K™ respectively.
We choose the trial function space as the standard finite element
space with respect to 7). Corresponding to the freedom

Y Otiu(Py)
Bou— e
for each interpolation node Py = (zp, yo) of Uy, we take the 4,5 term

(:E - -'EO)i(y - yO)j/(i!j!)v P= (:r:,y) € K;o

(,d) -
¢Po (P ) { O, P ¢ K;:o
of the local Taylor expansion as the bagis function of the test function
space V4. In particular, if U, is a linear element space (piecewise
linear polynomial space) with the following freedom related to the
" node Py
lfé’f’ = u — u(By),

then V}, is a piecewise constant function space, of which the basis
function for Py is a characteristic function of K}, :

1, P=(w,y) GK* )
w,‘i:;“)(P)={ TR
0, PgK},.

Now the generalized difference scheme for (5.5.1) is: Find up, € Uy,
such that

A(un;un,vn) = (f,vn), Yon € Vi, (4.5.4)
where
Al(un; up, vp)
= /ﬂa(uh)Vuh-V'vhdwdy (4.5.5)

Oup, Ovp,  Ouy, Oup,

‘= ‘/s;a('Mh) (-—a-;—a—m' + W—%)dwdy.
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Here %‘L and %‘-’h etc. should be interpreted in the sense of generalized
functlons Suppose ¥y, i8 a basis function of V},, whose support is a
dual element K, then :

| (4.5.5)
) /K Hen) V- Vondody = /ax;o a(uh)%%ds

Py

where 7 is the unit outer normal vector along 0Kp,.

In particular when U}, is chosen as the linear element space corre-
sponding to T}, and V}, as the piecewise constant function space, then
we have the following linear element difference scheme:

A(uh,uh,'l/)\u’u)‘ "/ fda:dy, VPR € Qh, (4.5.6)

where

Alup; up, 1/)(0 0))

= _/ “")*d" | (4.5.7)

8uh
= - ——d / )28h 4
| /axp a(n) iy + [ alun)Ghde.

Various kinds of numerical methods can be used to compute the
line integrals in (4.5.7). For instance, as shown in Fig. 4.5.1, one
can write the integral on K}, as a sum of integrals on the fold line

segments Q1 M2Qz, -+, QeM1Q1, then employ, e.g,, the following
quadrature formula:

—/ a(uh)%ds
Qi M3Q2
= —(|Q1Mz| + [M2Q2|)(a(un)) my (un(P2) — un(Fo))/|PoPal,

where un(Mz) = (un(P2) + un(P))/2. If Ty is a circumcenter dual
grid, then (4.5.6) is identical with a finite difference equation derived
by an integral conservation law. (See, e.g., [C-6,7].)
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Another way is to write the integral on 0K} as a sum of integrals
on the fold line segments M;Q1 My, -, MgQgMy, and to use the
quadrature formula:

/m a(uh)%t;—hdy = (ym, — yMl)(a(uh))Qlau_’é(mﬂl_)_,

%@(Uh)%t}dw = (zm; — o, )(a(un))Q, Bu,é(le).

This leads to another sort of difference equation.
Let II} : Up — V, be an interpolation operator:

M, = Y o

then we can rewrite the generalized difference scheme (4.5.4) into an
equivalent form:

A(up; up, as) = (f,1I3s), Vi € U, (4.5.8)
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4.5.2 Error estimate

Next we analyze the linear element scheme. Write A(w;up,IT}ap) -
into the following form:

‘ L4 Ix *_L ——4 L2 * =
A(wsun, i) = Y Ixc(w;up, Thas), (4.5.9)
KeTy,

where K = AP,P;P; (cf. Fig. 4.5.2), and

Ixc (w; up, T} i)

= (@(P) - T(R)) /maw)%gds
+(@n(Py) — Th(Py)) /ma(w)%%ds .

+(@n(P) — Tn(Pr)) fma(w)%‘%ds

= Y (PP / —h R,
l=i,j,k1 HiFled 'MTda(w) Bny Om

where n; denotes the unit outer normal vector of Kp,, along M,Q,

and 7 = Py1Pyo/|Py1Pyal. (I=1,4,k; i+1=jj+1=kk+1=

¢.) Now we are ready to deduce the boundedness and the positive
definiteness of A(w;up, I} Gn).

Theorem 4.5.1 For the bilinear form A(w;+,II}.), there ezists a
constant C independent of Uy, such that

|A(w; un, T G8)| < Cllunllil@alli, Yun, s € Un,  (4.5.11)
|A(w; u, T @n)| < Cllul1,coll@nll, Yu € WH*(Q),an € Us.
' (4.5.12)

Moreover, if Ty is a circumcenter dual grid, then we have a constant
B > 0 independent of Uy, satisfying

A(w;up, up) > Bllusli?, Yup € Us. (4.5.13)

This also implies the exzistence of a solution to the linear element
difference scheme (4.5.6).
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Proof (4.5.11) follows from (4.5.9), (4.5.10) and the equivalent
norms defined in §3.2 :

|A(w; un, Thn)|

< C R2 uuh\w Bun (@) 1\ 11084(Q) [ , 198A(Q)
< o 3 w2+ PR RN 552+ F5)
< Cllunllslials.

(4.5.12) can be similarly proved. In the case of the circumcenter dual
grid, we have n; = 7. Hence by use of (4.5.10) we have

I (w; Uny I} up)

= 3 |Pz+1ﬁ+2|/___ a(w) (‘;;_:)

l=1,j,k
/ dun(Q) dun(Q) )
> ooe((252)"+ (252Y). o)
This gives (4.5.13).
To show the solvability of (4.5.6) we define T": U, — U}, by
A(wn; Twn, TRan) = (f, 134n), Yan € Up. (4.5.14)

By virtue of (4.5.11) and (4.5.13), we have the existence and the
uniqueness of the solution T'wy, as well as the estimate

WTwalls < 11£1lo/B.

Thus the mapping T' maps the ball {w, € Uy, : lwplls £ [|fllo/B} to

itaalf, Alao note that 7" is obviously a continuous mannine, There-

AUNUAL daanls AAUVU LVaabv & VAV AV MDA 0 VWILUAAAGU AN SRSV praAsmy A AT

fore the Brouwer fixed point theorem guarantees the existence of the
solution up, € Uy, and the estimate

lunlls < 1fllo/B.

This completes the proof. o
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Theorem 4.5.2 Let u be the solution of the weak form ‘(4.5.8) of
the problem (4.5.1), and uy € Uy, the solution of the linear element
generalized difference scheme (4.5.6). If u € W2%°(Q), then there
holds the following error estimate:

lu — uplli < Ch.

The proof to this theorem is omitted. For the details, see'[B-58].

Bibliography and Comments

This chapter provides some main results on the mixed and the non-
conforming generalized difference methods for the boundary value
problem of the fourth order elliptic equation. As regards the mixed
method, [A-51] gives a mixed generalized difference method for bihar-
monic equations, based on a Ciarlet-Raviart mixed variational prin-
ciple. Another mixed generalized difference method is presented in
[A-31] based on a Hermann-Miyoshi mixed variational principle. But
there are some errors in the proofs of the error estimations in both
the two papers. A refined error analysis is provided in §4.1 (Theorem
4.1.2). 'In order to construct nonconforming generalized difference
methods for biharmonic equations, a corresponding variational prin-
ciple is discussed and is used to give a nonconforming generalized
difference scheme with Zienkiewicz elements [A-9]. Another noncon-
forming generalized difference method is proposed in [A-8], based on
Adini elements. The error analysis and numerical experiments are
carries out in these two papers. Theoretical analysis indicates that
these nonconforming methods enjoy the same error estimate as the

g ala - Athada Rath +ha mivad and +ha -
DULLGDPUIIUIILS ll.ll.-l.IJU c.lcu.lcuu J.u.cuuuuu LIVVIL IJ&I.U LALAATN msu VLT J.I.UAA

_conforming generalized difference methods require less computational
time than the finite element methods, and have better accuracy than
the usual finite difference methods. We also note that it is easy for
them to deal with complex boundaries and various of boundary con-
ditions.

With regard to nonlinear elliptic equations, [B-58] constructed a
generalized difference scheme for a second order nonlinear Dirichlet
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problem, and presented corresponding error estimates.

Problem The cubic generalized difference method has a stronger
non-conformity since the piecewise cubic element space U, generally
is not contained in H? when the dimension n > 2. This brings new
.difficulties for the construction of the difference scheme and for the
error estimation. But if we adopt the Hsich-Clough-Tocher triangu-
lar elements (cf. [A-27,2] and [p.340, B-17]), then we indeed have
- U, € H? Try to use such a Uy, (and a certain corresponding V)
to construct generalized difference schemes and to deduce the error
estimates.



Chapter 5

PARABOLIC
EQUATIONS

We present in this chapter, for second order parabolic differential
equations, semi- and fully-discrete generalized difference methods and
one of their varieties — a mass concentration method. The construc-
tion as well as the theoretical analysis of these schemes are discussed.
A nonlinear parabolic equation is considered in the last section.

5.1 Semi-discrete Generalized Difference
Schemes

5.1.1 " Problem and schemes

Consider the parabolic differential equation:

u+Au=f(z,t), 2€Q, 0<t<T, (5.1.1a)
u =0, z€0N, 0<t<LT, (6.1.1b)
‘u = up(z), z€N t=0, (5.1.1¢)

where 2 is a bounded region in R®, with a Lipschitz continuous
boundary; u; = %%; and A a second order elliptic differential oper-
ator:
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AuE—Z:x (a,jaw )+E:bJ +cu,

where a,-j(# aj), b; and c are sufficiently smooth functions of 2. We
assume there is a constant ap > 0 satisfying

a(u, u) = [(Y Qg au, Ou Yb'in_“u"‘c“ )d
zi Oz S O (5.1.2)

2 QOH‘u“u Vu € Hy(Q).

The variational problem related to (5.1.1) is: Find u = u(-,t) €
H}(Q) (0 <t < T) such that :

(us, v) +a(u,v) = (f,v), VweH}(Q),t>0, (51.3a)
{ u(z,0) = ug(z), z €9, (5.1.3b)

where (-, ) denotes the inner product of L?(f), and
) du v Ou
a(u,v) = /ﬂ(g aij;?:t—j:?-;:; + E,: bfb?c—,-” + cu'u)dw. (5.1.4)

The solution to (5.1.3) is called the generalized solution of (5.1.1).
As in Chapters 2 and 3, we place a quasi-uniform grid and a
corresponding dual grid on {7, and construct a trial function space
U, € H}(Q) and a test function space V;, € L?(Q). Then the
semi—discrete generalized difference scheme for (5.1.1) is: Find up =

~T7T & 1+ - T il
uh\,u;cuh \U\o\.l.)uubu that

{ (n,tsvn) + a(up,vn) = (f,vn),  Vop € Vit >0, (5.1.5a)
up(z,0) = ugn(z), TeN, (515b)

where a(up,vp) i a bilinear form obtained by applying piecewise
Green'’s formula to (Au,v); or by interpreting the right-hand side of
(5.1.4) in the sense of generalized functions, namely, the integrals
are computed in terms of a d-function method on the boundaries of
neighbouring dual elements. ugy, is a certain approximation of ug on
Uh. A commonly used method is to choose up, a8 an interpolation
projection of ug in Up. Another way is to replace (5.1.5b) by

(un(-,0),v4) = (uo,vp), Yon € V.
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Let {¢;(z) : j = 1,2,--+,n} and {#;(z) : j = 1,2,++-,n} be the
bases of U, and V}, respectively. Then (5.1.5) can be expressed as:
Find a solution of the form

ill

n
Ny 'l'\ )
Ly Pi\E; ] Z)

j=1

o,

such that its coefficients 1 (2), po(t),- -+, un(t) satisfy

Z[d’”“ (85, 0)+1sBalds, 8] =, #0), £> 0,

i=1,2,..+,n, (5.1.5a)
/J',i(o) =aj j=12,:--,n, (5-1-5b)'
where a;’s are the coefficients in ugy, = i o;dj.
=1

Let us introduce the following matrix and vector notations:
M = [my] = [(¢5,%:)], K = [kij] = [a(5, %)),
u= [pl(t)) e uu'n(t)]Ti F= [(fa "/}1)1 "ty (fv ¢n)]Ta

a=[a1,---,an]T.

- Then we can rewrite (5.1.5)' as

M+ Ku=F, (5.1.5a)"
u(0) = a. (5.1.5b)"

As in the finite element method, we call M a mass matrix, and K
a stiff matrix. M is clearly nonsingular. The ordinary differential
equation theory tells us that this semi-discrete generalized difference
scheme has a unique solution for any f € L?(0). -

We are mainly concerned in this chapter with two-dimensional
~ problems. So we always assume that  is a planar polygonal region,

and that A is a second order elliptic differential operator:

Aus—[aam(ang +augz)+a (213 + zzg )]+qu
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We also assume ag45(z,y)'s (4,5 = 1,2) and g¢(z,y) are sufficiently
smooth and positive definite: There exists a constant r > 0 such that

2
Z a'—](a"ay fiEj 2 rsz $,y) >0,

V(&,¢5) € R?, (z,y) € QL.

In this and the next two sections, we always assume that U, is a
piecewise linear function space corresponding to a grid 7} of , and
that V, is a piecewise constant function space with respect to the
barycenter dual grid Tp. (cf. §3.2 for details.)

5.1.2 Some lemmas

First let us restate some results of the last two chapters.

Lemma 5.1.1 Set

1/2
lunllon =IMuallo={ 3= wd(P)Sh,}
K3 €T}
2 (5.1.6)
> [P +ui () +uh(Pu)Se}
Kq€Th
dun(Q)\2 . (Bus(Q 1/2
lunlin =1 X + So}t', (L)
(3 [(52)"+ (2552
lunllin = {3, + lual? 43272 (5.1.8)

Then on Uy, the following pairs of norms are equivalent respectively:
11, and |- |1; || - llon and || - [lo; and || - |l1,n and || - |l1.

Lemma 5.1.2 The bilinear form a(up, I}4s) can be expressed as

a,(uh, H;__’U,h) = ah(uh, HZﬁh) -+ bh(_uh, H;;ﬂh), (5.1.9)
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where the leading term

ap(un, 1T} 45)
= 3 {lau ’+ ous(@ 2221 22(Q)
Kq€T 8z
+[a2(Q) @Ji‘_?l Buh(Q ]au,,(q 150 (5.1.10)
+ X PO uh(PO)Uh(PO)S'PO
K} €Ty

i8 symmetric and positive definite (c; and cz are positive constants):

Gh(ﬂh,nzﬂh) = ay (T Hx.m.) Vi, us, € Up, {5 1.11)

’ AT T TERY R = Moy e

crllunl} < anlun, hun) < cillunll?, Yun € Up, (5.1.12)

and the remainder by (up, II}1y,) satisfies
|bp (un, I} Gp)| < Chllupll1li@nll1, Vin, un € Up. (6.1.13)

If we define [||lupllly = [an(un, up)]2, then ||| - ||l1 and || - |l are
equivalent on Uy, (cf (51 12)) We also have (see (51 9), (5 1.11)
and (5.1.18))

la(un, xGn) — a(Ga, dhup)|
< Ch"uhnln'ah"la Vg, up € Up.

(5.1.14)

Lemma 5.1.8 There exist positive constants hg, o and M such that
when 0 < h < hg

alun, up) > allusl?, Yup € Us, (5.1.15)

la(un, I3as)| < Mlunlll|all, YEa,un € Up. (5.1.16)

Lemma 5.1.4 Let u € Hj () be the solution to the variational prob-
lem

a(u,v) = (f,v), Vv € H& ()
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and up, € Uy, to the generalized difference scheme

a(un,vn) = (f,vn), Yo € Vi,

lu ~ unlly < Chlulg, (5.1.17)

llu = unllo < CH?|lullsp. (@ >1) (5.1.18)
Lemma 5.1.5 , There hold the following statements:
(1) (un, I} an) = (Gn, IMus), Vip,un € Up. (5.1.19)
(ii) Set |[|unlllo = (un, Iiun)t/2. Then ||| |{lo s equivalent to |- o
on Uy, that is, there exist positive constants cs and cq such that

esllunllo < |||unlllo € callunllo, Yun € Up. (5.1.20)

The above results can be found in §3.2 and §4.1.
Let us introduce an elliptic projection operator

rr2¢
\

.lh: AL

YA L0 LT,
\Iyll I.l.lo \h‘ﬂ’ - r Un‘,. .

defined by the following generalized difference scheme:
a(Pru,vy) = a(u,vy), Yo, € V. (5.1.21)

By Lemma 5.1.3 we see that P,u is uniquely defined by (5.1.21) for
any u € H3(Q) N H} (). We call Pyu the elliptic projection of u
(with respect to the generalized difference scheme). By Lemma 5.1.4
we have the following estimate.

Lemma 5.1.8 Let Pyu be the elliptic projection of u defined by (5.1.21),
then

lu ~ Paully < Chlulz, (5.1.22)

lu=Paullo < CRlullsp. (@>1) - (5.123)
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5.1.3 L2-error estimate .

Theorem 5.1.1. Let u and uy, be the solutions to the problem (5.1.8)
and the semi-discrete generalized difference scheme (5.1.5), respec-
tively. Then we have

llu — uollo
. ¢
< O{lluo — vonllo + A2 lluolls,p +/; lurllapdr]}. (0> 1)
(5.1.24)
Proof Write
o =u— Pyu, e = Pyu — up, (5.1.25)
where P, is the elliptic projection operator. Then we have
u—up=p+e. (5.1.26)
It follows from (5.1.23) that
t
lolo < Oh*ullap = Chluo + [ urdrlsy
: (5.1.27)

t
< R luollap + [ furllapdr].
L 2 Jo P

We turn to estimate e. Since u and up satisfy (5.1.3) and (5.1.5)
respectively, we have

(ug — unt,vn) + 0(u — up,vp) =0, VYo, € V. (5.1.28)
This together with (5.1.21) gives

(et;vn) + ale,vn) = —(pt,vh),. Yoy, € V. (5.1.29)
Choosing v, = IT}e and using (5.1.19) and (5.1.15) yield
1d

LS elf < ol Tielo
So it follows from Lemmas 5.1.1 and 5.1.5 that

. 'g',_;melﬂo < Cllptllo-
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Integrate it with respect to ¢ and note the equivalence of the norms
Il - lllo and || - llo, then we have

t
lello < C[le@)llo + [ llorllodr]. (5.1.30)
By virtue of Lemma 5.1.6 we have

le(@)lo < llPauo — uollo + Jluo — uon/lo

R (5.1.31)
< Ch¥|uoll3,p + [luo — uonllo,
lorllo = llur — Paurllo < Ch2lurllap. (5.1.32)
A combination of (5.1.27) and (5.1.30)-(5.1.32) leads to.(5.1.24). This
completes the proof. O

5.1.4 H!-error estimate

Theorem 5.1.2 Let u and uy, be the solutions to the problem (5.1.8)
and the semi-discrete generalized difference scheme (5.1.5), respec-
tively. Then we have

Mu—ualln .
t 1] 9 1/2
< Oflluo — uonlly + Alluollz + /0 urllzdr + ( /o lurli3ar) ]},
(5.1.33)
Proof Take vy = II}e; in (5.1.29) to get
llleclllf + ale, Iier) = —(pe, MMjex),
1d
lled? + 5 -a(e, Tze)

(5.1.34)

1
= ~(p,ITe) + Slaler, Iie) — ale, Mier)).

]
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It follows from (5.1.14) and the inverse property of the finite element
space that

|a(e:, IT;e) — a(e, ITje:)| < Chllellrllels
D 1 R T [P [ R T YN T T S T TR )
= UllGiolielil = llicttllo + “ li€il1:

Thus

d .
(e he) < C(llelig + [lel?).

Integrate on ¢t and use Lemma 5.1.3 to obtain

allell} < afe,IT}e)

< M)} + [ (oo 13 + leff)ar

Note .
lle@)l1 < |[Pruo — uolly + lluo — uonll:

< Chljugllz + |luo — uonll1.

Hence
Jell < 0{luo ~ wonl + Wual + [ (o I8 -+ el)ar}.
By the well-known Gronwall inequality we have
Jel < O luo ~uanll + Rluol3 + [ lortBar}.  (5:035)

By virtue of Lemma 5.1.6 we have

lells = llu = Prulls < Chlull
¢ (5.1.36)
< Oh(luolls + [ l1uradr),

llprllo = llur — Paurllo < Chllurla. (5.1.37)
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Inserting (5.1.37) into (5.1.35) yields
lells < C{lluo — uollx + Alluollz

+h( /0 t lur IBdr) /2.

A combination of (5.1.36) and (5.1.38) leads to (5.1.33). This com-
pletes the proof. O

(5.1.38)

5.2 Fully-discrete Generalized Difference
Schemes

5.2.1 Fully-discrete schemes.

In the last section the semi-discrete schemes are obtained by discretiz-
ing the space variable. In order to finally get numerical solutions we
need to further discretize the time variable to obtain fully-discrete -
schemes. To this end, there are two methods most in use: the im-
plicit Euler’s scheme (backward differencing) and the Crank-Nicolson
scheme (central differencing). _
Let 7 denote the time step size, and t, = nr (n = 0,1,--),
uf = up(ty). At time t = t,, if we use the backward difference -
quotient

to annroximate the
approximate sne

scheme, then we o
1,2, ) such that

(atuh’vh) + a(uh’vh) (f(tn),vh)’ Yoy € Vi, (5'2'13')
n= 1 2,
ul) = ugp. (5.2.1b)

ant 2. . in tha sami-dis
ALV wn ‘ Add viiw D\Il‘l‘. WA AN

cheme: Find u} € (

o
o
[
=5
=
<
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=
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o
=
@
@
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Or we can equivalently write it as

(uf, vn) + Ta(uf,vp) = (U~ + 7f(tn),vn), Yon € Vi,

n=1,2-,
0
Ujp, = Uph.
Mhia anhama ia vaforrad +a na 8 hasaluwnnd elaw ganaralinad i avannn
L ALID DULITILILT 1D ITITLLITU LW ad a4 vyaLnhywal\u LJ/UuiclL 5 LITL QUELLTUL ULILTLTLIUT
scheme.

1
a(“'}f,nﬁuﬁ) + ;(“2’ H'}kz“;:
> allupllf, Vuf € Us.

This guarantees the existence and uniqueness of the solution u} to
(5.2.1a) for a given u} ™.
If we discretize the semi-discrete scheme at time ¢, /2 = (n-— %) T

in a symmetric fashion, then we have another fully-discrete scheme
as follows: Find uf € Uy (n=1,2,::-) such that

n n—1
( (5{“2,”’0 +a(M-2.y-h‘_—,vh) =
) ( £ (tn) +2f(tn-1),vh), Von € Va, (5.2.2a)
n=12-.,
\ ug = tigp. (5.2.2b)

This scheme is the so-called Crank-Nicolson generalized difference
scheme. The existence and uniqueness of its solution can be readily
proved similarly as above.

5.2.2 Error estimates for backward Euler generalized

Aiffaranna arhamas
LAV L ViAWY DViLAVvaALLWWY

Theorem 5.2.1 Let v and {ul} be the solutions to the parabolic
equation (5.1.8) and the backward Euler generalized difference scheme
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(5.2.1), respectively. Then
[lu(tn) — upllo

tn
< O{lluo ~vonllo + W*[luallap + [ Mueloadt] (55

in
+7 / ”uttnodt}a n= 11 2a e (p > 1)

n
L

Proof Set

pn = u(tn) - Phu(tn), en = Phu(tn) - u‘;:,

then .
u(ty) —uff = p" +€". (5.2.4)

It follows from (5.1.23) that

I6%1o < CHlutta)lsg < CHluollsy + [ Iuallsode].  (5:23)
Set t =ty in (5.1.3), and subtract it and (5.2.1), then we have
(us(tn) — Oul, vn) + a(p” + €",v) =0, VYo, € V. (5.2.6)
By virtue of (5.1.21) we have |

(Bre", vp) + ale”, vn)
= (&Phu(tn) - ut(tn),vh), Yoy, € Vh.

XET_ ¢ an

Write r® = G Pyu(ln) — ut(tn), set vy = II}e", and use (5.1.15),
we have -
(Bee™, I} e™) < (r", IIhe™).
So
llle™lII§ < (""", The™) + 7(r", T1e™),
lIle™ 1 < (e o + 7liir"lllo) ™ lo-
Eliminating |||e"|||o and using the above recursion relation, we have

n
lHle*1llo < llle’lllo + 7 2_ llirIllo-
j=1
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Making use of the equivalence of the norms we get
le"o < (Nl + T$Z‘,1||rﬂ‘||o).
i=
Write 7/ = r{ 4 r§, where

= = 1 4
o = 8Pty - dutty) = - [ (Ph—Duadt,
. .

. 1 (%
rh=8u(ty) —ut) =~ [ (¢~ ti-1)uadt

=1

Then by (5.1.23)
LI 1.0 1t o ,
2 lrille =22, [ Ohlluslls,pdt
j=1 j=17ti-1

tn
= Or1p2 fo el .

Similarly
n . n t ,t
G e S e — L e
2,020 S 2, [ ilutlioGt = (itttiodt.
j=1 j=1v%-1 0

Again by (5.1.23)
lle®llo < || Phuo — uollo + lluo — uonllo

< Ch®?|luglls,p + lluo — uonllo-
Substituting (5.2.9)-(5.2.11) into (5.2.8) yields
le"llo < C{lluo — vonllo + B2[luolls

wu "'Ul

+ [ gt + 7 [ ulods)

247

(5.2.8)

(5.2.9)

—
o
[~
Y

N’

(5.2.11)

(5.2.12)

Finally (5.2.3) follows from (5.2.5) and (5.2.12). This completes the

proof.

Next we deal with the H!-estimate.

O
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Theorem 5.2.2 Let u and {u}} be the solulions to the parabolic
equation (5.1.8) and the backward Euler generalized difference scheme
regpectively. Then

llultn) — uplly
tn
< Of o~ uonlls + hluolla + [ " luelact

+( /otn JuelBat) 7] + T(/o't" iIUtzllﬁdt)l/g}’

n=12-.

(5.2.13)

Proof As in the proof to Theorem 5.2.1, we can again obtain (5.2.7).
To proceed, we set vy, = II} 0;e™ to get

118 I1I3 + a(e”, 1T} Bee™) = (", IT}Bre™). (5.2.14)

By the equivalence of the norms we have a constant Cy > 0 satisfying
ll18ee™|[13 > CollBe™ 3. (5.2.15)

It follows from Lemmas 5.1.2 and 5.1.3 that

a(e”, 1T}, ;™)
= olale” + & " ~ )
+a(e’ — e I (e — e 1))

1 .
E;[ah(e" +e" 1 I} (e - e"1))

v

+bp(e" + "7, T (" — ¢"71))] | (5.2.16)
=l = [l

~Clle" + €™ u e o

o[ = ORI = (14 ')l 1]

\Y

[\

Cous
“7”@8"”%-
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Also note - B
|, i Bee™)| < ClIrlif + 2 1dee™lf.  (5.2.17)

Combining (5.2.14)-(5.2.17) gives

1+C'r
1-0O'r

e[ < llle*=HIi + Crlir"13. (5.2.18)

This recursion relation leads to

' n
leml112 < o (el + 7 3 r913)- (5.2.19)
j=1 :
| Note
ri=rf+ri,
i_ 3 a 1 [t
r] = 6Pru(t;) — Gu(t;) = ;-/t' (Prus — ug)dt,
J=-1

i = 1 [t
5 = Opu(t;) — w(t;) = -7, (t ~ tj—1)uydt.
i1

S‘o we have
n X n ts 2
S hIE <ot ([ hludade)
j=1 j:l tj_l ) (5.2'20)
tn
<07 [ fudlBat,
0

Sl < ([ Tualodt)’
j=1 j=1 Yti-1

tn
<7 [7 Iualat.

(5.2.21)

Also notice
€%12 < [1Pauo — uoll? + lluo — uonll?

(5.2.22)
< Ch®|uoll3 + lluo — uonll?.
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A combination of (5.2.19)-(5.2.22) yields
' tn 1/2
el < ©[luo — uonls +hlluolls + h( [ luslha)

{ I‘tn hl w2 1.\ 1/2] (5-2-23)
TT\‘/O lusiipat) |-
On the other hand,
lo"lln = llu(tn) = Pau(ta)lls < Chllu(ts)ll2
(5.2.24)

< Oh[Juolla + [ sl

Finally, (5.2.13) results from (5 2.23) and (5.2.24). This completes
the proof. _ O

5.2.3 Error estimates for Crank-Nicolson generalized
difference schemes

Theorem 5.2.8 Let v and {u}} be the solutions to the parabolic
problem (5.1. 8) and the Crank-Nicolson generalized difference scheme
(5.2.2), respectively, then

l[u(tn) — ukllo

< O{luo —vanlo+ 5 [Jualp + [ luclssdd] (535

+7 /0 Juelodt}, n=1,2,-. (p>1)

Proof As before we set
u(ty) — up = p" + €, ' (5.2.26)

where
p" = u(tn) — Pyu(ty), €" = Pyu(ts) — uf.
.For p" we have

le™llo < Ch?|lultn)llsp

tn . (5.2.27)
< OW[uals + [ luellspct]
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On the other hand, by (5.1.3), (5.1.21) and (5.2.2), e" satisfies

n en—l

B +a( S

D) ,’Uh) = (r",vp), Vo, € W}, (5.2.28)

where
Ut(tn) + Ut(tn—l)
2

r* = étPhu(tn) -

Teke vy, = II§ " in (5.2.28) to get

(e mEH) < ()

By virtue of Lemma 5.1.5 we have

_l_e":’. —iile® i) < l-“rn-“ (liie%illg + =103
21”” o =1l o) = 2|H [HoCllle™Hlo + lI [lo)-
Thus, .
llle®Illo < [lle™*Hllo + Clir" o
By this recursion relation we have
n
llle™lllo < 1Mo + C7 Y lirlo,
J=1
and hence : n
Ile™llo < C(lle°llo +7 X lirllo)- (5.2.29)
. j=1
Write ' ‘ ' '
rl = r] +r),
, - - 1 rti
r] = 8, Pyu(t;) — dyu(t;) = 7, (Phug — ug)dt,
. 4-1
P = us(ty) + us(tj—
7.% = 6tu(tj) - ¢(t5) > ¢ (¢ 1)_
By Lemma 5.1.6
n X tn
> lirfllo < 0r 7 [ luls gt (52.30)

i=1
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By the Taylor expansion we have

n L ) tn
> lirfllo < O [ useloct. (5.231)
j=1
Also note
e® < | Pruo — uollo + ||uo — u
leMflo <l hz 0 — uollo + [|uo — uonllo (5.2.32)
<Ch IIUOIIS,p + |luo — uonllo.
This together with (5.2.29)- (5 2.31) gives
lenllo < C{lluo ~ uonllo + h2[lluolls,p
tn tn (5.2.33)
+ [ ullagdt] 472 [ Jugellodt)
Jo o Jo /
Now, (5.2.25) follows from (5.2. 27) and (5.2.33), This completes the

proof. -0

Theorem 5.2.4 Let u and {ul} be the solutions to the parabolic
problem (5.1.8) and the Crank- Nicolson generalized difference scheme
(5.2.2), respectively, then

lu(tn) — uh

< ©{luo~ vonls + AJuol + [ uclact

; " 12 (5.2.34)
" 2 2
+(/0 ”UtN2dt) ] +T (/0 ”utttuodt) }
n=1,2-..
Proof As in the proof of the last theorem, we have
_ n n—1 ‘
@ie”,v0) +a( =5, 0) = (" 00), Von€Vh  (5235)

Choosing v, = IT} 6se™ leads to

e +e""

l18e™ 13 + a( TI5ie") = (r", TMBe™).  (5.2.36)
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As in the proof to Theorem 5.2.2, we use Lemma 5.2.2 and the inverse
property of the finite element space Uy, and note the equivalence of
the norms to obtain

7y en—1 -
o 15;e")
\ /.
1 - _,
= g-lan(e” +e LIs(e" — ™)

+bp(e" + e !, I} (e ~ e""l))]

1 -
> lllenliE = eI (5.2.37)
~Clle™ + &1 re
> (1= Ol - (1 + Ol 1]
1, -
~ 318”2,
~ : 1, -
™, 38" < Ol + 3 1Bee” . (5239)

It follows from (5.2.36)-(5.2.38) that

1+C0'7, . '
eIt < 7=l I + O3,
This implies
) |
e 112 < e(Illelliz + 7> Ir13). (5.2.39)
. j=1

Now, similar to (5.2.22). we have

012 2
€)% < R

1 (12 ~2pax( (¥ 2
SR <o 2w Y ( [ udadt)
j=1 j=1 "t (5.2.41)

tn
S&Am4|mﬁu
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n " on ¢
S < or ([ Hualost)
j=1 %%

i=1 j=1 741 (5.2.42)
tn
< 07'3/0 llugse |3dit.
Combining (5.2.39)-(5.2.42) yields

le”lly < me-umm+hmwm+(4“mmﬁo”ﬂ
'I"I'2 (/Otn ||um||(2,dt) 1/2}.

Similar to (5.2.24) we have

(5.2.43)

. r fin . 1 )
o™l < Chlluollz + | llusll2dz]. (5.2.44)

Finally, (5.2.34) results from (5.2.26), (5.2.43) and (5.2.44). This
completes the proof. . 0

5.3 Mass Concentration Methods

This section is devoted to a variety of the generalized difference
method, a mass concentration method, for parabolic equations. This
method simplifies the computation and enjoys a satisfactory conver-
gence.

5.3.1 Construction of schemes

Let us recall the semi-discrete generalized difference scheme (5.1.5):
{ (uh,h'vh) + a(uha'vh) = (fa 'Uh), Yoy, € tht > 07 (5313')

up(z,0) = ugp(z), z € Q. (5.3.1b)

Its equivalent matrix form is:
{M%+&FE (5.3.1a)
[ u©) =eq, (5.3.1b)
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where M is a mass matrix, and K a stiff matrix.

The idea of the so-called mass concentration method is to con-
centrate all the entries on each row of the mass matrix M = [m;;] to
the diagonal position, such that the inverse of M is extremely easy

to get and hence greatly simplifies the computation. To ela.borate,
the scheme of semi-discrete mass concentration method is:

‘M%‘f +Ku=F, ' (5.3.2a)
u(0) = a. (5.3.2b)
where M = ;) is a diagonal matrix
[ 0, when j # i,
Mg =4 & ' 5.3.3
i i S muk, when j =i. (5.3.3)
k=1

Now, we deduce an equivalent form of the above scheme, which
will be used later on for error estimates.

Define a semi-discrete problem: Find uj = Z ui(t)p; € Uy such

{ (Hiuh,tavh) + a‘(“h»'uh) = (f, 'Uh)a vp € Vg, >0, (5'3'43)
un(z,0) = uon(z), © € (5.3.4b)

Lemma 5.8.1 Problems (5.8.2) and (5.8.4) are equivalent.

Proof Write (5.3.4) into a matrix form:
[ M 93 + Ku = F,
1 (0) =a.
Apparently K, f and o here are identical to those in (5 3.2). It merely
remains to show M = M. The ij-entry of M is
0, when j # €,

Sp,, whenj=1.

Thij = (HZ¢11¢1) = (¢J’¢i) = {
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Here 1; is the characteristic function of the dual element K}, and
P, is the area of K. By (5.3.3)

0, when 7 # 1,

My = n o
N kgl(%,‘lﬁi) = (1,94) = Sp,, whenj=i.
Thus M = M. This completes the proof. 0

The fully-discrete mass concentration scheme is: Find u} € Uh
(n=1,2,--.) such that

(IT% By, vs) + a(fu + (1 — )ul~", vp)
= (0f(tn) + (1 — 0)f (tn-1),vn), (5.3.52)

'U‘h.‘E Vh; n=1,2..-,
u) = Ugh. (5.3.5b)

Its matrix form is
(M + 67K)u"
=M - (1 - 0)rK]u""" + 70" + (1 - 6) "],

[ n=12,

u°=a.

This leads to a backward Euler fully-discrete scheme of the mass
concentration method when ¢ = 1, and a Crank-Nicolson scheme
when 6 = .

5.3.2 Error estimates for semi-discrete schemes

4 Q)

corem 291 T gt dho maatl o /F
em (o.1.9)

L. . dns mancd ns: Lo dha anleiddane anml
A MTULTLIL UeDod LOL W UTWWE Up UT LIC SULLIUTIS VO UWIE PTUUL

and the semi-discrete, mass concentration, generalized difference
scheme (5.8.4), respectively. Then we have

[l = ually

< C{Huo ~ uon|l1 + h[||u0||2 + /ot lurllodr + (/0‘ ”’uq-"%dT)l/z]},
| (5.3.6)
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Proof Asin §5.2, we write
u—up=p+e p=u-—Pyu, e=Pru— up, (6.3.7)

where P, is the elliptic projection operator. By (5.1.22)

lells < Chitulla < Ch(jluolla + | " urllodr). (5:38)

Since u and up, satisfj (5.1.3) and (5.3.4) respectively, we have
| (ug — ITfup g, vp) + a(u — up,vp) = 0, vy € V. (5.3.9)
This together with (5.1.21) gives
(ITiet, vn) + ale, vn) = =(r,va),

where
r = uy — I} Pyuy.

Set vy, = II;e; and use Lemma 5.1.2 to obtain
lleslI3 5 + an(e, Ther) = —~ba(e, IMhes) = (r, MMher).
We have the following estimates for the above terms.
lleclI3 5 = Colle:ll3,
1d
an(e, Mher) = 5=l
4 Uy
lbn(e, Mier)] < Chllellafle:llr < Cllellalletllo
: Co
< Ollelllf + -2—Het||3,

C
|, Mhen)| < Clirld + - fleeld.

Therefore, 4 .
a—tIHEIII? < O(llelllf + IIrli3)-

Integrate on ¢t and note

le(0)|l1 < Chilluollz + lluo — uonll:,
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then we have
llelll? < C[lluo — uonll? + h2luoll3

+ [ el + Ir1Byar].

Make use of Gronwall’s inequality to get

t
lel? < & (lluo — wonll? + A?luoll3 + /0 Irli3ar). (5.3.10)

Write
r=ry+re,

71 = Uy — Pyug, ro = Pyug — 11} Pruy.
Then it is eagy to see that
lirillo < Chllugllz,
lir2llo < Chl|Pauslly < Chljugl)z.
Inserting the above two estimates into (5.3.10) yields

lells < ©[lhuo — ol + Alluoll2 + h(-./0 t lurlZar)).  (5.3.11)

Finally, (5.3.6) follows from (5.3.7), (5.3.8) and (5.3.11). This com-
pletes the proof. m]

5.3.3 Error estimates for fully-discrete schemes

Theorem 5.3.2 Let u and {up} be the solutions to the parabolic
equation (5.1.8) and the backward Euler, mass concentration, gener-
alized difference scheme (5.8.5), respectively. Then

Ju(ta) = uRlls
< Ofluo - uonls + hffuol + [ fulade

([ luetBar) ) +7( [ uatar) ),

n=0,1,2,:.-.

(5.3.12)
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Proof Write
u(tn) —up = p" +¢",

where

p" = u(ts) — Pru(tn), €® = Pyu(ty) — uj.

It is obvious that

Il < ChluCea)la < Aol + [ fueladd]

It is easy to check that e” satisfies
(IT}, Ose™, vp) + a(e™, vp) = (r", vs), vn € Vi,

where _

Setting vy, = IT} 8ie™ yields

1Bee™ 13,0 + ale”, iBee™) = (r", I3 Bre™).

We have the following estimates for the above terms.

a(e”, IT}, B;e™)

1\

_1_ ap, e _l_en-l,n* e — en—l
27 h

+bn(e" + "7, T (e" — €M)

v

Copgz . ny2
~ 1B 3,

Eh o
|, I38ie™)] < Cllr™ I3 + =11 ee” .

Cbnsequently

1+Cr
llle™|llF < T IH il +C'T||’”"”o-

1 -
5[ = On)llle”lIif = (1 + Cm)llle™I12]
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(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)
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This implies

ez < (1l + rz”:lurfu%)- (5.3.17)
J=

Set ‘ _ .
v =rf+r]+ri,

where .

, _ _ tj . i
r} = M8 Pyulty) — By Pyulty) = (I — I)r~! /t Pougdt,
=1

r] = 8yPrulty) — Bpu(ts), r§ = Bru(ty) — uslty).

Correspondingly we have the following estimates:

n .2 n. tj 2
SlriE <onr2S([7 IPhudact)
i=1

j=1 V-1

tn
<ot [7 urlfat

= Jn2 2, -1 [t 2
> Il < ontrt [ fuelat,
Jj=1

n s tn '
Sl <7 [ luelat.
=1 0
Substituting these estimates into (5.3.17) gives
HePll, < Cr.. . hr.. N s [t ..2dt\1/21
el < C{lluo = uonlly +hlliuolia + { | lluslizd) |
tn 1/2
+7 2de .
()" Iueize)”"}
(5.3.18)

A combination of (5.3.13), (5.3.14) and (5.3.18) leads to (5.3.12).
This completes the proof. a
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5.4 High Order Element Difference Schemes

This section is concerned with high order element difference schemes
for parabolic equations. First we discuss a cubic element difference
scheme for parabolic equations in one dimension, and present its error
estimate. Then we consider a quadratic element difference scheme for
parabolic equations in two dimensions, for which a numerical example
is also provided.

5.4.1 Cubic element difference schemes for one-
 dimensional parabolic equations
Consider the mixed problem of the one-dimensional parabolic equa-
tion:
ou

r + Lu = f(z,t), z € (a,b), 0<t<T, (54.1a)
u(a,t) =0, @%ﬂ =0, 0<t<T, (5.4.1b)
u(2,0) = u(a), z € (a,b), (5.4.10)

where
s Oun N

d ] Ou
Lu= —bzkpb;) + 7‘5{; + qu,

p € Cta,bl, p 2 Pmin >0, g,7 € Cla,b], and f € L*(a,b).

Let us place a quasi-uniform grid T}, and a corresponding barycen-
ter dual grid T} on [a,b]. Take the trial function space U}, as the Her-
mite cubic element space related to T}, and the test function space V),
as the piecewise linear function space with respect to Tj. For details,
see §2.4. '

The cubic element semi-discrete difference scheme reads: Find
up = up(-,t) € Up (0 <t < T) such that

0
(G2 vn) + (Lun, o) = (£,vn), (5.4.22)
Yopb € Vi, 0<t < T,
up(z,0) = uon(z), z € (a,b), (5.4.2b)

where ugp, € Up, is some approximation of wug.



262 | Chapter 5

The cubic element fully-discrete difference scheme is: Find uj; €
Up (n=1,2,---) such that

I (Beuf vn) + (L, 0n) = (F™, vn), (5.4.32)
‘ VJhEV;’h’r’:lig’l ; |

l u) = ugn, (5.4.3b)
where (7 is the time step size, and ¢, = nr)

_ ul — un—l _

o = B = g+ (1 0)uy

frl=0f" + (1= 0)f", f* = f(tn).

E A1) 1a r‘ tn o ha n]rﬂynvﬂ “‘“]nr 'F!'l""._lqlcnrn“n arhom

Vemu )y iC & cackLwar PDUL LV UD IDULLVELL

and a Crank-Nicolson fully-discrete scheme when 6 =
The following lemmas will be used later on for the error estimates.

whoan
VY LACLL

f\

8—=1
v -~y

IOHC_D

Lemma 5.4.1 The elliptic projection Pyu € Uy, of u€ H2(Q) NHE ()
is uniquely defined by

(LPyu,vp) = (Lu,vp), v € Vi, (5.4.4)
and satisfies
I1Pr = ullm < CA4™|ulg, m = 0,1, (5.4.5)

Proof The conclusxon is a consequence of Theorems 2. 4.1, 2.4.3
and 2.5.2. (]

Lemma 5.4.2 Let IIju, denote the interpolation projection of up,
onto Vy. Then, (Lup,IT}@p) can be expressed as

(Lun, RTR) = a1 (up, MGs) + az(un, T;4), (5.4.6)
where the leading term satisfies (c; and cy are positive constants)

a1 (un, i) = a1(@n, Mun), Vs, un € U, (5.4.7)
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cullunll? < ay(un, Mun) < collunl?, Yun € Un, (5.4.8)

and the remainder term satisfies

‘%(Uh,niﬁh)l < Ch”“h”ﬂlﬁ”l, Viip, up € Up,. (54.9)
Set _
el = oz (wn, )]/, up € U, (54.10) -
then ||| - |||1 is equivalent to the H'-norm || - ||1.

Proof Identify a;(up, I} @s) with by (up, IT;G,) in §2.4. Imitating
the proofs to (2.4.13), (2.4.17) and (2.4.18), we can show (5.4.7),
(5.4.8) and (5.4.9) respectively. This completes the proof. o

A straightforward calculation verifies the following lemma.

Lemma 5.4.3 There exists a constant § > 0 independent of the sub-
space Uy, such that

(up, Mjup) > ﬂlluh“g, Yuy, € Up. (5.4.11)
Theorem 5.4.1 Let u and up, be the solutions to the problem (5.4.1)
and the semi-discrete cubic element generalized difference scheme
(5.4.2), respectively. Then we have
e = unlls < C{lluo — wonllx + B [lualle
t K i 1/2 (5'4'12)
2
+ [ urlladr +1( [ hurlizer) ]},
Proof Set
u—up = p+e, (5.4.13)
where

p=1u— Py, e = Byu—up.

By Lemma 5.4.1 we have

i t
lols < CR¥lulle < OB (lluolle + [ Nurlledr). (5414
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Since u and uy, satisfy (5.4.1) and (5.4.2) respectively, we have

(% O
at ot
Thus it follows from (5.4.4) that

o) + (Lu— Lup, o) = 0, Vo € Vi (54.15)

(etsvh) + (LE,'U,),) = '—(pt:'vh)a Yu, € Vi, (54'16)
Choosing v, = II}e; leads to
(es, T} er) + ai(e, I} es) = — (o1, I} e) — az(e, T} ).

Now, it results from (5.4.11), (5.4.7), (5.4.10) and the inverse property
ce tha

of the finite element spa )

1d
Bleald + 5 il
< lodlolledo + Cllelleclo
< Cllpdl + llelR) + Bles].

Simplify it and integrate it, then we have

11 < Me@IE +C [ ol +lelddr. (5417

Notice the equivalence of the norms and the inequality

lle(O)lls < ||Pruo — uoll1 + |luo — uonll1
< Ch3luolla + |luo — uonllz-

Hence it follows from the Gronwall’s inequality that
¢
el < O{luo — onll + Kol + [ lerlBer}.  (s.418)

By Lemma 5.4.1 we have

lorllo < Ch*lur . (5.4.19)
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(5.4.18) and (5.4.19) imply

lell: < €{lluo — uonlls + h®lualls
" (5.4.20)
w12 ( [ ur2ar)?). |
\Jo J

A combination of (5.4.13), (5.4.14) and (5.4.20) implies (5.4.12). This
completes the proof. : a

Theorem 5.4.2 Let u and {u}} be the solutions to the parabolic
equation (5.4.1) and the Crank-Nicolson cubic element generalized
difference scheme (5.4.3), respectively. Then

Ju(tn) - s
tn
< C{ltuo— uonlly + K uolls + [ lluelact 6420
tn 1/2 tn 1/2
2 2 2
([ fualat) ]+ 72 ( [ hueelFar) .
Proof By (5.4.1) and (5.4.3)
8

(_a%a'vh) + (LU, 'Uh) = (f: 'Uh), V'Uh € Vh, (5422)

uf + uﬁ‘l

n o4 n—1
D) 1”’1) = (LTf—avh)a Yup € Vi.

(5.4.23)

Set t =1, and t =ty respecfively_in (5.4.22), combine them with
(5.4.23) and use (5.4.4), then we have

(Beuft, vn) + (L

e" + en1

(Bee™, vn) + (L—

,vh) = (r",vp), Yvn € Vp, (5.4.24)

where

et = Phu(tn) —uf, r" = 8, Pyu(tn) — %———————u(tn) +2u<tn;1)
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Choosing vy, = I} 8:e™ in (5.4.24) yields
(™, T386e") + ol (" + €™ T (e — ¢™))
+ag(e" + e"-l I (e™ — €™ 1)) = (r™, 11} Be™).
It follows from (5.4. 11), 5.4. 7) (5.4.10) and (5.4.9) that
Blld.e" I + —(llle™llIE = eI} — Clle™ + e"![[1]|Bee"[lo

< C'H""Hollatenllo-
So there is a constant C' > 0 such that

BB + 5101~ C'r)(lle™IE

~(1+ ')l IR - Sl

2, Bys ny2
< Clr'ile + 5 ll9ee™la-
Thus ’
IHa? (112 &« 1+ C"'u'l,,n-lnﬂ L lln]I2
meiin = 7" e e T YT o

This recursion relation implies the existence of a constant C > 0 such
that -

el < O(lB +7 3 1H1E).  (5.426)
j=1

By virtue of (5.4.5) we have
el - < Clie®lls = ClIPau® — ugnlly
< C(Jluo — Pruolly + lluo — uonlj1) (5.4.26)
< Ch*lluoll4 + Cllug — uonl1.
As before, we write '
r=r] 41} (5.4.27)

f = 8Puutty) - Bulty) = - [ (Poun = )t
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) = Bulty) - U +2Ut(tj—1).

So by (5.4.5) we have

2

L‘ T | ___n-r;-;/ I‘tg N ' .
2 Irlid <O (" htflualledt)
J=1 j=1 "Jt-1

. (5.4.28)
< C"r‘lhB/ " llue)|2dt.
0
Employ the Taylor expansion to get
I i tj 2
Dl < Z(C"'/ ||Um”odt)
i=1 j=1 tj-1 (e 4 00N
(0.4.29)

< 0 [ lusBat
=0 |zt g de.

It follows from (5.4.25)-(5.4.29) that
n 23 af [0 124012
el < O lluo — wonll + Aol + 14( ™ luelat)

([ " uaalat) 7).

(5.4.30)
This together with
lu(tn) — Pru(tn)lly
3 3 bn
< CRlultn)le < OK*[luolle + [ Juelace]
yields (5.4.21). This completes the proof. O

5.4.2 Quadratic element difference schemes for two-
dimensional parabolic equations

Consider the following initial and boundary values problem:
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B Mu=fEp), @ e 0<I<T,  (5431)
u(@, y,t) = 0, (z,y) €69, 0<t<T, (5.4.31b)
Wz, ,0) = w(z,y),  (2,y) €D, (5.4.31c)

rrhann ) a nlanar n nd £ . T \
where 2 is & pianar p Q j S L\Nej.
8

als ; zon A
variational problem is: F d = u(,t) € H}(2) such that

(‘gﬁ""’.) +a(u,v) = (f,v), Yo € Hj(Q), 0<t < T, (5.4.32a)

(u(-,0),v) = (uo,v), Vv € H}(Q), (5.4.32b)

where

a(u,v) = / (gz g: + g:zv)dwdy, u,v € H} (D).

As in §3.4, we place a triangulation T, = {Kq : Q@ € Q}}, and a
corresponding dual grid Tj} = {Kp, K} : Py € Qp, M € M3}, (See
§3.4 and Figg. 5.4.1 and 5.4.2 below for details and notations.)

“The trial function space Uy, is chosen as the Lagrange quadratic
element space related to the triangulation 7),. The test space Vj,
is taken as the piecewise constant function space corresponding to
the dual grid T}, of which the basis functions are the characteristic
functions ¢¥p, and ¢p of Kp and Kj,, respectively.

The semi-discrete quadratic difference scheme reads: Find up =
up(+,t) € Uy (0 <t <T) such that

(—aa%", vh) +a(un,vp)=(f,vn), Yo €V}, 0< t<T,(5.4.333)
(Uh(',O),’Uh) = (Uo,vh), Yup € Vi, : (5'4'33b)
where a(:,) is interpreted in the sense of generalized functions. In

particular, when v, is taken as the basis functions ¢¥p, and ¢ re-
spectively, we have

~S2dy +

uha ¢'Po / K a'U'h 31:;, ):

;:

a(un, Yar) = /a (= %’;" +%dm)
M
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The fully-discrete quadratic element difference scheme is: Find
uf € Up (n=1,2,--) such that

Fig. 5.4.1
(Beup,vn) + a(up?,on) = (F*0,0n), (5.4.342)
Vb € Vhy n=1,2,-:-,
(“g,'vh) = (Uo,vh), V'Uh € Vh’ (5.4.34b)

where (7 is the time step size and ¢, = nr)

n _ an=-1
Yp T Up

Oyl = , up? = gl + (1 - 9)ul ™,

F= 0"+ (1-0) ", 1" = f(tn).
(5.4.34) leads to a backward Euler fully-discrete scheme when 6 = 1,
and a Crank-Nicolson fully-discrete scheme when 6 = %

As in finite element methods, we can first compute the element
mass matrices and the element stiff matrices, then pile them up to
form the overall mass and stiff matrices respectively.

A direct computation gives

un = L B{un}k,
(S m) 2 kBl

where (cf. Fig. 5.4.3))
{wn}k = [vh(Pz‘),vh(Pj),vn(&),vh(Mi);vh(Ma‘),'vh(Mk)],
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Oup,

timdx = [T (p), S (py), S (B,

T 96 —16 —16 8 72 T2
-16 96 -16 T2 8 T2
_ Sk | -16 —-16 96 72 72 8
T 1044 | -38 —-13 -—13 300 98 98
~13 -38 —13 98 300 98
| —13 —~13 —38 98 98 300 |

B

It is this B that is called the element mass matrix.
Also note that

a(up,vp) = 2 I (up,vg),
KeT),
Ix(up, ) = {va} e A{un}k,
where A is the element stiff matrix defined as follows;

1

G =10¢2, a1z = a® - b + ¢,
G13 = —a’ + 6% + %, Gy = ~4c,
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815 = 8a? — 8b? — 4¢2,
o1 = a? — b? + &,

Gos = a? + b% — 02,

dgs = —4a?,
ag1 = —a® +b° + %,
dss = 1002,
ass = 8a® — 4b% — 8¢2,
a41 = ~2c%,

43 = ~3a2 — 5b% + 3¢,
45 = —8a? 4 8b% — 4c?,
51 = 3a% — 3p? — 522,
as3 = 3a° — 5b° — 3¢?,
ass = 4a® + 8b% + 8¢2,
ag1 = ~3a? + 367 — 5¢?,
Gy = ~2b%,

ags = ~8a2 — 4b% + 8¢2,

S N

Q1

d16 = —8a? + 8b2 — 4¢?,
Gog = 10a?,

Gos = —4a? — 8b? + 8¢,
figg = —4a® + 85? — 8¢2,
dse = a? + b% — ¢2,

@3s = —8a% — 4b? + 82,
ass = —4b?,

Ggp = —b5a® — 36 + 3c2,
@44 = 8a? + 8b% + 4%,
s = 8a® — 8b? — 4c?,

| Gga = —4a® + 80 — 8¢2,

Gs6 = ~4a? — 8b% -+ 802,
gz = —ba® + 3b — 3¢2,
Gps = 8a% — 4b? — 8¢,

86 = 8a’ + 4b? + 8¢2,

271

where a = [PP|, b= [BFj|, and ¢ = |P;F|.

The results of a numerical experiment are given in Table 5.4.1,
where the Crank-Nicolson fully-discrete generalized difference scheme
(5.4.34) (GDM) is compared with the linear finite element method
(FEM1) and the quadratic finite element method (FEM2), for the
following initial and boundary values problem:

2 2
% =gt o G En=Omx(Om 0<t<L

ulop=0,0<t<1,

—~

\ %)i=0 =sinz siny, (z,y) € Q.

Place a right angle triangulation with a space step size 7r/4 and a
time step size 7 = 0.001. The average error and the maximum error
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(in absolute values) of the approximate solutions, at all the nodes
when ¢t = 1, and the true solution u = e~*sinz - siny are given in
Table 5.4.1.

Table 5.4.1 Comparison of approximation errors

GDM FEM1 FEM2
average error | 0.005064 | 0.036336 | 0.000770
maximum error | 0.009187 | 0.054020 | 0.001568

5.5 Generalized Difference Methods for
Nonlinear Parabolic Equations

5.5.1 Problem and schemes

Let us consider the following initial and boundary values problem of
nonlinear parabolic equations:

% + Au = f(z,y,t), (z,9) €, 0<t<T, (5.5.1a)
u=0, (z,y) €00, 0<t<T, (55.1b)
| = oz, (e,0) €9, =0 (5.5.1c)

where .
Au= -V(a(m’yau)vu)’

{1 is a planar polygonal region, ug a smooth function on Q, f asmooth
function on Q x [0,7], and a(z,y,u) a smooth function on {IxR.

Place on 2 a triangulation T}, and its corresponding circumcenter
dual grid Ty, Assume that any inner angle of each triangular element
- i8 not greater than %, and that Tj and T} are quasi-uniform. Also
assume the following “quasi-parallelogram condition” holds: there
exists a constant u > 0 such that for any adjacent triangular elements
KQ and KQ! (cf. Fig. 5.5.1)

] /
| A7 - A7 + AF - A7 | < uh®,.

where, e.g., Af denotes the area of the triangle with vertexes @, P;
and P_k_,.
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P,
Pk o Q’ —
AR\ — Py
P;
Fig. 5.5.1

' Let Up, be thé linear element space corresponding to T}, and V}, the
piecewise constant function space related to T;. The semi-discrete
generalized difference scheme approximating (5.5.1) is: Find u, =

up(+,t) € Uy (0 <t < T') such that

5 ,

I (%"Dh) + A(un; up, vp) = (£, vn), (5.5.2a)
Vopb € Vp, 0t LT,

l uh(m,y, 0) = U‘Oh(mvy)’ (miy) € Qv (552b)

where .
A(w;u,v) =/na(m,y,w)Vu-V'vdwdy.

For @i, un € Uy, let II} be the interpolation projection operator from
Uy, onto V3, then we can write

A('LU' Up, Hhah)
Uu’-h.a’ﬁh
= 3 > |Pt+1Pz+2|/ T,y w 3'rz i ds,

KeTy I=i,jk
where 7 = Pl-l—l*Pl+2/|Pl+1H+2| (l =45,k i+l =4, j+1=kk+l =
i). (cf. §4.5 and Fig. 5.5.2.) Assume ugy is a certain approximat
of ug in Uy, satisfying '

—
(=4
ot
(+)

g

lug — uonllo < Ch.
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The Crank-Nicolson fully-discrete generalized difference scheme
for (5.5.1) is: Find u} € Uy (n =1,2,.-., N) such that

(Beuft,vn) + Alwp % 0™, 0p) = (F7-12,0p),  (5.5.48)
{ Yon € Vay n=1,2,--+, N, '
[ wd = uon, ' (5.5.4b)
where 7 is the time step size, N =T/7, tn =n7 and

P

Fig. 5.5.2
S = YT YR n-1/2 _ upHup
B = B AWt

n n—1
fn—1/2 = £'+—2f—’ ff= f(-'z",yatn)
In the sequel we assume the following:
. 0 =
() aa,p,u), ga(e,9,4) € C@ x 0,7)),
Y(z,y) € Q, u € C( x [0, T)).

() 0<ao<a(ey,u) L a1 < +oo, |Tale,p0) <an,
V(z,y) € Q, ue C(Q x [0,T)), t € [0,T).
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(i) la(,9,) - a(e,y,w)] < Mlu~ul,
Y(z,y) € Q, u,v € C(Q x [0,T]).

(iv) (5.5.1) has a unique solution u,and u, u,
e o T20(0 M. Xl OV ~ 1200 M. T2/0))
Wit © L4 \\U,.L},.l.l \s\h),, Wit © s \\U,.L },.l-l \i!:}).

Here and below, the following Banach function spaces are used.
Let X be a Banach space equipped with a norm || - || x, m a nonneg-
ative integer, ~co < a < b < oo, and 1 € p < 0o. We define

- C™([a,b); X) := {u(t) : u(t) as a function from [a, b] to' X

is m—times continuously differentiable},

D“f‘
Qiava

LP((a,b); X) = {u(t) : u(t) € X, Vt€ [a,b], lu@)lx € L*(a,b)}.
In particular, we write
C([a, b]; X) = C°([a, b; X).

C™([a, b]; X) and L*((a, b); X) become Banach spaces when supplied
with the following norms respectively:

Igtiiu(t)”x’

m
lullom ((a,01:x) = J;O o

! ([ o)™, 15p<o,

l ess sup jlu(t)lix, p=ococ.
t€(a, )

|l zo((a,py;x) =

Furthermore, if X is a Hilbert space with an inner product (-,)x,
then L?((a,b); X) is a Hilbert space as well with the inner product

| , |
(0 Dza(aa) = [ ()0t x
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5.5.2 Some lemmas

In the error estimations later on, besides the results such as the equiv-
alences of the norms given in §5.1, we also need some preliminary
results presented below.

Lemma 5.6.1 The following estimates holds for any w € C(Q X

[0,T7)
A(w; up, T3 Gs) = A(w; @4, ITjup), Vg, us € Up, (5.5.5)
A(w;uhsnzuh) 2 ﬂ”uh”%’ Vup € Up, (5.5.6)
IA(w; uh’nflﬁh)l < C”“h“l“'ah“lv Vahauh € Uha (5'57)

where 8 and C are positive constants independent of Up.

The above results can be found in Lemma 5.1.2 and Theorem
4.5.1. The next lemma reveals some properties of (uy, II}@,) for the
circumcenter decomposition, which are similar to those in Lemma
5.1.5 for the barycenter decomposition discussed there.

Lemma 5.5.2 There exist positive constants Cy and C such that

(un, Ihup) > Collunlld, Yun € Un, (5.5.8)

[(un, Tian)| < Clluslioll@allo, Vin,un € Un, (5.5.9)

|(un, ITR@R) — (Gn, hup)| < Chllunlloll@nllo, (5.5.10)
Viiy, up, € Up,.

i,7,k), ug = un(Q). (Cf. Fig. 5.5.2.) Since the inner angles of K are
not greater than %, it is easy to verify that

Proof Write K = AP,P;P, €Ty, Ky = KNKp, wp=up(P) (I =

Dy + AH—I 2 Oy, (l =1, J, k) (5'511)

and hence )
Bier + Biyr 2 58k, (=1, k) (5.5.12)



Parabolic Equations

where A;, A; and Ay denote the areas of AQP; Py, AQP,P; and

AQP,; P, respectively.
Note that for any up € Up,

[ 0 dmdes — 1, ir PRSI YAV
Ji, vraeey = g\t gt tuy) tug)
1 1 ' A
+§( i + 5(%‘ + ux) + UQ)"z—,
and
uQ = ('u.,; D +u; Aj +'u.kAk)/S'K.
So we have
[ updzdy
JK;

= l{u,(AJ + Ak)( = ) + u; [A + (D + Ak)—l]

ru[Gh 4 (84 Ak)gﬁ] }

(5.5.13)

This together with {5.5.11) and (5.5.12) gives

Z w / updzdy
I=igk VK

AL a3+ 2

JAY A
+ugtyy1 ['—2— + (D1 + Az+1)—'5£—;—1]

[ Bi-iny

| 5. 1)

..1.(/\.4_1./\ )
|\hd L] ,

> {U?(At 1+ D) (Di-t + Diy1 +24y)/Sk
l=ij,k

g (Dot Digt + Ay Apoy + A + A2)/Sk

1
+-2-(ut + ‘uz+1)2Az—1}
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v
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+WW+1(A1 + AL+ Ay Dy + D Di-y)]

125, Z [’Ml A; 1+Al+1+2A12 +2 Doy D)
K= 1.5,k

+u,+1(A; + A 1+ 2 AH—I +2 0 H-1)
+2wu¢+1(Az + O+ Amy Dy + D D)

123 Z [ + wg1)? (O +Az+1)
bk (5.5.14)

.'|'(’U'l Doy A Do) + (g Ay w1 Ar)?) _

243 Y (ur + ugy1)2 (D1 + Bryr)?

l=¢,3,k
:g l=213k(w + up1)? |
Sl X i+ (2w
% T

So by the equivalence of the norms there exists a constant Cy > 0
such that

(wnu) = 3 3 u / undedy > Collunl3, Vun € Un.

KeT), I=ij,k

It is easy to see that

(wn,GE) = Y. > / updzdy

KeT, i=ijk Y Ki

<c ) Y GumSk

KeTy lym=i,j,k
< Cllunlioli@nllo, Via, un € U,
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It follows from (5.5.13) that

(un, Ipwp) — (wh, M us)

1
= 2o Z Z [wiry1(Digr Dy + Aio'_H = A? e AYAVIRY)

VPR KeTy 1=k
+w;+1u;(A,2 S AYRAYERIE Al+1 Ay - Al2+1)]

1
= 3 3T YT (wiga — wipw) Qi ~ &),
KET) I=i gk

Summing the right-hand side over every side L = F;P; , and using
the boundary condition and the “quasi-parallelogram condition” yield
the following estimate (cf. Fig. 5.5.1):

[(un, Ijwn) — (wh, Ijun)]
= I;(wi’ud - 'UJJ"U,,')(AJ-Q - A? + A?’ - A?I)l

on(X uth?) " (T wpn?)
Chlluplollwhllo-

This completes the proof. - O

IN A

Lemma 5.5.3 Assume w € C({ x [0, T]) and u € C([0, T]; H} () N
C%(Q)). Then there exists a constant C > 0 independent of the sub-
space Uy, such that for all iy, up € Uy

| A(w; u — up, Mhax)| < C(h + |Ju — unll) ], (5.5.15)
[A(w; u — up, IaR)| < C(h + |lu — unll1) a1, (5.5.16)

. where

Ag('LU; v, H;‘zﬁh)

| - da(z,y,w) Ov iy,
= PPy /___—'—"—“_—ds
KEE;" l=iz,j,lc M0 ot on 6‘_/‘;
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Proof It follows from (5.5.7) that
|A(w; u ~ up, T @)

< |A(wiu ~ Tpu, I3 GR)| + |A(w; Tihw — up, TTi3)|

CIV(u-Thlle 3> 3 PrriPias | ds
KeT) I=ij,k

(6.5.17)

IA

+C|\pu — up |1 ||Eals.

Notice ‘the following estimates

|V (1 ~ Thu)eo < Chllulloqo.ryca )
o
> > Brbin [ |5nfas

KETy, I=i,j,k on !
CKZ (|3Uh Q)|+‘3un(Q)|)hz
QETH

o5, S, (2 4 2y

KQ€Ty KQET

IA

A

Cllanlls.
NTau = unlly < ITsw — ulls + [lu — unllz
< Oh+ |lu — unlls.
So (5.5.15) holds. (5.5.16) can be similarly proved. O

IN

Lemma 5.5.4 Let Pyu be the elliptic projection of the solution u =
u(z,y,t) to (5.5.1), onto Uy, that is, let Pou € Uy, satisfy

A(u; Pou—u,vp) =0, Vopb eV, 0<t<T. (5.5.18)
Then there exists a constant C > 0 independent of Uy, such that
[lu ~ Phul|s < Ch, (5.5.19)

|G- B, s om (5.5.20)
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Proof Since (5.5.18) is a linear system of equations, its solution
Pyu uniquely exists by (5.5.6). It follows from (5.5.6), (5.5.18) and
(5.5.15) that

|Thu — Pyull}
CA(u; pu — Pyu, IT} (Hpu — Pyu))

<
< O+ [Mau ~ ul)IThu — Pauls.

Hence
flu = Prully < lju ~ Hpulls + |Tau — Paully < Ch.

(5.5.20) can be proved in like manner by virtue of (5.5.16). This

comnlatoa the nranf ]
\JV“A:"\J"UD Vaaw HLUUAI el

Lemma 5.5.5 If u € C([0,T); H} () N C?%(R)), then there exists a
constant C > 0 independent of Uy, such that

IVPyullo <C, 0<t < T. (5.5.21)

Proof 1t is obvious that

IV Patsfloo
< NIV(Pru = Thu)lleo + [ V{ITat — w)lloo + [Vulloo-

By the inverse property of the finite element and (5.5.19) we have

|V (Pru — TThw)fleo < CA™Y| Py — Ipu|y
< Ch"l(llPhu ~ ully + |lu = Hypully) < C.

Also note

Thus (5.5.21) holds. This completes the proof. O
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Lemma 5.5.8 Ifu € G’([O,T];H&(Q) N C%(Q)), then there exists a
constant C > 0 independent of Uy, such that

A(u; Pyu, 1T} G A(wp; Pyu, I} G
|A(u; Pyu, 1T} ay,) — E ki Prut, )| (5.5.22)
{

te  an, cll.
11y VWh, ""ﬂr ~ i

Proof The following estimate follows from (5.5.3), the hypothesis
(iii), (5.5.21) and (5.5.18): ,

,A(u; Pru, Hzﬁh) - A(wh; Pru, Hl*zﬁh)l
= : . Y BaPel

KeTy l=i,4,k

_ _ 6Pyu 8uh
-/'MTC-)-{a(w, Y, u) ( 1y’wh)]

7%

< CY Y [BaPnl
KeTy =ik
= wnllV Pruloe 222 s
JMQ 107
<C Z > APl
KeTy, I=ij,k
'/m([u-ﬂhul-i‘ [Ty — w)) ‘a ‘ds
< (bl ¥ T PPzl [ |50
KeTy I=i,5,k )
BB — w, (|28
* S g = il )
< Clhlulolltnlls + TTpu — wylfol#rl)
< C(h+ Jlu ~ wpllo) ;-

This completes the proof. w]
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5.5.3 Error estimates

Theorem 5.5.1 Let u and uy, be the solutions to the problem (5.5.1)
and the semi-discrete generalized difference scheme (5.5.2) respec-
tively, satisfying u,u; € C([0,T); C*()), then

5 Iu = unllo + ( /0 - unlat) " < . (5.5.23)

Proof It follows from (5.5.1), (5.5.2) and (5.5.19) that

(e, vp) + A(un; e, vp)

(5.5:24)
= —(pt,vn) + A(un; Pau,vs) — A(u; Pou, vp),

where .
e = Pyu—up, p=u— Pu.

Setting vy = IT}e and using (5.5.10) and (5.5.22) yield
(e Thhe) + Aluni e, Tie)
(e, I} e1) — (et T €)] — (o1, T} )
+A(up; Pou, Iz e) — A(u; Pyu,ITje)
Chllellolleslio + Cllotlollello

+C(h + [|u — unllo)llell1.

N = N =

—

(5.5.25)

IA

If we set v, = IT%e; in (5.5.24) and employ (5.5.8), (5.5.7), (5.5.9)
and (5.5.22), then we have ,

llexl3

C(llell1lleclls + lloellolietllo + (A + llu — unllo)llezll)
C(h~ellx + llpello + A~ (B + flu ~ unllo)) lecllo.

IN A

Thus
hlletllo < Clllells + llosllo + B + llollo + llello)- (5.5.26)
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Inserting (5.5.26) into (5.5.25) gives
id
2dt

< OClello(llellz + lloello + » + llollo)
+Cllells(h + llollo + llello)-

This together with (5.5.20) and (5.5.21) implies

1d
2dt
Integrate it on ¢ and use (5.5.8) and (5.5.6), then we have

el + [ elias
< (@13 + [ Geho +Mlelsd)

< O(le@13 + [ (CUlelB+ ) + 5 llel?)de).
This results in
e+ [ lelifas < (32 + [ fef).
So by the Gronwall’s inequality we have
el + [ el < on.

Finally, this together with (5.5.20) and (5.5.21) leads to the desired
result (5.5.23). This completes the proof. a

(e, II5e) + A(unie, Ize)

e,T¢) + A(uni e, ITie) < C(lleflo + )lle]ls-

Theorem 5.5.2 Let u and u} be the solutions to the problem (5.5.1)
and the Crank-Nicolson fully-discrete generalized difference scheme
(5.5.4) respectively, satisfying u,u: € C([0,T]; C*(R)), uyx € L2((0,
T); H3(Q2)), and uyy € L2((0, T); L*(RQ)). Then we have

{1 = wltn) I + 7 X b = u(ticap) 3}
i=1 '

< CH? +1%).

max
1<n<N
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The proof to this theorem is omitted to save the space (cf. [A-52]).

Bibliography and Comments

The development of the theory of generalized difference methods for
parabolic equations is parallel to that for elliptic equations. Gener-
alized difference methods for parabolic equations are proposed and
discussed in [B-57]. [A-B3] considers a Hermite type cubic element
difference scheme for a one-dimensional parabolic equation (cf. §5.4).
Discussed respectively in [A-20,21,43] are the generalized difference
method and its variety—a mass concentration method for two-dimensional
parabolic equations. [A-52,23,46] deal with the generalized difference
methods for nonlinear parabolic equations. [A-6] is concerned with
a quadratic element generalized difference scheme for a heat-transfer
equation (§5.4). The extreme value property and the uniform con-
vergence is studied in [A-58].

In some early references on generahzed difference methods for
parabolic equations, the proofs to the error estimates are not quite
rigorous, due to a wrong presumption that the L2-estimate (the dual
argument) still holds for linear element generalized difference meth-
ods for elliptic equations. As regards the error estimates of semi-
and fully-discrete generalized difference methods, we can borrow the
theories and techniques of finite element methods to get basically
parallel results. But there are certain difficulties requiring special
treatments, such as the asymmetry of (-,II;:). A method dealing
with the asymmetry of (-,II}) is given in §5.5.

Problem 1 Discuss the error estimates for high order element
difference schemes for two-dimensional parabolic equations.
thod for us =

met
metnoa Ior Uy
f w

hich the

Problem 2 Consider the generalized rhﬂ'nrenve

VRIAUALL M WUMDIUUL UadT BUMEUL Al MRaiaTa

A%y (cf. the first four sections of Chapter 4), o
dimensional case has been discussed in [A-42].



Chapter 6

HYPERBOLIC
EQUATIONS

Hyperbolic equations, especially first order hyperbolic systems, have
important applications in fluid mechanics and light propagation. Due
to the special properties of this class of equations, the difference
method remains to be the most used method to solve them. In this
chapter, we introduce an extension of the classical difference method,
i.e., the generalized difference method, in particular the upwind gen-
eralized difference method.

6.1 Generalized Difference Methods for
Second Order Hyperbolic Equations

Consider the mixed problem of second order hyperbolic equations:

( uw+ Au= f(z,1), ze, 0<tLT, (6.1.1a)
u=0, z€d0, 0<t<T, (6.1.1b)
u = up(z), ut =w(z), z€Q, t=0, (6.1.1c)

where CI}" is a bounded region with a piecewise smooth boundary
O uy = %ﬁ; A is a uniformly elliptic second order partial differen-
tial operator:

287
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where a;j(z) = a;i(z) are sufficiently smooth. By the uniform ellip-
ticity we mean the existence of a constant o > 0 satisfying

Ou Ou

a(u, u) = /‘:1(%,: Gij'a—mggi‘;)dm >olul}, Vue H}(Q). (6.1.2)
A variational form of (6.1.1) is: Find u(-,2) € H}(Q?) 0 <t <T)

such that :

{ (ugr, v) + alu,v) = (f,v), Ywe H}(Q), 0<t< T, (6.1.3a)

\ “(m,o) = UQ(ﬂJ), Ut(m,O) = ul(m)= z €}, (6'13b)
where (-, ) denotes the L?(Q2) inner product,
Ou Ov

= [ ou oY 1.4

awv) = [ (T ooz 520 (6.1.4)

%

and the solution to (6.1.3) is referred to as a generalized solution of
(6.1.1).

6.1.1 Semi-discrete generalized difference scheme

For simplicity, let  be a planar convex polygonal region. As in the
previous chapters, we place a quasi-uniform triangulation T, and a
barycenter dual grid T)' on 2, and accordingly construct a piecewise
linear trial function space Uy C H}(f2) and a piecewise constant test
function space Vj, € L?(Q). Then, the semi-discrete scheme reads:
Find up = up (-, t) € Uy such that

{ (untt, vn) + alup,vn) = (f,vn), Yup € Vi, (6.1.5a)
up(%,0) = uon(z), uni(z,0) =un(z), z€9Q, (6.1.5b)

where a(:,) is the bilinear form deflned by (6.1.4). But on Uy X Vj,
this is only a formal definition and calls for further explanations: It
is obtained by integrating (Au,v) in parts either on individual dual
elements, or on the whole (2 in the sense of generalized functions (cf.
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§3.1). wupp and wuy, are certain approximations of ug(z) and u;(z)
respectively, usually taken as their interpolation projections or L2-
projections into Uy. The latter is equivalent to replace (6.1.5b) by

{ (un (', 0),vn) = (uo, vn),
(uht('ao)’”h) = (’U'l,'Uh),

Let {4;(z)}j=12,n and {%;(2)}j=1,n be bases of U, and V
respectively. Then we can state (6.1.5) in the following fashion: Find
an approximate solution in the form

up = f:lw(tm(w)
i=

Yup € V.

such that its coefficients p1(t),---,un(t) solve the following initial
-value problem of ordinary differential equations:

z:l[d 552( )(453,'(/)1) + 45 (¢ )G»(qu,zpi)] = (f,¢i), (6.1.5a)’
j=

1#i(0) = o4, pit(0) = i,  (6.1.8b)"
where 0<t<T, 1=12,---,n, o;’s are the coefﬁcxents in ugp, =

e d

a and §;’s are the coefficients in uyp = ,, It is easy
1 u i z

to check that the matrix M = {(¢;,v:)} is symmelztnc and positive
definite, so (6.1.5)" admits a unique and smooth solution for each
f e L¥(Q).

Now we deduce the H!-estimate of the error u—uy in a way similar
to that in §5.1. First let us define an elliptic projection operator Pj:
H*(Q)N H}(Q) = U, in terms of the following generalized difference
equation:

a{Pyw,vp) = a(w,vy), Yvp € Vi (6.1.6)
Recalling the results in §3.2 we have
llw — Pawl|y < Chlwlz. (6.1.7)

Now let u and up, be the solutions to (6.1.3) and (6.1.5) respec-
tively. Then the error (u — uy) satisfies

(uss ~ Unet, vn) + a(u = up,vp) =0, Yo, € V. (6.1.8)
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Set ‘ :
p=u-— Pyu, e = Pu — up, (6.1.9)

then u — u, = p+ e. We shall need the following estimates for p and
e (see (6.1.7)):

lolls = llu — Paully < Chljulla

. t (6.1.10a)
< Ch(uolls + [ ueladt),
0
lloello = | Prtsss — uaello < Chllueell2, ' (6.1.10Db)
lle(O)llr = {|Phuo — uonlls
< [|Pruo — uol1 + lluo — uonlhr (6.1.10c)
< Chlluollz + |luo — uonll1,
e:(0 < uy —urll1 + Jjur —u
llez(O)llo < [IPhur — uafls + [lws — vanllo (6.1.10d)
< Chllurflz + luz — u1nllo.
Rewrite (6.1.8) into
(estsvn) + (pety vn) + ale, vn) + alp,vp) = 0.
This together with (6.1.6) gives
(extyvn) + ale,vn) = —(pst,vn), Vn € Vp. (6.1.11)

As in §5.1, let us introduce the interpolation projection operator II} :
H}(Q) » V;, and set v, = II}e; in (6.1.11) to obtain

(est, IThee) + ale, IMier) = —(pue, ITjer). (6.1.12)
As in §5.1 we have '
(un, Ip@n) = (G, Ijun), Vi, up € Up,
(un, Hpup) >0, Vup #0.

Write {||unlllo = (un, ;‘,uh)l/z, then the norms |||us]||o and [|us||o are
equivalent. Moreover, by the inverse property the following estimate
holds:

la(up, TiGp) — a(@n, Thun)| < Chllupllillgnlly < Clluallolldallz,
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Vin, up € Up. (6.1.13)
(6.1.12) is equivalent to
1d ., 1d .
555'”‘*"”0 + 53‘5“(% Ije)
1 * * *
= glalet, IMje) — ale, Mer)] ~ (pue: Mier).

It follows from (6.1.13) and [[IT}ello < Cletllo that

1d, .o 1d , _,
sglileellio + Ea'za(e,nhe)

Clletliolleliz + lowtllolThecllo
Ollleelig + llell? + lleeIF]-

IN A

Integrate it to obtain
llleclll§ + afe, TTxe)
< lles(0)]11F + a(e(0), IT4e(0)) (6.1.14)
t
+C [Tl + el + el lat.
Note
ale,I}e) > ofle]l?, a > 0 a constant,
a(e(0),IT},(0)) < Clle(0)],
llle: (01113 < Clles(0)I13.
Therefore, by (6.1.10) and (6.1.14) we have

lecl3 + el

IA

t
C{1Phio = wonl? + 1Pyus — wsnlf + 12 [ et

¢
+ [ Cleat+ lel)at}.
So it follows from the Gronwall’s inequality that

i
lell? < C{Pruo — wonl? + 1Prus — uanl + B [ fualBae}



292 Chapter 6

Combining this with (6.1.10a) yields the error estimate:
llu = wnll} < C{)|Paio — wonll} + | Phrs = wrnll3

t
+12uol3 + [ fuellBat + / ugs|3dt] ).
Jo Jo N

6.1.2 Fully-discrete generalized difference scheme

Now we further discretize time ¢ of the semi-discrete difference scheme
(6.1.5) to deduce fully-discrete schemes. Let the time step size be 7
and t, = nr (n=0,1,-+,N; N7 =T), u} = up(ts). For a function
v well-defined at times ¢t = ¢, (n = 0,1,...,N), we shall use the
following symbols:

Ll — gt

" 4+ ,Un+1 R
o = vlt:tm 'U"+1/2 — —2____, at,vn+1/2 _ ’

T

,Un,l/4 = i_(,un+1 + " +,Un—1) = %(,Un+1/2 +,Un—1/2),

+1 __ 1
a“t,vn - Pt ZTUH - g-._(,un+l/2 _,U'n—l/Z) = %(ét,un-i-lﬂ + 5t,un—1/2)’
R TR ot S B A pe
O™ = — = ;(at,un+1/2 — B, 1/2)'

Now, we use weighted averages of the values of u;, and f at ¢,-1,
tn and ¢p41 to construct the following fully-discrete generalized dif-
ference scheme:

(Bl vn) + AP ) = (F5Y4, 0p), Vo € Vhe  (6.1.16)

This is an implicit scheme, being absolutely stable as shown below.
For readers familiar with finite difference methods, it is not difficult
to recall the counterpart of (6.1.16) in finite difference methods. (cf.
[A-27].)

Let us deduce the convergence estimate. Assume u is a smooth
solution of the continuous problem (6.1.3). By the Taylor expansion
we have

UMt = gt — (6.1.17a)
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where the remainder ry, satisfies the following estimate (cf. [B-27])

oy
ott

tn
Irall3 < C78 / * “zdt. (6.1.17b)

tn—1

So by (6.1.3a) we have
(Bet™ — 7, v) + a(u™4,0) = (fM1/4,0),

which gives by setting v = vy, that

(Bueu™, vh) + a(u™4, vp) = (rn, va) + (F™14, 0p).
Subtracting it with (6.1.16) yields the error equation

(B3 (u™ — ul), vp) + a(u™4 — 'u,;;”’l/“‘,'vh) = (rp,vp). (6.1.18)

Set |

u® — uff = (u" — Ppu") + (Ppu” — uf) = p" + €.

Then by (6.1.6) and (6.1.18) we have
(B€"™, vp) + a(em4 vp) = (rn — Byp", vp).
If in particular we choose vy, = H;éte", then
(Oue™, 1T} Bpe™) + a(e™V/*, I} Bse™) = (rn — Bixp™, T} Bse™). (6.1.19)

Let us deal with respectively these terms in the above equality.
For the first term on the left-hand side we have
(Be”, I3 Be™)
1

= 2—7((63"""1 —2¢" + ")l I (™! - )Y

1
27
= 51_7._[(3ten+1/2’nzéten+l/2) _ (a“ten—1/2,n;;5ten_1/2)]

(éten+1/2 - éten—1/2’n;;(a"ten+1/2 + a"ten—-1/2))

104 A o
= §;[Illate“+”2|||§— 1118:e™ 2721 13].



294 Chapter 6

For the second term on the left-hand side of (6.1.19) we have

a(e™V/4, 11, 8,e™)
_ ir,,/.,n+1/2 T* N +1/2Yy o fon—~1/2 pp* n—1/2y
.— 27. ll‘t\D ] LLhV I I.AI\O J..lnD
1 _ s
— o [a(e™ /2, e 1/%) — a(e V2, T;em*1/2)]

It follows from (6.1.13) that

1 o -

o Ia(en+1/2’n,’u}en 1/2) _ a(en 1/2’ n;t;en+1/2)l
— 1 .l n+1/2 _ n—=1/2 ¢ _n—1/2y
— 21' ]u:u: [+ ,]..lhc ’

_a(en—l/z, Hz(en+1/2 — en—1/2))l

 Fla(Bien, Ten=2) — a(en1/2, T ™)
Clle™ /2|1 |60
O(lle™ 2|2 + ||8se™+17/2|12 + |8, Y/2)B).

IN IA

For the right-hand side of (6.1.19) we have
|(rn — Bup™, i Bhe™)|
1 A 1 A
< Mlrallg + 19ueo™ 8 + ST Gue™ /218 + §IIH23te"“1/ 2113.

Hence, (6.1.19) results in

1,0a n 5 e
o= U118ee™ 2113 — 1118ee™ 21 3]

+§17_-[a(en+1/2’ ern+1/2) - a(en—l/2, H;en—I/Z)]

U™ 212 + 18 2|3 + 1™ /23 + a3 + 1 B1eo™
T ™23 + e /2 2).

IA
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Multiply it by 27, and sum it over n = 1,2,..+, N — 1 to obtain
1Bee™=1/23 + a(eN-2,TeM=112)
< |||5tel/2|”§ + a(e!/?, el/?)

+Or Z e Y213 + (|8, 1/2)2 + | Be™1/2)3
n=1

Hirnli§ + 8™ 3 + T Bee™ /2|3 + |ITT5 Bre™2/2)13).
(6.1.20)
Notice (6.1.17b) and

a(en—1/2 1-_[* n—1/2) > a“en—1/2”%’

N~-1 1 t’n+1 +
Z Ilaup"llg =72 Z / / pit(s)dsdt ”-
n=1 /" Jt—-1 n

" n=l
g+l 9 T th T
< 2 / lowlar < = [ oulddt < == [ et
7 Jo T Jo
Also note the equivalence of the norms |||« |||o and || ||o on Up. Then,
(6.1.20) leads to
N4 N—1/212 n N-1/2u2
[loee” “"“lip +lie Il
< C{IBe g+ 1e2E + 7 [ st

o [ el 3101+ 1)

n=1
Finally, by virtue of Gronwall’s theorem we have
18re™ =223 + (1N =123

N T
< O{18ie 213+ M2+ 7* [ e
T
h? / 2t}
+h2 | st}

This together with (6.1.10) validates the following error estimate for
the fully-discrete scheme.
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Theorem 6.1.1 Letu and u} be the solutions to (6.1.3) and (6.1.16)
respectively. Then the following error estimate holds:

utn1/2) —up 203

" T
< O{I(Pru = w218 + 184(Pru = un) V23 4+ 74 [

2 (ol + [ el + [ luefe)
(6.1.21)

Remark For the first term in the right-hand side of the inequality
(6.1.21), we have

(Pru — up)/?
1 1
= g(Phu0 —up) + §(l’hu1 —uj)

1 1
(Pruop — uon) + -2-Ph(u1 - uo) + -2-Ph('u0 - uk)

DN = DO =

Py (uo — uon) + %1’%(“1 —ul)/7 - ';'Ph(u}z ~u)/7.

The accuracy of the first and third terms above is determined by the
choices of upy and u}, and the second term is of order O(7) thanks
to the smoothness of the solution u.

6.2 Generalized Upwind Schemes for
First Order Hyperbolic Equations

‘The classical upwind scheme occupies a very important position in
the approximation of first order hyperbolic equations, due to its nice
stability and monotonicity. But this scheme has only first order accu-
racy and suits solely rectangular grids. In this and the next sections,
we construct a class of accurate generalized upwind schemes on ir-
regular networks, including the classical upwind scheme as a special
case.
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6.2.1 Generalized Upwind Schemes

Let Q@ CR? be a polygonal region with boundary 0f2. Corresponding
to a vector function a = a(z) € R?, z = (z1,22) € Q, we divide 9Q
into two parts

[ (0)-={z€dR:a v <0} (Howin) (6.2.1a)
{ (0 ={z€d:a-v>0} (flowout) (6.2.1b)

where v stands for the unit outer normal vector of 9.
Consider a mixed problem of first order partial differential equa-
tions:

[ Ou(z, t) +a- Vu(z, t) + oz, tulz, t) = f(z, 1),
1

ot
(z,t) € 2 x [0,T), (6.2.2a)
u(z,t) =0, (z,t) € (89)- x [0,T7, (6.2.2b)
u(z,0) = ¢(z), z € Q, (6.2.2c)

where V = ( 0 3‘?—); o, f and ¢ are smooth (scalar) functions; and
a is a vector function. If these functions are sufficiently smooth, the
prbblem (6 2.2) has a unique and smooth solution (See [B- 53])

Aa Q9 nifon ndd (7Y ~FO)
a8 uJ. 30 Ly we l.ua,bc a \._lua.ax- uniorm u;ausuxauuu .l.h = 14 f UL va.

Choose T} to be the barycenter dual grid relative to 7). Let P, be a
node of T}, (cf. Fig. 3.2.1) with neighbouring nodes P; (1 <i < 6), M;
the midpoint of ByP;, Q; the circumcenter of APyPP;y; (1<i <6
and Py = Py), and K}, the dual element surrounding Fp.

Recalling that P, is the polynomial family of degree r, let us
construct a finite element space

Vi = {vn : vn|g» € P, VK* CT}; vp =0, on Kp, for Py € (69)_}.

Its basis functions for an interior node Py = (w§°),a:2 )) of T are
taken as

1 (0)\¢ (0)ym—1 *
——(zy — T To— Ty ') z€K
vpy(z) = ¢ H(m “1)!( 1o ) 2 , P!
0, elsewhere,

(6.2.3)
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0<tI<m, 0E<m<

Due to the discontinuity of Vj, on the boundaries of the dual elements,
one can not apply the Galerkin finite element method on the entire
region Q. But it is feasible to apply it on a single dual element K, .
So we seek up(-,t) € Vj satisfying

/ [auh +a- vuh + a-uh]luhdw E / f’l)hd.’l], Uh € Vh- (6-2.4)
3t K,

Denote by v the unit outer normal vector of K}, , and employ
Green’s formula

/K* (a - Vup)vpdz
o (6.2.5)

then we can rewrite (6.2.4) as

/ auh'uhda:- / updiv(avy)dz
KPo ot K;’o

+/w oupvpdz + ;Lw (a- u)uh'vhds (6.2.6)
K}, 8K}

/  funda, vy € Vi

Kpy

Similarly as in (6.2.1), we can define (0K} )~ and (0Kp )+. For
z € OKp, , set

J lim uy(z'), whenz € (0Kp)-,
o' —o
o' EKp,
up (2) = hen o € (K
Hm wup(z'), whenz € (0Kp)+,
{ m’me}:
[ lim w(a'), whensz € (0K})-,
of = :
¢’ €Kp
uy, () = 4 ; ,
Um  up(z ), whenz € (0Kp )+.
m’z¢}ie
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They are referred to as the upwind and the downwind values of up(z)
at € 0K}, respectively. On the analogy of the classical upwind
scheme, we replace uy(z) in the line integral of the left-hand side of
(6.2.6) by u; to obtain

f O

, r r
—uypdz — updiv(avy)dz + ocupvpde
jK}’o ot ./K;o / K3

(6.2.7)
+ (@ v)ufvpds =/ fupdz.
8}'\’;‘,0 K}‘,o
1t follows from (6.2.5) that
- / updiv(avy)dz
K*

Py

i

/ (a-Vuh)vhda:—-/ (@ - v)upvpds
K% 8K}

Py Po
/ »*
K Po

- a - V)uy vpds.
/(ak;o)_( Jui

Substituting it in (6.2.7) yields a semi-discrete upwind scheme:

(a-Vuh)vhdm——/ . (a v)ufvpds

(aKpo)-i-

[ %vndm +f (@ Vup)vpdz

/K;O ot ./K},O

+ / oupvpdr + / (a-v)[uplupds (6.2.82)
K3, (0K 3,)-

= / fopdz, vy € Wy,
K;’O

where [up] = u} — u;, is the jump of uy, across (0K}, ). The initial
and boundary value conditions are

' up(z,t) =0, z € (00)-, (6.2.8b)
{ up(2,0) = ¢n(z), z €9, (6.2.8¢)
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where ¢, (z) is a certain approximation of ¢(z).
Equation (6.2.8a) can also be expressed in a symmetric form:

/ -Q:Thvhdm-i- / (a - Vuy)vpdz

u;"‘,’;‘,o w." vK}",o

s /K;O oununda — 3 /M% (la-v|—a-v)ulonds  (6.29)
=/ fundz, v, € V4.

K3, :

Various kinds of finite difference quotients can be used to further

discretize the time derivative %‘-th, such as forward difference, back-
aravrd dAiffaransa Aar Ovanl Nisrnlaan diffaransa T+ wrill ha llvotratad

WOkl QLTI TIIVT, Uk WAGIATIVIVUIOUIL UHLITITULVT, LU Wikl VU dludulavou

in Section 3 below that our scheme here leads to a classical upwind
scheme if the space dimension is one and V}, consists of step func-
tions. If on the other hand, V}, consists of piecewise high degree (> 1)
polynomials, then the convergence rate of the approximate solutions
increase accordingly, resulting in highly accurate upwind schemes.

6.2.2 Semi-discrete error estimate

In the equation (6.2.2a), we may assume without loss of generality
that ¢ = o — %diva > op > 0. In fact, otherwise we only have to
perform the transformation

1
w=oo+ sup |o(z,t)| + 5 sup|diva(z)]
(z,t)€N1%[0,T] 2 zent

to validate this assumption. Now, we define a bilinear form

a(u,v) = ZPO:[/K;O(G-VU)vdm
(6.2.10)

+ f  v)[uvd / d
(aK‘%)_(a v)[ulvds + ks, ouv w],
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where Y denotes the sum over all the interior nodes Py of T), and the

Po
boundary nodes on (8Q).. If the solution of (6.2.10) u = u(,¢) €
C%((0,T); H™(Q)) for some r > 0, then the imbedding theorem
guarantees that the jump of u across the inner boundaries [u] =
ut — 4~ = 0. Therefore, we may write (6.2.10) in a equivalent form:

(ut,v) + a(u,v) = (f,v), Vo€ L*(Q). (6.2.11)

In terms of a(u,v) the semi-discrete scheme (6.2.8a) can be written

Z / —-—uhdw+a(uh,'uh) =3 / fundz, Vun € Vi. (6.2.12)
Py ' KRy

By means of Green’s formula and
div(avp) = vpdiva + a+ Vo,
we have
/ax (a-v)v ds—Z/ w(a - Voup da:+/ vidivadz.

Hence
a(vh, vp)
= Z[l / (a-u)vﬁds—% / vidivade
Py 2 8K p, Ky

+/ a-v vhvds+/ ovidz
oy (& . Rdz]

= Z[% /(aK* (a- u)v,z,ds+2/ (a-v)vids

Po
+/ (a-v)(vff — vy )upds
oK) (vi — v

1 o -
+= [ (@) - 2wher + (o) ds
4 J(8Kp,)- ,

1 2 / = 2

- a-v)[vpl°ds + ovidel.

3 o). (@ e+ [ o ]
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- Notice
— =l
vhl(oKp )+ = Uk loky, s vhloKy)- = vk lox,-

Thus,

a(vh, V)

= 22[/8K,, N (a-v)(vf 2d.s+/ K (av)(vi)%ds
—/(aK_:,o)_ a: v)[vh]2d8+2/ guid ]

On the common side of K, and Kp

(6.2.13)

(0K3)+ = (KH,)=, (0KH,)— = (0K, )+.

Hence the first and second terms on the right-hand side of (6.2.13)
cancel out each other on the inner boundaries of the elements, result-

ing in

~ a(vh,vn)
1 2.0 L +12
= - : ds+ = : d
3 Jiony. la-v|(vf)*ds + 2 Jiony., la-v|(vy)*ds (6.2.14)
1
+= / la - v|[up]?ds + / gvide.
2% o % ),
But v} |(an)_ = 0, 80 a(vs, vs) is positive definite:
a(vn, vk) = Yo(llvald + llvalida), (6.2.15)

where o = min(oy, 3), [vsll = (vh, vs), and
Nonli3g = / la - v|[vp 2d3-+/ a - v|(vF)?ds.
b= [ ot [ ol

It is an easy matter to show the stability of the semi-discrete
scheme (6.2.8) by means of the positive definiteness of a(vp,vs) (cf.
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[B-60]). Now, let us define for u € H'(f) the Ritz projection Ryu €
Vi, determined by the equation

a(Rpuyvn) = a(u,vs), Yoy € Vp. (6.2.16)

Qin ala Y ia nAgitive dafinits +h
[ 4 v

inCe a\Uh,Vh) 18 yuuuu.vc GENnRiILe, S tz P &
unique. Moreover, if u(-,t) € H™+1(Q) (r > 0), then there holds the
following estimates (cf. [B-60]):

llu — Rpull + |lu — Rpull3q < Chllul|?, whenr =0,  (6.2.17)

(llu ~ Byull] < Ch"*+*/2|[u||,41, whenr > 1, (6.2.18)
where ||| + ||| is defined by
olll® = lloll§ + llvlloq + hz / (a-Vo)ldz.  (6.2.19)

D

Using the arguments in §5.1 we can prove the following error estimate
for the semi-discrete solution up(t) (cf. [B-60]):

t
lu=unlf+ [ lu - ual3nt

< C{il = gullZ + R H[l2, o + el + | el
— lll‘r ‘l"’ L ' ~ur ' n>=elir

where ||v||r+1 stands for the H"+1(2) norm of v(:, ¢).

6.2.3 Fully-discrete error estimates

For sake of simplicity, we assume o(z,t) = 0. So we consider the
hyperbolic equation:
ou
6t

subject to the initial and boundary conditions (6.2.1b) and (6.2.1c).
The semi-discrete upwind scheme is (6.2.12), but now

ale . Ty = flor t\ (m +\
w\wy) vuw J A\ o)y \Hy o)

(0.7
Wy 4 by

L XA

a(Uh, 'Uh)

= 3 /K* (- Vup)updz + /( . (- ){unlonds].

Py Py

(6.2.21)
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Take a time step size 7 > 0, and write u} = up(z,tn), f* = f(z,tn),
tn = n7. Using the backward differencing on the time direction yields
a backward differencing implicit scheme:

J/n ufvpdz + ra(uf,vp) = J/n(ug—l + 7fMvpdz, VYo, € Vi (6.2.22)

Theorem 6.2.1 Let u and u} be the solutions to (6.2.1) and (6.2.22)
respectively, satisfying uy € H™1(Q), uy € L3(Q), u(z,0) = ¢(z) €
H™Y(Q), and ul(z) = ¢n(z) € V. Then there holds the following
error estimate:

lfu(tn) — ukllo
in
< ¢ = nllo + CA™+1/2||@llpyr + T/o luee@)llodt (g 9.23)

s a1 1O ft".. PPN <
ChrTHE t). dt.

+ /0 lwe (E)]|r+-1d2

Proof Note u} — u(ty) = p" + €, where
p" = Rpu(tn) —u(tn), €" = uf — Ryu(ty).

It follows from (6.2.18) that

L4177 L

16"l < CH+ 12 u(t) |4
Also observe that

u(ty) = u(0) + /Ot"‘ ug(t)dt,

(utndless < Bl + [ st

Thus

tn
le™lo < Chr+1/2 (||¢”r+1 +/0 ”ut(t)“r+1dt). (6.2.24)
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Next, we turn to deal with e®. Write u} = (uff — ul™1)/7. It
follows from (6.2.22) and the definition of Ry, that
a(e™, vp)
= a(u} — Rpu(tn),vn)
= —(Beuf,vn) + (f* vn) ~ aultn), vn)
= (ut(tn) — Gpul,vp).

Hence
(Bse", ") + a(e™, e™)
= (ut(tn) — Rubou(ty),e") (6.2.25)
= (w? +wga en)v
wherg
Notice
e")+|(an)_ =0, a(e",€e") 2 0.
Qn 1y (R \ Xr0 ayrn
N UJ \\J ) V\l w w

le™lo < lle® Hio + Tlw] + whilo
noo 6.2.26)
<o+ 73 llwd + wilo. (
=1
It is obvious that
lelllo = lluh — Rau(0)|lo

< lluf - u(z,0)|lo + [lu(z,0) — Rru(z,0)jo (6.2.27)
< |lg = gnllo + CA™+ 72| @lrr1.

Also note )

ug(ts) — 77 (u(ty) — u(tj-1))

/ t—-t, ug (t)dt,
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wj = (I - Ry)Brut;)

=t [7 (1~ Row(t)dt.

vii-1
So we have
- j ‘ tn 2 [t
T3l +wdlo <7 [ lue@®lodt + OH /2 [ fug(®)lrandt.
j=1
(6.2.28)
Inserting (6.2.27) and (6.2.28) into (6.2.26) yields

1e"lo < 6= gulo+ CH™+12gfrsa +7 [ fuee(®loct

J0

in
+CR [ Juy(®) act,
: ' (6.2.29)
Finally, a combination of (6.2.24) and (6.2.29) leads to the desired
estimate :
lluk — u(tn)llo

S ”811”0 + “pn“() S ”¢ _-¢h“0 + 0hr+1/2”¢“r+1 (6230)
tn tn
+7 [ lua@)lodt + 42 [ fu(®)esad,

This completes the proof. . m

If we approximate the derivative in (6.2.12) by a weighted differ-
encing, then we have the following six-point difference scheme:
(uf, vn) + Ta(Buf + (1 — O)ul~1, up)

= n—1 n - n—1 (6'2'31)
= (U™ + 70" +7(1—0)f""u), Yup €V,

where 6 € [0, 1] is a parameter. In particular, choosing 6 = 1 results
in a Crank-Nicolson scheme:

(uf, vp) + Ta((u} + uft™1)/2,vs)
= (WPl +7(f"+ 271 /2,0), VYo, € Vi
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Theorem 8.2.2 Assume the following: } < 0 < 1; u(z,t) and u}(z)
are the solutions to (6.2.1) and (6.2.81) respectively; u; E Hr1(Q);
ug € L4(Q); u(z,0) = ¢(z) € H™(Q); and u)(z) = ¢n(z) € Vi.
Then (6.2.30) holds for the approzimate solution u}.

The proof of this theorem is analogous to that of Theorem 6.2.1,
and is left for interested readers.

6.3 Generalized Upwind Schemes for
First Order Hyperbolic Systems

In this section we extend the generalized upwind difference scheme
to solve positive symmetric hyperbolic systems.

6.3.1 Integral forms

Let Q C R? be a bounded region with a piecewise smooth boundary
0%, and u(z,t) € R™ (z € , 0 < t < T). Consider the first order
positive symmetric hyperbolic system:

((Ou(®,8) | 4y Tule ) 4 Ko Dule. d) = £z 8
ot TANE)  VUE b)) T BT, GUE, Y T J T,
) m=(m1,m2)eﬂ,0<tST, (6.3.1a)
(B = M)u(z,t) =0, z € 09, (6.3.1b)
. u(z,0) = ¢(z), z € Q, (6.3.1¢c)

where K(z,t) is an m x m coefficient matrix; A = (A1, Az); A; (i =
1,2) are m X m real symmetric matrices; B = 2 nAi; n = (ny,ng) is

the unit outer normal vector of the houndary HQ M = M(z,t) is an
mXm matrix; f(z,t) and ¢(z) are m-dimensional vector function. All
these matrices and vectors are given. We also assume the following
conditions:

M+ M7 >0, on 89, (6.3.2a)

2 ]
K+KT-%" %f—i% > ool, on , (6.3.2b)

i=1 4
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ker(B — M) + ker(B + M) = R™, on 89, (6.3.2¢)
where o > 0 is a constant, and
kerE = {v € R™: Ev=0}. (6.3.3)

Under the above conditions plus certain smoothness assumptions,
problem (6.3.1) possesses a unique solution (cf. [B-31]).
Define an operator L by

2
Lu= ZAi(w)%'- +K(z,t)u, €0, (6.3.4)
i=1 Zi
and its formal conjugate by
25 :
Lu= =) o—(4i(@)y) + K(z,t) u. (6.3.5)
i=1 ¢

For u,v € (H(2))™, we may use Green’s formula to get an extended
Green’s formula

(Lu,v)q = (4, L*v)q + (Bu,v)sn. (6.3.6)

Here and below we adopt the symbols
(wo)a = [ (wo)ds, (wo)on = [ (w0)ds.

Here the symbol (u,v) denotes the R™ inner product of u,v. In
particular,

(Lo,9)0 = (L + L)v,0)a + 3 (Bv,v)on. (6.3.7)

DN =

In terms of (6.3.6) we can write (6.3.1a) in an integral form:

(Qa%’”)n = (w, L*)q + (Bu,v)eq = (f,v)a, (6.3.8)
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6.3.2 Generalized upwind difference schemes

As in §6.2, we assume that Q is a polygonal region, that 7, = {K} is
a triangulation of 2, and T} = {K}, } is a barycenter dual grid. The
finite element space V}, is defined as in §6.2, namely,

- Vi = {vn: vnlk+ € Pr, VK €T}; vp =0on Kp for Py € (692)-}.

Since we are dealing with vector functions, we introduce V}, = [V},]™ =
Vi x -+ x Vi, (an m-multiplicative space). Employ (6.3.8) on each
Ky to get

0
;[(-gf‘,vh)l{% - (Uh,L*’Uh)K;O + (Buh’vh,)BK;',o]
()

= D (fivn)ky,,
Po

(6.3.9)

_ 2
where up, v € Vi, B = 3 v4;, and v = (v, v2)T is the outer normal

i==
vector of K}, . Assume that the m-order symmetric matrix B has
m real eigenvalues: A\; < Ag < -+ < A, that there exists a constant

g € [1,m) (dependent on K:-,o) and a constant ¢p > 0 (independent
of K ) such that
)\1,--',)\q < —c¢p, )\q+1,"‘:)‘m > co, (6.3.10)

and that there exists an m-order orthogonal matrix @ such that
B=QAQT, Q@"=Q7) - (6.3.11)

where A = diag(A1, <+, Am)-

Set wy, = (wh,++,wMT = QTuy or up = Quj. For each side
QiQir1 of K}, (cf. Fig. 3.2.1), write g; for the g validating (6.3.10),
and define the upwind and the downwind values of 'wi as

. the value of wi outside of Q;Qi+1, when1<j<g;,
(w)* = ;

a the value of w}; inside of @;Q;+1, Wwheng;+1<j<m,
(6.3.12a)
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the value of wf; inside of Q;Q4+1, whenl1<j<g;,

Iy~ =
(wh { the value of wfl outside of Q;Q;+1, wheng +1<j<m.
' (6.3.12b)
Since
[wn] = (fwp], - [wh])
= ((wa)* = (wi)™, 5 (Wf)* = (w)"),
we have
[un] = Q[wa]. (6.3.13)

Set |A| =diag(|A1},+ ;1 ml), and extend (6.2.9) to the system of
equations here, then we have a semi-discrete highly accurate upwind

difference scheme approximating (6.3.1): Find u; € V, such that
6uh
;D[(.—gt_’vh)}'{;’o + (A Vuy, ’Uh)K_;,o + (Kup, vh)K;’o
1 .
-5(QUAI = NQT[url vhdoxy | = So(f,vn)xs,,
Py ‘
Yoy, € Vi, (6.3.14a)
(B-M)up, =0, z € 69, (6.3.14b)
up(z,0) = @n(z), z € Q. (6.3.14c)

One can further approximate %’l by a proper difference quotient
to get forward, backward, or Crank-Nicolson fully-discrete highly ac-
curate upwind schemes.

6.3.3 Estimation of a bilinear form
Let us introduce a bilinear form

a(un, va) = Z[(A : Vu}uvh)x;,o + (Kun, vn) k3
- |

1 (6.3.15)
2@l ~ A)Q7unl, vr)ocy |
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o
ot
=t

By (6.3.7)

(4 V’Uha’Uh)K;,o + (K’Uha'uh).k’;,o

2 ]
- %((K +KT -3 "—g‘:;')’”h””h),{; + %(th,vh)ax;,o-
0

=1 ¢
So we have

a(vh, ‘Uh)

1 = 04 T
= 3 %K(K + KT - Z:l —az;)vh,vh)x;o + (QAQ v, vp)oky,
~(QUA} = M)QT[vn), vy, |-
(6.3.16)
It follows from the assumption (6.3.2b) that

1 Y
a(vn, o) 200D (v, vn)ky + 3 Y QT QAD, Th)oxcy,
Po

Po.
—(QTQ(A| = A)[h], Bn)oky, ]

-1 I
= op Z(”hvvh)}‘.';o +3 > (A, Tn)oxy,
Py Py

"'(('AI - A)[ﬁh]’ f)h)aK;',D]’

(6.3.17)

where 7, = Q% vp.
Let Q;Qis1 be a side of a dual element Kp (cf. Fig. 38.2.1).
' On 0;Qss1, decompose ¥, into a sum of #; and #;, where the
first g; entries of 7 are equal to the counterpart of U and the
last (m — g;) entries are zero, while the last (m — ¢;) entries of
o are identical to those of ¥ and the first ¢; entries are zero. So
@ = ¥ + 5. Also decompose A into a sum of A~ and AT, where
A= =diag(A1, -, Mg, 0y, 0) and A+ =diag(0, -+, 0, Agpr*+* Am)-
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Then, the second term on the right-hand side of (6.3.17) is equal to
- 1 1
J= / L (Adn, 5n) = =((A] — A)[dn], 5n)] ds
S5 s A ) = (A~ M)l )

(540,89 ~ 3 ((1A] = A) o], )

Py Q|Q1+
i—((lAi N)lowls ) = 7((1A] = )], )] ds
‘ (6.3.18)
But on Q;Qi+1

1,,. . e ey, 1 .
'Z'(A'Uha'vh> _(A 'Uh"Uh) +-2-(A+'U,T,'U;:'>,
1 R — fey e
=5 (Al = A)[Bn], B} = (A @ = 5;), 95 ),
1 1 e 1, . - o
=7 {(A} = A)[En], [Ba]) = (AT (5 — ), T — ;).
The sum of the left-hand sides of the above three equalities are

%[(A-a:f.vh )+ (A*aF, 5],

Hence

1
J= / A-5F
2;.;2,: Qch+1[( h h)

+ATG, ) + (A7 155, 5 )ds.
Notice that on the inner boundaries the first two integrals on the
right-hand side of the above equality cancel each other out, and that
on the boundary of 2 we have the zero boundary condition. Therefore
we have

J= 3 ZZ f (A5, 57 )ds + /a (M, 7)ds. (6:3.19)

QiQi+1

Write vo = min(ao, %) and

loallf o = (vn,vn),
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A EDIPDD
Po i

Then it follows from (6.3.17)-(6.3.19) that

(A~ foi, 7)de + [ (Mo, 57)ds.

i Qi1

o s VS o (e 12 . 112 /e 9 any
U\Chy Vh) < YOU[Yhll0,2 T iYAll0,60/" \U.0.2U)

This shows the positive definiteness of the bilinear form a(up,v).
Analogous to the proof in §6.2, one can obtain the error estimates

like (6.2.30) for semi- and fully-discrete approximations.

6.3.4 Some practical difference schemes

Consider the first order linear equation:

o_. ..
Ea%+a%§=0, 0<z<L,t>0, (6.3.21)

where a is a constant. Take a step size h = L/N and nodes z; = jh
(0 £ j £ N), then we have a uniform grid T}:

O=xo<nn< - <zy=0L

i

nnaa duasl hndes 2 7 4 l\
T 9) g4v

Then ch e o= {4
..I.J.I.G.ll., VIIVUUVUOU Wil v J+1/‘ \J

obtain a dual grid Tp:

h(i=01.... N—1)to
v (j=0,1,---,N—-1) to

q
J

0=1x < Ty <ZTyp < <IN-1/2 <zy = L.

The classical upwind scheme

Let the finite element space Vj, be composed of piecewise constant
functions relative to the dual grid. Obviously any u, € V}, has the
following expression:

up = un(a, ) = 3 us(thuf’ (), (6.3.22)
J

where

]-SjSN"la

1, z€[zj_1/2, %5412},
¢§°)(m)={ J=1/2%5+1/

L 0, elsewhere,
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17 T € [01 Ty 2]
W) = =
0, elsewhere,

0) (1, z€ [wN—l,/waN];
Yy'(z) =

0, elsewhere.

(6.3.23)
Evidently up(z;,t) = u;(t). Substitute (6.3.22) in (6.2.9), and
choose vp, = ¢§-°), then we have

Zi+1/2 Ou Tj+1/3 Oy,
/ -a——ﬁdm + / a—2de
zj_yys O 212 OT

~ 101l - o) us1(6) - u5(8)
+(lal + @)(ja(8) ~ us ()]
B (CERIRIORO)
+(la] + a)(uj-1(8) — u;(t))]
= 0. '

Take a time step size 7 > 0 and exploit the forward difference formula

dujt) upt' —wp |

prranly - ) Uj ~ uj(nT),
then we have
uwtl u? ~u?_
I L 4oL T’l=0,asa20, (6.3.24a)
Wt~ u®? ul , —u?
A A ’“T I =0,asa<0. (6.3.24b)

This is f)recisely the classical upwind scheme. The sufficient and
necessary condition of its stability is » = |a{r/h < 1 (cf. [A-27] and
[B-74]).
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A second order upwind scheme

Let the basis functions of V}, be composed of two groups of functions,
of which the first group is {qu(.o)} given in (6.3.23), and the other one

is {#{"} defined by

T~Zi ZTEI[Ti_1/2,Z; ,
¢§1’(a:)={ IR PP

0, elsewhere,

z, € [0,71),
) = { /
0, elsewhere,

=TI

4O(z) = - &N, T&[TN-1/22N]
{ 0, elsewhere.
An element of V}, is of the form
up, = up(z, 1) Z[uo, ) +u ()9S (z)].  (6.3.26)

Substitute uy into (6.2.9), choose vy = ¢§O) and w}(l), and approx-
imate %ﬂ by a forward differencing, then we have the following two

ot AL Antiatian

TOUPS O1 equaiions:
b

n+1 n n n
UO - Un: Un: — Ups a
/) 0j 0j 0j=1 , &, n _ . n -
+a 7 -+ 2(U1j U1j_1) = 0, asa > 0,
n+1
ulrt —ull ug ug; @
91 0 +a J+1h z + -2-(“?‘”-1 ulj) 0 as a < 0

(6.3.27a)

utFl oy, 6a 3a
[ "li_f.-'——ll - ﬁ(”ga ugj~1) + (“lg +uly_1) =0, a8a 20,
ulf —ul;  6a 3
1 . T —L - he (u0j+1 “03) (’u1,+1 + “1;) =0, a8a<0.
(6.3.27b)
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One may use the variable separation method to deduce the corre-
sponding amplification matrix:

___9'_7_._ — —ich __"ZZ - —igh
[1 (1 - ei7h) 2h(1e)]

R |

G=

where o = 2xl, (I = 0,%1,---), i= v/=1. It can proved that G does
not satisfy the von Neumann condition, since it always has an eigen-
value such that the lower bound of the absolute value of this eigen-
value is greater than 1, so (6.3.27) is absolutely unstable. But if we
instead use backward or Crank-Nicolson difference approximations,
then the resulting upwind schemes will be absolutely stable.

6.3.5 A numerical example

We use upwind schemes to solve the Riemann problem of Burger’s
equation:

Ou 10

——— e 2 — — o de
6t+26m(u) 0, —o0 < z < 00, | (6.3.28a)
1, asz <0,

u(z,0) = { (6.3.28b)
0, asz>0.

The classical upwind scheme leads to the equations:

Lt (6.3.29)

Uy S T CT I n Q.
{uj = uj —ru(u] —uj_;), asul >0,
j

= u® — rul(u?,, — U n
= u —ruf(ujy, — i), asuf <O.

where » = 7/h. The numerical solution is given in Fig. 6.3.1(a).
We observe that the shock wave is too flat and evolves too slow,
indicating a notable error. Fig. 6.3.1(b) depicts the numerical results
. of the second order Crank-Nicolson upwind scheme (cf. [B-60]). Now
the shock wave is steeper and its evolution is faster, very close to the
true solution. But there appear oscillations after the wave.

Remark If we keep working with only one grid 7}, and re-
place the dual element by an element K € T}, then our strategy of
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Au
\_‘
0 x
(a)
'A u
S —
0 x
(b)
Fig. 6.3.1

constructing the generalized upwind scheme still works and results
in some difference schemes called boxz schemes. Parallel results of
convergence and error estimates can be similarly obtained for these
box schemes (cf. [A-59] and [B-41]).

6.4 Finite Volume Methods for Nonlinear
Conservative Hyperbolic Equations
The finite volume method (FVM for short), combined with, e.g.,

the Godunov scheme (see Example 1 below) or the TVD scheme
(cf. [B-36)), has become one of the most popular methods for fluid
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computation in the last twenty years. In this section we introduce a
FVM for the following system of conservative hyperbolic equations:

6’113 +Zaf” —0) .7 = la"'ada (64'1)
where f;;'s are smooth functions of u = (uy,:--,uq). If we set F =
(fij)nxa and V = (3";—1, ey F{;—n-), then (6.4.1) becomes

ou !
TV F=0 (6.4.1)

An example of (6.4.1) is the Euler equation describing a one-dimensional
non—steady-state flow (n =1, d = 3):

p pu
u=| pu , F=| p+ pu?
ple + 3u?) pule+ 2 + 3u?)

where p is the density, p the pressure, 4 the velocity, and e the internal
energy. p, p and e satisfy a state equation p = p(p,e). Let @ C R"
be a bounded region. The initial-boundary value problem of the
conservative equation (6.4.1) reads: Find u(z,t) : Q x [0,00) — R4
satisfying (6.4.1) and

{ u(z,0) = wo(z), ze€Q, (6.42)
u(z,t) = ¢(z), z € oN.

Next, we consider the case of d = 1 and n = 2 to illustrate the
idea. Now (6.4.1) reads

‘Z"t‘ +V.F(u) =0, onQC R?, (6.4.3)

where F = (f1, f2)T. Let D be a subregion, e.g., a polygon, of Q.
Integrate (6.4.3) on D and make use of Green’s formula, then we have

ou

JvD uu

Mg+ / F.vds=0, (6.4.3)’
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where v is the unit outer normal vector. This is an integral form
of (6.4.3). The so-called finite volume method is precisely the dis-
cretization method based on (6.4.3)'.

Since (6.4.3) is a conservative equation, it is natural to expect, and
we shall try to ensure, its discretization to possess the conservative
property as well.

As before, we place a quasi-uniform triangulation 7j, = {K} on Q.
Suppose none of the triangular elements is an obtuse triangle. Denote,
by Ty the circumcenter dual grid of 7},. As in Fig. 3.2.2, let Py be a
node of Ty, P; (i = 1,2, - - ,6) the neighbouring nodes of Py, and Kp,
the dual element surrounding Py with vertexes @; (¢ = 1,2,---,6).
Choose in (6.4.3)) D = Kp as a control volume, and set { = nr
(7 > 0 is the time step size), then we have

/ Qﬁdﬁi‘/ F'ovds=0, (@ =Q1)  (644)
K3, Of 7oy ’ '

i=1

where the superscript n denotes the function value on ¢ = t,. Note
that Q;Qir1 is the perpendicular bisector of PoP.y;. So if we use
Y,i+1 to denote the unit outer normal vector on Q;Q;41 towards
P:. 1, then

=g VU

Foist = / F™. v i41ds (6.4.5)
QiQi+1 ‘
is the flux flowing out of K7 and passing through the side QiQir1.

Similarly consider the dual element K, 4 surrounding P;.;, then we
have the fiux out of K, | and passing through QiQir1:

. V3'+1,0d8.

Fiv1,0 =
! QiQi+1

Apparently
Fit1,0 = =Foi41.

Now we can write (6.4.4) in the form

n 8
/K —dz + g Fois1 = 0. (6.4.6)

e
n
o
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The time derivative is usually approximated by a forward (ex-
plicit) differencing. In the space direction, one often uses uf and
u to discretize (6.4.5) to obtain a so-called numerical flux. So let
the numerical flux be of the form

Fliv1 = [@iQixtlgoit1 (ud, ulyy), (6.4.7)

where go,;.1(uf,ufy;) is suitably chosen. Then we have the finite
volume equation:

Ut = of - 3 71991l

——90,i+1 (40 Uih1)s (6.4.8)
S’Po

i
where Sk denotes the area of the dual element K}, . We require
go,i+1(ug, ul, 1) to satisfy the conservative property

90,i+1(u0, uip1) = —gi+1,0(uy1, ug) (6.4.9)
and the consistency (cf. (6.4.3))
go,i+1(u; u) = F(u) - v,iy1. (6.4.10)

We also require go,i41(ug, ufl;) to possess a monotonicity, that is,

090,i+1 8g0,i+1
o > 2 < (. 4.1
Pl 20, St <o (6.4.11)

The numerical flux g ;41 can be determined by, e.g., one-dimensional
Godunov or Lax-Friedrichs schemes. In fact, if we define an z'-
axis along Py P,y with positive direction 1441, let any a point of
z € R? on PyP,;; correspond to ' = z - i+l € R, and set
w = w(z', ) = u(z,t), then gg ;41 becomes the numerical flux consis-
tent with the following one-dimensional equation:

ow 0
5 T 5 (F W) voip1) = 0. (6.4.12)

Example 1. Godunov scheme. Set fo ;1 = F(w) - 19441, and
define

g0,i+1 = foi41(w(0; up, Usr1; fo441)),

FAY mut
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where w(0; ug, Uiy1; foi+1) = w(z', t) is the solution of the following
Riemann problem

dw

0
ot + 5}57f0,i+1(w) =0, t>0,2'€ R,

, ug, whenz' <0,
(#',0) = Ui+1, whenz' > 0.

Here we require the time step size to be small enough such that the
-waves of the neighbouring Riemann problems will not interfere each

other. One may show that the Godunov scheme indeed possesses

nranertica (R 110\ (RA11\ {cf. B-1Q1)
properties e.4.0)-10.4.01 {ei. (S-19).)

Example 2. Lax-Friedrichs scheme. In this case the numer-
ical flux is defined by

1 1
90,i+1 = 5 (Moi+1F (ug) + voit1F (uig1)) — g5 (Uit1 — uo),
2 2X0,i+1

yit
where Ap 11 is independent of ug and u;41, and satisfies
Ao+l = Ai41,0 >0

as well as the CFL condition

>\0z+1“ —F. Uo:+1” <L

It can be shown (see [B-19] and [B-12]) that this scheme has the
properties (6.4.9)-(6.4.11).

Example 3 Suppose F in equation (6.4.3) is of the form
F = b(z,1) f(u),

where f: R — R is a smooth function and b(z,t) : R%x[0,00) — R?
a given vector function. Then (6.4.4) reads

+Z/ u™)ds = 0.

Kp, i=1 -Q|+1
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Set
b vds,

Bij = e

N lQiQHl‘ QiQi+1
f ﬁijf(ui+1), when :Bij <0,
1 Biif(uo),  when B;; >0,

.7:'0,14_1 |QiQi+1190,i+1 (uf, v 1)

Then (6.4.8) is precisely the upwind scheme given in §6.2. Clearly
when 7 is sufficiently small such that the CFL condition holds, the
upwind scheme satisfies the conditions (6.4.9) and (6.4.11). The con-
sistency condition is now valid approximately.

g0i+1 =

Remark 1 The FVM considered here adopts the nodes of T}, as
the center of the control volume, and hence is referred to be node-
centred. Actually a node of T}, is also a center of an element of Tj;. So
this FVM can as well be called cell-centred with respect to the dual
grid T}, Another strategy is to take a cell K € T}, (or K* € Tj;) as

the control center, and the vertexes of K (or K*) as nodes, resultmg

a FVM of cell-vertex type. (cf. [B-79].)

Remark 2 FVM can be extended to solve a system of equations
(d > 1). For instance, let us consider the case n = 1. (6.4.1) now

reads
du

Ou
— 4 —_— =),
ot + F(u) Oz 0

Since we assume that this system of equations is of hyperbolic type,
the Jacobian matrix A = F’(u) can be reduced to a diagonal form.
Accordingly, we can deduce this system to a system of scalar charac-

teristic equations:

aw kaw
o Y e

Now we can employ the FVM to each equation to obtain a numerical
flux on z-direction ([B-36]). Furthermore, in the two-dimensional
case (n = 2), one can similarly get the numerical flux on y-direction,
and to deduce a FVM on a rectangular grid.

=0, k=12,..-,d.



Hyperbolic Equations 323

‘Remark 8. A scheme satisfying (6.4.11) is called a monotone
scheme. There has been a great deal of research on the convergence
of monotone FVM (cf. [A-57], [B-40], [B-19] and [B-12] etc.).

Remark 4. In [B-97], FVM has been successful]y used to gener-
auae .l. VU BLHEIIJ.GS to Cc‘msﬁru(.mve quauruanera.l grms, Wnlcn na.ve
found wide applications in aerodynamics computations. (cf. [B-

43,44,75,80,92].)

Bibliography and Comments

[A-1,24] are among the earliest works for second order hyperbolic
equations. An abstract framework is constructed in [A-1]. [A-24]
deals with quasi-linear hyperbolic equations. The flrst section of this
chapter is based upon [A-24]. An extension of the results in [A-24]
to more general quasi-linear hyperbolic equations is presented in [A-
45,47).

The second and third sections of this chapter are devoted to the
study of generalized difference methods for first order system of hy-
perbolic equations, according in principle to [B-60]. Based on discon-
tinuous finite element methods ([B-53],[A-59]), high accuracy gener-
alized difference methods are proposed in [B-60], which differ from -
the usual discontinuous finite element methods in the following two
aspects. Firstly, the discontinuous finite element methods are now
used on the dual grid T} rather than the original grid 7}. Only in
this way, one may end up with an extension of the upwind scheme.
Secondly, an artificial viscosity, instead of the least square method
as usual, is used in the extension of the results from a equation to a
system of equations [B-41].

The high accuracy methods require further 1mprovements such
as: How to reduce the superfluous oscillations? And how to mod-
ify them for computing the discontinuous solutions (shock waves) of
quasi-linear conservative equations. It seems necessary to introduce
a proper diffusion term in the schemes.

The finite volume method was first used for computational fluid
dynamics in the early seventies, resulting in a great number of refer-
ences as well as software applications. §6.4 is only a rough introduc-



324 Chapter 6

tion to this topic. For details, please see the corresponding references
at the end of the book and certain journals such as J. Comput. Phys.
and ATAA Journal.



Chapter 7

CONVECTION-
DOMINATED

MNMILTETIQATNAN DDNART LI'ZNTIQ
D1 UOoLVULIN 'V bDLIILIVLID

Convection-dominated diffusion problems often arise in mechanics,
physics and other disciplines of applications. They are parabolic
(non—steady-state) or elliptic (steady-state) equations. There have
been many papers in recent years devoted to the numerical solution of
this class of equations, aiming at constructing schemes that are stable,
highly accurate, and suitable for small diffusion coefficients. Up to
now, the schemes have been mainly various kinds of combinations of
finite difference or finite element methods and characteristic methods
(cf. [B-26]). In this chapter, we introduce some combinations of dif-
ference or generalized difference methods and characteristic methods,
i.e., we use difference or generalized difference methods to discretize
the diffusion term and characteristic methods to the convection term,
resulting in various kinds of extensions of upwind schemes. '

7.1 One-Dimensional Characteristic
Difference Schemes

325
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Consider the following Cauchy problem of a one-dimensional non—steady
state convection-diffusion equation:

du ou 0% ‘ o
5?+b(z)55-y5:c—2- = f(z), z€R, t>0, (7.1.1a)
L u(z,0) = uo(z), zeR. . (7.1.1b)

We assume p > 0 is a constant, and mwin[b(a:)l is very large in com-
parison with u. Write

Y(z) = [1 + b*(2)]'/2. - (r12)
The characteristic direction with respect to the operator %‘tﬁ + b(a:)%g

18

r=r(g) = (-, 22
AERORTON

The directional derivative along 7 is

8 10 bz

57@) = @) 5 T (@) os (7.1.8)
Thus (7.1.1a) can be written as
2
W)-S% - ug}-‘; = f(z), s€R, t >0. (7.0.4)

Take a time step size At > 0, and place a grid on t-axis with
nodes t, = nAt (n = 0,1,-..). The characteristic direction starting
from (z,t,) crosses the straight line ¢t = ¢,_; at

Z =z — b(z)At. (7.1.5)
Natﬁrally we use the following formula to approximate the charac-
teristic directional derivative:

Ou ~ u(Z, tn) — u(Z, tn-1)
Vs YOG arr G
w(z, tp) — u(F, tn-1)

At )

(7.1.6)




Convection-dominated Diffusion Problems : 327

Correspondingly (7.1.4) is approximated by

u(z) — u~ 1z u™
@@ PG gy )

2 C22G a AG e (o 8L AT ALY AaTAS

essarily a node, we need to evaluate the approximate solution uy(Z,
tn—1). This is an easy matter for Galerkin finite element methods
or generalized difference methods. As for finite difference methods,
a linear or quadratic interpolation in terms of nodal values is often
adopted to compute up(Z, tn-1).

Tt remains to discretize the space variable. Since Z is not nec-

7.1.1 Difference methods based on algebraic interpola-
tions

Take a space step size h > 0 and nodes z; = ih. Noticing (7.1.5), we
set ¥; = x; — b;At, where b; = b(z;). Denote by u a nodal function
and u"(z) the piecewise linear function with nodal values 4}. Let
4" = u™(%;). Define the second order central difference quotient

Uiyr — 2uf +up,

72
Then, the simplest difference scheme approximating (7.1.1) or (7.1.7)
is:

= n_
61';0“!: o

YU 5l =fP, =04l n21, (7.18a)
At KOgzuy = Jiy t=0U, s y oz, L.0a
ud = up(z), i=0,%1,--. (7.1.8b)

This is an implicit characteristic difference scheme. One can use it to
compute u} iteratively, starting from the initial value u?.

Let u(z,t) be the solution to (7.1.1). Restricting it at the nodes
and inserting it into (7.1.8a) yield

U(.’L‘i,tn) - u(i"‘i,tn-—l)
At
where r? is the truncation error. A simple calculation gives

n_ (L+ bf) u*
i T T 5.2

~ pBsgu(@s, tn) = fP + 17, (7.1.9)

At + O(l|u(z, ta-1)l3,c0h), (7.1.10)
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(or O(llu(z, tn—l)“4,ooh2))

where %2?”; is the tangent-directional second derivative of u along
the characteristic line segment between (z;,t,) and (Z;,tp~1). When
u = 0, u varies linearly as 7. If in addition we assume f = 0,
then u becomes a constant along the characterlstlc llne. Hence in the
convectxon-dommated case, the second derivative 2 3;, is generally less

than & '52'!' and %ﬁ. Suppose b(z) is bounded: |b(z)] < K, then

I < = (1+K2 Atsupl |+Ch||u(z tn)llscos  (7.1.11)

where C is the general constant. Therefore, the order of the trunca-
tion error is O(At + h).

If we wish to obtain an error order O(At + k%), then we have to
use a quadratic interpolation. In such a case we naturally require

At = O(h?), as h = 0.

By virtue of |b(z)| €< K and (7.1.5), we know that, for sufﬁcxently
small At, Z; will lie in between z;—; and z;4;. So we may use uj~ 11,
u?! and u""1 to get a quadratic interpolation function u"~!(z) so

as to determme w1 (&)

—1/= 1 _ - 1 -1 e
u"H(Z) = 5% o} (u ?+11 +ul ) + (1 - o)l + ‘2‘01( ?+1 - “?—11%
(7.1.12)
where |
o = —b,‘At/h.

ohtain difforanca agniatian aa (71 8
LX)

o
covain & gluerence c\iqu.u L o i

8 now computed according ( 7.1.12), A sim-
hat he truncation error in (7.1.9) now reads:

Then we can gimilarly
inen can simiari

y C
that a7~! = u"1(3) i
ple calculatlon shows t

Irp| < o(At ald e ¢ 7.1.14
i< sw‘,‘,?| 372. sup flu(z, Mo )- ( )

Its order is O(At + h?).
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7.1.2 Upwind difference schemes

Once again consider the difference scheme (7.1.8a), where @' =

u™1(Z;), u"(z) is the piecewise linear function with nodal values
ul~!, and #; = z; — b;At. If b; > 0 and At is sufficiently small, then
Z; € [z; — 1,2;] and in such a case
' b At h - biAt
@7 = S+

So (7.1.8a) can be written as

1 n—1__ ,n—1

oy 4 4
ot L g = (7.1.15)

At

This amounts to approximating the convection term by a backward
differencing. Similarly, a forward differencing should be adopted to
approximate the convection term when b < 0. Therefore, the dif-
ference equation (7.1.8) based on linear interpolations is a kind of
upwind scheme. We recall that the usual upwind scheme takes simul-
taneously the differencing of convection and diffusion terms on either
(n—1) or n level, resulting in explicit or implicit schemes respectively.

A |P

Ln

tn-1

P B

Zi-1 v o} Zi+1

Fig. 7.1.1

Now we try to replace the explicit difference approximation (7.1.6)
by an implicit one. Let a grid be given as in Fig. 7.1.1, where the
nodes P = (zi,t,), A = (zi-1,tn) and B = (;,tp-1). If b; > 0, then
the characteristic line starting from P crosses the net line ¢ = 5,1 at
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P = (%;,ty—1) on the left-hand side of B. Let the cross point of PP
and the diagonal line AB be Q = (z/,t'). Take u4 and up as nodal
values to construct a linear interpolation along AB, and notice

[AQ| _[AP| _ h_
|QB| |PB] biAt
Then we have

biAt hoo biAt B per

UQ = T A AT AT RATYE T R ha ! +h+bA{7‘°l 0

Note |PP| = A2 + b2AL2 = At (cf. (7.1.2)). So it follows from
the similarity of AAPQ and ABQP that
biAt |BQ| _ |PB| = YAL

“h|PQl [PQ p2o

Thus
|PQ| = ¢hAt/(h + bAtL). (7.1.17)

Let us employ the following approximation instead of (7.1.6)
up — UQ
B(2) 2% ~ .

Substituting (7.1.16) and (7.1.17) in the right-hand side yields

n n—1
ou _ ul —uj P—ul

¥(a)g; ~ 5 + by A

Finally we end up with an implicit upwind scheme for b; > 0:

n 2,01 Py YL U

Ug Wy + b’ bt} hw“;—I - p'ézzu? = fzn' (71-18)

When b; < 0, the convection term on the left-hand side should be
approximated by a forward differencing.
For a steady-state problem

b(z) 32 ~ o = f(z), (7.1.19)
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a backward differencing should be adopted to approximate the con-
vection term when b; > 0, and a forward differencing when b; < 0.
Now let us consider the extension to multidimensional cases. Take
the following two-dimensional convection-diffusion equation as an ex-

ample: 5 5
% 0 2 5% A=, (7.1.20)
ot 1 (o)

a_
vL
where g > 0 and ||b]| = ||(b1, b2)}] 3> u. The character is now a curve

dw1 _ d.’b‘z _
Frie bi(z), Frle ba(z).

Place a (triangular or rectangular) grid on z-plane, and a uniform
grid on t-axis with a time step size At > 0. Assume that the char-
acteristic line at a node {%1i, T2j,tn) crosses the plane ¢ = £,_; at
point Z;; = (Z14,%o;). Evaluate ﬂ?j'l as an interpolation in terms
of certain neighbouring nodes of Z;;. Then one may perform further
discretization analogously as in the one-dimensional case. In partic-
ular, if a rectangular grid is used on z-plane, then the value of a;}"l
can be obtained by either a piecewise bilinear, or a biquadratic in-
terpolation. One may also approximate b;u/8z; (resp. badu/dz;)
along z1-axis (resp. zo-axis) as a one-dimensional convection term.
Another strategy is to use the alternating direction method or the lo-
cally one-dimensional scheme to reduce the two-dimensional problem
into one-dimensional problems along different directions, and then to
further discretize the resulting one-dimensional convection terms.

7.2 Generalized Upwind Difference Schemes
for Steady-state Problems

Let us considér a steady-state convection-diffusion problem:
—pAu+b-Vu=f, z€Q, (7.2.1a)
u =0, z € 09, (7.2.1b)

where @ C R? is a polygonal region, I' = 0 is the boundary of
Q, z = (x1,23), p > 0 is the diffusion coefficient, and b = b(z) =
(b1(z), ba(z)) is the convection velocity. By convection-dominated we
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mean 0 < 4 < [|blloo. In this section we extend, from another angle,
upwind schemes to generalized upwind difference schemes.

Py Pi

Fig. 7.2.2

7.2.1 Construction of the difference schemes

Place a suitable triangulation T}, = {K'} on Q, K € T}, being a trian-
gular element. Let {P;}}, is the set of grid nodes, where {P;}}, are
inner nodes and {P;}4/,, are boundary nodes. Use h(X) and p(K)
respectively to denote the maximum side length and the diameter of

the inscribed circle, and set h = 1] h(K). As usual we assume that

T}, is a quasi-uniform grid, namely there exist constants 71,72 > 0
such that

hK)/p(K) < 71y MK)/h 272, VK € T, (7.2.2)
Obviously we have 0, = | K = Q.

R EL

As in Chapter 3, we consgruct a barycenter or circumcenter dual
grid Tp of T},. For any node P; (cf. Figg. 7.2.1 and 7.2.2), let P,
(1 £ j < 6) be the neighbouring nodes of F;, M; the midpoint of
P,P;;, Q; the barycenter (Fig. 7.2.1) or circumcenter (cf. Fig. 7.2.2
where none of the elements is an obtuse triangle) of AP, F;;P;j41.
Connect successively My, @1, M3, Qs, -, Ms, Qe and M; to form a
polygon Ky surrounding P;, called a dual element. The entire dual
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elements constitute a new grid 7} = {Kp,,1 < i < M} on Q, referred
to as a barycenter or a circumcenter dual grid.
Let us introduce the following trial function space:

Un = {un(z) € C(Q) : up(z)|x is linear , up(z)|r = 0}.

A basis function ¢;(z) of Uy, is equal to 1 at the inner node P; and 0
at other nodes. So any up, € U, has the following expression:

N
up(z) = Y un(P)di(z).

i=1
The test function space V}, is chosen as the piecewise constant func-
tion space related to T}, subject to the boundary condition that
vp(z) = 0 on K} for any boundary node P; and any vy € Vj. Let
1i(x) be the characteristic function of K§,. Then {t;(z)} is a basis
. of V. Denote by IIj and II} the interpolation projectors from C(£2)
onto Uy, and V), respectively. Then for any u € C(£2)

N N
Ty = - u(P)ei(x), Thu = 3 u(P)Yu(a).
i=1 i=
Tt ig clear that TT¥h.(2) = 2/.{2) and consequently V. = anan{I1*4.
<4 1§ Cial SNaL L3, i\X) = Yi\Z) ant consequent.y Vi = Span2i;@n
¢n € Un}.

Set A; = {j : P; is a neighbouring node of F;}. For adjacent nodes
P; and P;, write I';; = 0Kp N 3K}5j, and denote by v;; the length of
Ty and by v4; the unit outer normal direction of I';; (viewing I'y as
a part of the boundary of Kp ). Define

Bij = /1:.3 b(z) - v;ds. . (7.2.3)

Then we can divide 0K}, into a flow in part and a flow out part
according to the sign of 5;;:
(0K3)-= U Ty (Flow n),
By3<0
JeA
(BK};‘).l. = U Ty (Flow out).

Bij>0
JEA;

(7.2.4)
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The following facts are apparent
Bij + Bji = 0, (7.2.5)

1Bis] < ClIbllooyss- (7.2.6)

Now we try to write (7.2.1) into a weak form. So we multiply
(7.2.1a) by vy, € V},, integrate it on €, and apply Green’s formula to
obtain

a(u, vh) + b(u, vs) = (f,vn), (7.2.7)
where

, \ LA ou . o o
a(u,vp) = — LvhU"j)joK' “(—9-1;(18’ (7.£.§)
j= Pj

N
blu,v) = }:vh(PJ) /ak* (b- v)uds —/ﬂuvhdivbdx, (7.2.9)

where v ig the unit outer normal direction of K% Py The key point
to construct a generalized upwind scheme lies in how to approximate
the line integral of the first term on the right-hand side of (7.2.9).
Write .

B}; = max(8y1,0), B = max(~Fj,0). (7.2.10)

Taking the upwind values leads to the following approximation:

/ (b vjuds ~ 3" {B3u(B;) - Bu(R)}. (7.2.11)

leA;

£

Let us use the following bilinear form to approximate b(u, v):

bn(u,vp) = th P)E{ u(P;) — ﬂﬂu B)} - /uvhdwbdw

j=1 leA;
(7.2.12)
Then we have a generalized upwind difference scheme: Find u;, € Uy,
such that

a(un, vp) + bn(un, vn) = (f,vn), Yo € Va. (7.2.13)
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This is equivalent to

N

3" a(di, vj)ui +th (1, %5)ui = (f,45), 1< F <N, (7.213)

f=1 1=1

where u; = uy(F;), and

alginv)=- [ " s (7.2.14)

b (is ) = E{ 363 —,337}551}—/1(* ¢idivbdz, (7.2.15)
Py

leA;

where d;; is the Kronecker delta.

7.2.2 Convergence and error estimate

Write the error as
u—up = (u—IHu) + (Tpu — uy). (7.2.16)

The first term on the right-hand side is the error of a linear interpo-
lation, satisfying
lu = Mpully < Chlula. (7.2.17)

To estimate the second term, we note that by (3.2.24) and (3.2.46)

a(tin, Ihan) 2 allanl}, Van € Un, @ >0, (7.2.18)
la(u — Theos I G0 ) < Chlulol@all . @ € U, (7.2.19)
1@\ = 354, LpUn ) S CAUZI UL, Yh € Un. 219

Next we turn to the estimation of by (up,vp). First we rewrite it
as

uh,vh Z/ Hh,'u'h ""vh b- u,)ds—/ \ uh'uhdivbdw,
j=1 8K Pj KPJ-

(7.2.20)
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where v; is the unit outer normal vector, ITfuy, € Vj, and (TIfup)*
is the upwind value of ITju, € V}, across the boundary aK}“,j. As in
§6.2, we may further express by (up,vy) as

N
b (up,vp) = Z{/K* (b- VHZuh)vhdw+/(‘aK; ) [T up]up (b - Vj)ds}
)~

j=1 Pj

- / upvpdivbde,
K3,

(7.2.21)
where [ ] denotes the jump value across the boundary, and we note
that VII up = 0 on Kp. Comparing it with (6.2.82), we find
that bp(up,vs) here turns out to be a(up,vp) there. So actually,
the upwind difference scheme (7.2.13) uses the generalized difference
method to discretize the diffusion term, and the discontinuous finite
element method to discretize the convection term in (7.2.1a). If we
assume

—divb(z) > 00 > 0, (7.2.22)
then it follows from (6.2.15) that 4
a(tin, T Gn) + by (G, TGn) > oflnll?, Vi, € Un. (7.2.23)

Notice
(u - pu)(P) =0, as P = P;, B,

Thus by (7.2.12) we have
b (u — Mpu, M) = — /n (u — Tyu) I @pdivida.

This results in the following estimate

PR

|on(u = pu, I} Gs)| < Chzi'u,ig“ﬂh"o. (7.2.24)
Now let u and up, be the solutions to (7.2.7) and (7.2.13) respec-
tively. Then the subtraction of these two equations leads to an error
equation: '
a(u — up, IEn) + bp(u — up, I} Gp)

= —(b(u, T @) ~ by (u, TLian)).

lllll

(7.2.25)
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It remains to show the error order of the right-hand side. To this

end, define a function

_J 0, asz <0,
H(‘”)"{ 1, asz > 0.

Then we have

Hu(Py) — Byu(R)
(H(Bu)u(P;) + (1 — H(Bj))u(R,))Bii

Ji

b v(H(Bu)u(Fy) + (1 = H(Bj))u(P))ds

Since I'y; = 0K5 NOK} , the integral along I'y; in the summation on
the right-hand side of (7 2.12) appears twice with opposite normal

directions v. Write such two terms together to obtain

(on(By) = on(R) [ b vAH(Bu(Bp) + (1~ H(B))u(P)}es.

So we have
bh(u V)
= —Z >~ (wn(Py) —vn(R))
J =1I€A;
b v{H(Bu)u(F;) + (1 — H(Bj))u(P)}ds
- / uvpdivbdz.
0

Similazly by (7.2.9) we have

o) = 130 S n(E, )= wn(R)) [, b-vude

J-l leA;

- L uvpdivbdz.

(7.2.262)

(7.2.26b)
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Subtracting these two equations yields

b(u,vp) — bn(u, va)

= lv V‘ 'L]L P,) — Vel f 1) b.yIH A 1\(L -~ _P_\\
2 L, L,\ A AR -/I"- [SER Vg [ VAN \*J7/
j=lieA; il
( H(Bj))(u — u(B) }ds.

As in the deduction of (3.2.46) one can show that

lb(uv Hzﬂh) - bh (U: H;ﬁh) I

_ _ 7.2.27
< Ofblochlublanh, Van € U, (7:2:27)

By the positive definiteness (7.2.23), the continuity (7.2.19), the
consistency (7.2.27), and as in the error estimation in §3.2, one can
easily prove the following theorem.

Theorem 7.2.1 Assume that b satisfies (7.2.22), that b € H'(Q) x
HY ) N L®(Q) x L®(Q), that f € L*(Q), and that the solution u
of (7.2.1) belongs to H*(Q) N H}(Q). Then, there holds the following

error estimate:
flu — unlls < Chjula.

Remark The above theorem requires that b satisfies (7.2.22).
But this is not an essential restriction. In fact, if necessary, we can
always validate (7.2.22) by performing the following transformation
wt

7 = ue’t, w =g+ %Idivbl.

7.2.3 Extreme value theorem and uniform convergence

First let us have a look at the signs of the coefficients in the gen-
eralized difference equation (7.2.13). In Fig 7.2.3, AP,P;P; and
AP, Py P; are two adjacent triangle elements, and Q and Q' are their

barycenters (or circumcenters) respectively. Write Kq = AP,P; P
and Kn: = AP;PyP;. Let m;, m;, and my be the three midpoints

<2l RS RIS g TV TTEy TiNg, R T MY VAAT Vaaa 3 AN
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P;
01’ 6: 7
Pk‘ 0!;' ms Q aij Pk
m;
149
P;
Fig. 7.2.3

of the sides of Kg, and let 6;;, 9¢J,
the elements.
Let us try to evaluate

6; and 6] be the inner angles of

If i ¢ A;, then it is obvious that
a(¢i, ¥;) = 0.
On the other hand, if i € A; and ¢ # j, then
a¢i / 3¢,
a(di, ¥;) = — ~—ds - ——ds.
(®i,%3) -/8K;’,jﬂKQ Hov oK} NKg OV

Apply Green’s formula on Am;@Qmy to get

f d¢,, f O; f
- ——ds —ds = Vivds.
/HK;‘,jnKQ ov mhm.uay 8= -/my,m.-p' divds

Note that ¢; is actually an area coordinate on AP;P;P;. Hence ac-
cording to the expression of area coordmates by rectangular coordi-
nates, the length of V¢; is

|P; P|/(28q), (Sg being the area of Kq)
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and it is perpendicular to PJP,C, pointing towards P;. v is a unit
vector perpendicular to m;my (i.e. to PiP;) and pointing towards
Pj. Therefore we have

/ a¢t -5, 48 = ]PL—“’—PkI Ll 08 6;; = ~Eien,..
JaK,, NKq v © 4Sg 883 5 ot80s;-
Similarly

oy P

So, for i € Aj but i # 7, we have
aléi, ¥;) = —H(ctg(%j + ctgbly). (7.2.28)

- Ectggl

In tha rnaa af 7 = n 1o = A wo n y
il (e case ol ¢ 1.e. @ = @4, We u 1’8 Iormu n t

quadrilateral ijng to obtain

a¢ o4
-/P_;ms Ov - mp Py o Ov ¢
p|PeFi| | B P

WP [P T
_ WRPIRE o il

45q
(ctghi; + ctgby).

cos 6;

SIS

Recall that 6;; and 6; are two inner angles of the element Kg, of
which the vertexes are not P;. Thus we have

- 9945 =L
a($s, %) /8 "B ds = lezA(ctg9¢+ctg0,) (7.2.29)

Now we assume T}, is an acute triangulation, namely there exists
a constant €9 > O such that any inner angle € of an element of T},
satisfies @ < T — €. Then none of the angles appearing in (7.2.28)
and (7.2.29) is greater than T — €g, and hence

{ a(¢i, ¢;) <0, when i # 4,

o (7.2.30)
| a(di,¢;) > dp >0, wheni=yj. :
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To evaluate by (¢, ;) we first note that by (7.2.15)
by (i, %) = 0, when ¢ and j are not adjacent, (7.2.31)
bu(s> 05) = 3 B - /  ¢ydivbdz 2 0. (7.2.32)
leA; Kp

When i and j are adjacent but not identical we have

baldi, i) = —Bj —./m ¢idivbdz
Py
=~ / b vds — ¢idivbdz.
(0Kp,)- Kp,

Notice that for a quasi-uniform grid T}, the area S'j"nj of K j';j is of

order h?, that is, there exist positive constants c; and oy such that
a1h? < Sp, < aph?. Thus for sufficiently small h

0 < ba(di¥5) < aoh (o > 0). (7.2.33)
We also observe that by (7.2.15) and Green’s formula
N
S bu(i ) = 3 Byt - / _ divbdz =0, (7.2.34)
i=1 leA; Kp,

Now we are ready to study the extreme value property of (7.2.13)
or (7.2.13)". Set

Qis = a(
ij \

-

i W;) + by (i, y), by = (f ).

NG vl

Write (7.2.13)' in the form

N
Za,-ju,- =bj j=12,---,N.
j=1
It follows from (7.2.28)—(7.2.34) that if T}, is an acute triangulation
and h is sufficiently small, then a;; < 0 for i # j, a;; > 0, and
N
Yay20,1<j<N. (7.2.35a)
j=1
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Observe that (7.2.29) remains to be true even if one of the neighbour-
ing nodes of P; is on the boundary. But (7.2.28) is valid only when
i € Aj and F; is not a boundary node. This term vanishes if F; is
indeed a boundary node. These observations imply the existence of
dp > 0 and jp such that

N
> aijo > do. (7.2.35b)
i=1
Hence, the extreme value theorem of difference equations (cf. [A-27]
and [C-7]) gives

2B lui| < Cl@ﬁlebal (7.2.36)

Since up(z) is a piecewise linear function, furthermore we have (cf.
[A-17])

Theorem 7.2.2 (Extreme value theorem) Let T}, be an acute trian-
gulation, and let b satisfy the conditions of Theorem 7.2.1, then

oo < Cmasx (7, 4s). (7:2.37)

By the properties of the matrix A = (a,,) mentioned above, we
also know that A~! is a non-negauve nonsmguxar matrix ({9-93})
So if the right-hand side term f and the boundary value g are non-
negative, then the difference solution is non-negative as well. Thus
the difference solution will not have unnecessary oscillations.

Next let us turn to the estimation in maximum norm. Let u
and up be the solutions to the convection-diffusion equation and the

difference equation respectively. Use the triangular inequality to get
lu = vnlloo < llu — TMaulloo + |[TThu — uplo- (7.2.38)

Take a fixed p > 2 (2 being the dimension of the plane), then by
virtue of the Sobolev imbedding theorem we have

llu — Mpulleo < Cllu — Mhull1p.

It follows from the interpolation approximation theory in Sobolev
spaces ([B-17]) that
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Thus
lu = Maulleo < Chlulzp. (7.2.39)

To estimate the second term of the right-hand side of (7.2.38), we
notice that ITpu — up satisfies the following equation

a(pu — up, I} ¢5) + bp(HMpu — up, IR b5) = 1y,

where
r; = a(nhu - U, n;’:¢.7) + bh(nhu — U, H;‘i(p])

—(b(ua II;;QSJ) - bh(u, Hﬁ¢j))~
A combination of (7.2.19), (7.2.24) and (7.2.26) leads to an estimation

of r;:
Ir;] < Chlulz.

Thus in terms of the extreme value property (7.2.37) we have

[Thu = uplloo < Chlula. (7.2.40)

Connecting (7.2.38)—(7.2.40) yields (cf. [A-17])

Theorem 7.2.83 Under the assumptions of Theorem 7.2.2, the fol-
lowing mazimum estimate holds for any p > 2

lu = unlloo < Chlulzyp. (7.2.41)

7.2.4 Mass conservation

Consider a conservative equation:

{ —pAu+V(bu) = f, inf, (7.2.42a)
( u=0, on 011 (7.2.42Db)
The corresponding generalized upwind equation is

a(un, ¥5) + bn(un, ¥5) = (f,45), (7.2.43)

where
Oup,

a(up, ) = — / =5, 9%

8K},
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ba(un, ¥5) = 2[ luh(PJ Jzuh(Pl)]
leA;

Integrate (7.2.42a) on Q2 and exploit Green's formula to obtain

0
;/89(_‘1'-6% +b-vu)ds = "/!; fdz. (7.2.44)

Here the left-hand side is the mass “flowing out” of { through the
boundary 6%, and the right-hand side the mass out of the source f.
Therefore, the equation (7.2.44) describes a mass conservation. Next,
finding the sum of the difference equation (7.2.43) gives

N ;) N

< f Uh 3 S [ b TE A N (1 — ET(A.Weild
L./ IJl U\"TL‘/ (7] Vl-l-l\le’)UJ T\.l- Ll \PJ‘I}U‘JU#
j=170Kp, ov j=1'Ta

mdlenar man hlia S me Lmssandamine mn dlaa almecrn ~m ...J.'.-. | A
ULLICL LIL Lilc lllllel ULuliualioy, DU LIS avuve cyuauliv i1 OECOINIES,
8uh
. _B—V—ds + Z b v[H(Bij)ui + ( Biy))ujlds
oay, ryjeon; YT
= fdz.

(7.2.45)
This is precisely a discrete mass conservation law.

7.3 Generalized Upwind Difference Schemes
for Non—steady-state Problems
In this and the next sections we discuss generalized upwind differ-

ence solutions of the following non—steady-state convection-diffusion
problem:
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%E=uAu—b-Vu+f,_w€Q,0<t5T, (7.3.1a)
u(z,t) = r€Tl=00,0<t<T, (7.3.1b)
u(z,0) = uo( )s z €9, (7.3.1c)

where z = (z1,32), 4 > 0 is the diffusion coefficient, b= (b1 (), b2(z))
is the convection speed. Usually u = u(z,t) stands for the density or
the temperature, and f(z) some kind of source.

7.3.1 Construction of difference schemes

As in §7.2, we place a triangulation 7}, and a dual grid Ty on Q,
introduce a trial function space Uy, and a test function space V}, and
define the following bilinear forms:

N
ou
aluon) == 3 on(F) /mj psds, (7.3.2)
' N
b n(Pj b. ds — divbdz, 7.3.3
(uyvp) = ]z=:1 (J)AK;j( v)uds /nuvh ivbdz ( )
N
w( o) = S on(Py) 2 {Bhu(B) - Bru(R)) - / wvpdivbdz,
j=1 leA; o
(7.3.4)
where
«B;; = ma'x(:@jho)v «Bﬁ = ma*x(_ﬁjl,o), (7.3.5)
Bij =/ b(z) - vijds. . (7.3.6)
if
A weak form of (7.3.1) is: Find u € C([0, T]; H}(2)) such that
(Z,0) + afu,) +bwo) = (0), v HY@).  (73)

A semi-discrete generalized upwind difference scheme for (7.3.7) is:
Find up(-,t) € Uy such that

(%’l,vh) +a(un,vh) + ba(un,vn) = (f,vn), va € Vb (7.3.8)
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Choose a. time step size 7 = T/N and the nodes ty = k7 (k =
0,1,--+,N). A fully-discrete, explicit, generalized upwind difference
scheme is: Find uf € Uy, such that

((uf — ub=1)/7,08) + auf Y vp) + ba(uf ™" 0n) = (F,n),
Vo, € Vp. (7.3.9)
In particular, choose vy, as a basis function 9; of V4, and set
Bl = (uf —ub~1)/7.

Then we have (cf. Figs. 7.2.1 and 7.2.2)

—ub
/ Bufdz= 3 p—Fmmet— ﬂ j 'YJl - Z {Bfiuf™ = B ™)
IEA,' ' -’ ‘El\j
- / uh"ldivbdw+ / fdz,
K;.j K;j
(7.3.10)
where «y;; is the length of T';. The initial value u{ satisfies .
(uh, ) = (uo, 95)- (7.3.11)

Let us introduce the symbol uﬁ’a =guf +(1-Outl(0<0<),
then we can define a more general weighted scheme:
(gtuﬁa vp) + a(uk,ﬂ’ vp) + bh(uk’aa vg) = (f,vn),
Vo, € V. (7.3.12)
This corresponds to a backward difference scheme if § = 1 and a
Crank-Nicolson scheme if § = % We remark that the difference equa-
tion (7.1.8) now can be written as
(B, vn) + a(uf, vn) + ba(uf ™t vn) = (£,va),
Yoy, € V. (7.3.13)

Remark 1 Baba and Tabata ([B-3]) proposed a upwind finite
element scheme, which can be written in our symbols as

(Bouk, 15 as) + a(uh?, ag) + by (ub, TT50,) = (F, TTEay),

A7 34 (4 (Y24
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Vay, € U, (7.3.14)

Remark 2 In order to simplify the computation of the differ-
ence schemes, one often replaces 8; by II%d;, and (a,uh 1 up) by
( Btu v). In such a case, we have

(I3 0uf ™ 9) = S, (uf — uf ™)/,

where Sp, is the area of Kp,.

7.3.2 Convergence and error estimate

In this subsection, we consider the case that T} is a barycenter dual
grid. Taking v, = IT}up in the semi-discrete scheme (7.3.8) yields

9 ' . .
-é-t-[lluhl“g + a(un, T up) + bp(up, Tius) = (f, Oiug), (7.3.15)

where (cf §5.1)
Ilfunlll = (un, TThun). (7.3.16)
By §3.2, there is a constant o > 0 such that
, a(up, Thun) 2 aluslf. (7.3.17)
It follows from (7.2.26a) that
b (up, I3 @R) = Z )" (@n(Py) — @n(P))-
j llEAj .

[ b v B Bun(B) + (1 - H(Ba)u(P)}ds

- /n unTL} Gpdivbdz.

Evidently

b Ja
|bn (un, T} G )| | ) (7.3.18)
< Cilbllol@nlillunllo + Calldivblleoll@n llollunllo.
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Here we have used the equivalence of |TI}@x]lo and ||@nllo (cf. §5.1).
By virtue of (7.3.15), (7.3.17), (7.3.18) and the e-inequality we have

o}
5z lllunlllg + aolualf < Cllualg + I713), (7.3.19)

where ap > 0 is a constant. Note that |||us||jo and [lup|lo are equiv-
alent, view ¢(t) = |||us|||o as & unknown function, and integrate the
above inequality, then we have

2 t 2
lun(®)lE +eo [ funfat

t
< o(IiB+ [ If13es), o< e s

Therefore the semi-discrete so n
initial value and the right-hand side.
Now we turn to deal with the error of the semi-discretization.
Write .

, U — up = pp + €p, (7.3.21)
pr = u — Ilpu, ey = IIpu — up,
Then e}, satisfies

0
('aftz}"'vh) + a(en, vn) + bn(en, vn)
= (Inus — ut, vn) ~ &Pk, vh) + (On(Tav, va) — b, vp)).

, (7.3.22)
Take v, = II}ep, and employ (7.2.19), (7.2.24), (7.2.27) and the e
- inequality, then we obtain an inequality similar to (7.3.19):

o .
szlllenlll§ + colenl? < Ollenll§ + A¥|ulf + A%juql?).

Integrating the above inequality leads to another inequality analogous
to (7.3.20):

len1B +ao [ lentiitas

\ , (7.3.23)
< or(IetiE+ [ lBdt+ [ lu®lid).
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Connect (7.3.21)-(7.2.23) and note €} = 0, then we have the following
error estimate for the semi-discrete solution:

t
Ju—unl+ [ u - ualfat

. ¢ ¢
< Chn? uz-l-/ u2dt+/ ug|3dt).
< OR(jlullf + [ luffde + | fulide)

Next we turn to deal with the fully-discrete scheme. Choose § = 1
in (7.3.12) to obtain

((ul}cl - uﬁ—l)"'_l’vh) + a’(uﬁ’vh) + bh(uﬁ’ 'Uh)
= (f,vn), Youp € Vi

As before, we only need to estimate eﬁ = Ipuf — uﬁ, which satisfies
the equation

(Bsek, vn) + aleh, vn) + bn(ef, va)
= (Tyuf — uf,vp) + ([T (B — uf), vp)

(7.3.24)

(7.3.25)
+a(—pf, vn) + (br(TIauk, vs) — b(u*, v4))
= R, + RS, + R§, + Rl
Let v, = H’,‘;eﬁ. Then _
|RE,| < CR2|uflallebllo < CRA(llef g + [uf13), (7.3.26a)
\R,| < Crilufillollebllo < CR2(lleflI? + lulid),  (7.3.26D)
|RE,| < Chlulolelly < O(Pleflf + e 2h2[u3).  (7.3.26¢)
It follows from (7.2.27) that
|REx| < ChluFlalekls < C(Elefl} + e 2R u*(3).  ~ (7.3.26d)

To estimate the left-hand side of (7.3.25), we note

1 1, . "
~(ek, Thek) — ~(ef ™" Tiek) + a(ef, TWiek) + bn(ef;, ITier)

v

v
JERTIS

1 -
~Illek1113 = =lllekllollleklllo + colefl?

—(lllek I = ek~ 1118) + colehl}.

B,



350 Chapter 7

Choose ¢ sufficiently small such that the sum of the coefficients of
lek|? in (7.3.26¢,d) is less than g, then there exists an y > 0 such

that
1

A orinkimz 11112 k2
gz IekI13 ek 118) + ek 7320
< CR¥(|leblI3 + 1wk + [uf3 + lufl3).

Find the sum with respect to &, notice the equivalence of |||e}|||o and
llekllo, and note k7 < T and €) = 0, then we have

Theorem 7.8.1 Suppose u € C?([0,T); H*(R)), then the backward
difference solution {u}} satisfies the following error estimate:

max, lu(te) - vl < Chllulz,, (7.3.28)

where
{ X; = C([0, T}; Hz(ﬂ)) N C([0,T}; L*(2)),

| (7.3.29)
llullx, = lluller qo,rym2e0) + llullo2o,ryiz2@))-

7.4 Highly Accurate Generalized

=2aJ 3%

Upwind Schemes

The generalized upwind schemes introduced by now are all of first or-
der accuracy. In this section we combine generalized difference meth-
ods with higher order upwind schemes in Chapter 6 to construct a
clags of generalized upwind schemes for convection-dominated diffu-
sion equations, which, in principle, can reach arbitrarily high order
accuracy.

7.4.1 Construction of the difference schemes

Again we try to solve (7.3.1) and keep all the assumptions on the
coefficients and the solution region there. Asin §7.2, we assume T}, is
a quagi-uniform triangulation, and T} a barycenter or circumcenter
dual grid. Here and below, the meanings of the symbols are the same

a8 in the lagt section unless otherwise stated. For mmnhmhr we onlv

88 VALT LGV DULVALEL WRAMUUL UULITL TV AOU DURUUNLY L VA DAAiprAIVAVY VWU Ulddy
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construct linear element scheme. Extensions to higher order elements
are self-evident.
As before we construct a trial function space

Valle) [T POV SIS ~m

Tr e FUON o a (o) ~ -...1-. —m
(36) P Up\T )|k 18 1iN€aT V.3 € Lp and up|r = vj.

o far L)
Up = 1Upl&); €U

For each inner node P;, there is a basis function ¢;(z) of Uy, which
equals to 1 at P; (cf. Figg. 7.2.1, 7.2.2), and equals to 0 at other
nodes. A function uy € Uy has the expression :

N

up(z) = Y un(P)i(z).

i=1
The test function space relative to the dual grid T} is given as

{vn(z) : vp(z) is piecewise constant on T¥;

vy, vanishes on Kp when P, is & boundary node}.

For j =1,2,:-, N, the basis function v;(z) is chosen as the charac-
teristic function of K. Let ITy and II} be the interpolation projec-

tors defined in §7.2. Then for any u € C(2) we have

N N
Mhu =) u(P)¢i(x), Mhu =Y u(Py)y;().
i=1 j=1

Let up(-,t) € Uy (0 < t < T), the approximation solution of
(7.3.1), satisfy formally

/ [auh ~ pAup +b- V(Hhuh)]vhdw —/ fopdz, vy € V.

ot
(7 41)
In terms of Green’s formula we have

—u/ Auy - vpdz = —/.L/ ‘Uhd.s. (7.4.2)
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- As in Chapter 6, we apply Green’s formula to the convection term in
the following fashion:

K b V(HZuh)vhdw

| (7.43)
= — [ (@up)div(bun)d / b v(Tup)vnds.
) N

Denote by (IT}up)* and (IIius)~ the upwind and downwind values
(cf. §6.2) of IT}uy, across the boundary 0K }!.j. Then, it follows from

V(ITiup) = 0 and (7.4.3) that

/K  (Thun)div(bup)ds
5 (7.4.4)

= b-v)(IThu,)~ds + b v)(MEuy)tds.
/wx;,,)_( )([Tjun) /(8K;j)+( )Miun)*d

Next we replace II}uy in the second term on the right-hand side of
(7.4.3) by (IIus) ™, and substitute (7.4.4) into the first term to obtain

[ bV uwdz~ [ (b-0)[Muslonds,  (7.45)
Iy, J(oK},)-

where
[[Thun] = (Iun)* — (TThun) ™
Finally, inserting (7.4.2) and (7.4.5) into (7.4.1) yields a semi-discrete

generalized upwind scheme:

dup
/;{ a—vhdw

"
Py

Oup, : '
= OUh ds — / b V)T uplupd / da.
| ,u/aK;j 5y U 8 o (b V)[IT}up)vpds + ks fopdz

Pj)“
(7.4.6)
Let us introduce the following bilinear forms:
a(uv)——iv (P)/ égd (7.4.7)
Ur) == 2 lEy) [ g8 A,

j=1 i
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b(u,vp) Z/ (b Vu)vpdz
j=1

(7.4.8a)
CS un(B) [ b vuds— [ uondiveda,
j=1 J&Kpj Y
N
b (up,vp) =Y, /( o . (0 V) [Hhuplvnds. (7.4.8b)

Then, the solution u to (7.3.1) satisfies

(%’Uh) + a(u,vp) + b(u,vp) = (f, vp), Yuu € Vi, (7.4.9)

(7.4.8) can be written as
Oup, '
(W,'Uh) + a(un, vh) + bn(un,vn) = (f,vn), Yop € V.  (7.4.6)

Remark 1 If we adopt a higher order finite element space Uy,
and a corresponding polynomial function space Vj on T (cf. §3.4
and §3.5), then V(IT}u) # 0, and (7.4.8b) should be modified as

b (un, vn)

Z/ b V(IT up vhdw-t-Z/ (b v)[I}uplvpds.

(8K3,)-
(7.4.8¢)

Take a time step size 7 = T/N (N is a positive integer), and the
nodes t; = k7 (k = 0,1,---,N). Use uh for the approximation of

u(z,k7) and introduce the symbols uh’ = 0uf + (1 —0)ui™ (0 <
6 < 1), then a class of fully-discrete generalized upwind schemes
approximating (7.3.1) is:

Beuf, o) + a(ul®, vp) + by (ub® vp) = (F,0n), Von € Vi (7.4.10)

This leads to an explicit forward and an 1mphc1t backward scheme as
# = 0,1 respectively:

(Beuk, vn) + a(ul1, vn) + ba(uf~1 vp) = (f, ), (7.4.11)
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(aug,vh) + a(u)‘kl:a'uh) + bh(ulkz:s'vh) = (f,vn). (7.4.12)

Remark 2 It should be pointed out that the schemes (7.4.6)
and (7.4.10) are slightly different from (7.3.8) and (7.3.12). The
techniques in the previous section result in only first order accuracy
schemes, while schemes with arbitrary orders can be deduced by the
methods in this section by choosing U}, as higher order element spaces.

Remark 3 As in §6.3, one may extend the methods in this
section to systems of convection-diffusion equations by introducing a
viscosity term (cf. [B-60]).

7.4.2 Convergence and error estimate

As in §7.3, we once again assume that —%divb > op > 0 and that '
T} is a barycenter dual grid. By §3.2, there exists a constant ag > 0
such that

a(@n, I Gk) 2 aoll’f&h”%, Vi, € U, (7.4.13)
Noting (6.2.15), we have a constant 9 > 0 such that
b (vh, vn) 2 Yo(llvnllf + lvnl3a)- (7.4.14)

) LI B TP (NP NS & SRS 1. X « (SRS LI A S Ay . T AN U \ m_
LIrSt We need to evaluate the dilerence oI 0(u, vp) and Op(U,vp). 10
this end, we observe that according to the approximation procedure
of the convection term

N
ba(wyon) = -3 /  Mudiv(bos)de
j=1"Kp,

N
+Z/ b v(Iu) tupds,
j=1 aK;’j

where (II1u)* stands for the upwind value across the boundary 6K By
Subtract it from (7.4.8a) to get

b(ui Uh) — by, (U, 'Uh.)

N
= -3 f (u — Miw)vn(Py)divbde
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N
+ / bv(u — u(P;))vy(Py)ds
2l fory ., 010 = B (B
b - (ITfu)t P;)d
+ /(ax;j)_ v(u— (i) *)on(Py)ds]
= Iip+ Ipp,

where
N
Il =3 / . (u = TTju)on(Py)divhda|
j=1 KPJ'
=| /ﬂ (u - H;‘,u)vhdivbda:]

< Cl|divbllsohlul1||vsllo,

N :
= 303 [ b vH )~ u(By)

J=1leA;
+(1 = H(B;1))(u ~ u(P))]va(P;)ds.

The above integral line T'j;'s are the sides of Kp,. If

along I';; we have

[ b vl () (u - u(P)
+(1 = H(B)(u ~ u(P)ln(P)ds
= - [ b H G- u(E)

e r
+(1—H

So we have

N
In= 3 5 (P - u(R) [, b

355

(7.4.15)

(7.4.16a)

(7.4.16b) .

I € Ay, then

TH(Bj1)(u — u(Py)) + (1 = H(Bjn))(u — u(F))]ds.
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Similar to (7.2.27) one has
[2n| < Clblloch|ul2|@rl1, vh = Iitn, Gn € Un. (7.4.17)
Summarizing, we have a constant C' > 0 such that
b, T ) — b, T30)] < Chlulallal.  (7:418)

After the above preparations, we readily obtain an estimate like
(7.3.28) for the fully-discrete backward difference solution:

- <(C 4.19

535, ax_[lu(ti) - ukllo < Chllullx,. (7.4.19)
Narmanle 4 TFT. 34 an onrtba turiananlatia dthan +tha anliitian Af
AVGLIIAAL D E  LL J-h lﬂ Ll Muuc Vllallsulavlull, Vi1TIl LIY DUVLuLIVIL VL

the backward upwind scheme enjoys an extreme value property as
well as a uniform convergence.

7.5 Upwind Schemes for Nonlinear Convec-
tion Problems

The above introduced generalized upwind schemes can be extended
to elliptic and parabolic differential equations with a nonlinear con-
vection term. The key point is to employ Osher’s split technique of
nonlinear functions. Retaining the previous symbols, we consider a
nonlinear elliptic equation:

{ ~pAu+V - F(z,u) = g(z,u), z€QCR? (7.5.1a)
u=0, zel =080, (75.1b)
where F(z,u) = (f1(z,u), fo(z,u)) is a smooth function on IR,
satisfying

F(z,0) =0. (7.5.2)
Multiply (7.5. 1) by v, integrate it on a dual element K} F;» apply
Green’s formula, and sum it over j =1,2,.--, N, then we have

a(u,v) + blu,v) = (g,v), (7.5.3)
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where v and v satisfy (7.5.1b), and

N
= Z[u Vu » Vudz — p./ ——-’uds] (7.5.4)

j=1 JKp
N
b(u,v) = -Z/ F(z,u vudw+§:/ F(m wvds. (7.5.5)
j=1
Write F as “ 8F (s, 1)
Flz,u) = /0 =t (7.5.6)
Denote by Pj; the midpoint of two adjacent nodes P; and F}, and set
u OF (Pj, @) _
Bi(w) = /0 max(O, -——(-a-é—?——— - Vj{)du, (7.5.7)
- % OF (P, 4
By (u) = / max(0, ———(-aii-l vj1)da, (7.5.8)

where v;; is the unit outer normal direction of I'y C 0Kp,. For
up, € Uy and vy, € Vi, we introduce a bilinear form

N
by 'l.z..‘m.) = Z‘m. P.) Z "’V,:lr -.t(’ll.z. )) —_— T(GE(PI\)] {759)

YA Y

where «;; is the length of I'j;; Up is the piecewise linear element
space on T}, satisfying Uy, C H}(Q); and Vj, is the piecewise constant
function space on T}, subject to the zero boundary condition on 8.
Then, a generalized upwind difference scheme approximating (7.5.1)
is: Find uy, € Uy, such that

a(Up, vg) + bp(up, ve) = (9(z,up),vp), Yon € V. (7.5.10)

This is apparently a generalization of Scheme (7.2.13). For a dis-
cussion of the monotonicity and convergence of (7.5.10), we refer to
(B-85].

For a non—steady-state diffusion equation with a nonlinear con-
vection term:

%ﬂ — pAu+V - F(z,u) = g(z,u), (7.5.11)
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we have the following upwind difference scheme:
(&u,':,vh) +a(uy®, vn) + bu(up’, vn) = (9, up®),om),  (7.5.12)

where u = fuf + (1 - 0)uf~1, 0 < 0 < 1. (7.5.12) stands for a
forward exphc1t scheme when 6 = 0, and a backward implicit scheme
when 6 = 1.

In order to construct highly accurate upwind schemes, we rewrite
(7.5.11) as

6t uAu+b(a: u) - Vu = g(z,u), (7.5.13)
where
T _ (8fL Ofs
b(m,u) - (—a'?a u ),
o 8f1 | 8
§(z,u) = gla,u) — (F-+ awz)
Define a(u,v) by (7.5.4), and
> [« >
b(u,v) = — V(vb)dz + / (b v)uvds.
= =t

m1 PRSI VR 4 4 [> 3 VT [N U ' n 1 / N - NI
1nen we can write \I-O..lt)} ln a weaxK 10orimn: rinda ’U«kx, I) [ ULLU,.( j;

H}(f)) such that

(%1:"”) +a(u,v) + b(u,v) = (g,v), Yv € H}(Q). (7.5.14)

In order to construct a upwind scheme, we ﬁrst discretize the time
direction to get

(atuk lav) +a(uf1,v) + b(uknl:”) = (§(z,u*"1),v). |
Then set (cf (7.4.8b))
(U=t vy) = Z /m bz, ut~Y) - UlIub~Yupds.  (7.5.15)
Pj '
So our task is to seek uh € U, such that

(Beuk, vp) +a(ug‘1,vh) +bh(uh L) = (3(z, u; ~1),up),
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Yo, € Vi, (7.5.16)

The stability and the convergence of schemes (7.5.12) and (7.5.16)
have not been studied yet.

Bibliography and Comments

The paper [B-21] of Courant et. al. is the most fundamental work
on the numerical solution of hyperbolic equations. [B26] combines
characteristic methods with finite element, or finite difference, meth-
ods, and constructs a kind of upwind scheme on rectangular net-
works for the convection-dominated diffusion equations. Since 1977,
Tabata and others have published a series of papers studying upwind
schemes on triangular networks (cf. [B-3,83,84, 85] and the references
therein). They employ linear ﬁmte elements to dlscretlze the diffu-
sion term, and upwind difference schemes to discretize the convec-
tion term. Dong Liang ([A-17,18]) uses linear generalized difference
method to deal with the diffusion term, and upwind schemes to con-
vection term. Besides the methods discussed in the second section
of this chapter, Dong Liang also proposes another class of upwind
schemes based on some monotonic schemes, which is similar to some
methods appearing in mechanics literature (cf. [B-80]). A class of
highly accurate upwind schemes is obtained in [A-28] and [B-61] by
approximating the diffusion term by higher order element generalized
difference methods, and the convection term by highly accurate up-
wind schemes. We remark that the methods resulted from the linear
case of this class of schemes are not identical to those in §7.2 and
§7.3. [B-85] is among the few papers discussing nonlinear convection

terms. Finally, we observe that if the diffusion coefficient y = 0,

tham tha athnada t+hia shantar naaulé +tha Aifaw thada fan
Ullcll u]-lc Au.UuuUuB lll Hlllﬂ u‘ayucl J.Uﬂu.ua .ll.l. ul-l.c u‘llclcll\dc lllculluuﬂ LVL

hyperbolic equations.

Problem 1 Extend the results to a system of convection- domi-
nated diffusion equations on higher dimensions, e.g., on two-dimensional
regions.

Problem 2 Extend the results to higher dimensional, nonlinear,
convection-dominated problems.



Chapter 8

APPLICATIONS

The first six sections of this chapter are devoted to the applications
of generalized difference methods to elastic mechanics, fluid kinetics,
electromagnetic fields, coupled sound-heat problems and long wave
equations. The last section discusses the hierarchical basis methods
for difference equations.

8.1 Planar Elastic Problems

Under certain conditions, one can regard the study of an elastic body,
at. an equilibrium state subject to an outer force, as a planar elastic
problem. Let  be a planar region occupied by the elastic body, and
I’ = 99 its boundary. There are three groups of state variables: the
stress tensor o = (0131, 022, 012)7, the strain tensor € = (€11, €22, €12)7,
and the displacement tensor u = (u1,ug)”. Assume the elastic body
is homogeneous and isotropic. Write V = (3‘1—1, g‘m—z), denote by A\, u >
0 the Lame constants, and set

_(8/6z 0 /o=,
E(V)—( 0 9/8m 8/39:1)’

A+2u A 0
A= A A+2u 0§,
0 0 B

361
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then o, ¢, and u satisfy the following three equations (cf. [A-26,16]):

e = ET(V)u, (strain — displacement relation) (8.1.1)
E(V)o + f =0, (balance equation) (8.1.2)
\ o = Ag, (stress — strain relation) (8.1.3)

where f is the body force.
It is an easy matter to deduce, from Green’s formula, the following
general Green’s formula:

. /n oTET(V)udz + /n (B(V)o)Tudz =, /6 n(E(u)o)Tuds, (8.1.4)

where v = (v1,12)7 is the unit outer normal vector of I'.

Suppose I is divided into two parts I'y and I';. A displacement
boundary condition u = @ is given on I'y, and a surface force condition
E(v)o =P onT;.

To solve the above system in practice, one usually eliminates some
variables in (8.1.1)-(8.1.3), then solves it for the remaining unknowns,
yielding accordingly the displacement method, the force method or
the mixed method. In the sequel, we describe the generalized differ-
ence methods based on the displacement and the mixed methods.

8.1.1 Displacement methods

Eliminating ¢ and e in (8.1.1)-(8.1.3) yields a system of second order
elliptic partial differential equations of the displacement u:

~uVu — (A + p)grad div u = §, (8.1.5)
where divy = S—'—‘-L + gg—g Multiply (8.1.5) by v € (HE( )) , integrate

it over 2z € smri make use of Green’s formu 'hn we have an

o
WO 88y Seals LGS WeT VL @A W AVLIAA ALY VAATAL VYU AdUY O Cwdkd

equation in an integral form:

a(u,v) — /an (ugu—u + (A +u) (divu)u)vda = (f,v), (8.1.6)
where

|pVuVy + (A + p)divy - le'U] dz. (8.1.7)

Yy

o~
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~ On the boundary )

ou . T £
45 + (A + p)(divu)y = (E(v)o)” = P.

Thus, we obtain a variational form of (8.1.5): Find u € (H(R))?,
ulr, = up such that

a(u,v) = (f,0) + /r Puds, W& (HB(®)). (8.1.8)

Fig. 8.1.1

To construct a generalized difference scheme, as before let Tp =
{K} be a triangulation of Q such that @, = |J K is an approxima-
KeT),

tion of . Let T} = {K}5} be a dual grid of T}, usually a barycenter
or a circumcenter dual grid. In the sequel, we assume T} is a circum-
center dual grid. Fig. 8.1.1 shows all the triangular elements in 7},
with vertex Py, as well as the dual element surrounding P. Let Up,
be a piecewise linear vector function space related to Tj. The interior
nodes of T}, are numbered by 1,2,:-., Np. The boundary nodes are
divided into two groups: The nodes where force conditions are given
are numbered by Ny +1,-:+, N1, and the nodes bearing displacement
conditions by Ny + 1,---, N. Denote by a scalar function ¢;(z) the

basis function of the node ¢ € {1,2,+-, N}, then a function up, € U,
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satisfying u|p,, = 0 can be expressed as

M
un(z) =Y uidi(z),

i=1
where u; is the value of up(z) at the i-th node z;, and T'gy is an
approximation of I'y. Choose V}, as the piecewise constant vector
function space corresponding to T}, subject to the boundary condi-
tion that vy, € V} vanishes on the dual elements corresponding to the
nodes ¢ € {Ny +1,--+,N}. Let ¢; = (¥;,4;)T be the dual basis
function. The generalized difference equation reads: Find u, € U
such that up = ug on I'gy and

a(uh"&j) = (f"‘ZJ') + /Fm P"/;.fds: j= 1,2,--+, Ny, (8'1'9)

where I'y, is a certain approximation of T'y. ‘

In fact, we can as well work out (8.1.9) in a more direct manner.
So we integrate the two sides of (8.1.5), apply Green’s formula, and
replace u by up, to obtain

- /6 ” [u%%"+(,\+u)(divu,,)y]ds= /K fda. (8110)

Py
This is the generalized difference equation at the node Py. Let P
and its adjacent nodes be as in Fig. 8.1.1. We now compute the
integrals on the left-hand side of (8.1.10). We divide the first inte-
gral into a sum of integrals on the perpendicular bisector segments
Q1Q32,Q2Q3, - ,QﬁQl. For instance, the integral on Q1Q)2 looks like

5z B Z2ds = —p[Q1Qal(up, — up, /lPonl (8.1.11)

Similarly, the seecond integral of (8.1.10) is divided into a sum of
integrals on the fold line segments M7 Q1 My, MaQo M3, - -+ , MgQg M.
For example, on M1Q1M,,

-—(/\+/,a)/1 - 2(div'u,h)lzd.s

—p

=~ v (@) PR + o

Voyal ITD
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where
divun(Q) = 24k (0,) + 2422 )
0z, Oz
= '2'5% (z2(P1) — 22(P2))u1 (Po) + (z2(P2) — 22 (Py))us (Py)

+(z2(Po) — z2(P1))u1 (Po)] + 2_;'6 (21(P2) — z1(P1))uz(Po)

+(21(Po) — 21(P2))uz(P1) + (21(P1) — z1(Po))uz(Py)].

(8.1.13)

Here (z1(P;), z2(P;)) are the coordinates of the node P;, and Sg, is
the area of the triangular element containing the circumcenter Q.

Equation (8.1.10) is a generalized difference equation for an inte-
rior node. On the boundary I'g, the displacement g is given. Extra
equations are needed for the nodes on I'y;,. As an example, suppose
a node P, € I'y;, and its neighbouring nodes are as in Fig. 8.1.2. In
such a case, we still have equation (8.1.10), and the line integrals on
the left-hand side are computed by use of the formulas (8.1.11) and
(8.1.12). '

So we finally end up with a system of (2NV1) equations like (8.1.10)
together with the displacement boundary condition on T'gy.

Compared with the (piecewise linear) finite element method, our
generalized difference method here enjoys the same convergence or-
der, and less computational work. One can also employ high order
generalized difference methods to approximate planar elastic prob-
lems. In practical computation, it might be more convenient to use
a barycenter dual grid instead, since it is more accurate and can be
extended directly to three-, or arbitrary n-, dimensional problems.

8.1.2 Mixed methods

Work out € = Bo (B = A™!) from (8.1.3), insert it into (8.1.1), and
couple it with (8.1.2), then we have the following system of equations
of o and u:

Bo — ET(V)u =0, (8.1.14)

E(V)o = f, (8.1.15)
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where we have replaced f by —f, and

1 A+2u  =A 0
=—L1 | A a2z 0 |, (8116
wA+p) | g 0 40\ +p)

In this case the displacement condition remains to be an essential
boundary condition, while the force condition is a natural boundary
condition. The space U} of the approximate displacement and the
corresponding test function space V}, are constructed as before, with
nodal basis functions ¢;(z) and ¢;(z) respectively.

The three-dimensional tensor oy's belong to a piecewise linear
(vector) function space My, related to T}, of which the vertexes of
T}, are the interpolation nodes and the nodal basis function is &(z).
The corresponding test function space N}, is the piecewise constant
space with respect to T}, with nodal basis function 7;(z). Define (cf.
[A-26])

a(o X u, 7 X v) = /n{'rTBo'— T BTy —~ O'TET(V)’U}dSC.

Then, the generalized difference method for the equations (8.1.14)
and (8.1.15) is: Find up € Up, un|ry, = uo and oy € Mj, such that

a(on X up, 7 X9;) = (f,9;) + : Pipids, j=1,2,-+-,Ny. (8.1.17)
th

Once again, we have a more direct way to deduce the generalized
difference equation. Integrate (8.1.14) and (8.1.15) respectively on a
dual element K} and apply the following Green’s formulas:

[ B Vupde= [ (Br)Tunds,

JKp, . JoK},

/K (B(V)on)Tda = /6 “ (B(v)on)Tds,
then we have

/"éo Bopdz — /ax;,o (B(v)) upds =0, (8.1.14)'

»*
Py
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(E(v)on)Tds = / fda. (8.1.15)
/01{;,0 Ky
Suppose Py and its neighbouring nodes are as in Fig. 8.1.1. Then
the double integral on Kp can be divided into a sum of integrals on
the intersections of K} and the adjacent elements respectively. For
example, we have

/ Bopdz
APoPJ,PgﬂK;,o
1
= EB{(SPOMIQI + SP0Q1M2)(°'h(PO) + a'h(Ql))
+SP0M1Q1°'h(M1) + SPleMzb'h(M2)}’

where S4pc denotes the area of a triangle AABC. Similarly, the line
integral on 0K}, can be divided into a sum of the line integrals on
the perpendicular bisectors. For instance,

E)Tupds
Q1Q2

= (BE))" (@i Malun(@Q1) + [@1Qalun(Mr) + [MQ2lun(Q2))/2,
v=PRP/|RP)|.

So we end up with a system of (5N7) generalized difference equations
of the forms (8.1.14)' and (8.1.15)', plus the displacement boundary
conditions on ['g;. Like the finite element method, the generalized
difference method based on the mixed variational form can obtain
both the displacement and the strain simultaneously.

Q
(o

In 1967, A. M. Winslow [B-99] applied a difference method on ir-
regular networks to a two-dimensional quasi-linear Poisson equation
representing an electromagnetic field. He allows the network to be
a planar curvilinear network, but each node can be the vertex of at
most six triangular elements. In 1990, G. Zhao and Y. Liu [A-60]
extended Winslow’s method to three dimensions, and carried out a
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numerical experiment for a tetrapolar lens. Their numerical result
matches well the theoretical prediction. They adopt cylindrical co-
ordinates. Then they cut the region, for different angles 8, to get
some (r,2) planes D;’s, on which is placed a Winslow triangulation

aneeilfonnnl aida Qe nnind mnecnn nnn asmabussnéad ladeeennan

Wlbh Cur Viiiii€al BLU.UB IDPUD].C:L COIlE8 al'tc COIsiIucCiea oeiweell dlf‘
ferent D;’s, referred to as a “secondary network” (corresponding to
the dual grid). This paper claims that this method has a bright
future in the computation of photoelectronics. We describe in this
section in a united framework the generalized difference method for
three-dimensional Poisson equations. We only present the results for
the Poisson equation in Cartesian coordinates, which can be directly
extended to cylindrical or spheroidal coordinates, and even to the
second order elliptic equations with variable coefficients. As in the
puuuu Case, one cail muu}mxy establish the convergence and the error
estimate, which are omitted here.

Let O CR3 be a polyhedral region, and T}, = {K} a tetrahedral
grid of {2 such that different tetrahedral elements share no common

interiorand @ = |J K. Asin the case of planar triangular elements,
KeTy,
we can analogously introduce a tetrahedral volume coordinates. Let

the vertexes of a tetrahedron K be P; (i = 1,2,3,4). Then for any
point P € K the volume coordinates (A1, A2, A3, /\4) are defined as

Vi
Ai = 7 i=1,2,3,4,
where V is the volume of K, and V; is the volume of the tetrahedron
formed by the point P and the base triangle facing P; (cf. Fig. 8.2.1).
Apparently A; + Az + Ag+ Mg =
If the Cartesian coordinates of F; (i = 1 2,3,4) are (z;,yi, %), and

the volume coordinates of P are (L ) ). then the Cartegian

LLR2L0 CLRLDIRALGVSS VL & 4T ‘, 0, J1 VesTad Vel WRAUTSIRas

coordinates (z,y, z) of P can be expressed by the volume coordinates

as
z = A1 + Az + A3Z3 + Aizy,

Y = Ay + Aoy + Asys + Mgy,
Z = A121 + Aaze + X323 + A2,
L=2A1+ A2+ A3+ Mg

(8.2.1)
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On the other hand, the volume coordinates can be expressed by the
Cartesian coordinates as
A1 1 | X1 Ve Zu T — x4
A | = &7 | Xoe Y Zn y—us |, (8.2.2)
A3 X3 Y Zy z—2
where
Xog=| Y3t Ukt | v _ | %4 ke | 5 | Ti4 Tha
W7 2 zea 07T | 2 omka DM T | yia vk
Zj4 = Tj — T4, Yj4 = Yj — Y4, %j4 = %5 — 24.
=i+l k=j+1,i=k+1)
V = |V is the area of the element, given by
l l 1 1 1 1
1 %14 Tu Ty | ijzy 29 23 24
V=-ly v vau |=—% (8.2.3)
6 6
24 74 74 Yi Y2 ¥Ys W4

Z %2 23 %

Now we define the dual grid T}, Let P, be a node (cf. Fig. 8.2.2).
Consider all the tetrahedrons with P, as a vertex. K is one of them,
depicted in Fig. 8.2.2, with vertexes Py, P;, P, P;. K has three

base triangles with the vertex By, one of which is AP P P;. Denote

L1GWLERLIUD YWivss
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the midpoints of PyP; and PyP; by m; and mg respectively, and the
barycenter of APy P, P» by q3 @ represents the barycenter of K, with
volume coordinates ( DD 4) Take Py as a vertex, and AQgsmy
and AQqsmy as bases respectively to form two cones. For each of the
other two triangles APy Py Py and APy P, P3, we similarly define two
cones. The union of all these six cones constitutes the intersection
of the element K and the dual element K} surrounding Py. By
taking Py to be every (inner and boundary) node, we end up with a
(barycenter) dual grid T} related to Tj,.

The trial function space Uy, corresponding to the grid T}, is chosen
as the usual finite element space such that up € Uy is a piecewise
polynomial of degree k on T}, = {K}, possessing a global smoothness
of a certain degree. Here we restrict ourselves to discuss only the
piecewise linear function space with the vertexes of the tetrahedrons
as the nodes. On a tetrahedron with vertexes Py, Py, Pa, P3, the trial
function is of the form:

¢(2,y, 2) = tgho +urd1 + Uz + ughs, (8.2.4)

where (Mg, A1, A2, A3) is the volume coordinates of (z,y, z). Obviously
we have that ¢(P;) = u; for i =0, 1,2, 3, that any uy, € U}, is globally
continuous, and that U, ¢ H}(Q). The test function space Vj, related
to T) is taken as a piecewise polynomial space of degree k. V is
not required to have any global smoothness, but it has the same
dimension a8 Uj. Each node Pp bears some nodal basis functions,
of which the number depends on the type and the number of the
interpolation conditions of Uy, at Py. For instance, if U}, is a piecewise
linear function space, then the nodal basis function of V}, at Py is
1, for (z,y,2) € K
T
k Uy CIdTWIICLT,
If Uy, is a standard finite element space, then the basis functions of
Vi, are of the form

T (@ = 20) (y ~ 0)™(2 — 20)",

¢Po($ayaz) =19 (m,y,Z) € K;’O’
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Next we consider the generalized difference method for the fol-
lowing Poisson equation

i 0 ¢ Ou 0 ¢ Ou 8 , 6u
{ V(aVu) = ﬁ(aga?) + -a-a-(a-@) + &-(a&-) = f, on Q,
l u|an =0,

(8.2.5)
where a = a(z,y,2) > ag > 0. Assume U, and V}, are piecewise
linear and piecewise constant function spaces, respectively. Integrate
(8.2.5) on K, and use the Gauss formula to obtain

Ou
-—d=/ dzdydz, 8.2.6
/M;oaaus K;ofwyz (8.2.6)

where v is the unit outer normal direction of OKp . We see from
Fig. 8.2.2 that 0K} is cut into six planar triangles with a com-
mon vertex (the barycenter) @, by the tetrahedron K with vertexes
Py, Py, Py, P;. These six triangles are divided into three pairs, with
the barycenters of APy P, Py, APyP; P3, and APy Py P; respectively as
a common vertex. Now we can deduce the surface integral in (8.2.6)
into a sum of integrals on these triangles. Notice

g% = Vu -y, (8.2.7)
where v is the unit outer normal directions of these triangles on 0Ky, .
Also note that Vu is a constant vector on K. Thus we may use (8.2.2)
and (8.2.4) (changing the numbering 1,2,3,4 into 0,1,2,3) to get

Ou du Ou
'a_m,a_y"a'a_z')a

g'li__ Q_/_\g ua)q ua)\z' u%
By = Yo, By By By’ (8.2.9)
ou ?_)\2 _8_/\_1 dAa _3_)&

Vu = ( (8.2.8)



372 Chapter 8

where

( a)\i 1
Bz = gy =012
O3 1

! 5 = —g7 Koa + X1a + Xaa), (8.2.10)
Xig = yg k4

ZJ4 2k4
\

where the subscripts j =i+ 1, k= 35+ 1, 1 = k+ 1. The repre-
sentations of d\;/8y and 8)\;/8z (i = 0,1,2,3) can be obtained in
like manner. The normal vector v depends on the different triangles
on dKp . For example, the outer normal direction of AQgsm; and
AQgsmy are respectively

3Q X @amT  §aing X @
l@llqamﬂ’ IQ3m2HMI

Here the symbol x denotes the vector product. As regards the coeffi-
cient a, we usually take its average value on the vertexes of AQqgsm;:

i = 5(0(Q) +alas) +a(m)), i =1,2.

Summarizing, we can deduce (8.2.5) into the following difference
equation:

Z(Vu)x Zaaimeas(AQqami)uAQqsm‘. =/}.{* fdzdydz. (8.2.11)
K Py '

In practicé, in the interior of 2, we often first place a cuboid grid,
and then divide each cuboid element into six tetrahedrons, while on
the boundary of 2 we use directly a tetrahedral grid. So we get a

difference equation on a rectangular networks.

SAESNR TRV UwRuiUal Vis & ACLUURALR MATIL AATUVY WA S

In [A-60] the equation (8.2.5) is written in cylindrical coordinates:

18 ou 10 fadu 0 ; Ou
5 5) + ra (Gag) + 5 (05) = P
When a is a constant, this equation is simplified as

%y 18u  18%m 0% P

n.,.Q + - r n.. 93 an2 a3 - o
74 00 0z a
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In [A-60], first they place on (r, z) plane a barycenter dual grid, then
they connect certain nodes in between the surfaces 8 = 8, 6,,,, 8, into
some polyhedrons to finally form a dual element. There it is allowed
for different dual elements to have overlapping interiors. Thus their
method differs from ours here.

8.3 Numerical Simulation of Underground
Water Pollution

Underground water is often contaminated by, e.g., the sewage out of
factories or mines, and the chemical fertilizer and pesticide in agricul-
ture, which seep into the ground with rain or irrigation and drainage.
These solutes in the water may perform a convective motion with re-
spect to the underground water, and/or a diffusive motion due to the
density diffusion of the water molecules. In hydrogeology and envi-
ronmental science, computer applications using mathematical models
are widely used to study the law of the motion of the contaminated
water. A mathematical model describing the contaminated water, or
the water with any chemical solute (e.g., saline-alkali) in general, is
the following equation of the solute density C (cf. [A-40]):
omec) .., . CW PR BN
e div(mDgradC) — div(VmC) — ——, on 2 C R (8.3.1)
Here ! = 1,2 or 3. To fix the idea, we take [ = 2. The other notations
are explained below.

m : The saturation thickness of the water-bearing forma-
tion, usually depending on (z, y, 2).

V = (Vi, Vy)¥: The velocity of the water, assumed to be
known.

D Tz D &

D = 4

Dyy Dy, .

depending on the composition of the solute.

W: The amount of the water flooded into (positive) or
pumped off from (negative) a unit area of water-bear-

) : The diffusion coefficient tensor,
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ing formation. In particular, if the water goes in or
out through a well Py = (zo,%0), i.e., P is either a
source or a sink, then W = Qé(z — zo,y — yo), where
@ is the amount of the water. '

C': The density of the solute, which is known for a source,
and unknown for a sink.

Besides, .the boundary and initial conditions are also needed to be
provided. '

The first term appearing in the right-hand side of (8.3.1) is re-
ferred to as a diffusion term, while the second a convection term,
and the third a source term. In fact, the differential equation (8.3.1)
may describe many other physical or chemical phenomena, so long as
C and the other notations are explained accordingly. For instance,
C may denote the mass ratio of chemical composition, the heat en-
thalpy, the temperature, or the kinetic energy of turbulent flow, etc.
(cf. [B-73].)

8.3.1 Generalized difference scheme

Let us place a triangulation T), = {K} and its dual grid T} = {K*}
(barycenter or circumcenter dual grids, cf. Fig. 8.3.1). Both the
sources and the sinks must be taken as nodes. If the coefficient of the
diffusion term is discontinuous on & line L, then L should be cut into
several line segments by some nodes, such that each segment is a side
of an element, We assume that C is continuous crossing such an L,
ie., C4 = C_, where + and — denote the two sides of L respectively.
The flow of the solute is also assumed to be continuous:

where v is the unit outer normal vector of L. Under these assump-
tions, a generalized differencing of (8.3.1) at a node on L can be done
precisely as at other nodes.

Let Tj be a barycenter dual grid. A node P, together with its
neighbouring nodes and corresponding dual elements are depicted in
Fig. 8.3.1. The trial function space Uy, is the piecewise linear function
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space related to 7}, with the vertexes of the elements as the nodes, and
the test function space is the piecewise constant space corresponding
to Tj;. Integrate (8.3.1) on K} to obtain

a(mC)
/K 2 dady

Po
_ I
= Jx

div(mDgradC)dedy — [ div(VmC)dady  (3.3.2)
Py K;D

By Green’s formula we have for C = Cj € Uy,

/ div(mDgradCy)dzdy = / m(DgradCh) - vds, (8.3.3)
K 0K},

P

| / div(VmCh)dzdy = / mCy(V - v)ds. (8.3.4)
K}, oK}, ,

Denote by Ag, a triangular element with a barycenter @;. Evaluate
the above line integral piecewise on the fold line segments obtained by
intersecting the integral line with Ag,. One can readily work out the
formula for the piecewise integrals thanks to the linearity of up € Up,.
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For example, in Ag, we have

m(DgradC}) - vds
/M1 — (DgradCh)

(8.3.3a)
= dC}, - Duvid adC}, - Duods.
/ngra h+Dvids + /mmgr ' » Duads
where
1
gradCp, = m((yn —yp,)Co + (yp, — Ypy)Ch
+(yPo - yP1)02 + (m.Pz - mP])CO . (833b)
+(zp, — 2p,)C1 + (2P, — ) Ca),
{ v = (UQ1 - yMl’_($Q1 —zp))/ | M1 Q1 (8.3.36) :
vy = (ym, — yQu“‘(mMz - wQ1))/|QlM2la

where (zp,yp) denote the coordinates of a point P. Also note

/ mCx(V - v)ds

M1Q1 M3

= / mCy(V - 11)ds + f mCh(V - v2)ds,
M1Q: Q1M;

STy

where v, and v, are as in (8.3.3¢). On the line segment M;1Q;: y =
un, + 2B (4 ), we have '

le "'le
TQ, — % Y—Yym |
Ch= —2——Cyy, + Ca- 8.3.4b)
T~ T Yo — gy o
Similarly on @1 Ma: y = yg, + %(w — zQ,), we have
TMy — & Y —YQ,
Ch = 2 Co, + Cu, 8.3.4c
TMy — TM % YMy = ¥Qi ( )

Also observe that

(CPo + GPi)‘ (8'3'5)

| =2

1
CQI. = E(CPO + Cp, +CP2)1 Cu; =
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As regards the source term on the right-hand side of (8.3.2), if P,
is not a well, then it is directly computed (C’ is known for a source,
and unknown for a sink). On the other hand, if P, is a well, then

W = QJ(:I: — TPy Y — yPo)'
In this case

/ C;Q 6(z — TRy Y — ypy)dzdy = ,((Iij)o))Q(Po). (8.3.6)

Now we have successfully discretized the space variable on the
right-hand side of (8.3.2). To further discretize the derivative with
respect to ¢ on the left-hand side, we take a time step size 7 > 0
and nodeg #; = k(b —0 1 .. I\ Wa non nan avnliait ar fmnlisa

14
AL MUNAUD b S vy (v T Uy by T ,.ll.’ YYv uaas uuc UA.PJIU.HI L llllylll.nlb

Euler’s methods, or Crank-Nicolson method to approximate (8.3.2).
For example, the Crank-Nicolson method gives

7“1/K (m*1of+ — mECF)dady

Po

= / d1v(m’“+1/2Dgra.d(C’h +CF*))dzdy

. (8.3.7)
- div(V*H2m* 2ok + OoftY))dedy

2 /K;‘,o

1 W’c ,k
"3 xR

This together with boundary and initial conditions gives the gen-
eralized difference scheme for (8.3.1). Quite a few applications of
generalized difference methods are discussed in [A-40). _

Remark If a circumcenter grid 7)) is adopted, then the related
computation will be simpler, resulting in a difference method on ir-
regular networks, as is called in the underground water computation.
As in §8.2, we may extend the generalized difference scheme to tetra-
hedral, cuboid or triangular prismatic grids on a three-dimensional

field. (cf. [A-40].)
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8.3.2 Generalized upwind difference schemes

Generalized difference schemes have been widely and, generally
speaking, satisfactorily used in the underground water computation.
But in the computation of contaminated underground water, one of-
ten encounters a class of problems where the diffusion coefficient is
much less than the convection speed. In such a case, a standard gen-
eralized difference method fails to approximate accurately the tran-
sitional band that results from the diffusion, and it may bring in
undesirable oscillations. Upwind difference schemes are often used to
overcome this difficulty. To illustrate the idea, let us investigate a
one-dimensional convection-diffusion equation ([A-40]):
ac 8¢ _a8C

— /2 2 9.\
\O-U-DG}

Bt~ 82 oz

where D and V are positive constants. The initial and boundary

conditions are
C(z,0)=0, z>0,

C(0,t)=Cp, t20, (8.3.8b)
| C(oo,t) =0, t>0.
The true solution to this problem is

C(z,t) = %—Q{erfc‘(mz\;g;)--l- exp(l/bf)erfc( Wi

erfc / 'tgdt

Apply the generalized difference method to (8.3.8a) to obtain the

followine imnlicit difference scheme:

LLIIWALIS 2iapaatat A0 SRt

k+1 k k+1 k41 k+1 k+1 k+1
G] - G] Cj+1 2Cj + CJj-l - VCJI]- G + .
T h2 2h

' Define the Peclet number as

Pe=Vh/D.
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C/Ce
C/Ce

0 x 0 x
(a) Pe=0.5 i (b) Pe=50

Fig. 8.3.2

For fixed step size A > 0, Pe varies with the ratio V/D. A compari-
son of the true solution and the implicit difference solution at ¢ = 507
is depicted in Fig. 8.3.2(a) for Pe = 0.5 and (b) for Pe = 50. We
observe that the approximation is fairly good for a small Peclet num-
ber. But for a large Peclet number, i.e., for the convection-dominated
diffusion case, the density front becomes wider and more level, and
undesirable oscillations appear. The too wide and level band is caused
by an extra diffusion in the numerical discretization, which can be
decreased by a smaller step size. On the other hand, the oscillation
is due to the approximation of the convection term by a central dif-
ferencing. Upwind schemes are often used to eliminate the oscillation
as discussed below. :
Consider a two-dimensional solute transfer equation

%i_' = div(DgradC) — div(VC) + I, (8.3.9)

where the diffusion tensor D and the convection speed V' are known,
as in equation (8.3.2), and I is the source term with I = C'Qd(z —
Zo,y — Yo) at a well. As before, assume T, = {K'} is a triangulation,
and T} = {K} } is a barycenter dual grid (cf. Fig. 8.3.1). Let Uy be
the piecewise linear, globally continuous function space, and V}, the .
piecewise constant function space. Denote by II} the interpolation
projection operator from Uy, to Vj: For given C € Uy, IT}ChL € Vi
and (II}Ch)(Po) = Ch(P). Integrate equation (8.3.9) on Kp , set
C = C}, € Uy, and replace C}, in the convection term by IIj Cj, then
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we have

/ OCh 4pdy = / div(DgradCh)dady
Ky, O Kp,

s

The diffusion term on the right-hand side is computed according to
(8.3.3) and (8.3.3a-c) with m = 1, while the source term according
to (8.3.6) with n = 1. The convection term is treated as in §7.2. To
elaborate, we apply Green’s formula

div(VILCh)dzdy + /K | Idsdy. (8.3.10)
Po

*
Py

/ div(VILCh)dady = / (V - )} Chds. (8.3.11)
K} oK},

Py

Set (cf. Fig. 8.3.1) I'os = QiMig5, { = 1,2,+++,5, § =0, 1. Define

Bois =/P (V- v)ds, (8.3.12)
. [\11}

(0Kp,)- = { U Tog:1<1<5,0= 0,1} (flow in),
Bois<0 ’

(0Kp)+ = { U Fgs:1<1<5,6=0, 1} (flow out),
Bois>0

,Bgia = max{ﬁolé" O}a ,3&5 = max{-ﬁow,o}, (8'3'13)

and apply the following approximation

[ (V-n)Ii0uds~ 3 {B5:Ch(Po) - BisCalP)}.

aK;’o 1<I<s
§=0,1

Then we have (cf. §7.2)

[, dvVIChdady = 3 {85:Ch(Ro) - BasO(R)). (8:3.14)
Py 1<I<E
d=0,1
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Finally, discretizing the time yields explicit, implicit, or Crank-
Nicolson generalized difference schemes. For example, the Crank-
Nicolson scheme reads:

/K (Ck+ Z Chydady

Fp
= 1 div(Dgred(CHH! + CF))dady
2 Jky,
. (8.3.15)
-7 [, VIV 4 VOIG(GE + O)ldady
P
+1 / (I5+1 4 I%)dody.
2 Kp,
The diffusion term on the right-hand side is computed according to
(

8.3.3) and (8 3.3a-c) with m = 1, and the convection term according
to (

8.3.12) and (8.3.14).

The computation will be simpler if a c1rcumcenter dual grid is
adopted. In this case, as in Fig. 8.1.1, we once again integrate the
equation (8.3.9) on K, to obtain an equation similar to (8.3.10). The
diffusion term is treated analogously as (8.3.3), but the line integral
is computed on the pieces Q;Q;+1. In particular when D = aF (a
gcalar matrix)

/K div(aEgradCy)dzdy

Fo
dCh 6 ac,,
= —"——d - / d3 D
/ax,, ov °= ,z; @G Ov (8:3.16)
6
Ci(P; Ch(P.
= oy GBI g
i=1 140541
(Pr=P, Qr=Q1.)

The computation of the convection term is similar to (8.3.11). In
detail, we have

6
V . 0T} Chds =
/aK;,,( VCs =3

i=1

foe (V- ¥)TChds. (@1 = Q1)
QiQi+1
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Set
i+1 = V.v d.s,
A fQiQ-‘ﬂ( )

B, = max{Bis1,0}, By, = max{~Pis1,0}.

Then we have

V -V} Crds
/QiQiH( ) hh

= B1Ch(Po) — By 1Ch(Piy1)
{ Bi+1Ch(Po), a8 Biy1 >0, (flowing out of K} ),
Bix1Ch(Piv1), 88 Biy1 <0, (fowinginto K).

This means that on the outer normal direction v, Cj, takes the upwind
value. Therefore '

) o
[, AV(VIiCh)dady = 3 {BH1Ch(0) = B Ca(Pra)}, (831)
Py i=1

where @7 = @ etc.

As pointed out in Chapter 7, in the one-dimensional case, the gen-
eralized difference scheme here becomes precisely the usual upwind
scheme. If we apply it to (8.3.8), then the oscillation disappears, the
density front gets narrower and its position is more accurate.

8.3.3 Upwind weighted multi-element balancing
method

Sun [A-40] suggests a kind of weighted upwind difference scheme,
referred to as a upwind weighted multi-element balancing method.
As before, let T, = {K} be a triangulation, and T = {Kp} a
barycenter dual grid. A node P, and its adjacent points distribute as
in Fig. 8.3.1. Choose any an element Kq, = APyP;FP;;1 with Py as a
vertex and Q; as the barycenter. Connect @; with the three vertexes
to form three smaller triangles: APyP;Qi, AP;Pit1Qi, AP 1PyQ;
(cf. Fig. 8.3.3). Denote the value of C at P, by Cp, (I = 0,4,i + 1).
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Take their weighted average

{ Cq; = woCp, + wiCh, + wit1Cp,4, (8.3.18)

wo + wi + w1 = 1,

Fig. 8.3.3

where w; stands for the upwind weight of P, and its value is to be
determined later on. The restriction on Kg, of an element Cj, € Uy
is a piecewise linear function. More precisely, it is linear respectively
on the three sub-triangles, satisfying the interpolation conditions:

Ca(P) =Cp (I1=0,4,i+1), Ch(Qs) = Co,-

In addition, it satisfies the first boundary condition on the exterior
boundary. V}, remains to be the piecewise constant function space,
and vanishes at the dual elements where the first boundary condition
is given. :

Next, let us extend the generalized difference method to the
convection-diffusion equation (8.3.9). An integration of this equa-

tion on Kp, leads to
[ Lrgzay= [ div(DeradCh)dzdy
Jxy, 0t Jry,

(8.3.19)
- / div(VCh)dzdy + / . Idedy.
K;‘,o ) K;O
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For the diffusion term we have (Mg = M)
/ div(DgradCy)dady = / (DgradC) - vds
Kp, 8K},

Z f (DgradCh) - vds + / (DgradCh) -Vds}.
i M; ,

QiMiy1
(8.3.20)
For the convection term

/ . div(VCh)dady = / i (V - 1)Chds
(8.3.21)

Z/ v uChds+/ (V - )Chds}.

i=1 l l+1

Expressing C;, on APyP;Q; and APy Q; P41 in terms of Cp,, Cp, and
Cp,.,, we can obtain an ordinary differential equation of Cp, (). We
may further discretize the time ¢ to obtain explicit or implicit differ-
ence schemes. For details, see [A-40].

It is an interesting question how to choose the weight coefficients
wi. If we take w; = %, then (8.3.19) is nothing but an ordinary
generalized difference scheme without any upwind weighting. Next,
we present a method to determine the upwind weighting for each ele-
ment. Let V be an average velocity vector of the element APy P, Pi+1.
(cf. Fig. 8.3.3.) For instance, we can set V = V(Q;). Let Vo4, Viit1
and V41,0 be projections of V onto PyP;, P;P;y1, Pi4+1 P, respec-
tively. Define the local Peclet number '

70,4 = Vol Ao Fi|/ (sl V), (8.3.22)

where [V| is the length of vector V and o; is the local diffusion on
APyP,P;y1. 70i > 0 means that Py is on the upwind side of P,
and 1p; < 0 the downwind side. Similarly we can define 7;;;; and
Tit1,0. Write 70 = 7o, + Tiy1,0, indicating, both qualitatively and
. quantitatively, the upwind or downwind position of Py with respect
to P; and Pi41. 7; and 71 can be defined in like manner. Finally
we define

1 Voil Bo Bl — Vi By P
(14 Arp) = +/\ 0,6l Po ;] a.‘(;;-lnol 0 z+1|’

(8.3.23a)

ODIH



Applications 385

1 N L Vi [BiPia| = Vol BBl
wi =5 (1+ ) = 5+ i . (8.3.23b)
Wit1 = 1(1 + ATiq1) = E + /\VHI’OIPO i1l = Vil iﬂ“'.
3 3 a¢|V!
(8.3.23¢)

| & PRI PPN « « DR U W N TS e

Ob'v‘iO'\iSly W + Wy + Wi = 1. Here the coefficient A > 0 remains to
be chosen. Numerical experiments indicate that A should be neither
too large nor too small. A too large A will cause extra numerical
diffusion, while a too small one will not be good enough to prevent
the oscillation of the solution. A proper value of A might be between

0.004-0.005, as suggested by the numerical experiments.

8.4 Stokes Equation

Consider a Navier-Stokes equation describing an n-dimensional vis-
cous incompressible flow

{ %1:- — pAu+ (u - V)u +gradp = f, (8.4.1a)
| divu =0, _ (8.4.1b)
where u = (uy,- -, u,)7 is the flow velocity, p the pressure, u > 0

the viscosity coefficient, and f = (f1,-'+, fs)T the density of the
body force. Assume that the velocity u is small enough such that
the nonlinear convection term can be ignored, then equation (8.4.1)
is reduced to a Stokes equation:

0
5% — pAu + gradp = f,
( divu=0.

In this section, let @ C R? and restrict our attention to the steady-
state case, i.e., %% = 0. So we consider the steady-state Stokes equa-
tion: :
—pulAu + gradp = f, on Q C R?, (8.4.2a)
divu = 0. (8.4.2b)
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Although it is only a linear equation, it has attracted people’s atten-
. tion due to the presence of the incompressible condition. We suppose
u satisfies the first boundary condition: u = 0 when z = (z1,22) €
0. Let H} () be a usual Sobolev space, and

I3(@) = {g € I%(®) : (g1) = /n qdz = 0}.

Define
Ou; Oy
a(u,v
)=u 54:1(6% 6:5])
b(v,p) = Xz:('g}la'vi)a c(v,q) = —(g, divv).

i=1 9%
Then, a variational form for (8.4.2) is: Find (u,p) € (H}(Q))2x L(R)
such that

a(u,v) + b(v,p) = (f,v), Yve (H}(Q))? (8.4.33)
{ c(u,q) =0, Vq € L3(Q). (8.4.3b)

Assume that I' = 8 is Lipschitz continuous, that  is a convex
Aamain and thet £ £ {TZIO\\Z Mhan Q2 4 ) nnocageas o 1iniana

UUiszauiily QUi viiav g \J—l A 2UIL (UT0) PUSBUBRUD @ Ulliyjyuv

solution (u,p) € (H}(R))? x (H : (Q)nL (2)), and there is a constant
C independent of (u,p) and f such that (see [B-34] for details)

[ullz + fiplla < Clifflo,0.

8.4.1 Nonconforming generalized difference method

Now let us construct a generalized difference method approximating
(8.4.2). Let © be a convex polygonal region, and T}, = {Kg} a
triangulation of 2, where Kg is a triangular element with barycenter
Q. Take the midpoints of the sides of the element as nodes. Denote
the interior nodes of {2 by Py, -, Py, and the boundary nodes on I’
by Py, -+, Py. The trial function space related to Uy, is a piecewise
linear function space, with Py, - -+, Py as the interpolation nodes and
with zero value at boundary nodes. Clearly an element in Uj, is not
necessarily globally continuous. Corresponding to each interior node
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P;, there is a nodal basis function ¢;(z) satisfying ¢;(P;) = d;;,1 <
i < M,1<j < N. So every up € (Up)? has an expression:

N ,
up(z) = Zuh(ﬂr)cﬁi(m), z €. (8.4.4)
i=1

Next we turn to construct the dual grid and the test function
space. Let P € Kg, N Kqg, be an interior node, where Kg, =
ANA1A2A3 and KQz = AAjAzA4. Connect @1 and Ay, Q and Aj,
Q2 and A;, and Q2 and Ay respectively to form a tetragon Kp =
0A;Q242Q14; containing Py in its interior. This tetragon is called
a dual element containing Py (cf. Fig. 8.4.1(a)). If P, is a boundary
node, as shown in Fig. 8.4.1(b), then the dual grid containing P, is a
triangle Kp = AA; AyQ;. The entire dual elements constitute a new
grid Ty = {K},} of Q, referred to as a dual grid. The test function
space related to T} is chosen as the piecewise constant function space
on Ty, subject to the zero boundary condition. The nodal basis
function 9; (1 < j < M) is the characteristic function of Kp. A

function vy, € (V3)? can be expressed as

M
vp(z) = th(P,-)z,bj(w), z €N (8.4.5)
=

As before, we use IT; to denote the interpolation projection operator
from Uy onto Vi: Ijgi =4, 1 <i <M.

We also design a subspace W}, for the pressure pp, which contains
all the piecewise constant functions related to T}, that is, p, € Wj
equals to a constant p,(Q;) on each element Kg, (i =1,2,-+,N, N
being the number of the elements).

Let hg and pg be the maximum length of the sides and the di-
ameter of the inscribed circle of the element Kq, respectively. We
require the grid 7, to be quasi-uniform, i.e., there are constants
v > 0, i =0,1, such that '

voh < hg < 11pq, YKq € Th. (8.4.6)

The generalized difference scheme given below is nonconforming
since Uy, ¢ H}(Q). For uy € (Up)?, vn € (Vi)? and ph,qn € Wh,
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set

N
N\

Fig. 8.4.1

M
a(up,vp) = ""‘Z/K* Auyp, - vpdz
= -MZ/O:K* 61/ - vpds
= ———d ,
”th’ ./axp ov s
M
b(vh, pn) = Z‘Uh(Pi)'/ ppvds,
$==1 sK;‘

N
clun,an) ==Y an(Qr) [ divunds,
k=1 'IKQk

M
(fron) = hz}vh(m : /K:*».- fdz.

N

Chapter 8

(8.4.7)

(8.4.8)

(8.4.9)

(8.4.10)

Now, we are in & position to introduce a generalized difference method

approximating the Stokes equation (8.4.2): Find (up,pn) €

Wy

such that

(ALt 43

(Un)? x
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a(up, vh) + b(vh, o) = (fyvn), Youp € (Vi)%, (8.4.11a)
c(un, gn) =0, Vgn € Wh.  (8.4.11b)

Here the bilinear forms a, b and c are computed according to (8.4.7)-

(8.4.9). For instance, we may take vp, = ( %j ) or v, = ( i ) ,
and gn = Xi (the characteristic function of Kg,). (8.4.11) is aJlm;
ear system of (2M + N) equations with a (d1scret1zed) velocity field
at the nodes F;’s, and a pressure field at the barycenters Qx’s. So
this is a kind of alternative scheme. This system is symmetric since

b(IT} up, pn) = c(un,pr) as we shall show below.

8.4.2 Convergence and error estimate

For wy, € (Us)?, define Dy pwy (i = 1,2) as a piecewise function,
identical to %—‘L in the interior of each element Kg € T,. Write '

(gradpun, gradywp) = (Dgynthy Deynwh) + (Dagntin, Deynwn),

”Uh"%h = (up, up) + (gradpup, grad,us),
lul? ), = (gradpun, gradyus).

Lemma 8.4.1
(i) The seminorm |ug|ipn and the norm ||up|in are equivalent on

(Un)2.
(ii) ||'U~h,”§ = |0} un i3
== 2 Sk(|un(Pr)? + lun(P)|? + lun(Ps) ),

AEJ h
where Sk is the area of the element K and P;’s are the midpoints of
the three sides of K.

Proof (i) can be proved by the Poincaré inequality (cf. [B-86]). A
direct integration of the area coordinate expression of the quadratic
polynomial leads to (ii). O
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Lemma 8.4.2 For up,wp, € (Up)? we have constants Cy,Cy > 0
such that .

(i) a’(uhvn;‘;wh) = a(wh,n;;,uh);
(i) la(us, Tiwa)| < Cllunllinlwalis;

(iii) aun, IMup) > Colunl3s.

:
Proof Consider an element K = Kg. A

KeT,
_ Oup, / duy,
Ix = wh(Pl)('/Al — B, 072 = S Edwl)
Oup, Ouy,
~wy(P / 9Uh 4y — / 9 4
n(Fa) 404 01 © J430%; 0%y 1)

Buh a‘uh,
 —wp(P / 9 4y — / 9uh
wnl 3)( A1QAs a,wl 2 A:1G4; Oz3 wl)

- _%[wh(Pl)(zz(Al)—zz(Az)) |

+wh(P2)(z2(A2) — 22(A3)) + wn(Ps)(22(As) — 22(A1))]
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+%‘£.[wh(a)(x1(,41) ~ 71(As))

+wn(Pp)(21(A2) — 21(A3)) + wr(Ps)(71(As) — 21(4A1))]-
(8.4.12)
Let (A1, A2, A3) be the coordinates of the barycenter of K, and u; =
Ai + Ai+1 - ’\i+2 for i = 1,2,3 (A4 = A, A5 = )\2). Then we have
pi(Pj) = bij and

whlk = wa(P)u1 + wa(Po)uz + wa(Ps)pa, (8.4.13)
i _ 23(Ait1) — 22(Aita)
0z 25k ’
8.4.14
O _ z1(Ai1) — 71(Aiya) ( )
\ Oz 25k ’

where i = 1,2,3 and A4 = A1, A5 = Ay. Substituting (8.4.13) and
(8.4.14) into (8.4.12) yields

: - Buh awh 3uh 6wh
Ix = ./K(Bw1 Oz + Oz, Oz )da:.

Thus

a(up, pwg) = Z /K graduy, - gradwpdz = (grad,up, grad,wy).
KeT,

This implies (i), (ii), (iii) and completes the proof. O
The following Lemma can be proved in like manner.

Lemma 8.4.8 For up € (Ur)? and pr, € W}, we have (C3 > 0 is a

constant)

(i) B(ITun, pr) = c(un, Bh), C (84.15)
(ii) [b(TT;un, pa)| < Cslun|inlpalo. (8.4.16)

For u € (H}(f2))?, define its projection onto (Ux)? (cf. Fig. 8.4.2)
by
© pu = (P p1 + 6(Pe)uz + 4(Ps)us, ineach K € Ty,
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. |
P ds, i=1,2,3. (Ag = Ar.
UR) = |A A,+1|J/A.A.+1 u(z)ds, i (4e = A1)

Obviously [yulkx = u, VK € Ty when u € (Up)2. So it follows from
the interpolation approximation property that :

[Thulin < Caluls.

Lemma 8.4.4
(i) It holds for u € (Ho (Q) N C2(Q))?, and up, € (Uy)? that
la(u ~ fpu, Mun)| < CshlunlialD?|mex- (8.4.17)

(ii) For p € CY(R), up € (Up)? and pr, € W), we have
[6(Tuns p — pa)| < Ce max [p — pllunlih- (8.4.18)
(iti) If u € (H(Q))?, then
c(u — fpu,qp) =0, Vg, € Wh,. (8.4.19)

Here |D%u|max stands for the mazimum norm of the second partial
derivatives of u. Moreover, the equality (8.4.19) is equivalent to

Z / gndiv(u ~ Tpu)dz = 0. (8.4.20)

Proof (8.4.17) and (8.4.18) are direct consequences of (8.4.7),
(8.4.8), and the expressions of a(-,-) and b(:,-). To show (8.4.19), we
denote by 11, 15 and v the unit outer normal directions of A7 Ay, A3 A3
and AzA; respectively, then

N 3

c(u — nhUth {: ; [4¢A;+1(u_ﬁhu)ds
N 3 I—_ .

] ds — 5A ,u Pi —
3 (@) o[ [ uds - [l M) P)]

Finally, the equivalence of (8.4.20) and (8.4.19) follows from (8.4.9)
and the fact divil,u € W,. This completes the proof. |
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It results from (8.4.15) and (8.4.20) that there is a constant v > 0

satisfying

b(quh’qh)
|unlin
Making use of Lemmas 8.4.1-4, one may easily prove (cf. [B-34,86))
the following: If (u,p) € (C%(@))% N (HE(N))? x C1(Q) N L3(Q) is
the solution to (8.4.3), then, for sufficiently small h > 0, the noncon-

forming generalized difference equation (8.4.11) has a unique solution
(uhspn) € (Up)? X Wy, and

|u — uh'lh + | —PhHO < Ch('Dzulmax + |Dp|max),

sup 2 llgnllo; Yan € Wh. (8.4.21)

where [Dp|max denotes the maximum norm of the first derivative of
p.
8.4.3 A numerical example

In the Stokes problem (8.4.2), take & = [0,1] x [0,1], p =1, f =

(f1, f2):
filz,y) = —62%(z — 1)*(2y - 1),

fa(z,y) = da(z — 1)(2z — 1)[(22 - 1) + 2y(y — 1)] - f1(y, 2).
Its true solution is
ui(z,y) = 2 (z — 1)%y(y — 1)(2y — 1),
‘ u2(w’y) = —'U1(y,:l‘),
p(z,y) = 2z(z — 1)(2z — Ly(y — 1)(2y - 1).
Divide Q into thirty-six small squares with side size % Then we use
the diagonal lines at an angle of 7/4 to the z-axis to further divide

each small square into two triangles, ending up with a triangulation
Th. The errors of the approximation is given below:

mex lun(P;) — u(Py)| = 0.31616975 x 1072,

min up(Py) — u(F;)| = 0.80926718 x 1078,
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mex Ip1(Q) — p(Q)] = 0.14746220 x 1072,

min[pa(@) — p(Q)] = 056510426 x 1072,

8.5 Coupled Sound-Heat Problems

The following hyperbolic-parabolic system describes the flow of com-
pressible fiuid with heat transfer:

(Ou_ 6 . _

51 = C5aw — (v = 1e),

ow ou :

e = e < W0,
< 5 = o 0<2<1,0<t<T, (8.5.1)
{ 3t~ “ox2 Coz’

where ¢ and o are positive constants, and v > 1. The initial values
u(z,0) = f(z), w(z,0) = g(z), e(z,0) = h(z)

are l-periodic functions, and the boundary condition is a 1-periodic

hattndane aandidian Watdia T — N 11 and T/ — (.. — ITLITY . /DY —
uuuuumy VUiUALIVLL, VYLIUT & lU, LJ alluld vy - ‘LU < i1 \1) . U\U} —

v(1)}. Then, a weak form of (8.5.1) is: Find u,w,e € V such that
foralveV '

(ut,v) - c(wmav) + 0(7 - 1)(64‘7”) =0,
(wg, v) — c(ug,v) =0, (8.5.2)
(e, v) + c(ug,v) + o(ex, vz) = 0.

Decompose I = [0,1] by 0 = 29 < 71 < ++ < zy = 1, and set
I; = [wi.1, %), hy = z;—x;_1, then we have a grid T}, = {I;}. The dual
grid Tp = {I}'}, where I} = [2;_1/2,Zit1)0]s Tim1/2 = §(Zio1 + T4),
for i =1,2,---,N -1, and I§ = [0,21/2], I\ = [zN-1/2,2N]. The
trial function space U}, related to T}, consists of the piecewise linear
continuous functions with period 1. Fori =1,2,-.., N—1, the nodal
basis functions ¢;(z)’s are defined by

¢5($_j) =6§j9 0<j<N,
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and ¢n(z) is defined by
¢n(zo) =1, ¢n(z;) = 0nj, 1< J S N.

The test function space V}, is composed of the piecewise constant
periodic function on T} with the nodal basis function ;(z) (1 < j <
N) being the characteristic function on I. Any us,wp,ep € Uy can
be expressed as

N
up(z,t) = Z ui(t)¢i(z),
=1

N
wp(z,t) =Y wi(t)¢i(x),

i=1
N
en(z,t) =Y es(t)di(a).
i=1
Now, a generalized difference scheme approximating (8.5.2) is: Find
Up,Whyep € Up such that for 1 <j <N
[ (untrt5) = c(whays) + e(v = 1)(enas %5) =0,
i (wht, ¥5) — c(unay ¥5) = 0, (8.5.3)
(ents ¥5) + c(uhas ¥5) + o(ens, Yja) = 0.

Write Uh(t) = ('U:l (t)? T ,'U.N(t), w1 (t)’ e ,‘l.UN(t), el(t)) e ’eN(t))T)
then one can rewrite (8.5.3) as

Mﬂv—é‘g)— — Kun(t) =0, (854)
where
M, 0 cK; —c(y-1K;
M= M , K=1] cK; 0 0
M —cK; 0 oK,

are (3N x 3N) matrices, and M, K1, K are (N x N) matrices: The
entry at the j-th row and i-th column of M; is (¢;, ¢;), the one of K,
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is (¢ig, 1;), and the one of K3 i8 (@i, %5z) (in the sense of generalized
functions). The initial value is

va(0) = (f(z1), -+, f(@N), 9(@1)5 -+, 9(2N), B(Z1), - vh(a"N))T'

(8.5.4) is a system of ordinary differential equations. Various
kinds of numerical methods for ordinary differential equations can
be used here for a further discretization. For example, the modified
Euler’s method gives a fully-discretized generalized difference scheme:

n+1 n n+1 n
MU T _ gt (8.5.5)
T 2
This is a six-point symmetric scheme (Crank-Nicolson scheme). If
the solution to (8.1.1) is smooth, and the step size h; = h, then the
truncation error of (8.5.5) is O(r% + h‘) In this case (8.5.5) can be
written as :

n+1+6un+1+un+1+ ZCT( n+1 n+1)

h Wjp1
20( DT pt1
S g - )
n n n N 2 I . n \ (8-5.6a)
= Ujy +OUy + Ui + _h'(wf-i-l = Wj-1)
2c(y - 1)1
ST ey~ ey),
2¢r
27 g} ) + w4 bup s gy
%er . (8.5.6b)
= (i —uiny) +ul + 6wl +ul,,
207—/ n-+1 ..n-g—l\ e _ 40'7'\ n-+1
h \'U:J_I_l U: -1} T \l —Ez—}e]-_l
) SO"T +1 40' +1
+(6+ hz)" +(1- h);'+1 _—
2cr doT 8.5.6¢
= —h-(u;-‘_l—u?+1)+(1+ ¥ ) el :

+(6-37)e &+ (1+ 4,;;’)
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where
Uk = UN+k; Wk = WN+k) €k = EN4ky) K =0,1,-+,

If we use Euler’s method in place of (8.5.6a,b), while keeping
(8.5.6¢) as it is, then (8.5.6a,b) are replaced by

ni+1 S fi1
Uj_]_ + GUJ + uj+1

der
= uj_y+6u} +uf, —- —ﬁ‘('w?-l - Wit1) (8.5.6a)’

der(y—1
—'—%'—"l(e}'“ - e?-1),

'w:‘:ll + ﬁwz.-"*'l + 'wz‘iﬁl

4 8.5.6b)’
——%I(u;-‘ﬂ —uj_y) + wi_y +6w] +whyy. ( )

Its truncation error is O(7+h?). This scheme is implicit, but (8.5.6a, b)’
are both triple diagonal matrices for the unknowns {u;-‘“} and {w;-""‘l}
respectively. If we work out {u}*'} and insert it into (8.5.6c), then
(8.5.6¢) also becomes a triple diagonal matrix for {e;-”‘l}, which is
easy to solve numerically.

Next we try to investigate the stability of (8.5.6) as with the usual
difference methods. By the separation of variables it is easy to deduce
the amplification matrix of (8.5.6):

G(&,h) = (ad — b%d — (y — 1)ab?)~ 1.

[azd + b%d + (y—1)ab? 2abed —2(y—1)a?b ]
2abd a?d+ ’d - (y=1)ab?®  —2(y—1)ab?

l_ —2a2b —2ab? (y—-1)ab? + a?l — b2l

where ‘

= 2(3 + cos¢), b= ifl"—h-c-sing, (i=+v-1)
g

d=2(3+4r)+2(1 -—4r)cos¢ = 4(2 — (1 — 4r) sin® -g),
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=28 — dr) 4+ 2(L + dr)cos = 4(2 - (1+4r)sin? ),
or
2
Since a > 4, d > 4 and b? = O(h2?) = O(r), we have

r= = constant.

25 =2(y—1)b ]
; % =2y-1p
a : d
Gl h) = 2%’ 1 0 +0(r)
% !
-3 0 i

= Go(¢, h) + O(7).

By [A-27] and [B-74], the matrix family {G"(£,h)} (0 < 7 < 70, [§| <
7,0 < nt < T) is uniformly bounded, if and only if {G§(£,h)}
(0< 7 < m,l¢l <m0 < nr <T) is uniformly bounded. Similarity
transformations are employed in [A-56] to show the uniform bound-
edness of {GF(¢,h)}, and hence scheme (8.5.6) is stable for any grid
ratio r > 0. This together with the consistency of the scheme (trun-
cation error O(72 + h?)) guarantees the convergence of (up, Wy, en) to
(u,w,e) with an error estimate:

35, (1) = unC, )l + gmms (-,1) = wnl-, o

| -+ max le(t) —enlt)llo < C(r* + A7),
(cf. [A-56] and [B-74] for details.)

Similarly one can show that the scheme (8.5.6a)’, (8.5.6b)', (8.5.6¢)
is absolutely stable, and its convergence order is O(r + h?).

Remark This section considers only a linear element general-
ized difference scheme for one-dimensional problems. In principle,
high order element schemes can be constructed for triangulations in
higher dimensions. But we point out that the discussions of this sec-
tion on convergence and stability are analogous to that of standard
finite difference methods, which can not be extended directly to ar-
bitrary triangulations and high order elements. The equation (8.5.1)
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is a coupled hyperbolic-parabolic system. It remains to be an open
question how to extend the methods in Chapters 5 and 6 to study
the convergence and the error estimate of the generalized difference
scheme approximating (8.5.1).

8.6 Regularized Long Wave Equations

This section is devoted to the generalized difference solutions of the
following initial and boundary values problem of a regularized long
wave equation:

du 8% Bu _ 8f(u)
!-ﬁ-—'yaw?at ~Fa a<z<b 0<t<T, (8.6.1a)
u(a,t) = ulb,t) =0, 0<t<T, (8.6.1b)
l u(z,0) = up(z), a<z<b (8.6.1c)

where f(u) = au + $Bu% v > 0 and @, B are given constants;
ug(z) € C3(I ), I = [a,b], uo(a) = uwo(b) = 0. It is confirmed in [B-7]
that problem (8.6.1) has a unique solution u(z,t) € Cl([O T}; C%(I)).
Define

b ob
a(u,v) = (,7;“ g“)+(u, 7/.; umvmdw+/a uvdzr. (8.6.2)

Then a weak form of (8.6.1) reads: Find u(z,t) € C*([0,T); H§(I))
such that

ou of(u
a(—a-?,'v) ---( ‘:;fp),v , Yve H}(I), (8.6.3a)
(u(z,0),v) = (ug(z),v), Vove€ H}() (8.6.3b)
Next we shall present a Lagrange quadratic generalized difference

scheme for (8.6.1) E (8;673)).

8.6.1 Semi-discrete generalized difference schemes

Place a grid Ty, = {4} on I = [a,b], where I; = [zi_1,%i], @ =
29 <21 <+ < axy =b Set hy = z; — x;-1, h = max h;. Piecewise
quadratic polynomials vanishing on the boundary z = a and b are
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chosen as the trial function space Uy, C H}(I). On each I, a function
p € Uy is determined uniquely by its values at three interpolation
nodes z;-1,%;-1/2 and z;. The nodal basis functions are (cf. §2.3)

( 2h;2(x —z;1)(z ~ z‘j_ll/g), zj-1 L ¢ < 2y,

¢i(a) = { 272 (2 — 2j41)(z — 2j1p2), @ S STy,
0, elsewhere.

4h;2(m —zj-1)(z; ~2), =1 <z <y,
¢j-1/2(z) =
0, elsewhere.

The dual grid Ty} = {I}, I_ 1/2},whereI = [Tj-1/45 wJ+1/4], i-1/2 =

[©j_3/4)%j-1/4)- The correspondmg test function space V} contains
piecewise constant functions, which vanish on I§ = [a,7; /4] and
I = [#n-1/4,b]. The nodal basis functions v; and ¢;_;/, are
the characteristic functions of I} and I ;-1 /2 respectively. The semi-
discrete generalized difference scheme approximating (8.6.1) is: Find

N-1 , N
un(z,t) = D ui(t)pi () + Y ujm1/2(t)bj1/2(x) € Un
Jj=1 j=1
such that
dup, _ (9f(un)
a(—a—t—, ’Uh) = ("—0;':1:——,'!)};),_ Yup € Vi, 0<t < T, (8.643)
up (2, 0) = uon (), a<z<b (8.6.4b)

Here ugp, is a certain approximation of ug(x), generally taken as the in-
terpolation projection of ug(z) onto Uj,. Now the above bilinear form
a(2¢s, v,) should be understood in the sense of generalized functions.
(8 .8. 4\ is an initial value problem of a system of ordinary dlﬂ'erpntla.l

equatlons

We observe that u;(t) = up(z;,t) and uj_y/9(t) = up(z;-1/2,1)-
Denote by II} the interpolation prOJectlon from Up, onto Vp,. Then,
for any up € Up,

N-1

| Mhun = Y uithj + Zug-m% ~1/2¢

4m=1
J=a J=1
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Let us introduce the following discrete norms:

lunl3s = Mhusl3 = Z J'( -1+ 2”?—1/2 + ”?)’

J=1
N
a2, = S P [(Yim1/2 ~ Yi=1\2 (%)~ Yi-1/2y?)
1“1k f;dl 2 1\ hj/z ] \ hJ/z ]I

As in §2.3, it is easy to show that
(i) On Uy, |+|on and |+|15 are equivalent to |-|o and |-|; respectively;
(i1) la(un, Miwa)| < Mllunllsllwally, Yews,un € U;
(iii) a(un, Whup) > allunllf, Yun € Us,
where M > 0 and o > 0 are constants. By virtue of these observa-
tions, the following statement holds:

(1v) IfueH} (I) N H3(I) is the solution to
a(u,v) = (g,v), Yv € Hi(I),
and up € Uy, is the so}ution to
a(un,vn) = (g,%4), Yon € Vh,
then we have the following estimate
lu = unlly < C1h?|ufs. (8.6.5)

Here and below, C;'s (1 < j < 6) denote constants independent of
h. Now let us consider the unique-solvability and the convergence of
the semi-discrete scheme (8.6.4). Define

m= érib u(z,t), M= asup u(z, ).
<i<T

So
S <t

<b
i<T

[} A

Take a bounded truncation function f(v) € C2(R) of f(v) satisfying
(e > 0 is a constant)

A

f0) = @), wem-em+d,
sup{| (o)} 1/ (0)l, 1" ()]} = de < o0.

=~

LH
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Replacing f by f yields a continuous problem related to (8.6.1)

2 F (4
!zﬂ_ 00 _O@) G cu<ho<t<T, (8660)

ot o526t Oz '
a(a,t) = 4(b,) =0, 0<t<T, (8.6.6b)

i(z, 0) = uo(x), a<z<b, (8.6.6c)

and a semi-discrete problem

{a(% )= () ), vy evi0<i<T, (8672

at’ Oz
@p(z,0) = uon(z), a<z<hb (8.6.7b)

Lemma 8.68.1 The unique solution u(z,t) of problem (8.6. 1 ) i8 iden-
tical to the unique solution of problem (8.6.6).

Proof The solution u(z,t) of (8.6.1) obviously solves (8.6.6). To
show the uniqueness, let 4i(z,t) be any solution to (8.6.6). Then

Bu—a) 8 du—1d) _8f(w) of(@)
o 'oa2 & o 0z

Multiply it by (u — @) and then integrate it for z to obtain

].d A 'y A A
5 g (U = 85 +7lu = al}) < delu — dlolu - aly,

and hence

d A~ ~ ~ A
5 (1w = 88 + vlu — af) < dilfu - 8§ + vlu - aff),

where d, = d, max{1, 1}. Solving the last inequality gives

u(+8) = 4(, )IF + lu(,8) — &, )
< exp(deT)(ju(,0) - a(:, 0)|3 + ~u(:,0) — (-, 0)) =0,

which implies u = 4. This completes the proof. |
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Lemma 8.6.2 Problem (8.6.7) has o unique solution 1y(-,t) € Uy
defined on (0,T).

Proof By the existence and uniqueness theorem of the solution to
ordinary differential equations, equation (8.6.7) has a unique solution
Qp(+,t) at least on a right-hand neighborhood of t = 0. According to

the continuation theorem, to extend the solution 4y(:,t) to the entire
[0, 7] we only have to show the boundedness of ||4is(:,)||1 for all such
t € [0, T] where (-, t) is well-defined. So we integrate (8.6.7a) with

respect to ¢ and make use of (8.6.7b) to get

R M de [t .
I0a( )l < G huonll + 2 [ 1nC o) lads.

By virtue of Gronwall’s inequality

. M
lan ()l < — XD (deT)llwonllz-

Here d = d€ /(aCy).

AL we are ahle 46 11aa
After these preparations, we are able to use a meth

that in §5.1 to obtain
”U(',t) - '&h("t)ul
< Gs[lun —uanl + A¥(luols + [ 2522 ao).
- o! Os 13

Finally, it should be pointed out that, for sufficiently small A,
the above @p(z,t) is precisely the solution up(z,t) of the difference
equation (8.6.4). In fact, by the imbedding theorem and the above
estimate we have

sup |’U«(.’D,t) - ﬁ'h(m! t)'
ala<h
0<t<T

< Cy4 sup |u(-t) — dn(,t)fl1 = 0, as h = 0.
0<t<T
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Thus for h > 0 sufficiently small
m—e<bp(z,t) <M+e, a<zs<h 0<tT.

Consequently

f('ah(w’ t)) = f(uh(x’t))'

This implies 4y (z,t) = up(z,t).
To sum up, we have

Theorem 8.68.1 If the solution u(z,t) of the problem (8.6.1) satisfies
u(z,t) € CY([0,T); H3(I)), then for sufficiently small h > O, the
semi-discrete scheme (8.6.4) possesses a unigue solution up(-,t) € Up
defined on fﬂ ’T’] satisfying the following error estimate forQ0 <t < T':

llu(-8) — ua( )l

& (8.6.8)
< Ga[lo —uonll + 42k + [ | 25222 a)].

8.6.2 Fully-discrete generalized difference schemes

Take the time step size 7 = T/M and & = k7 (k = 0,1,

""“‘l“-Aiﬂnvn"n oanaralicad differanne anhama far (2 8 1) ise I
AULLY TUIDUVAVUT RUIILVL QAIAUU WAALUL VLIVY DULILIILY UL (\ViVid ) a0 &

Up, such that

< 1,8ff)  af(uf~Y)
a(Beuf, vh) = -2-( fa(:h) + f(gg -),'Uh)a vp € Vi, (8.6.9a)
k= 1$2,"',Ma
uf) = Ugp, (8.6.9b)

where Syuf = (uf —uf~1)/r. As before, we also consider the auxiliary
problem :

£, k=~1
o(Bu o) = 3 (2L, 27

k=12, M,
u) = ugp. (8.6.10b)

),vh), vp € Vp, (8.6.10a)
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Lemma 8.6.3 For sufficiently small 7 > 0, problem (8.6.10) has a
unigque solution {uf} C Uy, satisfying

luflls < Cslluonlls, & =1,2,---, M. (8.6.11)

Proof Suppose u; tig given. By the property (iii) of a(us, IT}up),
for any up, € Up, we have a unique Gup, € Uy, such that

8f(un) | 8F(uh™)
oz gz ’
Ywp € V. (8.6.12)

If we choose wp, = Guyp, then we have by (i)-(iii) that

a(Gun, TMiwn) = a(uf ™ Mwn) + 7 (52 +

b h e Mo bty T o n kL s
IGUhllL = iUyl + 58 ([unliy + liug"ll1)
(M TNy k-1 T
= (T + 79 k™ + Zdlualh.
Let 7 > 0 be sufficiently smail such that (1 — Zd;) > 0, and let R
be a constant satisfying R > (1 ~ §dy)™! (— + "cl")lluﬁ Yl1. Then
|Gun|l1 < R when |lup)l; < R. But G is a continuous ‘mapping. So
by Brouwer fixed point theorem, G has a fixed point uh € Uy, which

is exactly the solution to (8.6.10).
(8.6.10) implies that

a(ul,vp) = a(ud,vy) + = E(af(u") (am ),v;?), Yop € V.
25

Taking vy, = ;u',“z yields

M & -
Il < —lhuonll + 57 S (bl + ),
I=1

and consequently

k~1
T oM T :
luklla < (1 = 57 (S + 5¢¢) lwonlly + dir 3 lluhla .

I=1
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So the discrete Gronwall’s inequality guarantees the existence of a
constant Cg > 0 which validates (8.6.11).

Finally, we deal with the uniqueness of the solution. Let uf and
¥ be two solutions of (8.6.10). Then

q(ul;: — iif, up)

1(3f(uﬁ) _of (ﬁ}'i)’ 'Uh)

= a(u,’:‘l - 'ﬁ.ﬁ—l,vh) +

2\ Oz oz
a" k-1 a” ak—1
+%( f(ga’: ) _ f(g; %), Von € Vi

Take vy, = IT}(uf — af) and note the boundedness of the solution,
then we have '

N My g -
o~ aklls <l = a5~

+Cr(|luf - afll: + luf™ = af ).
So for sufficiently small 7> 0

lluf — @kl < Cllug™ = @k,

N 2 n memmaen ] e b nd
UV Id a gtlltlal vullsialll.
e

> y i es
This completes the proof. ' ]

o Ty
11OL

where C
uf =k,

Having done these preparations, we can prove the following the-
orem as in §5.2 and Theorem 8.6.1.

Theorem 8.6.2 Assume that the solution to (8.6.1) is sufficiently
smooth. Then for small enough h and T, the fully-discrete scheme
(8.6.9) has a unigue solution {uk}, and the following error estimate
holds:

k() = e te)le
< Offuo ~uonts + W (juols + [ 28D ) g1

+72/0t’°u%)_"1dt], k=12, M.
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———J\-— t=4.0
_._-_J\_ t=3.5
————-——}\-— t=3.0

}\ t=2.5

[

J\ t=2.0
J\ t=1.5
}\ t=1.0
}\ t=0.5
)\‘ t=0.0
(a) (b)

Fig. 8.6.1 Propagation of isolated waves

8.6.3 Numerical experiments

We use the generalized difference scheme (8.6.9) to approximate the
regularized long wave equation (8.6.1), witha =8 =1, v = 0.1.
In particular, we investigate the propagation of single isolated waves
and the collision of double isolated waves, so as to check the efficiency
of the scheme.

Propagation of single isolated waves

Set a = 0 and b = 20 in (8.6.1) and define the initial function as

ugp(z) = 3(co — 1)(sechXp)?, Xp = \/ z — dp),

dyeo

where ¢g = 2, dy = 8. Choose the step sizes h = 0.1 and 7 = 0.05 in
Scheme (8.6.9). The numerical results are depicted in Fig. 8.6.1(a).
To investigate the propagation of the waves, all the waves are depicted
simultaneously in Fig. 8.6.1(b). We observe from the figures that the
isolated wave propagates forward with velocity ¢p = 2 and amplitude
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(a)
N N AN N

J&A&Q&&_&LL

Fig. 8.6.2 Collision of double isolated waves

3(cg — 1) = 3, the wave form keen ng unchanged. The numer
result matches quite well the theoretical isolated wave solution:
u(z,t) = 3(co — 1)sech®X, X = (a: cot — do).

Collision of double isolated waves

Choose a =0 5=30 b =01 + =005 and the initin] finatiown
WILUUDT W = Uy U == DUy Tt == Uuildly ] — U.Uu, ALl LUT dlluvial tulvuivil
2 ¢ —1
i
ug(z) = E :3(61' — 1)(sechX;)*, X; = 2 (z = dy),
i=1 YCi

meri

ical

where ¢; = 3,d; = 6,¢2 = 1.5,dz = 11.5. The numerical results are
shown in Fig. 8.6.2(a),(b). Amplify it twenty times in the longitudi-
nal direction and truncate the heads of the waves to get Fig. 8.6.3.
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W ;A U

?l
:

>

Fig. 8.6.3

One observes from this that before the collision, the big wave has a
velocity ¢; = 3 and an amplitude 3(c; — 1) = 6; and the small wave
has a velocity ¢; = 1.5 and an amplitude 3(c2 — 1) = 1.5. During
collision, the big wave gradually gets lower, while the small wave gets
higher. After the collision, there appear once again a big wave and
a small wave with almost identical amplitude and velocity as before
the collision. But now apparently, the position of the big wave is
{aknnf‘ 0, m ashoad of the nogition it would ba at accardine to the

MUY RAITAL. Vi VAU PUSIUWVIEL 10 VWU MU U VLU UL VY VU

original speed c1, while the position of the small wave is (about 1.1)
behind according to the speed co. We also notice the appearance of
tail waves of slight vibrations.

8.7 Hierarchical Basis Methods

By now, we have established a theory for generalized difference meth-
ods, almost parallel to that for finite element methods. Generalized
difference methods differs significantly from classical difference meth-
ods since they possess a variational form or a generalized Galerkin
form. This advantage not only helps to establish the theory for gen-
eralized difference methods by use of finite element techniques, but
also brings in the possibility to extend some algorithms designed for
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finite element methods to finite difference methods. As an example,
we discuss in this section the hierarchical basis methods for finite
difference equations. (cf. [A-29] and [B-56].)

It is well-known that the condition number of the coefficient ma-
trix of the discrete equation is O(A~2) (A > 0 being the maximum
step size of the grid), when we use the usual finite element or finite
difference methods to solve a self-adjoint, positive definite, second
order elliptic, planar, boundary value problem. Great progress was
made in [B-100] by introducing a hierarchical basis for finite elements,
resulting in a condition number O((log})?). In the sequel, we shall
first write the difference equation into a generalized difference form,
then we shall make use of the hierarchical basis techniques t0 improve
the condition number in like manner.

8.7.1 Hierarchical Basis

Let  be a polygonal region with boundary I' = 8Q, and let = QUI.
Suppose Tp is an initial triangulation of Q. Starting from Ty, we
construct successively a series of triangulations of Q: Tp, T}, - . Each
Ti+1 is a uniform re-decomposition of the previous T}, meaning that

T. .. ig ohtained hy rlnnrhnn' each h-mnn"ln of T. into four soual smaller

‘lﬂ"'l AV VR UWAATE Wy ReaY & fo ALLUY AU ML UY Ui DaSavALTE

triangles with the three orlgmal vertexes and the three midpoints of
the sides as new vertexes (cf. Fig. 8.7.1).

L N N

Fig. 8.7.1

Denote by N the set of all the nodes, i.e., the vertexes of the
triangular elements of T;. F} denotes the piecewise linear, contin-
uous function space relative to Tj. Call u € F; a k-th hierarchy
finite element function. For any u € C( Q\ we use Iyu € Fy for the
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interpolation projection of u onto Fj, that is,

Iyu € F, (Iyu)(z) = u(z), when z € Ny. (8.7.1)
Then, any u € F; has the following decomposition
J
u = Igu + Z(Iku ~ Ix_yu). (8.7.2)
k=1

/NN,

Fig. 8.7.2

Here each term is a rapidly oscillating function related to different hi-

erarchies. Ipu is the finite element function relative to the initial grid
To. The function (lyu—Ix—1u) € Fy, vanishes on Ni_y. Set Vx = {u €

Fy;u(z) = 0 when 2 € Ny_1}. Apparently Vj is the range of Iy —Ij_1,

and (8.7.2) means that Fj is a direct sum of Vy = Fp, V1,--+,Vj. A

standard finite element method takes the nodal basis functions of Fj

as a basis. Here we introduce a hierarchical basis of Fj, consisting
of the nodal basis functions of Vy = Fy, Vi,:-+,Vj (the correspond-

ing nodes are respectively Ng, N{\Np, - -+, Ng\Ng—1,++, N;j\N;-1).

Some one-dimensional hierarchical basis functions are depicted in Fig.

8.7.2.

With respect to the decomposition (8.7.2), let us introduce a semi-
norm for u € F} '

W= Y (e-hou@P 679

k=1 2€Np\Ny__,
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* Actually, |u| is the Euclidian norm of the vector of the coefficients in
the hierarchical basis expansion of u relative to Fj, of all the hierar-
chies except the initial one. Suppose the dimension of V} is my, (k =
- 0,1,+++,7), and the nodal basis functions are ¢y; (i = 1,2,--,my).
Then any u € F; has the expression

U= Z’Uoﬂﬁm + Z Z"%t‘ﬁkn . (8.7.4)
k=11i=1
where
{ vgi = u(®;), z; € Ny, (8.7.5)
W Vi = I u Im—iu)(zki), Ti € Niﬂ;\\Nk—L

If we unify the symbols Pki's 88 P1, o, Bmos Pmo+1y " * * s Pmo+mys** '

J
®m, where m = ) my is the dimension of Fj, then

k=0

mo m '

u=Y vigi+ Y, vids. (8.7.6)
i=1 i=mo+1

So it is clear that
m
= 3 il (8.7.3)
i=mo+1

Denote by ||+|lo and ||-||; the norms of the Sobolev spaces H? = L?
and H! respectively. The following important result is given in [B-
100].

Theorem 8.7.1 There exist constants K{, K3 > 0, dependent on
the diameter of Q and the lower bound of the inner angles of the
triangular elements but independent of the hierarchy number 7, such
that the following inequality holds for all u € Fj:

K17 + 172 (Moull + [ul) < llullf < K3 (10wl + luf?).  (8.7.7)
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8.7.2 Application to difference equations

Take the grid T, = T} and the trial function space Uy = Fj. Choose
a dual grid T} of T}, and the corresponding test function space V}
as the piecewise constant function space related to Tj. Let a(u,v)
be a bilinear form associated with a symmetric and positive definite
second order elliptic operator on @ C R2. The generalized difference
method then reads: Find u, € Uy such that

a(up,vp) = (f,vh), Vuu € Vj. (8.7.8)

In particular, taking T, as a rectangular grid reésults in a classical
difference equation. Denote by II} the interpolation projection oper-
ator from Up, onto V4. Then a(up, IT}Gr) (Gn, un € Up) is symmetric,
and there exist positive constants vy and v such that

Yollun|? < a(un, Mup) < mllunlld. (8.7.9)

Inspired by this observation, we introduce for u € F; the following
norms:

lulllf = alun, Thun); lulllf = Ioulld + ul®. (8.7.10)

[ ot} &)

Then (8.7.9) can be written as
Cullull} 2 lllulllf 2 Callull}, Vue F. (8.7.11)
This together with Theorem 8.7.1 leads to

Theorem 8.7.2 There ezist constants Ky and K2 independent of the
hierarchy number j such that

Ki1(+ 17 ulllf < ulllf < Kelllulllf, VueF;.  (87.12)

The constants K1 and Ko here depend on the lower bound of the
inner angles of all the triangular elements, the diameter of Q and the
constants Cy and Cp. But they are independent of the regularity of
the boundary value problems.

The coefficient matrix (the stiff matrix) of the generalized difference
equation (8.7.8) has the following two expressions according to dif-
ferent bases of Uy and V},.
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Representation by nodal basis
Let up = 3 ui¢s,, where ¢y, is the nodal basis of z; € N; and
!
ui = up(z;). We rewrite (8.7.8) in the form
Za(%unwz,)ui = (fa H:quw() = 517 le € Nj' (8'7'13)
i

Set u = (ug,ug,,Um)T, b = (b,bs, - ,bs)7, and (a matrix)

= [a( (¢24) 11} 5, )lmxm. Then, (8 7.13) can be written as a vector
form Au = b. This gives a usual (nodal basis) generalized difference -
equation.

Representation by hierarchical basis

The difference solution u), can be expressed as (8.7.6) by hierarchical
bases. Accordingly we can write (8.7.8) as

ga(qs,,nhqsa v+ ,=§+1 Wellidds 1y

(fin’):¢l) =bh l=132:"”m

Write v = (v1,+, Umgy Umo+1,°**,¥m)¥y b = (b1, b2, ,bm)T, and
the matrix A = [a(¢s, IT}é)lmxm. Then (8.7.14) becomes Av =
b, called a hierarchical basis difference equation. The matrix A is
obviously symmetric and positive definite.

Let By be the mg order coefficient matrix on the upper left of the
system (8.7.14), and

(B0

Ao = ( 0 I ) ) (8.7.15)
where I is the (m — mg) X (m — mq) identity matrix. It is clear that
the norm ||} - |)|o in (8.7.10) has the following representation

ollff = I Hovli§ + Jol® = (v, Agv).

Here (,-) stands for the Euclidian inner product. Now Theorem 8.7.2
can be stated as: For any m-dimensional hierarchical basis coefficient
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vector z, there holds (cf. (8.7.10))
Ki(j + 1)"%(z, Aoz) < (3, Az) < Ko(z, Aoz). (8.7.16)

Since the order mg of By is not large, it is economical to compute the
Cholesky decomposition Ag = LLT. Then we insert this decomposi-
tion into (8.7.16) to obtain

K1(j +1)(L"e, L 2)
< (LT, L7'AL™Y)TLT2) < Ko(LTz, LTx),

Thus we have the following estimate for the spectral condition number

cond(LA(LHT) < B2 1+ 1)2. (8.7.17)
Here the factors L~ and (L~!)T are not very important. They are
mainly used to eliminate the geometrical influence of the initial tri-
angulation. . Since the low dimensional initial space Fj is fixed and
independent of the number of the hierarchies, the spectral condition
number of LLT is independent of number of the hierarchies, too.
Furthermore, we note

(Az,z) _ (LT2, L7YA(L~Y)TLTg) (LT z, LT z)
(z,2) (LTz, LTg) (z2)

Therefore, the condition number of the matrix A amnplifies only in an
order O(52). Notice j ~ log +. Hence, as in the case of finite element

methods, the spectral condition number is reduced to O((log 71;)2)
Unfortunately A is no longer a sparse matrix, but it bears a simple
relationship with the nodal basis coefficient matrix A (cf. (8.7.13)).
Let S be such a transformation matrix which transforms the func-
tions in F; from a hierarchical basis representation into a nodal basis
representation. So for any m-dimensional vectors Z and § we have

(z, Ag) = (S%, ASy) = (z, STASp), (8.7.18)

which implies X
A=8TAS. (8.7.19)
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Our difference system is . X
Az =b. (8.7.20)

where z is the dxﬁ'erence solution vector. This system is equivalent
to

Ay = S’Tf), (or resp. L™*A(L™Y)Ty = L~'57b,) (8.7.21)

where A = ST AS is the hierarchical basis coefficient matrix, and the
nodal basis solution vector

z = Sy. (resp. w = S(L )Ty (8.7.22)

Since the condition number of A4 (resp. L~!A(Z~!)T) is compara-
tively small, the convergence rate of an iteration method for (8.7.21)
will be remarkably increased.

8.7.3 Iteration methods

As we see from (8.7.19), (8.7.21) and (8.7.22), it is a key point how to
evaluate S. As a transformation matrix from a hierarchical basis rep-
resentation into a nodal basis representation, S can be decomposed
into § = §;S;_1 -+« S1, where Sj describe the computation of the val-
ues of the new nodes on k-th hierarchy in terms of the values of the
nodes on (k — 1)-th hierarchy. The diagonal entries of Sj are equal to
1; In the i-th row of Sy, there are two off-diagonal entries % for each
z; € Ni\Ni_1; All the other entries are zero. So we can choose some
fast algorithms to evaluate Skz and S} z, with only O(m) operations
of multiplications and divisions ([cf. [B-100]). If we choose such it-
eration methods that involve only operations like Az, then we can
avoid the difficulties such as the complex structure and the increased

man e mambalac AL A Ml Lallac don o dbeven awensaslas eccdunda tha $dan
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Richardson iteration method
Applying the Richardson method to (8.7.21) yields

= y’” —w(STASy* — §78), k=0,1,-. (8.7.23)

If we choose the ptimal relaxation factor wept = 2/(a + ), where a
nd B are the maximum and minimum ma'pqval__v.g respecti

na M SR AT maximum saadiisdasiiiil TIHTL

(D
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symmetric and positive definite matrix A, then the convergence rate
of (8.7.23) is O(j~%), and the computational amount of each step is
only O(m). '

Conjugate gradient method
The convergence rate of this method for (8.7.21) is O(j
the computational amount of each step is also O(m).

Block Gauss-Seidel method and successive block over-relaxation
method can as well be used for (8.7.21). (See [A-29].)
8.7.4 Numerical experiments
Consider the first boundary value problem-of The Laplacian equation:

ulan = 0.

Fig. 8.7.3

Its unique solution is u = 0. Based on the initial grid in Fig. 8.7.3,
we place a series of densifying triangulations. In this case, the nodal
difference equation is precisely the well-known five point difference
scheme. The following methods are used: nodal basis Gause-Seidel
method (N-GS in short), hierarchical basis Richardson method (H-
Richardson), conjugate gradient method (H-CG), block Gauss-Seidel
method (H-BGS) and block successive over-relaxation method (H-
BSOR). The numbers of iteration steps to reach the accuracy 103
are shown in the following table. We observe that the convergence
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rates of the hierarchical methods (H-) are significantly higher than
that of the usual iteration method (N-GS).

method i=2

o
|
(%)
.
Il
(1=

o
l
LY
il
[=>)

=

N-GS 11 47 191 767 | 3067
H-Richardson 14 32 58 92 134
H-CG 4 11 16 22 28
H-BGS 9 13 19 26 35
H-BSOR 7 9 10 12 16

Bibliography and Comments

The paper [B-65] by R.H. MacNeal (1953) is the earliest work study-
ing the difference methods on irregular networks, which was origi-
nally proposed to simulate an electric network. A.M. Winslow [B-99]
(1967) extended this method to the computation of electromagnetic
fields. Further extensions and applications were discussed in [A-60]
and [B-72]. A direct extension to three-dimensional regions is pre-
gented in this chapter (§8.2).

Early in the seventies, [A-14,49] studied the difference methods on
triangular grids for elastic problems, which were called discretization
operator methods.

Up to now, fiuid mechanics, eSpec1ally underground fluid me-
chanics, may be the field where the generalized difference methods
apply most often and most successfully, represented by the works
[A-38,39,40,13] and [B-29,38]. An important feature of generalized

difference methods is that thev keen up the mass conservation. Per-
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haps this is the reason why computa,tmnal fluid researchers are at-
tracted to them. The application of generalized difference methods in
aeromechanics is also fairly successful, cf §6.4 and the corresponding
references in the end of the book.

[A-48] proposes a significant extension of the staggered scheme
(the nodes of the pressure and the velocity being distributed alter-
nately) for incompressible flows. [A-56] discussed a coupled sound-
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heat problem, but only in one dimension. [A-4] studied a regularized
long wave problem, which was a nonlinear problem, and obtained
satisfactory wave forms by a quadratic element generalized difference
scheme.

[A-29] and [B-56] extended the hierarchical basis method for fi-
nite element methods to finite difference methods, and highlighted

nnnnnnnnn L o4 dunmanland alanuithan Lon Banlba alaomaant mandhada 4o
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one for finite difference methods, Finite difference methods were used
in [A-33] to compute the long time behaviour of dynamical systems,
which provided another example of a successful extension of finite
element theories to finite difference methods.
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Pg-interpolation, 16

Positive definite condition, 22
Projection methods, 30
Projection operators, 30, 31, 36

Quadratic functional, 22
minimum of, 22
Quasi-parallelogram, 179
condition, 272
Quasi-uniform, 19, 54

Reference element, 17, 132
Regular family, 17
generalized solution, 22
representation theorem, 20,
28, 36, 39, 41
variational principle, 23

Sobolev spaces, 1, 4
H™(Q), 4
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Hp(9), 4

H-™(Q), 7
interpolation in, 15 43
L?((a,b); X), 275
LP(Q), 1

w-m?(Q), 7

wm2(Q). 4
wWhhEs), 4

W5 (Q), 4
Stable, 85
Superconvergence, 92-94, 96, 97,
100, 174, 182

Theorems
average appr
Babuska, 28
equivalent norm, §
imbedding, 7, 8
inverse property, 19
Lax-Milgram, 27
trace,; 5

Trace, 5, 8

Trial and test spaces, 39, 41,

53, 61, 73, 114, 131,
139, 154

ximation, 2

Uniquely approximate-solvable,
33
Upwind value, 299

Variational principles, 22, 204
Ciarlet-Raviart, 187
generalized Galerkin, 49, 51
Hermann-Miyoshi, 196
potential energy, 23
Riesz, 23
virtual work, 22, 47

V-elliptic condition, 22
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Vh-interpolation, 16
Volume coordinates, 368

Weak convergence, 32, 34



