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PREFACE 

Rien ne serf de couril; 
i1,faut partir a point. 

Jean de la Fontaine 

Many physical processes in nature, whose correct understanding, prediction, and control 
are important to people, are described by equations that involve physical quantities together 
with their spatial and temporal rates of change (partial derivatives). Among such processes 
are the weather, flow of liquids, deformation of solid bodies, heat transfer, chemical reac- 
tions, electromagnetics, and many others. Equations involving partial derivatives are called 
partial diferential equations (PDEs). The solutions to these equations are functions, as 
opposed to standard algebraic equations whose solutions are numbers. For most PDEs we 
are not able to find their exact solutions, and sometimes we do not even know whether a 
unique solution exists. For these reasons, in most cases the only way to solve PDEs arising 
in concrete engineering and scientific problems is to approximate their solutions numeri- 
cally. Numerical methods for PDEs constitute an indivisible part of modern engineering 
and science. 

The most general and efficient tool for the numerical solution of PDEs is the Finite 
element method (FEM),  which is based on the spatial subdivision of the physical domain 
intofinite elements (often triangles or quadrilaterals in 2D and tetrahedra, bricks, or prisms 
in 3D), where the solution is approximated via a finite set of polynomial skape,funcrions. 
In this way the original problem is transformed into a discrete problem for a finite number 
of unknown coefficients. It is worth mentioning that rather simple shape functions, such 
as affine or quadratic polynomials, have been used most frequently in the past due to 
their relatively low implementation cost. Nowadays, higher-order elements are becoming 
increasingly popular due to their excellent approximation properties and capability to reduce 
the size of finite element computations significantly. 

The higher-order finite element methods, however, require a better knowledge of the 
underlying mathematics. In particular, the understanding of linear algebra and elementary 

xxv 



xxvi PREFACE 

functional analysis is necessary. In this book we follow the modern trend of building 
engineering finite element methods upon a solid mathematical foundation, which can be 
traced in several other recent finite element textbooks, as, e.g., [ 181 (membrane, beam and 
plate models), [29] (finite element analysis of shells), or [83] (edge elements for Maxwell’s 
equations). 

The contents at a glance 

This book is aimed at graduate and Ph.1~. students of all disciplines of computational engi- 
neering and science. It provides an introduction into the modern theory of partial differential 
equations, finite element methods, and their applications. The logical beginning of the text 
lies in Appendix A, which is a course in linear algebra and elementary functional analy- 
sis. This chapter is readable with minimum prerequisites and it contains many illustrative 
examples. Readers who trust their skills in function spaces and linear operators may skip 
Appendix A, but it will facilitate the study of PDEs and finite element methods to all others 
significantly. 

The core Chapters 1 4  provide an introduction to the theory of PDEs and finite element 
methods. Chapter 5 is devoted to the numerical solution of ordinary differential equations 
(ODES) which arise in the semidiscretization of time-dependent PDEs by the most fre- 
quently used Method of lines (MOL). Emphasis is given to higher-order implicit one-step 
methods. Chapter 6 deals with Hermite and Argyris elements with application to fourth- 
order problems rooted in the bending of elastic beams and plates. Since the fourth-order 
problems are less standard than second-order equations, their physical background and 
derivation are discussed in more detail. Chapter 7 is a newcomer’s introduction into com- 
putational electromagnetics. Explained are basic laws governing electromagnetics in both 
their integral and differential forms, material properties, constitutive relations, and interface 
conditions. Discussed are potentials and problems formulated in terms of potentials, and 
the time-domain and time-harmonic Maxwell’s equations. The concept of NCdClec’s edge 
elements for the Maxwell’s equations is explained. 

Appendix B deals with selected algorithmic and programming issues. We present a uni- 
versal sparse matrix interface sMatrix which makes it possible to connect multiple sparse 
matrix solver packages simultaneously to a finite element solver. We mention the advantages 
of separating the finite element technology from the physics represented by concrete PDEs. 
Such approach is used in the implementation of a high-performance modular finite element 
system HERMES. This software is briefly described and applied to several challenging 
engineering problems formulated in terms of second-order elliptic PDEs and time-harmonic 
Maxwell’s equations. Advantages of higher-order elements are demonstrated. 

After studying this introductory text, the reader should be ready to read articles and 
monographs on advanced topics including a-posteriori error estimation and automatic adap- 
tivity, mixed finite element formulations and saddle point problems, spectral finite element 
methods, finite element multigrid methods, hierarchic higher-order finite element methods 
(hp-FEM), and others (see, e.g., [9,23,69, 1051 and [ 1 1 11). Additional test and homework 
problems, along with an errata, will be maintained on my home page. 

PAVEL S O L ~ N  
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CHAPTER 1 

PART I AL D I F F E R E NT I AL EQ UATl 0 N S 

Many natural processes can be sufficiently well described on the macroscopic level, with- 
out taking into account the individual behavior of molecules, atoms, electrons, or other 
particles. The averaged quantities such as the deformation, density, velocity, pressure, 
temperature, concentration, or electromagnetic field are governed by partial differential 
equations (PDEs). These equations serve as a language for the formulation of many engi- 
neering and scientific problems. To give a few examples, PDEs are employed to predict and 
control the static and dynamic properties of constructions, flow of blood in human veins, 
flow of air past cars and airplanes, weather, thermal inhibition of tumors, heating and melt- 
ing of metals, cleaning of air and water in  urban facilities, burning of gas in vehicle engines, 
magnetic resonance imaging and computer tomography in medicine, and elsewhere. Most 
PDEs used in practice only contain the first and second partial derivatives (we call them 
second-order PDEs). 

Chapter 1 provides an overview of basic facts and techniques that are essential for both the 
qualitative analysis and numerical solution of PDEs. After introducing the classification and 
mentioning some general properties of second-order equations in Section 1.1, we focus on 
specific properties of elliptic, parabolic, and hyperbolic PDEs in Sections I .2-1.4. Indeed, 
there are important PDEs which are not of second order. To mention at least some of them, 
in Section 1.5 we discuss first-order hyperbolic problems that are frequently used to model 
transport processes such as, e.g., inviscid fluid flow. Fourth-order problems rooted in the 
bending of elastic beams and plates are discussed later in  Chapter 6. 
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2 PARTIAL DIFFERENTIAL EQUATIONS 

1.1 SELECTED GENERAL PROPERTIES 

Second-order PDEs (or PDE systems) encountered in physics usually are either elliptic, 
parabolic, or hyperbolic. Elliptic equations describe a special state of a physical system, 
which is characterized by the minimum of certain quantity (often energy). Parabolic prob- 
lems in most cases describe the evolutionary process that leads to a steady state described 
by an elliptic equation. Hyperbolic equations describe the transport of some physical 
quantities or information, such as waves. Other types of second-order PDEs are said to 
be undetermined. In this introductory text we restrict ourselves to linear problems, since 
nonlinearities induce additional aspects whose understanding requires the knowledge of 
nonlinear functional analysis. 

1.1 -1 Classification and examples 

Let U be an open connected set in RTL. A sufficiently general form of a linear second-order 
PDE in n independent variables z = (zI, z2. . . ., z , , ) ~  is 

where = aY(z) ,  b, = bi (z ) ,c ,  = c,(z) ,ao = ao(z )  and f = f(z). For all derivatives 
to exist in the classical sense, the solution and the coefficients have to satisfy the following 
regularityrequirements: u E C2(U),a, ,  E C1(U) ,b ,  E C' (U) , c ,  E C'(U),ao E C(U) ,  
f E C(U) .  These regularity requirements will be reduced later when the PDE is formulated 
in the weak sense, and additional conditions will be imposed in order to ensure the existence 
and uniqueness of solution. If the functions a,, , b,, c,, and a0 are constants, the PDE is said 
to be with constant coefficients. Since the order of the partial derivatives can be switched for 
any twice continuously differentiable function u, it is possible to symmetrize the coefficients 
a,? by defining 

and adjusting the other coefficients accordingly so that the equation remains in the form 
(1.1). This is left to the reader as an exercise. Based on this observation, in the following 
we always will assume that the coefficient matrix A ( z )  = {a,,}:q,=l is symmetric. 

(a;;zg + aol.zY ( y p w  := 
J L  )I2 

Recall that a symmetric n x n matrix A is said to be positive definite if 

vTAv > 0 for all 0 # w E Iw" 

and positive semidefinite if 

v1 Aw 2 0 for all 'u E R". 

Analogously one defines negative definite and negative semidefinite matrices by turning the 
inequalities. Matrices which do not belong to any of these types are said to be indefinite. 

Definition 1.1 (Elliptic, parabolic and hyperbolic equations) Consider a second-order 
PDE of the,form (1.1) with a symmetric coefficient matrix A ( z )  = { u , ~ } : ~ = ~ .  

1. The equation is said to be elliptic ut z E U i fA ( z )  is positive dejnite. 

2. The equation is said to be parabolic at z E U $ A ( z )  is positive sernidejnite, but not 
positive dejnite, and the rank o f ( A ( z ) ,  b ( z ) .  c(z ) )  is equal t o n .  
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3. The equation is said to be hyperbolic at z E c3 f A ( z )  has one negative and n - 1 
positive eigenvalues. 

An equation is culled elliptic, parabolic, or hyperbolic in the set c3 f i t  is elliptic, parabolic, 
or hyperbolic everywhere in 0, respectively. 

Remark 1.1 (Temporal variable t )  In practice we distinguish between time-dependent 
and time-independent PDEs. I f  the equation is time-independent, we put n = d and 
z = x, where d is the spatial dimension and x the spatial variable. This often is the case 
with elliptic equations. Ifthe quantities in the equation depend on time, which often is the 
case with parabolic and hyperbolic equations, we put n = d + 1 and z = (2, t ) ,  where t 
is the temporal variable. In such case the set c3 represents some space-time domain. I f  the 
spatial part of the space-time domain 0 does not change in time, we talk about a space-time 
cylinder R x (0, T ) ,  where R c Rd and (0 ,  T )  is the corresponding time interval. 

Notice that, strictly speaking, the type of the PDE in Definition 1. I is not invariant under 
multiplication by -1. For example, the equation 

-Au = f 
(where A = 5 3 & in R3) 

is elliptic everywhere in R3 since its coefficient matrix A is positive definite, 

1 0 0  

However, the type of the equation 

A u =  -f 

cannot be determined since its coefficient matrix 

is negative definite. In such cases it is customary to multiply the equation by (-1) so 
that Definition 1 .1  can be applied. Moreover, notice that Definition 1.1 only applies to 
second-order PDEs. Later in this text we will discuss two important cases outside of 
this classification: hyperbolic first-order systems in Section 1.5 and elliptic fourth-order 
problems in Chapter 6. 

Remark 1.2 Sometimes, linear second-order PDEs are fiiund in a slightly different form 

(1.3) 

usually with a symmetric coeflcient matrix A ( z )  = { n , J } ~ ~ J = l .  When transforming (1.3) 

into the,form (1.11, it is easy to see that the matrices A ( z )  and A(z)  are identical, and 
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thus either one can be  used t o  determine the ellipticit-y, purabolicit.y, o r  hyperbolicity ofthe 
problem. Moreover, if the coeficients and b, m e  suflciently smooth, the two forms are 
equivalent. 

Operator notation It is customary to write elliptic PDEs in a compact form 

L u =  f:  

where L defined by 

is a second-order elliptic differential operator. The part of L with the highest derivatives, 

is called the principal (leading) part of L. Most parabolic and hyperbolic equations are 
motivated in physics, and therefore one of the independent variables usually is the time t .  
The typical operator form of parabolic equations is 

a71 
- + Lu = f .  
at 

where L is an elliptic differential operator. Typical second-order hyperbolic equation can 
be seen in the form 

where again L is an elliptic differential operator. The following examples show simple 
elliptic, parabolic, and hyperbolic equations. 

W EXAMPLE 1.1 (Elliptic PDE: Potential equation of electrostatics) 

Let the function p E C ( 2 )  represent the electric charge density in some open bounded 
set 0 C Rd. If the permittivity f is constant in  12, the distribution of the electric 
potential 9 in 12 is governed by the Poisson equation 

Notice that (1.8) does not possess a unique solution, since for any solution p the 
function 9 + G, where C is an arbitrary constant, also is a solution. In  order to 
yield a well-posed problem, every elliptic equation has to be endowed with suitable 
boundary conditions. This will be discussed in Section I .2. 
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W EXAMPLE 1.2 (Parabolic PDE: Heat transfer equation) 

Let 0 C Rd be an open bounded set and q E C ( 2 )  the volume density of heat sources 
in R. If the thermal conductivity k ,  material density e. and specific heat care constant 
in 0, the parabolic equation 

describes the evolution of the temperature Q(z,t) in R. The steady state 
temperature (38/3t = 0) is described by the corresponding elliptic equation 

- k A Q  = q. 

(1.9) 

of the 

Similarly to the previous case, the solution Q is not determined by (1.9) uniquely. 
Parabolic equations have to be endowed with both boundary and initial conditions in 
order to yield a well-posed problem. This will be discussed in Section I .3. 

EXAMPLE 1.3 (Hyperbolic PDE: Wave equation) 

Let (2 c Rd be an open bounded set. The speed of sound a can be considered constant 
in I? if the motion of the air is sufficiently slow. Then the hyperbolic equation 

(1.10) 

describes the propagation of sound waves in 12. Here the unknown function p ( z .  t )  
represents the pressure, or its fluctuations around some arbitrary constant equilibrium 
pressure. Again the function p is not determined by ( 1  .lo) uniquely. Hyperbolic 
equations have to be endowed with both boundary and initial conditions in order 
to yield a well-posed problem. Definition of boundary conditions for hyperbolic 
problems is more difficult compared to the elliptic or parabolic case, since generally 
they depend on the choice of the initial data and on the solution itself. We will return 
to this issue in Example 1.4 and in more detail in Section 1.5. 

1.1.2 Hadamard’s well-posedness 

The notion of well-posedness of boundary-value problems for partial differential equations 
was established around 1932 by Jacques Salomon Hadamard. 

J.S. Hadamard was a French mathematician who contributed significantly to the analysis 
of Taylor series and analytic functions of the complex variable, prime number theory, study 
of matrices and determinants, boundary value problems for partial differential equations, 
probability theory, Markov chains, several areas of mathematical physics, and education of 
mathematics. 

Definition 1.2 (Hadamard’s well-posedness) A prohlein is said to he well-posed If 

I .  it has CI uiiiqiie solution, 

2. the solution depends corztinuoirsly 011 the given clcrta 

Otherwise the prohleni is ill-posed. 
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Figure 1.1 Jacques Salomon Hadamard (1865-1963). 

As the reader may expect, well-posed problems are more pleasant to deal with than the ill- 
posed ones. The requirement of existence and uniqueness of solution is obvious. The other 
condition in Definition 1.2 denies well-posedness to problems with unstable solutions. From 
the point of view of numerical solution of PDEs, the computational domain Q boundary and 
initial conditions, and other parameters are not represented exactly in the computer model. 
Additional source of error is the finite computer arithmetics. If a problem is well-posed, 
one has a chance to compute a reasonable approximation of the unique exact solution as 
long as the data to the problem are approximated reasonably. Such expectation may not be 
realistic at all if the problem is ill-posed. 

The concept of well-posedness deserves to be discussed in more detail. First let us  
show in Example 1.4 that well-posedness may be violated by endowing a PDE with wrong 
boundary conditions. 

W EXAMPLE 1.4 (Ill-posedness due to wrong boundary conditions) 

Consider an interval R = ( -a.  a ) ,  (1 > 0, and the (inviscid) Burgers' equation 

(1.1 1 )  

This equation is endowed with the initial condition 

u(x .0 )  = f L ( ) ( . I ' )  = .I'. .r E 12. (1.12) 

where uo is a function continuous in (-o.a) such that i i0(+o) = +a, and the 
boundary conditions 

7L(+fI.  f )  = fo. f > 0. (1.13) 

The (inviscid) Burgers' equation is an important representant of the class of first-order 
hyperbolic problems that will be studied in more detail in  Section 1.5. In particular, 
after reading Paragraph 1 S.5 the reader will know that every function u(D.. t )  that 
satisfies both equation ( I .  1 1 ) and initial condition ( 1.12) is constant along the lines 
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x,,,(t) = zo(t + l),  zo E a, (1.14) 

depicted in Figure 1.2. 

Figure 1.2 Isolines of the solution u(z ,  t )  of Burgers’ equation. 

It is easy to check the constantness of the solution u along the lines (1.14) by 
performing the derivative 

d 
dt 
-lL(zz()(t). t ) .  

From this fact i t  follows that the solution to (1 .1  l) ,  (1.12) cannot be constant in time 
at the endpoints of 0. Hence the problem ( 1.1 1 ), ( 1.12), ( 1.13) has no solution. 

Some problems are ill-posed because of their very nature, despite their initial and bound- 
ary conditions are defined appropriately. This is illustrated in Example 1.5. 

H EXAMPLE 1.5 (Ill-posed problem with unstable solution) 

Consider the one-dimensional version of the heat transfer equation (1.9) with nor- 
malized coefficients, 

(1.15) 

describing the temperature distribution within a thin slab 0 = ( 0 , ~ )  in the time 
interval (0,T).  We choose an initial temperature distribution u(x ,  0) = uo(x) such 
that uo(0) = uo(r )  = 0, fix the temperature at the endpoints to u(0) = a(.) = 0 
and ask about the solution u(x ,  t )  of (1.15) for t  E (0. T ) .  The initial condition ug(z) 

can be expressed by means of the Fourier expansion 

(1.16) 

Thus it  is easy to verify that the exact solution u(z ,  t )  has the form 
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(1.17) 

and hence that 

is the solution corresponding to the time t = T. Notice that the coefficients c, ,c-~")'  
converge to zero very fast as the time grows, and therefore after a sufficiently long 
time T the solution will be very close to zero in 12. Hence, the heat transfer problem 
evidently is a well-posed in the sense of Hadamard. 

Now let us reverse the time by defining a new temporal variable s = T - t .  The 
backward heat transfer equation has the form 

36 32il 
- + ~ = 0. 
3 s  3.9 

We consider an initial condition Co(.r) corresponding to s = 0, i.e., to t = T. Again, 
i L g ( z )  can be expressed as 

(1.19) 

and the exact solution C(x. s )  has the form 

Notice that now the coefficients d,,e"-" are amplified exponentially as the backward 
temporal variable s grows. This means that the solution of the backward heat transfer 
equation does not depend continuously on the initial data i l l l(. i :), i.e., that the backward 
problem is ill-posed. 

Suppose that we calculate some numerical approximation of the solution u(.r. T) 
for some sufficiently large time T and then use it  as the initial condition iL(l(.r) for the 
backward problem. What we will observe when solving the backward problem is that 
the solution C(z: s) begins to oscillate immediately and the computation ends with 
a floating point overflow or similar error very soon. Because of the ill-posedness of 
the backward problem, chances are slim that one can get close to the original initial 
condition l l ~ i l ( : ~ )  at s = T. 

Remark 1.3 (Inverse problems) The ill-posed bcickl.veird heat trmwfer equntion,from Ex- 
ample 1.5 was an inverse problem. Tlwrc cire vcrrious types of ill-posed inverse problems: 
For example, it is ail inverse problem to identify suitcible initial state and/or p~irc'meter.s,for 
some physical process to obtain a desircd,fincil state. Usircilly, the better-posed the,forwiird 
problem, the worse the posedness of the iriverse problem. 
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1 .I .3 General existence and uniqueness results 

Prior to discussing various aspects of the elliptic, parabolic, and hyperbolic PDEs in Sections 
1.2-1.5, we find it useful to mention a few important abstract existence and uniqueness 
results for general operator equations. Since this paragraph uses some abstract functional 
analysis, readers who find its contents too difficult may skip it in the first reading and 
continue with Section 1.2. 

In the following we consider a pair of Hilbert spaces V and W ,  and an equation of the 
form 

L u =  f .  (1.20) 

where L : D ( L )  c V + W- is a linear operator and f E W .  The existence of solution to 
(1.20) for any right-hand side f E W is equivalent to the condition R(L)  = W ,  while the 
uniqueness of solution is equivalent to the condition N ( L )  = (0). 

Theorem 1.1 (Hahn-Banach) Let U be a subspnce of a (real or complex) normed space 
V, and f E U’ a linear,form over U .  Then there exists an extension 9 E V’ off such that 
g ( u )  = , f(u),forall  TL E U ,  moreover satisfying I l g l l ~ I  = Ilfilul. 

Proof: 
134,651 and [ 1001. rn 

The proof can be found in standard functional-analytic textbooks. See, e.g., 

Theorem 1 .1  has important consequences: If uug E V and f(v0)  = 0 for all f E V’, 
then 1 1 ~ )  = 0. Further, for any vug E V there exists f E V’ such that I /  filv = 1 and 
f (210)  = lluugllv. The following result is used in the proof of the basic existence theorem: 
For any two disjoint subsets A, B C V, where A is compact and B convex, there exists 
f E V‘ and y E R such that f ( n )  < y < f ( b )  for all n E A and b E B. 

Theorem 1.2 (Basic existence result) Let V. W be Hilbert spaces and L : D ( L )  c V + 

W a bounded linear operator. Then R ( L )  = W ifand on1.y ifboth R ( L )  is closed and 

Proof: If R ( L )  = TI / ,  then obviously R(L) is closed and R(L)’ = ( 0 ) .  Conversely, 
assume that R ( L )  is closed, R(L)’ = (0) but R ( L )  # W .  The linearity and boundedness 
of L implies that R ( L )  is a closed subspace of 14’. Let U J  E W \ R(L). The set {.I} is 
compact and the closed set R ( L )  obviously is convex. By the Hahn-Banach theorem there 
exists a w *  E I&’’ such that ( w * . u I )  > 0 and (.(I)*. L ~ J )  = 0 for all 2) E D ( L ) .  Therefore 

In order to see under what conditions R ( L )  is closed, let us generalize the notion of 

R ( L ) l  = ( 0 ) .  

0 # ( I ! *  E R(L)’, which is a contradiction. 

continuity by introducing closed operators: 

Definition 1.3 (Closed operator) An operator T : D ( T )  c V ---f W, where V and W 
are Bnnach spaces, is said to be closed iffor any sequence {?I,, c D ( T ) ,  u,, i 71 and 
T (  u l L )  + w imply that u E D ( T )  and 211 = T.P. 

It is an easy exercise to show that every continuous operator is closed. However, there 
are closed operators which are not continuous: 

rn EXAMPLE 1.6 (Closed operator which is not continuous) 

Consider the interval 12 = ( 0 , l )  C R, the Hilbert space V = L‘((I2) and the Laplace 
operator L : V + V .  Lu  = -Au = -u”. This operator is not continuous, since, 
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e.g., Lv @ V for v = z-'/:~ E V .  We know that the space C r ( 0 )  is dense in L 2 ( 0 )  
(see Paragraph A.2.10). To show that L is closed in V ,  for an element v E V consider 
some sequence {v,},",~ C CF(0) such that v, + v, and such that the sequence 
{-AV,}?=~ converges to some w E V .  Passing to the limit n i co in the relation 

we obtain 

l w ' p d x  = - vA'pdx for all 'p E CT(b2). 

Therefore w = - Av and the operator L is closed. 

Theorem 1.3 (Basic existence and uniqueness result) Let V, W be Hilbert spaces and 
L : D( L )  c V + W a closed linear operator. Assume that there exists a constant C > 0 
such that 

(this inequality sometimes is called the .stability or coercivity estimate). If R(L)' = {0} ,  
then the operator equation Lu = f has a unique solution. 

Proof: First let us verify that R(L)  is closed. Let {w~,}?=~ c R ( L )  such that w, + w. 
Then there is a sequence {v,}~=.=, C D ( L )  such that w,, = Lv,. The stability estimate 
(1.21)impliesthatCllvn-v,,IIv 5 I I W , ~  -wTnllw, whichmeansthat { v 7 z } ~ = l  isaCauchy 
sequence in V .  Completeness of the Hilbert space V yields existence of a 71 E V such that 
v, + v. Since L is closed, we obtain v E D ( L )  and w = Lv E R(L).  Theorem 1.2 yields 
the existence of a solution. The uniqueness of the solution follows immediately from the 

Now let us introduce the notion of monotonicity and show that strongly monotone linear 

stability estimate (1.21). 

operators satisfy the stability estimate ( I  .21): 

Definition 1.4 (Monotonicity) Let V be a Hilbert space and L E C ( V ,  V ' ) .  The operator 
L is said to be monotone i f  

(L71,v) 2 0 f o ra l l  ti E V, (1.22) 

it is strictly monotone if 

(Lv ,  v) > 0 for  all 0 # v E V, (1.23) 

and it is strongly monotone ifthere exists a constunt CL > 0 such that 

For every u E V the element Lu E V' is a linear,form. The symbol (Lv ,  v). which mean.7 
the application of Lu to v E V ,  is called duality pairing. 
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The notion of monotonicity for linear operators is a special case of a more general 
definition applicable to nonlinear operators. An operator T : V + V' is said to be monotone 
if (Tu - Tv,  u - ii) 2 0 for all u, 71 E V, i t  is strictly monotone if (Tu - Tv,  u - v) > 
0 for all u ,  71 E V, u # 71, and it is strongly monotone if there exists a positive constant CL 
such that (Tu - Ti), u - v) 2 CL I/u - v1I2 for all 7 4  v E V. The concept of monotonicity 
for operators is related to the standard notion of monotonicity of real functions: A function 
f : R + R is monotone if the condition z1 < z:! implies that f (z1)  5 f ( 5 2 ) .  The same 
can be written as the condition ( f (z1)  - f (z%)) (z~  - 5 2 )  2 0 for all 5 1 , 5 2  E R. 

Lemma 1.1 Let V be a Hilbert space and L E L(V, V ' )  a continuous strongly monotone 
linear operator: Then there exists a constant C > 0 such that L satisfies the stability 
estimate (1.21). 

Proof: The strong monotonicity condition (1.24) implies 

which means that 

The following theorem presents an important abstract existence and uniqueness result 
for operator equations: 

Theorem 1.4 (Existence and uniqueness of solution for strongly monotone operators) 
Let V be a Hilbert space, f E V' and L E C( V, V ' )  a strongly monotone linear operator: 
Then for every f E V' the operator equation Lu = f has a unique solution u E V .  

Proof: According to Lemma 1.1 the operator L satisfies the stability estimate (1.21). 
Moreover, if v E R(L)', then (Lii, v) = 0 and 

C/l7i$ 5 (hi, (1) = 0. 

Hence I?(L)' = (0). and the conclusion follows from Theorem 1.3. 

1.1.4 Exercises 

Exercise 1.1 Use Dejinition 1.3 to show that every continuous operator L : V i W ,  
where V and H7 are Bannch spaces, is closed. 

Exercise 1.2 Consider a second-order PDE in the,form (1. I )  with a nonsymmetric coeffi- 
cient matrix A ( z ) .  Symmetrize the coeficient matrix by  dejining A = ( A  + A?')/2. Find 
out how the remaining coeficients b,. c,, and a()  have to be adjusted so that the equation 
remains in the,form (1.1). Hint: Write at,, = ( a , ]  + n , ] , ) / 2  + (a,,, - n,?,)/2. 

Exercise 1.3 Consider a second-order PDE in the alternative,form (1.3). 
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where Z,, = Z,, ,for all 1 5 i, j 5 TL. 

1. Turn the equation into the conventional form (1 .  I ) ,  

2. Write the relations ofthe coeficients a,,, , b , ,  c, a0 and U,, , b,, E i ,  210. 

Exercise 1.4 Use Dejinition 1.1 to show that equation (1.8)fronz Example 1.1 is elliptic. 

Exercise 1.5 Use Dejinition 1. I to show that equation (1.9),from Example 1.2 is parabolic. 

Exercise 1.6 Use Dejinition 1.1 to show that equution (1.10) from Example 1.3 is h-yper- 
bolic. 

Exercise 1.7 Verifi that the,function u ( t .  t )  defined in (0, T )  by the relation ( I .  17) is the s o -  
lution ofthe heat-transfer equation ( I .  IS) with the boundary conditions u(0: t )  = ~ L ( T ,  t )  = 
0for  all t > 0. 

Exercise 1.8 In R" consider the equation 

and decide if (and where in Iw") it is elliptic, parcrbolic, or hyperbolic. 

Exercise 1.9 l r i  R2 consider the equation 

and decide $(and where in R2) it is elliptic, pnmholic, or hyperbolic 

Exercise 1.10 I n  R" consider the equation 

and decide if (and where in R2) it is elliptic, ptrmholic, or hyperbolic. 

Exercise 1.11 In R" consider the equation 

and decide if (and where in R") it is elliptic, pciruholic, or hyperbolic 

Exercise 1.12 I n  R' consider the eqii(iti~ii 

and decide if (or where in R2) it i s  elliptic, ptrraholic, or hyperbolic. 
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1.2 SECOND-ORDER ELLIPTIC PROBLEMS 

This section is devoted to the discussion of linear second-order elliptic problems. We begin 
by deriving the weak formulation of a model problem in Paragraph 1.2.1. Properties of 
bilinear forms arising in the weak formulation of linear elliptic problems are discussed 
in Paragraph 1.2.2. In Paragraph 1.2.3 we introduce the Lax-Milgram lemma, which 
is the basic tool for proving the existence and uniqueness of solution to linear elliptic 
problems. The weak formulations and solvability analysis of problems involving various 
types of boundary conditions are discussed in Paragraphs 1.2.5-1.2.8. Abstract energy of 
elliptic problems, which plays an important role in their numerical solution (error estimation, 
automatic adaptivity), is introduced in Paragraph 1.2.9. Finally, Paragraph 1.2.10 presents 
maximum principles for elliptic problems, which are used to prove their well-posedness. 

1.2.1 Weak formulation of a model problem 

Assume an open bounded set f l  c Rd with Lipschitz-continuous boundary, and recall the 
general linear second-order equation (1. l), 

where the coefficients and the right-hand side satisfy the regularity assumptions formulated 
in Paragraph 1.1.1. In this case we put n = d. Equation (1.25) is elliptic if the symmetric 
coefficient matrix A = { u ~ , } ~ , , = ~  is positive definite everywhere in R (Definition 1.1). 

Consider the model equation 

-V . (alVu) + aou = f in R. (1.26) 

obtained from (1.25) by assuming a t 3 ( z )  = a1(z)6,, and b ( z )  = c(z) = 0 in R. For the 
existence and uniqueness of solution we add another important assumption: 

a l ( z )  2 C,,,,, > 0 and ~ ( z )  2 0 in 0. (1.27) 

The problem (1.26) is fairly general: Even with a0 = 0 it describes, for example, the 
following physical processes: 

I .  Stationary heat transfer (,u is the temperature, a1 is the thermal conductivity, and f 
are the heat sources), 

2. electrostatics (u is the electrostatic potential, al is the dielectric constant, and f is 
the charge density), 

3. transverse deflection of a cable (u is the transverse deflection, a1 is the axial tension, 
and f is the transversal load), 

4. axial deformation of a bar (u is the axial displacement, al  = E A  is the product of the 
elasticity modulus and the cross-sectional area, and f is either the friction or contact 
force on the surface of the bar), 

5. pipe flow (u is the hydrostatic pressure, a1 = 7rD4/128p, D is the diameter, p is the 
viscosity and f = 0 represents zero flow sources), 
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6. laminar incompressible flow through a channel under constant pressure gradient (u 
is the velocity, a1 is the viscosity, and f is the pressure gradient), 

7. porous media flow (u is the fluid head, nl  is the permeability coefficient, and f is the 
fluid flux). 

To begin with, let (1.26) be endowed with homogeneous Dirichlet boundary conditions 

u ( z )  = 0 o n d R .  (1.28) 

This type of boundary conditions carries the name of a French mathematician Johann Peter 
Gustav Lejeune Dirichlet, who made substantial contributions to the solution of Fermat’s 
Last Theorem, theory of polynomial functions, analytic and algebraic number theory, con- 
vergence of trigonometric series, and boundary-value problems for harmonic’ functions. 

Figure 1.3 Johann Peter Gustav Lejeune Dirichlet (1805-1859). 

Classical solution to the problem (1.26), (1.28) is a function u E C2(f2) n C ( 2 )  
satisfying the equation (1.26) everywhere in R and fulfilling the boundary condition (1.28) 
at every z E dR. Naturally, one has to assume that f E C(!2). However, neither this nor 
even stronger requirement f E C ( 2 )  guarantees the solvability of the problem, for which 
still stronger smoothness o f f  is required. 

Weak formulation In order to reduce the above-mentioned regularity restrictions, we 
introduce the weak formulation of the problem (1.26), (1.28). The derivation of the weak 
formulation of (1.26) consists of the following four standard steps: 

1. Multiply (1.26) with a test function u E C r  (R), 

-v ’ ( a lvu )v  + aouv = f v  

2. Integrate over 0, 

‘Au = 0 
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3. Use the Green's formula (A.80) to reduce the maximum order of the partial derivatives 
present in the equation. The fact that ?I vanishes on the boundary aR removes the 
boundary term, and we have 

ll a1 V u  . Vv d x  + ( 1.29) 

4. Find the largest possible function spaces for u, w, and other functions in (1.29) where 
all integrals are finite. Originally, identity (1.29) was derived under very strong 
regularity assumptions u E C2(R)  n C ( 2 )  and u E Cr(R).  All integrals in (1.29) 
remain finite when these assumptions are weakened to 

u,11 E H,:(R): f E P(R), ( I  .30) 

where H:(R) is the Sobolev space W:x2(Cl) defined in Section A.4. Similarly the 
regularity assumptions for the coefficients al  and a0 can be reduced to 

The weak form of the problem (1.26). (1.28) is stated as follows: Given f E L2(R), find a 
function u E H;(R) such that 

a1 Vu . Vv + aouu d x  = f w d x  for all v E HA (a). (1.32) b 
The existence and uniqueness of solution will be discussed in Paragraph 1.2.4. 

Let us mention that the assumption f E L2(s2) can be further weakened to f E H-l  (R), 
where H-'(R), which is the dual space to H:(R), is larger than L2(s2). Then the integral 

is interpreted as the duality pairing ( f ,  v) between H- ' (R)  and H,'(R) 

Equivalence of the strong and weak solutions Obviously the classical solution to 
the problem (1.26), (1.28) also solves the weak formulation (1.32). Conversely, if the weak 
solution of (1.32) is sufficiently regular, which in this case means u E C2(R) n C@),  it 
also satisfies the classical formulation (1.26), (1.28). 

In the language of linear forms Let V = HA(R). We define a bilinear form a( . ,  .) : 
V x V + I w .  

and a linear form 1 E V',  
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Then the weak formulation of the problem (1.26), ( I  .28) reads: Find a function ’u E V such 
that 

n(u .  71) = l ( ~ )  for all 1) E V. (1.33) 

This notation is common in the study of partial differential equations and finite element 
methods. 

1.2.2 Bilinear forms, energy norm, and energetic inner product 

In this paragraph we learn more about bilinear forms for elliptic problems, and introduce the 
notions of energy norm and energetic inner product. Every bilinear form u : V x V + R 
in a Banach space V is associated with a unique linear operator A : V i V’ defined by 

(Au)(v)  = (Au,71) = a(u,71) for all u.71 E V. (1.34) 

Lemma 1.2 Relation (1.34) defines a one-to-one correspondence between continuous bi- 
linear forms a : V x V + R and linear continuous operators A : V + V’. 

Proof: If A E L(V, V’), then the mapping a : V x V + R defined by (1.34) is bilinear 
and bounded, 

Conversely, let a( . ,  .) be a continuous bilinear form on V x V .  For any u E V the map 
v + a(u,  v) defines a continuous linear operator on V. Hence there exists an element 
Au E V’ such that (1.34) holds. The bilinearity and boundedness of a( . ,  .) implies the 
linearity and boundedness of A. 

Basic properties of bilinear forms in Hilbert spaces are introduced in Definition 1.5 and 
discussed in Lemma 1.3: 

Definition 1.5 Let V be a real Hilbert space, u : V x V + R a bilinear form and 
A : V + V’ a linear operator related to a( . ,  .) via (1.34). We say that 

1. a is bounded ifthere exists a constant C, > 0 such that la(u, v)l 5 C,lIulll\ull for  
all u, v E V ,  

2. a is positive i f a (v .  u )  2 0 for  all 71 E V ,  

3. a is strictly positive i f a (v ,  v) > Ofor all 0 # I )  E V ,  

4. a is V-elliptic(coercive)ifthereexistsaconsfantC, > Osuch thata(v ,  v )  2 C a ~ ~ ~ ~ ~ ~ $  
for  all v E V ,  

5. a is symmetric ifa(u, v )  = a(v.  u),fi)r all u,  71 E V .  
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Lemma 1.3 Under the assumptions of Dejinition 1.5 it holds: 

1. The bilinear form a is bounded if and only if the linear operator A is bounded. 

2. The bilinearform a is positive ifand only if the linear operator A is monotone. 

3. The bilinearform a is strictlypositive ifand only ifthe linear operator A is strictly 
monotone. 

4. The bilinear form a is V-elliptic if and onlv if the linear operator A is strongly 
monotone. 

5. The bilinear form a is symmetric if and only if the linear operator A is symmetric 

Proof: Left to the reader as an exercise. 

( i .e . , i f (Au,w)=(Aw,u)foral lu ,wEV).  

Definition 1.6 (Energetic inner product, energy norm) Let V be a Hilbert space and 
a ; V x V + R a bounded symmetric V-elliptic bilinear form. The bilinear form defines 
an inner product 

(7L, 71)t, = a(u, w) (1.35) 

in V ,  called energetic inner product. The norm induced by the energetic inner product, 

I l 7 4 L  = d r n ,  (1.36) 

is called energy norm. 

It is easy to verify that 11 . I / ?  and (., .)? fulfill all properties of norm and inner product 
(use Definitions A.24 and A.41). 

Lemma 1.4 Let V be a Hilbert space and a : V x V + R a bounded symmetric V-elliptic 
bilinear form. The energy norm induced by  a is equivalent to the original norm in V ,  

where C1, Cz > 0 are some real constants 

Proof: Left to the reader as an exercise. 

If the V-elliptic bilinear form a( . ,  .) is not symmetric, it does not represent an inner 
product, but still it induces an energy norm. If a : V x V + @, then the symmetry 
requirement a(u, w) = a(v: u)  is replaced with the sesquilinearity requirement a(u,  t i )  = 

Both the energetic inner product (., - ) e  and the energy norm 11 . I l e  represent important 
tools in the error analysis and numerical solution of elliptic PDEs. They are used to derive 
both a-priori and a-posteriori error estimates, to guide refinement strategies for adaptive 
finite element methods, and for other purposes. We will return to this topic later, after 
introducing the finite element discretization in Chapter 2. 

a(v ,  u). 
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1.2.3 The Lax-Milgram lemma 

The Lax-Milgram lemma is the basic and most important tool for proving the existence and 
uniqueness of solution to elliptic problems. 

Theorem 1.5 (Lax-Milgram lemma) Let V be a Hilbert space, a. : V x V + R a bounded 
V-elliptic bilinear form and 1 E V’. Then there exists a unique solution to the problem 

4 7 4  7)) = l(v) for  all 11 E V. (1.38) 

Remark 1.4 (Lax-Milgram vs. Riesz) Ifthe bilinearform a ( . ,  .) is symmetric, then the 
unique solution u E V of equation (1.38) is nothing else than the unique representant of the 
linearform 1 E V’ with respect to the energetic innerproduct (., . ) e  = a( . ,  .). In this sense 
the Lax-Milgram lemma is a special case .f the Riesz representation theorem (Theorem 
A. 15). 

Proof: The uniqueness of solution follows immediately from the V-ellipticity of the 
bilinear form a. We will use Theorem 1.2 to verify the existence. Let A : V + V’ be 
the linear operator associated with the bilinear form a via (1.34). Then A is bounded and 
strongly monotone. By L = J A  : V + V denote the isometric dual mapping from the 
Riesz theorem, 

a(u ,  u )  = (A14 1))  = ( J A u ,  11) for all u, 1) E V. 

Recall that R(L) = V if and only if R(L) is closed and R ( L ) I  = (0). To show that 
R(L)  is closed, let {u,},X==, c R(L)  be a sequence converging to some function u. Then 
U ,  = JAW,, where { w , ~ } ~ = ~  c V. Lemma 1.1 yields the existence of a constant C > 0 
such that 

Hence { ~ , , } 7 q O _ ~  is a Cauchy sequence that has a limit w E V. It holds 

Therefore u = JAW E R(L)  and R(L) is closed. To prove that R ( L ) I  = {0}, take an 
arbitrary u E R ( L ) l .  Then for any v E V it is 

0 = ( JAu ,  U )  = a(v, u) .  

Putting zi = u, we obtain that the energy norm ~ 1 ~ 1 ~ ~  = 0 and thus that u = 0. 

1.2.4 Unique solvability of the model problem 

The existence and uniqueness of solution to the model problem (1.33) can be proved using 
the Lax-Milgram lemma (Theorem 1 S) under the following assumptions: 

Lemma 1.5 Assume that a1(z) 2 C,,,,,, > 0 and a o ( z )  2 0 a.e. in R. Then the weak 
problem (1.33) has a unique solution u E V .  
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Proof: Since a l ,  a0 E Lc- (0 ) ,  there exists a C,,,,, < m such that lal(z)l  5 C,,,, and 
I u o ( z ) /  5 C,,,,, a.e. in 62.  Then, 

Since Vu. Vv E [L2(62)jd, the Holder inequality (A.50) yields 

Analogously, for the product luvl one obtains 

The norm 11 . 111.2 is obtained by adding a nonnegative term to the seminorm I . 11,2, 

I UI 1,2 I v I 1.2 5 I lull 1,2 II 2) I I 1.2. ( 1.42) 

Similarly for the L2-norm, 

I I u I I LZ I I v I I L' 5 I l7L I I 1.2 I 12) I I 1.2 . (1.43) 

Finally, relations (1.39) to ( 1.43) together yield 

which means that the bilinear form is bounded with the constant C, = 2C,,,. Next let 
us prove the V-ellipticity of a( ., .). Using the PoincarC-Friedrichs' inequality (Theorem 
A.26) in the space V = Hd(L?), together with the nonnegativity of a0 and strict positivity 
of a l ,  we obtain that there exists a constant C,,f > 0 such that 

Thus the bilinear form a( . ,  .) is bounded and V-elliptic, and the Lax-Milgram lemma yields 
w 

Discussion of the existence and uniqueness of solution for elliptic operators of the general 

the existence and uniqueness of solution for every f E L2(R). 

form (1.25) can be found, e.g., in [93]. 

1.2.5 Nonhomogeneous Dirichlet boundary conditions 

In this paragraph we consider the model equation (1.26) endowed with more general Dirich- 
let boundary conditions of the form 
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~ ( x )  = g(x)  on 3fZ. ( 1.44) 

where g E C(30) .  For the purpose of the weak formulation we consider a function 
G E C 2 ( 0 )  nC(2) such that G = g on dl2 (the so-called Dirichlet lift of 9). Notice that G 
is not unique, but we will show later that the solution is invariant under its choice. Writing 
u = G + U, the problem (1.26), (1.44) can be reformulated to: 

Find U E C,"(0) such that 

- V .  [uIV(U + G)]  + no(U + G) = f in f2.  

U + G = g on312, 

or, equivalently, 

-v .  (UiVU) + aoU = f + V .  ( a l V G )  - aoG in 62: ( 1.45) 

u = o  on 30, (1.46) 

Except for an adjusted right-hand side, this problem is identical to the model problem (1.26), 
(1.28). We proceed analogously as in Paragraph 1.2.1 to derive its weak formulation: 

Find U E V = H,'(R) such that 

a(U, (I) = I(v) for all zi E V ( 1.47) 

with 

a(U, v) = 1 2 ( u I V U  Vv + aoU71) d x ,  ii E V, 

l ( v )  = b ( f v  - a l V G .  Vv - aoG~t)  dx,  PI E V, 

This weak formulation is defined under much weaker assumptions on f ,  g, and G. In 
particular, we can assume that f E L 2 ( 0 )  and G E H ' ( 0 )  with the trace g E H 4 (80). 

We have seen in Paragraph 1.2.4 that the bilinear form a( . ,  .) is bounded and V-elliptic. 
In other words, the Lax-Milgram lemma yields the existence and uniqueness of solution to 
(1.47) for every Dirichlet lift G. 

Independence of the solution u = U + G on the Dirichlet lift G: Assume that 
U1 + GI = u1 E H ' ( 0 )  and U2 + G2 = 2 4  E H ' ( 0 )  are two weak solutions. By (1.47) 
the difference u1 - u2 E V = H,' (0) satisfies 

a(ul  - u2, v) = 0 for all v E V 

Taking u1 - u2 for zi and using the V-ellipticity of the bilinear form a, we obtain 

2 0 = a(ul - u2,7L1 - u2) 2 CellliLl - u211v. 

This means that 

lbl - u211v = 0 ,  

i.e., that u1 = u2 a.e. in 0. 



SECOND-ORDER ELLIPTIC PROBLEMS 21 

1.2.6 Neumann boundary conditions 

Consider the model equation (1.26) with Neumann boundary conditions of the form 

du 
- = y on862, 
dV 

( 1.48) 

where g E C(t30). This time we have to strengthen the positivity assumption on the 
coefficient a0 to 

The weak formulation of the problem (1.26), (1.48) is derived as follows: Assume that 
u E Cm(0)nC1(t). Multiply(l.26) withatestfunctionv E Cm(0)nC1(a), integrate 
over 0, and use the Green’s theorem to reduce the maximum order of the partial derivatives. 
The boundary integrals do not vanish as they did in the homogeneous Dirichlet case, and 
we get an extra boundary term, 

b ( a l V u .  Vv + uouv) d x  - al  -v d S  = fv dx.  La :: b 
Here v is the unit outer normal vector to 80 and du/dv = Vu.v. Substituting the boundary 
condition (1.48) into the boundary integral, and weakening the regularity assumptions, we 
obtain the following weak formulation: 

Given f E L2(R) and g E L2(80) ,  find u E V = H ’ ( 0 )  such that 

(a lVu . Vv + ~ u v )  d z  = ll f v d x  + La algv d S  for all v E V. h 
Stated in the language of linear forms, one has to find a function u E V such that 

a ( u , v )  = I(v) for all v E V, (1 S O )  

where 

a(u, v) = 1- a lVu .  Vv + aouv d z  for all u, v E V, 

Notice that although the bilinear form a( . ,  .) is given by the same formula as in the case of 
Dirichlet boundary conditions, it is different since the space V changed. 

The boundedness of the bilinear form u(.,  .) in V x V can be shown analogously to 
the proof of Lemma 1.5. Notice, however, that one cannot use the Poincark-Friedrichs’ 
inequality to prove the V-ellipticity of a( . ,  .), since now the solution is not zero on the 
boundary. Here the additional assumption (1.49) comes into the play, and we obtain 

The Lax-Milgram lemma guarantees that the problem (1.50) has a unique solution u E V. 
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Remark 1.5 (Neumann problem without the assumption (1.49)) Theassumption (1.49) 
guarantees the presence of a nonzero L2-term in the bilinear form. Without this term, nei- 
ther the classical nor the weak formulation has a unique solution in Sobolev spaces. For 
example, if 7~ is a solution of -AU = f with Neumann boundary conditions, then also 
u + C, where C is an arbitrary constant, is a solution. Let us formulate this problem in the 
weak sense: 

Find u E H' (0) such that 

Using the test function 71 = 1 E H'(R), onejinds that a necessary condition for  (1.51) to 
have a solution at all is 

It follows from a deeper analysis in the quotient space H'(R)/R that condition (1.52) is 
suficient for the existence and uniqueness of solution in H 1  (R)/R (see, e.g., [6]). 

Remark 1.6 (Essential and natural boundary conditions) Dirichler boundary conditions 
are sometimes called essential since they essentially influence the weak formulation: They 
determine the function space in which the solution is sought. On the other hand, Neumann 
boundary conditions do not influence the function space and can be naturally incorporated 
into the boundary integrals. Therefore they are called natural. 

1.2.7 Newton (Robin) boundary conditions 

Another frequently used type of natural boundary conditions involves a combination of 
function values and normal derivatives. Consider the model equation (1.26) equipped with 
such boundary conditions, 

- V . ( a l V u )  +sou = f i n R ,  (1.53) 

( 1.54) 

where f E C(R) ,  g E C(aR), and c1, c2 E C(df2) are such that clc2 > 0 and 0 < E 5 lc2l 

on 80. The positivity assumptions (1.27) and (1.49) on the coefficients a", al apply. 
For a sufficiently regular function u E C2(f2) n C1 (n), the weak identity 

is derived analogously to the Neumann case. Using the boundary condition (1.54), we 
obtain the following weak formulation: 

Given f E L2(R), g E L 2 ( a R ) ,  and ao,al E Lm(i2) ,  find u E V = H1(R) such that 
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In other words, it is our task to find u E V such that 

a(u , v )  = I (v )  for all 11 E V, (1.55) 

where 

a(u, v)  = alVu.  Vv + aouw d z  + -7~71 d S  for all u, v E V, 
1 2  L "54' 

l ( 7 1 )  = f v d z  + l"? Z v d S  for all v E V. 

Since the bilinear form a(., .) is both bounded and V-elliptic (use Theorem A.28), the 
Lax-Milgram lemma implies that problem (1.55) has a unique solution u E V. 

1.2.8 Combining essential and natural boundary conditions 

What remains to be discussed is the combination of essential and natural boundary condi- 
tions. Let us choose, for example, the Dirichlet and Neumann conditions for this purpose. 
Hence, let the boundary d o  be split into two nonempty disjoint open parts r D  and r N ,  and 
consider the problem 

- V .  (alVu)  +sou = f i n R ,  (1.56) 

(1.57) 

(1.58) 

The weak formulation is derived as follows: First extend the function E c ( r D )  to the 
rest of the boundary d o  by introducing a function 90 E c(dR) such that 90 = on r D .  

The nonuniqueness of this extension is not going to cause any problems. Next find some 
Dirichlet lift G E C2(R) n C ( 2 )  of 90 (i.e., G = 90 on 30). The solution u is sought in 
the form u = U + G analogously to the pure Dirichlet case. The equations 

-V . [a lV(U + G)]  + ao(U + G) = f in R, (1.59) 

( U + G )  = go o n r o ,  ( 1.60) 

(1.61) 

yield 

- V .  (a iVU)  + aoU = f + V .  (alVG) - aoG in R, ( 1.62) 

(1.63) u = o  on r0, 
d(U + G )  

dU 
= gN on rN .  (1.64) 

The appropriate space for the function U is 

v = {u E H ' ( R ) ;  u = 0 on rD) .  (1.65) 

Applying the standard procedure that we went through several times, we arrive at the weak 
identity 
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Using the Neumann boundary condition (1.64) on r N ,  we finally obtain the following weak 
problem: 

Find a function U in the space V such that 

a(U,v)  = Z(u) for all v E V, (1.66) 

where 

n(U,v)  = ~ 2 ( a s V U - V v + ~ o U ~ : ) d x ,  U,v  E V, (1.67) 

l ( v )  = L ( f u  - a l V G .  Vu - aoGv) d x  + a s g N u d S  for all v E V. LN 
The bilinear form a( . ,  .) is bounded and V-elliptic (the proof is analogous to Paragraph 
1.2.4). The Poincark-Friedrichs’ inequality holds in V due to the zero boundary condition 
for U on l?D (see Remark A.8). Therefore the Lax-Milgram lemma implies that problem 
(1.66) has a unique solution U E V. As usual, the final solution satisfying both the essential 
and natural boundary conditions is 7~ = U + G. 

1.2.9 Energy of elliptic problems 

It was mentioned in Paragraph 1.1.1 that elliptic problems usually describe some equilibrium 
or minimum-energy state of a system. In this paragraph we introduce the explicit form of 
the abstract energy, at least for symmetric problems. The most important numerical scheme 
based on the minimization of the abstract energy, the Ritz method, will be discussed later 
in Chapter 2. 

Theorem 1.6 Let V be a linear space, a : V x V + R a symmetric V-elliptic bilinear 
form and Z E V’. Then the functional of abstract energy, 

1 

2 
E(1,) = - U ( V ,  v) - Z ( I 1 ) .  (1.68) 

attains its minimum in V at an element I L  E V i f  and only i f  

a(u,v) = l ( v )  for  all v E V. (1.69) 

Moreover; the minimizer u E V is unique. 

Proof: Let (1.69) hold. Then 

1 
2 

E(u  + tv) = -U (U  + tv, 7L + tv) - l(u + tv) 
1 
2 

= E(U) + t (a (u ,  v)  - l ( v ) )  + -t2a(v, 7 1 )  (1.70) 
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for all ( I .  11 E V and f E R. If u E V satisfies (1.69), then the last equation with t = 1 
implies 

E ( U  + 7 1 )  = E ( U )  + An(?i. 1 7 )  > ~ ( 1 1 )  for all o # 7) E V. 
2 

Thus u t V is a unique minimizer of (1.68). 

quadratic function d ( t )  = E(u  + tv )  must vanish at t = 0. By (1.70), 
Conversely, if E has a minimum at u E V, then for every i1 E V the derivative of the 

0 = 4'(O) = CL(U,IJ)  - l ( 1 1 ) .  

and (1.69) holds. 

Another interesting theoretical application of the energy-minimization concept is an 
alternative proof of the Lax-Milgram lemma for symmetric elliptic problems in convex 
sets: 

Theorem 1.7 (Lax-Milgram lemma for convex sets) Let 14' be a closed convex set in u 
Hilbert space V and a : V x V + R a bounded V-elliptic bilinear form. Then for  every 
I E V' there exists a unique u E W such h a t  E ( v )  = inf{E(ii); 71 E W } ,  where 

1 

2 
E(v) = -(L(u,  71)  - l( i1).  

Proof: The functional E is bounded from below since 

1 1 2 1 I ~ 1 l 2  11l1I2 
E(11) 2 ~C~Lll t~I l2 - 1 1 ~ 1 1 1 1 ~ 1 1  = -(Call4 - 11111) - ~ 2cu 2 2C, 2cU 

Let eo = irif(E(71); ZJ t W }  and let {vri}z=l be a minimizing sequence, i.e., 

Then 

where ; ( o r L  + 7 1 , ~ ~ )  E W thanks to the convexity of W .  Now E(71,). E(v,,) + eo implies 
IIu, ~ I),, 1 1  + 0 as n, r n  + x. Thus {.u.,},",~ is a Cauchy sequence in V and there exists 
a limit (L E V ,  uTL + u. Since W is closed, we also have u E W .  The continuity of E 
implies 

E ( ~ L )  = lini E(iiri) = irif E(u)  
r i - f f i  l l € M I  

Let us show that the solution u E W is unique. Suppose that both u1 and u2 are solutions. 
Clearly the sequence ul. u2. u1. u2, . . . is a minimizing sequence. Above we saw that every 

rn minimizing sequence has to be a Cauchy sequence. Thus u1 = u2. 
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1.2.10 Maximum principles and well-posedness 

Another important aspect of elliptic problems is the existence of maximum principles. We 
find it useful to present several of them here and illustrate how they imply the well-posedness 
of elliptic problems. The counterpart of the maximum principles on the numerical level are 
the discrete maximum principles (see, e.g., [ 1 1, 14, 19, 3 1, 57, 671 and [ 1 12]), which find 
particularly important application in problems where physically nonnegative quantities like 
the temperature, density, or concentration are computed. 

Theorem 1.8 (Basic maximum principle) Consider an open bounded set R c Rd and a 
symmetric elliptic operator of the form 

(1.71) 

where uZ3 E C(R). Let u E C2(R) n C ( 2 )  be the solution ofthe equation Lu = f ,  where 
f E C(R)  and 

f 5 0 i n R .  

Then the maximum of u in a is attained on the boundary dR. Furthermore it holds that if 
the maximum is attained at an interior point of R, then the function u is constant. 

This result remains true under less restrictive assumptions on the coefficients az3. 

Proof: is positive 
definite in R. First we carry out the proof under a stronger assumption that f < 0 in R. 
Suppose that there exists some x E R such that 

Recall that L is elliptic if the coefficient matrix A(x) = 

u(k) = sup 7 4 2 )  > sup 4 x ) .  
XER XCEBR 

(1.72) 

Since A(%) = {az3 is symmetric and positive definite, it is diagonalizable and has 
positive real eigenvalues XI(%), A,(?), . . . , A d ( % ) .  Thus there exists a nonsingular d x d 
matrix C such that 

A = C-'A(ji.)C, 

where A = diag(Xl(?), A,(%), . . . , A d ( % ) ) .  In a new coordinate system defined by 

E = E(x) = e x  

we have that 

0 > f(2) = ( L U ) ( j i )  

(1.73) 

which is a contradiction since A,(%) > 0 for all 1 5 i 5 d, and 53 E R \ 30 is a maximum 
point of u, meaning that 
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Next let us prove the result for the weaker assumption f 5 0 in (2. Again, suppose that 
there exists some 2 E R satisfying (1.72). Consider the function 

d 

h ( z )  = C(X2 - & ) 2 .  

2 = 1  

Since the maximum point 2 of u lies in the interior of R and h ( z )  is bounded in 0, for a 
sufficiently small /3 > 0 the function w(z) = u(z )  + /3h(z) attains its maximum at some 
interior point z o  E 0. Since 

(z) = 26,, for all z E R, a2h 
ax2ax3 

we have 

d 

( ~ w ) ( z )  = ( ~ u ) ( z )  + P ( L ~ ) ( z )  = f(z) - 2 p ~ a 2 , ( z )  = f ( z )  < o in R. 
2 = 1  

Thus we can apply the result of the first part of the proof. 

EXAMPLE 1.7 (Maximum principle) 

Consider an open bounded set R = (- 1, 1)2 C R2 and the Poisson equation 

- & = - 4  i n 0  ( 1.74) 

( L  = -A is obtained from (1.71) putting uZJ = li2,). The solution u has the form 

U(Z1, z2) = XI + x; + c, 
where C E R is an arbitrary constant to be determined from the boundary conditions. 
Since f 5 0 in R, the maximum principIe (Theorem 1.8) impIies that u attains its 
maximum on the boundary dR. This indeed is true, as shown in Figure 1.4. 

Figure 1.4 Maximum principle for the Poisson equation in 2D. 
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Immediate consequences of the maximum principle are the minimum principle, compar- 
ison principle, and the continuous dependence of the solution on boundary and initial data. 
Most of these results are straightforward consequences of Theorem 1.8. We encourage the 
reader to perform the proofs using the hints given. 

Corollary 1.1 (Minimum principle) Let R C Rd be an open bounded set and L an elliptic 
operator of the form (1.71). If Lu = f 2 0 in R, then IL attains its minimum on the boundary 
dR. 
Proof: Apply Theorem 1.8 to U := -u .  rn 

Corollary 1.2 (Comparison principle) Let R c Rd be an open bounded set and L an 
elliptic operator of the form (1.71). Suppose that functions u, v E C2(s2) n C ( 2 )  solve the 
equations Lu = fu  and Lv = f v ,  respectively, and 

fu I fi, in (2, 
u 5 v o n d R .  

Then u I v in R. 
Proof: Apply the minimum principle to w := v - u. 

Corollary 1.3 (Continuous dependence on boundary data) Let R c Rd be an open 
bounded set and L an elliptic operator of the form (1.71). Suppose that u1 and u2 solve 
the equation Lu = f with different Dirichlet boundary data. Then 

SUP I.l(X) - u2(x)l = S U P  I.l(XC) - u2(x)l. 
XEC2 XEan 

Proof: The function w = u1 - u2 satisfies the homogeneous equation Lw = 0 in R. 

Before introducing the continuous dependence of solution on the right-hand side, we 

Apply both the maximum and minimum principles to obtain the result. 

need to define the notion of uniform ellipticity: 

Definition 1.7 (Uniform ellipticity) A linear elliptic operator L oftheform (1.4) is said 
to be uniformly elliptic in an open set s1 C EXd ifthere exists a constant CA > 0 such that 

and all x E R, where A ( x )  is the corresponding coeficient matrix. 

Corollary 1.4 (Continuous dependence on the right-hand side) Let R c Rd be an open 
bounded set and L an elliptic operator of the form (1.71). Moreover, assume that L is 
uniformly elliptic in R. Then there exists a constant C only depending on the set R and the 
uniform ellipticity constant CA, such that 

(1.75) 

for  all x E R. 
Proof: Since R is bounded, it is contained in some open ball B(0, r ) .  Let 
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Clearly O 5 w 5 r2 in R. Since 

it is Lw 1 2 d C A ,  where CA is the uniform ellipticity constant of L. Let 

Then LPI 2 lLul in (2 and 1 Iul on do. The comparison principle implies that -w(z) 5 

Corollary 1.5 (Elliptic operator with a Helmholtz term) Consider an elliptic operator 
L of the8)i-m 

u ( z )  5 ~ ( z )  in (2. Since w 5 r2, (1.75) holds with C = r 2 / ( 2 d C A ) .  

with ao(z) >_ 0 in (I. Then Lu 5 0 in (1 implies that 

sup u(z)  5 Irlax(0. sup u ( 5 ) ) .  
X€il  XEX2 

Proof: Without loss of generality, let zo E R be such that 

Then ( L u ) ( z o )  - ao(zo)u(zco) 5 ( L I L ) ( z ~ )  5 0, and the principal part Lu - aor~ defines 
an elliptic operator of the form (1.71). The conclusion follows from Theorem 1.8. 

1.2.1 1 Exercises 

Exercise 1.13 Show that the hilineurf?)rm a( . .  .)from (1.55) is bounded and V-elliptic. 

Exercise 1.14 Show that relmtion (1.35) in Lemma 1.4 defines an inner product. Further 
show that the energy norm (1.36) induced by this inner product satisfies the relation (1.37) 
( ix . ,  that it is equivalent to the norm 1 1  . Ilv). 

Exercise 1.15 Let R c lw" he nn open bounded set with Lipschitz-continuous boundary. 
Let the boundary df2 be split into two nonempry disjoint open parts r N  and r n  such that 
r N  U TU = dejned on l?r\i and r n ,  
respectively. Write the weak j?)rmulation of the boundary value problem ,for the Poisson 
equation 

- 
Consider boundary data (rea1,function.y) g ~ ,  

-AIL = f. 
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equipped with boundary conditions 

8. 
dU 
-W + .(x) = Y ~ ( x ) ,  x E r N ,  

and 

where f is a real-valued load function dejined in 0. Idenrib the largest function spaces 
where the solution u as well as the test functions v and data g ~ ,  g D ,  and f must lie in order 
that all integrals in the weak formulation be dejined. 

Exercise 1.16 Prove Corollary 1.1. 

Exercise 1.17 Prove Corollary 1.2. 

1.3 SECOND-ORDER PARABOLIC PROBLEMS 

Next let us turn our attention to linear parabolic problems (the notion of parabolicity was 
introduced in Definition 1.1). Let 62 C Rd be an open set with Lipschitz-continuous 
boundary. We will study a class of linear parabolic equations 

(1.76) 

where t is the time, ZL = u(z,t), f = f(z,t) and L is an elliptic operator of the form 
( 1 . 1 )  with time-independent coefficients. The equation (1.76) is considered in a space-time 
cylinder QT = (2 x (0, T), where T > 0. 

1.3.1 Initial and boundary conditions 

Boundary conditions for parabolic problems are analogous to the elliptic case: Dirichlet, 
Neumann, Newton, and combined (see Section 1.2). For simplicity, let us denote them by 

( B u ) ( z ,  t )  = g(z. t )  for all (z. t )  E dR x (0 ,T) .  ( 1.77) 

Parabolic problems describe evolutionary processes, and thus one needs to provide an initial 
condition of the form 

u(z,O) = u~(x) for all x E R. (1.78) 

If the problem is considered in the classical sense, then the initial condition 7 ~ g ( 2 )  must 
moreover satisfy the boundary conditions (this is known as compatibility condition). 

1.3.2 Weak formulation 

At every time instant the solution is sought in  a closed subspace V C H1(12) such that 
HA (0) c V. The form of the space V depends on the boundary conditions analogously to 
the elliptic case (see paragraphs 1.2.5-1.2.8). 
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For the analysis of existence and uniqueness of solution we need to introduce function 
spaces and norms for time-dependent functions: 

Definition 1.8 First by Lq(0, T ;  Wk,P(R)) we denote the space 

L4(0, T ;  W k 2 p ( 0 ) )  = {u  : (0, T )  + Wk"(R); 

u is measurable and l ] ~ ( t ) l I ~ , ~ , ~  dt < cm}, iT 
endowed with the norm 

(1.79) 

The symbol u(t) stands f o r a  function cflx such that u ( t )  : x + u(x, t ) .  Further we dejne 
the space 

C ( [ O , T ] ; L P ( R ) )  = { u :  [O,T] + L p ( R ) ;  Ilu(t)Ilp,rl iscontinuousin [O,T]}. (1.80) 

Analogously we use the W"P-norm in R to define the space 

C([O,T]; W k , P ( 0 ) )  = {u  : [O,T] + WkyP(R); Ilu(t)Ilk,p,~ is continuous in [O,T]}. 
(1.81) 

Weak formulation The weak formulation of parabolic problems is derived using a pro- 
cedure analogous to elliptic equations. For example, in the case of homogeneous Dirichlet 
boundary conditions the weak formulation of the problem (1.76), (1.77), (1.78) reads: 

Given f E L2(&=) and 110 E V = Hi(R) ,  find u E L 2 ( 0 , T ; V )  n C ( [ 0 , T ] ; L 2 ( R ) )  
such that 

d 
- ( u ( t ) , 7 1 ) ~ 2  + a(u(t),71) = ( f ( t ) , ~ ) ~ ~  forall v E V, t E (O,T), (1.82) 
dt 

4 0 )  = uo, (1.83) 

where the bilinear form u(. ,  .) corresponds to the elliptic operator (1 . I ) ,  

The other types of boundary conditions are handled analogously to elliptic problems. 

1.3.3 Existence and uniqueness of solution 

Since the difficulty of the proof of existence and uniqueness of solution to the problem 
(1.82), (1.83) exceeds the scope of this text, we restrict ourselves to formulating the principal 
theoretical result, and providing appropriate references. 
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We need to introduce the notion of weak coercivity of the form a(u ,  7 1 )  in the space V: 
There exist two constants c1.2 > 0 and c2 2 0 such that 

If the form a(u ,  v )  is V-elliptic (coercive), then this inequality holds with c2 = 0. This is 
the case, for example, for the heat transfer equation &/at - Au = f with homogeneous 
Dirichlet boundary conditions. In general, condition (1.85) is satisfied for all types of 
boundary value problems we deal with, provided that all coefficients uz3, b,, c,, and a0 of 
the operator (1.4) belong to L"O (0). 

Before introducing the existence and uniqueness theorem, let us show an interesting 
trick that turns the weakly coercive bilinear form a( . ,  .) into a coercive one. Applying the 
substitution 

G(2, t )  = f:?Zt?L(Z: t ) .  

equation (1.76) comes over to the form 

Defining f := e P c L t f  and L := ( L  + QI), where I stands for the identity operator, the 
equation returns to the form (1.76). However, if the original bilinear form u(u, v )  is weakly 
coercive, the bilinear form U(u, v )  = a(u, u )  + c2( u. v )  is coercive. This technique is used 
in the analysis of parabolic PDEs quite frequently. Now let us formulate the promised 
existence and uniqueness result: 

Theorem 1.9 (Existence and uniqueness of solution) Let the bilinear,form a , ( . ,  .) be con- 
tinuous in V x V and weakly coercive. Given f E L2(QT)  and uo E V ,  there exists a 
uniquesolutionu E L2(0 ,T ;  V)nC([O,T]; L2(i2)) tothe.sv.stem(1.82), (1.83). Moreover; 
3u/& E L2(0, T ;  V ' )  and the energy estimate 

holds. 

Proof: See, e.g., [93], pages 366 to 369. 

1.3.4 Exercises 

Exercise 1.18 Let QT = f l  x (0 ,  T ) ,  where R c R" is an open bounded set with Lipschitz- 
continuous boundary. Consider the heat-transfer equation 

(1.87) 

f E L2(QT) ,  equipped with some initial condition u(z:O) = u ~ ( z ) ,  7 ~ 0  E H'(f2), and 
Neumann boundary conditions 
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dU 
- = 9 on 80, 
du ' 

( 1  38)  

I .  What is the space V in this case? 

2. VerifL in detailall assumptions of Theorem I.9and use it to show the unique solvability 
of this problem. 

3. Consider the elliptic problem -nu = f in 0, which is the stationan, version of 
equation ( I  .87), equipped with the pure Neumann boundary conditions { 1.88). Does 
this problem have a unique solution ? 

4. Explain the difference between the V-ellipticity condition (Definition 1.5) and condi- 
tion (1.85). What does this difference imply f i v  the unique solvability of elliptic and 
parabolic problems? 

1.4 SECOND-ORDER HYPERBOLIC PROBLEMS 

In this section we study linear second-order hyperbolic problems. A model equation with 
appropriate boundary and initial conditions is formulated in Paragraph 1.4.1. In Paragraph 
1.4.2 we derive its weak formulation and present a basic existence and uniqueness result. 
In Paragraph 1.4.3 we show the link between the second-order hyperbolic equations and 
first-order hyperbolic systems. 

1.4.1 Initial and boundary conditions 

The notion of hyperbolicity was first introduced in Definition 1 . 1 .  Consider the model 
equation 

where L is an elliptic operator of the form 

( 1.89) 

( 1.90) 

with time-independent coefficients. We are interested in solving equation (1.89) in a space- 
time cylinder &?. = 0 x (0, T ) ,  where R C R" is some open bounded set with Lipschitz- 
continuous boundary, and T > 0. 

Let the boundary 80 be split into two open parts ro. l?N c 8C2 such that l?o n r N  = 0 
and U = 80. We prescribe a Dirichlet boundary condition 

u(z3  t )  = go(z, t )  for all (z. t )  E rD x (0 ,  T ) ,  (1.91) 

and a Neumann boundary condition 
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a U  
- (z , t )  = gN(z ,  t )  
dvr,  

for all ( z , t )  E r N  x (0 ,T) .  (1.92) 

Here 

is the conormal derivative to 80, v = (nl , n2, . . . , T L ~ ) ~  being the unit outer normal vector 
to 30. 

Since the equation is of second-order in time, one has to prescribe initial boundary 
conditions for both the function values. 

u(z,O) = uo(z) for all z E 0, (1.93) 

and the temporal derivative, 

( 1.94) 
a U  
-(z,O) = u l ( z )  dt 

for all z E 0. 

1.4.2 Weak formulation and unique solvability 

To avoid complications related to the Dirichlet lift, for simplicity consider homogeneous 
boundary conditions on 80. Then V = H h ( 0 ) ,  and the weak formulation of the problem 
( 1.89)-( 1.94) reads: 

Given some right-hand side f E L 2 ( Q ~ )  and initial conditions uo E V and ul E L2(R), 
find a function u E C([O,T]; V )  n C'([O,T]; L 2 ( 0 ) )  such that 

d2 
d t 2 ( ~ ( t ) , v ) ~ 2  + a ( u ( t ) , v )  = (f(t),71)~2 foral lv  E V, t E (O,T), (1.95) 

4 0 )  = w, (1.96) 

( 1.97) 

where the bilinear form a( . ,  .) corresponds to the elliptic operator (1.90). 

Theorem 1.10 Under the above assumptions on the data, the problem (1.95)-(1.97) has a 
unique solution. 

Proof: The technicality of the proof exceeds the scope of this text. We refer the reader, 
e.g., to [79] and 1941. 

1.4.3 The wave equation 

Sometimes it is practical to abbreviate the notation for partial derivatives using a subscript, 
for example, duldx = u,, dulat = ut, @u/dx2 = u,,, etc. We shall take advantage of 
this notation in what follows. One of the simplest examples of a second-order hyperbolic 
equation is the one-dimensional wave equation 

lbt t  = c2u,,, (1.98) 
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to be satisfied for all (5, t )  E R x (0, T). The positive constant c > 0 is the wave speed. 
The equation ( I  .98) does not require boundary conditions since it is defined in R, but it has 
to be supplemented with some initial conditions of the form 

Using the substitution 

'u = ur and w = u t ,  

the equation (1.98) comes over to a system of two first-order equations 

which can be written in the matrix form 

(5) + (-:2 o'> (2) = (:J + A  (2) = *. 
The initial conditions to (1,100) are 

( 1.99) 

( 1,100) 

(1.101) 

This problem belongs to the class of first-order hyperbolic conservation laws that will be 
studied in Section 1.5. There the reader will learn how to derive the exact solution to (1.98), 
( 1.99) in the form 

1 1 1 
ug(z - c t )  + ug(z + Ct) - -U1(Z - Ct) + T U I ( Z  + c t )  , (1.102) 

C c 

where U1 (z) is a primitive function to u1 (z). 

1.4.4 Exercises 

Exercise 1.19 Can equation (1.89), when equipped with a Neumann boundary condition on 
the whole boundary d f l ,  have a unique solution? How would this change in the stationary 
case Lu = f ?  

Exercise 1.20 Calculate the eigenvalues and eigenvectors of the matrix A in (1.100). 

Exercise 1.21 Verifji that the function U ( Z ,  t )  dejined in (1.102) i s  the exact solution of the 
I D  wave equation (1.98) with the initial conditions (1.99). 
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1.5 FIRST-ORDER HYPERBOLIC PROBLEMS 

This section is devoted to first-order hyperbolic problems of the form 

d 
-ZL(Z, t )  + divf(u(5,  t ) )  = 0. 
at 

(1.103) 

These equations differ from the previously studied second-order PDEs significantly and 
methods other than FEM are usually used for their numerical solution. PDEs of the form 
(1.103) are referred to as conservation laws, and they play an important role in the continuum 
mechanics and fluid dynamics. 

The (generally nonlinear) flux function f = ( f l ,  f 2 , .  . . f d ) T ,  where d is the spatial 
dimension, consists of d directional fluxes f ,  : R'" + R"' that describe the transport of 
the solution in the axial directions z,. The equation (1.103) is equipped with an initial 
condition 

Boundary conditions are not required if the problem is stated in f l  = Rd, otherwise suitable 
conditions on the boundary have to be imposed. An example of a conservation law are 
the Euler equations of compressible inviscid flow, which consist of the law of conservation 
of mass (continuity equation), law of conservation of momentum (Euler momentum equa- 
tions), and the law of conservation of energy. For the analysis and numerical solution of 
the compressible Euler equations see, e.g., [52] and the references therein. 

After a brief general introduction in Paragraph 1.5. I we begin with the study of scalar 
and vector-valued linear conservation laws in one spatial dimension. Due to the existence 
of characteristics, the solutions of conservation laws have a unique structure. Character- 
istics are space-time curves that distribute the information from the initial and boundary 
conditions through the space-time cylinder QT = (2 x (0, T ) .  We will define and study 
the characteristics in Paragraph 1 S.2, and consequently utilize them to construct the exact 
solutions to a general one-dimensional linear first-order system in Paragraph 1.5.3. 

Exciting things happen when the flux function f is nonlinear. Nonlinear hyperbolic sys- 
tems exhibit discontinuous solutions, a feature unknown in elliptic and parabolic problems. 
The discontinuities, which may arise at finite times and even in problems with infinitely 
smooth initial and boundary data, banish the solution from Sobolev spaces and pose serious 
difficulties to both the analysis and numerical solution of hyperbolic problems. In Para- 
graph 1.5.5 we exploit the characteristics introduced in Paragraph 1.5.2 to understand the 
mechanism of creation of discontinuities in solutions to nonlinear hyperbolic problems. 

1.5.1 Conservation laws 

In one spatial dimension the conservation law (1.103) takes the form 

0 i) 
-ZL(.I.. t )  + - f ( Z L ( . r .  f ) )  = 0. 
at 3.r 

(1.104) 

where f : R"' + R"' is the flux function and ZL : R x R + R"' IS . ?r,-dimensional vector of 
conserved quantities (state variables) such as, e.g., the mass, momentum or energy. When 
we say that a quantity u(5, t )  is conserved, we mean that all its components satisfy 
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u,(z, t )  d z  = const,, (1.105) 

or, 

uz ( z ,  t )  d z  = 0. (1.106) 

Notice that while satisfying (1.106), the functions u, themselves may change in time. 
Moreover notice that ( I .  104) implies (1.106). 

Definition 1.9 (Cauchy problem) By Cauchy problem we mean the pure initial-value 
problem where one requires that (1.104) holds for  all x E R and all t 2 0. In this 
case one has to specify the initial condition only, 

u(x ,O)  = uo(z), x E R. 

Of particular interest are conservation laws ( I  ,104) which are hyperbolic: 

Definition 1.10 (Hyperbolicity) The system (1.104) is said to be hyperbolic ifthejux func- 
tion f is continuously differentiable and the m x m Jacobi matrix D f /Du is diagonalizable 
and has real eigenvalues only. 

Recall that a square m x m matrix is diagonalizable if and only if it is similar to a diagonal 
matrix (Definition A.20). It is worth mentioning that the first-order system (1.100) associ- 
ated with the second-order wave equation ( 1.98) was a hyperbolic conservation law: The flux 
function was linear, f (u) = Au, and the eigenvalues of its Jacobi matrix D f / D u  = A 
were real numbers k. 

More generally, in Rd the conservation law (1.103) takes the form 

( 1.107) 

where u : Rd x R -+ R"', and f + R7'l are flux functions in the directions 
sl, . . . . x d .  Equation (1.107) is said to be hyperbolic if every linear combination of the 
Jacobi matrices 

. , . , f : 

(1.108) 

where ( I ,  E R are arbitrary constants, is diagonalizable and has real eigenvalues only 

The Reynolds' transport theorem Conservation laws come from physics, where in 
most cases they are stated in integral form. For example, the law of mass conservation in 
fluids holds in the integral form 

(1.109) 
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where cr(t) is an arbitrary control volume. Control volume is a volume of fluid that is 
formed by the same particles at all times, and the integral of the density e over a( t )  yields 
the mass of a( t ) .  

Since the integral formulations of conservation laws are very difficult to handle numer- 
ically, it is customary to use the Reynolds’ transport theorem to convert them into PDEs. 
For a general density function D ( z ,  t )  and under suitable regularity assumptions (see, e.g., 
[52] )  the Reynolds’ transport theorem says 

(1.110) 

where v(z, t )  is the fluid velocity. Applying (1.1 10)-(1.109) with D = e, we obtain 

(1.111) 

Since the control volume a( t )  c (2 in (1 .1  1 1 ) is arbitrary, the standard localization theorem 
says that the integrand has to be zero almost everywhere in R. Thus (1.1 11) yields the 
continuity equation, 

(1.112) 

The localization theorem is intuitively clear and its proof straightforward. In particular, if 
the function e is continuous, (1.1 12) holds everywhere in QT. For e E H 1  (R) one proceeds 
by the density argument (see the end of Paragraph A.2.10). 

Standard difficulties related to conservation laws The transformation of an in- 
tegral equation to a PDE is not an equivalent operation. Usually the PDE is less general, 
undefined on discontinuities (shocks) where the integral form holds. Therefore one has to 
go back to the integral equation and derive suitable jump conditions to hold at the discon- 
tinuities and incorporate them back into the weak formulation of the PDE. 

The weak solution usually admits more solutions than the unique physically admissible 
solution corresponding to the integral form of the conservation law. Therefore one has to 
impose some selection principle that excludes nonphysical solutions. For fluid dynamics 
problems one can appeal the second law of thermodynamics which states that the entropy is 
not decreasing. In particular, as molecules of a fluid pass through a shock, their entropy must 
increase. It turns out that this condition is sufficient to reliably distinguish between phys- 
ically correct and incorrect discontinuities. Generally, such conditions are called entropy 
conditions. 

1.5.2 Characteristics 

The existence of characteristics (characteristic curves) is a unique aspect of hyperbolic 
PDEs. These space-time curves determine how the values of the initial and boundary 
conditions are distributed through the space-time cylinder QT = R x (0, T). 

To begin with, consider a constant II E R and the Cauchy problem for a scalar hyperbolic 
equation with the linear flux function f (  ( I )  = ( J U ,  

U ,  + ( l o ,  = 0 for all . I ’  E R. t > 0. (1.113) 
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equipped with the initial condition 

u(z ,  0) = ug(2) for all z E R. (1.114) 

Definition 1.11 (Characteristics) Characteristic curve of equation (1. I13), passing through 
the point (x0,0), 50 E R, is the graph of the solution of the ordinary differential equation 

z '( t)  = a forall t > 0, 

z(0) = 5 0 .  

(1.1 15) 

Lemma 1.6 The solution of (1.113), (1.114) is constant along the characteristics z ( t ) ,  and 
thus it is fully determined by the initial data, 

u ( z ,  t )  = uo(5 - at ) .  

Proof: Since a E R is constant, by (1.1 15) the characteristics are straight lines, 

(1.116) 

z ( t )  = at + 20. 

Consider the solution along these lines, u(x ( t ) ,  t ) ,  and take its derivative in time. Using 
the original equation (1.1 13), we obtain 

d d U  d 
dt d X  at 
--u(at+zo,t) = a - ( z ( t ) , t )  + -u(z( t ) , t )  = 0. 

For an arbitrary (z, t )  E R x (0, T ) ,  the characteristics z ( t )  passing through this point 
intersects with the real axis at ~ ( 0 )  = z - at, where it takes the value u(z ,  t )  = ~ ( I C  - 

at,  0) = uo(5 - at ) .  

Remark 1.7 (Equation (1.113) describes "flow") Equation (1.113)doesnotgenerateany 
new information, it only shifts the initial condition uo in time. The initial condition moves 
to the right $a > 0 and to the left $ a  < 0. In the degenerated case of a = 0 the equation 
reduces to duldt = 0, i.e., the solution is constant in time, which is compatible with the 
fact that the characteristics have the form z ( t )  = 50. 

1.5.3 Exact solution to linear first-order systems 

The next natural step to take is to analyze linear vector-valued problems in one spatial 
dimension. Hence, for m 2 1 consider the hyperbolic conservation law ( I .  104) with a 
linear flux function f(u) = Au, 

(1.117) 

(1.118) 

where u : R x R + R'" and A E R" x R" is a constant matrix. By the hyperbolicity 
of the problem the matrix A is diagonalizable with real eigenvalues, i.e., there exists a 
nonsingular m x m matrix R such that 

A = RAR-'. (1.119) 
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Here A = diag( XI, X2, . . . , A,,,) is a diagonal eigenvalue matrix, and it is worth mentioning 
that the matrix R contains the right eigenvectors of A in its columns. Thus for the columns 
of R we have 

Let us introduce the notion of strict hyperbolicity for reference: 

Definition 1.12 (Strictly hyperbolic system) The system (1.  I I7), ( I .  118) is called strictly 
hyperbolic ifthe eigenvalues A,, 1 5 i 5 m, are distinct. 

Characteristic variables One can solve ( I .  1 17), ( 1 . 1  18) by switching to characteristic 
variables 

v = R-lu. 

Multiplying ( I .  1 17) by R-l and using ( I .  1 19), one obtains 

R - ~ U ~  + A R - ~ U ~  = 0, 

which further yields 

vt + Av, = 0. ( 1.120) 

By the diagonality of A, this is a system of 71) independent linear advection equations for 
the components of 21, 

i = 1.2, .  . . , m. The initial condition for 71, is the rth component of the vector R-'uo. 
Using what we learned in paragraph 1 S . 2 ,  for each 1 5 i 5 712 the solution is 

The solution u is finally recovered using the relation 

711 

u(t, t )  = Rv(.r. t )  = C ul(r3 t ) rL .  
7 = 1  

which yields 
I l l  

u(t. f) = c 7'(),,(S - A, t )T , .  
2 = 1  

(1.121) 

(1.122) 

Simple waves The solution (1.122) is the superposition of m independently advected 
linear waves. The ith wave has the form 

and propagates at the wave speed A, 
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1.5.4 Riemann problem 

The solution of the Riemann problem plays an important role in the design of finite volume 
methods for the approximate solution of nonlinear conservation laws. 

Figure 1.5 Georg Friedrich Bernhard Riemann (1826-1 866). 

G.F.B. Riemann was a German mathematician who, besides other important achieve- 
ments, introduced topological methods into the theory of complex functions, studied the 
representation of functions by trigonometric series, and established new foundations of ge- 
ometry which were used later in relativity and cosmology. The Riemann hypothesis, related 
to the prime number theory, remains one of the most famous unsolved problems of modem 
mathematics. 

Consider the one-dimensional linear hyperbolic equation (1.1 17), 

Z L ~  + Au, = 0. (1.123) 

with a piecewise-constant initial condition consisting of two different states U L .  U R  E R"l 
on the negative and positive half of the real line, respectively, 

(1.124) 

For simplicity we assume that the problem (1.123) is strictly hyperbolic. This means that 
the matrix A has m eigenvalues which are real and distinct. They can be denoted as follows, 

A1 < A2 < . . .  <A, 

Exact solotioff iff characteristic variables Recall that the exact solution to (1,123) 
is given by ( 1.122). We can simplify the situation by expressing the initial states U L  and 
u n  in terms of eigenvectors of the matrix A,  

Then 

1 = 1  1=1 
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and the problem ( I .  123) decouples into rri independent scalar Riemann problems 

( % I t  + A Z ( 7 h ) .  = 0, ( I .  125) 

For ith scalar problem, the initial discontinuity [az - a,] at T = 0 propagates into the 
space-time domain along the characteristics s,(t) = A,t, as illustrated in Figure 1.6. 

. ' '  "I 
X 

Figure 1.6 
zth zero characteristics z,(t)  = X , t . )  

Propagation of the jump [pZ - at] in the ith characteristic variable ut (z ,  t )  along the 

Solution atz = 0 Finite volume schemes are based on the value of the solution u ( 0 ,  t ) ,  
which is constant in time. It is defined if A, # 0 for all i (i.e., if no jump is propagated 
along the temporal axis J: = 0). It is easy to see that the characteristic variable u, satisfies 

Equation ( I .  12 1 ) then yields 
I l l  

u ( 0 ,  t )  = ~ w ( 0 ,  t )  = C V,(O, t ) rL .  

Let the first mo eigenvalues A, be negative and the rest positive. Then the exact solution at 
z = 0 can be expressed as 

r = l  

2 = 1  z=rn(]+l  

An important quantity is the (also time-independent) value of Au(0, t )  that represents the 
linear flux across the interface z = 0, 

I l l  171 

( I .  126) 
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Here 

A, = min(A,,O), 

A,+ = max(X,,O). 

The matrices A - ,  A+ are the negative and positive parts of the matrix A, defined using 
the decomposition A = RAR-' and A, = A; + A:, as 

A- = RA- R-' , 
A+ = RA'R-'. 

Here A- = diag(A,, A,, . . .,A;) and A+ = diag(At, A:, . . . ,A&).  Obviously, A = 

A- + A+.  Analogously we define the absolute value of the matrix A, IAl = A+ - A- = 
RlAiR-', where IAl = diag(lA11,IA~l,. . . , lAr7Ll) .  

Application to nonlinear conservation laws The matrices A+, A- ,  IAl are used by 
several popular finite volume schemes for the solution of nonlinear hyperbolic conservation 
laws, including the compressible Euler equations. The basic idea of the approximation 
consists in the linearization of the nonlinear flux functions (their replacement with their 
Jacobi matrices) and consequent application of the above-described procedure for the linear 
Riemann problem. The approximation of the time-independent value Au(0, t )  plays a key 
role in the finite volume schemes. Let us stop the comment at this point, since the finite 
volume method lies beyond the scope of this text. There is a vast literature devoted to this 
topic. We refer the reader, e.g., to [52,54, 771 and [78]. 

1.5.5 Nonlinear flux and shock formation 

To illustrate the mechanism of the creation of discontinuities in nonlinear first-order hyper- 
bolic problems, consider a nonlinear analogy to (1.1 13). ( 1.1 14), 

ut(z .  t )  + [ f (u (z ,  t))IZ = 0 for all z E R, t > 0. (1.127) 

U ( 5 ,  0) = ? L u ( . C ) ,  (1.128) 

where the flux function f : IR i IR is once continuously differentiable. For demonstration 
purposes let us pick the function 

1 2  f ( n )  = --u . 
2 

This choice leads to Burgers' equation ( 1 . 1  1 ), 

7Lf(Z.f)  + U ( : X . . t ) U , r ( 2 . t )  = 0. (1.129) 

The characteristics of equation ( 1.127) are defined as 

(1.130) d f  . r ' ( f )  = - (u( :X. ( f ) .  f ) )  = 7 L ( I l . ( t ) .  f ) .  

. I . ( O )  = X ( ) .  

dii 

Using (1 .  130) and (1.129), i t  is easy to verify that the solution u( . r ( f ) .  t )  along these char- 
acteristics is constant, 

d a 
- ? / , ( T ( f ) .  t )  = - ( L ( f ) ,  t )  ? L ( . C ( t ) .  t )  +-u(:x.(f). f )  = 0. 
df d z  \-"-/ at 

r ' ( f )  
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Since z’(t) = u(z ( t ) ,  t )  is the slope of the characteristics and u(z ( t ) ,  t )  is constant, also in 
this case the characteristics are straight lines. A characteristic curve passing through (x0,O) 
has the slope u ( q ,  0) = u g ( x g ) .  When two different characteristic curves, carrying two 
different values of the solution on them, intersect, a discontinuity (shock) is born. This is 
illustrated in Figure 1.7. 

Solution 15 comtant 
along the characteri\tic\ 

The charactenstic\ 
inter\ect 

X 

Figure 1.7 Formation of shock in the 5olution ~ ( z ,  t )  of Burgers’ equation 

Nonlinear hyperbolic problems constitute a more or less autonomous field in applied 
mathematics, and there is a wide class of literature dedicated to both their theoretical and 
computational aspects. See the literature listed at the end of the previous paragraph and 
references therein. 

1.5.6 Exercises 

Exercise 1.22 Under suflcient regularity conditions jbr  thejux f and the solution u, show 
that every solution u ($(I .  104) is conserved in time, ie . ,  it satisfies condition (1.106). Hint: 
Integrate ( I .  104) over R, use the fundamental theorem of calculus und decay conditionsfor 
functions integrable in R. 

Exercise 1.23 (Exact solution to the wave equation) Calculate the eigenvectors of the 
matrix A defined in (1.100). Use the characteristic variables to construct the exact so- 
lution (1.102) ofthe linearfirst-order hyperbolic system ( I .  loo), (1.101). 

Exercise 1.24 Prove a simplijied version of the loculization theorem: Let 12 C Ri be un 
open bounded set. Let f E C(a). Let 

be validfor all open bounded sets 0 C I]. Then f is ;ero everywhere in (2. 

Exercise 1.25 Consider a linear hyperbolic problem ofthe form ( I .  I I7), (1.118) with the 
j u x  function f(u) = Au, where the matrix A hns thefi,rm 

A = ( ’  1 1 1 1 )  0 

0 1 1 

Consider a general initial condition u( .L. 0 )  = ug(s) for all s E R. Write the exact solution 
to this problem. 



CHAPTER 2 

CONTINUOUS ELEMENTS FOR 1 D 
PROBLEMS 

After reviewing the basic theory of partial differential equations in Chapter 1, let us now 
introduce the Galerkin method and its important special case, the Finite element method. 

2.1 THE GENERAL FRAMEWORK 

Let V be a Hilbert space, a( . ,  .) : V x V + R a bilinear form (coming, e.g., from the weak 
formulation of a PDE) and 1 E V’ (representing, e.g., the right-hand side of a PDE). It is 
our task to find u E V such that 

a(u ,u)  = l ( u )  for all u E V. (2.1) 

We assume that the bilinear form a( . ,  .) is bounded and V-elliptic, i.e., that there exist 
constants Cb, Cel > 0 such that 

and 

a(u ,u)  2 Celllull$ for all u E V. (2 .3)  

Recall that the weak problem (2.1) has a unique solution by the Lax-Milgram lemma 
(Theorem 1.5). 

Partial Differential Equations ond the Finite Element Method. By Pave1 Solin 
Copyright @ 2006 John Wiley & Sons, Inc. 
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2.1.1 The Galerkin method 

Problem (2.1) was stated in an infinitely-dimensional space V. Therefore, its exact solution, 
as a “function of infinitely many unknown parameters”, is impossible to find in general. 
The finite-dimensional (numerical) approximation of such problems was first studied sys- 
tematically by Boris Grigorievich Galerkin. 

Figure 2.1 Boris Grigorievich Galerkin ( I  87 1-1945). 

B.G. Galerkin was a Russian mathematician who became famous for his results related to 
thin elastic plates, numerical solution of partial differential equations, and investigation of 
the stress in dams and breast walls with trapezoidal profile. His work found many industrial 
applications, including the construction of large dams and hydroelectric power stations. 

The Galerkin method, which he first published in 1915, is based on a sequence of finite- 
dimensional subspaces c V, V,, C V,+l, that fill the space V in the limit. In 
each finite-dimensional space V, problem (2.1) is solved exactly. It can be shown that 
under suitable assumptions the sequence of the approximate solutions {u,},“,~, u, E V,, 
converges to the exact solution of problem (2.1). 

Let {V7,}z=l c V be a sequence of subspaces of V such that 

u K = v, 
z=l 

(2.4) 

where V, c Vn+l c V and dim(K,) = N7, < m for all n = 1 , 2 , .  . .. Every finite- 
dimensional subspace of a Hilbert space is closed and therefore a Hilbert space (see Remark 
AS).  The Galerkin approximate problem usually is called discrete problem. 

Discrete problem Find a solution u, E V,, satisfying 

u(u,,u) = 1(w) for all u E V,. (2.5) 

Lemma 2.1 (Unique solvability) Problem (2.5) has a unique solution u, E V,. 

Proof: The form a( . ,  .), restricted to V, x V,, obviously remains bilinear, bounded, and 
V,-elliptic. The linear form 1(v), restricted to V,, remains linear, and therefore 1 E VA. 
Thus the assumptions of the Lax-Milgram lemma (Theorem 1.5) are fulfilled and there 
exists a unique solution to (2.5). 
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The solution u,, E V,, to the discrete problem (2.5) can be found explicitly thanks to the 
fact that the space V,, has a finite basis {v,}::~. The solution uTl can be written as a linear 
combination of these basis functions with unknown coefficients, 

Substituting (2.6) into (2.5), one obtains 

The linearity of a( . ,  .) in its first component yields 

N., 

C a (vJ, v) y, = L ( W )  for all 21 E v,. 
J=1 

Substituting the basis functions vl, v2,. . . , WN,, for v in (2.8), we obtain 

It is worth taking a moment to see that (2.8) and (2.9) are equivalent: The implication from 
(2.8) to (2.9) is easy since every basis function v, E V is a special case of a general v E V. 
Conversely, an arbitrary v E V, can be written as a linear combination 

2 = 1  

Multiplying the ith equation in (2.9) with pZ and using the linearity of the forms a and I ,  
we obtain 

N. 

3=1 

Summing up these equations over all i, we see that 

Next let us define the stiffness matrix 
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(2.10) 

the load vector 

and the unknown coefficient vector 

Then the system of linear algebraic equations (2.9) can be written in a matrix form 

S,,Y, = F,. (2.13) 

In order to show the invertibility of the matrix S,,, let us prove its positive definiteness first: 

Lemma 2.2 (Positive definiteness of S,) Let V,, dim( vt) = N,, < 00 be a Hilbert space 
and a( . ,  .) : V x V + R a bilinear V-elliptic form. Then the stifiess matrix S ,  of the 
discrete problem (2.13) is positive dejnite. 

Proof: 1: is our aim to show that Y T S Y  > 0 for all 0 # Y E RNTi. Thus take an 
arbitrary Y = ($1, $ 2 , .  . . , Q N ~ , ) ~  and define the vector 

where {ul, 112,. . . , ?IN,,} is some basis in y,. By the V-ellipticity of the form o,(., .) it is 

which was to be shown. 

Corollary 2.1 (Invertibility of S,) The stiffness matrix S,, of the discrete problem (2.13) 
is nonsingular 

Proof: This fact follows immediately from the existence and uniqueness of the solution 
u, E V, (Lemma 2.1). Alternatively, let us assume that S ,  is singular. Then there exists 
a nontrivial vector Yo E RNn such that S,,Yo = 0. Then necessarily YTS,Yo = 0, 

Thus we conclude that the system of linear algebraic equations (2.13) has a unique so- 

which is a contradiction with the positive definiteness of S,  (Lemma 2.2). 

lution Y ,  that defines a unique solution u, € V, of (2.5) via (2.6). 

Now let us interrupt the discussion of the Galerkin method for a moment and introduce 
an important concept of orthogonality of error for elliptic problems and CCa's lemma in 
Paragraph 2.1.2. The convergence proof for the Galerkin sequence will be presented as a 
simple consequence of these results in Paragraph 2.1.3. 
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2.1 -2 Orthogonality of error and Cea’s lemma 

The error e,, = u - u,, of the solution to the discrete problem (2.9) exhibits the following 
orthogonality property: 

Lemma 2.3 (Orthogonality of error for elliptic problems) Let u E V be the exact solu- 
tion of the continuous problem (2. I )  and uTL the exact solution of the discrete problem (2.5). 
Then the error e,, = u - u, satisjies 

u(u - u,, 7 1 )  = 0 for all v E V,. (2.14) 

Proof: Subtract (2.5) from (2.1) restricted to V, C V. 

Remark 2.1 (Geometrical interpretation) rfthe bilinear form a( . ,  .) is symmetric, it in- 
duces an energetic inner product 

It follows from (2.14) that 

(e,,v), = 0 f o r a l l v  E V,, 

i.e., that the error ofthe Galerkin approximation e ,  = u - u, is orthogonal to the Galerkin 
subspace V,l in the energetic inner product. Hence the approximate solution u, E V, is 
an orthogonal projection of the exact solution u 6 V onto the Galerkin subspace V, in 
the energetic inner product, and thus it is the nearest element in the space V, to the exact 
solution u in the energy norm, 

Next let us introduce CCa’s lemma, which establishes the relation between the error of 
the approximation en = u - u, and the interpolation properties of the subspace V,, using 
the continuity and V-ellipticity constants Cb, C,l of the bilinear form a( . ,  -). 

Theorem 2.1 (CCa’s lemma) Let V be a Hilbert space, a ( . ,  .) : V x V + R a bilinear 
bounded V-elliptic form and 1 E V‘. Let u E V be the solution of problem (2.1). Furthel; 
let V, be a subspace of V and u, E V, the solution of the Galerkin approximation (2.5). 
Let Cb, C,l be the continuity and V-ellipticity constants of the form a( . ,  .). Then 

Proof: Using relation (2.14), we obtain that 

U(U - u,, u - u,) = U(U - un, u - U )  - a(u  - un, U ,  - ZJ) 

u(u - un,u - U )  = 

for an arbitrary 11 E v,. By the V-ellipticity of the bilinear form a ( , ,  .) we have 

~ ( u - u n , u - u n )  2 Ce l l l u -un I IV .  2 (2.16) 
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The boundedness of a( . ,  .) yields 

Putting relations (2.16) and (2.17) together, we obtain 

which was to be shown. 

Theorem 2.1 was first proved by CCa [27] in 1964 for the symmetric case and extended 
to the nonsymmetric case four years later in [ 131. 

Remark 2.2 CPa's lemma states that the approximation error erl = u - u, depends on 
the choice of the Galerkin subspace V,, but it does not depend on the choice of its basis. 
Therefore, when working withjnite element methods for  elliptic problems, one should think 
in terms offunction spaces rather than in terms of concrete basis functions. Also numerical 
results should stay independent of a concrete choice of jni te  element basis functions. 

Where the choice of the basis matters is the condition number of the stifiess matrix S,, 
which influences the perjormance of iterative matrix solvers. This issue will be discussed 
in more detail in Paragraph 2.5.2. 

2.1.3 Convergence of the Galerkin method 

The convergence of the Galerkin method for elliptic problems is a simple consequence of 
CCa's lemma (Theorem 2.1). 

Theorem 2.2 Let V be a Hilbert space and V, C V, C . . . C V a sequence of its$nite 
dimensional subspaces such that (2.41, 

cc 

(J v, = V, 
n=l  

(2.18) 

Let a( . ,  .) : V x V -7' IR be a bounded bilinear V-elliptic form and 1 E V'. Then 

i.e., the Galerkin method for problem (2.1) converges. 

Proof: 
sequence {u,}?=~ such that v, E V, for every n = 1 , 2 , .  . . and 

Given the exact solution u E V of (2.1), by (2.18) it is possible to find some 

lim IIu - v,,jlv = 0. (2.19) 
n-oo 

Lemma 2.5 yields the existence and uniqueness of a solution u, E V, of the discrete 
problem (2.5) for every n 2 1. By CCa's lemma, 
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By (2.19) we conclude that 

which was to be shown. 

2.1.4 Ritz method for symmetric problems 

We have shown in Paragraph 1.2.9 that for a symmetric bounded bilinear V-elliptic form 
a( . ,  .) problem (2.1) is equivalent to a minimization problem for the abstract energy func- 
tional (1.68), 

1 
2 

E ( u )  = -a(?,, v) - l ( u ) ,  

in the space V .  On the discrete level, it follows from Theorem 1.6 that the discrete prob- 
lem (2.5) is equivalent to a discrete minimization problem of minimizing E(u)  in the 
finite-dimensional subspace V,. The equivalence of the Galerkin and Ritz methods in the 
symmetric case is the reason why sometimes the Galerkin method is referred to as the 
Ritz-Galerkin method. 

2.1.5 Exercises 

Exercise 2.1 Prove that every symmetric bilinear form a( . ,  .) : V x V --t R yields a 
symmetric stiffness matrix S. Hint: A bilinearform a( . ,  .) : V x W + R can only be 
symmetric if V = W (see Dejinition 1 . S ) .  

Exercise 2.2 Prove the equivalence of the Galerkin and Ritz methods in the symmetric 
case, stated in Paragraph 2.1.4: 

V x V + R a symmetric V-elliptic 
bilinear form, und 1 E V'. Show that the abstract energy 

Let V be u linear space, V,, c V its subspace, a 

E ( u )  = 'a(., v) - Z(u) 
2 

attains its minimum over V, at u, E V, ifand only if 

u(unr u )  = Z(u) for  all u E 

Proceed similarly to the proof of Theorem 1.6. 

2.2 LOWEST-ORDER ELEMENTS 

Vn 

Let R c EXd, where d is the spatial dimension, be an open bounded set. If the Hilbert 
space V consists of functions defined in R and the Galerkin subspaces Vn C V comprise 
piecewise-polynomial functions, the Galerkin method is called the Finite element method 
(FEM). Let us begin with the exposition of the simplest case of piecewise-affine elements 
in one spatial dimension. 
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2.2.1 Model problem 

Consider the model equation (1.26), 

where f E L2(R), in a bounded interval R = (a,  b )  c Iw, equipped with the homogeneous 
Dirichlet boundary conditions (1.28). The weak formulation of this problem (see Paragraph 
1.2.1) takes place in the Sobolev space 

v = H,(R). 

We assume that the coefficient functions al ,ao  E Lc-(R) satisfy the unique solvability 
assumptions (1.27), 

u ~ ( x )  2 C,,, > 0,  ~ ( z )  2 0 a.e. in R. 

At the beginning let al and a0 be constants and assume a simple load function of the form 

f ( z )  = 1 i n R .  (2.21) 

The model problem reads: Find a function u E V satisfying 

for all v E V, a(u ,  V) = Z ( V )  

where the bilinear form a : V x V + Iw is given by 

and the linear form 1 E V’ is defined by 

l ( v )  = ( 1 , ~ )  = f v d z  b 
2.2.2 Finite-dimensional subspace V, C V 

The Galerkin procedure assumes a sequence of finite-dimensional subspaces 

VI c v2 c . . .  c v 
of the infinite-dimensional Hilbert space V ,  satisfying (2.18), 

uvn = v. 
n 

Let n 2 1 be a natural number. Consider a partition 

(2.22) 

(2.23) 

a = X p )  < XI”’ . . . < M n P b  - 
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of the interval i2 = (a, b) ,  and define the finite element mesh 

7, = {Kin) ,  K?), . . . , K g  }. 

The open intervals 

are called finite elements, and the value 

is said to be the mesh diameter. 

Remark 2.3 For historical reasons the subscript h = h(n) is often used instead of the 
subscript n to distinguish between the Galerkin subspaces (the mesh diameter h is closely 
related to the approximation error for lowest-order methods). Since 

--t V as h(n) + 0,  

the limit n + 00 can be replaced with the limit h --t 0 in the Galerkin procedure. The 
Galerkin method itself remains unchanged. 

In the case of piecewise-affine elements, the Galerkin subspace V, c V consists of 
continuous functions that are affine polynomials in every domain K,(”) E z. One defines 

V, = {v E V; vlK;n~ E P1 (K!“)) for all i = 1 , 2 , .  . . , M,} . (2.24) 

Recall that functions in the space H 1  (0) in one spatial dimension are continuous (Examples 
AS3 and A.54). Therefore one refers to the finite elements in this space as to continuous 
elements. 

2.2.3 Piecewise-affine basis functions 

While the Galerkin method assumes an arbitrary basis of the space V,, the finite element 
method (up to rare exceptions) prefers basis functions with small supports, so that as many 
of them as possible are disjoint. When the supports of v, and v3 are disjoint, the stiffness 
matrix entry sZ3 = a(v,, v,) is zero. Matrices with few nonzero entries are called sparse, and 
in comparison with dense matrices they are much easier to store in the computer memory 
and to solve numerically. More about sparse matrices and their properties will be said in 
Paragraph 2.5.1. 

The most convenient basis of the space V, in the piecewise-affine one-dimensional case 
consists of M ,  - 1 continuous “hat functions” v3 of the form 

(2.25) 

\ 0,  elsewhere in (a, b) ,  
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z = 1,2 , .  . . , Mn - 1. The basis functions w, satisfy 

w , ( q )  = 6 2 3 ,  

where zJ are the grid points and 6,, the Kronecker delta. The support of each w,, formed 
by the pair of elements K, and K,+1, is minimal. It is easy to see that dirn(V,) = M ,  - 1. 
The hat functions are shown in Figure 2.2. 

Figure 2.2 Example of a basis function zit of the space V,, 

Using the basis functions (2.25), the solution u, to the discrete problem (2.9) can be 
written in the form (2.6), 

(2.26) 
2=1 

where yi are unknown real coefficients, 

2.2.4 The system of linear algebraic equations 

Now we are in position to construct the linear algebraic system (2.13), 

SnY, = F,. (2.27) 

By h, let us denote the length of the element K, = (z,-1,z2). According to (2.10), the 
stiffness matrix S,  = {s,,}:=<~ has the entries 

aivi(z)vl(z) + .o.,(z)vz(z)dz 

Using (2.25), one obtains 

I 0 ,  otherwise. 
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With (2.21), the load vector F, = {fi}2i-' has the components 

Hence the system of linear algebraic equations (2.27) has a tridiagonal form illustrated in 
Figure 2.3. 

Figure 2.3 Tridiagonal stiffness matrix S ,  for piecewise-affine approximations in 1 D 

It follows from Corollary 2.1 that the stiffness matrix S, is invertible, and thus there 
exists a unique vector Y, containing the coefficients of the approximate solution u, E V,. 
This model situation is particularly interesting, since the linear algebraic system (2.27) can 
be written down very easily, and even solved exactly with some effort (when all elements 
have the same length). This is left to the reader as an exercise. However, the reader should 
be aware of the fact that in practice, computer programs have to be written for both the 
assembly and solution of the linear algebraic system (2.27). Let us discuss the assembling 
algorithm in the next paragraph. 

2.2.5 Element-by-element assembling procedure 

The ith row in the linear algebraic system (2.27) corresponds to the ith test function u!"' E 

V,, which is associated with the ith grid point z!"'. Therefore it seems natural to write the 

assembling algorithm as a loop over all internal grid vertices zp), zp), . . . , z:: - : 

Algorithm 2.1 (Vertex-by-vertex scheme) 

//Contributions corresponding to the grid vertex xi"' : 

si,i = a i ( l / h i  + 1/h2) + ao(h1/3  + h2/3) ;  
s i , 2  = -a1/h2 +aoh2/6; 
f l  = (hl + h2) /2;  
//Contributions corresponding to the grid vertices 

33 ' 2 3  / ' . . ,  M , - 2 :  

for 2 = 2 , 3 ,  . . . ,  M,-2 do { 
~ % , ~ - - i  = -a l /h ,  +aoh,/6; 
stz = a i ( l / h ,  + l/h,+l) + a0(h,/3 + h,+1/3); 
S , , ~ + I  = -al/h,+l + aoht+1/6; 
ft = (ht + h,+1)/2; 

( n )  ( 7 1 )  z(%) 

1 
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However, the vertex scheme is difficult to work with in higher spatial dimensions and to 
extend to higher-order finite element methods. In particular, higher-order finite elements 
come with basis functions associated with vertices, edges, faces (in 3D only), and element 
interiors, and thus the vertices lose their unique role in the assembling procedure. From 
the point of view of future extensions it is better to assemble the linear system (2.27) in an 
element-by-element fashion: 

Algorithm 2.2 (Element-by-element scheme) 

Set the stiffness matrix S, zero. 
Set the load vector Fn zero. 
//Contributions corresponding to the element K i n )  : 
si.1 = s1.i + a i /h l  + aohi/3; 
f i  = f i  + h1/2; 
//Contributions corresponding to the elements K p ' ,  K p ' ,  . . . , K(,' Af,, - 1 . . 
f o r i = 2 , 3  , . . . ,  M n - 1  do { 

s,-1.~--1 = S % - I , ~ - I  + a i /h ,  + aoh,/3; 
~ , - i . ~  = ~ ~ - 1 , ~  - ai/h,  +aoh,/6; 
%-I = st,%-l - a i /h ,  +aoh,/6; 
s,, = szz + a l /h ,  + aoh,/3; 
f t - i  = fi-1 + ht/2; 
ft = fi + ht/2; 

1 
//Contributions corresponding to the element KC,), : 

s&f,,-i,.un-i = SAI, , - I ,AI , , - I  + ai/h,w,, + aohhr,/3; 
fAI,-l = fM,,-i  + hn1,,/2; 

It is left to the reader as an exercise to verify that indeed Algorithms 2.1 and 2.2 yield 
the same system of linear algebraic equations. We shall use element-by-element algorithms 
similar to Algorithm 2.2 in the following. 

2.2.6 Refinement and convergence 

In Paragraphs 2.2.2-2.2.5 we discussed one step of the Galerkin method only: The construc- 
tion of the approximate solution u,, E V,, in a given finite-dimensional space V, C V .  To 
accomplish the Galerkin procedure, we need a sequence of subspaces Vl C V, C . . . C V 
such that V, + V .  

Assume a space V, associated with a mesh ?;,. The next mesh T,+1 can be defined, for 

example, by halving all intervals K,(,). Then we have the diameter h(n + 1) = h(n)/2 
and Mn+l = 2M,. Clearly the space Vn+l of continuous piecewise-affine functions on 
the refined mesh Tn+l satisfies 

V, c Vn+l c V, (2.30) 

and when the refinements are repeated, one obtains a sequence of spaces satisfying (2.23), 
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(2.31) 
n 

The discretization procedure is performed on each mesh 

and one obtains the desired Galerkin sequence of approximate solutions {u,}:?~ C V. 
Theorem 2.2 yields the convergence to the exact solution u of the continuous problem, 

A-posteriori error estimation The above-described approach to mesh refinement is 
not very practical, since the number of elements and consequently the number of unknowns 
grow exponentially. In practice one needs to use more sophisticated adaptive strategies that 
refine the mesh only where the error u - u, is largest. Since the exact solution u is not 
known, the a-posteriori error estimation (i.e., error estimation based on the values of the 
computed approximation u,) comes into the play. The Galerkin subspaces V, C V are 
constructed in such a way that the distance dist(u, Vn) = infUEv,, IIu - uljv is minimized 
most efficiently as the number of unknowns NTL = dim(V,) is increased. 

2.2.7 Exercises 

Exercise 2.3 Assume problem (2.22) with a1 = 1 and a0 = 0, and an equidistantpartition 
of the domain R = (-1,l) with Mn 2 2 elements (i.e., hl = hz = . . . = hMn = 2/Mn). 

I .  Calculate the exact solution u E C2(R)  n C(0) .  

2. Solve analytically the linear system (2.27) dejined via formulae (2.28) and (2.29). 

3. Take the limit n + 03 to see that u, + u. 

Exercise 2.4 Show that Algorithms 2.1 and 2.2 yield the same system of linear algebraic 
equations jbr  piecewise-afine approximations. 

Exercise 2.5 Verify in detail the inclusions (2.30) for  the case that the next one-dimensional 
mesh Tn+l is obtained by halving all intervals in the current mesh In. 

Exercise 2.6 Considerproblem (2.22) with a1 = 1 and a0 = 0 in the interval R = (-1,l) 
on equidistant meshes. Take the number of elements Mn 2 2 as an input parameter 
Construct the system c$ linear algebraic equations (2.27) using Algorithm 2.2. Write an 
appropriate Gauss elimination algorithm for  the tridiagonal stifiess matrix S,. Your 
output will be the H1-serninorm OUT(MTl)  = lurL - 741,2, where u, is the Galerkin 
approximation and 

1 -x2 
u(x) = -. 

2 

Let N ,  = Mn - 1 be the number of unknowns. Produce a graph of values [N,, OUT( M,)] 
for  M I  = 2, MZ = 4, M3 = 8, M4 = 16, M5 = 32, MG = 64, M7 = 128, M7 = 256, 
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M8 = 512, My = 1024, h f , ~  = 2048. Use both the decimal and decimal-logarithmic 
scales. Try to read parameters (constants) from an input file and write results into an output 
data file. What will be the limit of O U T ( h f 7 , ) j b r  M ,  + oo? Hint: Use an appropriate 
theorem that states that, and verifL that its assumptions are satisjied. 

Exercise 2.7 Consider problem (2.22) with a1 = 1 and a0 = 0, and a right-hand side 

(2.32) 
f(.) = 4 - 62, 

--u”(z) = 4 - 6x in 0 = ( a ,  b )  c R, 

equipped with the boundary conditions 

u(x) = 0 on X I .  (2.33) 

Suppose that (1 is covered with a jinite element mesh containing Af 2 2 equally-spaced 
afJine elements. 

I .  Firstfind an exact solution u E C 2 ( 0 )  n C ( 0 )  of (2.32), (2.33). Hint: Perform 
integration to eliminate the derivatives. Use the boundary conditions to calculate 
constants that will appeal: 

2. Write the weak formulation and explain why there exists a unique solution 

3. Write the discrete problem and explain why there exists a unique solution. 

4. What is the minimum order ofaccuracy of numerical quadrature that should be used 
for  the discretization? 

5. 

6. 

7. 

8. 

9. 

10. 

Write a computer code that constructs the stifless matrix S and load vector F,  
and that solves the system of linear algebraic equations. The numbers a ,  b E R 
and A4 will be input parameters. The output will be the graph containing both the 
approximate solution uh and the exact solution u (in whatever form you prefer). 
Other outputparameters will be the H’-norm of error, O U T l ( M )  = IIu - uhll1,2, 

and the H’-seminorm of errou, O U T 2 ( M )  = I ~ L  - u1,11,2. 

Consider input parameters a = 0, b = 1. For M = 2,5,10,50,100 produce graphs 
containing the pair of functions u, U h .  

Runthecodefor M = 2,3,5,10,30,50,100,150,200,300,500andproduceconver- 
gence curves in H1-norm and H’-seminorm (i.e., graphs of values [ N , O U T l ( M ) ]  
and [ N ,  OUT2(M)],  respectively, where N = M - 1 is the number of unknowns). 

Explain why the H 1  -norm is equivalent to H’-seminorm for  problem (2.32), (2.33). 

Guess the algebraic order of convergence of the method, i.e., a positive integer number 
0: satisfying 

/ I u  - uh\11,2 0 < const = lim < 00, 
M - ~  ha 

where h = ( b  - a ) / M .  Hint: Use the sequence of values IIu - uh1/1,2 you have 
for M = 2,3,5,10,30,50,100,150,200,300,500. Construct three sequences cor- 
responding to cy = 0, cy = 1, and cy = 2. See which one converges to zero, which 
one diverges and which one converges to a nonzerofinite numbel: 

After validating the code on a simple example with known exact solution (this should 
become your standard jirst step whenever implementing a new numerical scheme), 
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now you can use it to solve a more diflcultproblem whose exact solution is not known. 
Exchange the load function f for 

f(z) = - arctan(z - 1/21 cos(.irz/2), x E (0,1). 

Present a plot of the numerical solution U h  that is “optically identical” with the 
unknown exact solution. Hint: Refne the meshes and observe the shape of U h .  Stop 
when utL “does not change anymore”. 

2.3 HIGHER-ORDER NUMERICAL QUADRATURE 

The explicit form of the stiffness matrix S, and the load vector F,, shown in Section 
2.2, should not make the reader think that the integrals in the finite element method are 
calculated on the paper. In reality the load function f E L2(St) may be nonpolynomial or 
even defined via tabulated data. In general, the right-hand side integrals of the form 

cannot be calculated exactly. Usually it is not a bad idea to use a numerical quadrature for 
the stiffness matrix entries as well. As we will see in a moment, the Gaussian quadrature 
rules are exact for polynomials up to certain degree that depends on the quality of the 
quadrature rule. Therefore it is convenient to evaluate numerically even integrals that could 
be calculated on the paper. One more pro of the numerical quadrature is that when the basis 
functions in the code change, the values of the integrals are updated automatically. Among 
the wide scale of existing numerical quadrature methods (see, e.g., [ 11 11) we prefer the 
Gaussian quadrature rules for their high efficiency. 

The derivation and basic properties of these rules are discussed in Paragraph 2.3.1. In 
Paragraph 2.3.2 we present a few tables with the integration points and weights for practical 
implementation, and in Paragraph 2.3.3 some approaches to adaptive numerical quadrature 
are described. 

2.3.1 Gaussian quadrature rules 

A class of highly efficient quadrature rules was invented by a German mathematician Carl 
Friedrich Gauss. 

C.F. Gauss achieved a large amount of fundamental results in algebra and geometry, num- 
ber theory, mathematical statistics, approximate integration, differential geometry, geodesy, 
theoretical astronomy, and other fields. For example, he proved mathematically that the 
Earth has two different magnetic poles and used the Laplace equation to locate the magnetic 
south pole. 

The k-point Gaussian quadrature rule in the interval K,  = (- 1, l )  has the form 

(2.34) 

wheregisaboundedcontinuousfunction,& E (-1, l),z = 1 , 2 , .  . . , k,aretheintegration 
points, and wk,z E IW are the integration weights. The integration weights have to satisfy 
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Figure 2.4 Carl Friedrich Gauss (1777-1855). 

so that the rule (2.34) is exact for constants. If the points and weights are chosen carefully, 
the formula (2.34) can be exact for polynomials up to certain degree q > 0. The Gaussian 
rules are designed to maximize the degree q for a given number of points k :  

For some k 2 1 we have k unknown integration points < k , z  and k unknown integration 
weights wk,z, z = 1 , 2 , .  . . , k. Thus we need 2k suitable equations to solve for these 
unknowns. These equations can be created by inserting, for example, the 2k linearly 
independent monomials 1,  z, z2,. . . , xZkp1 into . (2.34). This yields a system of nonlinear 
algebraic equations 

(2.35) 

After solving (2.35) for the unknown points and weights, the Gaussian integration rule (2.34) 
is ready. Since it integrates exactly all functions of a basis of the space PZk-' (-1, l), it 
is easy to see that it is exact for all polynomials in P2'-l(-l, 1). We say that the k-point 
Gaussian quadrature rule has the order of accuracy 2k - 1. For higher k the solution of the 
nonlinear systems is much easier with the Legendre polynomials Lo, L1,.  . . , L2k-1 than 
with the monomials 1,  z, . . . , z"-~.  

Remark 2.4 (Existence and uniqueness of the points and weights) Since the algebraic 
system (2.35) is nonlinear; the existence and uniqueness of its solution is not obvious. 
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Actually, the nonuniqueness of the integration points and weights is a dificult open problem 
in the design of Gaussian quadrature rules in 2 0  and 3 0 .  In one spatial dimension it can 
be shown that the integration points for the k-point rule (2.34) are the roots of the Legendre 
polynomial Lk. With k known integration points the nonlinear system (2.35) reduces to a 
system of k linear algebraic equations for  the weights. The analysis leads even further: 
The weights wl;,z for the k-point rule (2.34) have the form 

(2.36) 

Quadrature on arbitrary intervals 

Let K = ( x z - l , z z )  C R be an arbitrary interval. It is easy to calculate the coefficients 
c1, c2 E R of an affine map z~ : K,  --f K ,  

(2.37) 

It follows from z,-1 < zi that c2 > 0. The new integration points & z  E K are then 
defined as 

<k,i  = Z K ( < k , J ,  i = 1,2 . .  . . , k.  

The integration weights wk,, are obtained via the Substitution Theorem (see, e.g., [99]), 

(2.38) 

which yields Gu)~,, = J ~ ~ i i k , ,  = c2wk.z (recall that the constant Jacobian J K  of the affine 
map XK is positive). 

2.3.2 Selected quadrature constants 

Let us list the integration points and weights for a few selected k-point Gaussian rules in 
the reference interval K,  = (-1,l) in Tables 2.1-2.5. Since the integration points are 
symmetric with respect to zero, only the positive ones are listed. Symmetric integration 
points have identical weights, k stands for their total number. Numerous lD, 2D, and 3D 
Gaussian quadrature rules up to the order of accuracy p = 20 are available on the CD-ROM 
accompanying [ 1 I 11. 

Table 2.1 Gaussian quadrature on K,i, order 2k - 1 = 3. 

Point # * <-Coordinate Weight 

1. 0.5773502691 89625 7645091488 1.0000000000000000000000000 
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Table 2.2 Gaussian quadrature on K O ,  order 2k - 1 = 5 

Point # j, <-Coordinate Weight 

1. 0.0000000000000000000000000 0.88888 88888 88888 88888 88889 
2. 0.7745966692414833770358531 0.5555555555555555555555556 

Table 2.3 Gaussian quadrature on K,2, order 2k - 1 = 7 

Point # 5 <-Coordinate Weight 

1.  0.33998 10435848562648026658 0.652145154862546 1426269361 
2. 0.86113631159405257522 39465 0.3478548451 37453 85737 30639 

Table 2.4 Gaussian quadrature on K,,, order 2k - 1 = 9. 

Point ## 5 <-Coordinate Weight 

1. 0.0000000000000000000000000 0.5688888888888888888888889 
2. 0.5384693101056830910363144 0.47862867049936646804 12915 
3. 0.9061798459386639927976269 0.23692688505618908751 42640 

Table 2.5 Gaussian quadrature on Kcz. order 2k - 1 = 11 

Point # + <-Coordinate Weight 

I .  0.23861 91860831969086305017 0.467913934572691 0473898703 
2. 0.66120938646626451366 13996 0.36076 15730481386075698335 
3. 0.93246951420315202781 23016 0.1713244923 791703450402961 
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2.3.3 Adaptive quadrature 

In some situations even high-order Gaussian quadrature rules fail or deliver unacceptable 
errors. This may happen, for example, if the integrated function is discontinuous or oscil- 
lates. A possible remedy is to apply some suitable adaptive quadrature algorithm in critical 
elements. These algorithms usually are not very difficult to implement and can improve the 
accuracy and reliability of the numerical quadrature significantly. 

Let us begin with introducing a basic prototype of an adaptive quadrature algorithm, and 
perform a few numerical tests. We assume an elementary higher-order Gaussian quadrature 
procedure 

double Gauss(doub1e a, double b); 

that integrates numerically some given function f in the interval (a ,  b) .  The following 
recursive algorithm uses the procedure Gauss (a, b) to perform adaptive quadrature. The 
adaptivity consists in recursive halving of intervals where an error indicator exceeds some 
given tolerance. The error indicator used is based on the relative difference between the 
approximation over the whole interval (a, b) ,  and the sum of the approximations in the 
half-intervals ( a ,  ( a  + b ) / 2 )  and ( ( a  + b ) / 2 ,  b ) ,  

Gauss(a, (a + b)/2) + Gauss((a + b)/2, b) - Gauss(a, b) 
Gauss(a, (a + b)/2) + Gauss((a + b)/2, b) ERR,,l = 

Algorithm 2.3 (Adaptive quadrature in 1D) 

double ZERO = le-12; 
double QuadAdapt(doub1e a, double b, double TOL) { 

double L = Gauss(a, 0.5*(a+b)); 
double R = Gauss(0.5*(a+b), b) ; 
double LR = Gauss(a, b); 
if(fabs(L+R) < ZERO) return 0; 
double rel-err = fabs((L+R-LR)/(L+R)); 
if(rel.err < TOL) { 
return L + R; 

1 
else { 
L = QuadAdapt(a, 0.5*(a+b), TOL); 
R = quadAdapt(O.S*(a+b), b. TOL); 
return L + R; 

} 
1 

The adaptive process in (a ,  b )  stops as soon as the approximate integral over (a ,  b) is 
sufficiently close to the sum of the approximate integrals over its two subintervals ( a ,  ( a  + 
b ) / 2 )  and ((a + b ) / 2 ,  b) .  One can formulate various other stopping criteria. Let us stress, 
however, that the parameter TOL has no direct relation to the true relative error 

IGauss(a, b) - s," f ( z )  dzl 
eTel = I s," f (x) d z  1 

Performance of Algorithm 2.3 is illustrated in the next example. 
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EXAMPLE 2.1 (Adaptive quadrature in 1D) 

For testing purposes consider the anisotropically behaved function 

10 f(.) = m' (2.39) 

defined in the interval (ao.bo) = (0.10). The function f is depicted in Figure 2.5. 

Figure 2.5 Benchmark function f for adaptive numerical quadrature 

The knowledge of the primitive function to f. 

F ( s )  = 10 arctaii(s). 

allows us to evaluate the quadrature error exactly. 
First let us investigate the role of the order of accuracy of the elementary quadra- 

ture routine Gauss(a,b) on the performance of Algorithm 2.3. Figure 2.6 shows 
the convergence of the adaptive quadrature when the quadrature routine Gauss (a, b) 
is third-, fifth- and seventh-order accurate. The horizontal axis represents the final 
number of integration points in the interval ( a o . b ~ ) ,  and the vertical axis the true 
relative error of the approximate quadrature in decimal-logarithmic scale. 

0 0001 

1 e-06 

le-08 

le-10 

le-12 

I 

0 20 40 60 80 100 

Figure 2.6 
with two, three, and four integration points, respectively. 

Performance of Algorithm 2.3 using the Gaussian quadrature procedure Gauss (a, b) 

Next, Figure 2.7 compares the convergence of the adaptive seventh-order Gaussian 
quadrature to the convergence of a nonadaptive seventh-order Gaussian quadrature 
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scheme based on equidistant subdivisions. One can see that the adaptive procedure 
performs more efficiently. 

0 01 

0 001 

0 0001 
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le-11 1 L i 
0 10 20 30 40 50 60 70 80 

Figure 2.7 Comparison of adaptive and nonadaptive quadrature 

2.3.4 Exercises 

Exercise 2.8 Calculate the coeflcients ~ 1 ,  c2 E IR of the afJlne map x~ from (2.37). 

Exercise 2.9 Use Legendre polynomials Lo, L1. . . . , L6 constructed in Example A.44 to 
calculate integration points and weights for the Gaussian quadrature rule (2.34) in the 
interval I(, = (-1, l ) , for  k = 3. 

Exercise 2.10 Let us see the superiority of higher-order Gaussian quadrature rules over 
the classical trapezoidal rule. Consider; for  example, the ,function g(x) = sin(x) in the 
interval 52 = (0. T )  (or some other nonoscillatoly continuous function of your choice). 

I .  Calculate the integral Ie,r = soT g ( x )  dx. 

2. Calculate a series of approximate integrals I&! using the trapezoidal rule with 
equidistant subdivisions of R into hf = 2,5,10,20,50,100,200,500 elements. Plot 
the corresponding convergence curve: Put the number of integration points on the 
horizontal axis and the error I I - In, 1 on the vertical one. Use decimal-logarithmic 
scnle. 

3. Produce an annlogous convergence curve for the third-order Gaussian quadrature 
(Table2.1). Useequidistantsubdivisions with hf = 1,2,5,10,50,100.250element.s. 

4. At last produce a convergence curve for the fifrh-order Cuussiun quadrature (Table 
2.2). Use equidistant subdivisions with A 1  = 1.2,s: 10,50.100 elements. 

5. Use the convergence curves to compare the eflciency of these three quadrature 
schemes. 

Exercise 2.11 Rewrite Algorithm 2.3 in a nonrecursive manner and implement it. Hint: 
Reserve a suflciently lurge array to store the integration subinterval data. Enumerate the 
integration subintervals at all refinement levels in a suitable unique way (e.g., row-wise in 
the refinement tree). Link these indices uniquely to positions in the global array. Compare 
the CPUperformance for various values of TOL > 0, using the function f (x) from (2.39). 
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In Section 2.2 we constructed a Galerkin sequence Vl C Vz . . . in the Sobolev space V 
by subdividing selected mesh elements into subelements of the same polynomial degree 
(h-refinement). Sometimes, much faster convergence can be achieved by increasing the 
polynomial degree of the elements instead @-refinement). Such approach usually is more 
efficient in elements where the solution is very smooth, without singularities, oscillations, 
or boundaryhnternal layers. An illustrative example is given in the next paragraph. 

2.4.1 Motivation problem 

In this paragraph we compare the performance of two simple finite element schemes with 
(a) two piecewise-affine elements and (b) one quadratic element. Consider the Poisson 
equation 

-u”(z) = f (z )  in R = (-1, I) ,  (2.40) 

where ~ ( I c )  = 7r2 cos(7r1~/2)/4, equipped with homogeneous Dirichlet boundary condi- 
tions. The weak formulation of problem (2.40) reads: Find u E V = Hi(-l, 1) such 
that 

1 1 

u’(z)v’(z) d z  = f(z)v(z) d z  for all v E V. (2.41) L1 s_, 
The exact solution to (2.40) [and (2.41)], has the form 

u ( z )  = c o s ( y )  

First let us cover R with a pair of affine elements ( - 1 , O )  and (0,1). The corresponding 
finite element space Vh is generated by a single piecewise-affine function v ~ ~ ,  defined as 
vtL(z) = IC + 1 in (-1,0] and vh(z)  = 1 - IC in [O, 1). The approximate solution uh E v h  
has the form U ~ ( I C )  = ylvh(z), where y1 is an unknown coefficient. After substituting 
uh for u and vh for v in (2.41), we obtain a single linear algebraic equation for y1 whose 
solution is y1 = 1. The functions u and uh are shown in Figure 2.8. 

It is left to the reader as an exercise to verify that the approximation error in HI-seminorm 



HIGHER-ORDER ELEMENTS 67 

(which by the PoincarC-Friedrich’s inequality is equivalent to the full H1-norm in the space 
V )  is 

Next assume a single quadratic element (- 1,1). We can choose, for example, the function 
IJ,(Z) = 1 -x2 to be the basis of the corresponding finite element space V,. The approximate 
solution has the form up(.) = &v,(x). After substituting up for u and up for v in (2.41), 
we calculate that 51 = 3/7r. The functions u and up are depicted in Figure 2.9. 

Figure 2.9 Exact solution u and quadratic approximation up. 

The approximation error Iu - up11,2 = 0.20275 is less than 30% of /u - uh11,2. The next 
step is left to the reader as an exercise: Use (a) four equally-long piecewise-affine elements 
and (b) one quartic 0, = 4) element. The number of unknowns in each case is three. The 
error in the quartic case is less than 2.5% of the error of the piecewise-affine approximation. 

This indicates that smooth functions are better approximated by means of large higher- 
order elements. On the other hand, less regular functions can be approximated more effi- 
ciently on smaller piecewise low-degree elements. The ultimately best Galerkin sequences 
Vl C Vi . . . C V can be obtained by combining appropriately the spatial subdivision of ele- 
ments with the selection of suitable polynomial degrees in the subelements (hp-adaptivity). 
See, e.g., [ 1 1 I ]  and the references therein. 

2.4.2 Affine concept: reference domain and reference maps 

The affine concept of finite elements is closely related to the element-by-element assembling 
procedure. It is particularly suitable for higher-order finite element discretizations. The 
basic idea is to define a single set of shape functions on some suitable reference domain, 
say, K ,  = (-1,l). For each element K, in the mesh we define an affine reference map 
XI(, : K ,  + A’, (Paragraph 2.3.2), and use it to transfer the shape functions from K ,  to 
K,. In this way one obtains the desired finite element basis in the physical mesh. 

In addition, the weak formulation is transformed from K, to K,  via the maps XI(,, and 
in the end all computational work is done on the reference domain. This approach also is 
efficient from the point of view of computer memory, since the numerical quadrature data 
are stored on the reference domain only. The shape functions and their partial derivatives 
can be stored via their values at integration points in the reference domain. 
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Model problem Let us stay with the model problem (1.26), (1.28) in a bounded interval 
R = (a ,  b )  C R. Recall the weak formulation from Paragraph 1.2.1: We seek a function 
u E V = H:(R), such that 

a(u ,  v)  = l ( v )  for all v E V, (2.42) 

where 

alVu.  Vv + aouvdx = alu’(z)v’(x) + aou(x)v(x) dx,  

and 

f E L2(R). The coefficient functions a l ,  uo E Lx(R),  a l ( r )  2 C,,,,,, > 0 and ao(x) 2 0 
a.e. in R, are assumed constant. 

Finite element space Let the interval R be covered with a mesh ?;, = {Kl, K2, 
. . ., K M }  where the elements K,,, carry arbitrary polynomial degrees 1 5 p,, , ,  m = 

1 , 2 , .  . . , M .  For each element K,,, = (xTL-l, z,,), m = 1.2 , .  . . , A 1  we define an affine 
reference map (2.37) of the form 

where 
Lli- l l l  - T7n- 1 

2 Jh-,,, = c(lm) = z r r L - l  + x T 1 l  (.$”’ = 
2 ‘  

The space Vh,p has the form 

Vh,p = {v E V; v l ~ , , ,  E Pl-’lrt (K,,) for all m = 1,2. .  . . ~ M } .  (2.44) 

or, equivalently, 

KL,p = {. E I/; ? I ~ K , , ~  o x ~ , , ,  E PF””(Ka) for all m = 1. 2 , .  . . , hr}. (2.45) 

Here ( f  o g)(x) = f ( g ( z ) ) .  The dimension of the space KL+ is 

A1 A 1  

N = dim(Vh,,) = A l  - 1 + (p,,, - 1) = -1 + 1 p,,,. (2.46) 
V l =  1 

v 
first-order part :“=I , 

higher-order part 

Discrete problem The discrete problem (2.5) reads: Find a function ‘ut,.p E V F ~ , ~ ] ,  such 
that 

Consider some basis {vI ,  t i2 , .  . . t irV} c V,,,?, (a concrete basis will be presented in Para- 
graph 2.4.7). When expressing as usual 

u(’’h,p, v h . p )  = L ( o / L p )  for v/J.p K L , p .  

N 

‘(LfJ .I> = 1 1/J “ J .  

,I = I 
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we obtain 

or 
S Y = F  

(2.47) 

(2.48) 

For future reference let us rewrite (2.47) into a sum over all elements KT,,, m = 1,2,  . . . , M ,  

i =  1.2,  . . . .  N 

2.4.3 Transformation of weak forms to the reference domain 

Next let us transform the integrals in the weak formulation (2.49) from the mesh elements 
K,,, E qL,p to the reference domain K,  = (-1, l ) ,  using the reference maps (2.43): 

Transformation of function values The transformation of the approximate solution 
u h , p  is simple: 

&4 h,p (0 (’h.p 23(,2, )(<) = uh,I.’(zKrr~ (t))’ (2.50) 

Transformation of derivatives One has to be more careful when transforming deriva- 
tives. The chain rule yields 

[4301’ = (%,I.’ O LK,,, ) ’ ( E l  = 4,p(1 . ) lL=xK, , ,  (OJK, , ,  (0. (2.5 1 ) 

This means that 

i.e., the derivative at a reference point < E K,, is obtained by dividing the derivative of 7 ~ ! , . ~  

at its image .r = .TK,,, (0 E K,,, by the constant Jacobian 0 # JK,,, . 

Transformation of integrals from (2.49) to K ,  The test functions 7 1 ) , , ~  and their 
derivatives are transformed in the same way. Using the Substitution Theorem, i t  is easy to 
conclude that 

for all 111 = 1.2, . . . . A I .  The right-hand side transforms as 

(2.53) 

(2.54) 
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2.4.4 Higher-order Lagrange nodal shape functions 

The construction of suitable shape functions [basis in the polynomial space PvTVt (K,) on 
the reference domain] matters: With a wrong choice the linear system S Y  = F will pose 
a serious problem to both iterative and direct matrix solvers. This issue will be discussed 
in more detail in Section 2.5. Now we will introduce the nodal and hierarchic approaches 
to the construction of suitable basis functions. Let us begin with the nodal basis, which is 
based on the idea of the Lagrange interpolation. 

Figure 2.10 Joseph-Louis Lagrange ( 1736-1 8 13) 

J.-L. Lagrange was a French mathematician who was largely self-taught. In spite of that, 
he influenced numerous fields of mathematics. His work covers a variety of topics including 
algebra, number theory, mathematical probability, theoretical astronomy, and others. It is 
assumed that one of his greatest contributions is his transformation of mechanics into a 
mathematical framework based on differential equations. 

The p,,, + 1 Lagrange nodal shape functions 01, 02 ,  . . . , 8,,,,+1 E P P , r i  (K,) are associ- 
ated with an equal number of pairwise-distinct nodal points, 

-1 = y1 < y2 < . . . < y,,,,+1 = 1, (2.55) 

via the standard Lagrange interpolation condition 

@ J ( Y k )  = 4.k. (2.56) 

Exploiting the Lagrange interpolation polynomial (A.75), condition (2.56) yields the explicit 
formulae of the Lagrange nodal shape functions, 

Obviously all of these functions are polynomials of the degree p,,,. In particular, for 
piecewise-affine approximations (p?,, = 1) the nodal points y1 = -1 and y2 = 1 yield 
the pair of affine shape functions 

(2.58) 
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Our first idea might be to distribute the nodal points in K,  = (-1,l) equidistantly. How- 
ever, the equidistant points are known to be notoriously bad from both the conditioning and 
interpolation points of view. In practice we prefer more sophisticated point sets. 

2.4.5 Chebyshev and Gauss-Lobatto nodal points 

Among the best known points for the construction of higher-order nodal elements are the 
Chebyshev and Gauss-Lobatto points. 

Figure 2.11 Pafnuty Lvovich Chebyshev (1821-1894) 

P.L. Chebyshev was a Russian mathematician who made famous contributions to the 
analysis of the Taylor series, number theory, theory of integrals, mathematical probability, 
and other fields of mathematics. He introduced his polynomials in 1854 and developed 
a general theory of orthogonal polynomials. He is assumed to be one of the founders of 
modem approximation theory. 

For a polynomial degree p > 1, the p + 1 Chebyshev points in the reference interval K,  
are defined by 

The Gauss-Lobatto points are the roots of the function 

where Lp(lc) is the pth Legendre polynomial. There is no explicit formula for these points, 
but they have been tabulated (see, e.g., the companion CD-ROM accompanying [ 1 1 11). 
Figure 2.12 shows that the Gauss-Lobatto and Chebyshev points are very similar. The 
numerical practice confirms that also the properties of the corresponding Lagrange nodal 
shape functions are analogous. This issue will be addressed in more detail in Paragraph 
2.5.3. 
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Figure 2.12 The Gauss-Lobatto (left) and Chebyshev points (right) for p = 1 ,2 , .  . . , 15. 
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Let us show a few examples of higher-order Lagrange nodal shape functions built on 
the Gauss-Lobatto points. These functions are presented in the quadratic, cubic, quartic 
and quintic cases in Figures 2.13-2.16. Shape functions associated with vertices are called 
vertex functions, and remaining shape functions (that vanish at *l) are said to be bubble 
functions. 
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Figure 2.13 
the bubble function & (right). 

Quadratic Lagrange-Gauss-Lobatto shape functions; vertex functions 01, 03 (left) and 
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Figure 2.14 
and bubble functions 02,  03 (right). 

Cubic Lagrange-Gauss-Lobatto nodal shape functions; vertex functions 6iIi34 (left) 
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Figure 2.15 
and bubble functions f?2,0:3,04 (right). 

Quartic Lagrange-Gauss-Lobatto nodal shape functions; vertex functions 0 1 ~ 0 5  (left) 

1 -0 5 0 0 5  1 

Figure 2.16 
and bubble functions 02,6'3, .  . . ,6:, (right). 

Quintic Lagrange-Gauss-Lobatto nodal shape functions; vertex functions @I,& (left) 
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2.4.6 Higher-order Lobatto hierarchic shape functions 

An alternative way of constructing a suitable basis of the polynomial space PPrrL (K,) is to 
use hierarchic shape functions. The idea of the hierarchic approach is as follows: When a 
set of shape functions 

forms a basis of the polynomial space PPrrl(Ku),  the basis of the next space PprrL+l(Ku) 
is defined by adding a new shape function to the basis Bpr,L,  

B,,,L = (0 , .  0 2 ,  . . . . op,,< 1 

BP,,,+l = BP,!, " { Q P , , " + 1 1  

The lowest-order basis, B1 = { (1 - [)/2, (1 + E ) / 2 } ,  is identical to the Lagrange basis 
(2.58) for piecewise-affine approximations. 

Currently, among the best known hierarchic shape functions for elliptic problems in ID 
are the Lobatto polynomials, 

< 
h ( E )  = l ,Lhl(C) dC, 2 I k.  

Here, L k  are the (normalized) Legendre polynomials, ~ ~ L ~ ~ ~ L ~ ~ - l , l )  = 1 for all k 2 0, that 
are constructed in Example A.44. It is easy to see that l k ( - 1 )  = 0, k = 2 , 3 , .  . .. The 
orthogonality of the Legendre polynomials further yields that 

1 1 

l k ( 1 )  = 1, LkPl([)d[ = J' Lk-,(<)LO(E)dE = 0 for all 2 I k .  (2.62) 

Evidently the functions lo,  I1, 12. . . . , lP,,> constitute a basis in the space PP7r1 (ITa). Their 
optimality for the discretization of the Laplace operator follows from their orthonormality in 
the HA-inner product (u,  v) = s-, u ' (z )d(z )  dz.  More about this will be said in Paragraph 
2.5.3. 

Several Lobatto hierarchic shape functions are shown below for reference, and they are 
depicted in Figures 2.17-2.2 1 : 

-1 

1 

(2.63) 
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Figure 2.17 Lowest-order Lobatto shape functions l o ,  I , .  
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Figure 2.18 Hd -orthonormal (Lobatto) hierarchic shape functions Z2 Z3 
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Figure 2.19 Hd -orthonormal (Lobatto) hierarchic shape functions 14,Zs. 

0 2  

0 15 
0 1  

0 05 
0 

-0 05 
-0 1 

-0 15 

-0 2 

, 0 2 ,  I 

I I 
1 0 5  0 05 1 1  05 0 05 1 

Figure 2.20 HA-orthonormal (Lobatto) hierarchic shape functions 16.  17. 
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Figure 2.21 H i  -orthonormal (Lobatto) hierarchic shape functions I x ,  13 
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2.4.7 Constructing basis of the space 

With the shape functions and reference maps in hand, we can define the basis functions of 
the space vh,p: 

Lagrange nodal basis Let us begin with the Lagrange basis functions. In this case 
it is customary to assume a uniform polynomial degree p in all elements. As indicated 
in Paragraph 2.4.4, the Lagrange shape functions can be split into the vertex and bubble 
functions. The basis functions of the space VtL,+ inherit the same structure. A vertex basis 
function u, represents the value at the grid vertex xz, 1 5 7 5 AI  - 1, and it is zero in 0 
except for the elements adjacent to T, :  

The reader does not have to worry about the inverse reference maps in (2.64), since in the 
element-by-element procedure they are never evaluated explicitly. This will be explained 
in detail in Paragraph 2.4.9. 

Notice that for p = 1 relation (2.64) yields the “hat functions” (2.25). An example of a 
quadratic Lagrange nodal vertex basis function is shown in Figure 2.22. 

Figure 2.22 A quadratic Lagrange nodal vertex basis function 

The bubble functions are local to element interiors. There arep- 1 bubble basis functions 
per every element K,, E zL.p, defined as 

( 0 2  o . x i . t , , ) (x ) .  (0~3 o .rL:!, ) ( . r ) .  . . . . (H,] 0 .~x,t,,)(x). (2.65) 

It is easy to verify that the AI - 1 vertex functions (2.64) together with the cf,f=, (p7,, - 1) 
bubble functions (2.65) constitute a basis of the space V,, ,, defined in (2.44). 

Lobatto hierarchic basis In this case we allow for different polynomial degrees 1 5 
p,,, = p(K,,,) in the mesh, 1 5 711 5 A I .  For each interior grid vertex T ,  there is one 
vertex function u,, which is identical to the piecewise-affine Lagrange vertex function 
(independently of pr iL) ,  
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The quadratic and higher-order hierarchic shape functions are bubble functions, given by 

(12 0 .,t,,,(.,, ( k  0 .,:,,,(.,> ' .  . ? ( l P Y r L  O .,:,,,c.,. (2.67) 

Also in this case it is easy to verify that the functions (2.66) and (2.67) together constitute 
a basis of the space vh,p. 

2.4.8 Data structures 

The rest of this section is devoted to the implementation of higher-order finite elements in 
one spatial dimension. As the reader expects, the implementation of the nodal and hierarchic 
elements is done in different ways. We choose the hierarchic case for illustration. 

To begin with, recall the model problem (2.20) with homogeneous Dirichlet boundary 
conditions. In this case V = H,'(R), and the approximate solution ?&p is sought in the 
space V F ~ , ~  c V of continuous, piecewise polynomial functions (2.44), 

v h , p  = {u E V; w~K, ,  E PPrr~ (K,) for all m = 1 , 2 , .  . . , M } .  

The dimension of Vh,p, which at the same time is the number of unknowns, was calculated 
in (2.46), 

hl 

N = dim( Vh,p) = - 1 + C p,. 
i = l  

Some remarks are in order before we introduce concrete data structures and algorithms. 
Generally, data structures differ from implementation to implementation. A safe way to 
avoid criticism for the complicatedness or inoptimality of one's data structures and algo- 
rithms is not to expose them. On the other hand, the presentation of the data structures and 
algorithms may be of considerable help to beginners. Therefore let us try to be concrete, 
without claiming that our data structures or algorithms are optimal. 

Element data structure Choose a reasonable upper bound MAXP for the highest poly- 
nomial degree in the mesh Th,p.  A basic Element data structure can be defined as follows: 

struct t 
int p; 
int vert-dirl21; //vertex Dirichlet flags 
int vert_dof[21; //vertex connectivity array 
int +bubb-dof; //bubble connectivity array (length MAXP-1) 

//polynomial degree of element 

. . .  
3 Element; 

This amount of information per element is superfluous. However, let us keep a data 
structure that can most naturally be extended into two and three spatial dimensions. The 
Dirichlet flags Elem [ml . ver t -d i r  [ j l  , j = 1,2, have the following meaning: Elem [m] . 
ver t -d i r  [ l l  = 0 if the left vertex of K,  = (Z,-~,X,)  is unconstrained by a Dirichlet 
boundary condition, and Elem [ml . ver t -d i r  [l] = 1 otherwise. The flag Elem [m] . v e r t  
_ d i r  121 is related to the right vertex of K,  in the same way. 

Unique enumeration of shape and basis functions The element-by-element as- 
sembling algorithm relies on the vertex and bubble connectivity arrays vert-dof and 
bubb-dof, that for every element K,  E 7 h P  link the global indices 1,2, . . . , N of all basis 
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functions of the space Vh,,, whose support includes K,,,, to the local indices 1 , 2 ,  . . . , p,, + 1 
of the corresponding shape functions on the reference domain K,. 

First one has to enumerate the N basis functions of the space Vh,, in a unique way. 
For the sake of compatibility with piecewise-affine approximations, it is reasonable to first 
enumerate all vertex functions analogously to the lowest-order element case in Paragraph 
2.2.3. After that, higher-order basis functions can be enumerated in an element-by-element 
fashion, always from quadratic to the highest degreep, on the element KTn. In the Lagrange 
nodal case, where all bubble functions have the same polynomial degree, it is natural to sort 
them according to the ordering of the nodal points. 

Element connectivityarrays The values of the Dirichlet lift G(z) at the endpoints of 
0 = (a ,  b ) ,  only nonzero in the case of nonhomogeneous Dirichlet boundary conditions, 
are stored in a global array double DIR-BC-ARRAY [21 = { G ( a ) ,  G(b)} .  The variable 
Elem[m] .vert-dof [l] contains either 

0 a positive index i of a vertex basis function v, of the space associated with the left 
vertex of theelement K, (if the vertex is unconstrained, i.e., Elem [ml . ver t -d i r  [I] 
== O), 

0 or -1, so that G(a)  = DIR-BC-ARRAY [-ElemCm] .vert-dof [l]] 
(if E l e m [ m ]  . v e r t _ d i r [ l ]  == 1). 

Analogously one defines Elem [ml . vert-dof [21 for the right vertex of the element Krr1. 
If Elem [ml . v e r t - d i r  [21 == 1, then Elem [ml . vert-dof C2I == -2. The bubble func- 
tions are always unconstrained, and the value Elem [ml . bubb-dof [ j  I ,  j = 1 , 2 ,  . . . , 
Elem[m] .p-1, contains the index of the bubble basis function of the polynomial degree 
j + 1 associated with the element K,. 

The construction of the connectivity arrays always represents a considerable part of the 
total programming work. In two dimensions these are the Algorithms 4.1,4.3,4.4 and 4.5. 
In one dimension the connectivity algorithm may look as follows: 

Algorithm 2.4 (Enumeration of DOF) 

count := 1; 
//Visiting vertex basis functions on the element K1: 
if (Elemrll .vert_dir[ll == 1) then Elemll] .vert_dof [I] := -1; 
else { 

Elemill .vert_dof [I] := count; 
count := count + 1; 

1 
Elem 111 . vert-dof 121 : = count ; 
//Visiting vertex basis functions on interior elements K2,K3,  . . . ,  K ~ 1 - l :  

for m = 2,3,. . . ,M-I do { 
ElemEml .vert_dof [I] := count; 
count := count + 1; 
Elem [m] . vert-dof [21 : = count ; 

//Visiting vertex basis functions on the element K A I :  
Elem [MI . vert-dof [I] : = count; 
count := count + 1; 
if (ElemCMI .vert_dir[21 == 1) then { 

1 

ElemCMl .vert.dof 121 := -2; 
1 
else { 

Elem [MI . vert-dof I21 : = count; 
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count := count + 1; 

1 
//Visiting bubble basis functions on a l l  elements: 
for m = 1,2, . . . ,  M do { 

Elem [ml . bubb-dof 1 j 1 
count := count + 1; 

for j = 1,2 , _ _ _ ,  Elem1ml.p-1 do { 
: = count ; 

1 
1 

in Paragraph 2.6. 
More about the implementation of nonhomogeneous boundary conditions will be said 

EXAMPLE2.2 

Consider a mesh 7',,p consisting of three elements K1, K2, and K3 of the polynomial 
degreespl = 3, pa = 4 andp3 = 2, and the model problem (2.20) with homogeneous 
Dirichlet boundary conditions. In this case the connectivity Algorithm 2.4 obtains 
the following input data: 

Elemll] .p = 3; 
Elem[ll .vert-dir = {l,O>; 
Elem121 .p = 4; 
ElernC21 .vert-dir = CO,O>; 
Elem131 .p = 2; 
ElemC31 .vert-dir = {O,l>; 

The resulting element connectivity arrays have the form 

Elemlll .vert-dof = {-1,1>; 
ElemEll .bubb_dof = {3,4>; 
ElemE21 .vert-dof = {1,2>; 
ElemE2l.bubb-dof = { 5 , 6 , 7 > ;  
Elem[31 .vert-dof = { 2 , - 2 ) ;  
Elem 131 . bubb-dof = {8> ; 

Next let us present the assembling procedure. 

2.4.9 Assembling algorithm 

In the following we distinguish between two situations: 

1. The differential operator L in the equation Lu = f does not explicitly depend on 
space or time. This is the case when all coefficients uZ3, b,, c, and a0 in (1.4) are 
constant. For example, the operators 

belong to this category, and so does the general operator L in (2.20) if a1 > 0 and 
uo 2 0 are constant. 

2. The differential operator L does explicitly depend on space or time, as, for example, 
the operators 

-nu 2 du  
1 + x2 dX 

Lu = ~ + u, Lu = -nu + (ePt  )-, Lu = -nu + sin(2)u. 
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In the former case it is possible to avoid repeated numerical integration on every element 
and assemble the global stiffness matrix S efficiently by means of precomputed prototype 
integrals calculated on the reference domain K,. The integrals present in the weak for- 
mulation of a concrete problem determine which constants have to be precomputed. For 
example, problem (2.20) with constant coefficients requires the L2(K,)-products of the 
first derivatives of the shape functions (master element stiffness integrals. MESI) and, if 
a0 # 0, then also the L2(K,)-products of the shape functions themselves (master element 
mass integrals, MEMI), In one dimension these constants can be organized in the form of 
square matrices. 

If we denote the maximum polynomial degree in the mesh by p,,, and consider some 
set of shape functions p a , .  . . , pP ,,,,, . + I  E pp7i1iLi ( K,), the master element stiffness 
matrix S K ~  of problem (2.20) has the form 

P, , , ,+ l  

z,3=1 
SKa ~ {i. 23 }P , ,L<L*+l  2.3=1 - - { .i, cp:(E)P;(E) dE} (2.68) 

The master element mass matrix 1 c l ~ ~ ~  is defined as 

P,, , , , ,  +1 

2,3=1 
MKc,  = { r f i  23 } P ~ n a z + ~  2.3=1 - - { /K<, P t ( E h ( E )  dE} (2.69) 

The only information about the reference map ZK,,, that is needed on every element 
K ,  E T& in the assembling algorithm is its Jacobian. Therefore, for each element K,, 
we introduce one more constant, Elem Cml . j ac : = I JK,, 1 .  The assembling procedure for 
model problem (2.20) with homogeneous Dirichlet boundary conditions can be written as 
follows. 

Algorithm 2.5 (Assembling algorithm) 

//Calculate the dimension of the space Vh.p:  

for m = 1,2, . . . ,  M do N := N + E1emCml.p; 
N :=  -1. 

//Calculate the master element stiffness integrals MESI: 
//(Use sufficiently accurate Gaussian quadrature to obtain exact results) 
for i = 1,2,. . . ,MAXP+l do { 
for j= 1,2, . . . ,  MAXP+1 do { 
MESI[il [jl := J:l pl(z)pi(z)dz; 

1 
1 
//Calculate the master element mass integrals MEMI: 
for i = 1,2,. . . ,MAXP+l do { 
for j= 1,2, . .., MAXP+1 do { 

MEMI[il [jl := J21 pp,(z)pp,(z)dz; 
1 

1 
//Calculate the value of Elemrml . jac for all elements K,,, , m = 1,2,. . . , M :  
form = 1,2 , . . . ,  M do Elem[ml.jac := (zrn-z,,-1)/2; 
//Set the stiffness matrix S zero: 
for i = 1,2, . .., N do for j = 1,2, ..., N do S[i][jI 
//Set the right-hand side vector F zero: 
f o r  i = 1,2,. . . , N  do F[iI := 0; 
//Element loop:  
f o r  m = 1,2, . . . .  M do { 

:= 0; 
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//Loop over ver tex t e s t  funct ions:  
f o r  i = 1 , 2  do { 

/ / I f  > -1, t h i s  is index of a t es t  funct ion vml E V}r ,p ,  
/ / i . e . ,  row p o s i t i o n  i n  S :  
m l  : = Elem[m] . vert-dof [ i l  ; 
//Loop over ver tex bas is  funct ions:  
i f  ( m i  > -1) then f o r  j = 1 , 2  do { 
/ / I f  > -1, t h i s  is index of a b a s i s  funct ion ziTTL2 E v}L,p, 
/ / i . e . ,  column p o s i t i o n  i n  S :  
m 2  := Elem[ml .vert_dof [ j l  ; 
i f  (m2 > -1) then 

S [ m i l  [m21 : = S [ m i l  Im21 + al*MESI [i l  [jl /Elem [ml . j a c  
+ aO*Elem[mI . jac*MEMI [i] [j l  ; 

} //End of inner  loop over ver tex funct ions 
//Loop over bubble bas i s  funct ions:  
f o r  j = 1 , 2 , .  . . ,Elem[m] .p-1 do { 

m2 : = Elem [m] . bubb-dof j l  ; 
i f  ( m 2  > -1) then 

S[mll [m21 := Slmll Em21 + al*MESI[il [j+2l/Elemlml. j a c  
+ aO+Elem[ml . jactMEM1 [i l  [j+21 ; 

} //End of inner  loop over bubble funct ions 
//Contribution of t h e  ver tex t e s t  funct ion uml 
/ / t o  the  right-hand s i d e  F :  
i f  (mi > -1) then F[mll := Flmll + s,, IJ",,tf'"''(E)(pp(E)dF; 

} //End of outer  loop over ver tex funct ions 
//Loop over bubble test funct ions:  
f o r  i = 1,2, . . . ,Elem [ml .p-1 do { 

m i  : = Elem [ m l  . bubb-dof [il ; 
//Loop over ver tex bas is  funct ions:  
i f  ( m l  > -1) then f o r  j = 1 , 2  do { 

m2 := Elemlml .vert.dof [jl ; 
i f  (m2 > -1) then 

Slml] [m21 := SCmll 111121 + al*MESIli+21 [jl/Elem[ml . j a c  
+ aO+Elem[m] . jac*MEMI [i+21 I j l  ; 

} //End of inner  loop over ver tex funct ions 
//Loop over bubble bas i s  funct ions:  
i f  ( m l  > -1) then f o r  j = 1 , 2  , . . . ,  E1emCml.p-l do { 

m2 := Elemlml .bubb.dof [jl ; 
i f  (m2 > -1) then 

S[mll [m21 :=  S[mll lm21 + al*MESI[i+21 [j+2l/Elem[ml. j a c  
+ aO*Elemlml. jac+MEMI [i+21 [j+21 ; 

} //End of inner  loop over bubble funct ions 
//Contribution of t h e  bubble t e s t  funct ion vml 
/ / to  t h e  right-hand s i d e  F :  
i f  (ml > -1) then Flml l  := FCrnll + s,,' l J ~ , , r f ( ~ ) ( F ) ( p ~ ( ~ ) d F ;  

} //End of outer  loop over bubble funct ions 
} //End of element loop 

In Algorithm 2.5 we used the notation f ( ' n ) ( [ )  = ~ ( z K , ,  ([)). If the operator L is space- 
or time-dependent (for example, if the coefficient functions a1 and a0 in the model problem 
(2.20) are not constant), the precomputed MESI and MEMI arrays cannot be used. Instead, 
appropriate numerical quadrature must be performed each time the MESI or MEMI arrays in 
Algorithm 2.5 are accessed. 

Efficient implementation of Algorithm 2.5 For the sake of transparency, significant 
portion ofAlgorithm 2.5 (the application of a given test function to all vertex and bubble basis 
functions) was repeated two times with minor changes. This part of the code can be moved 
to a separate subroutine. Moreover, it is not necessary to store the full Elem [m] . bubb-dof 
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array of the length E l e m c m ]  .p-1, since according to the enumeration of the bubble shape 
functions (Paragraph 2.4.8) it holds 

E l e m  [ml . bubb-dof 121 = E l e m  I m l  . bubb-dof [11 + 1 ; 
E l e m  [ml . bubb-dof 131 = E l e m  [ml . bubb-dof 111 + 2; 

E l e m  [m] . bubb-dof [ E l e m  [m] . p] = E l e m  [m] . bubb-dof [l] + E l e m  [ m l  . p-l ; 
. . .  

2.4.10 Exercises 

Exercise 2.12 Verifji in detail the inclusions V1 c V2,jL c V and V1 c V2,p c V for  the 
spaces defined in Paragraph 2.4.1. 

Exercise 2.13 Consider the Poissonproblem -d’ = f, f 6 L2(R), in a bounded interval 
R = ( a ,  b )  c R. Suppose that R is covered with a finite element mesh Th,p containing 
M 2 2 elements of polynomial degrees 1 5 pl , p:!, . . . , p ~ l .  Consider (A)  homogeneous 
Dirichlet boundary conditions on 30, ( B )  nonhomogeneous Dirichlet boundary conditions 
on 80, (C)  a nonhomogeneous Dirichlet boundary condition at a and a Neumann boundary 
condition at b. 

1. Write the weak formulation of these problems. 

2. Use the Lax-Milgram lemma to show that in each case there exists a unique solution. 

3. Write the discrete problems. 

4. How many unknowns has the discrete problem in each case? 

Exercise 2.14 Consider the Helmholtz equation -d’ + u = f, f 6 L2(0), with homoge- 
neous Dirichlet boundary conditions u ( a )  = u ( b )  = 0 in a bounded interval R = ( a ,  b )  C 

R. Let a < x,-1 < x, < b be a pair of neighboring grid points, K ,  = ( x z - ~ , x z )  and 
K,  = (-1,l). 

1. Write the weak formulation of this problem. 

2. Write the afJine map XK,, : K,  + ( ~ ~ - 1 ,  x,). 

3. Transform the weak formulation from the interval K ,  to the reference interval K,. 

Exercise 2.15 Consider the reference interval K ,  = (- 1,l) and p = 4. 

1. Write explicit formulae for  the Lobatto hierarchic shape functions l o ,  11,  . . ., 14. 

2. Consider equidistant nodal points -1 = y1 < . . . < y5 = 1. Write the Lagrange 
nodal shape functions 01,02,. . . , 0 5  such that O,(y,) = 6,,, 1 5 i, j 5 5. 

3. Write master element stifiess matrices SC: and Sc: for  the Poisson equation, 
corresponding to the above two sets of shape functions. 

4. In each case calculate the condition number of the 3 x 3 block Corresponding to 
bubble functions (use, e.g., Matlab). 

5. Which condition number is greater and what is the implication for  the pe$ormance 
of iterative matrix solvers? 
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Exercise 2.16 Again consider the reference interval K ,  = (- 1, l), polynomial degree p 
andp + 1 distinct nodalpoints - 1 = y1 < . . . < yp+l = 1. Show that all Lagrange nodal 
shape functions $ I , & ,  . . . , Op+l  from (2.57) must be polynomials ofthe degree at least p. 

Exercise 2.17 Considertheproblem from Exercise 2.7 with the loadfunction f (x) = 4-62 
and an equidistant mesh Th,+ with h.1 quadratic elements. 

1. Write formulae for  the affine reference maps XK,,, : K,  + K,. 

2. Transform the weak formulation to the reference domain K,  = (- 1,l). Write the 
integrals explicitly. 

3. Perform a suitable unique enumeration of the basis functions and write the element 
connectivity arrays. 

4. Write the 3 x 3 master element stiffness matrix (2.68) for  the Lobatto hierarchic shape 
functions lo ,  11,12. 

5. Implement a jni te  element discretization using Algorithm 2.5. 

6. Produce plots of u and uh for M = 2,5,10,50. 

7. Consider M = 2,3,5,10,30,50,100,150,200,300 andproduce convergence curve 
in HI-seminorm (be careful to put the correct number of unknowns on the horizontal 
axis). 

8. Compare with the H 1  -seminorm curve forpiecewise-affine approximation from Exer- 
cise 2.7. Was the piecewise-affine or the piecewise-quadratic scheme more efficient? 
Why? 

9. Again guess the algebraic order of convergence cy of the method. Compare it with 
the value of cy obtained in Exercise 2.7. 

Exercise 2.18 Extend your code from Exercise 2. I7 to$nite elements of arbitraty polyno- 
mial degrees 1 5 p ,  = p(K,) 5 5, i = 1,2,. . . , M .  

1. Read the polynomial degrees p ,  = p (  K,) together with all other input parameters 
from an input data$le. 

2. Write the 6 x 6 master element stiffness matrix S K , ~  for  the Lobatto hierarchic shape 
functions l o ,  11 ,  . . . , l 5 .  

3. When evaluating integrals of polynomial expressions, make sure to use Gaussian 
quadrature data of an appropriate order of accuracy. 

4. Calculate the exact solution for  the cubic load function f = -5Ox( 1 - x ) ~  

5. Present results of suitable convergence tests proving that the code works correctly. 
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2.5 THE SPARSE STIFFNESS MATRIX 

As we mentioned in Paragraph 2.2.3, the finite element method prefers basis functions with 
small and possibly nonoverlapping supports. Then almost all entries in the stiffness matrix 
S are zero, which is convenient for the computation. Matrices with this property are said 
to be sparse. The question of efficient storage and operation with large sparse matrices is 
essential. 

With N = 100,000 unknowns, which is a moderate number in practical applications, 
a full N x N stiffness matrix S in double precision arithmetics would consume 80 GB of 
computer memory. Hence, disregarding the well-known fact that the Gaussian elimination 
procedure is unstable on large systems, the storage argument alone calls for a much more 
economical treatment. 

There is extensive literature on the numerical solution of sparse systems of linear alge- 
braic equations (see, e.g., [ 181 and the references therein), and vast resources of concrete 
program packages are available on the web. Most of the solvers are sufficiently robust and 
user friendly, so that the reader can use them without any problems after fitting their more 
or less standard input format. 

2.5.1 Compressed sparse row (CSR) data format 

One of the most frequently used data formats for sparse matrices is the Compressed Sparse 
Row (CSR) format. Let N be the dimension of the stiffness matrix S and by N N Z  denote 
the number of nonzero entries in S.  The CSR representation of S consists of three arrays: 

1. Array A of length N N Z :  This is a real-valued array containing all nonzero entries 
of the matrix S listed from the left to the right, starting with the first and ending with 
the last row. 

2. Array ZA of length N + 1: This is an integer array, ZA[1] = 1. ZA[k + 11 = 

ZA[k] + nnzk.  where nnzk is the number of nonzero entries in the kth row. 

all entries of array A. 
3. Array J A  of length N N Z :  This is an integer array containing the row positions of 

Sometimes one uses an analogous Compressed Sparse Column (CSC) sparse matrix format. 

2.5.2 Condition number 

The reader knows from Paragraph 2.1.1 that every symmetric V-elliptic bilinear form u( ., .) : 
V x V + R leads to a symmetric positive definite stiffness matrix S. All eigenvalues are 
then positive real numbers (see, e.g., [ 1001). It is well known that iterative solvers perform 
better on matrices where the ratio of the largest and smallest eigenvalue X m a z / X m i n  is close 
to one - such matrices are called well-conditioned. Figure 2.23 illustrates the convergence 
history of a standard iterative matrix solver (an incompletely LU-preconditioned conjugate 
gradient method) on two matrices of the same size and sparsity structure, but different 
condition numbers. 

Before introducing the condition number of a nonsingular matrix in Definition 2.2, let 
us define the spectrum and spectral radius: 

Definition 2.1 (Spectrum, spectral radius) Let M be a square matrix. By a ( M )  we 
denote the spectrum (set of all eigenvalues) ofthe matrix M .  The spectral radius p ( M )  is 
dejined as 
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Figure 2.23 Performance of an iterative matrix solver on two differently conditioned matrices of 
the same size and sparsity structure. The horizontal axis represents the number of iterations and the 
vertical one shows the norm of the residuum of the approximate solution. 

Definition 2.2 (Condition number) Let M be a nonsingular n x n matrix. The product 

where 11 . / [  is some matrix norm, is called condition number of the matrix M (with respect 
to the norm 11 . 11). 

One may use, for example, the standard Frobenius norm 

I n  n 

or the spectral norm 

where lIMz// is the Euclidean norm in Rn. The spectral (Todd) condition number 

(2.70) 

has the minimum property 
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where K ( M )  is a condition number induced by any other matrix norm. 

K(S) = K*(S)  can be written as 
Clearly, for every symmetric positive definite matrix S ,  the spectral condition number 

The following aspects influence the condition number of the stiffness matrix S significantly: 

1. the discretized differential operator, 

2. quality of the mesh, 

3. the set of shape functions. 

In practice the differential operator is given, and the mesh can be optimized outside of the 
finite element solver. Therefore let us look at the last aspect in more detail. 

2.5.3 Conditioning of shape functions 

The simplest comparison of the quality of different sets of higher-order shape functions 
can be done using a one-element mesh, equipped with appropriate boundary conditions so 
that the discrete problem has a unique solution. Such test, of course, does not cover the 
influence of the geometrical structure of the entire mesh, but still the results usually provide 
a valuable information. 

For model problem (2.20) let us consider a one-element mesh K ,  = (-1,l) equipped 
with homogeneous Dirichlet boundary conditions. The corresponding stiffness matrix So 
is obtained by leaving out of the master element stiffness matrix SK,  all rows and columns 
corresponding to the vertex shape functions. The mass matrix Mo is obtained analogously 
from the master element mass matrix M K ~ .  The next example compares the quality of the 
Lagrange nodal and Lobatto hierarchic shape functions. 

EXAMPLE 2.3 (Comparison of Lagrange and Lobatto shape functions) 

Figures 2.24 and 2.25 show the condition number of the stiffness and mass matrices for 
the Lagrange nodal shape functions on the equidistant, Gauss-Lobatto and Chebyshev 
nodal points, and for the Lobatto hierarchic shape functions. The horizontal axis 
represents the polynomial degree p = 2 , 3 ,  . . . , l o .  

The Lagrange nodal shape functions on equidistant points cause an exponential 
growth of the condition number of both the stiffness and mass matrices, which in- 
dicates that these shape functions should be avoided. It is clear from Figure 2.25 
that the Chebyshev and Gauss-Lobatto points are a better choice for Lagrange nodal 
elements. The Lobatto hierarchic bubble functions perform best: they are orthogonal 
in the HA-product, which makes them optimal for the discretization of the Laplace 
operator in one dimension. 



THE SPARSE STIFFNESS MATRIX 87 

Figure 2.24 
(condition number of the matrix SO). 

Conditioning of various types of shape functions in the H;(K,)-inner product 

100000 1 

1 I 
2 4 6 8 10 12 14 

Figure 2.25 
(condition number of the matrix M o ) .  

Conditioning of various types of shape functions in the L2(Ka)-inner product 

Regarding the more complex model problem (2.22), the Lobatto hierarchic shape func- 
tions will perform well as long as a0 << a l .  Otherwise their worse conditioning in the 
L2-product becomes important, and for a0 >> a1 the Lagrange shape functions on the 
Gauss-Lobatto and Chebyshev points may yield a better-conditioned discrete problem. Let 
us close this paragraph with a lemma that is useful for practical implementation: 

Lemma 2.4 The spectral condition number of a symmetric stifness matrix S does not 
depend on the enumeration of the basis functions of the space Vh,p. 

Proof: Consider a permutation that exchanges the indices of a pair of basis functions wk 

and wi. It follows from Definition A.17 that the new stiffness matrix S has the same set of 
eigenvalues. The new eigenvectors are obtained from the original ones by exchanging their 
kth and lth components. 
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2.5.4 Stiffness matrix for the Lobatto shape functions 

Let us have a closer look at the the sparsity structure of the stiffness matrix S obtained in the 
discretization of the Laplace operator by means of the Lobatto hierarchic shape functions. 
It follows from the L2-orthogonality of the Legendre polynomials that 

CONTINUOUS ELEMENTS FOR ID PROBLEMS 

Moreover, we have 

Zi(x) l i (~)  d s  = 0, for all 2 5 j .  

Therefore the master element stiffness matrix S K ~  itself is sparse, 

S K ,  = 

112 -112 0 0 . . .  0 
-112 112 0 0 . . .  0 
0 0 1 0 . . .  0 
0 0 0 1  0 

0 0 0 0 . . .  1 

(2.71) 

(2.72) 

(2.73) 

Due to (2.73), the global stiffness matrix S corresponding to the Lobatto hierarchic shape 
functions has a particularly nice block-diagonal sparse structure shown in Figure 2.26. 

Figure 2.26 
of the Lobatto hierarchic shape functions. 

Sparsity structure of the stiffness matrix for the Laplace operator discretized by means 

The number of blocks is M +  1, where M is the number of elements in the mesh The 
( M  - 1) x ( M  - 1) block in the upper left corner corresponds to the piecewise-affine basis 
functions ul,  212, . . . , V M - ~  -this block is identical to the tridiagonal stiffness matrix (2.28) 
corresponding to the piecewise-affine case (Paragraph 2.2.4). The remaining M diagonal 
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blocks of the type (p1-  1) x (p1-  l) ,  (pa - 1) x (pa - l), . . . , (pbf - 1) x ( p ~  - 1) correspond 
to higher-order bubble basis functions associated with each element K1, K2,. . . , K M ,  re- 
spectively. This structure is given by the enumeration of the basis functions of the space 
Vh,p (see Paragraph 2.4.8). 

If the Lobatto hierarchic shape functions were replaced with the Lagrange or other 
nonorthogonal shape functions, additional nonzero off-diagonal entries would appear in 
the stiffness matrix, and its condition number would rise. 

2.5.5 Exercises 

Exercise 2.19 Show that for  every symmetric positive dejnite matrix S the spectral con- 
dition number (2.70) satisfies 

Exercise 2.20 Consider a nonsingular N x N matrix S, and a matrix 3 obtained by 
switching the kth and lth row and the kth and lth column in S,  1 5 k ,  1 5 N ,  k # 1. Show 
that the matrices S and have the same set of eigenvalues. 

Exercise 2.21 Use the result of Exercise 2.20 to prove that the condition number of the 
(symmetric positive dejinite) stiffness matrix S,  obtained from the discretization of a V -  
elliptic operator L, does not depend on the enumeration of the basis functions of the space 

vh,p. 

Exercise 2.22 Write a computer code that turns a sparse matrix represented as an array 
S [ i ] [ j ] ,  1 5 i , j  5 N ,  into the CSR sparse matrix format. The numbers 1 5 N ,  N N Z  are 
input parameters. Assume that exactly N N Z  entries in the array S[.] [.] are nonzero. 

2.6 IMPLEMENTING NONHOMOGENEOUS BOUNDARY CONDITIONS 

The implementation of various types of boundary conditions closely follows the discussion 
in Paragraphs 1.2.5, 1.2.6, and 1.2.7. Let us begin with the nonhomogeneous Dirichlet case. 

2.6.1 Dirichlet boundary conditions 

According to Paragraph 1.2.5, any problem with nonhomogeneous Dirichlet boundary con- 
ditions can be treated as a homogeneous Dirichlet problem with an adjusted right-hand side. 
Let us stay with the model equation (2.20), 

-v . (a1Vu) + aou = -(a12L’)’ + aou = f, 

a1 > 0,  no 2 0,  f E L2(R), in a bounded domain R = ( a , b )  c R, but consider the 
nonhomogeneous Dirichlet boundary conditions 

(2.74) 
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where g,, g b  E R. Recall that the solution ‘u. is sought in the form 

IL = U + G, (2.75) 

where G E H1(S1) is a Dirichlet lift such that G(u)  = y,, G(b) = gb, and the new 
unknown function U E V = Hd(R). The task is to find a function U E V satisfying the 
weak formulation (1.47), 

u(U,v)  = L(u) for all v E V (2.76) 

with 

u(U, u )  = ll alU’(z)v’(z) + uoU(z)u(z)  dz,  U,  v E V, 

l ( v )  = f(z)v(z) - a~G’(z)v’(z) - a ~ G ( z ) w ( z )  dz;  v E V. (2.77) 

Choice of the Dirichlet /iff When using the Lobatto hierarchic elements, define G as 
a continuous piecewise-affine function that vanishes in all interior elements (Figure 2.27). 
In the case of the Lagrange nodal elements choose, for example, a piecewise pth-degree 
polynomial function G that vanishes in all interior elements, and that in the elements K1 
and Khl coincides with the appropriate Lagrange functions gU& o zkt and gbep+l o z;;, 
respectively. 

a = x  0 xM- ,  b = x M  x 

Figure 2.27 Typical piecewise-affine Dirichlet lift G 

implementation When using the Lobatto hierarchic shape functions, the Dirichlet lift 
G transforms from the mesh element K ,  to the reference interval K,  as follows: 

The case of the Lagrange nodal shape functions is analogous, 
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The values of the Dirichlet lift G at the endpoints of R = ( a ,  b )  may be stored as described 
in Paragraph 2.4.8, 

D I R _ B D Y A R R A Y [ l ]  := ga; 

DIR_BDY_ARRAY[2] := gb; 

Algorithm 2.5 needs to be changed as follows: Whenever a contribution to the stiffness 
matrix S is made, a new contribution to the load vector F appears. For example, the 
portion of the code 

//Loop over ver tex b a s i s  funct ions:  
i f  (mi > -1) then f o r  j = 1 , 2  do C 

m2 := Elem[ml .vert-dof [ j l  ; 
i f  (m2 > -1) then 

SCml] [m21 := S[mll [m21 + MESI[iI [jl/Elem[ml . j a c ;  
+ aO+Elem[ml. jac+MEMI[il [jl  ; 

} //End of inner  loop over ver tex funct ions 
. . .  

needs to be changed to 

//Loop over ver tex b a s i s  funct ions:  
if (ml > -1) then f o r  j = 1 , 2  do C 

m2 := Elem[m] .vert-dof [jl ; 
i f  (m2 > -1) then 

S[mll [m2] := S[ml] [m21 + MESIL11 [jl/Elem[ml . j a c  
+ aO+Elem[m]. jac+MEMI[il [jl  ; 

F[ml] := F[ml] - DIR-BDY-ARRAY [-m2l+al+MESI[il [jl/Elem[ml. j a c  
- DIR-BDY-ARRAY [-m21 +aO+Elem[ml . jac*MEXI [11 [jl ; 

e l s e  

} //End of inner  loop over ver tex funct ions 
. . .  

and so on. The stiffness matrix S is the same as with homogeneous Dirichlet boundary 
conditions. 

2.6.2 Combination of essential and natural conditions 

Since the incorporation of Neumann or Newton boundary conditions occurs exactly as 
described in Paragraphs 1.2.6 and 1.2.7, let us discuss in more detail the case when essential 
and natural boundary conditions are combined. Consider the model equation (2.20) in a 
bounded domain R = ( a ,  b )  c R with the boundary conditions 

du 
dv 
- (a)  = %'(a) = gal (2.79) 

u(b) = 961 

where gargb E R. The solution u is sought in the form u = U + G, where G E H'(R) is 
a Dirichlet lift satisfying G(b) = gb. and the new unknown function U lies in the space V 
defined in (1.65), 

v = (7J  E H'(R); w(b) = O}. 
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The weak formulation (1.66) then reads 

a(U, v) = l ( v )  for all ‘u E V, 

where 

~ ( u ,  V) = b u ~ U ’ ( X ) V ’ ( X )  + aoU(z)v(z )  dz ,  U, v E V, 

The Dirichlet lift G is defined analogously to the case with nonhomogeneous Dirichlet 
boundary conditions, but now it vanishes also at the endpoint where the natural boundary 
condition is prescribed (Figure 2.28). 

Figure 2.28 Dirichlet lift for combined boundary conditions (2.79) 

2.6.3 Exercises 

Exercise 2.23 Extend the code from Exercise 2.18 to nonhomogeneous Dirichlet boundaly 
conditions 

.(a) = ga, 

4 b )  = Qb, 

where ga, g b  E are additional input parameters. 

1. For the new boundary conditions recalculate the exact solution u of the problem 
-u“ = f using the cubic load function f from Exercise 2.18. 

2. Choose a = 0, b = 1, ga = 112, gb = 1. 

3. For M = 10 elements which are (A) linear, ( B )  quadratic, (C)  cubic, ( D )  fourth- 
order, (E)jj?h-ordel; produce plots of the error eh,p = u - uh,p.  Plot all the curves 
together in onejgure using decimal-logarithmic scale. 

Exercise 2.24 Extend your code from Exercise 2.23 to nonequidistant meshes. 

1. Read the number of elements M together with the coordinates of the grid points 
a = 20 < x1 < . . . < X M  = b and the polynomial degrees p l ,  p z ,  . . . ,ph i  together 
with the other input parameters from an input data file. 

2. Verifji that the code is correct. 
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2.7 INTERPOLATION ON FINITE ELEMENTS 

Assume some restricted set of functions C (such as, for example, polynomial, piecewise- 
polynomial or trigonometric polynomial functions) in a linear space V and a function g E V 
that does not belong to C. The prototype approximation problem is to find a suitable function 
gc E C (approximation of g )  such that gc is in some sense close to g .  The measure of the 
quality of the approximation (abstract distance of gc from g ) ,  can be defined as an error 
estimate, the norm 119 - gcllv if the space V is normed, or it can be defined otherwise. By 
best approximation one means an approximation that minimizes this distance. 

Approximation becomes interpolation when the sought function gc  E C has to satisfy 
some additional constraints. These conditions are formulated generally as 

Li(gc) = b,, i = 1,2,. . . , Nc,  (2.80) 

where L, : V + R are linearly independent linear forms in V’ and bl , b2, . . . , bN, some 
given constants. 

For example, in the traditional Lagrange interpolation one requires the approximation gc 
to coincide with the original function g at some points ~ 1 ~ x 2 ,  . . ., ZN, E 0 via the choice 

and defining the constants bi in (2.80) as 

There are many natural questions related to the approximation and interpolation: What 
assumptions have to be put on V, C and g to ensure the existence and uniqueness of 
the best approximation? What conditions must the linear forms L, obey to guarantee a 
unique solution of the interpolation problem? What can be said about the error of the 
approximationhnterpolation? 

The analysis is highly nontrivial in the general setting of a basic linear or normed space 
V and a general subset C C V. However, the good news is that all important assumptions 
on the space V, the set C, and the function g ,  developed in the framework of the abstract 
Approximation Theory, are fulfilled automatically when V is a Hilbert space and C its closed 
subspace. 

2.7.1 The Hilbert space setting 

Let V = V ( 0 )  be a Hilbert space corresponding to the solved problem, a( . ,  .) : V x V -+ R 
a bounded V-elliptic bilinear form, 1 E V’, and @L,p  a finite-dimensional subspace of V 
determined by the finite element mesh 7 h , T 1 .  Consider the continuous problem (2.1), 

a(u ,  ,u) = 1 ( ~ )  for all 71 E V. 

and the discrete problem (2.5), 
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According to CCa's lemma (Theorem 2.1, Paragraph 2.1.2), the discretization error Iju - 
U ~ , ~ I I V  is bounded by the interpolation properties of the subspace Vh,+ c V and the 
continuity and V-ellipticity constants Cb, of the bilinear form a( , ,  .), 

Hence the interpolation properties of the space Vh,p are largely responsible for the final 
form of the error estimate. 

In practice we always have aconcrete interpolation operator P : V + Vh,+ that obviously 
satisfies 

Hence, for a sufficiently regular function u E V it is our aim to estimate the interpolation 
error lIu- Pull v using some parameters of the mesh '&+ as well as the amount of regularity 
of the function u. A typical interpolation error estimate has the form 

where h = max, h, is the mesh diameter and C(u)  is a constant depending on the amount 
of regularity of the function u. In addition to its application in error analysis, interpolation 
also finds practical use in the finite element technology, when a given function g E V 
needs to be represented by a sufficiently close function gh,p E Vtt+. Problems of this type 
are encountered in the finite element solution of evolutionary problems (to be discussed in 
Chapter 5) ,  as well as in multigrid methods, automatic hp-adaptivity, and numerous other 
situations. 

2.7.2 Best interpolant 

In the Hilbert space setting the question of existence and uniqueness of the best approxi- 
mation is trivial. Since vh ,p  C v is finite-dimensional and therefore automatically closed, 
according to Lemma A.39 the nearest representant of a function g E V in the norm I/ . I /  v 
is its unique orthogonal projection g/z ,p  = Pg E Vh,p. Theorem A.14 implies that the 
orthogonal projection P is defined uniquely via the condition 

With some basis { z J ~ , z J ~ . .  . . , ? I N }  C wt,T,, (2.81) can be rewritten equivalently as 

(9 - Y h . p ,  % ) V  = 0 for all i = 1.2. .  . . . N .  (2.82) 

Expressing 

(2.83) 

and substituting into (2.82), one obtains a system of linear algebraic equations 
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for the unknown coefficients y1, y2, . . . , Y N  

EXAMPLE2.4 

Consideradomain0 = (-1, l),coveredwithafiniteelementrnesh?Th,, = {K1, Kz}  
consisting of affine elements K1 = ( - 1 , O )  and K2 = (0 , l ) .  Assume the space 
V = H,'(- l ,  1) related to some problem with homogeneous Dirichlet boundary 
conditions. The finite element subspace v h , p  is one-dimensional, defined as 

= { ? I  E v; VIK,, ,  E 2 = 1,2}. 

Let us construct the best approximation gh, ,  E VL,, of the function g(x) = 1 - x4 E 
V .  In other words, we are looking for a function gt1,+ E Vh, ,  such that 

The linear system (2.84) reduces to a single equation, which yields the best approxi- 
mation gh,p, 

depicted in Figure 2.29. 

Figure 2.29 Best approximation gtL.p  E K L , p  of the function g E V 

Notice that the best approximation gh,p does not coincide with the function g at 
the grid point :L: = 0. 
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In some cases the construction of the best approximation may be too demanding from 
the practical point of view, since the cost of the calculation of gh,p is similar to the cost 
of solution of the global finite element problem. In such cases the only possibility is to 
abandon the optimality requirement (2.85) and find some less expensive interpolant. The 
first natural choice is to perform the orthogonal projection locally in elements. 

2.7.3 Projection-based interpolant 

Piecewise-affine case In the simplest case when all elements K1, Kz, . . . , Khl are 
affine, the continuity requirement implies that the projection-based interpolant g h , p  € vh,p 
be defined as the usual piecewise-affine vertex interpolant, 

where gh,p/K,,,  € P1(K,,) for all K7,L € zL,pr as illustrated in Figure 2.30. 

Figure 2.30 
interpolation on piecewise-affine elements. 

Projection-based interpolation reduces to the usual piecewise-affine Lagrange 

Higher-Order case On a general higher-order finite element mesh Th,p, as the reader 
may guess, the interpolation problem is decoupled by subtracting the piecewise-affine vertex 
interpolant g;,, from the interpolated function g .  The function g - g;l.p vanishes at all grid 
points, and can be projected locally onto the polynomial spaces 

In this way one calculates the bubble interpolant g:,,. The resulting interpolant gh,p is then 
obtained as a sum of the vertex and bubble parts, 

Since we are in H;(K,), either the full H1(K7,)-norm or the equivalent H1(KTn)-  
seminorm can be used. The fact that the standard vertex interpolation is combined with the 
orthogonal projection on higher-order subspaces is why one speaks about projection-based 
interpolation. 
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Choose, for example, the HI-seminorm for the projection part. Then the associated 
inner product has the form 

(2.88) 

The orthogonality condition that determines g i ,p  is 

( ( 9  - g;;,p) - g h , p , u ) H A ( K , , , )  b = 0 for all E p f f r L ( K m ) .  (2.89) 

This equivalent to 

((9 - gg,p) - gi,pl fl, (m)  ) H j  (K,“ ) = 0 = 2 ,  3 ,  . . . > PTn, (2.90) 

where fly), k = 2 , 3 , .  . . ,p,,, is a suitable basis of P p  (Km) .  Utilizing the Lobatto 
bubble shape functions (2.63) and the reference maps (2.37), this basis has the form 

(2.91) 

7$y4 = a,,(x,:,,(xD 

Expressing now 
PVC 

gh.*IK,, b = CQPS?), 
r=2 

and inserting this linear combination into (2.90), one obtains on K,  a system of p,, - 1 
linear algebraic equations, 

for the unknown coefficients a!.’”). By Substitution Theorem, (2.92) attains on the reference 
domain K,  a simple form 

h r k  

which by the orthogonality of the Lobatto bubble functions yields 
(2.93) 

Q ( 7 r L )  k = J’ (p - gh,p - “ ( 7 r L ) ) ’ ( < )  &(<) d<, k = 2 , 3 , .  . . , p m .  (2.94) 

Here, .G(”’)(<) = g(xK,!, (0) andS$)(<) = (g;l,p(ZKnL (6)) i s l o ( < ) g ( . m - i ) + l i ( r ) g ( ~ ~ ~ , l ) .  

Kc. 

The orthogonality of the Lobatto shape functions is once more advantageous here. If one 
used the Lagrange nodal bubble shape functions 6’2,&,,. . . , from (2.57) instead, the 
simplification (2.94) would not have taken place, and a linear algebraic system of the form 
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(2.93) would have to be solved on every element K,,, with p,, 2 2. The projection problem 
(2.94) is illustrated in Figure 2.3 1 .  

Figure 2.31 Graphical interpretation of the projection problem (2.94). 

Lemma 2.5 (Local optimality of the projection-based interpolant) Let R = (a ,  b )  c 
Iw be covered with a finite element mesh ?;L,p consisting of Ad finite elements K,, = 

( z m - l , z m )  equipped with the polynomial degrees 1 5 p ,  = p(K,). Let g E H ' (R)  n 
C ( 2 ) ,  gh,p E v h , p  its projection-based interpolant (2.87) and gh,p E v h , p  an arbitrary 
other interpolant satisfying g h , p ( z 3 )  = g(z3) for all j = 0: 1,. . . , M .  Then 

1.9 - gh,pll,2,K,,, 5 19 - ih ,pl l ,2 ,K, , ,  for  all m 1, 2 , .  . hf, (2.95) 

and consequently 

19 - gh,7,ll,2,n 5 19 - yh,,il,2,n. (2.96) 

If the bubble interpolant gL,p is calculated using the full HI-product (., .)1,2 instead (?f 
(2.88), the inequalities (2.95) and (2.96) hold with the full H'-norm 11 . 111.2. 

Proof: The fact that the bubble interpolant gIb,,, is defined as the orthogonal projection of 
g - gK,p E H,' (KTrL)  onto Po""' (K,) implies that 

/ g  - gh,pll,2,K,,, = 1(g - g g , p )  - d , p l l , 2 . K r , z  

min 
W€P:'"(K,,>) 

l(9 - g:J - 41,2,K, , ,  
- - 

5 
= 19 - gh,p11,2,K,,,. 

1(g - g E , p )  - (gh.p - ~ ; J J ) ~ I , ~ . K , , ~  

The integral Ig - gh,pl?,z,n can be written as a sum 

hl 

19 - gh,p t ,2 ,Q = / g  - gh,p l? ,2 ,~ , , , .  
7 n =  1 

Inequality (2.95) finally yields 

1=1 1=1 

Things work in the same way when (2.88) is replaced with the H'-product (., .)1,2. 
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Let us close this paragraph by mentioning that the projection-based interpolation is 
significantly more efficient than the full projection from Paragraph 2.7.2. The cost of the 
local optimality on the elements Km, i = 1,2,  . . . , M ,  is one numerical integration over K,  
in (2.94) when the orthogonal Lobatto hierarchic shape functions are used, or in the worst 
case (with a set of nonorthogonal shape functions) the solution of M systems of p ,  - 1 
linear algebraic equations of the form (2.93). 

2.7.4 Nodal interpolant 

The last important interpolation technique is the Lagrange nodal interpolation, which is 
based on the evaluation of (a) the interpolated function at a given set of nodal points and (b) 
a suitable set of interpolation polynomials. Depending on the selection of the nodal points 
(such as, e.g., equidistant, Chebyshev, Gauss-Lobatto, Fekete, or other points), one obtains 
various variants of the general Lagrange interpolation methods, which produce different 
interpolants. 

By Lemma 2.5, all Lagrange interpolants are equally or less accurate than the projection- 
based interpolant (2.87). On the other hand, their explicit nature with no system of linear 
equations solved makes them extremely efficient. The Lagrange interpolation is a special 
case of nodal interpolation on general nodal elements, which will be discussed in detail in 
Chapter 3. In particular, the question of optimal interpolation points in 2D will be addressed 
in Paragraphs 4.3.1 and 4.3.4. 

Although the Lagrange interpolation is natural for Lagrange nodal elements and the 
projection-based interpolation for Lobatto hierarchic elements, the projection-based inter- 
polation can be performed on Lagrange nodal elements and vice versa. 

Interpolation conditions Consider an interval K,,, = ( ~ ~ ~ - ~ , z ~ , ~ )  c 0 c R and 

= 2,. Using 
the reference maps z~,, ,  : K,  + K,, from (2.37), define the corresponding points in the 

reference domain K ,  = (- 1 , l )  as 1 ~ 3  = zkf8, (ijT'L)). On the element K,,,, the interpolation 
conditions 

for all 1 5 5 pi,, + 1, g h , p  E vh,pl 

a set of Lagrange nodal points zTl-l = y1 - (711)  < yp' < . . . < Y~,,,+~ -(n1) 

Qh ,P  

are equivalent to 

Hence, the interpolation can be performed elementwise on the reference domain K,. In 
practice a unique set of Lagrange nodal points is defined on the reference domain and used 
for all elements. 

A basic result related to the accuracy of the Lagrange interpolation in the maximum 
norm is formulated in the following lemma. 

Lemma 2.6 (Error of the Lagrange interpolation) Let -1 = y1 < yz < . . . < yp+l = 
1 and g E C p + I ( Z ) .  Consider the Lagrange interpolant 

(2.97) 
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(2.98) 

Proof: The result obviously holds if IC = yz. Hence suppose z # yz for all 1 5 i 5 p + 1, 
and denote 

4 s )  = dx) - gh,p(s).  

The function 

has p + 2 distinct roots t = z and t = yz, 1 5 i 5 p + 1. The Mean Value Theorem implies 
that a’(t) hasp  + 1 distinct roots. Applying the Mean Value Theorem to higher derivatives 
of a,  we find that a(P+l)(t) has a single root [y E (niin{ -1, s}, max{z, I}), satisfying 

and (2.98) follows. 

The function DP(z) = n::; (z-yz) in (2.98) is the only way the distribution of the nodal 
points influences the distribution of the interpolation error. Compare with the projection- 
based interpolation from Paragraph 2.7.3, where the interpolation error was independent of 
the concrete representation of the polynomial space. Let us look at &(s) for equidistributed 
nodal points in Figure 2.32. 

0 15 

0 1  

0 05 

0 

-0 05 

-0 1 

-0 15 

001 I I 

001 , , 0000s , I 

0 002 

-0 0015 -0 002 

-0 004 

-0 006 

-0 008 
-0 0025 

I 
1 -0 5 0 0 5  1 -1 -0 5 0 0 5  

I -0003 -001 I 
1 

Figure 2.32 Error factor i&(x)  for equidistributed nodal points, p = 4.7,  10, and 13 

From these plots it is clear that the behavior of the error e(s) = y ( r )  - g,L,F, (x)  is 
significantly worse near the endpoints than in the interior. The Lagrange interpolation with 
equidistributed nodal points is known to be notoriously bad. In his famous example from 
1901, Carl Runge shows that the sequence of Lagrange interpolants g,, , p  with equidistributed 
nodal points diverges for otherwise a very nice function g(x) = 1/( 1 + 25r2)  in  the interval 
(-1,l) as p + x (for details see, e.g., [62]). 
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Chebyshev ifftefpdafft The Lagrange interpolant (2.97) based on the nodal points 
(2.59) is called Chebyshev interpolant. The error factors ,LIP for the Chebyshev interpola- 
tion with p = 4,7,10 and 13 are shown in Figure 2.33. Compare with Figure 2.32, and 
notice the different scales. 
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Figure 2.33 Error factor &(z) for Chebyshev nodal points, p = 4,7,10 and 13. 

Before introducing a basic Chebyshev interpolation error estimate, we need the weighted 
L2-space 

Li, (K,)  = {u E L2(Ka) ;  7 i  is measurable and l l ~ l l 2 . ~ ,  < m} 

with 
1 

l l ~ l l ~ ,T , ,  = 174r )1274 . )  dz.  (2.99) 

where w(r) = l / d m  is the Chebyshev weight function. The norm (2.99) induces an 
inner product 

( 7 ~ .  7 1 ) ~ ~  = 1: ? i , ( x ) u ( x ) w ( x )  dx: 

on L:, x L:,. Further define a weighted Sobolev space 

H;,(KcL) = { i i  E L:,(Kcl); i ~ ( ~ )  E Lip  for all k = 1 .2 . .  . . . s }  

with the norm 

Here d A )  denotes the kth weak derivative of i i .  

Theorem 2.3 (Chebyshev interpolation error estimate) Let E H:, (K,) ,for some s 2 
1. Let PNU be  the Chebyshev interpolant based on the N + 1 Lagrange nodalpoints (2.59). 
Then there exists a constant C independent of u such that 
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IIU - PN742,Z/l 5 ~ ~ - S l l ~ ~ / l s , 2 , ~ " .  

Proof: See, e.g., [90]. 

Among nodal interpolation schemes, Chebyshev interpolation is very popular due to its 
accuracy. More details can be found, e.g., in [ 5 ]  and [62]. 

2.7.5 Exercises 

Exercise 2.25 Consider a bounded interval (a, 6 )  C R and p + 1 distinct points a = y1 < 
y2 < . . . < yp+l = b. Consider two polynomials f ,  g E Pp(a ,  b )  such that 

Prove that necessarily f = g. Do not use the explicit formula ofthe Lagrange interpolation 
polynomial. Use the maximum number of roots of a polynomial instead. 

Exercise 2.26 In 1901, without the help oj'a computer; Carl Runge presented a famous 
example of a divergent series of Lagrange interpolation polynomials on equidistant meshes. 

Consider a function 

g ( 2 )  = 3: E ATa. 
1 + 25x2 ' 

Construct the Lagrange interpolation polynomials 

P+ 1 

J=l  

gtL,?l(X)  = c g(Y,)$")(4 

where 8:) are the Lagrange nodal shape functions (2.57) corresponding top+ 1 equidistant 
points -1 = y1 < y2 < . . . < yp+l = 1. Present plots o f g , g h , p  together with the H1- 
seminorm ofthe error g - gh,pfiw p = 2,4,6,8,  and 10. You can use a computer. 

Exercise 2.27 Consider Exercise 2.26 with p + 1 Chebyshev nodal points (2.59). Again 
present plots of g ,  g h . p  together with the H' -seminorm of the error g - gh,p for  p = 2 ,4 ,6 ,8  
and 10. Compare with the results of Exercise 2.26. 

Exercise 2.28 At last consider Exercise 2.26 with the projection-based interpolation from 
Paragraph 2.7.3 instead ofLagrange nodul interpolation. Present plots of the projection- 
based interpolants gtL.+ ofthe function g in the spaces PT'(KGI), where p = 2,4  and 6. 
Use mesh containing a single element K ,  = (- 1,l). In all three cases calculate the 
HI-seminorm ofthe error g - gh,?,. Compare with the results oj'Exercises 2.26 and 2.27. 



CHAPTER 3 

GENERAL CONCEPT OF NODAL 
ELEMENTS 

The reader knows from Chapter 2 the nodal and hierarchic concepts in the FEM. In the 
following we discuss in detail the nodal concept, which is both historically older and more 
suitable for an introduction. The strong side of nodal elements is their extremely general 
definition of degrees of freedom via linear forms, which allows for a very fast interpolation 
and makes these elements applicable to a large variety of problems in various spaces of 
functions. 

3.1 THE NODAL FINITE ELEMENT 

Let us return for a moment to the one-dimensional Lagrange nodal element K = (a ,  b )  of 
the degree p ,  equipped with p + 1 nodal points a = y1 < y2 < . . . < yp+l = b. The 
corresponding polynomial space on the element is P = P p ( K ) .  For every nodal point yj ,  
one can define a mapping 

L, : g E P + g(y,) E R. (3.1) 

This functional is linear since 

and 
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for all g, 9 E P and all u: E R. Hence L, are linear forms and they belong to the dual space 
P'. The number of the linear forms LJ is equal to the dimension dim(P) = p + 1. 

In Paragraph 2.4.4 we designed a basis of P"( K )  consisting of Lagrange nodal shape 
functions & , & ,  . . ., Qp+l that satisfied the delta property (2.56), 

Here 6,, is the Kronecker delta (&, = 1 if 1 = j and 6,) = 0 otherwise). General nodal 
elements are defined by replacing the interval K with a general bounded domain K E Rd 
and by extending the Lagrange linear forms (3.1) to general linear forms 

L ,  : P+R 

A classical book on nodal elements is [30]. 

Definition 3.1 (Nodal finite element) Nodal finite element is a triad K = ( K .  P. C), 
where 

K is a bounded domain in Rd with u Lipschitz-contirzuous boundary, 

P is a space ofpolynomials on K ($the dimension d im(P)  = Np. 

C = { L1, La, . . . , LNP } is a set of Iinear,forms 

L , : P - R .  / = 1 . 2  . _ _ _ .  N p  

The elements cfC are called degrees of freedom (DOF). 

In most cases it is clear from the context what finite element K is associated with a 
domain K .  Then the set K itself often is called finite element, as we did in the previous 
chapter, and as we shall occasionally do in what follows. 

3.1.1 Unisolvency and nodal basis 

The one-dimensional Lagrange nodal points yl . y2. . . . , y,+l were chosen pairwise distinct 
in Paragraph 2.4.4 in order to ensure that on every element K ,  any set of p + 1 given 
numbers g l ,  ~ 2 . .  . ., gp+l identifies a unique polynomial Q E PrJ(K)  with the property 

Y b l )  =S1,g(Yz) =Y2....,Y(Yp+l) = Q p + l .  

This requirement guarantees that the vector of computed coefficients, 

where S is the stiffness matrix and F the load vector, identifies a unique piecewise- 
polynomial function 

N 

w 1 . p  = 1 Y7 (11 E vi1.I' 

7=1 
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Here w1, 'u2, . . . ,?IN is a basis of the space Vh,,, and Uh.,  is the solution to the discrete 
problem. In the context of general nodal elements, the generalization of this property is 
called unisolvency: 

Definition 3.2 (Unisolvency) A nodal finite element ( K ,  P. C )  is said to be unisolvent if 
,for every polynomial g E P it holds 

Lemma 3.1 Let ( K ,  P, C )  be a unisolvent nodal element. Given any set ofnumbers (91, 
g2, . . ., g N P  } E RNr', where N p  = dzm(P), there exists a unique polynomial g E P such 
that 

Ll(Y) =91, =gz.....LNp(g) = g N p .  (3.3) 

Proof: Left to the reader as an exercise. 

Unisolvency is characterized by a generalization of the delta property (3.2): 

Definition 3.3 (Nodal basis) Let ( K .  P, C ) ,  d im(P)  = Np,  be a nodaljnite element. We 
say that a set of functions B = {&,&, . . . , 8 ~ ~ }  c P is a nodal basis of P if it satisfies 

L , (Q, )  = 6,, forall 1 5 t , ~  5 N p .  (3.4) 

The functions 0, are usually called nodal shape functions. 

Theorem 3.1 (Characterization of unisolvency) Considera nodalfinite element ( K ,  P, C ) ,  
d im(P)  = Np.  Thejnite element is unisolvent ifand only ifthere exists a unique nodal 
basis B = {Ql, 02.. . . , Q N ~ ,  } c P. 

Proof: First let us consider a unisolvent finite element and construct a unique nodal basis 
13 = {@I. 6 2 , .  . . , QN,, }. Begin with any basis {gl, g2. . . _, g N , , }  c P. Express each sought 
function Q,, J = 1, .  . . , N p ,  as 

Condition (3.4) implies 

(3.5) 

which yields a system of N p  linear equations for each 3. Putting together the N p  linear 
systems related to 81, ~ . . . , Q N ~ ,  one obtains a matrix equation 

L A  = I .  (3.7) 

Here L = (LL(gk)} ,Nkf_*  is a generalized Vandermonde matrix, I the identity matrix, 

and the matrix A = { o , I ; , } ~ ~ = ~  contains in its columns the unknown coefficients of the 
functions H I ,  65,. . . , H N ~ ,  respectively. 



106 GENERAL CONCEPT OF NODAL ELEMENTS 

Let us verify that the matrix L is invertible: If the columns of L were linearly dependent, 
there would exist a nontrivial set of coefficients b l ,  b 2 ,  . . . , b N p  such that 

However, this is in contradiction with the unisolvency assumption. Therefore L is nonsin- 
gular and the functions Q1, 82 ,  . . . , O N ,  form a basis in P. 

Conversely, let B = {el, 8 2 . .  . . , O N , }  be a nodal basis of the space P. Assume that 

for some function g E P. Express 

Since 

we conclude that y = 0 and thus the finite element is unisolvent. 

3.1 -2 Checking unisolvency 

Theorem 3.1 describes how to check the unisolvency of an arbitrary nodal finite element 
( K ,  p, C): 

0 Consider an arbitrary basis {gl ,  g 2 ; .  . . , g N F }  C P. 

0 Construct the generalized Vandermonde matrix 

0 If L is invertible, then the element is unisolvent, and moreover L-' has in its j t h  
column the coefficients a k J ,  k = 1.2,. . . , N p ,  which define the j th  nodal basis 
function 8, via (3.5). 

0 If the matrix L is not invertible, then the element is not unisolvent. 
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EXAMPLE 3.1 (A nonunisolvent element) 

Usually one deals with unisolvent finite elements. Therefore, let us show at least one 
example of a nodal finite element which is not unisolvent. Consider the polynomial 
space 

in the square domain K4 = (-1, 1)2. The set C comprises four linear forms L, : 
Q1(K4) + R, associated with function values at the edge midpoints [-1,0], [1,0], 
[O, -11, and [O, 11, 

Lib) = !2-1.0), 

LZ(9) = g(1,O). 

L3(.9) = ! J J ( O > - l ) ?  

L4(g) = g(0 , l ) .  

as shown in Figure 3.1. 

- I t  

I 

A 

-1 

Figure 3.1 
Q'(K,,) = span{ 1, E l ,  < z ,  

Nonunisolvent nodal finite element consisting of a square domain K ,  polynomial space 
and linear forms associated with the values at edge midpoints. 

The generalized Vandermonde matrix L = {Lz(g3)}:3=l corresponding to the 

functions g1(5) = L92(5) = 51, g3(5) = 5 2  and g3(5) = 5152, 

1 - 1  0 0 .-(I ; 1 0 0  ;' ;j> 
is singular. 

3.2 EXAMPLE: LOWEST-ORDER &'- AND PI-ELEMENTS 

The unisolvency of the nodal finite element from Example 3.1 can be fixed by replacing the 
edge midpoints with vertices. In this way one obtains the basic and most frequently used 
lowest-order element for H' -problems on quadrilateral meshes in 2D: the Q' -element. 
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3.2.1 Q1-element 

The reference square domain K, = (-1, 1)2 is endowed with the polynomial space 

Q1 (K,) = span{ 1, E1 E 2 ,  E i E 2 ) .  (3.9) 

The set of degrees of freedom C, = { L l ,  Lz,  . . . , L4) consists of the linear forms L, : 
Q1(K,) + 

as illustrated in Figure 3.2. 

5 2  h 

+7- 

-11 

(3.10) 

e.1 I 
" I  -1 "2 

Figure 3.2 Q'-element o n  the reference domain K, 

Lemma 3.2 Thefinite element (K,,  Q' (Kc<) ,  C,) is unisolvent, and the nodal basis ofthe 
space Q' ( KIl)  consists ofthe biaflne shape functions 

Proof: Since the generalized Vandermonde matrix 

(3.1 1) 
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is nonsingular, the element is unisolvent. According to Theorem 3.1, the nodal basis (3.1 1) 
is obtained by inverting the matrix L.  It is easy to verify that the nodal shape functions 

Since Kq = K,  x K,, the nodal shape functions (3.11) are Cartesian products of the 
one-dimensional lowest-order Lagrange shape functions Q1 and 192 (same as 10 and l1 in the 
Lobatto hierarchic case): 

satisfy the delta property (3.4). 

(3.12) 

Q1 -element on a convex quadrilateral K Consider an arbitrary convex quadrilat- 
eral domain K c R2 with straight edges sl, s2,. . . , s4, illustrated in Figure 3.3. 

Figure 3.3 Q'-element on a quadrilateral domain K C R2. 

The Q1-element on K is defined using the Q1-element on the reference square domain 
K ,  and a suitable reference map X K  : K ,  + K .  A natural choice is the isoparametric map, 
defined as a linear combination of the nodal shape functions (3.1 1) with the coordinates of 
the vertices x,, 

(3.13) 

Since the Substitution Theorem is involved in the finite element discretization (this will 
be discussed in Chapter 4), the reference map ZK([) must be a bijection. However, the 
question of invertibility of (3.13) is not trivial. We will study this topic in Paragraph 3.2.3. 

Remark 3.1 Elements where the same shape functions are used for the approximation and 
for the construction of the reference maps, like in this case, are called isoparametric. The 
map X K  is called isoparametric reference map. The coeflcients x, are called geometrical 
degrees of freedom (GDOF). The map (3.13) can be generalized to quadrilateral elements 
with curved edges by adding terms corresponding to higher-order shape functions (see, 
e.g., [ I  I I ] ) .  
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Proposition 3.1 The isoparametric reference map (3.13) satis3es 

z K ( u , )  = 2, for  all i = 1,2 , .  . . , 4 ,  

where v, are the vertices of the reference square domain Kq, and 

z ~ ( e , )  = s ,  for  all i = 1 , 2 , .  . . , 4 .  

(3.14) 

(3.15) 

where e, are the edges of Kq. 

Proof: The relation (3.14) follows from the delta property (3.4), 

p$(v,) = 5,, forall 1 5 Z , J  5 4, 

and (3.15) holds due to affinity of the shape functions pi1, py2, . . . , cp? on the edges of the 

The design of the finite element (K, Q ’ ( K ) ,  C,) in the sense of Definition 3.1 is ac- 

reference domain Kq.  

complished by defining the space 

Q1(W = { q ~ z , ~ ;  Y E Q1(Kq)}. (3.16) 

and the set C K  consisting of four degrees of freedom L!,) : Q’ ( K )  + R, 

(3.17) 

Proposition 3.2 Thefinite element ( K ,  Q’ ( K ) ,  C,) is unisolvent, and the shapefunctions 

cp>(z) = (@ oz;’)(z), 1 5 2 5 4, (3.18) 

constitute a unique nodal basis of the space (3.16) 

Proof: This is left to the reader as an exercise. 

Remark 3.2 Notice that the inverse of a polynomial map generally is notpolynomial (e.g., 
x2 vs. &), and therefore it is not obvious whether Q’ ( K )  is a polynomial space or not. 
This will be discussed in Paragraph 3.2.3. 

3.2.2 pl-element 

The natural counterpart of the Q1-element on triangular meshes is the P’-element, some- 
times called Courant triangle in honor of Richard Courant, a former assistant to David 
Hilbert. R. Courant first used a numerical scheme that we would call the Finite element 
method in 1943 to solve a torsion problem. His work was based on his previous results with 
Hurwitz and Hilbert in the 1920s. R. Courant was forced to leave Europe during the World 
War 11. At the New York University he founded a new Institute of Mathematical Sciences, 
which since 1964 cames his name. The name “Finite element method” appeared in the 
1960s. 
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Figure 3.4 Richard Courant (1888-1972) 

- I  

Figure 3.5 PI-element on the reference domain Kt  with the nodal points at its vertices. 

Consider the triangular reference domain Kt shown in Figure 3.5. Alternative reference 
domains may be used, but Kt has certain advantages which will be discussed later. 

The domain Kt is equipped with the polynomial space 

The set of degrees of freedom Ct contains the linear forms Li : P' (K t )  + R, 

(3.19) 
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The element ( K t ,  P ' (K, ) ,  C,) is evidently unisolvent and the corresponding nodal basis 
consists of three affine functions 

(3.20) 

It is easy to verify that these shape functions meet the delta property (3.4) with the linear 
forms (3.19). 

P1 -element on an arbitrary triangle K Next consider an arbitrary triangular domain 
K c R2 with the vertices X I ,  x 2 , q  and straight edges sl, s 2 ,  s3, as shown in Figure 3.6. 

> 
* 

Figure 3.6 P'-element on a triangular domain K C R' with straight edges 

The isoparametric reference map X K  : Kt + K is defined analogously to (3.13), 

(3.21) 

where p:' are the nodal basis functions (3.20). 

Proposition 3.3 For any nondegenerate triangle K C R2, the isoparametric reference 
map XK is invertible, and the inverse map x;' : K + Kt is afine. 

Proof: Since the map XK is affine and the triangle K nondegenerate, the Jacobian J K  
is a nonzero constant. Therefore also the Jacobian of the inverse map, J f l ' ,  is a nonzero 
constant. This means that the inverse map xkl is affine. 

Proposition 3.3 yields that the space 

P 1 ( K )  = ( 4  OX;'; g E P' (K t ) }  (3.22) 
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is polynomial. The definition of the finite element ( K ,  P1(K), C K )  is accomplished by 
defining the set of degrees of freedom C K  using the linear forms ~ 5 : ~ )  : P1 (K) + R, 

(3.23) 

Proposition 3.4 The shape functions 

cp;:K(x) = (PP1 0 XL1)(X),  1 5 2 5 3,  (3.24) 

constitute the unique nodal basis of the space (3.22), satisbing the delta property (3.4) with 
the degrees of freedom (3.23). 

Proof: This follows easily from Definition 3.3. rn 
The application of the Q1- and PI-elements to the discretization of two-dimensional 

problems formulated in the Sobolev space H1 will be described in Section 4.1. 

3.2.3 lnvertibility of the quadrilateral reference map XK 

The invertibility of reference maps for nonsimplicial elements always is a nontrivial issue 
in the finite element analysis. The question of invertibility of triaffine hexahedral reference 
maps, for example, has not been completely resolved yet. The situation is simpler in the 
quadrilateral case, where it is known that the Jacobian J K  of the isoparametric reference 
map (3.13) is nonzero in Kq if and only if the domain K is nondegenerate and convex. To 
our best knowledge, this result was first proved in [ 1131. Let us present a slightly different 
version of the proof here. 

Lemma 3.3 The Jacobian J K  ( E )  of the biafJine isoparametric reference map (3.13) is 
an a@ne function. In particular, its minimum over K, is attained at one of the vertices 
v1,v2; . . .  ,v4. 

Proof: Let the vertices of the mesh quadrilateral K be denoted by XI  = ( 5 1 ,  yl ) ,  x2 = 

(Q, yz), . . . ,x4 = (54, y4) (in harmony with Figure 3.3). Use the functions (3.12) to write 
the isoparametric reference map (3.13) in the form 

Further in agreement with Figure 3.3 denote (u1, WI) := 2 3  - x i ,  (uz, WZ) := 2 4  - 

x2, (u3, u3)  := x2 - xlr  (u4, u 4 )  := x4 - x3. Recall the lowest-order one-dimensional 
Lobatto shape functions l o (<)  = (1 - < ) / a  and l 1 ( < )  = (1 + <)/2, and use the identity 
11(<) + l o (<)  = 1 to calculate 
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is an affine function. 

Theorem 3.2 Let K c JR2 be a nondegenerate quadrilateral with straight edges. We 
assume the ordering of the vertices shown in Figure 3.3. The Jacobian JK(J) of the 
isoparametric reference map (3.13) is positive in the reference domain K ,  ifand only i fK  
is convex. 

Proof: Rewrite (3.25) using the cross-products of the edge vectors s2, s g  and s4 as 

At the vertices w l r  212,. . . , w 4  the Jacobian J K  attains the values 

J ~ ( w 4 )  = ' ( ~ 4  x ~ 2 ) .  4 

By Lemma 3.3, the minimum of J K ( ( )  in Kq is one of these four values. All of them are 
positive if and only if the mesh quadrilateral K is convex. 

Corollary 3.1 Even for  a convex quadrilateral element K E Th,p with straight edges, the 
inverse xL1 of the isoparametric biaflne reference map (3.13) generally is not polynomial. 
In particular; the space Q' ( K )  dejined in (3.16) is not a polynomial space. 

This can be seen after expressing the inverse map explicitly, via a formula containing 
square roots (see, e.g., [113]). In special cases, when K is the Cartesian product of two 
intervals, both the reference map X K  and its inverse xkl are aflne. 

3.3 INTERPOLATION ON NODAL ELEMENTS 

The interpolation on finite elements is a procedure that takes a function g E V(Rh) and 
produces its suitable piecewise-polynomial representant in the finite element space g h , p  E 
Vh,,(Rh). Here by Oh we mean a suitable open polygonal domain that approximates the 
domain R for the purposes of the finite element discretization (more about this will be said 
in Chapter 4). Various interpolation techniques with different quality and computational 
cost can be used, ranging from the fastest fully explicit interpolation to the full orthogonal 
projection where a system of N linear algebraic equations, N = dim(Vh,p), is solved (see 
Section 2.7). Among these approaches, the fully explicit interpolation is typical for nodal 
elements. 
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3.3.1 Local nodal interpolant 

Recall the Lagrange nodal interpolation on the one-dimensional element ( K ,  P, C) from 
Paragraph 2.7.4, 

N P  

Q p  = Cg(1Jz)k (3.26) 

where K = K ,  = (-l,l),  P = PP(K,), g E HI(K, ) ,  g p  E P and 8, are the La- 
grange nodal shape functions (2.57) forming a basis of P. Using the linear forms (3.1), the 
interpolant (3.26) can be written as 

z = 1  

(3.27) 

This is a bridge that extends the one-dimensional Lagrange interpolation to the interpolation 
on general nodal elements: 

Definition 3.4 (Local nodal interpolant) Let L3 = {61,&,. . . ,  ON^} be the unique nodal 
basis of a unisolventjinite element ( K ,  P, C). Let g E V ,  where P c V ,  be a functionfilr 
which the values L1 ( g ) ,  L 2 ( g ) ,  . . . , L N ~  ( 9 )  are dejined. Then the local nodal interpolant 
is dejined as 

NP 

x K ( g )  = 1 Lz(g)Q,. (3.28) 
z = 1  

Remark 3.3 

I .  The requirement that all the values L1 ( g ) ,  L2(g), . . . , L N ~  (9 )  be dejined is impor- 
tant. Since the linear forms L,  are dejined for  polynomials from the finite element 
space P only (see Dejnition 3.1 ), there exist functions outside of P that cannot be 
interpolated. 

2. Further; notice that it follows from the linearity of theforms L, that the interpolation 
operator Z, ; V + P is lineal: 

Next let us discuss basic properties of nodal interpolants: 

Proposition 3.5 Let ( K ,  P, C) be a unisolvent nodaljinite element and ZK(g) the nodal 
interpolant of a function g E V ,  P C V .  Then 

Lz(ZK(g)) = Lz(g), 1 5 2 5 NP. 

Proof: It follows immediately from Definition 3.4 and (3.4) that 

Proposition 3.6 Let ( K ,  P, C) be a unisolvent nodaljinite element. The nodal interpolation 
operator ZK is idempotent, 

Z$ = ZK. 
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Proof: It follows immediately from Proposition 3.5 that 

ZK(g) = g for all g E P. 

Let P C V .  For all g E V such that Z K ( ~ )  is defined, we have 

Z K  ( Z K  ( 9 ) )  = Z K  (9) I + 
€ P  

which had to be shown. 

EXAMPLE3.2 

Consider the Q1-element on the reference square domain K,  = (-1, 1)2 and the 
function 

g(2) = ( 2 1  - 1)2(z1 + 1) - 22122(22 + 1) E Hl(K*) .  

The values L l ( g ) ,  L2(g), . . . , L 4 ( g )  (function values of g in the comers of K,) are 
defined. Hence the nodal interpolant Z(g) exists, and using the nodal basis functions 
‘ p t t  from (3.1 l) ,  we obtain 

Z(g) = g(-1, -l)P;’(4 + g(1, -1)P;W + 9(-1,1)P;3(2) +g(L l)P;4(z). 

The functions g and Z(g) are depicted in Figure 3.7. 

i2 1 

1 

Figure 3.7 The interpolated function g E H‘ ( K q )  and the nodal interpolant Z(g) E Q’(K,) 

3.3.2 Global interpolant and Conformity 

The form of the local nodal interpolant determines the conformity of finite element meshes 
consisting of such elements to the space of functions where the underlying PDE is solved. 
Before discussing the conformity, we have to be more specific about the shape of the meshes 
we consider: 

Definition 3.5 (Regular mesh) Let oh C Rd be an open bounded domain with polygonal 
boundary, and 7 h , p  a partition of into a j n i t e  number of open polygonal subdomains 
h’l, Kz, . . ., K M ,  such that 

M 

u K = n h  
z = 1  
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and K,  n KJ = 0 ifi # j .  A two-dimensionalfinite element mesh 7 h , p  is said to be regular 
if every nonempty intersection of K, n X3.  i # j ,  can either be a whole shared edge or a 
single shared vertex. In 30  this holds analogously with faces, edges and vertices. 

In the following we assume a regular finite element mesh 7 h , p  consisting of unisolvent 
nodal finite elements K1, Kz, . . . , Kbf, 

P,(K,) c V ( o h ) l ~ ,  for all i = 1,2 , .  . . , M .  

Definition 3.6 (Global nodal interpolant) The global nodal interpolant Z(g) of a function 
g E V ( 0 h )  is defined as 

Z(g)lK, L Z K , ( ~ )  for  all i = 1 , 2 , .  . . , M ,  

where Z K ~  are (local) nodal interpolants corresponding to the finite elements K1, K2. . . ., 
K M .  

The global nodal interpolant is obtained by constructing the local nodal interpolants sep- 
arately in all elements in the mesh. Since the local interpolation procedures are decoupled, 
one can expect that the implication 

g E  v =+ Z ( g )  € v (3.29) 

may not always hold. This i s  illustrated in the following example. 

EXAMPLE3.3 

Consider a pair of adjacent piecewise-affine elements K1 = (- 1 , O )  and K2 = (0 , l ) .  
For completeness let us mention that the corresponding polynomial spaces are PI = 

P1 (K1) and P2 = P1(K2) ,  and the sets of degrees of freedom C1 and C2 comprise 
the linear forms 

(1) 4 (9) = g(-1), 

P ( 9 )  = d o ) ,  
P ( g )  = g(O), 

P ( g )  = g(1). 

respectively. It is easy to calculate (or see) that B1 = { -2, z+ 1) and B2 = { 1-2, z} 
are the unique nodal bases of the elements K1 and K2. 

Let us construct, for example, the global interpolant Z(g) of the function 

g(z) =z3 E v, 
where V = H ' ( - l ,  1). The local interpolants in the elements K1 and K2 have the 
form 

Z K ,  (9) = g(-l)(-z) f g(O)(z + 1) = z 

and 

I K * ( g )  = g(o)(I - + g(l)(z) = X, 

respectively, and thus the global interpolant Z(g) = z E V .  The situation i s  depicted 
in Figure 3.8. 
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x2 h 

-1 

Figure 3.8 The implication (3.29) holds: the global interpolant Z(g) lies in V 

Next define another pair of nodal elements with the same domains and polynomial 
spaces, but change the linear forms to 

respectively. The new nodal bases are B1 = { -32 - 1,32 + 2} and B1 = {2 - 
32,32 - l}. It can easily be calculated that the new local interpolants of the function 
g(z) = z3 have the form 

7 2  
ZK1(g) = g(-2/3)(-3~ - 1) + g(-1/3)(3-~ + 2) = -Z + - 9 9  

and 
7 2  

ZK2(g) = g(1/3)(2 - 3s)  + g ( 2 / 3 ) ( 3 ~  - 1) = --z - - 
9 9  

In this case the global interpolant Z(g) is discontinuous and thus it does not lie in V. 
This is depicted in Figure 3.9. 

Example 3.3 suggests that condition (3.29) is important for nodal elements. Since point 
values of functions are generally not defined in Sobolev spaces (see Section A.4.4), it is 
practical to weaken condition (3.29) to hold in their dense subspaces only: 

Definition 3.7 (Conformity of finite elements) A jni te  element mesh Th,p is said to be 
conforming to the space V ifthere exists a dense subspace W c V such that 

Z(g) E V for  all g E W. (3.30) 

Recall, for example, that the space of continuous functions C(2h)  is dense in the Sobolev 
space H1(Slh). 

Remark 3.4 Conforming elements are used more frequently than the nonconforming ones, 
since they betterjt into the Galerkin framework. However; in special applications such as 
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x2 A 

-1 

Figure 3.9 The global interpolant does not lie in the space V. 

capturing of discontinuities or satisfying divergence or other constraints, nonconforming 
elements may pe$orm better than the conforming ones. The Discontinuous Galerkin (DG) 
methods, for example, nowadays are very popular in computational PDEs. 

3.3.3 Conformity to the Sobolev space H 1  

Conformity requirements of the Sobolev space H 1  are formulated in the following lemma: 

Lemma 3.4 (Conformity requirements of the space H ' ( 0 h ) )  Consider a bounded do- 
main f l h  C Rd covered with a$nite element mesh z,p. A function w : f l h  + R belongs to 
H ' (Rh)  ifandonly if 

1. W I K  E H ' ( K )  for  each element K E T h , p ,  

2. for  each common face f = f f 1  n ff,, K1, Kz E T h , p  the trace of u l ~ ,  and U I K ~  on 

Proof: For this proof we need to review some terminology related to weak derivatives 
(Paragraph A.4.2): By D ( o h )  we denote the space of infinitely smooth functions with 
compact support in oh (distributions over atL), 

f is the same. 

D ( o h )  = {'p cr(oh); suPP('p) c ah}, 

where the support of a function 'p : oh + R is defined by 

suPP('f) = {z E oh; dz) # 0 ) .  

Recall that since oh is open and supp('p) closed, the support cannot touch the boundary 
doh.  In other words, there must be a belt along the boundary doh where 'p vanishes. We 
use the symbol DJ (u) for dw/ax, in the sense of distributions (see Definition A.56). 

Using I., define the functions w3 E L2(Rh) ,  J = 1 , 2 , .  . . , d as 

wj1K = D3 (vl K )  

for all K E 7h,p .  We will show that w E H1(Oh)  by verifying that wj = D'v 
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Using Green's theorem (Theorem A.29), for every p E D(S&) we obtain 

where U K  is the outer unit normal vector to d K .  Since cp vanishes on d o h  and ukl = 

- V K ~  = Y on the common face f, by 2. we have 

and thus w, = DJv. 

further w3 = D J v ,  we obtain that 
Conversely, if we assume that v E H 1 ( Q t ) ,  it follows at once that I .  holds. Using 

for all cp E D(Q,), j = 1 , 2 , .  . . , d. Hence, 2. is satisfied. 

The conformity of meshes consisting of Lagrange Q1- and P1-elements to the Sobolev 
space H1 will be discussed in Chapter 4. Let us close this chapter with the discussion of 
equivalence of nodal elements. 

3.4 EQUIVALENCE OF NODAL ELEMENTS 

Let us return to the one-dimensional Lagrange nodal elements for a moment again. Assume 
the reference domain K,  = (-1,l) and p + 1 disjoint points -1 = y1 < yz < . . . < 
yp+l = 1. The polynomial space has the form P = PP(K,) and the degrees of freedom 
are defined as L,(g) = g(y,), f = 1 , 2 , .  . . , p  + 1 for all g E P. 

Consider another interval K C R connected with K ,  through the affine reference map 
(2.37), xe : K ,  --t I?. We construct the Lagrange element (I?, P ,  2)  by defining new 
nodal points . . , &,+I E K ,  yz = xe (yz), new polynomial space P ,  

and a new set of degrees of freedom 2, 

L,(g) = ~ ( 5 % )  for all 9 E P .  

The affinity of the map x e  implies that P = PP (I?). The degrees of freedom are invariant 
under the map @ : P --t P ,  

@(9) =gox;l, 

in the sense that g(y,) = g(xk(yz)). This means that 

L,(g)  = L t ( @ ( g ) )  for all g E P, (3.31) 
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and we say that the Lagrange elements are equivalent under the map @. Since the underlying 
reference map xk is affine, sometimes one talks about affine-equivalence. The preserva- 
tion of the degrees of freedom (3.31) allowed us to perform the complete finite element 
discretization on the reference interval K ,  in Chapter 2. The next definition extends the 
notion of equivalence of one-dimensional Lagrange elements to general nodal elements: 

Definition 3.8 (Equivalence of nodal elements) Assume a pair of nodal-jnite elements 
( K ,  P,?), C = { L l ,  L2 , .  . . , L N ~ }  and ( K , P , C ) ,  = { 2 1 , i 2 , .  . ., L N ~ } .  Let @ : 
P + P be a bijection. We say that the elements are equivalent if 

P = qP), (3.32) 

and if the degrees of freedom satisfL 

L , ( g )  = t , ( @ ( g ) )  f o r a l l g  E P and i = 1 , 2 , .  . . , Np.  (3.33) 

Notice that condition (3.32) includes the existence of a spatial bijection zfi : K + I?. 

EXAMPLE 3.4 (Equivalence of Lagrange elements on simplices in Rd) 

Let ( K ,  Pp(  K ) ,  C) and (I?, PP( I?), 2) be a pair of unisolvent Lagrange nodal ele- 
ments on simplices (i.e., K and I? are intervals in ID, triangles in 2D or tetrahedra 
in 3D). Then there exists a bijective affine map x e  : K + I?. The elements are 
equivalent if and only if the nodal points in K and K are compatible under xk. 

EXAMPLE 3.5 (Elements containing DOF associated with derivatives) 

Elements containing derivatives as DOF usually are not equivalent. Let us demon- 
strate this using a simple one-dimensional example. Consjder two bounded intervals 
K = (a ,  b)  and I? = (5 ,b)  of different lengths lKI and IKI. Define a nodal element 
( K ,  P, C )  using the space P = P 1 ( K )  and the degrees of freedom 

L ( g )  = da), L2(9)  = 9 E p. 

Analogously the nodal element (I?, P ,  2) is equipped with the space P = P1(l?) 
and the degrees of freedom 

L&j) = g(5), L 2 ( g )  = g ' (b) ,  g E P .  

The situation is depicted in Figure 3.10 

H I i P 
a * K *  b' a K 

Figure 3.10 A pair of one-dimensional finite elements which are not equivalent: the black circles 
stand for DOF associated with function values and the arrows indicate DOF related to the derivatives. 
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Let X K  : K + I? be an affine reference map. Because of the presence-of the 
Lagrange degrees of freedom L1 and L1 the linear operator CP : P + P from 
Definition 3.8 must have the form 

@(g) = g 0 2;1. 

Then L1 (9) = Ll(CP(g)) for all g E P .  However, for the degrees of freedom La and 
2 2  it holds 

and thus these elements are not equivalent. 

3.5 EXERCISES 

Exercise 3.1 Prove Lemma 3.1. 

Exercise 3.2 Prove Proposition 3.2. 

Exercise 3.3 Prove Proposition 3.3. 

Exercise 3.4 Prove Proposition 3.4. 

Exercise 3.5 Write the explicit form of the afJine inverse map x;' from Proposition 3.3. 

Exercise 3.6 Construct the explicitformula for  the inverse of the biafine map x~ : K,  + 

K ,  corresponding to a convex quadrilateral with straight edges, whose nonpolynomial 
character was discussed in Corollary 3.1. 

Exercise 3.7 Considera regularfinite element mesh Th,p overa bounded domain f i h  C R2, 
consisting of a family of Q'-elements constructed using the master Q'-element on the 
reference domain K ,  and the reference maps (3.13). 

1. Is the finite element mesh conforming to the space H ' ( f i h ) ?  Show in detail 

2. Show that Q' -elements are equivalent under the map (3.13). 

Exercise 3.8 Consider a Lagrange PP-element on the reference triangular domain Kt. 
The polynomial space P is defined as P = span(x:xi; 0 5 z + j 5 p } ,  p 2 1, and the set 
of degrees offreedom C consists of N p  = ( p  + l ) ( p  + 2)/2 linearforms Lkl(g) = g(ykl),  
where the N p  nodal points ykl are defined by 

1. Check the unisolvency of thisfinite element. 

2. Construct the corresponding nodal basis. 

3. Consider a mesh T h , p  consisting of a family of PP-elements obtained using the master 
PP-element on the reference domain Kt and the afJine reference maps (3.21). 
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( a )  Does this mesh conform to H 1  ? Show in detail. 

(b )  Show that Lagrange PP-elements are afJine-equivalent under the map (3.21). 

Exercise 3.9 Consider a nodal finite element (K, ,  P, C )  on the reference square domain 
K ,  with P = span{ 1, zl, 2 2 ,  2:: - z;} and C = { L1, L2, L3, L4}, where 

Ll(L7) = g(-LO), 
= g ( L O ) ,  

L3(9)  = g(0 , -1) ,  

L4(g) = g(0,1) .  

1. Check the unisolvency of thisjnite element 

2. Construct the corresponding nodal basis (if relevant). 

3. Write the formula for  the local element interpolantZKq ( g ) ,  and apply it to the function 
g(z )  = c o s ( ~ ( z 1  + 2 2 ) )  E H1(K,) .  Presentplots of both g and zK, (g) .  

4. Consider afinite element mesh Th3p consisting of a family of such elements obtained 
using the reference maps (3.13). 

( a )  Are these elements equivalent under the map (3.13)? 

( b )  Does the mesh T h , p  conform to the space H ' ( R h ) ?  Show in detail. 

Exercise 3.10 Consider a nodal finite element (K, ,  P, C )  on the reference square domain 
K,with P = s p a n { l , x 1 , ~ 2 , 2 ?  - z : } a n d C =  {LlrL2 ,... ,L4},  where 

1 

Lib) = S_19(-1,3:2)d-i:21 

L2(9) = Ll g(l ,22)  d z z ,  

L3(9) = s_, Y(Z', - l ) d Z 1 ,  

L 4 b )  = Ll g ( z 1 ,  l ) d X l .  

1 

1 

1. Check the unisolvency of this finite element 

2. Construct the corresponding nodal basis (if relevant). 

3. Write the formula for  the local element interpolantZKq (9) .  and apply it to the function 
g(z) = cos(x(Ic1 + Q)) E H'(K,). Presentplots of both g and ZK, ( 9 ) .  

4. Consider ajni te  element mesh Th,p consisting of a family of such elements obtained 
using the reference maps (3.13). 

( a )  Are these elements equivalent under the map (3.13)? 

(b) Does the mesh Th,$ conform to the space H 1 ( R h ) ?  Show in detail. 
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Exercise 3.11 Consider a nodalfinite element (Kq ,  P, C )  on the reference square domain 
Kqwith P = span{l ,z1 ,zZ,z~ ,z1xz ,x~,z lz~ ,x~zz}undC = { L l , L * ,  . . . ,L s } ,  where 

Lib) = g ( - L  -11, Lz (g )  = g ( l ,  -I), 
JJ3(9)  = g(1, I), L4(9)  = g ( - L  I), 

1 1 

'55(g) [ l g ( - l > z Z ) d z ' 2 ~  L6(g)  = 1, g(1,xZ)dxZr 

L7(9) = l l g ( z l > - l ) d x l ,  L8(g) = l l g ( z l > l ) d z l .  
1 1 

1. Check the unisolvency of thisjinite element. 

2. Construct the corresponding nodal basis (if relevant) 

3. Write the formula for  the local element interpolant ZK, (g) ,  and apply it to the function 
g ( z )  = cos(n(z1 + z2)) E H'(K, ) .  Presentplots ofboth g andZKq(g) .  

4. Consider ajni te  element mesh Th3p consisting of a family of such elements obtained 
using the reference maps (3.13). 

(a)  Are these elements equivalent under the map (3.13)? 

(b)  Does the mesh Th,p conform to the space H ' ( R h ) ?  Show in detail. 

Exercise 3.12 Consider a bounded one-dimensional domain R = ( a ,  b )  covered with a 
jinite element mesh 7jXp consisting of M cubic Hermite elements ( K z ,  Pz, Z,), Ki = 

( ~ ~ - 1 ,  x z ) ,  i = 1,2 ,  . . . , M .  The set of degrees of freedom C ,  is dejined as 

L?)(g)  = g(z z -1 ) ,  

Q ( g )  = g(.z), 

L!)(g)  = d(&l) ,  
&) = gl(z , ) ,  

f o r a l l i =  1,2 , . . . ,  M a n d g E  P,. 

1. Find the minimum admissible polynomial degree po for  these elements 

2. Let P, = PpO (K,) for  all i = 1,2,  . . . , M .  Decide whether the elements are or are 
not unisolvent. Show in detail. 

3. Construct a nodal basis I?, for  every element (K,,  P,, E,). 

4. Write the local element interpolants and the global interpolant. 

5. Does the jinite element mesh Th>p  conform to the space H 2 ( R ) ?  Show in detail. 
Hint: The H2-conformity requirement in ID  is once-continuous differentiability. 

6. Consider the space 

v h , p  = { a  E C ' ( R )  nC(2); aIK,  E P,foraUi = 1 ,2 , .  . . , M >  

What is the dimension N = dim( vh,p) ? 

7. Use the nodal basis functions on every element to design N suitable basis functions 
of the space vh,p.  Remember that every basis function has to be once continuously 
differentiable to lie in H 2 ( R ) .  



CHAPTER 4 

CONTINUOUS ELEMENTS FOR 2D 
PROBLEMS 

After learning about the general concept of nodal finite elements in Chapter 3, the reader 
should know how to design general nodal finite elements of the form ( K ,  P. C), and be able 
to perform the following operations: 

0 check the unisolvency of the element ( K ,  P,  C), 

0 construct the unique set of nodal shape functions 81, 82, . . . , L9Np satisfying the delta 
property (3.4), 

0 use the set of degrees of freedom C and the nodal shape functions 61,82: . . . , o ~ ~  to 
construct the local interpolant I,, 

0 construct the global interpolant Z on a given finite element mesh and check whether 
or not the mesh conforms to a given space of functions, 

0 analyze the equivalence of nodal elements defined on different domains K and I?. 

In this chapter we apply these techniques to continuous finite elements for second-order 
PDEs in two spatial dimensions, extending the knowledge of one-dimensional continuous 
finite elements acquired in Chapter 2. The lowest-order Q1/P'-elements are introduced in 
Section 4. I .  In Section 4.2 we discuss higher-order Gaussian quadrature in 2D. After that, 
the Q1/P' -elements are extended to higher-order Lagrange nodal elements in Section 4.3. 

Purriul Oifferentiul Equcitions arid the Finite Element Method. By Pave1 Solin 
Copyright @ 2006 John Wiley & Sons, Inc. 

125 

Partial Differential Equations and the Finite Element Method 
by Pave1 Solin 

Copyright © 2006 John Wiley & Sons, Inc.



126 CONTINUOUS ELEMENTS FOR 2D PROBLEMS 

4.1 LOWEST-ORDER ELEMENTS 

In this section, after introducing a suitable model problem and its weak formulation, we 
show in Paragraph 4.1.2 the sequence of geometrical and functional approximation needed 
to transform a PDE problem into a discrete finite element problem and we derive the 
approximate weak formulation of the model problem. The lowest-order basis functions of 
the finite element space Vh,p are presented in Paragraph 4.1.3, and the weak formulation 
is transformed to the reference domains in Paragraph 4.1.4. Paragraph 4.1.5 is devoted to 
the constant coefficient case when precomputed template mass and stiffness integrals can 
be used. Paragraphs 4.1.6 and 4.1.7 discuss the data structures and implementation, and 
the section is closed with describing the interpolation on the lowest-order &'/P'-meshes 
in Paragraph 4.1.6. 

4.1.1 

Consider a two-dimensional bounded domain R with a Lipschitz-continuous boundary do. 
Suppose that dR consists of two disjoint open parts l?D and l?N such that 

Model problem and its weak formulation 

8 2  UT,, (4.1) 

as illustrated in Figure 4.1. 

Figure 4.1 The domain 0, its boundary (30, and the unit outer normal vector u to (30 

Assume again the model equation (1.26), 

-V . (nlVu) + nou = f in R; (4.2) 

with a Dirichlet boundary condition 

~(z) = gn(z) for all z E r D ,  (4.3) 

and a Neumann boundary condition 

3 U  

dU 
-(z) = g N ( z )  for all 2 E r N .  (4.4) 

The existence of a unique solution is guaranteed if l?D # 0 and 

a l (z)  2 C,,,,, > 0 and uo(z) 2 0 in R. 
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or if 
a l ( z )  2 C,,,,, > 0 and a o ( z )  2 C,,,, > 0 in a, 

in which case the Dirichlet part of the boundary can be empty. 

extension to La-functions is done analogously to Paragraph 2.2.1. 

Weak formulation The weak formulation of this problem was discussed in detail in 
Paragraph 1.2.8. Hence consider some Dirichlet lift function G E H1(R) of the boundary 
data 90, and look for the solution u in the form u = U + G. The new unknown U lies in 

In the following we assume that the coefficient functions al and a0 are constant; the 

the space (1.65), 
v = {v E ~ ‘ ( f l ) ;  v = o on rD}. 

The task is to find U E V such that 

a(U,v )  = l ( v )  for all v E V, 

where 

a ( U , u )  = 1 2 ( a i V U . V u + u ~ U u ) d z .  U , V E  V, 

Z(v) = 1 2 ( f v  - a l V G .  Vv - aoGv)dz  + 

4.1.2 Approximations and variational crimes 

(4.5) 

(4.6) 

(4.7) 

v E v. 

Now let us go through the series of geometrical and functional approximation steps that 
turn the infinite-dimensional problem (4.6) into a finite-dimensional discrete problem of the 
form S Y  = F .  At some points this requires a departure from the “mathematically clean” 
variational framework. Such operations are called variational crimes, and in practice it is 
not really possible to avoid them. 

Step I :  Approximation of the domain R The domain R is approximated by a po- 
lygonal domain i&, as shown in Figure 4.2. 

Figure 4.2 Polygonal approximation R h  of the domain R. Generally Rp, # R and even RrL @ 0. 
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If oh $ 0, then the solution and other functions from the weak formulation (4.6) are not 
defined where they are to be approximated or evaluated. This is the first variational crime. 
If the boundary dR is piecewise-polynomial, then its approximation can be done exactly 
using curvilinear elements (see, e.g., [ 1 111). 

step 2: Finite element mesh Assume the domain o h  be covered with a regular finite 
element mesh zL,p (Definition 3.5) consisting of nonoverlapping finite elements K1 K2, 
. . . , Khf. Let all the elements be given the same polynomial degree p = 1. The discretiza- 
tion on irregular meshes is described, e.g., in [ 1 111. Figure 4.3 shows examples of regular 
meshes on the domain Oh. The mesh is called hybrid when it contains both triangular and 
quadrilateral elements. 

Figure 4.3 Regular triangular, quadrilateral and hybrid finite element meshes on a,, 

In order to facilitate the implementation, i t  is natural to require that the points TD n Tr\i 
coincide with some vertices of the mesh 

Step 3: Approximation of boundary conditions After replacing the original do- 
main R by its polygonal approximation c ? ~ ~ ,  one loses the boundaries I?o and r N ,  where 
the Dirichlet and Neumann boundary conditions were prescribed. The boundary conditions 
(4.3) and (4.4) have to be transferred in some suitable way to the polygonal parts r D , l l  

and r N , h  of the new boundary 8 2 h .  What one usually does is to define new boundary 
conditions by 

u ( z )  = g D ( z )  for all z E rD.IL. (4.8) 
3 U  
%(z) = Y N ( Z )  for all z E r,v.IL. 

This is another variational crime, since the functions g o  and g N  are evaluated where they 
were not defined. Usually this goes through in the implementation, but it should be checked 
how much this approximation violates the underlying physical problem. 

Step 4: Approximation of the space V 
o h  FZ 

According to the geometrical approximation 
from Step 1, the space V(o) is approximated by a piecewise- polynomial space 

% , p ( W  

VIL,p = { u  E C(%);  L~h , I l / r  ,,.,, = 0; (4.9) 

i i l ~ ,  E PP(K,) if K7 is a triangle, 

V I K ,  E Q P ( K 7 )  if K, is a quadrilateral}. 

This also is a variational crime, since the Galerkin method does not admit a situation when 
V 1 , p  P v. 
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Step 5: Approximate weak formulation The discrete problem can be formulated 
after the Dirichlet lift G E H 1  (0) is “approximated” with a function GIL,p E H’(f2h). The 
approximate weak formulation of the model problem reads: 

Find a function uh,p E v h , p  such that the identity 

holds for all ZJ  E Vh,,. As we mentioned before, the load function f E L 2 ( 0 )  as well as 
the coefficients a l ,  uo E L”(0) are evaluated in the domain (2h where they may not be 
defined if (2h 0. 

Step 6: The system of linear algebraic equations As usual, the unknown function 
UtL,+ E V/L,p is expressed as a linear combination of some N basis functions ~ 1 . 7 ~ 2 ,  . . . , UN E 
KL,+ (a standard choice will be mentioned in Paragraph 4.1.3), with unknown coefficients 
Y l d $ 2 * .  . . 1 Y N ,  

N 

(4.11) 

Testing (4.17) by the basis functions ( I % ,  i = 1 . 2 , .  . . , N, one obtains a system of N linear 
algebraic equations, 

N 

(4.12) 

for all i = 1 . 2 , .  . . , N. The system can be written in the matrix form (2.13), 

SY = F .  (4.13) 

where S E RN 
F E RN the load vector. 

is the stiffness matrix, Y E RN the vector of unknown coefficients and 

In order to assemble the system (4.13), one needs to construct suitable basis functions 
i i l .  112,. . . , U N  of the space VtL.+. Let us do this in the next paragraph. 

4.1.3 Basis of the space Vh,p 

Assume a regular finite element mesh 7 h . p  consisting of hf, Q1-elements and pl- 
elements, where M,  + M, = AJ 2 1. By x l ,  2 2 , .  . . , X N  denote the N grid vertices that 
do not lie on the Dirichlet part r D , h  of the boundary dQ, (we say that these vertices are 
unconstrained). 



130 CONTINUOUS ELEMENTS FOR ZD PROBLEMS 

Proposition 4.1 The dimension of the space v h , p  is equal to N ,  where N is the number of 
unconstrained grid vertices. 

Proof: This follows easily from the definition (4.9) of the space vh,p. 

Because of the one-to-one relationship of the basis functions v, and the unconstrained 
grid vertices xi, the lowest-order basis functions are called vertex functions. They have the 
form of “pyramids” shown in Figure 4.4, that naturally generalize the one-dimensional “hat 
functions” (2.25). 

Figure 4.4 Vertex basis functions of the space Vh,p on meshes consisting of Q’- and PI-elements. 

These functions are defined as follows: Assume a vertex patch S ( i )  consisting of all 
mesh triangles or quadrilaterals sharing the vertex x,, 

S ( i )  = u ff,, 
k E N ( z )  

(4.14) 

where the index set N ( i )  is defined as 

N ( i )  = { k ;  Kk 6 7 h , p r  2, is a vertex of Kk}.  (4.15) 

The vertex function vi is defined to be zero in o h  \ S( i ) ,  and in S ( i )  it has the form 

vi(x)l~~ = (piv 0 x&:)(x) if Kk E S ( i )  is a quadrilateral, (4.16) 

u , ( x ) / K ,  = ( c p y ~ ’  o xki.)(x) if Kk E S( i )  is a triangle. 

Here for every element Kk E s(z), cp? or cpyv is the unique vertex nodal shape func- 
tion on the reference domain K ,  or Kt ,  respectively, such that cp~~.(x,:(x,)) = 1 or 

cpP’(x,;(xz)) = 1. 

Remark 4.1 The reader does not have to worry about the presence of the inverse reference 
map in the relations (4.16), since the inverse map is not used explicitly in the computer code. 
All operations of the element-by-element loop will be perjormed on the reference domains, 
using suitable connectivity arrays. This will be discussed in Paragraph 4.1.7. 

Proposition 4.2 For every unconstrained grid vertex x,, the corresponding function (4.16) 
is continuous in o h .  The functions 711.212 . . . , vN,form a basis of the space vh,p, and satisb 
the delta property 

v,(x3) = ht3,  15 i . j  5 N .  

Proof: The first part follows from the affinity of the functions v, along edges in the patch 
S(z). The rest is obvious from the construction. 



LOWEST-ORDER ELEMENTS 131 

4.1.4 Transformation of weak forms to the reference domain 

The idea of the assembling algorithm is analogous to the one-dimensional case discussed 
in Chapter 2. Again, both the global stiffness matrix S and the right-hand side vector F 
will be filled in an element-by-element fashion. Therefore it is convenient to view identity 
(4.12) as a sum over all elements Km, m = 1,2,  . . . , M :  

(4.17) 

hl n M 

to be satisfied for all basis functions vz, i = 1 , 2 , .  . . , N .  
First let us transform the element integrals from (4.17) to the appropriate reference 

domain, which is either Kq or Kt.  Since the transformation on quadrilateral and triangular 
elements is analogous, it is sufficient to discuss, for example, the triangular case. 

Transformation of function values A function w(x)  E C(K,), 1 5 m 5 M ,  
is transformed to the reference domain Kt in virtue of the affine reference map (3.21), 
XK,,,(E) = (5K, , , , l (E)rZK, , .2(E))r  as follows: 

G(m)(E)  = (w X K r n ) ( 6 )  = w ( 5 K , , ~ , l ( S ) , x K n , , 2 ( E ) ) .  (4.18) 

Transformation of partial derivatives This is a good exercise for the chain rule 
of differentiation. Assume that w E C1(Km).  The partial derivatives of dm)(<) = 

(w o x K,,, ) have the form 

This can be written as 

where D x K , , , / D ~  stands for the Jacobi matrix of the map XK,,, . Recall that nonsingular 
matrices satisfy 

(AT)-' = (Ap1)  T = A-T. 

Thus the gradient Vw(x) at an arbitrary point x E K ,  is transformed to the point < = 

z~t,, (x) E K+ as follows, 
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(4.20) 

According to (4.20), the stiffness term in (4.17) transforms from a mesh element K ,  to the 
reference domain I? as 

where 

Since the reference map XK, in the triangular case is affine, the Jacobian 

is constant, and without loss of generality, we can assume that it is positive: This is the case 
when XK,,, does not change the orientation of edges between the reference domain and the 
mesh element. In the quadrilateral case the Jacobian and both the Jacobi matrices on the 
right-hand side of (4.2 1) generally are not constant and have to be integrated numerically. 

Remark 4.2 (Explicit inversion of 2 x 2 matrices) The inverse of nonsingular 2 x 2 ma- 
trices can be done without the Gauss elimination procedure, using an explicit expansion 
formula 

In the case of the Jacobi matrix DXK,, , /D[ the denominator (which is the Jacobian <JK,,, ) 
cannot be zero since the map XK,, is a bijection. 

Denoting the constant entries of the inverse Jacobi matrix by 

(4.22) 

where d = 2 is the spatial dimension, and assuming the constantness and positivity of JK,,, , 
one can rewrite (4.21) into 
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4.1 -5 Simplified evaluation of stiffness integrals 

Repeated numerical integration in (4.23) on every mesh element K,,,, rn = 1.2,. . . . Af, 
can be avoided if the following two conditions are met: 

1. The reference map z ~ , ~ ~  is affine. This is the case when either 

(a) the PP-element A',,, is triangular with straight edges 

or 

(b) the QP-element K,,, is a rectangle. 

2. All coefficients of the elliptic operator ( I .  1)  are constant. 

Then (4.23) can be simplified to 

where K is either Kt  or K,{. Hence for all 777 = 1.2. . . . . A f ,  the stiffness terms (4.24) can 
be evaluated elementwise using the precomputed constants 

(4.25) 

corresponding to the reference maps xx,,, , and a few precomputed master element stiffness 
integrals of the form 

(4.26) 

Here . p l '  are the shape functions (3.20) defined on the reference domain k = K t ,  and 
1 5 s .  r 5 d. Appropriate shape functions are linked to the transformed basis functions 
l;O'O and F:'") via connectivity arrays. 

I 
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4.1 -6 Connectivity arrays 

Analogously to the one-dimensional case, the connectivity arrays lie at the heart of the 
element-by-element assembling algorithm. Assume that the hybrid QIIP1 mesh % , p  is 
represented via an element array 

Element *Elem; 

of the length A I .  

Element data structure The basic element data structure may be defined as follows: 

struct I 
int nv; //number 

/ / ( 4  for 
Int *vert; //global 
Int *vert-dir; //vertex 
int *vert-dof; //vertex 
. . .  

> Element; 

of vertices 
quadrilaterals, 3 for triangles) 
vertex indices (length nv) 
Dirichlet flags (length nv) 
connectivity array (length nv) 

The variable Elem [ml . v e r t  [ j I, 1 = 1 , 2 .  . . . ,7271, contains the index of the vertex XK,,, (v,) 
of K,, (as it comes from the mesh generator, i.e., this is not the index of an unconstrained 
vertex). The ordering of vertices and edges of Q1- and P'-elements was shown in Figures 
3.2 and 3.5 in Section 3.2. The flag Elem[ml . ve r t -d i r  [ j l ,  j = 1 , 2 , .  . . ,nu, is zero if 
the vertex XK,,, (vJ) of K,, is unconstrained, and one otherwise. 

Construction of connectivity arrays Assume that for all elements K , ,  E ?; , ,p ,  

m = 1 , 2 , .  . . , Ad, the number nv and the arrays v e r t  and ve r t -d i r  have been defined. 
The first part requires reading amesh file, and the latter linking Dirichlet boundary conditions 
to the constrained grid vertices. 

The ,jth component of the connectivity array ElemCml .vert-dof, J = 1, 2, . . ., nu, 
contains either 

0 the index of the vertex basis function of the space v,,T) associated with the vertex 
XK,,, (v,) of K,,, (if Elem [m] . ver t -d i r  [j] == 0), 

0 or a negative integer number -NBC (if Elem Cml . v e r t _ d i r  [jl  == 1). 

In the case of nonhomogeneous Dirichlet boundary conditions, the values of the Dirich- 
let lift G at the constrained vertices can be stored via an array of real numbers. For every 
constrained vertex, NBC may represent the corresponding index in this array. Using this 
construction, the implementation of nonhomogeneous Dirichlet boundary conditions is 
straightforward, and it does not need to be discussed here in more detail. The algorithm 
that creates the element connectivity arrays vert-dof for all Q1- and PI-elements in the 
mesh ? ; l , I l ,  looks as follows: 

Algorithm 4.1 (Enumeration of vertex DOF) 

By Nvert denote the total number of grid vertices in ?;,.,,. 
Allocate a temporary array int *DOFarray of the length Nvert 
//Initialize DOFarray with the numbers 1,2, . . . ,  Nvert: 
for i=1,2, . . . ,  Nvert do DOFarrayIil :=  1 ;  
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//Deactivate constrained vertices of all elements: 
for m=1,2,. . . ,M do { //global element loop 
for j=1,2, . . . ,  Elem[m].nv do { //local vertex loop 
if (ElemIml .vert_dirIj] == 1 then { 
DOFarraylElem[ml .vert [jll := -1; 

I 
I 

I 
//Re-enumerate vertices, leaving out the deactivated ones: 
count := 1; 
for i=1,2,. . . ,Nvert do { 
if (DOFarrayiiI > -1) then { 
DOFarray [il 
count := count+l; 

: = count ; 

I 
I 
//Read the unconstrained vertex indices back into elements: 
for m=1,2,. . . ,M do { 
for j=1,2,. ..,Elem[ml.nv do { 
if (Elem[ml .vert_dir[jl == 0 )  then { 
Elem [ml . vert-dof I jl : = DOFarray [Elem Iml . vert [ jl1 ; 

1 
I 

1 
N := count - 1; 
Deallocate the array DOFarray. 

//This is the dimension of the space V,L,p 

4.1.7 Assembling algorithm for QllPl-elernents 

Assume that the pair of simplifying conditions mentioned in Paragraph 4.1 .S hold and 
the stiffness term (4.23) reduces to (4.24), i.e., that the functions (4.25) are constant. In 
addition, assume that the problem (4.2) is equipped with homogeneous Dirichlet boundary 
data r D . h  = 80th and = 0 on r D , h .  

Preprocessing step (when (4.24) holds) In this case the global stiffness matrix S 
can be filled very efficiently based on (4.24). Begin with evaluating the constant Jacobi 
matrix of the reference map ZK,, on every element K,,, m = 1 , 2 , .  . . , M ,  using the 
formulae (3.21), (3.13). Store the constant absolute value of the determinant of the Jacobi 
matrix, for example, as 

Elem[m].jac :=~JI<,,, 1 

Invert the Jacobi matrix (as described in Remark 4.2), and store the constant inverse partial 
derivatives, for example, as 

El .em[m] . inv.j [r] [n] , 1 < n , r  < d  

Evaluate the master element stiffness integrals (4.26) for both the reference quadrilateral Kq 
and reference triangle Kt (whatever case is relevant). Store these constants, for example, 
in two separate global four-dimensional arrays 
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with 9"" 97'L defined in (3.1 I ) ,  and 

where P I ' & .  p"' were defined in (3.20). Further, evaluate the master element mass integrals, 

and 

MEMI.T[k][l] := / l p " L ~ " h  dc.  1 5 k.l 5 3 
. lit 

Then for Q'-elements the stiffness matrix contribution (4.24) attains the form 

double  SMC(Elem,k. l.m,MESI.Q,MEMI.Q) := Elem[m].jac * a1 

d d f 

* c Elem[m] .inv.j [r] [n]* c Elem[m] . i nv - j  [s] [n] * MESI.Q[k] [l] [r] [s] 
, , = I  r=l  ,s = 1 

+Elem[m].jac * a0  * MEMI.Q[k][l], 1 5 k . l  5 4 

and analogously for PI-elements one has 

double  SMC(Elem, k, l.m.MESI_T,MEMI_T) := Elem[m] j a c  * ai 

* c ~ E l e m [ m ] . i n v . j [ r ] [ n ] *  ~ E l e m [ m ] . i n v . j [ s ] [ n ]  * MESI.T[k][l][r][s] 

+Elem[m].jac*aO*MEMI.T[k][l], 15 k . l  5 3 

rl d I 

n= 1 r= 1 b = 1 

The idea of the element-by-element assembling algorithm is analogous to the one-dimensional 
case (Algorithm 2.5). With the connectivity arrays vert-dof available on all elements K,,, , 
k = 1,2,  . . . , M ,  and the constants precomputed above, i t  reads: 

Algorithm 4.2 (Assembling algorithm) 

N : = Mt, ; 
/ /Set  t h e  s t i f f n e s s  ma t r ix  s ze ro :  
f o r  i = 1 , 2  , _ _ _ ,  N do f o r  j = 1 , 2  , _ _ _ ,  N do S [ i ] [ j ]  
/ /Set  t h e  r ight-hand s i d e  vec to r  F ze ro :  
f o r  i = 1 , 2 ,  . . . ,  N do F [ i l  := 0;  
//Element loop:  
f o r  m = 1,2, . . . ,  M do { 

:= 0 ;  

/ /Outer l oop  over  shape f u n c t i o n s :  
f o r  i = 1,2,. . . ,Elem[m] .nv do { 

/ / Index of t h e  test funct ion vlii, E VI,.,, (row p o s i t i o n  i n  s) 
m l  := Elemlml .ver t_dof  [il ; 
/ / Inne r  loop over  shape f u n c t i o n s :  
/ / ( F i l l i n g  t h e  m l t h  row of s) 
i f  (ml > -1) t hen  f o r  j = 1,2, . . . ,  Elem[ml.nv do { 

/ / Index of t h e  basis funct ion I ) , , ~ ~  E V,L.l, (column p o s i t i o n  i n  s) 
m2 := Elemlml . ve r t_dof  [jl  ; 
i f  (m2 > -1) t h e n  { 

i f  (Elemlml .nv == 4 then  { 
S [ m l  ,m21 : = S I m l  ,m2l + SMC (Elem, i , j ,m, MESI-Q ,MEMI_Q) ; 

1 
e l s e  { 
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S[ml ,m21 :=  SCml ,m21 + SMC(Elem,i, j ,m,MESI.T,MEMI.T) ; 

1 
1 

} //End of inner loop over shape functions 
//Contribution of the test function u r r L ,  to the right-hand side F :  
if (ml > -1) then { 
F[mll :=  F[mll + Elem[ml. jac*si, f(7"j(E)pp"i(c)d5; 

1 
} //End of outer loop over shape functions 

} //End of element loop 
//Notation f("'j([) = ~ ( z K , , ,  (5)) was used. 

If the simplifying conditions formulated in Paragraph 4.1.5 do not apply, then the Ja- 
cobian, entries of the inverse Jacobi matrix, and other values are no longer constant in the 
elements. In such case, (4.24) has to be replaced with the more general relation (4.23), and 
instead of reading the precomputed entries from the MESI and MEMI arrays, the correspond- 
ing integrals have to be evaluated numerically. 

4.1.8 Lagrange interpolation on Q'/P'-meshes 

Assume a regular mesh over a bounded domain Rt, (Definition 3 . 9 ,  consisting of Q1- 
and/or Pl-elements (K,; P,, EL), i = 1,2.  . . . . M .  For each quadrilateral element Q' (K , ) ,  
the polynomial space P, and the set of degrees of freedom C, have the form (3.16) and 
(3.17), and the unique nodal basis was defined in (3.18). For triangular elements P 1 ( K t ) ,  
the space Pt, the set C,, and the unique nodal basis were defined in (3.22), (3.23), and 
(3.24), respectively. 

Proposition 4.3 For any function g E c(nh), the global Lugrange interpolant Z(y) is con- 
tinuous in a h .  Thus every regular mesh consisting of&'- and/or P' -elements is conforming 
to the space H1 ( Q t ) .  

Proof: The nodal basis functions (3.18) and (3.24) are affine along the edges of any 
quadrilateral and triangular element K E T h , p ,  respectively. The definition of the degrees 
of freedom (3.17) and (3.23) implies that on every K E Th,p the local interpolant ZK(g) 
coincides with the interpolated function y at the vertices of K .  Since the mesh %L,p is 
regular, the global interpolant T ( g )  coincides with the interpolated function IJ at all mesh 
vertices and it is affine on the edges of all elements. Thus obviously it  is continuous in fit,.. 

The global interpolant is constructed according to Definition 3.6, elementwise, via the 
local interpolants (3.28). Given a function g E C ( t h )  on an element K,,, E T,,rJ, the 
local interpolant on K,,, is evaluated on the corresponding reference domain I? = K ,  
or k = K t ,  using the set of vertex shape functions (3.18) or (3.24) on I? and using the 
values of the function y o XK,,, at the vertices of k. The result is transformed back to K,,,. 
According to Proposition 4.3, one obtains a function which is continuous in f2h. 

4.1 -9 Exercises 

Exercise 4.1 Prove Proposition 4.1. 

Exercise 4.2 Consider the problem 
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with homogeneous Dirichlet boundary conditions in a bounded domain 12 = ( 0 , a )  x 
(0, b),  where 0 < a,  b E R. Let the domain 0 be covered with n Cartesian quadrilateral 
Jinite element mesh consisting of hi = A l l  x hi2 Lngrange Q1-elements (the division is 
equidistant in both axial directions). 

1. Write the weak formulation and approximate weak formulation ofthe problem. 

2. Pe f o r m  a unique enumeration of the interior grid points. Use an outer loop in the 
21-direction and an inner loop in the z:z-direction. 

3. Write element connectivity arraysfor general A11 and Al,. 

4. Print all master stifiess integrals ofthe form 

that you will needfor the assembling. (This is a little dull but it helps discover errors.) 

5. Write the reference map xij, 1 5 i 5 A l l ,  1 5 j 5 hl, for  the element KZJ on 
the position ( i ,  j )  in the mesh. Write its Jacobi matrix, Jacobian, and inverse Jacobi 
matrix. 

6. Implement the element-by element assembling procedure (Algorithm 4.2). 

7. Implement an algorithm for plotting the approximate solution in an element-by 
element fashion. First construct the polynomial on the reference domain by means of 
the shape functions, the corresponding connectivity array and the coeficient vector. 
Then transform it to the physical element K,, in virtue of the reference map xLJ .  

8. Present plots of the approximate solution 7 L } a , p  ,for 

( a )  a = 2 ,  b = 1, A i l  = 10. A12 = 5, 

(b) u = 2 ,  b = 1, MI = 20, hl, = 10, 

(c )  a = 2 ,  b = 1, Afl = 40, A12 = 20. 

(d)  a = 2 ,  b = 1, M1 = 60. h12 = 30. 

9. The exact solution is 

Present the convergence curve of the above computations in the decimal-logarithmic 
scale. Use the HI (O)-.seminorm. Put the number ofDOF on the horizontal axis. 
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4.2 HIGHER-ORDER NUMERICAL QUADRATURE IN 2D 

In this section we discuss higher-order Gaussian numerical quadrature rules on the reference 
domains K, and Kt . For details regarding the theory and open problems in modern Gaussian 
numerical quadrature, we refer to [35, 46, 47, 48, 49, 70, SO, 104, 1081 and [ 1 141. For 
practical implementation, CD-ROM containing Gaussian quadrature data for various 2D 
and 3D reference domains and polynomials of the degree up to p = 20 is part of [ 11  13. 

With the quadrature rules available on the reference domains K f  and K,, the quadrature 
on arbitrary quadrilateral or triangular mesh elements is performed via the Substitution 
Theorem, 

Here either k = K, or k = K f ,  and J K ( < )  is the Jacobian of the bijective reference map 
XK k + h'. 

4.2.1 Gaussian quadrature on quads 

Easiest to implement are quadrature formulae for Cartesian-product geometries, such as the 
reference square K ,  = (-1, I ) ~ .  

Composite Gaussian quadrature Consider the formula 

where gq,r 1 ,  wq,, are Gaussian integration points and weights on the one-dimensional 
reference domain K, = (-1,l) that integrate exactly all polynomials of the degree p and 
lower. I t  is easy to see that the product formula 

has the order of accuracy p on K, for functions of two variables (all bivariate polynomials 
up to the degree p in each variable are integrated exactly). An advantage of the composite 
quadrature is that it  easily can be generalized to incomplete product polynomials (when the 
1 D polynomial spaces in the variables tz differ). In this way one can obtain quadrature 
rules of practically unlimited order of accuracy. More efficient formulae are available for 
spaces of complete polynomials (see [46]). 

4.2.2 Gaussian quadrature on triangles 

The triangular case is more difficult. First let us show a simple scheme based on the 
translation of the integration from the reference triangle Ki to the reference quadrilateral 
K,, . 
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Translation of quadrature from Kt  to K ,  This procedure can be viewed as “stretch- 
ing” functions defined on Kt to be defined on Kq in such a way that their integrals remain 
unchanged. The following proposition defines the technique precisely. 

Proposition 4.4 Let g ( [ )  be a continuous bounded function defined on the reference trian- 
gle Kt.  Then its integral over Kt is equal to the integral over K, of an adjusted function 
given by the following formula, 

Proof: Consider the mapping 

that transforms K, to K f  . Its Jacobian 

is positive except for the upper edge y2 = 1 where it  vanishes. However, the mapping is 

Remark 4.3 The trunsjormution [( y) induced an udditional ajtine ,factor (1 - ~j2) /2  in 
the integrand on the right-hand side of (4.28). The order of the quadrature rule in the 
ya-variable should he increased accordingly. 

one-to-one and the standard Substitution Theorem yields the result immediately. 

More difficult to implement, but certainly worth the effort, are the economical Gaussian 
quadrature schemes. 

Economical Gaussian quadrature The fundamental equation for the construction 
of the integration points and weights for the reference triangle K f  reads 

(4.29) 

where rri denotes the number of integration points. Each point is characterized by three 
unknowns: ‘ w k ,  ( l , ~ ,  and (2.k. After inserting a suitable polynomial basis into (4.29), one 
may obtain equations that are not independent. Systems with more unknowns than equations 
are obtained when the number 7~ of terms in complete polynomials of the degree p is not 
divisible by three: for p = 3, for example, one has 71 = ( ] I +  l ) (p+ 2)/2 = 10 independent 
polynomials, and thus at least four Gaussian points must be used (12 unknowns). Other 
standard difficulties are related to the nonuniqueness of solution to the nonlinear system, 
where weights can come out negative or points outside of the domain of integration. The 
design of optimal Gaussian quadrature formulae for higher polynomial degrees involves 
many open problems (see, e.g., [35,46] and 1471). 

Selected quadrature constants Tables 4.14.5 present the optimal Gaussian quadra- 
ture rules on the reference triangle Kt of the orders of accuracy y = 1.2. . . . .5. 
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Table 4.1 Gaussian quadrature on Kt , order p = 1. 
~~ ~ 

Point # -Coordinate (2-Coordinate Weight 
~~ 

1. -0.33333 33333 33333 -0.33333 33333 33333 2.00000 00000 00000 

Table 4.2 Gaussian quadrature on Kt ,  order p = 2. 

Point # [I -Coordinate -Coordinate Weight 

1. -0.66666 66666 66667 -0.66666 66666 66667 0.66666 66666 66667 
2. -0.66666 66666 66667 0.33333 33333 33333 0.66666 66666 66667 
3. 0.33333 33333 33333 -0.66666 66666 66667 0.66666 66666 66667 

Table 4.3 Gaussian quadrature on Kt , order p = 3. 

Point # -Coordinate &-Coordinate Weight 

1. -0.33333 33333 33333 -0.33333 33333 33333 -1.12500 00000 00000 

3. -0.60000 00000 00000 0.20000 00000 00000 1.04166 66666 66667 
2. -0.60000 00000 00000 -0.60000 00000 00000 1.04166 66666 66667 

4. 0.20000 00000 00000 -0.60000 00000 00000 1.04166 66666 66667 

Table 4.4 Gaussian quadrature on Kt ,  order p = 4. 

Point # [I -Coordinate &Coordinate Weight 
~~ ~ ~ 

1 .  -0.10810 30181 68070 -0.10810 30181 68070 0.44676 31793 56022 
2. -0.108 10 301 8 1 68070 -0.78379 39636 63860 0.44676 3 1793 56022 
3. -0.78379 39636 63860 -0.108 10 301 8 1 68070 0.44676 3 1793 56022 
4. -0.81684 75729 80458 -0.81684 75729 80458 0.21990 34873 10644 
5. -0.81684 75729 80458 0.63369 51459 60918 0.21990 34873 10644 
6. 0.63369 51459 60918 -0.81684 75729 80458 0.21990 34873 10644 

Table 4.5 Gaussian quadrature on Kt , order p = 5. 

Point # [I -Coordinate &-Coordinate Weight 

1. -0.33333 33333 33333 -0.33333 33333 33333 0.45000 00000 00000 
2. -0.05971 58717 89770 -0.05971 58717 89770 0.26478 83055 77012 
3. -0.05971 58717 89770 -0.88056 82564 20460 0.26478 83055 77012 

5. -0.79742 69853 53088 -0.79742 69853 53088 0.25187 83610 89654 
6. -0.79742 69853 53088 0.59485 39707 06174 0.25187 83610 89654 

4. -0.88056 82564 20460 -0.05971 58717 89770 0.26478 83055 77012 

7. 0.59485 39707 06174 -0.79742 69853 53088 0.25187 83610 89654 
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4.3 HIGHER-ORDER NODAL ELEMENTS 

In this section we extend the lowest-order &'- and P' -elements to higher-order Lagrange 
elements. The quadrilateral case, based on the product Gauss-Lobatto points, is described 
in Paragraphs 4.3.1 and 4.3.2. The quality of the Lagrange interpolation is discussed in 
Paragraph 4.3.3. Higher-order triangular elements are constructed using the Fekete points 
in Paragraphs 4.3.4 and 4.3.5. The basis of the space V F ~ , ~  for regular hybrid quadrilat- 
eravtriangular meshes is presented in Paragraph 4.3.6. Algorithmic aspects of the method, 
including concrete data structure and an extension ofAlgorithm 4.2 to higher-order Lagrange 
elements, are presented in Paragraphs 4.3.74.3.9. The interpolation on meshes consisting 
of higher-order Lagrange elements, along with the conformity to the space H' (ah), is 
discussed in Paragraph 4.3.10. 

4.3.1 Product Gauss-Lobatto points 

The favorable conditioning properties of the one-dimensional Lagrange shape functions 
based on the Gauss-Lobatto points in K, (Figure 2.24) suggest that the Lagrange nodal 
element on the product geometry K,  = K ,  x K ,  should be designed using the Carte- 
sian product of the Gauss-Lobatto points in both axial directions (1 and &. Numerical 
experience confirms that indeed this is a good choice. For future reference let us define an 
orientation of the edges e l ,  e2,.  . . , e4 as shown in Figure 4.5. 

v.7 5 2  A v 4  

e4 -1 I 

e' K ,  

V I  -1 v 2  

Figure 4.5 Orientation of edges on the reference quadrilateral K ,  

Quadrilateral elements admit two different directional orders of approximation p ,  T 2 1. 
Let yZ(') E Ka and yj') E K, be the one-dimensional Gauss-Lobatto points of the orders 
p and T ,  respectively (see Paragraph 2.4.5). For algorithmic purposes it is convenient to 
split the ( p  + 1 ) ( ~  + 1) product points in K, into three groups as follows: 

Four vertex nodes are defined as 

(4.30) 
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There are r - 1 edge-interior nodes (edge nodes) on the edges e l ,  e2 and p - 1 edge nodes 
on the edges e3, e4. For algorithmic purposes it is practical to sort them according to the 
orientation of the edges shown in Figure 4.5, 

and so on. 

way, for example as 
The (p - 1)(r - 1) element-interior nodes (bubble nodes) can be sorted in any unique 

(4.32) 

b ( P )  ( 4 ) .  
Vp-l,T-l (9 ,  , Y T  

With this point set in hand, the Lagrange QP,"-element is constructed as follows: 

4.3.2 Lagrange-Gauss-Lobatto Qp3r-elements 

It is natural to construct the master Qp,"-element on the reference domain Kq first, and then 
to extend it to an arbitrary convex quadrilateral domain K .  

Qp?'-e/ement on the reference domain K ,  
element is a triad (K,, Q""(K,), Zq),  where 

In the sense of Definition 3.1 the master 

and the set of degrees of freedom C, contains linear forms associated with function values 
at the (p + 1)(r + 1) nodal points in the usual sense. It is customary to write Q P  = QP,' if 
r = p .  

Nodal basis on K ,  Let @?), @PI, . . . ,192~ be the set of the pth-order one-dimensional 
Lagrange nodal shape functions (2.57) on the reference domain Ka, satisfying the delta 
property (2.56), 

( y p )  = &. (4.34) 

The nodal shape functions on the reference domain K,  are split into three groups according 
to the different types of nodes introduced above. 
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There are four vertex functions 

(4.35) pb"(6) = / p ( < I ) O ~ ) ( < 2 ) .  

P?(E) = @ ~ l ( < l ) O Y ) ( < 2 ) >  

P?(E) = Q:~,(<l)Q!.$(<2). 

p:(E) = @y'(<1)6'!2~(<2). 

Further one has T - 1 edge functions associated with the edges el and e2, and p - 1 edge 
functions corresponding to the edges e3 and e4. On the edge tJ l ,  for example, they have the 
form 

(4.36) 

(4.37) 

The next two simple propositions state that indeed the above-defined shape functions form 
a basis of the finite element space, and that they satisfy the delta property (3.4). 

Proposition 4.5 The shape functions (4.35)-(4.37)fOrm a basis in the space (4.33). 

Proof: The dimension of the space (4.33) is ( p  + 1)(~ + l), which is equal to the number 
4 + 2 ( p  - 1) + 2(r - 1) + ( p  - 1 ) ( ~  - 1) of the shape functions (4.35)-(4.37). Their linear 

Proposition 4.6 The basis functions (4.35)-(4.37) satisb the delta property (3.4) in the 
form 

independence follows easily from (4.34). 

(4.38) 

and therefore they are the nodal basis ofthe space (4.33) in the sen.se of Dejinition 3.3. 

Proof: This is left to the reader as a simple exercise. 

Several useful geometrical properties of the nodal shape functions (4.35)-(4.37) are 
presented in Proposition 4.7, and the shape functions of the Q2- and Q'-elements are 
shown in Examples 4.1 and 4.2. 
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Proposition 4.7 The Lagrange-Gauss-Lobatto shape functions (4.35)-(4.37) have thefol- 
lowing properties: 

1. The vertex shape,function (4.35) corresponding to a vertex v'" of K ,  vanishes at all 
remaining vertices and on the two opposite edges of K,.  

2. All edge shape functions (4.36) associated with an edge e, vanish at all vertices of 
K, and on all remaining edges. 

3. All bubble shape functions (4.37) vanish on the whole boundary of K,. 

4. Each nodal shape function (4.35)-(4.37) is either zero or polynomial of degree exactly 
when restricted to the edges el and e2. and either zero or polynomial of degree 

This follows easily from (4.34), using the fact that every one-dimensional pth- 

exactly p when restricted to the edges e 3  and e4. 

Proof: 
degree polynomial is determined uniquely by its values at p + 1 distinct points. 

EXAMPLE 4.1 (Lagrange-Gauss-Lobatto Q2-elernent) 

The nodal basis of the Q2-element on the reference domain K ,  is shown in Figures 
4.64.8. 

Figure 4.6 Nodal basis of the Q2-element; the vertex functions p:', (pi2, cpp and cpb'j 

Figure 4.7 Nodal basis of the Q2-elernent; the edge functions p;!,, cpyz, ,  cp;?<, and p;f, 

Figure 4.8 Nodal basis of the Q2-elernent; the bubble function (P:,,,~ 
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EXAMPLE 4.2 (Lagrange-Gauss-Lobatto Q3-element) 

The nodal basis of the @element on the reference domain Kq is shown in Figures 
4.94.12. 

Figure 4.9 Nodal basis of the Q3-element; the vertex functions pi1, 97, pi3 and 9;'" 

Figure 4.10 Nodal basis of the Q3-element; the edge functions (p;',, cpzt,, cp;:, and cp;:9 

Figure 4.11 Nodal basis of the Q3-element; the edge functions cp;?,, ~p;:~, cp;:9 and &f,. 

Figure4.12 Nodal basis of the Q3-element; the bubble functions v ; , , ,~ ,  (P:,~,~, and (P;,~,~. 

The Gauss-Lobatto points in a convex quadfi/atefa/K c R2 Consider an arbi- 
trary convex quadrilateral domain K c R2 with pairwise-distinct vertices z1,x2, . . . , x4 

and straight edges s1, s2,. . . , s4 (Figure 3.3 in Section 3.2). The corresponding isopara- 
metric biaffine reference map XK : K,  i K was defined in (3.13). The vertex, edge, and 
interior (bubble) nodal points in are defined as the images of the nodal points (4.30), 
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(4.3 I ) ,  and (4.32) through the map 2 ~ .  Let us list some of them for future reference: 

There are four vertex nodes 

zO' = Z K ( 7 J U ' ) ,  

z2)2 
= 2 K ( V U 2 ) ,  

21'3 = X K ( 7 J U " ) ,  

z U 4  = 2K(7J1'4)) 

r - 1 edge nodes on the edges s1, s2 and p - 1 edge nodes on the edges s3, s 4 ,  

2;' = ZK(WT1). 

z;1 = 2 K ( w ; ' ) ,  

z:Y1 = 2 K ( u ; Y 1 )  

zi.1 = 2 K ( 4 . 1 ) ,  

d , 2  = 4 4 , 2 ) ,  

(similarly on the edges e2, e3, and e4), and ( p  - 1)(r - 1) interior (bubble) nodes 

(4.39) 

(4.40) 

(4.4 1 ) 

b - b 
Zp-1,T-l - 2K(VP- l .T - I ) ,  

as illustrated in Figure 4.13. 

> 
X 

Figure 4.13 Gauss-Lobatto points in a quadrilateral C R2 with straight edges 0, = r = 2) 

QpT'-element on K 
space 

In the sense of Definition 3.1, the domain K is equipped with the 

QP.'(K) = ( 4  o zK1; g E QP."(Kq)}.  (4.42) 

The set of degrees of freedom C K  consists of ( p  + l)(r  + 1) linear forms associated with 
function values at the same number of the Gauss-Lobatto nodal points (4.39), (4.40), and 
(4.41). 
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Nodal basis on K The nodal basis of the element ( K ,  QP.T(K). C,) is defined as 
usual, i.e., by composing the shape functions on the reference domain K,  with the inverse 
map zkl. Let us stress again that the presence of the inverse map is formal, and zG1 does 
not need to be evaluated in the finite element code. 

Proposition 4.8 The set c , ( p  + 1)(r + 1) shupe,functions on K ,  

FJK(2)  = ( F J P 0 2 K 1 ) ( 4 .  (4.43) 

where p, represents the nodal shupe functions (4.35), (4.36) and (4.37) on the reference 
domain K,, constitutes the unique nodal basis of the space (4.42). The finite element 
( K ,  QP,‘(K), C,) is unisolvent. 

Proof: Left to the reader as an easy exercise. w 
The choice of optimal nodal points for triangular elements is much less trivial compared 

to the quadrilateral case, where the product Gauss-Lobatto points are known to have optimal 
interpolation properties. Therefore, before we present the higher-order triangular Lagrange 
PP-elements in Paragraphs 4.3.44.3.6, let us devote Paragraph 4.3.3 to the analysis of the 
quality of the Lagrange interpolation in d 2 1 spatial dimensions. 

4.3.3 Lagrange interpolation and the Lebesgue constant 

Assume a bounded convex domain K C Rd, polynomial space P ( K )  of the dimension 
N p ,  and a set of N p  distinct points {zZ},”_p, c fT that yield a unisolvent Lagrange nodal 
finite element ( K ,  P ( K ) ,  EK).  Thus, given an arbitrary function g E C(K) ,  there exists a 
unique polynomial g p  E P ( K )  such that gr,(z7) = g ( z Z )  for all 1 = 1 , 2 . .  . . , Np.  We use 
the notation 

Let G E P ( K )  be the best approximation of the function y in the maximum norm, 

It is not necessarily G = z N , g ,  but since G E P ( K ) ,  i t  holds G = XN,G. Therefore we 
have 

where 

is the standard operator maximum norm, and 111~~ I/ is referred to as the Lebesgue constant. 
The magnitude of the Lebesgue constant depends on the domain K ,  the polynomial space 

P ( K ) ,  and the interpolation points {zZ}zl. If the constant is small, then the interpolation 
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operator ZN, is good and vice versa. It is known that simple choices of interpolation points, 
such as equidistant, lead to disastrous exponential growth of IIZN~ I/ as the polynomial degree 
p is increased (this we saw already in Paragraph 2.7.4). 

Thus, given a domain K and polynomial space P ( K ) ,  we face the problem to find 
optimal interpolation points that minimize the Lebesgue constant. Such points are called 
Lebesgue points. Unfortunately, nothing seems to be known about Lebesgue points in more 
than one spatial dimension. The best choices available today are the product Gauss-Lobatto 

-points on quadrilaterals, and the Fekete points on triangles. Let us introduce the latter point 
set in the next paragraph. 

4.3.4 The Fekete points 

Let us first define the Fekete points and then discuss their properties and their application 
to the construction of higher-order Lagrange elements. 

Definition 4.1 (Fekete points) Let a bounded convex domain K c Rd be equipped with 
a polynomial space P ( K )  of the dimension Np .  Given an arbitrary basis {8z},”; of the 
space P( K ) ,  the Fekete points { y,},”_p, C r a r e  apoint set that maximizes the determinant 

where L is the generalized Vandermonde matrix (3.7) for the Lagrange degrees of freedom 

LZb) = S ( E J  

L(E,, t ,>. . . ? t N P )  = {~z(%)l:;=l = {%(tz)l:;=l. (4.45) 

Recall that the generalized Vandermonde matrix L is used to construct the unique nodal 
basis of nodal finite elements (see Theorem 3 .  I ) .  It will be shown in Theorem 4.1 that the 
Fekete points are invariant under the choice of the basis ( 1 9 ~ ) ~ ~ .  

Construction Since no explicit formulae for the Fekete points are available, they have 
to be constructed by maximizing the determinant (4.44) numerically. This is a nonlinear 
optimization problem, and numerical methods may produce various solutions depending on 
the initial condition and other factors. The choice of the initial condition influences the result 
in a most significant way. Since the global optimality is unclear, the solutions are usually 
referred to as approximate Fekete points. A numerical algorithm for the construction of 
approximate Fekete points for triangles of polynomial degrees p 5 19, based on a steepest 
ascent approach, was presented in [ 1 181. 

Properties The key observation made in [ 151 and [ 161 (in the context of interpolation) 
was that in the one-dimensional case and in Cartesian product geometries, the Gauss- 
Lobatto and Fekete points are identical. The advantage of the Fekete points is that they 
can be defined for any geometry. Numerical experiments indicate that the Lagrange nodal 
shape functions on triangular elements built on the Fekete points have excellent conditioning 
properties (examples will be given later). However, there is no optimality proof, so it can 
be expected that even better point sets will appear in the future. Some known facts about 
the Fekete points are summarized below. 
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Theorem 4.1 Let p 2 1. The Fekete points have the following properties: 
- 

1. The Feketepoints {gz}21 c K t  are invariant underthechoice ofthe basis { S z } ~ l  c 
W K d .  

2. In one-dimensional intervals and Cartesian product geometries the Fekete and G a u s s  
Lobatto points are the same. 

3. On the edges of triangular domains the Fekete points coincide with the one-dimensional 
Gauss-Lobatto points. 

Proof: Assertion 1. follows easily from the basic properties of determinants (see Para- 
graph A. 1.9): The change of basis multiplies the determinant with a constant independent 
of the points. See 1531 and [ 151 for 2. Under the assumptions that the Vandermonde matrix 
is nonsingular, there exists a maximum number of points that can lie on the boundary. With 
a conjecture that the Fekete points in fTt attain this maximum number on the edges, 3. was 

The Fekete points presented in Tables 4.6-4.8 and on the companion CD-ROM (for 

proved in [ 151. 

1 5 p 5 19) were drawn from [ 1181 with permission of the authors. 

Table 4.6 Fekete points in rt, p = 1. 

Number of points tl-Coordinate 12-Coordinate 

n = 3  1 .oooooooooooo - 1 .oooooooooooo 
- 1 .oooooooooooo 1 .oooooooooooo 
- 1 .oooooooooooo - 1 .oooooooooooo 

Table 4.7 Fekete points in K,, p = 2. 

Number of points <I-Coordinate 

n = 6  0.000000000000 
- 1 .oooooooooooo 
- 1 .oooooooooooo 
0.000000000000 

- 1 .oooooooooooo 
1 .oooooooooooo 

&-Coordinate 

- 1 .oooooooooooo 
- 1 .oooooooooooo 
0.000000000000 
0.000000000000 
1 .oooooooooooo 

- 1 .oooooooooooo 

Table 4.8 Approximate Fekete points in Kt,  p = 3. 

Number of points [I-Coordinate &-Coordinate 

d = l O  -0.333333333333 
-0.44721 3595500 
- 1 .oooooooooooo 
- 1 .oooooooooooo 
0.4472 13595500 

-0.4472 13595500 
- 1 .oooooooooooo 
0.447213595500 

- 1 .oooooooooooo 
1 .oooooooooooo 

-0.333333333333 
- 1 .oooooooooooo 
- 1 .oooooooooooo 
-0.4472 13595500 
- 1 .oooooooooooo 
0.4472 13595500 
0.4472 13595500 

-0.4472 13595500 
1 .oooooooooooo 

- 1 .oooooooooooo 
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The Fekete points are shown for p = 1 , 2 ,  . . . ,15 in Figure 4.14. 

Figure 4.14 The Fekete points in Kt, p = 1 , 2 , .  . . , 15. 
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Unique enumeration of the Fekete points For algorithmic purposes it is necessary 
to enumerate the Fekete points in Kt in a unique way. We assume that the edges of the 
reference triangle K f  are oriented as shown in Figure 4.15. 

- I  

Figure 4.15 Orientation of edges on the reference triangle Kt 

Consider the one-dimensional pth-order Gauss-Lobatto points 9:’) E K, from Para- 
graph 2.4.5. By Theorem 4.1, the Fekete points exactly coincide with the Gauss-Lobatto 
points on edges of K,. The three vertex nodes are denoted by 

The p - 1 edge nodes on each edge are sorted according to the orientation of the edge. For 
example, for the edge el we have 

uf’ = (yp’,yjp)) = (ya”’, -l) ,  (4.47) 

v;’ = (y!p.yj”’) = ( y p  -l), 

v;i1 = (!I, ( P I  ,Y1 ( 7 1 )  ) = ( y p - 1 ) .  

Such enumeration of the edge nodes makes it possible to easily include both quadrilateral 
and triangular elements into hybrid quadrilateral/triangular meshes. The remaining ( p  - 
l ) (p  - 2)/2 interior (bubble) nodes can be sorted in any unique way, and we denote them 

b b  
by Vl> v2,. . . ?:P-1)(P-2)/2.  

4.3.5 Lagrange-Fekete PP-elements 

The Lagrange Pp-element on the reference triangular domain K f  is equipped with the 
polynomial space Pp(K,),  dim(Pp(Kt))  = N p  = ( p  + l ) (p  + 2)/2, and the set of the 
Lagrange degrees of freedom C = {L1, L z ,  . . . . L N ~ }  associated with the Fekete points 
E l ,  E 2 ,  . . , , E N p .  The degrees of freedom are defined as the reader expects: L l ( g )  = g(E1), 
La(g) = g(E2) ,  . . ., L c , , ( ~ )  = g ( E N I , )  for all g E PP(K,). The unique Lagrange nodal 
basis satisfying the delta property (3.2) is obtained in the standard way by inverting the 
generalized Vandermonde matrix (4.45). 
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Enumeration of shape functions For algorithmic purposes we also need to split 
the Lagrange-Fekete shape functions into the vertex, edge and bubble functions. By ( P : ~  

we denote the shape function associated with the mth vertex node uvm, m = 1,2,3.  
The symbol ~ 2 , ~  stands for the shape function corresponding to the mth edge node uz 
(following the notation (4.47)), and (pi,, stands for the shape function associated with the 
mth bubble node u i ,  m = 1,2 , .  . . , ( p  - l ) ( p  - 2)/2. Proposition 4.9 describes the 
geometrical properties of the shape functions: 

Proposition 4.9 The Lagrange-Fekete shape functions have the following properties: 

1. The vertex shape function py', corresponding to the vertex node uvz, vanishes at the 
two remaining vertices and on the opposite edge of Kt. 

2. The edge shape function (P,",'~ associated with the edge e, vanishes at all vertices and 
on all edges of Kt except fore,. 

3. All bubble shape functions vanish on the whole boundary of Kt. 

4. Each Lagrange-Fekete shape function is either zero or a polynomial of the degree 
exactly p when restricted to the edges el,  e2, or e3. 

Proof: Analogous to the proof of Proposition 4.7. 

The next two examples show the Lagrange-Fekete shape functions for the Q2- and 
Q3-elements: 

rn EXAMPLE 4.3 (P2-eIement) 

The nodal basis of the P2-element on the reference domain Kt is shown in Figures 
4.16and4.17. 

Figure 4.16 Nodal basis of the P*-element; the vertex functions cpp', cpy . and cpp3 

Figure 4.17 Nodal basis of the P2-element; the edge functions c p ; t t ,  cp;?,, and cp;?,. 
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EXAMPLE 4.4 (P3-eiement) 

The nodal basis of the P3-element on the reference domain Kt is shown in Figures 
4.18421. 

Figure 4.18 Nodal basis of the P3-element; the vertex functions 9:' , cp?, and q7Y3. 

Figure 4.19 Nodal basis of the P2-element; the edge functions cp;;,, cp;?,, and ~p;:~. 

Figure 4.20 Nodal basis of the P3-element; the edge functions cp;?,, &Ti. and p;,i. 

Figure 4.21 Nodal basis of the P3-element; the bubble function cpi,,. 

4.3.6 Basis of the space Vh,p 

Assume a regular hybrid mesh 7h ,p  = { K l ,  Kz, . . . , K M }  consisting of Mq QP-elements 
and Mp PP-elements, Mq + M p  = M 2 1. The requirement of a uniform polynomial 
degree p in the mesh is characteristic for nodal elements. The approximation could not be 
continuous with Lagrange elements of different polynomial degrees due to nonmatching 
nodal points on edges. This is illustrated in Figure 4.22. 
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> 
X I  

I 

Figure 4.22 Mismatched nodal polnt5 on Q'/Q2-element interface 

It is our aim to use the shape functions defined Paragraphs 4.3.2 and 4.3.5 to construct the 
basis functions 211,712,. . . , VN of the space vh>p. For this purpose, by x,, a = 1 , 2 , .  . . , Mu 
denote the unconstrained grid vertices, and by s J ,  j = 1,2 ,  . . . , Me the unconstrained mesh 
edges (by unconstrained we mean not lying on the Dirichlet boundary rD,h). 

Proposition 4.10 The dimension of the$nite element space vh ,p  is 

MP. 
( P  - l ) ( P  - 2) N = dim(Vh,,) = Mu + ( p  - l)Me + ( p  - 1 ) 2 A l q  + 

2 
Proof: 

There are Mu vertex functions associated with unconstrained grid vertices, h l , ( p  - 1) 
edge functions related to unconstrained mesh edges, and Mq ( p  - 1)2 + M p ( p  - 1) ( p  - 2)/2 
bubble functions associated with element interiors. These three types of basis functions are 
constructed as follows: 

Straightforward from the definition (4.9) of the space Vh,,. 

Vertex basis functions: 

in Figure 4.23. 
Assume the vertex element patch S ( i )  corresponding to a grid vertex z,, as illustrated 

x2 A 

/ '  > 
X I  

Figure 4.23 
mesh 

Element patch S(z) corresponding to an unconstrained vertex z2 In a hybrid Q2/P2 
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The vertex basis function ul" associated with x, vanishes in i2j7 \ S ( i ) ,  and in S ( i )  i t  is 
defined analogously to (4.16), 

u l ' a ( z ) I ~ A .  = (yGf o z,:)(x) if Kk E S ( i )  is aquadrilateral, (4.48) 

zll't (z) 1 Kk = (py o z;: ,)(x) if K,, E ~ ( i )  is a triangle. 

Here cp:;, or 9:' is the unique vertex nodal shape function of the polynomial degree p on 
Kq or Kt such that py7 (zki (2,)) = 1 or pr'.(z,i, (z,)) = 1, respectively. The edge 
function u " > ( z )  associated with a nodal point x, vanishes at all remaining nodal points in 
the element patch S( i ) .  

Edge basis functions: 
Assume an unconstrained mesh edge sJ with the endpoints z,, and x Z 2 .  The global 

orientation of this edge can be defined, e.g., as the direction from the vertex with the lower 
index to the vertex with the greater index, i.e., sJ = z,,zz2 if il < i 2  and s3 = x , , ~ , ,  
otherwise. 

We define an edge element patch S e ( j ) ,  

where 

N,( j )  = { k ;  Kk E TIP,  sJ is an edge of Kk} ,  

(4.49) 

(4.50) 

as shown in Figure 4.24 

x /  

Figure 4.24 Element patch S, (J )  corresponding to an unconstrained mesh edge s j  

For each element KI, E S,(i) by el denote the edge of the reference domain k, such 
that z~~ ( e l )  = s j .  Use the edge-interior nodal points on el and the reference map X K ~  to 
obtain coordinates of the edge-interior nodal points z;;, m = 1,2 ,  . . . , p - 1. These points 
are ordered on the edge s3 according to its global orientation (i.e., xcp' is next to zil and 
z:-l is next to xiz if sJ = z,, zt2) .  There are p - 1 edge basis functions u;' , u? , . . . , up- 
C Vh,P associated with the points x'?, x? , . . . , x:-~, respectively. Each edge function 
u2, 1 5 m 5 p - 1, is defined to be zero in Slh \ S e ( j ) ,  and in the patch S e ( j )  it satisfies 

S J  

i i 2 ( z ) I ~ ~  = (p;fY o x,i)(x) if h'k E Se( j )  is aquadrilateral, (4.51) 

u % ( z ) ~ K ~  = (pFlt o z,t)(z) if Kk E s , ( J )  is a triangle. 
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Here again p::q or yFit is the unique edge nodal shape function of the polynomial degree 
p on K ,  or K t ,  such that (PF!~(ZL: (&)) = 1 or p~~,(z,~,  (&A)) = 1, respectively. The 
edge function $A (z) associated with a nodal point z$ vanishes at all remaining nodal 
points in the element patch S( i ) .  

Bubble basis functions: 
Last to be defined are the bubble basis functions. There are ( p  - 1)' bubble functions 

in each quadrilateral and ( p  - l ) ( p  - 2)/2 in each triangular element. The nodal points in 
the mesh element Kk are defined, as usual, to be the images of the interior nodal points in 
the corresponding reference domain k through the reference map X K ~  : k + Kk. 

Consider, for example, a triangular element Kk E 7 h , p  and the interior nodal points 
$A 1 zCBh 3 ' ' ' 7 z:-l)(p-2)/2. The bubble function w k h  associated with the nodal point 

x:h is defined to vanish in Q, \ Kk, and in Kk we have 

Here p!,t E P(Kt )  is the bubble shape function satisfying y: , t (z&:(z2))  = 1. The 
bubble function 7)kL (2) associated with a nodal point x:, vanishes at all remaining nodal 
points in the element Kk, and thus also on its boundary dKk.  

> 
X I  

Figure 4.25 
bubble function appears on P"-elements. 

There is a single biquadratic bubble function on every Q2-element, and a single cubic 

Proposition 4.11 The functions (4.48), (4.5/), and (4.52) are continuous in QL and con- 
stitute together a basis ofthe space V&. 

Proof: This follows easily from the linear independence of basis functions associated 
with different nodal points in 0th. 

4.3.7 Data structures 

Before presenting the element-by-element assembling procedure in Paragraph 4.3.9, let us 
discuss the construction of the connectivity arrays. Again let the hybrid Q p l P p  mesh TL,+ 
be represented via an element array ElementP *Elem of the length A[. 

Element data structure The Element data structure from Paragraph 4.1.6 can be 
extended to the higher-order case as follows: 
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struct t 
int nv; 

int *vert; 
int *vert-dir; 
int *vert-dof; 
int *edge_dir; 
int *+edge_dof; 

int *bubb-dof; 

int t o ;  

> ElementP; 
. . .  

//number of vertices 
/ / ( 4  for quads, 3 for triangles) 
//global vertex indices (length nv) 
//vertex Dirichlet flags (length nv) 
//vertex connectivity array (length nv) 
//edge Dirichlet flags (length nv) 
//two-dimensional edge connectivity array 
//(dimension nv*(MAXP-1)) 
//bubble connectivity array 
//(length (MAXP-l)*(MAXP-l) for quads, 
//and (MAXP-l)*(MAXP-2)/2 for triangles) 
//edge orientation flags (length nv) 

Here MAXP is the maximum allowed polynomial degree of the finiteelements. The ElementP 
data structure can be optimized (the stored data are not independent) but we prefer this form 
for the sake of transparency. The optimization of data structures and algorithms will be 
described at the end of Paragraph 4.3.9. The vertex indices vert, vertex Dirichlet flags 
vert-dir and the vertex connectivity arrays vert-dof are used analogously to Paragraph 
4.1.6. The meaning of the other variables is described below. 

Edge Dirichlet flags The function of the edge Dirichlet flags Elem [ml . edge-dir is 
analogous to the flags Elem [ml . vert-dir: The variable Elem [ml . edge-dir [ j 1, 1 = 
1 , 2 , .  . . ,nu, is zero if the edge x ~ , , ,  ( e ) )  of I(,,, is unconstrained (i.e., not lying on the 
Dirichlet boundary r D , ! , ) ,  and one otherwise. These flags are defined easily, using the fact 
that an edge is constrained if and only if both of its vertices are constrained (see Algorithm 
4.3). 

Edge orientation flags (for p 2 3 only) When the number of edge-interior nodal 
points exceeds one (i.e., for p 2 3), one has to take care about the orientation of the edges. 
Assume an element K,,, E the appropriate reference domain K = K ,  or I? = K t ,  
and the reference map X K , , ,  : K -+ K,,,. Let s J  = x7 ,xLLr  z 1  < 22, be an edge of K,,,, 
and let ek be the corresponding edge of k, i.e., sJ = x ~ , , ,  ( e k ) .  Since the orientations of 
s, and are independent, i t  is either 

The ElementP data structure contains the array Elem [ml . o [I = ?= 1 of the length nv for 
this purpose. In case (A) the orientations of .sl and P A  are compatible, i.e., the reference 
map X K , , ,  preserves the ordering of the edge-internal nodes, 

(A)  x;! = X ~ ~ , , ( V : ~ )  f o r a l l l < r - < p - l ,  

and we define Elem [ml . o [k] = 1. In the opposite case the ordering of the edge-internal 
nodes is reversed, 

and we define Elem [m] . o [k] = -1. This will be done in Algorithm 4.3. 
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Unique enumeration of edges Mesh generators always provide a list of vertices and 
a list of elements. This defines their unique enumeration as necessary for the definition of 
the vertex and bubble connectivities. Also a list of edges is needed for the definition of edge 
connectivities, but such a list usually is not provided by mesh generators. Therefore let us 
present a simple algorithm that enumerates unconstrained mesh edges. We begin with a 
data structure for the edges, 

struct t 
int nl, n2; 
int el, e2; 

1 TmpEdgeData; 

Here nl < n2 are the indices of the vertices of the edge that define its orientation, and 
el < e2 the indices of the adjacent elements. These entries will be defined for every 
unconstrained mesh edge in Algorithm 4.3. The list of the edges, 

TmpEdgeData +EdgeList; 

has the length 4M. This is quite a crude upper bound, but EdgeList  will be deallocated 
immediately after the element connectivity arrays are defined. 

Algorithm 4.3 (Creating a temporary list of edges) 

length := 0; //Current length of EdgeList 
for m = 1,2,. . . ,M do { 
if (Elemlm1.n~ == 4) then { 
//The first edge of K n L :  
vA := Elemlm] .vert[ll; 
vB : = Elem [ml . vert 131 ; 
if (vA < vB) then Elem[ml.o[ll : =  1; 
else ElemCml . o [ l l  := -1; 
//The first edge of K,,,: 
dirA :=  ElemImI .vert.dir[ll ; 

dirB : = Elem Iml . vert-dir I31 ; 
if (dirA+dirB == 1) then ElemCml .edge.dirlll := 1; 
else ElemCm] .edge.dir[l] := 0; 
//The first edge of KnL:  
//(if unconstrained and not visited before) 
if (ElemCml .edge-dir[l] == 0 )  then { 

/ / K , n  is a quadrilateral 
Defining the orientation flag: 

Defining the Dirichlet flag: 

Adding to EdgeList 

CheckEdgeList(vA,vB,EdgeList,length,&found,&pos); 
if (found == 0 )  then { //The edge was not found in EdgeList 
length := length + 1; 
if (vA < vB) then { 
EdgeList [length] .nl := vA; 
EdgeListllengthl .n2 := vB; 

1 
else { 
EdgeList [length] .nl := vB; 
EdgeList [length] .n2 := vA; 

} 
EdgeList [length] .el := m ;  
EdgeList [length] .e2 := -1; 

1 

1 

else { //The edge was found in EdgeList on the position pas 
EdgeList[posl .e2 := m ;  

1 
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. . _  

. . . 

. . . 

. . , 

else { 

//The same for the remaining three edges: 
//2nd edge: 
//3rd edge: 
//4th edge: 

vA = Elem [ml .vert 121 , vB = Elem[ml .vert 141 
vA = Elem [ml . vert 111 , vB = Elemrml .vert 121 
vA = Elem [ml .vert 131 , vB = Elem1ml .vert I41 

1 
/ / K m  is a triangle 

//The first edge of K , r j :  
vA := Elem[ml.vertlll; 
vB : = Elem [ml . vert C21 ; 
if (vA < vB) then Elem1mI .0[1] := 1; 
else Elem[ml . o [ l l  := -1; 
//The first edge of K,,,: 
dirA : = Elem [ml .vert_dir [l l  ; 
dirB : = Elem [ml .vert_dir [21 ; 
if (dirA+dirB == 1) then Elemiml .edge_dir[ll := 1; 
else Elem[ml .edge-dirIll := 0; 
//The first edge of Kv,: Adding to EdgeList 
//(if unconstrained and not visited before) 
if (ElemCml .edge_dir[ll == 0 )  then { 

Defining the orientation flag: 

Defining the Dirichlet flag: 

CheckEdgeList(vA,vB,EdgeList,length,&found,&pos); 
if (found == 0) then { //The edge was not found in EdgeList 
length := length + 1; 
if (vA C vB) then { 
EdgeListIlengthl .nl := vA; 
EdgeList [length] .n2 := vB; 

1 
else { 
EdgeList [length] .nl := vB; 
EdgeList [length] .n2 := vA; 

1 
EdgeList [length] .el := m; 
EdgeList [length] . e2 := -1 ; 

1 

1 

else { //The edge was found in EdgeList on the position pos 
EdgeListlposl .e2 := m; 

1 _ _ _  
. . . 
. . . 

//The same for the remaining two edges: 
//2nd edge: 
//3rd edge: 

vA = Elem[m] .vert [ 2 ]  , vB = Elemcml . vert 131 
vA = Elem Iml .vert 131 , vB = Elemlml . vert 111 

:= length ~ 1; //The number of unconstrained mesh edges 

Here, the function CheckEdgeList (vA , vB , EdgeList , length, &f ound ,&pos) parses 
the EdgeList and tests if either { vA, vB} or { vB , vA} are present. If found, it returns found 
: = 1 and the corresponding position pos, otherwise it returns found : = 0. 

4.3.8 Connectivity arrays 

Now the edge and bubble connectivity arrays edge-dof and bubb-dof can be defined. The 
j t h  component of the array Elem[ml . edge-dof [il, 1 5 i 5 m i ,  1 5 j 5 p - 1, contains 
either 

0 the index of the edge basis function of the space VfL,p associated with the j th  internal 
node zK,,, ( w ; ~ )  on the ith edge of K,,, (if Elem [ml . edge-dir [il == 0) 

0 or a negative integer number -NBC (if Elem [m] . edge-dir [i] == 1). 
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In the case of nonhomogeneous boundary conditions, the values of the Dirichlet lift G at 
the edge-internal nodes of constrained edges can be stored via an array of real numbers. The 
index NBC can be used to indicate a position in this array, where the value of the Dirichlet 
lift G at the corresponding edge-internal node of the element K ,  is stored (analogously 
to the treatment of constrained vertices in Paragraph 4.1.6). With this construction, the 
implementation of nonhomogeneous Dirichlet boundary conditions is straightforward. 

The algorithm for the edge connectivities is based on the temporary array EdgeList and 
proceeds in an edge-by-edge fashion. As before, let Mu be the number of unconstrained 
grid vertices (vertex DOF) and Me the number of unconstrained mesh edges. The algorithm 
will add p - 1 edge-internal DOF to every unconstrained edge. 

Algorithm 4.4 (Enumeration of edge DOF) 

//Loop over unconstrained edges: 
for e = 1,2, . . . ,  Me do { 
//Lower-index element adjacent to the edge EdgeListFe]: 
el = EdgeList [el .el ; 
if (Elem[ell.nv == 4) then { / / K e ,  is a quadrilateral 
//Locate the edge EdgeList [el in the element ElemLell : 
a1 := ElemCell .vert[i]; a2 := Elem[el] .vert[2]; 
a3 := ElemCell .vert[3] ; a4 := Elem[ell .vert[4l; 
bl := EdgeListlel .nl; b2 := EdgeListLel .n2; 
if ((bl==al and b2==a3) or (bl==a3 and b2==al)) then ee:=l; 
if ((bl==a2 and b2==a4) or (bl==a4 and b2==a2)) then ee:=2; 
if ((bl==al and b2==a2) or (bl==a2 and b2==al)) then ee:=3; 
if ((bl==a3 and b2==a4) or (bl==a4 and b2==a3)) then ee:=4; 
//Enumerate the edge-internal DOF on the ee-th edge of Elemlell: 
if (Elem[ell.o[eel == 1) then for j = 1,2 , . . . ,  p-1 do { 
//(the local and global orientations are compatible) 
Elem[ell .edge_dof [eel [jl := Mv + (p-l)*(e-l) + j; 
//Here: Mv is the number of vertex DOF, and (p-l)*(e-l) is the 
//number of edge-internal DDF assigned to previously visited edges. 

1 
else { 
//(incompatible orientations -- the ordering of local DOF is reversed) 
Elem[ell .edge_dof [eel [p-JI : =  Mv + (p-l)*(e-l) + J ;  

1 
1 
else { / / K v ,  is a triangle 
//Locate the edge EdgeList [el in the element Elemlell : 
a1 := Elem[el] .vert[l]; a2 := Elem[el].vert[2]; 
a3 := Elemlell .vertl31; 
bl :=  EdgeListIe] .nl; b2 := EdgeListCel .n2; 
if ((bl==al and b2==a2) or (bl==a2 and b2==al)) then ee:=l; 
if ((bl==a2 and b2==a3) or (bl==a3 and bZ==a2)) then ee:=2; 
if ((bl==a3 and bZ==al) or (bl==al and b2==a3)) then ee:=3; 
//Enumerate the edge-internal DOF on the ee-th edge of Elem[ell: 
if (Elem[ell.o[eel == 1) then for j = 1,2 , . . . ,  p-1 do { 
//(the local and global orientations are compatible) 
Elem[ell .edge_dof [eel [jl := Mv + (p-l)*(e-l) + J ;  

//Here: Mv is the number of vertex DOF, and (p-l)*(e-l) is the 
//number of edge-internal DOF assigned to previously visited edges. 

1 
else { 
//(incompatible orientations -- the ordering of local DOF is reversed) 
Elem[ell .edge_dof [eel [p-J] := Mv + (p-l)*(e-l) + j; 

1 
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} 
//Higher-index element adjacent to the edge EdgeListLe]: 
e2 = EdgeList [el . e2; 
if (e2 > -1) then { 
//Perform now the same operations as for Elemcell above 
. . .  

Deallocate EdgeList 

The distribution of the remaining M q ( p  - 1)2 + M,(p - l ) (p  - 2)/2 bubble DOF to 
element interiors is simpler: 

Algorithm 4.5 (Enumeration of bubble DOF) 

bubb-dof-count := Mv + (p-l)*Me; //Number of previously assigned DOF 
form = 1,2, . . . ,  M do { 
if (Elem[ml.nv == 4) then { / /KT, ,  is a quadrilateral 
for i = 1,2, . . . ,  (p-l)*(p-l) do { 
bubb-dof-count := bubb-dof-count + 1; 
Elem [ml . bubb-dof [il : = bubb-dof -count ; 

1 
} 
else { / / K m  is a triangle 
for i = 1 , 2 ,  . . . ,  (p-l)*(p-2)/2 do { 
bubb-dof _count : = bubb-dof .count + 1 ; 
Elem [m] . bubb-dof [i] : = bubb-dof _count ; 

1 
1 

1 

The connectivity arrays Elem [ml . vert-dof, Elem [m] . edge-dof and Elem [m] . bubb 
-dof on all elements K,  E Th,, are now ready. The connectivity algorithms can be written 
without storing the edge orientation flags Elem [ml . o explicitly. The reader can remove 
them after getting more familiar with the algorithm. 

EXAMPLE 4.5 (Connectivity arrays) 

Consider a mesh consisting of four quadratic Lagrange elements as shown in Figure 
4.23. Let the reference maps be chosen in such a way that the lower-left vertex of the 
reference domain always is linked to the lower-left comer of the physical element. 
If we consider, for example, a problem with homogeneous Dirichlet boundary con- 
ditions, then the dimension of the space VlL,, equals 8, and the basis functions are 
enumerated as shown in Figure 4.26. 

4.3.9 Assembling algorithm for QPIPP-elements 

The extension of Algorithm 4.2 to the Q”lPrJ-meshes is not complicated. Let us consider 
the same setting as in Paragraph 4.3.9, i.e., the model problem (4.2) with homogeneous 
Dirichlet boundary conditions. Moreover we assume that the simplifying conditions on the 
data formulated in Paragraph 4.1.5 are met. The following constants stay unchanged on all 
elements K,, 1 5 m 5 111: The Jacobian 
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Figure 4.26 
nodal elements. 

Enumeration of basis functions for a simple mesh consisting of four second-order 

Elem[rn]. J ac :=I JK,,, 1, 

and the entries of the inverse Jacobi matrix 

@!"' 
Elem[m]  .inv.j [r] [n] := __.  

ax,, 

for all 1 5 71, T 5 d. 

The four-dimensional array MESI-Q is extended to cover all combinations of shape functions 
on the reference domain K q ,  

where p1,p2,. . . , p(p+1)2 are the four vertex functions (4.35) associated with the nodes 
(4.30), followed by the 4(p - 1) edge functions (4.36) related to the nodes (4.31) for 
each edge e l ,  e2, .  . . , e4, and by the ( p  - 1)' bubble functions (4.37) corresponding to 
the interior nodes (4.32). All these shape functions were uniqely enumerated. The array 
MESI-T is extended to 

where p1.p2, . . . , p(p+l)(p+2)p stand for the three vertex functions associated with the 
nodes (4.46), followed by the 3(p -  1) edge functions related to the nodes (4.47) for each edge 
e l ,  e2, e3, and by the ( p  - 1) ( p  - 2)/2 bubble functions corresponding to the interior nodes. 
In the same way the master element mass integrals MEMI are extended to cover all combina- 
tions of the shape functions. The functions double SMC(Elem,k,l,m,MESI_Q,MEMI_4) 
and double SMC(Elem, k,l ,m,MESI_T,MEMI_T), that calculate the stiffness matrix con- 
tribution (4.24), stay unchanged. 

The assembling algorithm is analogous to Algorithm 4.2, only now it covers all combi- 
nations of the shape functions on the reference domain. 
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Algorithm 4.6 (Assembling algorithm for higher-order Lagrange elements) 

N := A f t ,  + ( p  - 1)Mc + ( p  - l ) * A l ,  + ( p  - l ) ( p  - 2)/2Af,;  
//Set the stiffness matrix S zero: 
for i = 1,2 ,..., N do for j = 1,2 , . . . ,  N do S[il[jl 
//Set the right-hand side vector F zero: 
for i = 1,2,. . . ,N do F[11 := 0 ;  
//Element loop: 
for m = 1,2, . . . ,  M do { 

:= 0 ;  

//Loop over vertex test functions: 
for i = 1,2,. . . ,Elem Em] .nv do { 
//Index of the vertex test function u7), ,  E L5L,r) 
/ / ( row position in S )  
ml := Elemlm] .vert_dof [i] ; 
//Loop over all vertex, edge and bubble basis functions: 
//(Filling the mlth row of s) 
//l. 
if (ml > -1) then for j = 1,2, . . . ,  Elem[ml.nv do { 

loop over vertex basis functions: 

//Index of the vertex basis function ?J,,,> E vh.,, 
//(column position in S )  
m2 := Elem[ml .vert.dof [J] ; 
if (m2 > -1) then { 
if (ElemIm] .nv == 4 then { 
S [ml ,m21 := S [ m l  ,m2] + SMC(Elem, i, J ,m,MESI_Q ,MEMI.Q) ; 

1 

} 

else { 
S[ml,m21 := Slml,m21 + SMC(Elem,i,j ,m,MESI_T,MEMI.T); 

} 
} //End of loop over vertex basis functions 
//2. loop over edge basis functions: 
if (ml > -1) then for j = 1,2, . . . ,  Elem[ml.nv do { 
for k = 1,2, ...,p- 1 do { 
//Index of the edge basis function o , , ~ ~  E V/,,T, 
//(column in S )  
m2 := Elemlml .edge_dof Cjl [kl ; 
if (m2 > -1) then { 
if (Elem[m] .nv == 4 then { 
S[ml,m21 := S[ml,m21 + SMC(Elem,i,4+j,m,MESI.Q,MEMLQ); 

} 

1 

else { 
S [ml ,m2] : = S [ml , m21 + SMC (Elem, i ,3+ j ,m , MESI-T, MEMI-T) ; 

1 
1 

} //End of loop over edge basis functions 
/ / 3 .  
if (Elemlml .nv == 4 then { 
if ( m l  > -1) then for k = 1,2, . . . ,  (p-l)*(p-l) do { 
//Index of the bubble basis function I , , , ) ~  E !l/,,J, 
//(column in S )  
m2 : = Elem [ml . bubb-dof [kl ; 
S I m l  ,m21 : = S [ m l  ,m21 + SMC (Elem, i ,4+4* (p- 1) + j ,m, MESI.4, MEMI-Q) ; 

loop over bubble basis functions: 

} 
1 
else { 
if ( m l  > -1) then for k = 1,2, . . . ,  (p-l)*(p-2)/2 do { 
//Index of the bubble basis function I ' , , , ~  E b;t,f, 
//(column in S )  
m2 : = Elem l m l  . bubb-dof [kl ; 
S [ml ,m2] : = S [ m l  ,m2] + SMC(Elem, i ,4+4* (p-1) +j , m ,  MESI-TI MEMI-T) ; 
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1 
} //End of loop over bubble basis functions 
//Now the mlth row of the stiffness matrix S is filled. 
//Contribution of the vertex test function v,,,~ to the right-hand side F :  
if ( m i  > -1) then { 
F[mi] : =  Flml] + Elem[m] .jac*sg f'")(E)p7'7(E)d6; 

I 
} //End of loop over vertex test functions 
//Now the hf,. rows in the linear algebraic system S Y  = F 
//corresponding to all vertex basis functions of the space Vir.,, 
//are filled. 
//Next fill the rows of S Y  = F corresponding to all edge test functions: 
//Loop over edge test functions: 
for i = 1,2, . . . , Elem Em1 .nv do { 

f o r  1 = i,2,...,p-i do { 
//Index of the edge t e s t  function ? J ~ ~ ~ ,  E E'h.IJ 

//(row in S )  
m i  : = Elemiml . edge-dof [i] ClI ; 
//Loop over all vertex, edge and bubble basis functions: 

//Contribution of the edge test function ?+, l l  to the right-hand side F :  
if ( m i  > -1) then { 

. . .  

Flml] := F[mll + Elemlml . jac*sg f'"')(E)p$'(c)dE; 
I 

I 
} //End of loop over edge test functions 
//At last fill the rows of S Y  = F corresponding to all bubble test functions: 
if (Elemlml .nv == 4 then { 
for k = i,2, . . . ,  (p-i)*(p-i) do { 
//Index of the bubble t e s t  function ZI,,~, E V),.r, 
//(row in S )  
mi : = Elem Iml . bubb-dof [kl ; 
//Loop over all vertex, edge and bubble basis functions: 

//Contribution of the bubble test function v,,,! to right-hand side F :  
F b l l  := F h l l  + ElemCmI .jac*sA- f'"'(E)p~.(E) dc; 

. . .  

1 
1 
else { 
for k = i,2, . . . ,  (p-l)*(p-1)/2 do { 
//Index of the bubble t e s t  function o , , , ~  E \'I,.,, 
//(row in S )  
mi : = Elem [ml . bubb-dof [kl ; 
//Loop over all vertex, edge and bubble basis functions: 

//Contribution of the bubble test function ?I, , ,!  to right-hand side F :  
F[mil := F[mi] + Elem[ml. jac*JI\ f('")(<)p!'(<)d<; 

. . .  

1 
} //End of loop over bubble test functions 

} //End of element loop 

If the simplifying conditions formulated in Paragraph 4.1.5 do not apply, then the Ja- 
cobian, the entries of the inverse Jacobi matrix, and other values are no longer constant 
in the elements. In such case, (4.24) has to be replaced with the more general relation 
(4.23), and instead of reading the precomputed entries from the MESI and MEMI arrays, the 
corresponding integrals have to be evaluated numerically. 

Optimization of Algorithm 4.6 Significant part of Algorithm 4.6 (the application of 
a given test function to all vertex, edge and bubble basis functions) was repeated with 
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minor changes four times. The algorithm was presented in this full form for the sake of 
transparency, but in practice the repeated part can be handled via a subroutine whose input 
parameters identify the given test function. The corresponding reformulation of Algorithm 
4.6 is straightforward. 

Moreover, all indices in the connectivity arrays Elem [m] . edge-dof [ j] , j = 1, 2, 
. . . , Elem [m] . nv are determined uniquely by the first index Elem [m] . edge-dof [ j] [l] 
and the orientation flag Elem [ml . o [j I . Therefore they do not need be stored explicitly. 
Analogously, it is sufficient to store just the first index of the bubble connectivity array, 
Elem [m] . bubb-dof [l] , instead of the whole array Elem [m] . bubb-dof. It can be recom- 
mended that the reader performs these optimization steps after a first version of the code is 
working. 

4.3.10 Lagrange interpolation on QplP-meshes 

The global interpolant of a function y E C(a,) on a regular mesh 7j,p consisting of Q7’- 
and/or Pr’-elements is obtained analogously to the Q1 / P h a s e  from Paragraph 4.1.8. 

Proposition 4.12 The global Lagrange interpolant Z(g) is continuous in atL for every 
function 9 E C ( t h ) .  Thus every regular mesh consisting of Q p -  and/or Pp-elements is 
conforming to the space H 1 ( O ) , ) .  

Proof: This is left to the reader as an easy exercise. 

As usual, the global interpolant is evaluated elementwise on the reference domains, 
using the sets of Gauss-Lobatto and Fekete points, and the Lagrange-Gauss-Lobatto and 
Lagrange-Fekete nodal shape functions. With p = 1, one obtains the lowest-order case 
discussed in Paragraph 4.1.8. 

4.3.1 1 Exercises 

Exercise 4.3 Prove Proposition 4.6. 

Exercise 4.4 Prove Proposition 4.7. 

Exercise 4.5 Prove Proposition 4.8. 

Exercise 4.6 Prove Proposition 4.10. 

Exercise 4.7 In Algorithm 4.6, replace the repeated application of a given test function to 
all vertex, edge and bubble basis functions with a suitable subroutine. 

Exercise 4.8 Extend your code from Exercise 4.2 to Q2 elements using Algorithm 4.6. 

1. Present plots cf the approximcite .solution,for the pammeters 

( ( I )  

(b)  (1 = 2, b = 1, Mi = 10, A12 = 5, 

(c) (L = 2; b = 1, A11 = 20, 

= 2, h = 1; A l l  = 4. A12 = 2, 

= 10, 

(d) a = 2, h = 1. A l l  = 40: A12 = 20. 

2. Present the convergence curve of‘the above computations in the H 1  (S2)-seminorm. 
Compare it with the convergence curve from Exercise 4.2. 

Exercise 4.9 Prove Proposition 4.12. 



CHAPTER 5 

TRANSIENT PROBLEMS AND ODE 
SOLVERS 

The nature changes at every time instant, and the numerical simulation of evolutionary pro- 
cesses plays an important role in applied sciences and engineering. Transient problems can 
be very complicated and the spectrum of numerical methods for their solution is accordingly 
wide. 

At the introductory level i t  is natural to begin with the Method of lines (MOL), which has 
a prominent position due to its ability to add temporal evolution to all numerical methods for 
stationary PDEs without altering the spatial discretization. This is demonstrated in Section 
5.1, where we exploit the finite element technology developed in Chapters 2 4 .  With the 
MOL this is the “easy part”, and the “real work” is done by solving the arising system of 
ordinary differential equations (ODES). Therefore, the largest part of this chapter is devoted 
to modern ODE solvers. 

Section 5.2 introduces the general concept of one-step methods, which are the best 
candidates to be used for MOL in combination with adaptive finite element methods. The 
discussion continues with the properties and implementation aspects of explicit and implicit 
Euler methods and higher-order Runge-Kutta (RK) schemes. Section 5.3 introduces the 
reader to stability analysis of ODES and ODE solvers. Basic understanding of stability helps 
the reader to use the ODE solvers adequately and efficiently. Section 5.4 presents the nowa- 
days most popular implicit higher-order methods, including the Gauss and Radau implicit 
Runge-Kutta (IRK) schemes. Presented are both the classical and simplified Newton’s 
methods for the solution of nonlinear algebraic systems arising in implicit ODE solvers. 
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5.1 METHOD OF LINES 

In this section the reader will need some basic facts about second-order parabolic problems 
from Chapter 1. Recall the general second-order parabolic equation (1.76), 

au -+h= f .  
at 

(5.1) 

where L is a second-order elliptic operator of the form ( I .  I ) ,  (2 C JR2 is a bounded domain 
with Lipschitz-continuous boundary, T > 0, 627. = 12 x (0. T) is the corresponding space- 
time cylinder, and f E C(Q?). The classical regularity assumptions are weakened after 
the problem is stated in the weak sense. For example, in the special case 

equation (5.1) describes the temporal evolution of the temperature u induced by heat sources 
of the density q in a domain 0 filled with an isotropic material. Here I;  is the thermal 
conductivity, Q the material density, and c the specific heat of the material. 

5.1.1 Model problem 

Assume that 8C2 consists of two disjoint open pieces rl;, and r N  such that 

(see Figure 4. I ) .  Equation (5.1) is equipped with the Dirichlet boundary conditions 

~ ( z ,  t )  = g D ( z )  for all (2. t )  E r'n x (0,T). (5.2) 

Neumann boundary conditions 

d u  
-(z.t) = g h r ( z )  3v 

forall ( z . t )  E r N  x (0.T).  (5.3) 

and, moreover, with an initial condition 

u ( z , 0 )  = ? L ~ ( z )  for all 2 E 0. (5.4) 

For simplicity. let the functions gn and y~ be time-independent in the following. 

5.1 -2 Weak formulation 

We learned in Chapter 1 how to formulate problem (5.1)-(5.4) in the weak sense: The 
nonhomogeneous boundary data gn is represented by a suitable Dirichlet lift G E H1(0), 
such that G = .(ID on r n  in the sense of traces. The solution u is written as a sum 

~ ( 2 .  t )  = G(2)  + U ( z .  t ) .  

where for all t E (0. T) 
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U ( f )  E v = { w  E H'(62): f+" = O}. 

Using the notation ( U ( t ) ) ( , )  = U ( . , f ) ,  the weak formulation reads: 

such that 
Given f E L 2 ( & ~ )  and U, = ?LO - G E V ,  find U E L2(0. T ;  V )  n C'([O,T]: L2(R))  

( U ( t ) ) ( z ) u ( z )  da: + u ( U ( t ) ,  u )  = [ ( u )  for all v E V. (5.5) 

U ( 0 )  = uo, (5.6) 

in the sense of distributions. Both the bilinear form u(..  .) and the linear form 1 ( - )  were 
defined in Chapter 4. 

: b 

5.1.3 The ODE system 

The basic idea of the Method of lines is to keep the temporal variable t continuous while 
the spatial part of the problem is discretized analogously to time-independent problems. 
This technique is called semidiscretization in space. The outline of the procedure is as 
follows: Perform all spatial approximation steps described in Paragraph 4.1.2 and design 
the piecewise-polynomial space C V according to the finite element mesh T1,?,. 
Construct a suitable basis 

(74 ,212 . .  . . . ? I N }  c vh,.y. 

Express the sought function UI~,?] as a linear combination of the basis functions uJ ,  ,I = 
1 .2 . .  . . N ,  with time-dependent coefficients y J ( t ) ,  

N 

(5.7) 
,=l  

[compare to (4.1 I)] .  
The variational formulation (5.5) is approximated using the sequence of approximations 

listed in Paragraph 4.1.2: The domain R is replaced with a simpler domain Cl,l suitable for 
meshing, boundary conditions are moved from dCl to the new boundary dR,,, coefficients 
and data are extended to f &  i f o h  @ ( 1 ,  the space V is replaced with a piecewise-polynomial 
space V,L,p built on the finite element mesh, exact integration is replaced with the Gaussian 
quadrature, etc. After inserting the construction (5.7) into the approximate variational 
formulation, one obtains 

N A' 

i = 1 . 2 , .  . . ~ N .  Written in matrix form, (5.8) reads 

MY(t) + S Y ( t )  = F ( t ) .  

Here, M is the mass matrix, 

(5.9) 
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S is the stiffness matrix, 

F is the right-hand side vector, 

and Y ( t )  is the vector of unknown time-dependent coefficients y3 ( t ) ,  j = 1,2: . . . , N. 

linear ODEs. Defining 
Now (5.9) no longer depends on the spatial variable 2, and thus (5.9) is a system of 

@ ( Y ( t ) , t )  = M P [ F ( t )  - S Y ( t ) ] ,  (5.10) 

one obtains a standard initial value problem 

Y ( t )  = @(Y(t )>t ) ,  
Y(0)  = Y". 

(5.1 1) 

(5.12) 

We assume that the right-hand side function @(Y,  t )  is continuous and locally Lipschitz in 
Y (these are the assumptions of the existence and uniqueness theorem for ODEs [25]). 

5.1.4 

In the finite element context, the initial coefficient vector Y o  = (yl,o. y z , ~ , .  . . , y ~ . ( ) ) ~ '  
is determined uniquely by any interpolant U,l,p,o E v,,T> of the initial condition U ( 0 )  = 

uo - G E V via the expansion 

Construction of the initial vector 

Here {vl. vz, . . . , V N }  is the finite element basis of the space vl,p. Since the interpolation 
is done in a Hilbert space setting, there are at least three basic interpolation options with 
different quality and cost: 

I .  Best interpolant minimizing the norm li(u0 - G) - Ut3,p,ollv, is obtained via the 
global orthogonal projection of q1 - G onto the space In this case, one has to 
solve a system of N = dim(v,.,) linear algebraic equations of the form (2.82), 

2. Projection-based interpolant that combines the Lagrange interpolation of vertex val- 
ues with the orthogonal projection on the edges and in the element interiors. The 
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one-dimensional version of this technique is simple (see Section 2.82), but in 2D it 
involves the nontrivial space which exceeds the scope of this text (see, e.g., 
[ 1 1 11 for details). This technique only involves the orthogonal projection locally, and 
therefore it  is faster but less accurate than the full orthogonal projection. 

3. Lagrange nodal interpolant. This is the fastest but at the same time the least accurate 
technique. One proceeds as described in Paragraph 4.1.8 for Q1/P'-meshes and in 
Paragraph 4.3.10 for meshes consisting of higher-order QP/Pp-elements. 

Evaluation of the vector Y ( t )  In most computations the mass matrix M is not in- 
verted explicitly since M-' is a large dense matrix. Instead, one usually resolves Y ( t )  
from a system of linear equations 

MY@) = B (5.14) 

with the right-hand side 

B = F ( f )  - S Y ( f ) .  

Iterative matrix solvers perform efficiently on the system (5.14) since the mass matrix M is 
well-conditioned (usually much better than the stiffness matrix S).  It is worth mentioning 
that certain spectral element methods yield a diagonal mass matrix M (see, e.g., [69]). 

5.1.5 Autonomous systems and phase flow 

The notions of autonomous system and phase flow will be used frequently in this chapter. 
By the symbol 

Y ( X " .  t ,  to) (5.15) 

we denote the solution Y ( t )  to (5.1 1)  at the time t E R, starting from the initial vector 
X" E RN and initial time to E R. Without loss of generality, we can assume that to  = 0. 
In the special case of autonomous systems, 

Y ( f )  = * ( Y )  (5.16) 

the time only enters relatively via time differences, and therefore one can leave out the 
initial time to from (5.15). Then the symbol 

Y ( X .  At) (5.17) 

is used to denote the solution to (5.16) starting at X E RN after the time-increment At. 
Autonomous systems occur frequently in practice (for example, if coefficients and data to 
a parabolic PDE do not depend on time explicitly) and they are the basis for the stability 
analysis of numerical methods for ODES (to be discussed in Section 5.3). 

Under the assumption that the solution Y ( t )  exists for all t E R, the RN + RN 
transformations 

F A t X  = Y ( X .  A t )  for all X E RN.  At E R 
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form a one-parameter Abelian (commutative) group. This group [and sometimes also the 
function y ( X ,  At) itself] is called phase flow of equation (5.16). The corresponding binary 
operation '*' is the continuation, 

The identity element of the phase flow is the identity transformation 

FOX = Y ( X .  0 )  = x for a11 x E I R ~ .  

and the inverse element to FA' is defined as the reader expects, 

The verification of the associativity law, 

is left to the reader as a simple exercise. 

5.2 SELECTEDTIME INTEGRATION SCHEMES 

There exist many excellent papers and books on the numerical solution of ODEs, and 
numerous sophisticated ODE packages can be downloaded from the Internet. However, 
one should not think that all important problems in the theory and numerics of ODEs 
have been solved. On the contrary: Significant progress has been made recently in the 
development of new methods and in understanding of the existing ones, and the numerical 
solution of ODEs continues being a very active research area. 

The initial-value ODE problems resulting from the MOL exhibit specific features that 
have to be considered when selecting an appropriate ODE solver. Often, stiffness makes 
the application of explicit schemes prohibitive and requires implicit methods. The ODE 
solver should be of a higher order of accuracy: Higher-order schemes are preferable even 
for lower-order spatial discretizations because of their efficiency. Third, the increasing 
popularity of self-adaptive finite element schemes prefers one-step ODE solvers. Summing 
up, higher-order implicit one-step methods are one of the nowadays' most popular choices. 

In Paragraph 5.2.1 we introduce the general concept of one-step methods and define their 
consistency and convergence. Paragraph 5.2.2 begins with the explicit and implicit Euler 
methods, and it  describes their application to the initial-value ODE system (5.1 I ) ,  (5.12) 
with emphasis on the case with the linear right-hand side (5.10). The concept of stiffness 
is discussed in Paragraph 5.2.3, and a discussion of modern explicit one-step Runge-Kutta 
(RK) methods for nonstiff problems is given in Paragraph 5.2.4. A feasible algorithm 
for automatic adaptivity based on embedded RK methods is described in Paragraph 5.2.5. 
General (implicit) RK methods are discussed in Paragraph 5.2.6. 
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5.2.1 

The general one-step method for equation (5.1 1 )  calculates an approximation Xt'nt of 
the solution at the time t + At using the approximation X at the time t and a time step At. 
This can be expressed using the notation 

One-step methods, consistency and convergence 

X'+at = & ( X .  t ,  At). (5.18) 

Analogously to the continuous case (5.17), in autonomous systems of the form (5.16) one 
can drop the temporal variable t and define 

XAt = € ( X .  At).  (5.19) 

The function & sometimes is referred to as the discrete phase flow of the autonomous system. 
Consider a finite time interval (0, T ) ,  and introduce its partition 0 = to < tl < t 2  < 

. . . < t~ = T ,  where t k  is the lcth temporal level and At, = tk+l - tk the kth time 
step, k = 0,1 , .  . . , K - 1. Then the one-step method (5.18) starting at the initial condition 
Y o  = Y ( 0 )  creates an approximation of the exact solution Y( t )  = y(Yo,t,O) of the 
problem (5.1 I) ,  (5.12) in the form of a sequence of discrete states Y l ,  Y2 . .  . . , Y K  at the 
times t l ,  t 2 ,  . . ., t ~ :  

Y 1  = &(Yo,O,At,), 
Y 2  = &(Y' . t l ,At , ) .  

(5.20) 

Y K  = &(yK-' , tK-l ,ntK-l)  

The consistency error of the one-step method (5.18) is defined naturally as the difference 
between the approximation and the exact solution to (5.1 1) after one time step, when 
starting from the same state X .  The following definition expresses this difference using 
the functions 3' and €. 

Definition 5.1 (Consistency error) The consistency error of the one-step method (5.18) at 
X E RN and t > 0 for  sufficiently small At > 0 is defined as 

E ( X ,  t ,  At)  = y ( X ,  t ,  At) - E ( X ,  t ,  At) .  

In order to distinguish between the lowest- and higher-order time integration schemes, 
it is natural to define the order of consistency. 

Definition 5.2 (Order of consistency) The order of consistency of the one-step method 
(5.18) equals p if 

E(X, t ,  At)  = O(ntp+l) (5.21) 

holds for  sufficiently small At locally uniformly for  all X and t. The method is said to be 
consistent if its order of consistency p is at least one. 

The following result is frequently used in the numerical analysis of ODES: 
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Lemma 5.1 (Consistency of one-step methods) Assume that the function E is continu- 
ously differentiable in the variable At for  all suflciently small 0 < At 5 At*. Then 
the one-step method (5.18) is consistent if and on1.v if there exists an increment function 
$ ( X ,  f ,  At) continuous in t f o r  all X ,  such that O(X.  t .  0 )  = @ ( X ,  t )  and 

€ ( X .  t ,  At)  = X + A t $ ( X ,  f .  At) 

Proof: Based on the Taylor expansion of the functions Y and € (see, e.g., [25]). 

Naturally, one wants to analyze whether and when the approximate solution approaches 
the exact one as the time step converges to zero. For this purpose we define the discretization 
error and convergence of one-step methods: 

Definition 5.3 (Discretization error) Assume that the system (5. I I ) ,  (5.12) has an exact 
solution Y ( t )  in the interval (0, T ) .  Consider a partition 0 = t o  < tl < t 2  < . . . < t K  = 

T and let Y o ,  Y 1 ,  . . . , Y be the approximate solution obtained by means ofthe one-step 
method (5.18). The discretization error is defined as 

Edt = max IjY(tk) - Y q .  
k=1.2 ... .K 

The symbol d t  stands for  the diameter of the time partition, 

d t  = 1nax ( t k  - t L - 1 )  
k=1.2. .K 

The notion of convergence of the general one-step method (5.18) is defined as follows: 

Definition 5.4 (Convergence) The one-step method (5.18) is said t o  be convergent with 
the order p 2 1 ifthere exists a con.stant df* > 0 such that 

for all temporal partitions of the interval (), T )  whose diameter dt 5 dt*.  

The following theorem is the basic convergence result for one-step methods: 

Theorem 5.1 (Convergence of one-step methods) Let E ( X ,  t ,  At) be a one-step method 
whose increment function $(X, t ,  At) is locally Lipschitz-continuous in the variable X .  
Assume that along a trajectory 

the consistency error sati$es 

Y(t  + At) - &(Y(t) ,  t ,  At)  = O(Atp+'). 

Then the one-step method is convergent to Y ( t )  with the order p. 

Proof: The proof is based on Lemma 5.1. See, e.g., [25]. 

The simplest concrete examples of the general one-step method (5.18) are the explicit 
and implicit Euler methods. 
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5.2.2 Explicit and implicit Euler methods 

Euler methods are the oldest and least sophisticated ODE solvers. The explicit Euler method 
is popular because of its very simple implementation and minimum overhead cost, but it also 
is known to be unstable unless the time step is extremely small. The implicit Euler method 
is more stable, but for nonlinear ODES it requires the solution of a system of nonlinear 
algebraic equations in every time step. In the case of linear ODES the application of both 
the explicit and implicit Euler schemes is equally simple. 

Explicit Euler scheme 

The explicit Euler method is obtained by approximating the temporal derivative in (5.1 1) 
by the forward time difference, 

and leaving the right-hand side of (5.1 1) on the kth temporal level. In this way one obtains 

YO = Y(to), (5.22) 

Yk+' = Y k  + Atk*(yk,  t k ) ,  (5.23) 

which is a one-step method of the class (5.18), 

E ( X ,  t ,  At) = X + At*(X,  t )  

Since @ is continuous, this method is evidently consistent with the order p = 1 in the 
sense of Definition 5.2. If the right-hand side *(Y,  t )  is locally Lipschitz-continuous in 
the variable Y .  the increment function 

satisfies the assumptions of Theorem 5.1, and therefore the one-step method is convergent 
with the order p = 1. 

It follows from (5.10) that on each time level one obtains a system of linear algebraic 
equations of the form 

MYki' = Bk,  (5.24) 

where 

The presence of the mass matrix M on the left-hand side of (5.24) is not very pleasant for 
an explicit method, since the time step is very small and the system (5.24) has to be solved 
many times. Therefore, in practice M sometimes is truncated to its diagonal, 

M = diag(mll,m22,. . . , ~ N N ) .  (5.25) 

This operation is called mass lumping. 
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Limitations The truncation (5.25) produces a higher-order temporal error term that often 
can be neglected with a low-order FEM discretization in space. Generally it is not practical 
to combine low-order ODE schemes with higher-order FEM. As we said above, the explicit 
Euler method is known to be unstable unless the time step At is very small. For parabolic 
problems, the theory says that At must be proportional to the square of the volume of the 
smallest element in the mesh, i.e., 

At = O(Ah2). (5.26) 

This criterion makes the explicit Euler method extremely time-consuming and almost im- 
possible to combine with spatial adaptivity, where Ah + 0. The situation is less severe 
in the case of hyperbolic problems, where the criterion (5.26) is replaced with the less 
constraining CFL condition (see, e.g., [52, 771 and [78]), 

At = O(Ah). 

The stability of one-step methods will be discussed in more detail in Section 5.3. 

Implicit Euler scheme 

The implicit Euler method is obtained by approximating the temporal derivative in (5.1 1)  
by the backward time difference, 

and assuming the right-hand side of (5.1 1) on the (X: + 1)th time level. The ODE problem 
(5.1 I ) ,  (5.12) yields a discrete system 

Y0 = Y(t").  (5.27) 

Yk+l = Y k  + Atk+(Y"+'.th +At,), 

In general the function @ is nonlinear and requires a special treatment (such as, e.g., some 
sort of fixed point or Newton's method). However, the linearity of the model problem (5.1) 
yields 

y k + l  - y k  

M = F(tk+l)  - SY"+I, 
At, 

and as a result, the system one has to solve on each time level is linear, 

Here 

SI; 1 M + A t k S  

(5.28) 

(5.29) 

and 

B"" = AtkF(f l ;+l)  + M Y ' .  
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Stability and accuracy It is well known that the implicit Euler scheme is absolutely 
stable, i.e., it works with any size of the time step (this will be discussed in more detail in 
Section 5.3). One should not forget that this method only is first-order accurate. In most 
cases the performance of iterative matrix solvers deteriorates when the time step Atk grows 
too large, since usually 

K ( M )  << K ( S ) ,  

and thus the matrix (5.29) becomes ill-conditioned 

Remark 5.1 Without the truncation (5.25) ofthe mass matrix M the implementation cost 
of both the explicit and implicit Euler schemes is the same. Thus for linear problems it 
certainly is u good idea to use the implicit scheme. 

5.2.3 Stiffness 

It is customary to say that stiffness is a property of ODES that complicates their numerical 
solution. In reality the stiffness is a more complex phenomenon that involves at least three 
basic ingredients: the solved equation or system, the numerical method, and the time step. 
It is known that stiffness is associated with the behavior of perturbations to a given solution. 
To illustrate this, let Y ( t )  be an exact solution of equation (5.1 I ) ,  

Y ( t )  = * ( Y ( t ) , t ) ,  (5.30) 

and let eZ(t) ,  where F is a very small real number, be a perturbation of Y( t ) .  When 
replacing Y ( t )  with the perturbed solution Y ( t )  + tZ(t), 

Y ( t )  + t i ( t )  = *(Y(t)  + tZ(t),t).  

and neglecting the quadratic and higher-order terms in the Taylor expansion, one obtains 

Y ( f )  + fi(f) = Q ( Y ( t ) . t )  + f J ( f ) Z ( f ) .  (5.31) 

Here 

(5.32) 

is the Jacobi matrix of the right-hand side a. Subtracting (5.30) from (5.3 I ) ,  one obtains 
an equation governing the evolution of the perturbation, 

i ( t )  = J ( t ) Z ( t ) ,  

Now, in a time interval where neither the solution Y( t )  nor the Jacobi matrix J ( t )  change 
significantly, the growth of the components of the perturbation Z ( t )  is determined by the 
eigenvalues of J ( t ) .  In general, the existence of one or more eigenvalues whose real part 
is negative and large in magnitude is a sign that stiffness almost certainly is present. This 
is demonstrated on a simple linear ODE system: 
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Example of a stiff problem Let us solve a system of two linear ODES, 

equipped with the initial condition 

(5.33) 

(5.34) 

Equations (5.33) are autonomous and they can be written in the matrix form 

Y ( t )  = A Y ( t ) ,  

where 

.=(;I -:a,)- 
Hence the Jacobi matrix (5.32) is directly A.  The eigenvalues of A,  XI = -1 and A2 = 
-100, determine the form of the exact solution, 

which is depicted in Figure 5.1. 

1 

0.8 

0.6 

0.4 

0 0.2 0.4 0.6 0.8 1 

Figure 5.1 Two different temporal scales in the solution of the stiff problem (5.33), (5.34) 

(5.35) 

We see that the solution components y1 ( t )  and y2 ( t )  vanish at different temporal scales. It 
is well known that explicit methods applied to stiff problems like (5.33), (5.34) are unstable 
unless the time step is absurdly small. The best known one-step schemes for stiff problems 
higher-order implicit RK methods, will be discussed in Section 5.4. 
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5.2.4 Explicit higher-order RK schemes 

Fortunately not all ODES are stiff, and explicit methods are useful for numerous types 
of ODE problems. The RK methods are sophisticated one-step methods that generalize 
the explicit Euler scheme to higher orders of accuracy. The first method of this kind was 
introduced as a generalization of the Taylor's method in 1895 by Carle David TolmC Runge 

z1 = * ( Y " t k ) ,  (5.36) 

z2 = 

[ l o l l ,  

Yk+l = Y k  + Atkzz. 

Figure 5.2 Carle David Tolmt Runge (1856-1927) 

C.D.T. Runge contributed significantly to the fields of differential geometry, interpo- 
lation, and numerical solution of algebraic and ordinary differential equations. He also 
was active in experimental physics, where he investigated the wavelengths of the spectral 
lines of elements. Nowadays his explicit second-order method (5.36) is widely used in the 
slightly more general form 

= Y k  + Atk[(l - wz)z1 + wzzz], y k + l  

where possible choices of the parameters are w2 = l /2 ,  w~ = 1/3 or w~ = 1. 

evaluations of the right-hand side, resulting into the s-stage explicit RK method 
As shown in 1901 by W. Kutta [74], (5.36) can be extended to more general nested 

4 

y"+' = Y k  + Atk):b,z, .  
z = 1  

(5.39) 
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0 
112 
112 

The parameters a,, and c,, satisfying 

112 
0 112 

1 0 0 1  

1-1 

0 
113 

1 
213 

are determined from the Taylor expansion of the function Y ( t )  in (5.1 1) in such a way 
that the order of the truncation error is maximized (see, e.g., [ 1061). The values of these 
parameters are sufficiently well tabulated. 

Butcher’s arrays 
cally in terms of the Butcher’s arrays [25],  

Both the explicit and implicit RK methods can be written economi- 

a l l  012 . . .  a h  
a2,? 

113 
-113 1 

1 -1 I 

1 6 1  b2 . . .  b, 

The RK method given by such array is referred to as the (b ,  c ,  A) RK method. For example, 
the array 

0 1 0  

I ’  
corresponds to the explicit Euler method (one-stage explicit RK method) 

The original second-order Runge’s method (5.36) can be written as 

The famous Kutta’s fourth-order “classical RK method” (1901) has the form 

(5.40) 

1 118 318 318 118 
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A Runge-Kutta method is explicit if the diagonal and the upper triangular submatrix of 
A are zero. The sufficient and necessary condition for the consistency of RK methods is 
formulated in the following lemma. 

Lemma 5.2 (Consistency of explicit RK methods) An explicit (b, c, A) RKmethod(S.38), 
(5.39) is consistent for all continuous right-hand sides @ ifand only if 

S 

Eb, = 1 (5.41) 

This condition will be extended to general implicit RK methods in Paragraph 5.4.1 

Proof: The method (5.38), (5.39) can be written in the incremental form 

& ( X ,  t ,  At)  = X + A t $ ( X ,  t ,  At)  

with 

5 

$ ( X ,  t ,  At) = X + At C b L Z Z .  

2 = 1  

For 4 t  = 0 we have z , ( X ,  t ,  0) = @ ( X ,  t )  and therefore 

$ ( X ,  t , O )  = X + At E b, @ ( X ,  t ) .  ) 
By Lemma 5.1 consistency is equivalent to $ ( X ,  t ,  At) = @ ( X ,  t ) .  This is the case if and 

In reality, the coefficients b, and c, are the weights and points of a quadrature formula 
in the interval (0 , l )  (to be discussed in more detail later). Now let us have a look at the 
maximum order of consistency of an s-stage explicit RK method. 

only if (5.41) holds. 

Lemma 5.3 (Order of consistency of explicit RK methods) Let an explicit s-stage (b, c, 
A) RK method have the order of consistency p for all infinitely smooth right-hand sides @. 
Then necessarily 

Proof: Applying the method to a scalar initial value problem 

we find that 

(5.42) 

At2 4tp 

2! P! 
€(1,0,At) = eat = 1 +At + __ + . . . + ~ + O(Atp++’). 
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Thus necessarily zi(l,O, At) is a polynomial of the degree less than or equal to i - 1. 
Hence &(I ,  0, At) is a polynomial in At of the degree at most s, and for the consistency 

rn 
Explicit RK methods are very popular because of their very simple implementation. 

More precisely, their implementation is very simple in combination with the truncation 
(5.25) of the mass matrix M .  The loss of accuracy due to this operation is less significant 
than in the case of the explicit Euler method. 

Most popular are RK methods of the orders p = 1 (Euler methods), p = 2, and p = 4, 
since for higher p it is p < s (see Table 5.1), and the ratio of the cost and performance 
becomes less optimal. 

error ~ ( 1 , 0 ,  At) to be O(AtP+') it must be p 5 s. 

Table 5.1 Minimum number of stages for a pth-order RK method 

p i 1 2 3 4 5 6 7 8  2 9  

s,,,,,Il 2 3 4 6 7 9 11 > p + 3  

5.2.5 Embedded RK methods and adaptivity 

An ODE solver designed to perform well on a wide range of problems should be adaptive 
and control at least the local error. In this context, worth mentioning are the embedded RK 
methods. These are simple adaptive schemes that estimate the local error via the difference 

Ek+l ~ y k + 1  - Pk+' (5.43) 

- h+l  
where the values Yk+' and Y are obtained by performing the same time step twice 
with RK methods of the order m + 1 and m, respectively. This is an idea as old as error 
estimation itself, and moreover, it seems to more than double the amount of work per time 
step. However, the Fehlberg's trick [Sl]  makes it possible to keep the amount of work 
proportional to the (m  + 1)th-order method. 

Fehlberg's trick The basic idea of the Fehlberg's trick is to let the first stage of the new 
time step be the same as the last stage of the current step, i.e., 

s- 1 

@(Yk  + Atk c u s 3 z ; ,  tk + C,&k) = z t  
3=1 

- zk+l 
1 

- 

= @ ( Y k + ' ,  t k  + Atk) 
S 

= +(Yk + A t k  1 b,z;,tk + At,) 
j=1 

This holds for all right-hand sides if the coefficients satisfy 

cs = 1, 

b, = 0, 
a,, = b, f o r a l l j  = 1 , 2 , .  . . , s  
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0 

1 

5 

3 
10 

4 
5 

8 
9 

- 

- 

- 

The remaining coefficients are determined routinely (see, e.g., [25]). The total number of 
evaluations of the right-hand side + in n steps of the algorithm is only n, . ( s  - 1) + 1 
instead of R .  s. Therefore we speak about an effectively ( s  - 1)-stage method, of the type 

Among numerous known embedded RKp(p - 1) methods, the most mature were con- 
structed by J. R. Dormand and P. J. Prince (see [42] and [43]). The coefficients of their 
effectively 6-stage RK5(4) method are given in Table 5.2. 

R W P  - 1). 

Table 5.2 Coefficients of the Dormand-Prince RK5(4) method. 

1 

5 

3 
40 

44 
45 

19372 
6561 

9017 
1 -  

3168 

35 
1 -  

384 

~ 

- 

- 

-~ 

9 
40 
- 

56 
15 

25360 
2187 

355 
33 

0 

-- 

~~ 

-_ 

32 
9 
- 

64448 212 
6561 729 

~ -- 

5103 46732 49 
5247 176 18656 

-~ ~- 

2187 11 500 125 
1113 192 6784 84 

~ - -~ ~ 

2187 11 
O 1113192 6784 84 

-~ 
35 500 125 

- 

7571 393 92097 187 1 
~ - -~ 

57600 16695 640 339200 2100 40 

Various adaptive algorithms can be built upon embedded RKp(p - 1) methods, using 
either the rather primitive error estimate (5.43), or some more sophisticated estimate that 
typically involves the stages z ,  (see, e.g., [25]). 

The following basic adaptive algorithm reduces the time step At to DTRED * At if 
(5.43) exceeds a given tolerance TOL, and it increases At to D T I N C  * At if (5.43) is less 
than E R R M I N  * TOL. If the ODE system is rooted in a parabolic PDE, the initial time 
step may be defined as At0 := (Ah)' (where Ah is the volume of the smallest element in 
the mesh '&). Otherwise, some other appropriate value of At0 may be chosen. 

Algorithm 5.1 (Adaptive RK5(4) method) 

Read t h e  local e r r o r  tolerance parameter TOL; 
Read the  f i n a l  time Tfznal; 
Set  the  time s t e p  reduct ion parameter DTRED ( for  example) t o  112; 
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Set  t h e  time s t e p  increase parameter 13TINC ( f o r  example) t o  3 / 2 ;  
Set  the  parameter ERRAllN ( f o r  example) t o  0.05; 
Define t h e  i n i t i a l  time s t e p  as  At  :=At, , ;  
Define t h e  i n i t i a l  condi t ion Y o  := Y ( 0 ) ;  
Set  t := 0 and k := 0; 

Do { 
Estimate Y( t l+, )  by Y"' using Y k ,  At and t h e  R K 5  method; 

Estimate Y ( t k + l )  by Pk+' using Y k ,  At and t h e  embedded RK4 method; 
Calculate  a l o c a l  e r r o r  es t imate  E'+' v i a  (5 .43);  
I f  (ERRAI IN  * T O L  5 lIE"+'I( 5 T O L )  then { 

k := k f 1; 

1 
e l s e  { 

i f  (l/Ek+' 1 1  > T O L )  then At := D T R E D  * A t ;  
e l s e  { 

t := t + At;  
k .= k + 1;  
At .= D T I N C  * At; 

The application of this algorithm to a concrete problem may show the need for adjustment 
of the parameters At,, D T R E D ,  E R R M I N  and D T I N C .  Let us remark that embedded 
RK methods also exists in the implicit version (see [25] and the references therein). 

5.2.6 General (implicit) RK schemes 

Implicit RK methods were introduced in 1964 by J. C. Butcher by allowing the coefficient 
matrix A in (5.38), (5.39) to be a full matrix. This generalization yields an s-stage RK 
method 

s 

Z, = +(Yk + Atk C ( L , ~ Z ~ ,  t k  + c,Atk). (5.44) 
3=1 

5 

Y"' = Y k  + Atk. C b,z,. (5.45) 
7 = 1  

The summation in (5.44) runs over all i = 1,2,. . . . s, and therefore identical z,s appear 
on both sides of the equation whenever aZz # 0, and unknown higher-index Z,S, i < j, are 
present if u , ~  # 0. In these cases the RK method (5.44), (5.45) is implicit. In turn, the 
explicit RK methods (5.38), (5.39) are obtained if a,, = 0 for all j 2 i, i = 1 , 2 , .  . . , s. 
The currently best known Gauss and Radau higher-order IRK methods are introduced in 
Paragraph 5.4.2, after we discuss in more detail the role of higher-order numerical quadrature 
rules in Paragraph 5.4.1. For now, let us mention a few simpler IRK methods and illustrate 
their application to problem (5.1 1). (5.12) with the right-hand side (5.10). 

The Butcher's array 

1 1 '  

I 1  
represents the implicit Euler method (5.27), 

,751 = *(Yk + Atkzl.tk +At,) .  

Y"' = Y k  + Atkzl.  
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Another one-stage method 

corresponds to the “implicit midpoint rule”. Notice that p = 2s here, which by Lemma 5.3 
would not be possible with an explicit RK method. A third array, 

I 112 112 

defines another second-order IRK based on the “implicit trapezoidal rule” 

z1 = @(yk ,  t k ) ?  (5.46) 

z2 = 

With a general nonlinear right-hand side @, each iteration of an s-stage IRK method requires 
the solution of a system of nonlinear algebraic equations (see Paragraph 5.4.3). The natural 
questions of existence and uniqueness of solution to this system are highly nontrivial, but 
the answer to both of them is positive, for sufficiently small values of At (see, e.g., [25]). 

In our particular case, the linearity of the model problem (5.1) translates into (5.10), 

@ ( Y ( t ) , t )  = M-’[F( t )  - S Y ( t ) ]  

In turn the algebraic system to be solved is linear, as it was in the case of the implicit Euler 
method in Paragraph 5.2.6. For example, the above second-order IRK (5.46) yields 

z1 = M - ’ ( F ~ - S Y ~ ) ,  (5.47) 

and thus z1 and z2 are obtained by solving two linear algebraic systems 

Mz1 = F k - S Y k ,  (5.48) 

More about higher-order RK schemes will be said in Section 5.4, after introducing basic 
stability concepts of ODES and one-step methods in Section 5.3. 

5.3 INTRODUCTION TO STABILITY 

The stability domains of the functions y and & are fairly independent, and the performance 
of the ODE solver is determined by their intersection. Let us begin with defining the 
classical concept of Ljapunov stability: 
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Definition 5.5 (Stability, asymptotic stability) Let (YO, t o )  be such that the solution Y ( t )  
= y(YO. t ,  t o )  o f the ODE (5.11) exists for  all t 2 to .  The solution Y ( t )  is said to be 
stable at (YO, t o )  (in the forward direction) iffiw every c > 0 there exists a 6 > 0 such that 

Y ( t )  E B,(Y(E;", t ,  t o ) )  

for  all t 2 to  and all perturbed initial states E;' E BO(YO). In addition, i f  there exists a 
60 > 0 such that 

for  all perturbed initial states E;" E Bh1, (YO), the solution Y ( t )  is said to be asymptotically 
stable at ( Y O ,  t o ) .  In such case we say that su$ciently small perturbations of the initial 
state are "damped out". Solution Y ( t )  is unstable i f  it is not stable. An ODE is called 
stable i f i t  has a stable solutionfor all initial conditions (Yo ,  t o ) .  

In other words, the function Y of an ODE is said to be stable (in the sense of Ljapunov) if 
small changes of the initial state cannot cause excessive changes in the temporal evolution. 
An analogous definition can be formulated for the stability in the backward direction. It 
can be shown that a solution Y( t )  that is asymptotically stable in the forward direction is 
unstable in the backward direction. The notion of stability is invariant under the choice of 
the norm 11 . 11 in RN,  since all norms in finite-dimensional spaces are equivalent (Definition 
A.34, Theorem A.5). 

5.3.1 Autonomization of RK methods 

The stability of numerical methods for ODES is analysed in the context of linear autonomous 
systems of the form 

Y ( t )  = AY(t), (5.49) 

Y(0) = YO, 

where A E R N x N  is a constant real (or complex) matrix. But, does the study of the 
autonomous system (5.49) have some relation to the original nonautonomous system (5.1 I) ,  
(5.121, 

(5.50) 

The answer is yes. It is well known that the system (5.1 I ) ,  (5.12) can be autonomized by 
defining a new (augmented) state variable 

The ODE system is changed accordingly to 

(5.51) 

Z(0)  = ( ';* ) 
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Let y(Y",  t ,  0) describe the evolution of the original system (5.50) and the function 
2 ( Z 0 ,  t :  0) the evolution of the autonomized system (5.51). Then y and 2 are equiv- 
alent if the condition 

(5.52) 

is satisfied. It seems not to be widely known that virtually all RK methods that are used 
in practice account for this equivalence by producing identical results when applied to the 
systems (5.50) and (5.5 1). Such RK methods are said to be invariant under autonomization. 
However, the fulfillment of (5.52) is not automatic: 

Lemma 5.4 A general (b,  c, A)  RK method (5.44) is invariant under autonomization ifand 
only if it is consistent and 

S 

c, = CazJ ,for all i = 1 , 2 , .  . . , s. (5.53) 
J=1 

Proof: See, e.g., [25].  w 
It is customary to use the notation (b ,  A) for RK methods with the property (5.53). The 

formalism of Butcher's arrays reveals easily that all the explicit and implicit RK methods 
presented until now (including both the explicit and implicit Euler methods), were invariant 
under autonomization. Without loss of generality, we restrict ourselves to RK methods 
invariant under autonomization also in the rest of this chapter. 

5.3.2 Stability of linear autonomous systems 

The invariance of RK methods under autonomization justifies the study of their performance 
on the linear autonomous system (5.49). It is well known that in this case the exact solution 
has the form 

Y( t )  = y (YO,  t)  = exp(At)Yo,  (5.54) 

where the matrix exponential exp(At) is defined via the absolutely convergent series 

(5.55) 

For every A E R N x N  this series converges locally uniformly in R, i.e., uniformly in all 
finite intervals (-T, T), T E R (for a proof see, e.g., [25]) .  

Because of (5.54) and ( 5 . 5 3 ,  the complex exponential function exp(z), z E @, is called 
the stability function of the linear autonomous system (5.49). We will see in Paragraphs 
5.3.3 and 5.3.4 that explicit and implicit one-step methods of the order p are based on its 
pth-degree polynomial or rational approximation of the form 

exp(z) = R ( z )  + O(zp+'),  (5.56) 

respectively. The following theorem characterizes the stability of the matrix exponential 
exp(At) in terms of the eigenvalues of A .  Recall Definition A.18 of the spectrum a ( A ) .  
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Theorem 5.2 The linear autonomous ODEsystem (5.49) is stable ifand on1.v ifthefollowing 
two conditions are met: 

I .  Re(X) 5 0 for  all X E a(A) ,  

2. All eigenvalues X E a(A)  such that Re(X) = 0 have index exact1.v one. (The index 
of an eigenvalue is the size ofthe associated Jordan blocks in the Jordan canonical 
form of the matrix A). 

The system is asymptotically stable ifand only i fRe(X) < Ofor all X E a ( A ) .  

Proof: See, e.g., [25].  

The reader can see that neither the stability nor the asymptotical stability of the solution 
Y ( t )  to linear autonomous systems depend on the initial condition Yo.  

5.3.3 Stability functions and stability domains 

In practice we need to know to what extent the discrete phase flow & of a given one-step 
scheme, 

Y"+' = &(Y,,  At,), (5.57) 

preserves the stability of the continuous phase flow y to the original autonomous ODE 
problem. For this we need to introduce the notion of stability domains for both functions 
y and &. Typically, these two stability domains are different, and the numerical method is 
stable in their intersection. 

For simplicity let us begin with a scalar version of the linear autonomous problem (5.49) 
of the form 

Y(t) = M t ) ,  t E (O,m), 

d o )  = Yo, 

where 0 # X E C is a constant. By Theorem 5.2 the function 

(5.58) 

~ ( x ,  t )  = exp(tX)z (5.59) 

is stable if Re(X) 5 0. This motivates the following definition: 

Definition 5.6 (Stability domain of y )  Let the ContinuousphaseJlow have theform (5.59). 
Then the stability domain of y is the set 

Sezp = { z  E @; R e ( z )  5 O } .  (5.60) 

Now let us look at the stability domains of the explicit and implicit Euler methods: 

Explicit Euler method The approximation of y(t) = y(yo ,  t )  with a constant time 
step At has the form 

y1 = (1 + AtX)yo, (5.61) 

y2 = (1 + AtX)y' = (1 + AtX)2yo, 

y3 = (1 + AtX)y2 = (1 + AtX)3y0, 
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Hence the discrete phase flow & can be written as 

&(x, At) = R(AtX)z. (5.62) 

where the affine polynomial R ( z ) ,  

~ ( z )  = 1 + z = exp(z) + 0 ( z 2 ) ,  (5.63) 

is said to be the stability function of the explicit Euler method. The function R(z)  is a 
consistent approximation of exp(z) in the sense of the following definition. 

Definition 5.7 We say that a rational appro.ximation R(z)  of the complex exponential 
exp(z) has consistency order y if 

exp(z) = B ( z )  + O(zJ’+l) 

The function R(z)  is said to be consistent i f p  2 1. 

As the reader may expect. the consistency order of the stability function R is tightly 
related to the consistency order of the function & (in the sense of Definition 5.2). This will 
be formulated precisely in Lemma 5.6. The stability requirement 

lini y” = 0. 
n - x  

applied to the method (5.61 ), yields the stability condition 

11 + AtXl < 1. 

This is equivalent to the well known time step restriction for the explicit Euler method, 

-2Re(X) 
At < -. 

/X I2  
(5.64) 

In the real case (0 # X E R) condition (5.64) reduces to 

2 
At < -. 

1x1 

Definition 5.8 (Stability domain of &) Let the discrete phaseflow & have theform (5.62). 
Then its stability domain is the set 

In the case of the explicit Euler method, R ( z )  is given by (5.63) and therefore the stability 
domain of & is the open complex circle with the center at -1 + 0.1 and radius 1, 

sfl = (2 E c: 11 + 21 < l}. 

as illustrated in Figure 5.3. 
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Figure 5.3 The stability domain SR of the discrete phase flow & of the explicit Euler method 

We see that Sn C Sc,Lcpr and this is why the time step restriction (5.64) exists. The 
relation of the stability domains S, and Sca.,p will be different in the case of the implicit 
Euler method: 

lmplicit Eulermethod The method (5.27), applied to the linear scalar equation (5.58), 
yields 

y h + l  - - - y  I ,  +XAtyh+' 

From here, the value of y"* is calculated via the relation 

yk+' = (1 - AtA)-'y".. 

In the vector-valued linear autonomous case (5.49), this operation corresponds to the so- 
lution of a system of linear equations (to be discussed in more detail in Paragraph 5.3.4). 
With a constant time step At, the method approximates y ( t )  = y(y".  t )  with a series of 
discrete values 

y' = (1 - AtX)-'-y", (5.65) 

y2 = (1 - AtX)-ly' = (1 + AtX)-"yo, 

y" = (1 - AtX)-ly2 = (1 + AtX)-'-y', 

Thus the discrete phase flow & attains a form similar to (5.62), 

but now the stability function R(z )  is rational, 

We see that the function R(z )  is a consistent approximation of exp(z). The stability domain 
of the function E is 
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SR = C \ {z E c; /R(z ) l  < I} = C \ { z  E C; 11 - z/ < 1)) 

which is the complement of the closed complex circle with the center at 1 + Oi and radius 
1. In particular, 

s e z p  c SR, 

and therefore the implicit Euler method is stable for all values of X E C and all time steps 
At (we say that it is absolutely stable). 

5.3.4 Stability functions for general RK methods 

The stability functions to general higher-order RK methods are obtained by extending the 
results from the previous paragraph. Let us give one additional example prior to introducing 
the general result in Theorem 5.3. 

Applying the second-order "implicit trapezoidal rule" IRK method (5.46) with constant 
time step At to the vector-valued linear autonomous system (5.49), one obtains 

(5.67) 
At 
2 

Y'+' = &(Y',Ai!) = Y k  + - (AY'+' + AY') , 

which is equivalent to 

(5.68) 

Hence the invertibility of the matrix I - AtA/2 has to be checked. Regarding this, the 
following lemma is helpful. 

Proposition 5.1 Let A E E X N x N  be a constant matrix and R ( z )  = P ( z ) / Q ( z )  a rational 
function, where P and Q are mutually prime polynomials. Then the definition qf R ( A )  = 

P ( A ) Q - '  ( A )  makes sense only ifthe matrix Q ( A )  is invertible, and this is the case ifand 
only ifno eigenvalue oj'A is a root ofthe function Q ( z ) .  

Proof: Depending on the reader's background, this can be shown simply using the ma- 
chinery of functional calculus (see, e.g., [ loo]), or the statement can be proved discretely 
using the Jordan canonical form of the matrix A (see, e.g., [25] and [60]). 

Returning to (5.68): Evidently the only pole of the function 

1 + 212 
R(2) = ~ 

1 - 212 
(5.69) 

is z* = 2. By Theorem 5.2 all eigenvalues of the matrix A in a stable linear autonomous 
system (5.1 1) are nonpositive. Using the fact that 

X E c (A)  H Xi! E a(&): 

by Proposition 5.1 we can write 
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(where the fraction is understood in the sense of multiplication by the inverse matrix to the 
denominator). In the following we encounter numerous rational approximations R( z) of 
the complex exponential exp(z), whose poles will always have positive real parts for the 
same reason as here. 

The stability function R(z )  approximates exp(z) with the consistency order p = 2, 

Since IR(z)I < 1 for all z E C such that R e ( z )  < 0, the inclusion Sell, c SR holds. 
Therefore the “implicit trapezoidal rule” IRK method (5.67) is absolutely stable. 

Theorem 5.3 The discrete phase j o w l  € of n general s-stage RK method (b. A) has the 
form 

€ ( X .  At) = R ( A t A ) X .  

where the stability function R ( z )  is rationnl, 

R ( z )  = 1 + zbT(I  - A - 1 1  (5.70) 

(here by 1 we mean the vector (1 , l . .  . . , 1)7’ E R’). Moreover; R ( z )  can be written 
uniquely in theform 

(5.71) 

with mutually prime polvnomials P and Q such that deg P 5 s, (leg Q 5 s ,  and P(0)  = 

Q ( 0 )  = 1. 

The expression zA is interpreted as the tensor product of two matrices, At  @ A, when 

It is sufficient to consider the scalar linear autonomous ODE y ( t )  = Xy(t), 

At is substituted for z in (5.71). 

Proof: 
y(0) = 1. The RK method ( b ,  A) with the time step At yields the linear system, 

E ( l , A t ) = n ( A t X ) =  l+At)b,Xg,. 
J = 1  

where 

Putting z = AtA and g = (91. g2.. . . .,qi)T E Rs, this system yields 

E ( z )  = 1 + zb“g, g = 1 + z A g .  

and we obtain (5.70). 
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To the second part of the assertion: The system can be solver by Cramer’s rule, in which 
case we find that 

PL 
9L = det(1 - z A )  . i =  1 . 2  . . . . .  S. 

where PL are polynomials of deg P, 5 s - 1. Since Q ( z )  = det(1 - zA) is a polynomial 
of deg Q 5 s satisfying Q(0)  = 1, it follows that the rational function R(z) ,  

assumes the form (5.71) once all common divisors in  the numerator and denominator have 
been removed. W 

An immediate consequence of Theorem 5.3 is Lemma 5.5. 

Lemma 5.5 The stability function R ( z )  of explicit higher-order RK methods (b ,  A) is 
polvnomiul. 

Proof: Left to the reader as an exercise. W 

A simple example documenting this fact is the fourth-order “classical” RK method 
mentioned Paragraph 5.2.4, whose stability function R(z )  (consistent with the orderp = 4) 
has the form 

z 2  z 3  21 

2 6 24 

The verification is left to the reader as an exercise. 

of the rational stability function R(z )  and the consistency order of the function &: 

Lemma 5.6 Consider n linear uutonomous system (5.49) with the continuous phase f low? 
y ( X .  t ) .  Let the discretephasejhw & ( X .  At) be defined c i s  

R ( z )  = 1 + z + - + - + - = exp(z) + O ( 2 ) .  (5.72) 

Finally we can formulate the intuitively clear relation between the order of consistency 

& ( X ,  At) = R ( A t ) X ,  

where R( z) is a rational .stability function that approximates the complex exponential exp( 2 )  

with the consistency order p 2 1. Then the consistency order ofthe function & is p ,  

y ( X .  At) - E ( X ,  At) = O ( ( A t A ) p + l )  

Proof: The result follows immediately from (5.55) and Definition 5.2. W 

5.3.5 Maximum consistency order of IRK methods 

While by Lemma 5.3 the consistency order p of explicit RK methods can never exceed the 
number of stages s, already the simplest ”implicit midpoint rule” IRK in Paragraph 5.2.6 
exhibited twice better consistency order p = 2s. This is true for implicit RK methods 
in general. The reason is that the rational stability function R(z )  = P ( z ) / Q ( z ) ,  where 
deg P = deg Q = s, can approximate the complex exponential exp(z) with the consistency 
order up to p = 2s: 
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Lemma 5.7 Let R ( z )  be a rutional approximation ofthe complex exponential such that 

exp(z) = ~ ( z )  + O(zP+'). (5.73) 

Then any representation R(z )  = P ( z ) / Q ( z )  satisfies 

p 5 deg P + deg Q. 

Proof: By contradiction suppose that (5.73) holds with deg P 5 k ,  deg Q 5 j ,  such that 
k + j 5 p. Hence 

and by multiplication with Q ( z ) ,  

Relation (5.74) already implies that necessarily P = Q = 0 - this is the desired contradic- 
tion that will be shown by induction. 

Consider first k = 0, in which case P is a constant. Multiplying (5.74) by exp(-z) we 
obtain that 

P(z)exp(-z) - Q ( z )  = O ( Z ~ + ~ ) .  (5.75) 

It is deg Q 5 j, and therefore differentiating (5.75) j + 1 times, we find that 

(-1)J"P = O ( z ) ,  (5.76) 

which means that P = 0, and from (5.75) necessarily Q = 0. Now the induction step: 
Assume that the statement holds for k - 1 2 0. Differentiating (5.74) one obtains 

P' ( z )  - ( Q ' ( z )  + Q ( z ) )  exp(z) = O(z"+-'+* 1. 

Since deg P' 5 k - 1 and deg(Q' + Q) 5 j ,  by the induction hypothesis we can conclude 

Several examples of s-stage implicit RK methods with the maximum consistency order 
will be presented in Paragraph 5.4.2. Such methods are constructed elegantly by embedding 
higher-order numerical quadrature rules into a general collocation framework. 

that P' = 0. This again yields P = Q = 0. 

5.3.6 A-stability and L-stability 

Being familiar with the rational stability functions R(z )  and the stability domains of both 
the continuous and discrete phase flows y and E ,  we can introduce the concepts of A- and 
L-stability. 
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A-stability A one-step method for the autonomous system (5.49) is absolutely stable 
only if the inclusion 

S ~ s p  c SR (5.77) 

holds. [This was the case, e.g., with the implicit Euler method (5.27) and with the "implicit 
trapezoidal rule" IRK (5.46)]. Generally, one-step methods with the property (5.77) are 
called A-stable (G. Dahlquist, 1963). Lemma 5.8 gives an important characterization of 
A-stable methods: 

Lemma 5.8 One-step method & ( X ,  A t )  = R ( A t A ) X ,  whose stabilityfunction R ( z )  is 
polynomial, cannot be A-stable. 

Proof: Every nontrivial polynomial R( 2) satisfies 

lirii IR(z)I = 00, 
z-oc 

and therefore its stability domain 

is compact. Thus SR never can contain the whole negative complex half-plane Sercp. 

explicit one-step method comes with some stability restriction on the time step. 
Consequently, every A-stable one-step method necessarily is implicit. Moreover, every 

L-stability Until now we discussed the stability of the recursive procedure (5.20), 

Y' = €(Yo,  At) = R(AtA)Y ' ,  

Y 2  = & ( Y ' , A t )  = R 2 ( A t A ) Y 0 ,  

Y 3  = €(Y2,  At) = R3(AtA)Yo .  

with a fixed time step At. However, one also is interested in the behavior of implicit methods 
as the size of the time step At grows. We are asking whether and when the condition 

lini & ( X , A t )  = 0 
at-oc 

holds. This motivates the definition of L-stability: 

Definition 5.9 Let the linear autonomous problem (5.49) be asymptotically stable. Then 
the one-step method & ( X , A t )  = R ( A t A ) X  is said to be L-stable ifand only ij' it is 
A-stable and 

l i rn  R(z )  = 0. (5.78) 
z-oc  

This terminology was introduced by B.L. Ehle in 1969. Again, explicit one-step methods 
are not considered here. The following example shows that not all A-stable methods are 
L-stable: 
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H EXAMPLE 5.1 (A- and L-stable methods) 

I .  We know from Paragraph 5.3.3 that the implicit Euler method is A-stable. Its rational 
stability function (5.66), 

1 
1 - Z  

R ( z )  = -. 

satisfies (5.78). Therefore this method also is L-stable 

2. Another A-stable method that we know is the second-order “implicit trapezoidal rule” 
IRK method with the rational stability function (5.69), 

1 + z l 2  
X ( z )  = ~ 

1 - 212’ 

Since 

Iini R(z )  # 0. 
2 - x  

this method is not L-stable. 

3. Next consider the second-order IRK method based on the “implicit midpoint rule” 

This method is not L-stable (the proof is left to the reader as an exercise). 

4. Last consider the 2-stage third-order Radau method 

113 5/12 -1/12 
1 I 314 114 

This method is A-stable and also L-stable, which again is left to the reader as an 
exercise. More about Gauss and Radau methods will be said in Section 5.4. 

Condition (5.78), which is necessary for the L-stability of the last IRK method in Example 
5.  I ,  can be verified literally at a glance, using the following theorem: 

Theorem 5.4 Suppose thnt for n gerzerrrl RK mrrhod (b.  A )  the nmtrix A is invertible, and 
rhe row vector bT is identical to some row of the rntrtri.~ A. Then 

liiri X ( z )  = 0. 
z i x  

Proof: Since A is invertible, Theorem 5.3 implies that 

liiii X ( z )  = 1 - b‘ A-ll  
z - x  
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Let the j th  row of A be identical with bT. Then 

b = eTA, 

where e3 denotes the j th  unit vector. The conclusion 

lim R ( z )  = 1 - eTAA-Il = 0 
z - r n  

follows immediately. 

At this point we believe to have given a sufficient introduction to the stability of ODES 
and one-step methods. For a deeper study of this topic we refer the reader to the books [25] 
and [60]. In the last section of this chapter let us discuss the most sophisticated one-step 
ODE solvers: the higher-order implicit Runge-Kutta methods. 

5.4 HIGHER-ORDER IRK METHODS 

It was discovered in early 1970s that general (implicit) RK methods could be generated 
by combining classical collocation methods with higher-order numerical quadrature rules. 
Several RK methods derived via the traditional Taylor expansion techniques turned out to 
actually be collocation methods. A classical book on higher-order IRK methods is [60]. 

5.4.1 Collocation methods 

Let us return to the (nonautonomous) ODE system (5.1 I ) ,  (5.12) resulting from the MOL, 

Y ( t )  = @ ( Y ( t ) , t ) ,  (5.79) 

Y ( 0 )  = YO. (5.80) 

The collocation constructs the approximate solution X ( t )  = Y ( t )  as a continuous (vector- 
valued) function which is a polynomial of degree s in every interval [ t k ,  t k  + A t k ] ,  X: = 

0.1 , .  . . K - 1, 

X(tA + 7 )  = € ( Y ’ . t k > ~ ) .  7 E [O.Atk] 

In the interval [f,.. th + Afk] the function X not only must fulfill the initial condition 

(5.81) X(t, .)  = €(Y5,..O) = Y A,  . 

but also it  has to satisfy (“collocate”) equation (5.79) at additional s internal points t k  + 
c.int,.. t k  + c.2Atk.. . . f k  + ~ , ~ A t k -  of the interval [ tk .  t,. + At,.], 

X(tk + ClAt,.) = @ ( X ( t ,  + ~ i A t k ) %  f k  + cl At,.). (5.82) 

X ( ~ A  + ~ A t k )  = @(X(fk .  + cgAfn.). t,. + cgAtk). 

X(tA + c,sAt,.) = @ ( X ( t k  + ~ , ~ A t h ) .  f k  + c,At,). 

where 0 5 c1 < c g  < . . . < c., 5 1 are suitable constants. These s parameters fully 
determine the method (its consistency, convergence, stability, and all other aspects). With 
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the approximate solution X ( t )  in hand, the approximate solution on the new time level is 
defined as 

y"1 = x ( t k  + A t k )  = & ( Y ' , t k ,  A t k ) .  (5.83) 

It is known that X ( t )  exists and is unique for sufficiently small time steps and a sufficiently 
regular right-hand side @. However, the proof is by no means trivial, and we refer the 
reader to [25] and [60]. In the following let us discuss the selection of the parameters c,, 
i = 1 , 2  , . . ' )  s. 

The collocation procedure Consider a set of collocation points 0 5 c1 < c2 < . . . , < 
c , ~  5 1, along with the standard Lagrange nodal basis 81 82, . . . , 8,s of the polynomial space 

P = P"-1(0,1). 

satisfying the condition 

&(c,) = 6 2 2 .  

For brevity, by z ,  denote the derivative of X ( t )  at the collocation point c,, 

z ,  = X( tk  + c,Atk) for all 1 5 i 5 s. 

Exploiting the Lagrange interpolation polynomial (A.75), the derivative X ( t )  in the interval 
[tl;, t k  + At,] can be written as 

5 

X ( t h  + <At,) = CZJ@-,(<). [ E [O. 11. 
3=1 

Integrating (5.84) and using the initial condition (5.81), we find that 

where 

aZ3 = [' QJ(<)d<,  i , j  = 1 , 2 , .  . . .s .  

Substituting these values into the collocation condition (5.82), one obtains 

By (5.83) and (5.85) the approximation at the ( k  + 1)th time level has the form 

r l  

(5.84) 

(5.85) 

(5.86) 
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where 
1 b , = l  Q,(<)d[. j = l , 2  , . . . ,  s (5.88) 

Let us see that the points c and weights b represent a quadrature rule that is exact for 
polynomials of the degree s - 1: Every such polynomial 'p can be written in terms of the 
Lagrange basis, 

'4 

and for its integral one obtains 

Finally let us define 

A = {at, 1&1, b = (bl, 6 2 , .  . . , b s ) T ,  c = ( ~ 1 ,  Q ,  . . . . c , ) ~ .  

The relation (5.87) represents the implicit RK method ( b , c , A )  defined in (5.44). The 
consistency condition for explicit RK methods (5.41), 

extends naturally to implicit RK methods via (5.88), 

Moreover, we have the following lemma: 

Lemma 5.9 The coeficients of an implicit RK method (b,  c ,  A) dejined by collocation 
satisb the conditions 

(5.90) 

and 

(5.91) 

(with the convention 0' = 1). In particular; the method i s  consistent and invariant under 
autonomization. 

Proof: It follows from (5.88) that 

4 s - 1  ,. 1 s 
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Looking at the integrand in more detail, we discover that at each collocation point c,  it 
achieves the value c$-', T = 1.2, .  . . . s .  Thus necessarily 

and (5.90) follows, 

Using the same technique for (5.86), one easily obtains (5.91). The consistency follows 
from (5.89) which is a special case of (5.90), and the invariance under autonomization 
follows immediately from Lemma 5.4. 

The formula (5.90) states that the quadrature rule 

is exact for all polynomials y E P"-'(O. 1). 
The following result, which relates the consistency order of an implicit RK method 

constructed via collocation to the order of accuracy of the underlying quadrature rule, was 
first proved under slightly simplified assumptions by J.  C. Butcher in 1964. A different idea 
of the proof was presented by S.P. Norsett and G. Wanner [89] in 1979. 

Theorem 5.5 An implicit RK method (b; c .  A) generated by collocation hasfor a p-times 
continuously differentiable right-hand side the consistency order p if ond on1.y if the 

quadrature,forntula defined by the nodes c and wvights b has the order of accurcicy p. 

Proof: See, e.g., 1591. 

5.4.2 Gauss and Radau IRK methods 

Theorem 5.5 suggests an efficient strategy for the design of s-stage implicit RK schemes 
of the consistency order 1 5 p 5 2s: 

I .  Choose a quadrature rule (c ,  b) that is exact for polynomials of order p - 1. 

2. Use (5.86) to define the Butcher's array (b .  c .  A). 

Gauss IRK methods From Section 2.3 we know that every Gaussian quadrature rule 
(c ,  b) with s quadrature points is exact for polynomials of the degree up to 2s - 1. 

Lemma 5.10 Every s-stage Gnuss IRK method has the consistency order p = 2s for  all 
2s-times continuously differentiable right-hand sides @. 

Proof: Immediate consequence of Theorem 5.5. 

Thus the Gauss IRK methods attain the maximum consistency order p = 2s of s-stage 
IRK methods, derived in Paragraph 5.3.5. In contrast to this result, the maximum order of 
s-stage explicit RK methods is an open problem (see Table 5.1). The Gauss IRK method 
for s = 1 is the "implicit midpoint rule" that we are familiar with from Paragraph 5.2.6 
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(4 - &)/lo 
(4 + &)/lo 

1 

and from Example 5.1. Another Gauss IRK method with the consistency order p = 4, 
corresponding to the stage count s = 2, is 

(88 - 7&)/360 (296 - 169&)/1800 (-2 + 3&)/225 
(296 + 169&)/1800 (88 + 7&)/360 (-2 - 3&)/225 

(16 - &)I36 (16 + &)I36 119 

114 - &/6 

114 

Lemma 5.11 All Gauss IRK methods are A-.stable. Moreover; their stability domain Sn 
exact1.y coincides with the negative complex hulfplane Srsp (5.40). 

Proof: See, e.g., [60]. 

Let us mention that SR = SeLp means that Gauss IRK methods preserve isometry. 
Moreover it is known that these methods are reversible. Both these properties are positive 
for the performance of the methods, as the reader may expect. These and more interesting 
aspects of IRK methods are thoroughly discussed in [60]. 

One of the few drawbacks of Gauss IRK methods is that generally they are not L-stable. 
This is a consequence of the fact that the Gaussian quadrature points do not lie at interval 
endpoints, and therefore the approximate solution obtained via collocation has jumps in the 
temporal derivative at all times t k ,  k = 1,2.. . .. 

Radau IRK methods The above-mentioned lack of L-stability is eliminated via collo- 
cation methods based on Radau quadrature rules, that place collocation points at the interval 
endpoints (see, e.g., [ 1 1 11 for details on this numerical quadrature and for a CD-ROM with 
Radau quadrature data). 

Lemma 5.12 Every s-stage Radau IRK method has the consistency order p = 2s - 1 for  
all (2s - 1)-times continuously differentiuble right-hand sides @. All Radau IRK methods 
ure A-stuble and also L-stable. 

Proof: The consistency order follows from the fact that a Lobatto-Radau quadrature rule 
with s nodes has the order of accuracy p = 2s  - 1, and from Theorem 5.5. For the rest see, 

The reader already encountered the 1-stage Radau method (implicit Euler scheme) and 
the 2-stage third-order Radau method in Example 5. I .  Let us present the 3-stage fifth-order 
Radau method, 

e.g., [60]. 

The L-stability of this method follows from Theorem 5.4 immediately. For an implemen- 
tation of this method, enhanced with a step size control based on an embedded third-order 
method, see code RADAUS in [60]. 
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5.4.3 Solution of nonlinear systems 

Although we mostly deal with linear problems in this introductory text, let us devote one 
paragraph to the approximate solution to system of nonlinear algebraic equations arising 
from the application of higher-order IRK methods. We describe both the quadratically 
convergent classical Newton's method, and a simplified Newton's method that converges 
linearly, but without the need to reconstruct the Jacobi matrix of the right-hand side in every 
iteration. 

One step of the IRK method Recall that the implicit s-stage RK method (5.44), 
(5.45) consists of two operations: the calculation of the stage derivatives z ,  via a system of 
generally nonlinear algebraic equations, 

5 

Z, = *(Yk + A t k  za,,~,, t k  + c,Atk). 
,=1 

i = 1 , 2 , .  . . , S ,  (5.92) 

and the evaluation of the solution on the new time level, 

S 

Y"' = Y k  + At, C b,z,. (5.93) 
r = l  

In order to ease the operation with the Jacobi matrix of the right-hand side, it is advantageous 
to introduce a set of new vectors, 

Substituting (5.94) into (5.92), one obtains 

and by (5.94) this further yields 

S 

g ,  = Atk) :a , ,* (Yk  + g J , t k  +cJAtk), z = 1.2,  
j=1 

(5.94) 

(5.95) 

S .  (5.96) 

Let us postpone the solution of this nonlinear system for a moment, and assume that the 
vectors gl ,  g2 , .  . . , g s  are known. In order to accomplish the step of the IRK method by 
(5.93), one needs to distinguish two situations depending on the coefficient matrix A. 

A-l exists: 
In this case the evaluation of Y"' is easier. Consider the matrix Z = (zl, ~ 2 , .  . . , z , ~ )  

of the type N x s, that has the stage derivatives z ,  in its columns, and the matrix H = 
(gl ,g2, .  . . , g , s ) .  For later use, by z5 and g: ,  i = 1 , 2 , .  . . . N ,  denote the rows of the 
matrices 2 and H ,  respectively. The relation (5.94) between the vectors z ,  and gi  can be 
expressed as 

H' = At,AZT, 
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and in particular it is 

(5.97) 

Thus the original stage derivatives z, can be recovered from (5.97) via a single matrix 
multiplication and (5.93) can be used directly, 

(5.98) 

This result greatly reduces if bT is identical to some row of A (see Theorem 5.4). This 
was the case, e.g., with the third-order Radau method from Example 5.1 as well as with the 
fifth-order Radau method presented in Paragraph 5.4.2. For example, when this is the last 
row, then 

Hence, 

d = e, .  

and (5.98) simplifies to 

A is not invertible: 

one obtains 
In this case generally one cannot access the vectors z,. Substituting (5.95) into (5.93), 

5 

Yk+' = y k  + A t k  1 b ,* (Yh  + g, ,  t k  + c ,Atk) .  (5.99) 
?=I 

Thus the vectors g, can be used instead, but at the price of s additional evaluations of the 
right-hand side *. 
The classical Newton's iteration Let us now turn our attention to the solution of the 
nonlinear algebraic system (5.96) for the vectors g?,  i = 1.2,  . . . . s. For the sake of clarity, 
let us define the vector 

G = (g1,g2.. . . .g ,5)T E RN". 

and write the system (5.96) in a compact form 
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Since the solution components g ,  are expected to be small, it makes sense to use zero vector 
as the initial guess. Then the classical Newton’s method assumes the form 

Go = 0. 

(5.100) 

(5.101) 

Thus in each step one has to solve a system of N s  linear algebraic equations with the Jacobi 
matrix 

Bii BIZ . . .  Bi,s 

(5.102) 
-(G) D* = [ B:l B:2 1:: B;’s 1 . 
D G  

Bs2 . . .  B.s ,> 

Each block B,, has the size N x N. The diagonal blocks B,, are defined as 

Bi, = I - 

and the nondiagonal blocks B,,, z # j, have the form 

D@ 
D Y  

B,, = -Af,(L,,---(Y‘ +g,.fh +c ,A tn )  

The standard convergence theorem for the Newton’s method implies quadratic convergence 
for sufficiently small At,. But one has to realize that this convergence rate comes at a high 
price: At each step of the loop (5.100)-(5.101) the complete Jacobi matrix (5.102) of the 
size N s  x N s  has to be reconstructed. Therefore in practice one may consider a simpler 
iterative process: 

Simplified Newton’s method It is known that the iterative process (5,100)-(5.101) 
stays convergent for sufficiently small A f k  at a reduced linear rate if the matrix D*/DG(G“) 
in (5.100) is replaced with D!P/DG(GO). With 

DG h Jh = -(Y . t h )  
D Y  

we have 

Using the tensor product of the matrices A and J k ,  this can be written as 
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The simplified Newton's method assumes the form 

(5.103) 

(5.104) 

This iterative procedure is economical, since a single LU-decomposition of the matrix 
I - AtkA 8 Jr; only is needed at each time step, i.e., an order of 2 ( N ~ ) ~ / 3  operations. 

Termination criterion for the simplified Newton's method Suppose that the time 
step At, is sufficiently small so that the iteration (5.103)-(5,104) converges linearly, i.e., 
that there exists some contraction factor 0 5 i ~ ,  < 1 so that 

Let G be the unknown exact solution. From relevant estimates for linearly convergent fixed 
point iterations (see, e.g., [99]) it is known that 

IG  - G T L + ~ ~  5 W lAGT1 1 .  
1-w 

In practice the unknown contraction coefficient w is replaced with the known quotient 

It is our aim to stop the iterative process as soon as IG - Gn+ll 5 TOL, where 0 < T O L  
is a suitable small parameter. Thus the stopping criterion has the form 

1.e.. 

5.5 EXERCISES 

Exercise 5.1 Use Definition 5.5 to prove that a solution of (5.11) that is asymptotically 
stable in the forward direction, is necessarily unstable in the backward direction. 

Exercise 5.2 Consider the ODE (5.1 1) with the right-hand side (5.10). Extend the proce- 
dure of construction of the linear system (5.48) to the general (b, c, A) RK method. 

Exercise 5.3 Use Theorem 5.3 to prove that the stability function R ( z )  = 1 + zbT(I ~ 

zA)- ' l  of every explicit higher-order RK method (b, A) is polynomial. Hint: Exploit the 
characteristic structure of the Butcher's matrix A for  the inversion of I - zA. 

Exercise 5.4 Use theformula R(z )  = 1 + zbT(I - zA)- ' l  to verifL that thefourth-order 
"classical" RK method introduced in Paragraph 5.2.4 has the stability function (5.72). 
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Exercise 5.5 Verifjl that the second-order IRK method based on the “implicit midpoint 
rule” from Example 5.1 is not L-stable. 

Exercise 5.6 Show (without using Theorem 5.4) that the third-order Radau IRK method 
from Example 5. I is L-stable. Hint: Apply the method to the linear autonomous system 
(5.49), write its stability function R ( z ) ,  and ver$y the conditions for  A- and L-stability. 

Exercise 5.7 Prove the second formula (5.91) in Lemma 5.9 using the same technique as 
for  thejrs t  formula (5.90). 

Exercise 5.8 Consider the 2-stage Gauss IRK method from Paragraph 5.4.2. 

I .  Write the method in the fullform (5.44) 

2. What is the consistency order of this IRK method and why? 

3. I s  the method A-stable? 

4. Show that the method is not L-stable. Hint: Apply it to a linear autonomous problem, 
write explicitly the stability function R ( z )  and use Dejinition 5.9. 

5. Write an algorithm that applies this method to the ODE system (5.1 I ) ,  (5.12) with the 
right-hand side (5.10) (resulting from the semidiscretization of the linear parabolic 
model problem by the MOL). Dejne carefully all systems of linear algebraic equations 
that are to be solved. 

Exercise 5.9 Perform Exercise 5.8 with the Gaussian quadrature rule defined in Table 2.3 
(with values transformed to the interval (0,l)) .  

Exercise 5.10 With the experience gained in Exercises 5.8 and 5.9, try to write an algorithm 
for  a general s-stage Gauss IRK method for  an ODE system (5.1 I ) ,  (5.12) with the right- 
hand side (5.10). 

Exercise 5.11 Write the stability function R ( z )  of thejflh-order Radau IRK method from 
Paragraph 5.4.2. Verify the conditions for A- and L-stability. 

Exercise 5.12 Assume a second-order elliptic operator L of the form (1.1). 

1. Use the classification of PDEs acquired in Section I .  I to show that the time-dependent 
extension dldt  + L of the operator L in (5. I )  indeed is parabolic. 

2. Decide if the operator L can be extended to a time-dependent second-order elliptic 
operator: I f  yes, give an example. 

3. Decide if a (time-independent) second-order parabolic operator can be extended to 
a time-dependent second-order parabolic operator I f  yes, give an example. 

4. Decide if a (time-independent) second-order hyperbolic operator can be extended to 
a time-dependent second-order parabolic operator: I f  yes, give an example. 
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Exercise 5.13 Consider the domain Q = (0 ,  a )  x (0 .0 )  c R2, and extend your code from 
Exercise 4.2 to solve the heat transfer equation 

+sin(nt)(Bzz - 30) 

equipped with a Zero initial condition 

u(z,O) = 0 in 0. 

and homogeneous Dirichlet boundary conditions on the boundary Xl .  Let a = 3, b = 
2, n/ll = 60, h f ~  = 40. 

1. Implement the implicit Euler method (5.28) for the ODE system (5.1 I ) ,  (5.12). For 
time steps At = 0.01,0.05,0.1.0.5,5/6 present plots of the approximate solution 
-u(Lh.p at the time T = 512. write the computational times. 

2. Implement the explicit Euler method (5.24) as well as its version with the diagonal 
truncation (5.25) of the mass matrix M .  In the latter case, do not forget to simplib 
the procedure of solution of the system (5.24) accordingly. Use the criterion (5.26) 
to propose a suitable initial size of the time step At. 

(a)  In both cases try to increase At until the time integration becomes unstable. 
What are the critical values of the constant in the relation At = C(Ah)’? 

(b) In both casespresent aplot of the approximate solution uh,p  at the time T = 512 
(i the size of one time step). Write the computational times in both cases. 

3. Implement the adaptive RK5(4)  method given by Table 5.2 

Run the program for the values of T O L  = 0.0001,0.001,0.01,0.1. Plot the 
solution at T = 512 (again, f the size of one time step). Write the initial 
value At0 := (Ah)2, and in all four cases the total number of time steps, the 
computational time and the size of the time step At at the end of the computation. 

Investigate the sensitivity of Algorithm 5. I on the initial time step. Hint: Run 
the computation with TOL = 0.001 and At := O.OlAt0, At := 0.lAt0, 
At := lOAt0, At := 100Ato. In all four cases write the total number of time 
steps, the computational time and the size of the time step At at the end of the 
computation. 

4. As conclusion, compare all four methods from the point of view of accuracy, efJiciency 
and stability. 

5. The exact solution is 



CHAPTER 6 

BEAM AND PLATE BENDING PROBLEMS 

In Chapters 2 4  we considered second-order PDEs whose weak formulations took place 
in the Sobolev space H1(R). This space required the piecewise-polynomial finite element 
approximations to be globally continuous (i.e., continuous across element interfaces). Now 
we are going to study fourth-order problems with the weak formulations in H2(R) .  Fi- 
nite element approximations conforming to H2(R) are required to be once continuously 
differentiable. Since the fourth-order PDEs are encountered in practice less frequently com- 
pared to second-order problems, we devote more attention to their physical background and 
derivation. 

In Section 6.1 we derive the Euler-Bernoulli model for the bending of elastic beams, 
discuss various types of boundary conditions, derive the weak formulation of the prob- 
lem, and prove the existence and uniqueness of the weak solution. In Section 6.2 we 
discretize the weak formulation by the lowest-order Hermite elements. Higher-order ap- 
proximations with both nodal and hierarchic Hermite elements are discussed in Section 
6.3. Two-dimensional Hermite elements (which do not conform to H2(R) but are use- 
ful for many other applications) are presented in Section 6.4. Section 6.5 describes the 
Reissner-Mindlin and Kirchhoff plate bending models. The finite element discretization 
of the Kirchhoff thin plate model via the H2-conforming lowest- and higher-order nodal 
Argyris elements is discussed in Section 6.6. 
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6.1 BENDING OF ELASTIC BEAMS 

There are two basic one-dimensional models for the bending of elastic beams: The Euler- 
Bernoulli model consisting of one fourth-order PDE, and the Timoshenko model based on 
a pair of coupled second-order equations. 

The Timoshenko model is simpler to solve in the sense that standard H'-conforming 
elements can be used for its discretization, and it  is known to better capture the purely three- 
dimensional behavior of the structure (such as large deformations). On the other hand, the 
higher-order elements used to discretize the Euler-Bernoulli case yield significantly better 
convergence rates. In this text we focus on the Euler-Bernoulli model in order to show the 
application of the Hermite and Argyris elements. The Timoshenko model is discussed quite 
frequently in monographs and textbooks (see, e.g., [95] and the reference therein). 

6.1.1 Euler-Bernoulli model 

This paragraph requires the knowledge of some elementary topics in continuum mechanics 
that can be found, e.g., in [20,95] or 11241. The one-dimensional Hooke's law has the form 

where 0 is the stress induced by the strain E ,  and E is the modulus of elasticity of the 
material. 

Consider a prismatic beam of a homogeneous isotropic Hookean material with a rectan- 
gular cross section, whose longitudinal axis coincides with the z-axis of the given Cartesian 
system of coordinates. The position of the centroids of the end-faces is fixed, and a pair 
of bending moments acting on the ends of the beams is illustrated in Figure 6.1. (The 
downward-pointing z-axis is used to make the signs of both the force f and deflection u 
relative to the direction of gravity.) 

Figure 6.1 
M acting on the ends. 

Bending of aprismatic beam; (A) initial configuration, (B) deformed state under moment 
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The basic assumption of the simple beam theory is that the (normal) deflection is relatively 
small compared to the length of the beam, so that every pair of adjacent cross-sections Al 
and Aa, which are perpendicular to the axis of the beam in the original configuration, remain 
planar and perpendicular to the beam axis during the deformation. 

The deflection of the beam can be described as the vertical displacement of the centroidal 
surface that corresponds to u = 0 in the original configuration. In the situation shown in 
Figure 6.1 the deflection curve must be a circular arc, since because of the homogeneity of 
the material every cross section is subjected to the same stress and strain. By R denote the 
radius of the deformed beam axis. A small portion of the axis of the beam before and after 
deformation is shown in Figure 6.2. 

L’  - - - -  f i  - axis after deformation 

R 

a 

Figure 6.2 
the midpoints of the cross-sections A1 and A2 before and after deformation. 

Strain induced by the deflection of the beam. Here L and L’ stand for the distance of 

For a large radius R and small angle cy we can write 

L=Rsincy, L ’=(R+u)s ina ,  

and thus the axial strain t, which is defined as the ratio of the length increment and the 
original length, has the form 

As a response to the strain E, there is a stress a,  which according to the above assumptions 
is one-dimensional in the direction of the z-axis. Hooke’s law (6.1) yields 

It follows from here that the centroidal plane u = 0 remains unstressed during the bending, 
i.e., that material particles on it are not strained in the axial direction. The plane is therefore 
called the neutral surface of the beam. 

The resultant moment of the bending stress a on every beam cross-section A must be 
equal to the external moment hf, 

M = uadA. 
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Substituting (6.2) into this equation, we obtain 

where the area moment of inertia 1 of the beam is defined as 

I = .If, y 2 a d A  

(6.3) 

(6.4) 

Let us point out that I is a geometrical property of the beam, while E is a material property. 
By f denote the transversal load and by F, the corresponding shear force (which is 

perpendicular to the beam axis). The curvature of a circular arc is given by 

The standard relations 

d h l  
and Fs = ~ 

dx dx 
f = -  dFS 

yield 

d2 

dx2 
-A1 = f 

Substituting (6.3) with (6.5) into (6.6) and denoting b(z) = E ( x ) I ( z ) ,  we obtain the 
Euler-Bernoulli beam model 

where R = ( a ,  b )  is an open bounded one-dimensional interval representing the beam. 
Equation (6.7) requires b to be twice-continuously differentiable, u four times continuously 
differentiable, and f continuous in R. These quite strong regularity requirements will be 
reduced after the problem is formulated in the weak sense in Pararaph 6.1.3. 

6.1.2 Boundary conditions 

Equation (6.7) is a fourth-order problem, and therefore four suitable boundary conditions 
are needed to guarantee the existence and uniqueness of solution (this will be discussed 
in more detail in Paragraph 6.1.4). Analogously to second-order problems, the boundary 
conditions can be split into essential and natural, depending on whether or not they influ- 
ence the form of the space V in the weak formulation. Most frequently one prescribes the 
following quantities: 

Essential boundary conditions: 

0 deflection 

ua = u(u)  and/or ub = u(b). 
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0 slope 

du, = d ( a )  and/or dub = u'(b). 

Natural boundary conditions: 

0 moment 

Ma = EI-  ( a )  andor  h f b  = (6.8) ( 2) 
0 shear force 

Some combinations that lead to a unique solution are shown in Figures 6.3-6.5. The 
transversal force is indicated by the arrows. 

Figure 6.3 Clamped beam: Prescribed is the deflection and slope at both ends. 

Figure 6.4 Simply supported beam: Prescribed is the deflection and moment at both ends. 

Figure 6.5 
shear force at the other end. 

Cantilever beam: Prescribed is the deflection and slope at one end, and moment and 
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6.1.3 Weak formulation 

Let us formulate equation (6.7) in the weak sense, employing the symbols 

du  d2u 
V u = -  and Au=- 

dx dx2 

for brevity. The standard first step consists of multiplying the equation with a sufficiently 
regular test function v, and integrating over the domain 0, 

b A ( b A u ) w d x  = .h f v d x .  

Green’s theorem applied to the term with the highest derivatives yields 

where 191: = g ( b )  - g(a) .  Using Green’s theorem once more, we obtain 

b bAuAv dx - [bAuVv]: + [V(bAu)v]: = b f v dx. (6.10) 

The integrals in (6.10) exist if b E Lm(Q) ,  u ,u  E H2(s2) and f E L2(s2) (in fact f can be 
chosen from a larger space f P 2 ( s 2 ) ,  which is the dual to H2(s2)). 

Now essential boundary conditions are implemented by further constraining the space 
H2(s2). For example, the choice of the clamped boundary conditions from Figure 6.3, 

.(a) = u ( b )  = Vu(a)  = Vu(b) = 0, (6.1 1 )  

leads to u, v E V ,  where the space V C H2(s2) is defined by 

v = H i p )  = {v E H2(0) ;  v ( a )  = w(b) = V v ( a )  = Vv(b)  = O}. (6.12) 

Since both u and zi vanish at the endpoints together with their first derivatives, also the 
square brackets in (6.10) disappear and one obtains 

b bAuAv dx = f v dx. (6.13) 

Finally, if some terms in the square brackets are present after the essential boundary condi- 
tions were applied (as it might be the case, e.g., with the cantilever beam from Figure 6.5), 
natural boundary conditions are incorporated by properly substituting into these terms from 
(6.8) andor  (6.9). 

6.1.4 Existence and uniqueness of solution 

Let us show the existence and uniqueness of the weak solution first for the case of the 
clamped boundary conditions (6.1 l), i.e., for the following weak formulation: 

For given b E LO”(s2) and f E L2(s2) find u E V such that 
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a ( u , v )  = l(v) for all v E V. (6.14) 

where the linear forms a : V x V + R and 1 E V’ are given by 

~ ( u ,  11) = ~ A I L A I ~ ~ x :  L 
In order to obtain a unique solution, we have to add the assumption of strict positivity of 
b( x) : 

0 < CEI 5 b(x )  for all x E 0. (6.15) 

This requirement is intuitively clear, and it holds unless the elasticity modulus E or the 
area moment of inertia I vanish in 0. Condition (6.15) will play a role in the proof of the 
following lemma: 

Lemma 6.1 Under the assumption (6. I S ) ,  the problem (6.14) has a unique solution u E V .  

Proof: We need to verify that the assumptions of the Lax-Milgram lemma (Theorem 1.5) 
are satisfied. Let us begin with the case 0 < b(x)  = const, where the main idea is free of 
technical details. Suppose that b is removed from the equation by redefining f := f /b.  We 
use Holder’s inequality (Theorem A.lO) to see that the form a( . ,  .) is bounded, 

= Ilul~$~~v~l$ for all u, v E V, 

where I /  . 1 1 ”  is the HI-norm 11 . 111,2 (see Definition A.57). Since 

v E H,’(R) and Vv E H,’(R), 

the PoincarC-Friedrichs inequality (Theorem A.26) with k = 1 can be applied to both v 
and Vv. Hence, there exist positive constants CO, C1 such that 

(6.16) 

and 

(6.17) 

From (6.17) it follows that 

/Vv]’ + (Av)’dx for all v E V 
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Relation (6.16) yields 

Finally we obtain 

Thus with 0 < b(z)  = const, the form u ( , ,  ,) is continuous and V-elliptic, and according 
to the Lax-Milgram lemma problem (6.14) has a unique solution u E V. In the case of 
nonconstant strictly positive b E Lm(sl) ,  the idea of the proof is the same except for a 
slightly more technical manipulation with the inequalities, which is left to the reader as an 
exercise. 

It should be stressed that, analogously to the second-order elliptic case, some combina- 
tions of the boundary conditions are prohibited since they do not lead to a unique solution. 
This would be the case, e.g., if the deflection u was not prescribed at either end. The form 
a(., .) remains V-elliptic when the beam is only clamped at one end, since the PoincarC- 
Friedrichs’ inequality (Theorem A.26) still holds (see Remark A.8). 

6.2 LOWEST-ORDER HERMITE ELEMENTS IN 1 D 

For the first exposition of the Hermite elements let us consider problem (6.7) with the 
clamped boundary conditions (6.1 1 ) from Paragraph 6.1.4. The weak formulation for this 
case was derived in (6.14). 

6.2.1 Model problem 

Consider a subdivision a = z~ < 5 1  < . . . < x h f  = b of the domain R. For i = 

1,2,. . . , hf denote K, = ( ~ ~ - 1 ,  zz). Recall from paragraph A.4.2 that H1-functions are 
continuous in one spatial dimension, 

w E H 1 ( R )  =+ ?LIEC(R).  (6.18) 

Applying (6.18) to the derivative of UJ = 71’ E H1 (f?), one obtains 

w E H2(s1) + 7) E C’(f2). (6.19) 

Any approximate solution to problem (6.14) has to be once continuously differentiable 
(globally smooth) in R. It follows from here that the approximation has to be at least 
piecewise quadratic. However, the space of smooth, piecewise-quadratic functions is not 
frequently used for reasons to be explained in Paragraph 6.2.2. It is standard to employ 
cubic and higher-degree polynomials. 

With a general polynomial distribution 3 5 p ,  = p,(K,), z = 1 , 2 . .  . . . A I ,  the space 
Vh.p has the form 
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= {u  E G’(R); u(u)  = u(b)  = v’(a) = d ( b )  = 0;  (6.20) 

4 K ,  E P P t ( K , ) )  c v,  

and the approximate weak formulation reads: 

Approximate weak formulation Find a function U h , p  E vh ,p  such that 

Since the bilinear form a(., .) is continuous and V-elliptic on Vh,,, the Lax-Milgram lemma 
implies that the discrete problem (6.21) has a unique solution E 

Basis of 
of the space Express 

and the linear algebraic system Assume a basis { u l ,  u2,  . . . , VN 1 

where yl ,  yz ,  . . . , y~ are unknown coefficients in the usual sense. Using (6.22) and em- 
ploying u := vl ,  u ~ ,  . . . , u ~ ,  identity (6.21) comes over to a system of linear algebraic 
equations of the form 

2 IJ~ 
, = I  

bAv, Av, dx = f v, dx. i = 1 , 2 ,  . . . , N ,  (6.23) 

which can be written in the compact form 

SY = F .  (6.24) 

We saw in the proof of Lemma 6.1 that problem (6.14) is V-elliptic. Therefore the bilinear 
form a(.,  .) defines an energetic inner product on V x V, and the standard orthogonality 
property of the type (2.14) holds, 

a(u - U h , p .  u )  = 0 for all ii E vh,p.  (6.25) 

This in  turn means that the approximate solution u h , p  is independent of the choice of the 
basis {vl,  v2, .  . . , u ~ )  of the space Vh,p (see Remark 2.2). 

However, as we know from Paragraph 2.5.3, the choice of the basis in v h , p  influences 
the condition number of the stiffness matrix S,  and in turn the performance of the iterative 
matrix solvers for the linear system SY = F dramatically. This is why one has to design 
the basis functions u1, v2, . . . , u~ very carefully. Before introducing general higher-order 
Hermite elements in Section 6.3, let us review the standard cubic case in Paragraph 6.2.2. 
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6.2.2 Cubic Hermite elements 

As mentioned earlier, the smallest space Vh.p consisting of piecewise-quadratic polynomials 
is not used very frequently in practice. The reason is that the support of a smooth, piecewise 
quadratic basis function has to extend over at least three elements. But more importantly, 
it is not possible to find a set of degrees of freedom C, such that (K, ,  P2(K, ) ,  C,) would 
constitute a unisolvent nodal finite element conforming to the space H 2  (a). 

The lowest-order element K, = (x*-~, t?) conforming to H2(R) is the Hermite ele- 
ment with degrees of freedom associated with both the function values u ( x ~ - ~ ) ,  u(x,) and 
derivatives u’(T%-~),u’(z,) at the endpoints. This makes it four degrees of freedom per 
element, i.e., the local polynomial space on the interval K, has to be P3(K1) .  

Cubic Hermite element on the reference domain K ,  As always, let us first define 
the element on a reference domain, which in this case is the interval K ,  = (-1.1). The 
cubic Hermite element is a triad (K,, P3(K,),  C,), where the set of degrees of freedom 
C, consists of the linear forms L, : P3(K,) + R, 

(6.26) 

Let us check the unisolvency of this finite element and construct the unique nodal basis of 
the space P3(K,). We choose an arbitrary basis of the space P3(K,), say, 

(91, 92 ,  93,  9 4 )  = { 1, E ,  E 2 .  r 3 > .  
The generalized Vandermonde matrix L = {L,(gJ)}:,,=l has the form 

(see Theorem 3.1). Since L is nonsingular, the element is unisolvent. The inverse matrix 

112 112 114 -114 
-314 314 -114 -114 

0 -114 114 (1 114 -114 114 114 

L-1 = 

contains in its columns the coefficients defining the nodal basis 8 = {61,&, 63, O,} in 
terms of the original basis functions { 1, I ,  t2,  E 3 } ,  

(6.27) 
1 3  1 
2 4  4 
1 3  1 
2 4  4 
1 1 1  1 
4 4  4 4 

61(c$) = wo(E) = - - - E  + -t3,  

@ 2 ( 0  = w 1 ( 0  = - + - E  - - E 3 ,  

0 3 ( E )  4 6 )  = - - - E  - -E2 + - 6 3 ,  

e&) = w 3 ( ~ )  = -- - - E  + -t2 + -t3 

= 

1 1 1  1 
4 4  4 4 
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(the symbols wo, w1, . . . , wy are introduced for later reference). It is easy to verify that 
these functions satisfy the delta property (3.4) in the form 

L, (6,) = 63k for all 1 5 j ,  k 5 4. (6.28) 

These four nodal shape functions are depicted in Figures 6.6 and 6.7 

theta.Z(x) - 
1 2  

lhela_l(x) - 
1 2  

Figure 6.6 Cubic shape functions 61 and 62, representing function values at the endpoints of K,. 

Ihela-a(x) - 
06 06 

lheIa_3(x) - 

0 4  04 

0 2  

0 

-0 2 

-0 4 

06 

02 

0 

-0 2 

-0 4 

-0 6 

Figure 6.7 Cubic shape functions 6’3 and 04, representing derivatives at the endpoints of K,. 

The notion of vertex and bubble shape functions for the Hermite elements differs from 
what we had for the Lagrange elements: 

Definition 6.1 Given a one-dimensional Hermite element ( K ,  P, C ) ,  a shape function 6 c 
P is said to be bubble function if it vanishes, together with its$rst derivative O’, at both 
endpoints of the interval K.  Shape functions which are not bubble functions are said to be 
vertex functions. 

All shape functions depicted in Figures 6.6 and 6.7 are vertex functions. 

Cubic Hermite element on a general interval K ,  c R The cubic Hermite element 
in the interval K, = (z2-1,z,) is defined as (K,,  P3(Kz ) ,  Cz), where the set of degrees 

of freedom C, = {Liz), L t ) ,  . . . , L t ) }  comprises the linear forms L(,“)(g) = g(z2-1), 

L t ) ( g )  = g(z,), L t ) ( g )  = g’(z,-I), L t ) ( g )  = g’(z,) defined on P3(Kz) .  
In Example 3.5 we saw that finite elements with derivatives are not affine-equivalent, 

and this applies to the Hermite elements as well. Hence it is natural to split the nodal 
shape functions into two groups related to Lagrange and Hermite degrees of freedom, 
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respectively. (The Lagrange DOF are associated with the function values and the Hermite 
with the derivatives.) The Lagrange shape functions O 1 .  6 2  are affine equivalent in the 
standard way, and the affine reference map ZK, : K,  + K ,  from (2.37) can be used to 

define the nodal shape functions O r ’  and O p )  on K,, 

The Hermite shape functions Qt) and Qt’ on K, have the form 

(6.29) 

(6.30) 

where the additional multiplication with the constant Jacobian J K ,  is needed in order to 
preserve the values of the derivatives at the endpoints, 

6.3 HIGHER-ORDER HERMITE ELEMENTS IN 1 D 

This section is devoted to the design and properties of higher-order Hermite elements. The 
cubic Hermite elements are extended to arbitrarily high polynomial degrees in both the 
nodal and hierarchic fashion in Paragraphs 6.3.1 and 6.3.2. The conditioning properties 
of the nodal and hierarchic higher-order shape functions are compared in Paragraph 6.3.3. 
The basis of the space is constructed in Paragraph 6.3.4 and the integrals from the 
weak formulation (6.21) are transformed to the reference domain K,  in Paragraph 6.3.5. 
Algorithmic aspects, such as the construction of the connectivity arrays and the assembling 
algorithm, are discussed in Paragraphs 6.3.6 and 6.3.7. The three basic ways of interpolation 
(i,e., the best, projection-based and nodal interpolants) are discussed in the context of higher- 
order Hermite elements in Paragraph 6.3.8. 

6.3.1 Nodal higher-order elements 

The cubic Hermite element on the reference domain K ,  = (-1,l) can be extended to a 
nodal Hermite element of the order p > 3 by adding p - 3 new degrees of freedom. Since 
the two Lagrange and two Hermite degrees of freedom at the interval endpoints already 
guarantee the conformity to the space H 2 ( Q )  (this will be discussed in more detail later), it 
is natural to add Lagrange degrees of freedom. Hence, choose some p - 3 additional nodal 
points y2, y3,. . . , yp-2 in the interval K,, so that 

The Lagrange shape function associated with the nodal point Y k ,  2 5 k 5 p - 1, vanishes at 
both endpoints of K,  together with its first derivative, and therefore it is a bubble function 
according to Definition 6.1. 

Fourth-order Hermite element on the reference domain K ,  The properties of 
the nodal Hermite elements strongly depend on the choice of the nodal points y2, y3, . . . , yp-2 
The situation is simple in the fourth-order case, where the choice y2 = 0 is dictated by the 
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symmetry requirement. Thus we obtain an element (K,, P4(K,) ,  Xu), where the set of 
degrees of freedom C, comprises the linear forms Li : P4 ( K a )  + R, 

(6.31) 

The pair of Hermite degrees of freedom is placed at the end of the list for algorithmic 
reasons. Following the standard procedure, we obtain a unique set of nodal shape functions 
in the form 

1 1  
(6.32) 

3 
4 4 el([) = --[ + t2 + - [ 3  - 2[4, 

&(() = 1 - 2 [ 2 + < 4 ,  

Q4([) = --[ + - p  + - [ 3  - -[4. 

&([) = - - E  - -p  + - [ 3  + -[4. 

3 1 .  1 
6 3 ( ( )  = -< + E 2  - -[" - -E4 

4 4 2 l  

1 1  1 1  
4 4  4 4 
1 1  1 1  
4 4  4 4 

These functions are depicted in Figures 6.8-6.10. 

1 2  

0 8  

06 

0 4  

0 2  

0 

0 2  

Figure 6.8 Fourth-order vertex functions 81 and 03 representing function values at the endpoints. 

ineta 2(X)  ~ 

1 2  

-0 5 0 05 
-0 2 

Figure 6.9 Fourth-order bubble function 8 2  representing the function value at the midpoint. 
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Figure 6.10 Fourth-order vertex functions $4 and $5 representing derivatives at the endpoints. 

The fourth-order Hermite element on a general interval K, as well as its nodal basis 
are constructed analogously to the cubic case: The Lagrange shape functions 61,62, and 
03 are transformed to K, via the inverse reference map ~h: analogously to (6.29), and the 
correction by the Jacobian J K ,  is applied to the Hermite shape functions 64 and 85 similarly 
to (6.30). The inverse of the reference map zi t  is not required by the element-by-element 
assembling procedure. 

For higher polynomial degrees p 2 5 the p - 1 Lagrange nodal points can be identified, 
for example, with the p - 1 Gauss-Lobatto points -1 = y1 < y2 < y3 < . . . < yp-l = 1 
of the order p - 2. Later in Paragraph 6.3.3 we show that this choice is advantageous from 
the point of view of the condition number of the resulting stiffness matrix. Next let us turn 
our attention to the hierarchic Hermite elements. 

6.3.2 Hierarchic higher-order elements 

The basic idea of hierarchic elements, explained at the beginning of Paragraph 2.4.6, applies 
to Hermite elements as well. The lowest-order basis B:3 comprises the four cubic Hermite 
vertex functions (6.27), 

For every p 2 3, the basis B,+, is defined by 

%+l = a ,  u {wp+1}. (6.33) 

where the polynomial wp+l of the degree p + 1 is a suitable bubble function (i.e., E 
PP(K,),  wp+l (il) = W L + ~  (3~1) = 0). Since the choice of a hierarchic basis is not unique, 
one has certain freedom to optimize the conditioning properties of the higher-order shape 
functions. 

Recall that the excellent conditioning properties of the Lobatto hierarchic shape functions 
(2.63) were due to the orthonormality of the corresponding higher-order bubble functions 
in the Hd-product, 

(6.34) 

In Paragraph 2.5.3 this orthonormality was achieved by using the integrated Legendre 
polynomials. Analogously, the weak formulation (6.14) involves the Hi-product, 
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1 

( u , ~ ) p ( ~ ~ ~  = [, AuAiid t  for all u,v  E H i ( K a ) .  (6.35) 

Higher-order bubble functions orthonormal in this inner product will possess optimality 
analogous to the Lobatto shape functions (2.63). Hence, after integrating the Lobatto 
bubble functions l z , l 3 , .  . ., 

we see that 

r-I 

which is exactly what we want. However, at the same time we see that 

only holds for all odd k 2 5. In this case we can define the bubble functions directly, 

but extra work needs to be done if k is an even number. For all k > 5 even, the explicit for- 
mulae of the bubble functions wk (<) are obtained from the orthogonality and (anti)symmetry 
requirements. This leads to a nonlinear system of algebraic equations, that can be solved 
with some effort (see [ 1 101 for details). 

The formulae of w4, w5, . . . , w10 are shown below for reference. 

(6.36) 

W g ( F )  = ”” (1 - <2)2  (-7t2 + 1) , 
6 128 
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Bubble functions constructed in this way are orthonormal in the inner product (6.35) not 
only among themselves, but also to the four vertex functions wo; w l ,  . . . , WJ. Therefore the 
master element stiffness matrix SK,, for the biharmonic operator in the reference interval 
K ,  has the form 

312 -312 312 312 0 . _ .  0 
-312 312 -312 -312 0 . _ _  0 
312 -312 2 1 0 . . .  0 
312 -312 1 2 0 . . .  0 

0 0 0 0 1 0 

0 0 0 0 0 . . .  1 

(6.37) 

The bubble functions w4,wg.. . . .w11 are shown in Figures 6.1 1-6.14. 

02.. omega.S(x) - 

0 15 

0 1  
-0 02 

0 05 -0 04 

-0 06 
0 

I -0 5 0 0 5  1 -1 -0 5 0 0 5  1 

Figure 6.11 Hi-orthonormal hierarchic shape functions w.1, wg. 

Em omega K(x1 - :;m omega 7(x) - 

0 02 
0 01 

0 
0 01 

0 02 0 02 

0 03 0 03 

1 0 5  0 0 5  I t  0 5  0 0 5  1 

Figure 6.12 H$orthonorrnal hierarchic shape functions u ~ ,  w7 
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0 01 

0 005 

0 

-0 005 

-0 01 

-0015 

1 -0 5 0 0 5  1 -1 -0 5 0 05 1 

Figure 6.13 Hi-orthonormal hierarchic shape functions 08. w:). 

I 
1 -0 5 0 0 5  

-0015 I 
1 1 -0 5 0 05 1 

Figure 6.14 Hi-orthonormal hierarchic shape functions w10. w1, 
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6.3.3 Conditioning of shape functions 

The conditioning properties of higher-order shape functions are essential for the perfor- 
mance of the iterative matrix solvers on the discrete problem. Therefore let us follow up 
with the discussion from Paragraph 2.5.3 and study the conditioning properties of the nodal 
and hierarchic shape functions for higher-order Hermite elements. 

Conditioning in the Hg-product For simplicity let us consider the biharmonic prob- 
lem (6.7) with b = 1 and the boundary conditions (6.1 1) on the reference domain K,. 
A one-element mesh ?;L,p = { K,} will be used for its discretization. The stiffness matrix 
So is obtained by leaving out from the master element stiffness matrix the four rows and 
four columns corresponding to the vertex functions. Thus in the hierarchic case the master 
element stiffness matrix (6.37) reduces to the ( p  - 3) x ( p  - 3) identity matrix. 

Figure 6.15 compares the condition numbers of the stiffness matrix So obtained using 
four different sets of higher-order shape functions: the nodal shape functions defined on 
equidistant, Chebyshev and Gauss-Lobatto points, and the hierarchic shape functions. The 
horizontal axis represents the polynomial degree of the element. 
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Figure 6.15 
domain K , .  The horizontal axis represents the polynomial degree p of the element. 

Conditioning of various sets of bubble functions in the H&product on the reference 

While the nodal shape functions on the equidistant points are uniformly worst and the 
hierarchic shape functions optimal (both as expected), it is interesting to see that the Gauss- 
Lobatto points are a better choice than the Chebyshev points for p > 5 .  These two point 
sets performed similarly in the discretization of the Laplace operator. 
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le+10 

Conditioning in the HA -product Despite the Laplace operator is not present in the 
Euler-Bernoulli beam model explicitly, it may be involved in more general fourth-order 
problems. This is the case, for example, with the equation A(bAu) - V(cVu) = f .  This 
equation, when equipped with the boundary conditions (6.1 I), has the weak form 

I I I I I I I 

'EQUIDIST-H1' ~ 

- -- - - - - 'CHEBYSHEV-H 1 
GAUSS-LOB-HI 

- 

'HIERARCHIC-HI ' 

Hence, in this case the condition number of the resulting stiffness matrix also depends 
on the conditioning of the shape functions in the Hi-product (6.34). For reference, the 
corresponding comparison is shown in Figure 6.16. 
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Figure 6.16 Conditioning of the higher-order shape functions in the HA-product (6.34). The 
hierarchic shape functions (6.36) are not optimal anymore, but they still are better than the other three 
choices for p 2 7. 

It follows from Figure 6.16 that (a) surprisingly, the equidistant nodal points perform 
better than the Chebyshev points for 7 5 p 5 11, and (b) for every p 2 7 the hierarchic 
shape functions give the best result. 

6.3.4 Basis of the space V& 

With suitable shape functions on the reference domain K, in hand, the basis functions 
vl ,  v2,. . . , v~ of the space Vh.p c Hi(R) can be designed. We shall work work with the 
hierarchic shape functions W O ,  w1, . . . in what follows. 

Assume a bounded domain R = (a,  b)  c R and a finite element mesh 7 h , T )  consisting 
of A4 2 1 Hermite elements K, on subintervals K, = ( ~ ~ - 1 ,  z t ) ,  equipped with arbitrary 
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polynomial degrees 3 5 p ,  = p(K,).  The space V,,* was defined in (6.20), 

{v E cl(n); u(a) = v(b) = v’(a) = v’(b) = 0; %p - - (6.38) 

WIK, E P”(K7)). 

It is easy to calculate the dimension of this space, 

nr 
N = dim(Vk,,) = -M - 2 + c p , .  (6.39) 

t=l 

In view of Definition 6.1, the basis functions are split into vertex and bubble functions. 

Vertex basis functions: The vertex functions are associated with the internal grid points x,, 
z = 1.2 , .  . . , M I ,  and they always extend over two adjacent elements K ,  and IY,+~. A first 

set of M - 1 vertex functions o?(’’~) represent the function values, 

The other M - 1 vertex functions u:””) represent the derivatives, 

The delta property (6.28) of the cubic Hermite shape functions wo, w1 
into 

, _ _ _  

(6.40) 

(6.41) 

, wg translates 

and 

Bubble basis functions: On every element Kt we define pt - 3 bubble functions 

x € K , , k = 4 . 5  , . . . ,  p,. (6.42) b -1 
217,k = wk. ICK,. 

In the nodal higher-order case the bubble functions are defined by 

u : ~  = Ok-2 o xi:, x E K,, k = 4 , 5 , .  . . ,p , .  

where $k are the bubble shape functions associated with the Lagrange degrees of freedom 
at thep, - 3 nodal points -1 < y2 < y3 < . . . < yp,-2 < 1. 

Lemma 6.2 Functions (6.40)-(6.42) belong to C‘ (O), andform a basis of the space (6.38). 

Proof: This is clear from their construction. 



228 BEAM AND PLATE BENDING PROBLEMS 

6.3.5 Transformation of weak forms to the reference domain 

For the element-by-element assembling algorithm, the approximate weak formulation (6.23) 
needs to be written as a sum over all elements, 

y, IK bAv, Av, dx = fv ,  dx for all i = 1 . 2 , .  . . , N. (6.43) 
m = l  j = 1  rlL 

Every integral in the sum is transformed to the reference domain K, via the Substitution 
Theorem. Consider a mesh element K,,, 1 5 m 5 A I ,  and the standard one-dimensional 
affine reference map ZK,,, : K, + K,,, defined in (2.37). Assume that the Jacobian 
JK,,, > 0 for every KTrL. With the notation from Paragraph 2.4.3, 

one has 

and further 
1 

Aii,(.r) = ~ A f i , ' " " ( ( ) .  .T = TI<,,, (I) 
TJK?,, 

This means that the biharmonic stiffness integrals for the model problem (6.14) attain the 
form 

where &('If) = boxh-,,, . The right-hand side integrals from (6.43) transform to the reference 
domain A'<, simply as 

f i i ,  dx = r J ~ < r r , ~ ( f " ) f i ~ ' " )  d<. 
. I K,, ,  

6.3.6 Connectivity arrays 

The extension of the data structures and algorithms from Paragraphs 2.4.8 and 2.4.9 to 
Hermite elements in one spatial dimension is straightforward. In what follows let us as- 
sume the model problem (6.7) with the homogeneous Dirichlet conditions (6.1 1)  for both 
the solution u and its first derivative u'(,r). The extension to nonhomogeneous Dirichlet 
boundary conditions is done analogously to Paragraph 2.6. 

Element data structure Consider a finite element mesh T!,!, = {I<, . K 2 , .  . . . I<nl} 
consisting of Hermite elements of arbitrary polynomial degrees 3 5 p ,  = p ( K L ) ,  i = 
1.2. . . . . A I .  Choose a reasonable upper bound MAXP and define: 
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struct C 
int p; 
int vert-dirl41 ; 
int vert-dof [41 ; 
int +bubb_dof; //bubble connectivity array 

//polynomial degree of element 
//vertex Dir. flags for both u and du/dx 
//vertex connectivity arrays 

//(length MAXP-3) 
. . .  

1 Element; 

The Dirichlet flag Elem [m] . ver t -d i r  [j] , I  = 1.2, has the following meaning: It is zero 
if the left vertex of K ,  = (z,,-~. z,,,) is unconstrained by a Dirichlet boundary condition 
for the solution IL, and it equals to one otherwise. The flag Elem [ml . ver t -d i r  [21 is related 
to the right vertex of A',,, in the same way, and the Dirichlet flags Elem [ml . ver t -d i r  Cjl , 
J = 3.4, have an analogous meaning for the first derivative u/ (z ) .  

Unique enumeration of basis functions According to (6.39), the dimension of the 
space VtL.,, is 

A1 

N = = - A f  - 2 +  TI, 
,=I 

The N basis functions have to be enumerated uniquely so that the connectivity links can be 
defined. We use the following scheme: First enumerate all vertex functions representing 
the solution values at the internal grid points, 

(v.0) 
11, = 0,  f o r a l l i = 1 . 2  . . . . .  A [ - 1 .  

Then add all vertex functions representing the derivatives at the internal grid points, 

f , n I - l + l  = 21, ( I " ' )  for all I = 1.2. .  . . . A f  - 1 

At the end of the list put the bubble functions, using an outer element loop 712 = 1.2. . . . . A1 
and an inner loop p = 4.5 , .  . . ,p,,. This will be implemented in Algorithm 6.1 below. 

Element connectivity arrays Analogously to Paragraph 2.4.8, the values of the Dirich- 
let lifts for both the solution u and the first derivative ~ ' ( z ) ,  which are only nonzero in the 
case of nonhomogeneous Dirichlet boundary conditions, are stored in a global array double 
DIR-BC-ARRAY 141 = { G ( n ) .  G(b).  G,l(,,.(a). G(l(,,.(b)}. The variable ElemIml .vert-dof 
[11 contains either 

0 a positive index i of a vertex basis function '11, = 1 1 ~ ~ ' ' ~ ) )  associated with the left vertex 
of the element K,,, (if the vertex is not constrained by a Dirichlet boundary condition 
for the solution 'u, i.e., if Elem[m] .ve r t -d i r  [ l l  == O ) ,  

0 or -1, so that G(n) = DIRBC-ARRAY [-Elem[m] .vert_dof 111 1 
(ifElem[m] .ve r t -d i r  [11 == 1). 

Similarly one defines Elem[ml .vert-dof [21 for the right vertex of the element K,,,. 
If Elem [m] . v e r t _ d i r  [2] == 1, then Elem[m] .vert-dof [2] == -2. The variable 
Elem [ml . vert-dof 131 contains either 
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0 the index &! - 1 fz of a vertex basis function vAf-t+l = u ~ " " )  corresponding to the 
left vertex of the element K,  (if the vertex is not constrained by a Dirichlet boundary 
condition for the first derivative u', i.e., if Elem [ml . ver t -d i r  C31 == 0), 

0 or -3, so that Gder(u) = DIR-BC-ARRAY [-Elem[ml .vert-dof [311 
(if Elem [m] . ver t -d i r  131 == 1). 

The value Elem [ml . vert-dof [41 for the right vertex of the element K,, is defined analog- 
ously. If Elem [m] . ver t -d i r  141 == 1, then Elem [m] . vert-dof [41 == -4. The bub- 
ble functions are always unconstrained, and therefore the value Elem [m] . bubb-dof [ j l  , j 
= 1 ,2 ,  . . . ,Elem[m] .p-3, contains the index of the bubble basis functions of the poly- 
nomial degree j + 3 associated with the element K,. 

The following connectivity algorithm is similar to Algorithm 2.4, except that the Hermite 
shape functions w 2  and w 3  are treated differently from the rest of the shape functions. 

Algorithm 6.1 (Connectivity algorithm for Hermite elements) 

count := 1; 
index := 1; //For Lagrange vertex functions W ( ) , W I  

//Block A :  Enumerate Lagrange vertex functions (v:"') : 

//Visiting the element K1: 
if (Elemlll .vert.dir[indexl == 1) then { 
Elemlll .vert_dof [index] := -index; 

I 
else { 
Elem[l] .vert-dof [index] := count; 
count := count + 1; 

1 
ElemCll .vert.dof lindex+ll := count; 
//Visiting interior elements K P ,  K s ,  . . . , K.21-1: 
for m = 2 , 3 , .  . . ,M-1 do { 
Elem Em] . vert-dof [index] : = count ; 
count := count + 1; 
ElemCm] .vert_dof Cindex+ll := count; 

1 
//Visiting the element K h l :  

Elem [MI . vert-dof [index] : = count ; 
count := count + 1; 
if (Elem [MI . vert-dir [index+ll == 1) then { 
ElemCM] .vert_dof [index+ll := -index-1; 

} 
else { 
ElemCM] .vert.dof [index+lI := count; 
count := count + 1; 

1 
//Block B: Enumerate Hermite vertex functions (uIr") : 
//(run block A once more with index := 3) 
//Block C: Enumerate all (Lagrange) bubble functions: 
for m = 1 , 2 ,  . . . ,  M do { 

Elem [m] . bubb-dof [jl 
count := count + 1; 

f o r  j = 1,2,. . . ,Elem[ml .p-3  do { 
: = count ; 

1 
I 

The function of Algorithm 6.1 can be illustrated on a simple example: 
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EXAMPLE6.1 

Consider the model problem (6.7) with homogeneous Dirichlet boundary conditions 
(6.1 l), and a mesh 7 h , p  consisting of three elements K1, K2 and K3 of the polynomial 
degrees p1 = 4, p2 = 6 and p3 = 5. According to (6.39), the dimension of the space 
Vh,p is N = 10. The input data for the connectivity Algorithm 6.1 is 

Elem[ll.p = 4; 
Elem[ll .vert-dir = {l,O,l,O>; 
Elem121 .p = 6 ;  
Elem121 .vert-dir = { O , O , O , O > ;  
ElemL31 .p = 5; 
Elem [31 . vert-dir = IO, 1,0,1> ; 

The resulting element connectivity arrays have the form 

Eiem[ll .vert-dof = {-1,1,-3,3>; 
Elem [l] . bubb-dof = C5) ; 
Elem121 .vert-dof = I1,2,3,4>; 
Elem [21 . bubb-dof = I S  ,7,8> ; 
Elem[3] .vert-dof = {2,-2,4,-4>; 
Elem [3] . bubb-dof = {9,10>; 

6.3.7 Assembling algorithm 

The complexity of the assembling algorithm depends on whether or not the function b in 
(6.7) is constant. If it is constant, then the global stiffness matrix S can be assembled using 
the set (6.37) of few precomputed master element stiffness integrals. Otherwise explicit 
numerical integration needs to be done on every mesh element K,, m = 1,2,. . . , M .  
For simplicity, assume that 0 < b = const. Then b can be removed from the equation by 
replacing f with f /b .  The master element stiffness matrix (6.37) can be represented via a 
two-dimensional array MESI, 

MESI[i][j] :=/-' Au,-,(z)Au,-,(z)dz forall 1 < z , j  < M A X P +  1 
1 

Further we define the function 

double Jac(doub1e jac, int index) { 
if (index < 3) return 1. ; 
else return jac; 

> 

that is used to distinguish between the Lagrange and Hermite shape functions in the assem- 
bling algorithm: 

Algorithm 6.2 (Assembling algorithm for Hermite elements in 1D) 

//Calculate the dimension of the space V,,,,: 

for m = 1,2, . . . ,  M do N := N + Elem[ml.p; 
//Calculate the value of ElemIml .jac for ail elements K,,, m = 1 , 2 , . .  , h l :  
for m = 1,2 ,..., M do Elem[ml.jac := (zm - ~ , , ~ - 1 ) / 2 ;  
//Set the stiffness matrix S zero: 
for i = 1,2 ,..., N do for j = 1,2 ,..., N do S[il[jl := 0; 

N := -2 ~ M ;  
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//Set the right-hand side vector F zero: 
for i = 1 , 2 ,  . . . ,  N do F[iI := 0; 
//Element loop: 
for m = 1 , 2 ,  . . . ,  M do { 
//Loop over vertex test functions: 
for i = 1,2, . . . ,  4 do { 
//If > -1, this is index of a 
//i.e., r o w  position in S: 
ml := Elem[ml .vert.dof [i] ; 
//Loop over vertex basis functions: 
if (mi > -1) then for j = 1,2,. . . ,4 do { 
//If > -1, this is index of a 
//i.e., column position in S: 
m2 := Elem[m] .vert_dof [j] ; 
if (m2 > -1) then { 
//Multiply each Hermite shape function with an extra Jacobian: 
jac := ElemIm]. jac; 
jactb : = Jac (Jac , i) *Jac (jac , j ) ; 
~[mll [m2I := ~[rniI [m2I + jactb*MESI[il [jI/jac:'; 

test function 1)  ,,,, E 1; ,.,,. 

basis function I * , ~ ~ ~  € b',t,p. 

1 
} //End of inner loop over vertex functions 
//Loop over bubble basis functions: 
for j = 1,2 , . . . ,  Elem[ml.p-3 do { 
m2 : = Elem [m] . bubb-dof [j 1 ; 
if (m2 > -1) then { 
jac := Elemlml . jac; 
S[mll Cm21 := S[mlI [m21 + Jac(jac,i)*MESI[il [j+41/jac3; 

1 
} //End of inner loop over bubble functions 
//Contribution of the vertex test function 7 1 , , ~ ,  to the right-hand side F :  
if (mi > -1) then { 
jac := Elem[ml .jac; 
FLmll := FLmll + Jac(jac, i) */,i,> IJk-,,, If""(E)ur- I ( E )  dE; 

1 
} //End of outer loop over vertex functions 
//Loop over bubble test functions: 
for i = 1,2, . . . ,  Elem[ml.p-3 do { 
ml : = Elem [m] . bubb-dof [i] ; 
//Loop over vertex basis functions: 
if (ml > -1) then for j = 1 , 2 ,  . . . ,  4 do { 
m2 : = Elem [m] . vert _dof [ j 1 ; 
if (m2 > -1) then { 
jac := Elem[ml .jac; 
S[ml] [m2] := S[ml] [m2] + Jac(jac,j)*MESI[1+41 [jI/jac:'; 

1 
} //End of inner loop over vertex functions 
//Loop over bubble basis functions: 
if (ml > -1) then for j = 1,2 , . . . ,  ElemLm1.p-3 do { 
m2 := ElemZm] .bubb_dof [jl ; 
if (m2 > -1) then S[mll [m21 := S[mll Em21 + MESI[i+41 [j+41/Elem[ml .jac3; 

} //End of inner loop over bubble functions 
//Contribution of the bubble test function L ' , , , ~  to the right-hand side F :  
if (mi > -1) then F[mll := F[mll + ,f,<<, l . l ~ , , , l f ( r ' ~ ) ( ~ ) ~ ~ - , ( ~ ) d ~ ;  

} //End of outer loop over bubble functions 
} //End of element loop 
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6.3.8 Interpolation on Hermite elements 

Similarly to the HI-conforming case discussed in Paragraphs 2.7.2-2.7.4, also on the Her- 
mite elements we have at least three basic interpolation options with different quality and 
cost: 

1. 

2. 

3. 

the best interpolant exploiting a global orthogonal projection (best quality but highest 
cost), 

the projection-based interpolant combining the nodal interpolation of vertex values 
and derivatives with local orthogonal projections in element interiors (slightly less ac- 
curate than the best interpolant, but much more efficient, especially with orthonormal 
higher-order bubble functions), 

the traditional explicit nodal interpolant (fastest but worst quality). 

Best interpolant Consider a bounded domain fl = (a .  b)  c R and a finite element 
mesh 'Z j l , p  consisting of M 2 1 Hermite elements K,  = (~~-1,z , )  equipped with arbitrary 
polynomial degrees 3 5 p ,  = p(K,).  The best interpolant of a function g E V = H:(fl) 
in the finite-dimensional subspace Vtl.I, C V is obtained as follows: The function gtl,p is 
expressed as 

(6.45) 

where { i l l .  u2..  . . .TIN}  is a basis of vh,T,. The unknown coefficients yl, y2.. . . . Y N  are 
determined from the orthogonality condition 

(y - , 9h .p )  1 h . p .  

that is equivalent to a system of linear algebraic equations, 

N 

C r / , ( u J .  1 1 , ) ~  = ( 9 , ~ ~ ) ~  for all i = 1 , ~ .  . . , N. (6.46) 
J=1 

Since the PoincarC-Friedrichs' inequality (Theorem A.26) holds in the space V ,  one can 
use either the full H2-product, 

(u.  11)" = uu + V,uV,ii + A,uAudx 

or, equivalently, the simpler Hi-product 

Projection-based interpO/ant The interpolant 9h.P is sought in two steps, as a sum of 
the vertex and bubble interpolants 
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Vertex interpolant: The elementwise cubic function g;l E C’(i2) satisfies 

g x , p ( x , )  = g(x,), ( g i i , p ) r  (2,) = g’(x?) for all z = 0,1.. . . , AI. (6.48) 

Using the basis functions (6.40) and (6.41), on every K, = ( x z - l , x z )  we obtain 

Bubble interpolant: Since the residual g - gx ,p  vanishes at all grid points x, together with 
its first derivative, on every element K,, i = 1.2. .  . . , A I  it  belongs to the space (A.92), 

On every element K, with p ,  2 4 consider the polynomial subspace 

of the dimension p ,  - 3. Let us stay with the H$product 

for simplicity. The unique bubble interpolant gk ,p  on the element K ,  is determined from 
the orthogonality condition 

Using the bubble functions (6.42) that generate the space P&(K,), this is equivalent to 

Expressing 

Pi 

and inserting this linear combination into (6.51), one obtains a system of p ,  - 3 linear 
algebraic equations, 

for the unknown coefficients a!:). Transformed to the reference domain K,, with the 
orthogonal hierarchic shape functions (6.36) this linear system simplifies substantially to 
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which means that 

where k = 4,5, . . . ,p,.  Hence no system of linear algebraic equations needs to be solved. 
Here g(() = g ( X K ,  (6)) and 

$ , p ( < )  = ( g x , p ( z K ,  (0) 
= wO(E)g(z%-l) + w l ( E ) g ( X z )  -k J K , % ( E ) g ’ ( x z - l )  + J K , o 3 ( ( ) g ’ ( z , ) .  

After obtaining the coefficients a t ) ,  k = 4,5. . . . p,, for every element K,, i = 1,2, . . . , M ,  
the construction of the projection-based interpolant gh,+ = g;,,, + gk ,p  is accomplished. 

Lemma 6.3 (Local optimality of the projection-based interpolant) Let R = (a ,  b )  c 
R be covered with a Jinite element mesh Th2p consisting of M Hermite elements K, = 

(z , - l ,x , )  equippedwiththepolynomialdegrees3 5 p ,  = p(K,). Letg E H2(R)nC0(D) ,  
g)L,p E vh,p its projection-based interpolant (6.47) and gtt,p E Vh,., an arbitrary other 
interpolant satisfying gh,p(zJ) = g(x,). ijL,p(xJ) = g ’ ( z 3 ) f b r a l l j  = 0,1,. . . , M .  Then 

(6.55) 1.9 - gh,p12,2,K, 5 1g - gh.p/2,2,K, for a l l i  = 1 . 2 , .  . . hl, 

and therefore also 

1.9 - 9h.1’12,2,12 5 I9 - Y/J2.2,62- (6.56) 

If the bubble interpolant g:,, is calculated using the full H2-product (., . )2 ,2  instead of 
(6.50), the inequalities (6.55) and (6.56) hold with the full H2-norm / /  . 112.2. 

Proof: The proof is analogous to the proof of Lemma 2.5 and it is left to the reader as an 
exercise. 

Nodal interpolant The Hermite elements are automatically endowed with the standard 
nodal interpolant (3.28), 

N r ,  

Z K  (9) = 1 L? (g)ei 
,=1 

Here O7 are the nodal basis functions of the space Pp7 ( K , )  meeting the delta property (3.4), 
g is an arbitrary function from some space V such that Ppi (K, )  C V ( K 7 ) ,  and it is assumed 
that all linear forms L, ,  i = 1: 2. .  . . , N p  are defined for 9. 

Lemma 6.4 (Conformity to H2 (0) )  The$nite element mesh %t+ consisting ofarbitray- 
order Hermite elements, introduced in Paragraph 6.3.4, is conjbrming to the space H2 ((1). 
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Proof: I t  is sufficient to verify that the global interpolant Z(g) of an arbitrary function 
g E H 2 ( n )  f' C ( 2 )  is smooth at all grid vertices. The continuity of (Z(g))(x) at all 
x,, i = 1 , 2 ,  . . . , AT, follows from the delta property (3.4) and the continuity of the basis 
functions (6.40). Analogously the continuity of the derivative (Z(g) ) ' (x )  follows from (3.4) 

Since the nodal interpolant ZK? (g) matches the values and first derivatives of the inter- 
polated function g at all grid vertices, by Lemma 6.3 its quality cannot be better than the 
quality of the projection-based interpolant. 

and the smoothness of the basis functions (6.40). 

6.4 HERMITE ELEMENTS IN 2D 

In contrast to the one-dimensional case, Hermite elements do not conform to the Sobolev 
space H 2  in  2D and 3D. Nevertheless, they find important application in nonconforming 
approximations to fourth-order problems, computational geometry, surface reconstruction, 
and elsewhere. We focus on triangular elements, since the construction of Hermite quadri- 
laterals can be done easily using the product geometry of the reference domain I{(,. 

6.4.1 Lowest-order elements 

The cubic Hermite element ( K t ,  P 3 ( K + ) ,  C) on the triangular reference domain Kt is 
equipped with the set C consisting of three degrees of freedom per vertex (one for the 
function value and two for directional derivatives) and one complementary interior degree 
of freedom that is added for the sake of unisolvency. This degree of freedom usually is 
associated with the function value at the center of gravity of Ict. 

There are two equivalent choices for the directional derivatives: either the directions of 
the coordinate axes (i.e., the partial derivatives O / i ) x ~  and L)/i)x*) or the directions of the 
edges of K t .  This is illustrated in Figure 6.17. 

m ( 2  h 

" i  -1; v2 V i  v z  

Figure 6.17 Two equivalent types of cubic Hermite elements. 

Let us discuss, e.g., the former case (left part of Figure 6.17). This element has four 
Lagrange degrees of freedom 

(6.57) 
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&(g) = <1(-1,1). 

L4(g) = 9(-1/3. -1/3), 

and six Hermite degrees of freedom 

(6.58) 
8s 
3E1 

3s 

89 

L,(g) = -(-1.-I), 

L6(g) = T&(1>-1), 

L7(9) = &W! 

L 9 b )  = &(1>-1). 

L d g )  = ~ ( - 1 > - 1 ) >  8.9 

39 

8s 
8 E 2  

L o ( g )  = -(-LI). 

The corresponding nodal basis, satisfying the delta property (3.4), is constructed using the 
standard procedure which was described in Paragraph 3.1.2: 

Consider, for example, the monomial basis of the polynomial space P3((Kt), 

Inverting the Vandermonde matrix L = {L , (g j )}~ ,~= l  and reading the coefficients for the 
functions gl ,  g2,. . . ,910 from its columns, one arrives at the nodal shape functions 

7 7 13 13 13 1 13 13 
4 8 4 8 8 

9;" (6) = ,El + j j E 2  + -$ + -El& + --E; + -'$ + -E& + --E& 

+ 4 L  

'pf (6) = - + -E1 + -E2 + -<? + - E l & ?  + -<; - -<; + -E2  2 8  8 8 4  8 1 E 2 +  ,El<;, 

-%El  - T E 2  - --El - - h E 2  - -52 - --El& - -<&, 

1 3  

1'2 1 1 3  7 7 7 7 1 7  7 

b 27 27 27 27 27 27 27 

8 4 8 8 8 

+ ~ ( 1 3  + -[,"[2 4 + 5EiE;. 

' p t ( 6 )  = 

1 1 1  1 1 3  1 
P?"(s) = ,[I + q(2 + 5<: + t i t 2  + (6.59) 

1 1  3 1 ,  1 2  1 2  1 2 1 
(p1'3.2([) 1 -- - -< 2 1 - ,E2 - ,El - 6162 - 4s2 - 2ElE2 - TE1E2 + -E$  

4 
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The first four shape functions cp;’, cpr2, pYJ and pi in (6.59) correspond to the Lagrange 
DOF L1, Lz, L3 and Lq, respectively, while the rest correspond to the Hermite DOE The 
nodal basis is depicted in Figures 6.18-6.2 1. 

Figure 6.18 Nodal basis of the cubic Hermite element; the vertex functions yy’ , yy’, and y?. 

Figure 6.19 Nodal basis of the cubic Hermite element; the bubble function yt .  

Figure 6.20 Nodal basis of the cubic Hermite element; the vertex functions ypY’ ’ , yy).’, and 
ypp” 11 

Figure 6.21 Nodal basis of the cubic Hermite element; the vertex functions yy’.’, tpy212, and 
y u 3 J  

t ’  

6.4.2 Higher-order Hermite-Fekete elements 

Next let us consider a polynomial degree p 2 4. Recall that the dimension of the space 
PP(K,) is N p  = ( p  + l ) (p  + 2)/2. The vertex degrees of freedom Ll,Lz,L3 and 
Lg, Lg, . . . , Llo from the cubic case guarantee the continuity and smoothness of the ap- 
proximation at the vertices. 
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Hence, ( p  + l ) (p  + 2)/2 - 9 new Lagrange degrees of freedom need to be defined in such 
a way that the finite element is unisolvent and the approximation continuous along element 
interfaces. 

A pth-degree polynomial restricted to an edge of Kt is determined via p + 1 parameters, 
of which four are the vertex degrees of freedom at the endpoints. Thus p - 3 additional 
Lagrange degrees of freedom need to be placed into the interior of each edge of Kt.  The 
one-dimensional interior Gauss-Lobatto points of the order p - 2 are a suitable choice for 
this purpose (although better point sets may exist). In addition to that, 

interior Lagrange degrees of freedom remain to be chosen. It is natural to associate them 
with the ( p  - l ) (p  - 2)/2 interior Fekete points of the order p .  For p = 3 this set of degrees 
of freedom exactly coincides with the cubic case described in Paragraph 6.4.1. 

The distributions of the degrees of freedom for a fourth- and fifth-order Hermite-Fekete 
elements are illustrated in Figure 6.22. 

A 5 2  A 

I /  

v /  - I  

6 5 2  A 

Figure 6.22 Fourth- and fifth-order Hermite-Fekete elements on K t .  

Lemma 6.5 The Hermite-Fekete element ( K t ,  PP(Kt) ,  C), where p 2 3 and C consists 
of the ( p  + l ) (p  + 2)/2 above-dejned degrees offreedom, is unisolvent. 

Proof: Let P = PP(Kt)  and N p  = dim(P) = ( p  + l)(p + 2)/2. It is clear from above 
that card(C) = 9 + 3 ( p  - 3) + ( p  - l)(p - 2)/2 = Np.  Let g E P be arbitrary. It is 
sufficient to show that if L(g) = 0 for all L E C, then necessarily g = 0. First observe 
the values of g on an edge e: the two derivatives at the endpoints, two function values at 
the endpoints and the p - 3 values at the interior Gauss-Lobatto (Fekete) points together 
constitute p +  1 parameters that determine a unique one-dimensional polynomial on e. Since 
all these values are zero, necessarily g = 0 on e and in turn on the whole boundary of Kt.  
It follows from the unisolvency of the Lagrange-Fekete elements that g = 0 also in the 
element interior. 

The nodal shape functions for a general polynomial degreep are constructed analogously 
to the cubic case, by choosing a suitable basis B = {gI,g2,. . . , gNpJpof PP(Kt) and 
inverting the corresponding generalized Vandermonde matrix { L, (g3)}2,3=1. 
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6.4.3 Design of basis functions 

Assume a bounded polygonal domain ( I f L  C R2 covered with a finite element mesh ? ; , , I ,  
consisting of A l  2 1 Hermite elements of a uniform polynomial degree p 2 3. Then the 
finite element space Vtl.p (that for simplicity is not constrained with any essential boundary 
conditions) has the form 

Vh.,, = {. E c(fi,L); f J l K ,  E P ( K 1 ) ;  (6.60) 
3 V  31 1 

~ and ~ are continuous at every grid vertex} 
321 33.2 

Proposition 6.1 The dimension of the space Vjl,T, is 

( P  - l ) ( P  - 2) nl, 
2 

N = dim(Vh,,) = 3 M ,  + ( p  - 3)Mf + (6.61) 

where All, is the number of grid vertices mid Al,, the number ofmesh edges. 

Proof: There are one Lagrange and two Hermite degrees of freedom associated with each 
grid vertex, p - 3 Lagrange degrees of freedom on each edge, and ( p  - 1) ( p  - 2)/2 Lagrange 
degrees of freedom in the interior of each element. Each of these degrees of freedom is 
represented by one basis function in the basis of Vjl,I,. 

The basis of the space vl,p consists of two types of basis functions: 

Lagrange basis functions associated with the Lagrange degrees of freedom, 

Hermite basis functions representing the partial derivatives at grid vertices. 

Lagrange vertex, edge and bubble basis functions 

For a polynomial degree p 2 3 there are three Lagrange vertex shape functions asso- 
ciated with the function values at the vertices of Kt ,  p - 3 Lagrange edge functions per 
edge of Kt corresponding to the edge-interior Gauss-Lobatto points, and ( p  - l ) (p  - 2)/2 
Lagrange bubble shape functions associated with the Fekete nodal points in the interior of 
K t .  The fact that the partial derivatives 3/3t1 and 3/3<2 of the Lagrange shape functions 
vanish at the vertices of Kt implies that the corresponding Lagrange vertex, edge and bubble 
basis functions of the space V F ~ , ~ ,  can be designed in the same fashion as the vertex, edge 
and bubble basis functions on Lagrange elements. 

Hermite vertex basis functions 

The design of the Hermite vertex basis functions of the space VtL.p, which are associated 
with the partial derivatives of the approximation at grid vertices, is worth discussing in more 
detail. It is clear that the standard affine reference map XK : Kt + h' does not preserve 
the degrees of freedom, 

(where y stands for a Hermite shape function defined in the reference domain Kt) .  Consider 
a grid vertex z, along with the vertex patch (4.14) of all elements adjacent to z,, 
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where 

N ( L )  = { k ;  Kk E 3, {,. 2, is a vertex of Kk}. 

There is a pair of Hermite vertex basis functions in WL,+ that represent d/dx1 and d/dx2 
at 2,; let us denote them by vUz(l) and ~ 2 ( ~ ) .  These functions are continuous in the whole 
domain i2,, and vanish in 6 2 / ,  \ S(z). They also vanish at all nodal points in S(z), and their 
first partial derivatives vanish at all boundary vertices of the patch S(z). At the vertex 2, 
these functions satisfy 

( k ) ( ~ , )  = 6,k. j .  k = 1.2. 
3 
q 71z 

Assume the restriction of ~U1(l) to an element K E S( i ) .  Let p~""' and p:r".2 be the pair 
of Hermite vertex functions associated with the corresponding vertex TI,,, of Kt ,  in such a 
way that X K ( V , , ~ )  = 2,. The trick is to find a linear combination 

p( l )  = cxlp; ,,,. 1 + cu2p; , , I .  2 

and 

The rule (4.20) for the transformation of gradients yields 

1 

Hence 

The other Hermite vertex basis function u : ~ )  corresponding to the grid vertex 2, is con- 
structed analogously in the form 



so that 

Performing analogous calculation as above, we find that the coefficients PI and 02 have to 
be 

Thus finally we find that in K c S( i )  the Hermite vertex basis functions uu1(') and u!2) are 
defined as 

6.4.4 Global nodal interpolant and conformity 

Let 0th c R2 be a polygonal domain covered with a finite element mesh 7 h , p  consisting 
of M triangular (andor quadrilateral) Hermite elements of a uniform polynomial degree 
p 2 3. Let g E H2(C&) be a function for which all degrees of freedom on all elements in 
the mesh are defined. Then the global nodal interpolant Z(g) is constructed routinely via 
the elementwise local nodal interpolants (3.28), 

N P  

z K ( g )  = Lt(g)et ,  
2=1 

where K E 7j,p, N p  = (p+ l)(p+2)/2 and are the corresponding nodal shape functions 
on the element K (see Section 3.3.1). 

The continuity of Z(g) at all element vertices is guaranteed by the fact that there is a La- 
grange degree of freedom associated with every mesh vertex. On every edge e in the mesh 
there are two Hermite and two Lagrange degrees of freedom associated with the endpoints 
of e,  and additional p ~ 3 Lagrange degrees of freedom associated with the p - 3 Gauss- 
Lobatto points in the interior of e. These p + 1 parameters determine a unique pth-degree 
polynomial on the edge e. Therefore Z(g) E C ( 2 h ) .  

In the next section we derive and analyze partial differential equations that describe the 
bending of elastic plates. 

6.5 BENDING OF ELASTIC PLATES 

Plates are three-dimensional solids whose thickness is very small compared to their other 
dimensions. The bending of such structures, and indeed an extension to shells, were the 
first subjects to which the finite element method was applied in the early 1960s. Usually the 
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complete three-dimensional numerical treatment of such problems is not practical, since 
the discrete problems are both very large and ill-conditioned. 

Therefore, several classical assumptions were introduced long time ago in order to sim- 
plify the solution of plate problems. There are two basic plate models, of which the his- 
torically older Kirchhoff (thin) plate model, based on the early works of Sophie Germain 
[24, 1191 and [96] in 181 1, was completed and formalized by G. Kirchhoff [71] in 1851. 
The thin plate assumptions were relaxed by E. Reissner [97] in 1945 and in a slightly dif- 
ferent way by R. D. Mindlin [81] in 1951. The Reissner-Mindlin plate model extends the 
field of application to shear-deformable thick plates, and therefore sometimes it is referred 
to as thick or shear-deformable plate model. 

The Reissner-Mindlin plate model is a second-order problem that naturally corresponds 
to the Timoshenko beam model, while the Kirchhoff model is a fourth-order problem that 
generalizes the Euler-Bernoulli beam model. Although at the first glance the numerical 
treatment of the Reissner-Mindlin plate seems to be easier, it turns out that it conceals 
all basic difficulties plaguing the Kirchhoff model, and in reality its numerical solution is 
in some sense even more difficult. On the other hand, the variational formulation of the 
fourth-order Kirchhoff model takes place in the space H2(R) which is much smaller than 
the space H1(R). In order to conform to H2(R), the approximations have to be once 
continuously differentiable (see Paragraph A.4.3). Since the assembling procedures for the 
H2-conforming elements are nontrivial, nowadays it is popular to resort to mixed methods 
that lead to the standard HI-conforming elements (see, e.g., [18,95] and [ 1241). 

Instead of reviewing existing results on mixed methods, we find it more useful to focus on 
the application of the less frequently encountered C'-elements in this text. These elements 
are natural for the variational setting in the space H2(R). It was demonstrated in Paragraphs 
6.3.7 and 6.4.3 that the key to a transparent element-by-element assembling procedure are 
the correct transformation relations for the weak forms and shape functions from the mesh 
element to the reference domain and vice versa. These topics are addressed in Section 6.6. 

Prior to introducing the finite elements, in Paragraphs 6.5.1-6.5.4 we present the deriva- 
tion of the thick and thin plate models, list various types of boundary conditions, construct 
the variational formulation and discuss the existence and uniqueness of the weak solution. 
It turns out that the approximation of a smooth boundary via a nonsmooth curve (a common 
technique for second-order problems) may change the physics of the fourth-order problem 
completely. This phenomenon, known as the BabuSka's paradox of thin plates, is mentioned 
in Paragraph 6.5.5. 

6.5.1 Reissner-Mindlin (thick) plate model 

Although the shear-deformable plate model is historically younger than the Kirchhoff model, 
the natural order of their presentation is opposite. Consider a plate of a constant thickness 
t > 0 whose middle plane coincides with the ( z ~ ~ ) - p l a n e  and whose projection to the 
(zlz2)-plane occupies a bounded domain R C R2 with Lipschitz boundary. Thus the 
three-dimensional body of the plate is R x ( - t / 2 ,  t / 2 ) .  We assume that the plate is subject 
to external forces which are normal to its middle plane z3 = 0. The Reissner-Mindlin 
model is based on the following four postulates: 

0 (Pl)  Planar cross-sections normal to the middle plane remain planes during the defor- 
mation, and segments lying on normals to the middle surface are deformed linearly. 

0 (P2) The displacement in the rc3-direction does not depend on the z3-coordinate. 
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0 (P3) The displacement of points lying on the middle plane occurs in the za-direction 
only. 

0 (P4) The normal stress 033 = 0. 

The postulate (Pl)  is the most important assumption of the theory of plates and shells. It 
follows from (PI)-(P3) that the displacement u(2) = ( ~ u l ,  u2: ~ 3 ) ~ ( 2 )  has the form 

(6.62) 

where w is the transversal displacement or (normal) deflection, and $ = (&,  4 2 )  is the 
rotation of the transverse normal vector. Let us introduce the equations governing the 
quantities w, $1 and 4 2 :  

The bending strains associated with the displacement field (6.62) have the form 

(6.63) 

Here €1, €2, and 712 are the in-plane strain components, and 

are the strain components corresponding to the transverse shear. [This relation models the 
shear-deformability in the Reissner-Mindlin model. In the Kirchhoff model, the left-hand 
side of (6.64) is zero]. In the linear isotropic case the shear force resultants have the form 

(6.65) 

where { T ~ ~ } : , ~ = ~  is the stress tensor and G the shear elasticity modulus. Directional shear 
rigidities G13 and G23 may be used instead of G to model linear orthotropic elasticity (see, 
e.g., [95]). The constant K is a shear correction coefficient introduced to account for the fact 
that the shear stresses are not constant across the section. A value of K = 5/6 is exact for a 
rectangular, homogeneous section and it corresponds to a parabolic shear stress distribution. 
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Using appropriate constitutive relations, all momentum components can be related to 
displacement derivatives. In the linear elastic case the bending moments A l l 1  and Af22,  

and the twisting moment A412 = h f 2 1  are defined as 

(6.66) 

Here D is the bending stiffness, defined by 

Et3 
D =  

12( 1 - 7 2 )  ' 
(6.67) 

where E is the direct (in-plane) elasticity modulus and y the Poisson's ratio. In the case of 
a linear orthotropic material, the elasticity modulus has two directional components El and 
E 2 ,  and the Poisson's ratio y is replaced with the directional values 7 1 2 , 7 2 1 .  Accordingly, 
the bending stiffness D has the components 

~~t~ 

12(1 - 7 1 2 7 2 1 ) '  

7 1 2 E 2 t 3  

12(1 - 7 1 2 7 2 1 ) '  

~~t~ 
12( l  - 7 1 2 7 2 1 ) '  

Dll = 

D l 2  = 

D22 = 

and the moments attain the form 

h f 1 2  = -2DCiCi (z 841 + ,) 342 

See, e.g., [95] for details. The Reissner-Mindlin model consists of three equilibrium equa- 
tions that relate the transversal force f to the shear resultants, and the shear resultants to 
the momentum components. To begin with, the equilibrium equation 

written in the form 
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(where the transverse loading f arises from the resultant of the normal traction on the top 
and bottom surfaces) yields via (6.65) the first thick plate equation, 

~ Q I  3 Q 2  
~ + ~ + f = 0. 
ax1  ax2 

(6.68) 

The momentum equilibrium conditions 

assumed together with relations (6.65) and (6.66), complete the thick plate model by the 
relations 

Some of the above-defined quantities are depicted in Figure 6.23. 

(6.69) 

4 2  

Figure 6.23 The transversal force, shear resultant, and bending and twisting moments 

Further details on the derivation of the thick plate model can be found, e.g., in [ 1241. In 
the next paragraph, equations (6.68), (6.69) will be used to deduce the Kirchhoff thin plate 
model. 

6.5.2 Kirchhoff (thin) plate model 

In addition to the hypotheses (Pl)-(P4) of the Reissner-Mindlin plate model, the Kirchhoff 
model imposes the normal (Love’s, Kirchhoff’s) hypothesis, which is analogous to the basic 
assumption of the Euler-Bernoulli beam theory (Paragraph 6.1.1): 

0 (P5) Vectors which are normal to the middle surface x3 = 0 remain normal to the 
(deformed) middle surface during the deformation. 
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This assumption neglects the shear deformations 713 and 7 2 3  in (6.64), and thus the rotations 
41 and 4 2  are related to the partial derivatives of the normal deflection w via the relation 

The situation is depicted in Figure 6.24. 

Figure 6.24 The hypothesis (P5) relates the rotations & , 4 ~  to the deflection w via its gradient 

With (6.70) the displacements (6.62) take the form 

and (6.66) yields the momentum components 

(6.71) 

(6.72) 

Substituting into (6.69), we obtain 

Substituting the shear resultants Ql,  Q 2  from (6.73) into (6.68), we finally obtain the Kirch- 
hoff thin plate model in its well-known form, 

(6.74) 

In the following we introduce several types of boundary conditions for equation (6.74), 
derive its weak formulation, and prove the existence and uniqueness of the weak solution. 
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6.5.3 Boundary conditions 

The boundary conditions for plates are typically prescribed in local (v, s) coordinates, 
where v = ( ~ 1 ,  v2) and s = (s1,s2) are the unit normal and tangential vectors to the 
boundary af2, respectively. The shear force resultants Q, and the moments Af,, in the 
Reissner-Mindlin model were defined by (6.65) and (6.66), 

In the Kirchhoff model we have relations (6.69) and (6.72), 

3Af11 d l l f 1 2  

8x1 3.c2 

d A f 1 2  8Afz ; l  
3 x 1  (3r2 

Qi = ___ + -. 
Q 2  1 - +y.  

These quantities are transformed into the local coordinates as follows: 

2 

(6.75) 

(6.76) 

(6.77) 
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Clamped boundary Clamped boundary conditions are used when the transversal de- 
flection w and both the rotations 4u and q5s are given. This is the case, for example, when a 
portion of the plate is built into a solid wall. In the Reissner-Mindlin model one prescribes 

Ul = w*. 

4L = d:. 
4s = 4:. 

(6.78) 

In the Kirchhoff model the tangential rotation 4,s is determined uniquely by the values of 
w on the boundary, 

dW 
fp,s = -. 

dS 
and moreover, the normal rotation q$, is related to the normal derivative of w via (6.70), 

dW dW dW 
$hu = 41Vl + 42v2 = -v1 + -v2 = -. axl ax2 au 

Therefore for thin plates one prescribes the deflection w and its normal derivative, 

w =  w* > (6.79) 

dW dw * 

dU 
- = (ay) =&.  

Traction boundary The Reissner-Mindlin model admits the prescription of the mo- 
ments Mu. Mu,3 and the stress resultant Q u ,  

(6.80) 

An important special case of the traction boundary is free boundary with 

Mu = 0, 
Mu,s = 0, 

Qu = 0. 

It is easy to see that these three quantities are linearly dependent in the Kirchhoff model, 
and therefore only two conditions are prescribed. Usually these are 

Mu = Mi 1 

The latter quantity is usually called effective shearing force of the plate. 

(6.81) 

Simply supported boundary These boundary condition combine both the fixed and 
traction boundary conditions in order to model situations when the plate lies on a solid sup- 
port (with unknown values of the rotations or d w l d u  on the boundary), etc. We distinguish 
between hard- and soft-supported boundary. 
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Hard-supported boundary: The Reissner-Mindlin model admits the prescription of 211, d,, 
and Mu,  

(6.82) 

In the Kirchhoff model by (6.70) we have qbu = aw/du ,  which means that the prescription 
of 6, on the boundary would lead to a clamped case (with nil, not prescribed). But we may 
give Mu without constraining &, which leads to the boundary conditions 

(6.83) 

Soft-supported boundary: In the thick plate model one prescribes w together with two 
traction boundary conditions for Af, and IV,,~, 

(6.84) 

In the Kirchhoff model one only prescribes two conditions, usually w and the normal 
moment Mu,  

(6.85) 

(i.e., the hard- and soft-support boundary conditions are the same for thin plates). 

6.5.4 Weak formulation and unique solvability 

In this paragraph we consider the Kirchhoff thin plate model. Let R C R2 be a bounded 
domain with Lipschitz-continuous boundary that is split into three open (not necessarily 
connected) disjoint parts rcI, rss, and rtr,  as shown in Figure 6.25. The boundary part rtr 
can be empty, and also at most one of the remaining two parts rcl and rss can be empty as 
long as rss is not contained in a single line. These conditions are among the assumptions 
of the existence and uniqueness Theorem 6.1. 

Figure 6.25 
simply supported, and traction boundary conditions. 

The boundary is split into three parts rcl, Tss, and T t r ,  representing the clamped, 
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We consider the (essential) clamped and simply-supported boundary conditions 

W(X) = W* onr , , ,  

W(X) = w* onr , I ,  

(6.86) 

and the (natural) traction boundary conditions 

M ,  = M,* on rss. 

The space where the weak formulation takes place is the corresponding subspace of the 
Sobolev space H 2  (R), 

V(R)  = {w E H2(R); WII-,, = 0;  uJlr<l = (dw/du) l r , ,  = O }  

As usual we choose some sufficiently regular Dirichlet lift G(x)  representing the essential 
boundary conditions (6.86), i.e., 

G ( x )  = w* onr , , ,  

G ( x )  = W* onI',l, 
dG 
-(x) = ~ Z ( X )  onr,l .  
dU 

The solution w(x)  is sought in the form 

w(x)  = W ( x )  + G(x), 

where the unknown function W E V(R) satisfies the homogeneous boundary conditions 

(6.88) 

W(X)  = 0 on rSs, 
W(Z) = 0 onr , l ,  

dW 
-(z) = 0 o n r r l .  
dU 

It is advantageous to develop the weak formulation from the equation 

(6.89) 

(6.90) 

which is equivalent to (6.74) through (6.68) and (6.76). We multiply (6.90) with a test 
function $(z) f V(R), whose minimum regularity will be determined later from the final 
weak forms, and integrate over R, 

- 
Qi Q 2  
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Green’s theorem yields 

Applying Green’s theorem to the first integral once more, we obtain 

The transformation relations (6.77) yield 

Inserting this relation into (6.91), we obtain 

(6.91) 

(6.92) 

Last, in order to prepare the weak formulation for the incorporation of the boundary data 
V *  = Q: + dM:,/ds (part of the traction and soft support boundary conditions), we need 
to include the quantity d M y s / d s  into the boundary integrals explicitly. This operation 
requires the application of Green’s theorem along the boundary 80, which in turn brings 
up some extra considerations about the smoothness of the boundary 30. 

When the boundary 80 is a smooth curve and when the function My, = Alys ( s )  is 
continuously differentiable in the interval [a, b] which is supposed to correspond to the part 
rtr of the boundary 30, it holds 

Similarly, if M y ,  is continuously differentiable in the whole 80, then 

However, in reality the boundary 80 often has comers. Suppose that the boundary 80 is 
defined parameterically by means of the parameter s 6 (0 ,  I ) ,  and that there are N, comer 
points 0 < s, < 1, i = 1 , 2 , .  . . , N,. In general the function Mvs(s )  has jumps at these 
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points since the normal vector u varies discontinuously. The integration by parts with a 
piecewise continuous function MUs(s )  gives (we assume (0) = M u s ( l ) ) :  

Suppose, moreover, that the given twisting moment Mz’,(s) has jumps at the corner points 
s = s j ,  where 0 < sJ < 6,  2 = 1,2 . .  . . , p  ( p  5 N,, b 5 I ,  s E (0,O) on rtT).  Then 

Writing Al:,s (s, + 0) - hlzs ( s, - 0) = h, , we see that the corner discontinuities in Mu, 
and Al:, produce the following terms, 

N, P 

C ( A f u , s ( s t  + 0) - Afu,s(s,  - O))dJ(sz) - C h.,$(cq.j), 
J = 1  ,=I  

which are not present when the boundary dR is smooth. Taking this fact into account, from 
(6.92) we obtain 

(6.93) 

The boundary integral over r,s, only contains Af: ,  because ~1 = 0 on T.s,s, and no boundary 
integral over rcl is present since both dJ and d$)/du are zero on The Dirichlet lift G ( x )  
is implemented into the left-hand side in the usual way, by decomposing the moments Af,, 
into 

AI( , (w)  = AIt,(it’ + G) = AI,,(W’) + Af,,(G). z.,) = 1.2, 

and leading all integrals containing Af,, (G) over to the right-hand side. The weak formu- 
lation of equation (6.90) reads: Find a function LV E V(lt)  such that 

n ( W .  @) = l (1 /1)  for all ~ E V. (6.94) 

where 



254 BEAM AND PLATE BENDING PROBLEMS 

The weak solution satisfying both the essential boundary conditions (6.86) and the natural 
boundary conditions (6.87) is, as usual, w = W + G. 

The important question is now whether the bilinear form a( . ,  .) : V(R) x V(R) + R is 
bounded and V-elliptic, and whether 1 : V(R)  + R is a bounded linear form. 

Theorem 6.1 (Unique solvability) By @(R) denote the space of continuous functions 
with compact support lying in R and let [Co(S2)]’ be its dual (i.e., the space ofall continuous 
linearforms over Co(R)). Suppose that f E [Co(R)]’, Q: + aM;,7/as E L1(r t7 . )  and 
hl; E Lq(r,, U rtr), 1 < q < m. Let at least one of rcl and rss be nonempty, and $rrl 
is empty, then let rSs not be contained in a single straight line. Then there exists a unique 
weak solution to (6.94). 

Proof: The proof requires to verify the boundedness of the forms u and I ,  and to prove the 
V-ellipticity of the form a in V(R) x V(R2). This is done via the Korn inequalities, which 
lie beyond the scope of this introductory text. See, e.g., the nice monograph by NeEas and 
HlaviEek [86], Theorem 4.1, for the proof. 

6.5.5 

Let r be a nonempty subset of 362. As mentioned above, the thin plate assumption (P5) 
implies that the prescription of w on r defines 4,7 on r. Thus whenever r contains a corner 
and w is prescribed, this yields two independent rotations 4,; and at both sides of the 
corner, which define both & and @,7 (and consequently &, and a fixed boundary con- 
dition at the corner). The situation is depicted in Figure 6.26. 

Babugka’s paradox of thin plates 

L G7<rn7 
Boundary deflection only drfinec 

tangential rotation 
Boundary deflection defines two 

independent rotations at each corner 

Figure 6.26 
problem when the deflection w is prescribed. 

Nonsrnooth approximation of a smooth boundary changes the physics of the thin plate 

The approximation of a smooth boundary r by means of a nonsmooth curve rtL changes 
simply-supported boundary to fixed boundary at the corners. Consequently, the numerical 
scheme does not converge to the exact solution to the original problem. For more details 
see [7] and [8]. 
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6.6 DISCRETIZATION BY f$2-CONFORMING ELEMENTS 

The weak formulation of plate bending problems takes place in the Sobolev space H 2 ( 0 , ) .  
In this section we discuss the H2-conforming Argyris elements which are the most natural 
choice for their discretization. For alternative mixed methods leading to simpler (but not 
necessarily more efficient) discretizations based on standard H’-conforming elements see, 
e.g., [ 18,951 and [ 1241. 

6.6.1 

For spatial reasons let us restrict our discussion to triangular elements. The basic Argyris 
triangle is a quintic element ( K ,  P, C), where K is a triangular domain, P = P 5 ( K )  and 
the set C = {L1, L2, .  . . , Lal} comprises the degrees of freedom depicted in Figure 6.27. 

Lowest-order (quintic) Argyris element, unisolvency 

Figure 6.27 Twenty-one DOF on the lowest-order (quintic) Argyris triangle 

The black dots stand for Lagrange DOF associated with function values at the vertices. 
Each inner circle surrounding a black dot represents a pair of Hermite DOF associated with 
first directional derivatives at the vertices (we choose d / d x l  and d /dza ) .  Further, each 
outer circle stands for three Argyris DOF corresponding to second directional derivatives 
(we choose d2/dx? ,  d2/32122 and d2 /3z ; ) .  The arrows indicate the DOF associated with 
the normal derivatives at the edge midpoints. The partial derivatives can be exchanged for 
the derivatives in the directions of the edges, analogously to Hermite triangles (see Figure 
6.17). 

Lemma 6.6 The Argyris element ( K t ,  P5(Kt ) ,  C ) ,  where C consists of the 21 above- 
dejined degrees offreedom, is unisolvent. 

Proof: Takeanarbitraryg E P5(K)suchthatL,(g) = Oforallj = 1 ,2 , .  . . ,21. Weneed 
to show that necessarily g = 0. First, g restricted to the edge el  is a fifth-degree polynomial 
that vanishes at the endpoints of el together with its first and second derivatives. Since 
these six independent parameters define a unique one-dimensional fifth-degree polynomial, 
it follows that g = 0 on el. Analogously g = 0 on the remaining two edges e2 and e3. 

Thus g vanishes on the whole boundary of the element, and it can be written as a product 

where X k ,  k = 1,2 ,3 ,  are the barycentric coordinates in K .  Recall that XI + X2 + X3 = 1 
and Xk is an affine function that vanishes on the edge e k  and attains a value of one at the 
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opposite vertex. There is a one-to-one relation between XI, X.L. X3 and z E K, and therefore 
we can express both 9 and 9 in terms of the barycentric coordinates, 

The partial derivative d/dXk is the derivative in the normal direction to the edge e k .  Using 
(6.95), from the zero second derivative DOF at 711 one obtains 

Analogously it  is 3 2 1 2 )  = g(v:() = 0. For the normal derivative at the midpoint c1 of the 
edge e l  we have - 

=I1 zo 

and i t  follows that Lj(c1) = 0. Analogously we conclude that G(c2) = g(c,3) = 0. Finally, 
from the unisolvency of a second-order Lagrange element with the nodes ~ 1 . 0 2 ,  v:<. c1, c 2 ,  cg, 
we obtain that necessarily j = 0. Therefore g = 0 and the triangular quintic Argyris element 
is unisolvent. rn 

6.6.2 Local interpolant, conformity 

Consider an element K, E 7&. The quintic Argyris element K, is endowed with the 
standard nodal interpolant (3.28), 

N p  = 21. Here the nodal basis functions 8, of the space P'(K,), meeting the delta property 
(3.4), are constructed in the standard way as described in Paragraph 3.1.1. Nodal shape 
functions on the reference triangular domain Kt will be calculated in Paragraph 6.6.3. As 
usual, the local interpolant exists if all linear forms L,,  z = 1 , 2 ,  . . . . Np are defined for 9. 

Conformity t oH2  (Oh)  Let z,,p = { K1, KZ, . . . . Kh,} comprise M quintic triangular 
Argyris elements. According to Definition 3.6, the global nodal interpolant is defined 
elementwise as 

Z(g)lK, = ZK, (9) for all i = 1 . 2 , .  . . , M .  

Since C2(Q,)  is dense in H2(s2h), according to Definition 3.7 the finite element mesh TL,?] 
conforms to the space IT2([&) if the following implication holds: 
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The piecewise polynomial interpolant Z(g) belongs to H2(0,,) if and only if it is once 
continuously differentiable (see Section A.4), i.e., if and only if it is smooth across all 
element interfaces and at all grid vertices. 

Lemma 6.7 Evety regularfinite element mesh TtL,r, consisting of triangular quintic Argyris 
elements conforms to the space H2(!&,). 
Proof: Consider a pair of elements K l .  Kz, E f2h that share an edge e ,  as depicted in 
Figure 6.28. 

Figure 6.28 Smoothness of the global Argyris interpolant across the edge e. The edge e is equipped 
with a unique unit normal vector v?, to which the normal derivative DOFon both elements are related. 

By g ~ , . ( .  and g ~ ~ . ( !  denote the restrictions of Z(g) to the edge e on the elements K1 
and Kz,, respectively. These are one-dimensional fifth-degree polynomials whose values as 
well as first and second derivatives agree at the endpoints of e. Since a unique fifth-degree 
polynomial is determined via these six parameters, gKI .(! = g K 2 , c  and Z(g) is continuous 
across e. 

Next by gk, .(, and gkr2,< denote the derivative ofZ(g) in the unique normal direction v, to 
the edge e on the elements K1 and K2, respectively. These one-dimensional fourth-degree 
polynomials coincide at the endpoints of e due to the agreement of the derivative DOE 
Analogously their first derivatives at the endpoints of e coincide d u e  to the agreement of the 
second derivative DOE Finally, their values at the midpoint of e are the same because of 
the agreement of the normal derivative DOE Thus gk, ,(, = gk,,.. Obviously the tangential 
derivatives of gk,,,(, and gk2,e along the edge e are the same, and therefore the global 
interpolant is continuously differentiable across e. The smoothness of Z(g) at all grid 
vertices is obvious, and therefore we can conclude that the mesh % z , p  conforms to the space 
H2(% ). 

6.6.3 Nodal shape functions on the reference domain 

The twenty-one nodal shape functions of the quintic Argyris element on the reference 
triangle Kt can be obtained using the procedure described in Paragraph 3.1. I ,  i.e., choosing 
a suitable basis of the space P5(Kt ) ,  B = (gl,g2,. . . ,g21} (for example the monomial 
basis), inverting the Vandermonde matrix L,(g,) and reading the coefficients of the nodal 
shape functions from the columns. The resulting unique nodal basis is shown in Figures 
6.29-6.35 (the graphs have different scaling). 
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Figure 6.29 
representing the function values at the vertices u1, v2, and VQ. 

Nodal basis of the quintic Argyris element; shape functions yy' , cpy', and yy", 

Figure 6.30 
representing d/3x1 at the vertices v 1 , ~ .  and v3. 

Nodal basis of the quintic Argyris element; shape functions y:'", cpy'l, and cp:"'', 

Figure 6.31 
representing d /dx2  at the vertices v1, UZ, and vg. 

Nodal basis of the quintic Argyris element: shape functions yE"'2, yy2'2.  and y:"3'2, 

Figure 6.32 
representing the normal derivatives at the midpoints of the edges e l ,  e2, and e3. 

Nodal basis of the quintic Argyris element; shape functions y:''", y~ '" ' ,  and y:R'7', 

Figure 6.33 
y y '  , 2>2  , representing d'/dx?, d2/dz~dz2, and d'//az: at the vertex v1. 

Nodal basis of the quintic Argyris element: shape functions y:'*'*',  y:"3' ,2 ,  and 
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Figure 6.34 
'py2,2,2, representing d2/dx:, d2/dx1dx2, and a2//axz at the vertex v2. 

Nodal basis of the quintic Argyris element; shape functions 'pE'231*'7 'p~.1~2r  and 

Figure 6.35 Nodal basis of the quintic Argyris element; shape functions vy3', ' ,  ~py",',~. and 
'p1)3 , 2 , 2  , representing d2/dx:, d2/dx~dxz, and d2//azz at the vertex v3. 

6.6.4 Transformation to reference domains 

Next the integrals involved in the weak formulation (6.94) are transformed from a mesh 
triangle K to the reference triangular domain Kt via the standard affine reference map 
X K  : K+ + K .  The procedure is slightly more technical, but otherwise similar to what 
was done for second-order elliptic problems in Paragraph 4.1.4. Without loss of generality, 
we assume that the constant Jacobian J K  of the map X K  is positive. By 

W = w O x K  (6.96) 

we denote the transformation of a function w E P 5 ( K )  to K+. In Paragraph 4.1.4 we 
learned how to express the first partial derivatives 8w/dx,, j = 1,2,  by means of the 
partial derivatives 8W/8[, and the Jacobi matrix J K  = DxK/DE. The rule (4.20) for the 
transformation of gradients yields 

Now we have to do the same for the second partial derivatives of 6. It follows from (6.96) 
that 

where JtJ is the i j th  entry of the Jacobi matrix J K .  Thus the second derivatives of w 
depend on the second derivatives of W linearly, 
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where the constant matrix A has the form 

This matrix is invertible since det(A) = det3(JK).  and its inverse has the form 

Hence, for the second partial derivatives of (11 i t  holds 

This allows us to replace the second partial derivatives of w in  (6.94) with terms containing 
the second partial derivatives of 17, and the entries of the Jacobi matrix J I ~ ,  as we wanted. An 
additional multiplication with det(JK) dictated by the Substitution Theorem accomplishes 
the transformation of the integrals to the reference domain I(,. 

6.6.5 Design of basis functions 

The last ingredient needed for the assembly of the stiffness matrix and of the load vector 
is a suitable basis of the space vL,p, consisting in this case of globally smooth piecewise- 
polynomial functions defined in the domain 62/,. The basis functions are designed by 
means of the shape functions from Paragraph 6.6.3 and the reference maps zx and their 
derivatives, analogously to what we did for Hermite elements in Paragraph 6.4.3. The new 
interesting aspect of the Argyris elements is the presence of the DOF associated with the 
second derivatives at the grid vertices and the DOF related to the normal derivatives at edge 
m i dpoi n t s . 

Consider a bounded polygonal domain fit, C R2 covered with a finite element mesh 
Zi,;> consisting of A1 2 1 triangular quintic Argyris elements. The finite element space 
Ft,[) (which, for simplicity, is not constrained with any essential boundary conditions) has 
the form 
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Proposition 6.2 The dimension qf the space L$,,r, is 

N = dim(L$l,il) = 6M,, + Aft,. (6.99) 

where ill,, is the number of grid vertices and hf,. the number of mesh edges. 

Proof: There are 6 degrees of freedom associated with every grid vertex and one degree 
of freedom for the midpoint of every edge. Each of these degrees of freedom is represented 
by one basis function in the basis of L$L.p. 

The basis of the space K,,,] consists of three types of basis functions: 

0 Lagrange basis functions associated with the function values at the grid vertices, 

0 Hermite basis functions representing the first partial derivatives ( d / d z l  and 3 / a x 2  
at the grid vertices and the normal derivatives at edge midpoints), 

0 Argyris basis functions related to the second partial derivatives d2/0zf. d2/a21x2 
and a2/3xz at the grid vertices. 

Lagrange vertex functions 
Figure 6.29 shows the three Lagrange vertex shape functions which are present in the 

basis of the polynomial space P 5 ( K t ) .  The shape functions are smooth, and therefore 
the fact that d /a [ ,  = a/a[, = 0 at the vertices of Kt implies that any first directional 
derivative at any vertex of Kt is zero. Analogously, since the second partial derivatives at 
the vertices are zero, any second directional derivative at any vertex is zero. Therefore one 
could be tempted to construct the Lagrange basis functions in Q, as usual, by composing 
the Lagrange shape functions with the inverse of the reference maps xk : Kf + K (this 
was done for the Lagrange-Fekete elements in Paragraph 4.3.6 and for the Hermite-Fekete 
elements in Paragraph 6.4.3). However, in such case the resulting basis functions would 
not be smooth at the midpoints of element interfaces, since the reference map X K  does not 
preserve the normal vectors at the edge midpoints. Fortunately this can be cured by means 
of the shape functions y~"". v;".", and py".": 

Consider a grid vertex x, and the vertex patch (4.14) of all elements adjacent to z,, 

S ( i )  = u l i k  

k E i V ( / )  

where 

N ( i )  = { k :  Kk E TI.,,. x, is a vertex of Kk} 

The Lagrange vertex basis function v ! " )  corresponding to the grid vertex xl is smooth in the 
whole domain Q, and it  vanishes in [ I , ,  \ S( i ) .  For any element K E S( i )  the restriction 

of P ~ " '  to K is defined as 

where the function p(") is defined on I<t by 
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Here ' o , ,~  is a vertex of Kt such that z~ ( o,,,) = z, and the shape functions were defined 
in Paragraph 6.6.3. Analytical formulae for the unknown real coefficients /& are obtained 
from the conditions 

(6.100) 

The symbols f .  f ,  and g stand for the edges of K such that P = z ~ ( f ~ l ) ,  f = z K ( c 2 ) ,  

and g = z ~ ( ' ~ ) ,  and the points z, . zf, and xg are the midpoints of the edges e. f ,  and g, 
respectively. 

Hermite vertex basis functions 
Now we combine the technique developed for the Hermite elements with the trick intro- 

duced in the previous step. For every grid vertex x, there is a pair of Hermite vertex basis 
functions representing 3/3z1 and 3/3x2 at z,, say, u!*)  and vu7(*). Both these functions are 
smooth in the whole domain f 2 h  and they vanish in Ofz \ S( i ) .  Their first partial derivatives 
3/3x1 and 3/3x2 vanish at all boundary vertices of the patch S( i ) ,  and their first normal 
derivatives vanish at the midpoints of all grid edges. At the vertex z, these functions satisfy 

The second partial derivatives d2/3x? i)'//3x1.c2 and @//ox; of these functions vanish at 
all grid vertices. 

Let us begin with the restriction of 71:') to an element K E S( i ) .  Consider the pair of 
Hermite vertex functions p:"'.' and py"2.2 associated with the vertex ?I,,, of K t ,  such that 
x ~ ( u , , , )  = 2,. We look for the vertex function in the form 

where 

p(l)([) = f l 1 p y ( [ )  + a2pl'"'.2([) + ;jlp;'.rl([) + [3&3;?.71(<) + i ! & y y ( [ ) .  

Now the analytical formulae for the unknown coefficients are obtained from the conditions 

-01(')(z1) = (51,. j = 1,2. (6.101) 
i3 

32, 
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where the symbols x,, x ~ f ,  xg, v,, vf, and uy have the same meaning as in (6.100). The 

other Hermite vertex basis function u Z ( ~ ) ,  representing d/dx2 at x,, is constructed analo- 
gously. 

Argyris vertex basis functions 
Next let us construct the vertex basis functions associated with the second partial deriva- 

tives. For every grid vertex x, there are three Argyris vertex basis functions representing 

a2/ax?, d2/dz1.c2 and @/ax;  at x,, let us call them, e.g., uZ('"), u Z ( ~ " )  and V Z ( ~ " ) .  These 
functions are smooth in the whole domain Q, and they vanish in \ S(z). Their first 
partial derivatives d/dzl and d/aza vanish at all grid vertices, and their normal derivatives 
vanish at the midpoints of all grid edges. Their second partial derivatives vanish at all grid 
vertices except for z,, where they satisfy 

Consider the three Argyris vertex shape functions py'JL.l ', pi'"' and py"''2'2 associated 

with the vertex u,, of Kt ,  such that x ~ ( u ~ , , )  = 2,. The vertex function v ! ~ " )  in any 
element K E S(z) is sought in the form 

where 
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The analytical formulae for the six unknown coefficients are obtained from the conditions 

where the symbols x~,. z ~ f .  x,j .  u(,. u,f and uy have the same meaning as in  (6.100). The 
remaining Argyris vertex basis functions are constructed analogously. 

Hermite basis functions associated with normal derivatives at edge midpoints 
The design of the remaining set of basis functions, representing the normal derivatives at - 

the midpoints of mesh edges, involves the orientation issue analogous to the one encountered 
in the design of higher-order Lagrange edge functions in Paragraph 4.3.6. This time a 
unique unit normal vector u,, needs to be assigned to every edge s,, in the mesh ?;).!,. This 
is equivalent to assigning a unique global orientation to mesh edges (see Paragraph 4.3.6). 
Consider the edge element patch (4.49), 

where 

N, (1) = { k :  l i k  E 3, h ,  is an edge of l<k }. 

To every mesh edge .sj there is one Hermite edge basis function i ~ : : )  whose normal derivative 
at z,~, satisfies 

This function is smooth in the whole domain 12,, and it  vanishes in 121, \ S,.( j) .  Its first 
partial derivatives O/Ozl and B/i):c2 vanish at all grid vertices, and its normal derivative 
vanishes at the midpoints of all grid edges except for . s j .  The second partial derivatives 
a2/0r: i)2/O:r.1x2 and 3'/a.r; vanish at all grid vertices. 
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Let us begin with the restriction of ,II,$;) to any element K E S ? ( j ) .  Consider the Hermite 
edge shape functions p;““, yy”’” and cp;.’.”. The edge basis function associated with ,s, is 
sought in the form 

J 1 J )  = p(”) 0 z;.’, 
,’ I 

where 

Now the analytical formulae for the unknown coefficients are obtained from the conditions 

(6.102) 

where s k .  sl are the remaining two edges of K and z,~, , z,~, their midpoints. The orientation 
flag O ( ~ S , ,  , K) = 1 if u , ~ ,  points outside of the element K and o(s,. K) = - 1 in the opposite 
case. Herewith the construction of the basis of the space I&, from (6.98) is accomplished. 

6.6.6 Higher-order nodal Argyris-Fekete elements 

In this section we comment on the extension of the quintic nodal Argyris element to a 
general polynomial degree p 2 5. Consider a triagular element K E ZL,[,, and recall that 
the dimension of the space P ( K )  is N p  = ( p  + l ) (p  + 2)/2. The higher-order element 
inherits the three Lagrange DOF associated with the function values at the vertices, the six 
Hermite DOF related to the first partial derivatives at the vertices and the nine Argyris DOF 
corresponding to the second partial derivatives at the vertices. Thus N p  - 18 degrees of 
freedom remain to be defined on the edges and in the element interior. 

Recall that with one Hermite DOF per edge, representing the normal derivative at the 
midpoint, the quintic Argyris element was both unisolvent and conforming to the space 
H2(f2,,). In the general case one needs p - 5 Lagrange DOF and p - 4 Hermite DOF per 
edge in order to satisfy the conformity requirements of the space H 2 .  For example, the 
edge-interior Fekete points corresponding to p - 4 and p - 3 can be used to define these 
Lagrange and Hermite DOF, respectively. 

This means that 

Lagrange degrees of freedom remain to be defined in the element interior. Their number 
suggests to choose the interior Fekete points corresponding to p - 3. 

The sixth- and seventh-order Argyris-Fekete elements on the reference triangular do- 
main Kt  are illustrated in Figure 6.36. 
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Figure 6.36 The sixth- and seventh-order Argyris-Fekete elements on Kt 

Unisolvency, conformity 
conformity to H 2 ( Q / , )  can be checked analogously to the quintic case: 

Both the unisolvency of Argyris-Fekete elements and their 

Lemma 6.8 The Argyris-Fekete element ( K f  . P”( K f  ). C ) ,  where p 2 5 and C consists of 
the ( p  + l ) (p  + 2 ) / 2  above-dejined degrees offreedom, is unisolvent. 

Proof: 

Lemma 6.9 Every regularjnite element mesh Th,p corzsisting oftriangular Argyris-Fekete 
elements o f a  uniform polynomial degree p 2 5 conforms to the space H2(R\,). 

Proof: The proof is a straightforward generalization of the proof of Lemma 6.7. 

It is worth mentioning that the finite element space q7,rJ on a finite element mesh ?;L.r, 
comprising M triangular Argyris-Fekete elements (where for simplicity no degrees of 
freedom are constrained by boundary conditions) has the form 

The proof is analogous to the proof of Lemma 6.6. 

Proposition 6.3 The dimension of the space qL.TJ is 

where M,, is the number ofgrid vertices and Af, the number of mesh edges. 

Proof: There are 6 DOF per grid vertex, ( p  - 4) + ( p  - 5) in the interior of every mesh 
rn 

A basis of the space vh.p can be constructed analogously to the quintic case (see Paragraph 

edge and ( p  - 4)(p - 5 ) / 2  in every element interior. 

6.6.5). 

6.7 EXERCISES 

Exercise 6.1 Consider an interval 12 = (a. b)  and a clamped prismatic beam with .(a) = 
u ( b )  = Vu(a)  = Vu(b)  = 0. Assume that E ( z ) l ( z )  = 1 and f (z)  = Fo for  all z E 0. 
Calculate the exact solution to the Euler-Bernoulli model (6.7). 
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Exercise 6.2 Return to Exercise 6. I and consider a prismatic beam ( f a  constant square 
cross-section h~ x ho and a constant modulus of e1a.sticit.y E. Calculate the exact solution 
to the Euler-Bernoulli beam model. Hint: Use relation (6.4) to calculate I(x). 

Exercise 6.3 Extend the problem from Exercise 6. I to a cantilever beam with ~ ( a )  = 

V u ( n )  = 0 und A l ( b )  = Aft,, F, ( b )  = Fl,. Culculate the exact solution to the Euler- 
Bernoulli brain model. 

Exercise 6.4 Prove Lemma 6. I for nonconstant, strictly positive b E L” (0). 

Exercise 6.5 Write the weok formulation cf the Euler-Bernoulli model (6.7) in the simply 
supported case (Figure 6.4). Prescribe the dejection u ,  = ub = 0 and bending moments 
M, = A l l ,  = M at both ends. 

Exercise 6.6 Write the weak jbrmulation of the Euler-Bernoulli model (6.7) in the can- 
tilever case (Figure 6.5). Prescribe the dejection u, = 0 and slope OIL = 0 at the clamped 
end, and prescribe n moment and shear,force Fl, at the free end. 

Exercise 6.7 Show in detail that (6.25) holds. Hint: Subtract the exact and approximate 
weak.forniu1ation.s. 

Exercise 6.8 Show in detail how (6.25) implies that the approximate solution ulL,p E V,,,r, C 
V does not depend on the choice of the basis { 1 1 1 . 1 9 .  . . . , O N }  ofthe space Vfl,p. 

Exercise 6.9 Consider a bounded one-dimen.sionul domain 0 = ( a ,  b) ,  problem (6.7) 
with the boundiiry conditions (6. I I ) ,  and (1 space V,, , p  c H i  (12)  consisting of smooth, 
piecewise-quadratic.functi0n.s over a mesh = { K1,  K2,  . . _, K n I } ,  Kz = (x?-, ~ x?). 

1. What is the dimension N of the space V,, ,,? 

2. Design N basis functions of the space V,, ,r,, whose supports do not extend over more 
than three elements. 

Exercise 6.10 Verify that the shape functions (6.29). (6.30) satisfy the delta property (6.281, 

L,, (01;)) = 6,r. ,for u / ~  1 5 j .  1. 5 4. 

Exercise 6.11 Calciilate the dimension ofthe space V,,,T, in (6.39). 

Exercise 6.12 Construct a jijh-order Hermite element on the reference domain K ,  = 

(- 1, 1 )  using two interior Gauss-Lobatto points f0.4472135954999579392818347. 
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Exercise 6.13 Consider the cubic, fourth-order and fifrh-order Hermite elements on the 
reference domain K,.  Construct and plot the corresponding Hermite interpolants of the 
,function g(z) = arctan( 102). 

Exercise 6.14 Consider the biharmonic problem 

A 'U(S)  = 8 ~ '  (2siii2(7r.r) - 1) 

in the interval R = (a.  b )  = (0.  lo), equipped with the borindary conditions 

74a) = u(b)  = d ( a )  = d ( h )  = 0. 

1. Calculate the exact solution u. 

2. Consider u mesh consisting of ill = 2.5.10.15,20,30,40 and 50 cubic Hermite 
elements. 

(a) Ccilculate the approximate solution 7 ~ 1 ,  ,,l,fi,r ecich M .  Present the plots of 71 and 
uh,l,,for ill = 2.5, 10 and 15. 

(b)  Present a plot ofthe error in the H2(C2)-norm, 11u - i ~ ~ ~ . ~ ~ 1 1 2 . 2 .  Use a decimal 
logarithmic scale. As usual, put the number of unknowns on the horizontal axis. 

3. Do the .sameforfourtli-order and,fifih-order Hermite elements. 

4. Cotnpcire the convergence curves. Which scheme I.VCI.S most eficient:.' 

5. Guess the speed cf convergence in all three cc~.se.s. 

Exercise 6.15 Prove Lenimn 6.3 

Exercise 6.16 Show thut the cubic tricrngulnr Hermite elernentsfrom Figure 6.17are eqiiiv- 
dent .  Hint: Estublish a one-to-one relation between the degi-ees <$freedom associated with 
the pLiir.s of the directioncil derivcitives cit the vertices. 

Exercise 6.17 Verifi that the nodal s h q e  fiinc.tion.c (6.59) .satisfy the deltci property (3.4). 

Exercise 6.18 Show thcrt p - 3 pairwise distinct Logrcinge degrees offreedoni placed s w -  
metrically into the interior of each element edge ore enough to ensure the globcrl continuity 
ofappr~)xiniationfor Hermite elernenis of the order 11 1 3 (this stertenient holds generally,for 
mixed meshes consisting ($ Hermite tritrngles and quads of ( I  iitijfi)rin polynomial degree). 

Exercise 6.19 Ccilculate the dinzetisiori ofthe qmce V,,,,, in (6.61) 

Exercise 6.20 Perfbrm in detcril the proof of Letnnitr 6.8. 

Exercise 6.21 Veri' in detail the cotijbrniity ofthe trieiiigrilar Argjris-Fekete elements of 

the genercil order p 2 5 following the proof of Lemma 6.7. 



CHAPTER 7 

EQUATIONS OF ELECTROMAGNETICS 

In this chapter we introduce the basic quantities of electromagnetics, formulate their rela- 
tions in terms of partial differential equations, and show how these equations can be solved 
via the finite element method. Emphasis is given to potential equations and to the Maxwell’s 
equations, with particular interest in the time-harmonic field. We do not attempt to cover 
all interesting aspects of theoretical and computational electromagnetics: It is our goal to 
provide a sufficiently informative introduction that (a) should allow the reader to start solv- 
ing practical problems and (b) prepare her/him for the study of more specialized literature. 
To mention just two books, [83] can be recommended to mathematically oriented readers 
who are especially interested in time-harmonic Maxwell’s equations, and [ 1021 addresses 
engineering audience. 

Section 7.1 presents important basic facts about the macroscopic (continuous) model of 
the electromagnetic field, such as the four basic laws of electromagnetics, the Maxwell’s 
equations in the integral and differential forms, media characteristics, basic properties of 
conductors, dielectrics and magnetic materials, and interface conditions. With an appro- 
priate insight, many typical problems of electromagnetics can be formulated in terms of 
potentials and solved by means of the standard continuous finite elements. The scalar elec- 
tric potential and the scalar and vector magnetic potentials are introduced in Section 7.2. 
The equations for the field vectors and the time-harmonic Maxwell’s equations are derived 
in Section 7.3. 

The rest of the chapter is devoted to the weak formulation and finite element analysis 
of the time-harmonic Maxwell’s equations by means of edge elements. In Section 7.4 we 
define the Hilbert space H(curl) ,  derive the weak formulation of the equations, show how 
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various types of boundary conditions are incorporated into the sesquilinear weak form, and 
prove the existence and uniqueness of the weak solution in a simplified setting. 

In Section 7.5 we perform the standard series of steps involved in the finite element 
method: We introduce the lowest-order Whitney element and the general higher-order edge 
element of NCdClec on the reference domain, use appropriate transformation to construct 
the basis functions in physical mesh elements, and transform the weak formulation of the 
Maxwell’s equations to the reference domain. At the end the interpolation on higher-order 
nodal edge elements is discussed. 

7.1 ELECTROMAGNETIC FIELD AND ITS BASIC CHARACTERISTICS 

The macroscopic theory of the electromagnetic field is based on the following four vector 
quantities: 

0 electric field strength E = E ( z .  f ) ,  

0 electric flux density D = D ( z .  f ) ,  

0 magnetic field strength H = H ( z .  f ) ,  

0 magnetic flux density B = B(z .  t )  

Based on empirical experience, it is reasonable to assume that these quantities are con- 
tinuous and continuously differentiable almost everywhere in the computational domain, 
except for sets of zero measure such as interfaces separating materials with different elec- 
tromagnetic properties. The points where the field is continuous are called regular, the 
others are singular. The electromagnetic field may be classified with respect to a number 
of various properties and characteristics, for example: 

0 field sources (electric charges, currents, permanent magnets), 

0 dimensionality given by the lowest number of coordinates that fully describe the field 
distribution ( 1 D, 2D, 3D models), 

0 boundedness (fields bounded in a finite domain or open-boundary fields), 

0 time evolution of the field quantities [static (stationary) fields, time-harmonic fields, 
general time dependencies], 

0 types of media (homogeneous or inhomogeneous, linear or nonlinear, isotropic or 
anisotropic, disperse or indisperse), 

0 motion of sources or media, 

and others. 

7.1.1 Integration along smooth curves 

In this chapter we will need to integrate both scalar and vector fields along smooth curves. 
Without loss of generality, we can assume that a smooth curve C C Rd always can be 
parameterized from the interval (0, l), i.e., 
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c = C(s) = (el,. . . , C d ) ( S ) .  s E (0.1). 

as shown in Figure 7.1. 

- 
0 

X I  I 
Figure 7.1 Parameterization of a smooth curve and its derivative 

For simplicity we use the same symbol C for the curve and its parameterization. A 
curve C is called smooth if the derivatives C,l(s) = (dC,/ds)(s) of all of its components are 
continuous in (0 , l ) .  Without loss of generality, we assume that the parameterization c(s) 
of a smooth curve C satisfies the condition 

Then for every 6 E (0 , l )  the derivative (dC/ds)([) is a vector tangential to the curve c at 
the point C(<) E Rd.  A curve C is said to be closed if i t  is defined in [0,1] and C(0) = C (  1). 

A scalar field cp : Rd i R is integrated along the curve C using the standard formula 

where IC’(s)l is the magnitude of the derivative C’(s), 

For example, the length of C is obtained by integrating the function y ( s )  = 1, 

Vector fields F : Rd i Rd are integrated along the curve C using another standard formula, 

F .  dC = 1’ F(C(s) )  . C’(s) ds. 
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7.1.2 Maxwell’s equations in integral form 

The mathematical model of the electromagnetic field, that nowadays is known as the 
Maxwell’s equations, first appeared in the T r t d s r  0 1 7  Elrctriciry arid Mcrgnerisnz by James 
Clerk Maxwell in 1873. These equations are assumed to be one of the greatest achieve- 
ments of the 19th-century mathematics. Among Maxwell’s other remarkable contributions 
were (a) the observation that light is an electromagnetic phenomenon (around 1862) and (b) 
the development of the Maxwell-Boltzmann kinetic theory of gases. which he published 
independently of Ludwig Boltzmann in 1866. 

Figure 7.2 James Clerk Maxwell (183 1-1879). 

The Maxwell’s equations consist of Ampere’s law, Faraday’s law of induction, and 
Gauss’ laws for electricity and magnetism. Consider a planar simply-connected area A 
whose boundary C is a closed smooth curve. AmpPre’s law, 

L H . d C =  I +  -. dQ 
dt 

postulates that the line integral of the tangential component of the magnetic field strength 
H along C is proportional to the total current passing through the area A in  the normal 
direction. This current is given by the sum of the conductive current I and displacement 
current dQ/df. The conductive current I is a scalar quantity defined by 

I =  / i J - u d S ,  

where J stands for the vector-valued density of conductive currents. The dielectric flux 9 
is defined by 

9 = L D . u d S .  

where D is the electric flux density and the symbol u stands for the unit normal vector 
to A, oriented positively with respect to the orientation of the curve C (right-hand rule). 
Faraday’s law of induction, 
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dQ, 
df 

represents an analogous rule for the electric field strength E :  The line integral of the 
tangential component of the electric field E along any closed smooth planar loop C is 
equal to the negative of the rate of temporal change of the magnetic flux Q, through the 
corresponding area A in the normal direction. The magnetic flux Q, is defined by 

Q , =  / i B . u d S  

Gauss’ law for electricity. 

says that the total dielectric flux rlr out of any (simply-connected) volume 1/ with a suffi- 
ciently regular boundary S is equal to the total electric charge Q contained in the volume 
V .  The total electric charge Q is defined by 

Q = k g d 2 .  

where p is the electric charge density. The symbol Y(X) stands for the outer normal vector 
to the surface S at a point x E S. Finally, Gauss’ law for magnetism, 

L B . u d S  = 0. (7.2) 

postulates that the magnetic flux Q, out of any volume V with a boundary S is zero, or, in 
other words, that the magnetic field is divergence-free (solenoidal). 

The main advantage of the integral form of the Maxwell’s equations is that it provides 
a good idea about the relations between the field sources and field quantities. Its compu- 
tational application, however, is limited to rather simple problems, characterized by trivial 
geometries and linear material properties. For practical purposes it is desirable to transform 
the Maxwell’s equations (7.1.2)-(7.2) into partial differential equations. 

7.1.3 Maxwell’s equations in differential form 

The transformation of equations (7.1.2)-(7.2) into partial differential equations is done by 
means of Stokes’ and Gauss’ theorems of calculus (see, e.g., 1361). Let us begin with 
Ampere’s law: Applying Stokes’ theorem to (7.1.2), we obtain 

where u is the outer normal unit vector to the area A. From the fact that the area A is 
arbitrary it  follows that 

3 0  
V X H = J + -  

Df (7.3) 
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Analogously, Faraday’s law (7. I .2) leads to 

U X E =  

and Gauss’ theorems (7.1) and (7.2) yield 

and 

3B 
at . 
- 

e 

(7.4) 

(7.5) 

Let us remark that the density of conductive currents J may include both source currents 
and eddy currents. The above equations hold exactly only at the regular points of the 
domain, on interfaces one has to impose special interface conditions (to be formulated later 
in Paragraph 7.1.8). 

Most methods of computational electromagnetics (both analytical and numerical) are 
based on the differential form of the Maxwell’s equations. The main advantage of the PDE 
model is its ability to include nonlinearities, anisotropy and other nontrivial aspects of field 
computations. Next let us formulate the constitutive relations between the field vectors and 
physical properties of involved media, which form an indivisible part of the electromagnetic 
field model. 

7.1.4 Constitutive relations and the equation of continuity 

The field vectors E ,  D, H ,  and B are coupled with the media via the relations 

D = c E .  (7.7) 
B = p H ,  (7.8) 
J = y ( E + E , ) .  (7.9) 

The symbols c, p, and y denote the permittivity, magnetic permeability, and electric con- 
ductivity, respectively. The material parameters are generally tensors that may either be 
constant, or functions of the position, direction, local values of the field, frequency, or 
state variables (such as temperature or pressure). It is worth mentioning that in the special 
isotropic case when a tensor is diagonal with equal diagonal entries, the tensor-vector prod- 
uct can formally be replaced with the corresponding product of the vector and the diagonal 
entry. The quantity Ev is the intensity of applied forces of, for instance, electrochemical, 
photovoltaic, or thermoelectric origin. For further reference by 

we denote the applied current density. 

Equation of continuity Taking the divergence of Amphe’s law (7.3) and using Gauss’ 
law for electricity (7 .3 ,  under sufficient regularity assumptions on all involved quantities, 
one obtains the continuity equation for the conductive current, 

(7.10) 
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This equation, analogously to the Maxwell’s equations in the differential form, only holds 
where J is smooth. 

7.1.5 Media and their characteristics 

From the point of view of their electromagnetic properties, media can be split into three basic 
categories: conductors, dielectrics, and magnetic materials. We find it  useful to describe 
these three material types in more detail in Paragraphs 7.1.6-7.1.7, after mentioning some 
of their more general attributes: 

0 A medium is called homogeneous when its parameters (permittivity, permeability, 
electric conductivity, and others) are independent of the position. In the opposite 
case the medium is inhomogeneous. An example of a homogeneous medium is a 
copper conductor, while imperfectly mixed electrolyte represents an inhomogeneous 
medium. A medium is called homogeneous by parts if i t  consists of several homo- 
geneous subdomains with different material constants. 

0 A medium is called linear when its parameters are independent of the electromagnetic 
field. This property is typical for air, various gases, many liquids, and nonmagnetic 
metals, such as aluminum, copper, or stainless steel. In nonlinear media, some of the 
parameters are field-dependent (such as, for example, the magnetic permeability of 
iron). 

0 A medium is called isotropic when its physical properties do not depend on the 
direction of the electromagnetic field. As mentioned above, in such case the material 
parameters can be observed as scalar quantities (in the general case they are tensors). 
To give some examples of anisotropic materials, let us mention cold rolled oriented 
steel sheets for magnetic cores and piezoelectric materials. 

0 A medium is called disperse when its physical parameters are dependent on the 
frequency of the electromagnetic field. Media independent of the frequency are 
called indisperse. 

7.1.6 Conductors and dielectrics 

Perfect conductors are supposed to contain an unlimited amount of free charges. An external 
electric field produces motion of these charges to an equilibrium position characterized by 
zero internal field in the material (the field due to free charges in the conductor is exactly 
opposite to the original external field). The time necessary for such a redistribution of 
charges in good conductors (silver, copper, aluminum, etc.) is in normal conditions of the 
order of s. That is why we can consider this redistribution practically instantaneous 
except for modeling extremely high frequency effects. 

7.7.6.7 Dielectrics The atoms and molecules of materials with no free charges contain 
bound charges. Therefore an external electric field E ( z ,  t )  turns them into elementary 
electric dipoles that generate another electric field in the opposite direction. This effect, 
which is called electric polarization, may be quantified by the polarization vector P ( z ,  t )  
that gives the volume density of the moments of the elementary dipoles. This vector may 
be expressed in terms of the electric field E ,  

P = toxeE (7.1 1) 
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where €0 = 10-‘//367r [F/m] is the permittivity of vacuum. The susceptibility of the 
material xe may exhibit scalar or tensorial character. When, for simplicity, xt! is a scalar, 
the electric flux density D ( z ,  t )  in the material consists of the applied flux density and the 
polarization vector. This can be expressed as 

The quantity 

f,. = 1 + yc. 

which is a tensor in the general case, is referred to as the relative permittivity of the material. 
According to the relations between the vectors E ,  P ,  and D,  we split media into 

0 dielectrically linear and nonlinear: In dielectrically linear materials the relations of 
E ,  P and D are linear and vice versa. 

0 dielectrically soft and hard: In dielectrically soft materials both P = 0 and D = 0 
when E = 0. Dielectrically hard materials exhibit nonzero polarization and/or 
electric flux density even with no electric field E present. 

0 dielectrically isotropic and anisotropic: In dielectrically isotropic materials all three 
vectors E ,  P and D are collinear and vice versa. 

Most dielectric materials are linear and perfectly soft. Some of them, called pyroelectrics, 
exhibit within specific temperature ranges spontaneous polarization (while E = 0). The 
polarization also can be affected by mechanical strains and stresses or various state variables. 
In various applications, electrically conductive materials are modeled by sufficiently high 
value oft,. (the higher the polarization, the lower the electric field inside them). 

7.1.7 Magnetic materials 

Similarly, an external magnetic field H ( z ,  t )  influences the motion of electrons in particular 
atoms and, consequently, their magnetic moment. According to the value of the moment, we 
split materials into diamagnetic, paramagnetic and ferromagnetic. Diamagnetic materials 
exhibit no magnetic moment in the absence of external field H .  When such a field is 
applied, it affects the motion of electrons and a new magnetic field, acting against the 
original field H ,  is induced. Consequently, the original field H is weakened. Particles 
(atoms, ions, molecules) in paramagnetic materials are characterized by a nonzero magnetic 
moment even with zero external field H .  After applying a nonzero magnetic field H ,  the 
microscopic moments orient themselves in its direction, causing its moderate strengthening. 
Ferromagnetic materials contain, in addition to nonzero magnetic moments analogous to 
paramagnetic materials, so-called Weiss’ domains in which particular moments exhibit 
the same direction. These directions generally differ from one Weiss’ domain to another, 
so that their effects are mutually compensated. An external magnetic field H orients the 
microscopic moments in individual domains according to its direction, causing its significant 
strenghtening. 

The described effects are modeled in terms of a vector quantity M ( z .  t )  referred to as 
magnetization. The basic relation between vectors H ,  M and the magnetic flux density B 
is given by the formula 
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where ,u() = 4 ~ 1 0 ~ ~  [H/m] is the magnetic permeability of vacuum. The magnetization 
M is a function of the field H .  

Here xrn denotes the magnetic susceptibility that, again, is of either scalar or tensor character. 
Substituting (7.14) into (7.13), one obtains 

The quantity p, = 1 + xlll is called relative magnetic permeability of the material. 
Analogously to dielectrics, also magnetic materials are split into linear and nonlinear, 

soft and hard, and isotropic and anisotropic. In the rest of this paragraph let us say a few 
words about ferromagnetic materials, which are of great practical importance. 

Feffomagnetics Ferromagnetics are nonlinear materials in which the fields M and 
B are functions of both the magnetic field H and the past history of the material. The 
magnetization M initially grows with H ,  but from some given magnitude of H ,  which is 
typical for the given material, the magnitude of M practically does not change anymore. 
Then we say that the ferromagnetic material is saturated (the microscopic magnetic moments 
in all internal Weiss'domains are oriented according to the direction of the external field H ) .  
This behavior, moreover, significantly depends on the temperature of the material. After 
exceeding the Curie's point the originally ferromagnetic material becomes paramagnetic. 

The steady-state dependence of B on H is given by the hysteresis curve. This curve 
is narrow in the case of soft ferromagnetics and wide for hard ferromagnetics. For the 
sake of simplicity, however, we often approximate at least narrow hysteresis curves by 
magnetization curves that are obtained for the first magnetization of the material. In general, 
the modeling of hysteresis curves is very difficult. 

7.1.8 Conditions on interfaces 

The differential form of the Maxwell's equations is not defined on material interfaces where 
the partial derivatives of field quantities are generally discontinuous. Therefore the PDEs 
have to be completed by suitable interface conditions, which are derived from the original 
integral form of the equations. 

Figure 7.3 Electric field on a media interface. 
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Consider an interface I?, shown in Figure 7.3, which separates two media of different 
relative permittivities E , ~  and era, and some point P E r where r is smooth. By a ( P )  
denote the surface density of the electric charge at the point P. Let T be the tangential 
plane to the interface r at the point F.  Consider the line n passing through P in the normal 
direction to r, and another line t passing through P in any direction tangential to l?. The 
symbols t o  and vg represent the unitary vectors in the directions t and n, respectively. 

The interface conditions for the electric field at the point P follow from the integral 
equations (7.1.2) and (7.1). The tangential component of the electric field E is continuous 
at P ,  and the normal component of the electric flux density D has a jump of the magnitude 
f f ( P ) :  

Consider an analogous arrangement (Figure 7.4) with two materials of different relative 
magnetic permeabilities ,url and pra. The interface carries an electric current of the surface 
density Kt. 

Figure 7.4 Magnetic field on a media interface. 

The interface conditions for the magnetic field follow from the integral equations (7.1.2) 
and (7.2). The normal component of the magnetic flux density B is continuous at P ,  while 
the tangential component of the magnetic field H has at P a jump of the magnitude Kt ( P ) :  

BlIl(P) = B2,1(P), Hat(P)  - H l t ( P )  = K t ( P ) .  (7.17) 

Finally consider an interface of two media with different electric conductivities yrl and ~~2 

(Figure 7.5). Assume that an electric current crosses the interface. 

interface 

medium 1 (x,) 

Figure 7.5 Current field on a media interface 
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It follows from the continuity equation (7.10) that the normal component of the current 
density J is continuous across r, 

As we shall see further, the weak formulation of the Maxwell’s equations used in this text 
takes care about these conditions automatically. 

7.2 POTENTIALS 

The finite element approximation of the field vectors E and H requires the application of 
special vector-valued finite elements (edge elements). These elements are more difficult 
to deal with than the standard continuous elements. For example, the electric field E is 
discontinuous on material interfaces where the scalar potential p is continuous. At reentrant 
comers, where the scalar potential ‘p remains continuous and bounded, the electric field E 
often diverges to infinity. 

Therefore we find it useful to mention situations when the Maxwell’s equations reduce 
to simpler problems solvable by means of the standard continuous elements. 

7.2.1 Scalar electric potential 

It is well known that every smooth vector field F that is irrotational, 

is the gradient of some scalar function 6. 

where C is an arbitrary constant. The function 6 is called the potential of F. In a stationary 
electric field ( E  = E ( z )  and D = D(z ) ) ,  Faraday’s law (7.4) reduces to 

V x E = Q ,  (7.19) 

which means that E can be written in the form 

E = -V(p,  + C ) ,  (7.20) 

where pe is referred to as the electric potential. The minus sign in (7.20) is a standard 
convention, corresponding to the fact that (positive) work has to be done when a charge is 
moved toward a field produced by charge(s) of the same sign. The electric potential may 
be interpreted as the work needed to move a unit charge from one point of the electric field 
to another point. The constant C in the electric potential may be determined according to 
various criteria, for example, from the requirement pe(z) + 0 as 121 + co. 

It follows from (7.20) that for any two points A ,  B E Rd that are connected through a 
smooth curve C : (0 , l )  + Rd, the following holds: 
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E .  dC = 1;‘ E ( C ( s ) )  . C’(s) ds = - Vp, (C (s ) )  . C’(s) ds = 9, ( A )  ~ 9(,(l3). 

(7.2 I ) 

The difference of the electric potentials at points A and L? is called voltage and denoted by 
0.413. If the loop C is closed, the following holds: 

l E ’ d C = O  (7.22) 

(fields with this property are called conservative). 
Point sets with the same potential (curves in 2D and surfaces in 3D) are called equipoten- 

tials. In 2D an equipotential curve C C R2 starting from a point A E R2 can be constructed 
easily (numerically) using the relation 

9, (C(s)) = const H Vq, (C(s)) . C’(s) = 0 e E ( C ( s ) )  . C’(S) = 0 (7.23) 

[i.e., C is perpendicular to the field vector E at every its point C(s)]. The construction of 
equipotential surfaces in 3D is more difficult (and it  may not a bad idea to leave this task to 
a visualization software). 

Lines orthogonal to equipotentials are called force lines. Both in 2D and 3D they can be 
calculated easily via the relation 

V+< (C(.S)) x C’(S) = 0 E ( C ( s ) )  x el(.\) = 0 (7.24) 

[i.e., the field vector E is tangential to C at every its point C(s) ] .  The force lines connect 
different potential levels and, indeed, are not closed curves. 

Equation for ( P e  Putting together Gauss’ law for electricity (7.5), the constitutive rela- 
tion (7.7), and the gradient expression (7.20) for the stationary electric field E, we obtain 
a second-order elliptic partial differential equation 

-v .  (FVY,,) = 0. (7.25) 

This equation attains an especially simple form in the isotropic homogeneous case, 

(7.26) @ Ape = - .  
F 

Equation (7.25) is considered in some bounded domain (2 C Rd and equipped with standard 
boundary conditions for second-order elliptic problems (see Paragraphs 1.2.5 and 1.2.6). 
The Dirichlet conditions represent a prescribed potential (voltage). Homogeneous Neumann 
conditions are prescribed on the line/plane of symmetry in the case of symmetric problems, 
and nonhomogeneous Neumann conditions generally on the part of the boundary where 
the normal component E . Y of the electric field (which is equal to --3y,/&) is given. 
Homogeneous Neumann boundary condition may also be used, for example, far from the 
source where i t  is reasonable to assume that the field does not change anymore. 
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Variational formulation and unique solvability A variational formulation of the 
form (1.66) is obtained in the standard way. It is worth mentioning that it requires the com- 
ponents of f to be L” -functions. Thus piecewise discontinuous coefficients corresponding 
to various materials are indeed possible, and the resulting potential still is a H1-function. 
The existence and uniqueness of solution is a consequence of the Lax-Milgram lemma, as 
it  was described in Paragraph 1.2.8 (under the assumption that the part ru of d o  corre- 
sponding to the Dirichlet boundary conditions is not empty). 

Calculation of E After calculating the (continuous, elementwise-polynomial) distribu- 
tion of the scalar electric potential (p. in  the computational domain R,,, the electric field E 
is obtained via the relation (7.20). It is interesting to observe that the tangential component 
of E = -Vq< is continuous, i.e., E lies in the desired Hilbert space H(cur1). 

7.2.2 Scalar magnetic potential 

For a stationary electromagnetic field Ampkre’s law (7.3) reduces to V x H = J (dD/at = 
0 is frequently assumed also for nonstationary fields with sufficiently slow time-variation). 
In domains where J = 0, such as in the air and other insulators, the field H is irrotational, 

V x H = O .  (7.27) 

Then one can introduce the scalar magnetic potential q,,( such that 

H = -V(q,,, + C ) .  (7.28) 

where C is an arbitrary constant. This constant can be defined, for example, by requesting 
q,,, = 0 somewhere. Gauss’ law for magnetism (7.6) together with the constitutive relation 
(7.8) yield a second-order elliptic equation 

which is analogous to the potential equation (7.25). The properties of the magnetic potential 
prn  are analogous to the electric potential 9. It is worth mentioning that the above model 
does not cover a conductor-insulator interface. On such interfaces one has to consider 
interface conditions from Paragraph 7.1.8. Equipotentials and force lines are defined in the 
same way as for the scalar electric potential 9. 

7.2.3 Vector potential and gauge transformations 

After introducing the scalar potentials p(, and p7,, for the fields E and H in the stationary 
case in Paragraphs 7.2.1 and 7.2.2, let us proceed to the general time-dependent case. It is 
well known that any sufficiently regular vector field f that is divergence-free (solenoidal), 

V .  f = o .  

can be written in the form 
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where the field F is called the vector potential o f f .  Gauss' law for magnetism (7.6) yields 
that the (nonstationary) divergence-free magnetic flux density B(z.  t )  can be expressed by 
means of a vector magnetic potential A(%, t ) ,  

B = V x A  (7.29) 

Faraday's law (7.4) yields 

and therefore (if all partial derivatives of A are continuous), 

This irrotational vector field can be expressed as the gradient of a scalar function p(z:, t ) ,  

where p is a time-dependent generalization of the scalar electric potential pcJ from (7.20). 
Thus the electric field E has the form 

(7.30) 

The potentials A and p are not unique: Many different pairs of A and p generate the same 
fields B and E .  It is easy to verify that equations (7.29) and (7.30) are invariant under the 
transformations 

(7.31) 

A = A - V p ,  (7.32) 

where C is an arbitrary real constant. Transformations (7.31) and (7.32) are called gauge 
transformations. 

Coulomb and Lorentz gauges While the constant C may be made unique by request- 
ing p(z) + 0 as 121 + m, various uniqueness conditions may be imposed on A and p. 
The most frequently used condition in the stationary case is the Coulomb gauge 

(7.33) 

In the nonstationary case, one often uses the more general Lorentz gauge 

(7.34) 

where c2 = l / ( t~p~g)  is the square of the speed of light in the vacuum. The Lorentz gauge 
is naturally motivated in the potential formulation of the Maxwell's equations, which we 
discuss in the next paragraph. 
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7.2.4 Potential formulation of Maxwell’s equations 

The scalar and vector potentials introduced in Paragraph 7.2.3 can be used to highlight 
the wave structure of the Maxwell’s equations. For simplicity let us stay in an isotropic 
homogeneous material of permittivity to and permeability /LO. 

Begin with Ampkre’s law (7.3) and use the constitutive relation (7.7) to obtain 

d E  
V x H = J + €0- 

at 

Substituting further for E from (7.30) and using the constitutive relation (7.8), we have 

Equation (7.29) together with a standard vector identity for the curl-curl operator yields 

V x B = V x (V x A )  = V(V . A )  - AA.  

Putting together the last two equations and using c2 = ~ / ( E O , U ~ ) ,  we obtain 

A A = P o J - V  V . A + - -  ( c2 dt 
1 d2A 

c2 at2 
(7.35) 

At this point it  becomes clear why the Lorentz gauge was chosen in the form (7.34). With 
the Lorentz gauge, (7.35) simplifies to a wave equation for the vector potential A ,  

(7.36) 

Here the Laplace operator A is applied to every component of A. Second-order hyperbolic 
equations, boundary conditions, weak formulation, and the existence and uniqueness of 
their solution were discussed in detail in Section 1.4. 

7.2.5 Other wave equations 

Equation (7.36) is not the only wave equation that can be derived from the Maxwell’s 
equations. Staying with an isotropic homogeneous material, Gauss’ law for electricity (7.5) 
together with the constitutive relation (7.7) yield 

Substituting for E from (7.30), we obtain 

If the partial derivatives of A are continuous, they can be interchanged and one obtains 
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In the stationary case this reduces to the Poisson equation (7.26). In the nonstationary case 
the application of the Lorentz gauge (7.34) yields a wave equation for the scalar potential 

9- 

(7.37) 

Wave equations can also be formulated directly for the field vectors E and H .  Assume an 
empty space where 

e=O, J = O .  

Using Ampkre’s law (7.3) together with the constitutive relations (7.7) and (7.8), we obtain 

(7.38) 

Taking the curl of Faraday’s law (7.4), under regularity assumptions sufficient for the inter- 
change of the temporal derivative with the curl operator on the right-hand side, we have 

(7.39) 
3 
at 

V x (V x E )  = --(V x B) .  

Substituting from (7.38) into (7.39) and using the identity 

V x (V x E )  = V ( V .  E )  - AE. 

we can write 

a2 E 
V ( V  . E )  - AE = - f o p 0 2  

at 

Since Q = 0, from (7.5) it follows that 

and thus (7.41) finally yields 

C 2 ~ ~  = 0. 
32E 
at2 

_ _ _  

An identical equation holds for B. 

7.3 EQUATIONS FOR THE FIELD VECTORS 

(7.40) 

(7.41) 

(7.42) 

In the following we turn our attention to the original Maxwell’s equations expressed in 
terms of the field vectors E and H .  For our purposes it is not practical to cover the material 
properties of the involved media in their most general form (such as anisotropy, dependence 
on state variables, etc.). We assume that the permittivity 6 ,  permeability ,u and the electric 
conductivity y are scalar functions depending on the position in space only. 
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7.3.1 

Consider Faraday’s law (7.4) divided by the permeability p. Using the constitutive relation 
(7.8) and applying the curl operator, we obtain 

Equation for the electric field 

dH 
at 

V x (p- ’  V x E )  = -V x -. (7.43) 

If the partial derivatives of H are continuous, they can be interchanged and we obtain 

(7.44) 
a 
at 

V x (/L-’ V x E )  = --(V x H ) .  

Substituting for V x H from Ampkre’s law (7.3) and using the constitutive relations (7.7) 
and (7.9), we can write 

and finally, 

(7.45) 

(7.46) 

In practice the third term on the left-hand side sometimes is neglected when dealing with 
lower frequencies (typically less than 1 MHz). 

7.3.2 Equation for the magnetic field 

Taking the curl of Ampere’s law (7.3) and substituting from the constitutive relations (7.7) 
and (7.9), we obtain 

Under regularity assumptions sufficient for the interchange of the temporal and spatial 
derivatives, we can write 

(7.48) 

In the case of piecewise-constant parameters y and f we can substitute for V x E from 
Faraday’s law (7.4) and for B from the constitutive relation (7.8) to obtain 

3H BLH 
at at‘ 

/ L - ~ V  x (V x H )  + y- + c- = /L-’V x J,, (7.49) 

I t  is easy to see that (7.49) is equivalent to (7.46) in the case of constant material parameters. 
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7.3.3 lnterface and boundary conditions 

The partial differential equations (7.46) and (7.49) only are defined at regular points of 
the computational domain R. At singular points such as material interfaces, additional 
conditions have to be supplemented (see Paragraph 7.1.8). Suitable weak formulation of 
the Maxwell's equations (to be introduced in Section 7.4) takes care about interior interfaces 
automatically, while conditions on external interfaces are imposed as boundary conditions. 

lnterface conditions First let S be an internal interface in a computational domain 
(2, separating two subregions 01, (22 c 11 with generally different material properties, as 
shown in Figure 7.6. 

1 
Figure 7.6 Internal interface separating regions with different material properties 

By v denote the unit normal vector to S, defined almost everywhere at S, pointing in 
the direction from R1 to 0 2 .  By e l .  /it. y7 denote the permittivity, permeability and electric 
conductivity in R,. On S, equations (7.16) yield the conditions 

(El  - E2) x Y = 0. 

(C*El - 4 3 2 )  . Y = fJ 

(7.50) 

(7.51) 

for the electric field strength E ,  and analogously the relations (7.17) can be rewritten into 
the conditions 

(HI - H2) x Y = K t .  

(p1H1 - / L 2 H 2 )  ' v = 0 

for the magnetic field strength H .  Finally, (7.18) may be rearranged to 

(7.52) 

(7.53) 

( 5 1  - J 2 )  x v = 0. (7.54) 

Truncation boundary conditions Some problems take place in unbounded domains 
(air, vacuum, etc.). The easiest way to solve them is to restrict the electromagnetic field 
to a sufficiently large bounded domain R by imposing artificial boundary conditions of the 
form 

E . Y = O  (7.55) 

and 

H . v  = 0 (7.56) 
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on S.  (In the case of boundary conditions the surface S forms part of the boundary 80.) 
These conditions determine that the fields E and H are tangential to the boundary 80. 

Perfect conductor boundary conditions When the material in the outer domain 
is a perfect conductor with yrr f  + oc, i t  follows from the constitutive relation (7.9) 

that the electric field Errf  must vanish in SZCzt  for the current Jc,rf to remain finite. Then 
the interface condition (7.50) reduces to 

E x u = O .  (7.57) 

Imperfect conductor (impedance) boundary conditions In practice we use var- 
ious boundary conditions to model imperfect conductors. One of the standard ways is to 
exploit the impedance 2, which quantifies the manner a material resists the flow of electric 
current if a given voltage is applied. The impedance differs from simple resistance in that 
it takes into account possible phase offset. In our case, if C2,,.f consists of such material, 
we restrict ourselves to a basic impedance boundary condition of the form 

u x H - Z(U x E )  x u = 0. (7.58) 

The impedance 2 is a positive material-dependent function defined on the interface S.  

Symmefryboondaryconditions The impedance condition (7.58) is used with 2 = 0 
to model interfaces of symmetry, 

H x u = O .  (7.59) 

We shall see later that in the time-harmonic case, via Faraday's law (7.4), condition (7.59) 
yields 

(V x E )  x u = 0 (7.60) 

for the phasor of the electric field (see below). 

7.3.4 Time-harmonic Maxwell's equations 

Assume that all time-varying quantities of the electromagnetic field are harmonic with a 
frequency w > 0, 

E ( z ,  t )  = Re(E(z)r -J" ' ) ,  

D(z .  t )  = Re(D(z)e-J" ' ) .  

H ( z ,  t )  = Re(H(z)p-J" t ) ,  

B(z ,  t )  = Re(B(z )e -JWt ) .  

(7.61) 

Here Re(.) denotes the real part of a complex number, j is the imaginary unit, j 2  = - 1, and 
the underlined quantities are called phasors. In the language of phasors, equation (7.46) 
turns into 

v x ( d v  x E )  - w ( j y  + €W)E = j W J U .  (7.62) 
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and equation (7.49) attains the form 

(7.63) 

7.3.5 Helmholtz equation 

The Helmholtz equation of electromagnetics is a special case of the wave equation for a 
harmonic electromagnetic field. There are several versions associated with various wave 
equations (see Paragraphs 7.2.4 and 7.2.5). First consider an empty space characterized 
by the material parameters F = F O .  /L = / L o .  n/ = 0, zero electric charge density e = 0 
and zero conductive current density J = 0. When substituting from (7.61) into the wave 
equation (7.42), we immediately obtain 

AE + k2E = 0. (7.64) 

where the symbol k = d / c  = stands for the wave number. One can obtain the 
same result from the time-harmonic Maxwell's equations (7.62): With (7.61), (7.7) and 
e = 0 Gauss' law for electricity (7.5) reduces to 

Therefore identity (7.40) yields 

v x (V x E )  = V(V . l3) - AE = - A E  

Putting this into (7.62) and using 7 = 0, we obtain (7.64) again. 

Helmholtz equation for A 
conductive current density 

Consider a more general case with a nonzero harmonic 

J ( z ,  t )  = Wc(J(z)r.-/"'). 

and assume the vector potential A in the harmonic form 

The wave equation (7.36) immediately yields 

k = W / C .  

(7.65) 

Helmholtz equation for cp 
harmonic form 

Last consider a nonzero electric charge density Q of a 
- 

and assume a harmonic scalar potential 9 in the harmonic form 
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q(2. t )  = Re(q(z)c.-’-‘) - 

The wave equation (7.37) reduces to 

(7.66) 

7.4 TIME-HARMONIC MAXWELL‘S EQUATIONS 

In Sections 7.2 and 7.3 we formulated partial differential equations governing the electro- 
magnetic field either directly or via its potentials. Due to the limited length of this text we 
do not address in more detail the wave and Helmholtz equations, whose weak formulation 
and discretization take place in the Sobolev space H’. Instead, in the rest of this chapter we 
focus on the time-harmonic Maxwell’s equation (7.62). This equation contains the curl- 
curl operator which exhibits new challenges from the points of view of both mathematical 
analysis and finite element discretization. 

Vector operations such as the cross-product of two vectors or the curl of a vector are 
native in 3D. For example, the cross-product of two linearly independent vectors lying in 
the :xl:cz-plane is a vector normal to this plane. Therefore, the 3D setting is more natural for 
the mathematical analysis of the Maxwell’s equations. We formulate a sufficiently general 
model problem in paragraph 7.4.2, derive its variational formulation in Paragraph 7.4.3, and 
show the existence and uniqueness of its solution in Paragraph 7.4.4. In order to simplify 
the analysis, in what follows we assume piecewise-isotropic materials, so that the tensor 
material parameters E and p can be treated as scalars. See, e.g., [83] and the references 
therein for the discussion of the general tensor case. 

We will return back to the 2D setting for the finite element discretization in Section 7.5. 
This step is justified by the fact that every 2D problem is equivalent to a 3D problem whose 
solution does not depend on the .c:%-variable, Le., such that the resulting field has the form 

7.4.1 Normalization 

The time-harmonic Maxwell’s equation (7.62) is normalized to a relative form that is more 
suitable for the numerical solution. We warn the reader that for the rest of the chapter we 
stop underlining phasors, and rescale E, W, and J ,  following [32] to 

(7.67) 

Let us define the relative permittivity f, and relative permeability p, by 

(7.68) 
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Notice that F ,  = pL7. = 1 in vacuum. Multiplying (7.62) with p g  and redefining Eaccording 
to (7.67), we obtain 

V x (pFIV x E )  - k2c,.E = +. (7.69) 

where the right-hand side Q has the form 

and the wave number k = wJFOcL0 = w / c  was defined before. 

7.4.2 Model problem 

Assume a bounded simply-connected domain (2 c R" with a Lipschitz-continuous bound- 
ary 80 that consists of two disjoint open parts r p  and rI. 

The part r p  represents an interface to a perfect conductor equipped with the boundary 
condition (7.57), 

E x u = O  on rp. (7.70) 

and I'I represents an impedance boundary associated with the boundary condition (7.58). 
For a time-harmonic field, with regard to the normalization (7.67), the impedance condition 
attains the form 

Here the impedance 

x = z  - c (7.72) 

(where 2 is a material parameter) is a positive function defined on I'I, and the symbol 

ET = (Y x E )  x Y 

stands for the tangential projection of the phasor E to the boundary I'I. 

impedance condition (7.7 1) reduces to (7.59), 
The data X and g are zero on parts of rI representing surfaces of symmetry, where the 

(V x E )  x v = 0. (7.73) 

Precise assumptions on the coefficients and data, as needed for the existence and uniqueness 
theorem, will be given in Paragraph 7.4.4. 

7.4.3 Weak formulation 

Every inner product (a, b)" must satisfy 



TIME-HARMONIC MAXWELLS EQUATIONS 291 

(see Lemma A.32), where I /  . 1 1 "  is the norm induced by the inner product. Since the 
norm is a real-valued function, the "dot product" in CTL requires one of the vectors to be 
complex-conjugate, 

1=l 

(the complex-conjugate ? of a complex number z = a + ba is 

The variational identity Testing equation (7.69) by a sufficiently smooth complex 
vector-valued test function 

= a - bz). 

and integrating over R, we obtain 

The minimum regularity of F ,  as usual, will be determined later from the integrals in the 
weak formulation. Using Green's theorem together with the identities 

D . (a x b) = ( V  x a )  . b - a. (V x b)  

and 

a ' ( b  x c )  = (u x b) ' c 

(all operations being performed in 3D), we obtain 

L2[(p;'V x E ) . ( V x F ) - k 2 t , . E . F ] d z +  v x ( p ; ' V  x E ) . F ~ d s =  J an 
(7.74) 

where 

FT = (Y  x F) x v 

stands for the tangential projection of the vector F to the boundary 30. 
Next let us incorporate the boundary conditions (7.70) and (7.7 1 )  into (7.74). The perfect 

conductor boundary condition states that the field E is normal to the boundary rp, and 
(7.70) implies that 

This choice eliminates the rp-portion of the surface integral in (7.74). Applying the 
impedance boundary condition (7.71) on rl, we obtain 
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The space for E We see from (7.75) that the appropriate space for E is 

V = { E  E H(ciir1. n); v x E = 0 on r p } .  (7.76) 

where the Hilbert space H(cur1. f2) consists of vector-valued L2-functions whose curl lies 
in ( L 2 ( n ) ) 3 ,  

H(ciirl.12) = { E  E (L2(b2)) ':  V x E E (L2(s2) )"} .  

The space V, when equipped with the inner product 

1.e.. 

( E . F ) v  = (E!F)cl + (V x E.V x F)<l + (Ey..F,I .)r,  

is a Hilbert space. Indeed this inner product induces a norm IlEll?. = ( E .  E)\ , .  Before 
writing down the weak formulation of problem (7.69), (7.70), (7.71), let us list appropriate 
assumptions on the domain, coefficients and data. 

Assumptions on the domain, coefficients and data Recall from Paragraph 7.4.2 
that the domain ( 2  C R" is assumed to be bounded and simply-connected, with a Lipschitz- 
continuous boundary dl2 consisting of two disjoint relatively open parts rp and rl, 30 = 

rp U T I .  In order to incorporate various materials, the domain 12 is allowed to be split 
into several disjoint open simply-connected subdomains 121. ( 2 2 . .  . . . ( I , ,  with a Lipschitz- 
continuous boundary, such that a = uy=, (2 , .  The parameters cT and pr are allowed to be 
generally discontinuous, but smooth in each subdomain 12,. For reasons that will become 
clear later, the parameter F,. requires two more conditions to hold: 

- 

- 

I .  The restriction of F,. to each subdomain (2) is a H:'-function (then F ,  E C'(a,) and 
it is possible to extend it smoothly to the whole ( 2 ) .  

2. There exists a positive constant C, > 0 such that for each subdomain 12, either 
Im(cr) 2 C, or Im(F7.) = 0, i = 1 . 2 . .  . . .n.  

The positive impedance function X is assumed to lie in Lx(TI) .  The right-hand sides O 
and g are required to lie in (L ' (0 ) ) : '  and (L2( l?I ) )" ,  respectively. 

Weak formubtion 
formulation of the model problem (7.69), (7.70), (7.71) reads: 

Under the above assumptions on the coefficients and data, the weak 

Find the electric field phasor E E V satisfying 

u(E,  F )  = I (F)  for all F E V. (7.77) 

where the sesquilinear form u(.. .) is defined on V x V by 
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and the linear form I ( - )  is defined on V as 

7.4.4 Existence and uniqueness of solution 

Under the above assumptions, there exists a unique solution to problem (7.77). 

Theorem 7.1 (Existence and uniqueness of E )  Consider the assumptions on the domain 
( 1 ,  boundary purrs r p  and r ~ ,  and coeficients and data E , ,  p r ,  A, 9 and g, listed in 
Parugrclph 7.4.3. Moreoveu, assume that at least one cf the following conditions holds: 

I .  The impedrince houndriry rl is not empty. 

2. The iinciginary part I m ( f ,  ) > 0 in some open suhdomnin Sl+ C 12. 

Then foruny wave number k > 0, problem (7.77) has a unique solution E E V. In addition, 
there exists n constant Ch independent of E, CP and g (hut depending on k )  such that 

Outline of proof In order to prove the existence and uniqueness of solution, one has to 
overcome the following basis difficulties: 

I .  The curl operator contains a large null space (all functions e E H(cur1) such that 
e = Vp, p E H ’ ( ( 2 ) ) .  This null space has to be removed using the Helmholtz 
decomposition. 

2. Because of the term - k 2 ( f ,  E .  F)c2 the sesquilinear form a( . .  .) is not V-elliptic, 
which excludes an application of the Lax-Milgram lemma. The Fredholm alternative 
(Theorem A.17), which is used instead, requires an operator reformulation of the 
problem into the form 

( I  + IC)e = f (7.78) 

where I is the identity operator and K a compact operator. 

3. The Fredholm alternative requires a separate proof of the uniqueness of solution to 
(7.78) (which is equivalent to proving that the homogeneous equation ( I  + K ) e  = 0 
only has a trivial solution). Then it implies the existence of solution to (7.78) for 
every right-hand side f from the underlying Hilbert space. 

Let us discuss all these steps in more detail, following [83]. For simplicity we consider the 
case of j i ,  piecewise constant in the subdomains SI1. { I 2 .  . . . . Sl,,, and assume r p  and rr 
to be connected. 
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Helmholtz decomposition 

Lemma 7.1 Under the assurnptionsfrom Paragraph 7.4.3 let e E V such that eT = 0 on 
the impedance boundaq rI and V x e = 0 in 0. Then the scalar potential p such that 
e = Vip lies in the space 

s = {p E ~ ' ( 0 ) ;  p = o on rI, p = const. on rp}. 

Proof: The proof follows easily from the fact that the tangential component 

eT = (v x e )  x v = ( V ~ J ) T  

Thus eT  is constant on each component rl and rp. Without loss of generality, the constant 
on one component can be chosen to be zero. 

Theorem 7.2 (Helmholtz decomposition) The space 

VS = {Vq; p E S} c v. 

is a closed subspace of V. Dejine 

Then V is the direct sum of the subspaces V" and VS, 

V = V" @ VS. (7.79) 

Proof: This lemma was proved in [72]. The situation is simple when E, is real, since the 
bilinearform (t,e, f ) ~  is an inner product in ( ~ 5 * ( 0 ) ) ~ ,  and the result follows immediately 
from the basic projection theorem for Hilbert spaces (Theorem A.14 in Paragraph A.3.5). 

The complex case is not difficult either. Since S is closed in H1(S1), also V S  is closed 
in V. Define a sesquilinear form 

Since there exist positive constants C1 and C, such that C1 5 Re(€,) 5 C, in R, the 
following holds: 

I .  There exists a constant C independent of e such that 

for all e E V. (This is verified easily when taking the real part of E~). 

2. There exists a constant C independent of e and f such that 

for all e,  f E V. 

(7.81) 
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According to the Lax-Milgram lemma, for every e E V there exists a unique function 
Pe E V S  such that 

%(Pe,  f) = (ere, f )  for all f E VS. 

The operator P : V + V S  is linear, bounded and indeed Pe = e if e E VS. Thus P is a 
projection and any function e E V can be written uniquely as 

e = Pe + ( I  - P)e.  

The proof is accomplished by realizing that ( I  - P)e E Vo since 

(€ , ( I  - P)e ,  Vp)n = % ( ( I -  P)e .  Vp)  = 0 

for all p E S.  

Fredholm operator equation Using Theorem 7.2, every solution E E V can be 
decomposed uniquely into 

E = Eo + Vp,  (7.82) 

where Eo E Vo and p E S.  Substituting (7.82) into (7.77) and using the facts that 
V x V p  = 0 and (Vp) x u = 0 on do, we obtain 

for all F E V. Choosing now F = V$ for some $ E S ,  (7.83) simplifies to 

-k2(e,.(Eo + Vp), VdJ))f2 = (9, V$)r2. 

Now, since Eo E VO, the potential p satisfies 

Using the assumptions for E , ,  it is not difficult to show that the variational problem (7.84) 
has a unique solution that moreover satisfies the estimate 

where c is some positive constant independent of 9. From here it is clear that determining 
E is equivalent to determining Eo. 

Therefore in the following let us look for Eo E Vo such that 

( P L ; ' ~  x Eo, V x F)II - IC2(~,Eo, F ) r 2  - j k ( X E o . ~ .  FT)r, 

= (9, F)n + (g ,  FT)rr + ~ ~ ~ ( e ~ v p ,  ~ ) n  

(7.85) 
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for all F E V;). (We can restrict ourselves to the test functions from V;) since V;, c V.) 
The analysis of (7.85) is more demanding than the analysis of (7.84) was, and this is 

where the Fredholm alternative comes into play. The idea of transformation of equation 
(7.85) into an operator equation is as follows: 

v 

s ( E ~ .  F )  

for all F E l4. Hence, define a sesquilinear form 

for all e.  f E V. Postponing the analysis of the form .s(.. .) to Lemmas 7.2 and 7.3, let us 
define an operator K : (L2(n) )"  + V;) C (L2(f2)):' by 

s(Kf.  F )  = -2k2 (€ , . f .  F )  for all F E v). 
and a right-hand side 3 E V;) by 

Using the operator K and the right-hand side F, problem (7.85) can be written in the form 
of a Fredholm operator equation, 

( I  + K ) E [ )  = 3. (7.87) 

The next step consists in showing that both I( and 3 are well-defined and that h- is a 
compact operator. 

Verification of Fredbolm assumptions Let us verify that indeed equation (7.87) is 
well-defined and that the operator K satisfies the assumptions of the Fredholm alternative 
(TheoremA.17). We begin by showing that .s(.. .) is V-elliptic. 

Lemma 7.2 There exists a constant C, independent of e (but depending on f,.. p,.. X litid 

k )  such that 

Is(e. e l l  2 C.Jellt. .fiw a/ /  e E V. (7.88) 

Proof: Again the situation is simple when F,. is real-valued. The definition of s(.. .) yields 

2 

Is(e.e)12 = ( x ell;L2(c2jj:t + A'lIIRt.(c,:1/2ell:L'(lj)') 
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Expanding the expression on the right-hand side and using the modified Young inequality 
(A.49) with p = q = 2 we find that for any 6 > 0 it  is 

Is(e. e)i2 2 I / ~ ; ’ / ~ v  x eIIfL2co,,,r + ~ ~ I I R e ( € ~ ) 1 / 2 e I I f ~ ~ ( ~ ~ ) ~ , r  

From the assumptions on the coefficients there exist constants 
that Re(f ,  ) 2 CR<, and Im(6, ) 5 crliL in 0. Choosing 6 < 1, we can estimate 

> 0 and 2 0 such 

Thus is we choose f i  such that 

< 6 < 1 .  4 r n  

4, + 4 , n  
-~ 

inequality (7.88) follows. rn 

The operator K and the right-hand side F have the following properties: 

Lemma 7.3 The operator K : ( L2 ( fl))3 + 

a constant C > 0 such thnt 
is bounded and compact, and there exists 

The right-hand side F is well-dejned, and 

Proof: 
shown in Lemma 7.2. To verify boundedness, use the Cauchy-Schwarz inequality, 

The V-ellipticity of the form s ( . .  .), required by the Lax-Milgram lemma, was 

14e7 f)l I C(ll0 x ~ I I ( L ~ ( Q ) ) ~ ~ ~  x f l l ( ~ 2 ( 6 2 ) ) : <  + l l ~ l l ~ r , ~ ~ ~ ~ ~ ~ ~ ~ l l f l l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

+Ilerllcwr,)).c l l . f ~ l l ( L 2 ( r l ) ) ~ ~ )  

Here the constant C depends on the lower and upper bounds for f,., p, and A. Thus by the 
Lax-Milgram lemma Kf is well-defined and inequality (7.89) holds. 

It remains to be shown that K is compact. Consider a bounded sequence {u,~}?=~ C 
(L2(Cl))’. By (7.89) the sequence { K u ~ ~ } ~ ~ ~  C ( L 2 ( 0 ) ) 3  is bounded in V,, C (L2(C2))’. 
It follows from the compact embedding of V” in (L2(f2))3 (see, e.g., [83], Theorem 4.7 for 
details) that there exists a subsequence that converges strongly in ( L 2 ( 0 ) ) 3 .  Therefore the 

Since the operator K and the right-hand side F satisfy the assumptions of the Fredholm 
alternative (Theorem A. 17), we obtain the existence of a unique solution to (7.87) if we can 
prove that the homogeneous equation 

operator K is compact. The rest of the proof for F is analogous. 
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( I  + K)EO = 0 (7.90) 

only has a trivial solution 

Uniqueness of the trivial solution to (7.90) This most difficult part of the proof is 
decomposed into two steps. First, using the assumptions on the coefficient E ,  and boundary 
r1 we show that the solution is unique either in the region where Im(6,) > 0 or on 1'1. 
Next a unique continuation result is applied to show that the solution is unique everywhere. 

Let us begin with introducing a basic continuation result for real-valued functions. 

Lemma 7.4 Let R be a connected domain in R" and suppose f E (H2(R))3, where 
f = ( f l ,  f i ,  f 3 ) T  is a real-valued function that satisjies 

3 

I A f I  5 C):(IfrI + IVfrI) 
,=1 

almost everywhere in R, where C is a positive constant. Let xo E R be such that f = 0 in 
some open neighborhood B ( q )  C R. Then f = 0 in R. 

Proof: This result was proved in [33 ]  for f E (C2(f2))3. Since it only relies on the fact 

In the next step the result of Lemma 7.4 is extended to the vector-valued complex case. 

Lemma 7.5 Suppose that R c R3 is an open connected domain. Let E ,  be real-valued and 
smooth in 2 and p, be real-valued and constant in 52. Let e ,  f E H(cur1,R) satisfy 

that Af is well-defined in L2(R), it can be extended to (H2(R))3. 

jkE,e+V x f = 0, 

jkpL, . f  - V x e  = 0 

(7.91) 

in R and that e vanishes in an open subdomain of R. Then e 

Remark 7.1 The result of Lemma 7.5 was proved more generally in [121], under the 
assumptions that E ,  and p, are symmetric, real-valued, uniformly positive de$nite, and 
bounded matrix functions of the spatial variable in ( L m ( 0 ) ) 3 x 3 .  

Proof: By (7.91) we have 

0 and f 0 in R. 

U x f,'V x f - k2p , f  = 0 

in 0. Taking the divergence of this equation and using the fact that pL,. is constant, we have 

in R. Rewriting 

v x f;1v x f = t,'V x (V x f )  + (v6;') x v x f 

and using the identity 

V x V x f = V ( V .  f )  - A f .  
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we obtain 

Af = E,(QF,') x V x f - k2pTf 

Thus A f E L2(fZ), and by standard interior elliptic regularity results (see, e.g., [76]) it 
holds that for any compact fZ0 C R, f E (IY~(R~))~. Applying Lemma 7.4 to the real and 
imaginary part off  separately, we conclude that f = 0 in Ro. Since the domain Ro was 

The one-before-last step required to finish the proof consists in introducing the Calderon 

arbitrary, f = 0 in R. 

extension theorem. 

Theorem 7.3 (Calderon extension theorem) Let R be a bounded domain in RN with 
Lipschitz-continuous boundary. Let s > 1 be an integer number and 1 < p < 00. Then 
there exists a continuous linear extension operator 

such thal 

(nu)(z) = u ( z )  for all z E R and u E WS*P(R). 

In the special case of p = 2 the operator n exists for all s > 0. 
Proof: See, e.g., [ 13. 

Finally we can formulate and prove the desired input for the Fredholm alternative, i.e., 
that the homogeneous equation ( I  + K)Eo = 0 only has a trivial solution Eo = 0. 

Theorem 7.4 Recall the assumptions on the coeflcients and data listed earlier in Para- 
graph 7.4.3. Further; suppose that Im(ET) > C, > 0 in some open subdomain of R or 
is not empty. Then the homogeneous equation 

a ( E ,  F )  = (pFIV x E ,  V x F ) n  - k2(E,E, F)n - j k ( X E T ,  F T ) ~ ,  = 0 forall F E V 
(7.92) 

only has a trivial solution E = 0. 

Proof: Evidently eo = 0 is a solution to (7.92), but it is not quite clear whether it is 
unique. Therefore consider any function e E V that satisfies (7.92). Using F = e and 
taking the imaginary part of the resulting equation, we have 

k2(Im(E,.)e, e)n + k ( X e T ,  eT)r ,  = 0. (7.93) 

Assuming that X is real and positive, this yields eT = 0 on r I  and e = 0 in any subdomain 
of 9 on which Im(t,) is positive. If this happens to be true in the whole R, then the proof 
is finished. Otherwise consider some subdomain R, c R where Im(ET) is positive. We 
see that e = 0 on all subdomains where Im(t,) # 0. Let R, be subdomain of R on which 
Im(f,) = 0 and 

1. 2, n 2, is a Lipschitz surface with nonempty interior, 

2. E ,  is real and smooth on R,. 
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The Calderon extension Theorem 7.3 (using the assumption f,. E H"(12,)) allows us to 
extend F,. smoothly from 

Let B,(zo) be an open ball of a sufficiently small radius centered at apoint zo E nLjJ)nn, 
such that B,.(zo) C (2, Ua,) and 6, is positive in R, U B,.(zo). Since e = 0 on O,,, i t  is 

v x p ; ' ~  x e - k2f, .e = o 

to (2, U 12,. Also p,  is (constantly) extended to Q, U Q,. 

in 12, U L?,(zo) and e vanishes in 62, U B,.(zo). Now, since both E,. and pL7. are real-valued, 
we use Lemma 7.4 to conclude that e = 0 in R ,  U Br(z0) and therefore also in ( I p  U 0,. 
In this way we may continue until all subdomains where F,. is real are reached, and we 
conclude that e = 0 in (2. 

If F,. is real in the whole domain f2, then we need to use the assumption that rr  is not 
empty. By (7.93) we know that er = 0 on TI. We proceed analogously to the previous 
case. Let Q, be a subdomain of (2 such that n(, f' TI contains an open subdomain of TI, 
and such that E,. is smooth in f2,. We can extend 6,. smoothly to R3. Since this function 
is positive on Q,, there exists an open ball B,.(zo) centered at a point zo E 2, n Tr such 
that f, is positive on 12, U B, (zo) and (B,.(zo) n 0 )  C 0,. When extending e by zero to 
B,.(zo) \ n,, we have that 

p;'V x e V x F - k2f , . e  . F d z  = 0 J' O-,,UB, (Zii) 

for all F E Ho(cur l ,  Q, U B,(zo)). Thus e is a weak solution of the Maxwell's equations 
there and e vanishes in B,.(zo) \ a(/. Hence by Lemma 7.4, e vanishes in R, U B,.(zo) 
and thus also in 0,. We conclude that e = 0 in (2 by crossing boundaries of subdomains 
0,) on which F?. is differentiable. 

7.5 EDGE ELEMENTS 

In the early era of finite element methods for the Maxwell's equations i t  was generally 
assumed that [H1(Q,)]"  was the correct space for the discretization of the electric field 
E .  However, the globally continuous discretizations exhibited spurious waves and other 
unwanted phenomena, the origin of which was not known (see, e.g., [61, 851 and [ 1 IS]). 
Later it  was realized that the space H(ctirl.621,) was larger than [H1(C2/))]f': The space 
H(cur1. 0 1 , )  admits discontinuous functions and functions with stronger singularities than 
[H1(12,,)]". Solutions lying in H(cur1. f21 , )  \ [H1(121,)]" thus cannot be approximated in 
finite element subspaces of [H1(R/l)]d.  One such example is presented in Paragraph B.2.8. 

This discovery initiated the development of discontinuous vector-valued elements con- 
forming to the space H(ciir1. 121,). Since both in 2D and 3D the degrees of freedom on the 
lowest-order H(curl,62/, )-conforming elements were ociated with the element edges, 
these elements were called edge elements. 

The lowest-order edge elements were first introduced by Whitney [I231 in a different 
context of geometrical integration theory. Later the lowest-order edge elements were in- 
dependently rediscovered and applied to the Maxwell's equations by several authors (see, 
e.g., [2, 101 and [ 121). In this section we introduce the reader to the concept of nodal edge 
elements, more precisely to the first family of NCdClec elements [87]. 

We begin with formulating the conformity requirements of the space H(ciir1) in Para- 
graph 7.5.1. Lowest-order Whitney elements and suitable reference maps are introduced 
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in Paragraph 7.5.2.  Higher-order NCdClec edge elements are discussed in Paragraph 7.5.3. 
The transformation of the Maxwell's equations from a general triangular element to the ref- 
erence domain is described in Paragraph 7.5.4. Interpolation on edge elements is discussed 
in Paragraph 7.5.5. The finite element discretization is presented in two spatial dimensions. 

7.5.1 Conformity requirements of the space N(cur1) 

In this paragraph we formulate the conformity requirements of the space H(cur1, oh) that 
dictate the structure of the edge elements. Because of the vector operations used, again i t  
is natural to begin in three spatial dimensions. The two-dimensional case is addressed in 
Remark 7.2 following Lemma 7.6. 

Lemma 7.6 Consider a polygonal domain oh c Rd covered with a Jinite element mesh 
Th3p ,  and a function E : f i h  + EXd,  d = 3, such that 

1. EIK E [H1(K)ldfiforeach element K E T h , p ,  

2. for each element inte$ace f = f?, n f?,, K1. K2 E T h ) p  the traces of the tangential 
components vf x E ~ K ~  and vf x EIK~ on f a r e  the same, where vf is a unit normal 
vector to f .  

Then E E H(cur1, Oh). On the other hand, i f E  E H(cur1, oh) and condition 1. holds, 
then condition 2. is satisfied. 

Proof: Let EIK E [H1(K) ld  for each element K E 7 h , p .  For every K E 7 h , p  define 

Clearly the function 

where X K  is the characteristic function of K ( X K  = 1 in K and it vanishes outside of K), 
is defined almost everywhere in and lies in the space [L2((nh)ld. Further, consider an 
arbitrary function 

and use Green's theorem to calculate 
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and therefore V x E = w and E E H(cur1, ah). 

trace on f is well defined and we obtain 
Conversely, if E E H ( c u r l , n h ) ,  define w = V x E .  Since E ~ K  E [H1(C2h)]d, the 

for all cp E D. Hence 1. holds. 

Remark 7.2 When interpreting Lemma 7.6 proper1.v for  three-dimensional vector je lds  
of the form E = (EI(x l ,x2) ,  Ez(xl ,x2) ,  O ) T ,  it is easy to see that condition 2. attains 
the following form for  two-dimensional approximations: For each element interface f = 
K1 n fT2,  K1, K2 E zxp the traces of the tangential components t f  EIK~ and t f  . E I K ~  
on f are the same, where t f  = (-vf ,2,  v f , l )T  is a unit tangential vector to f .  

- 

7.5.2 Lowest-order (Whitney) edge elements 

We have shown in Paragraph 7.5.1 that the finite element approximation has to have contin- 
uous tangential components on all mesh edges in order to conform to the space H(cur1, n). 
The lowest-order approximations that satisfy this requirement are with continuous and con- 
stant tangential components on the edges. Let us stay on the reference domain Kt first. 
The two-dimensional space [Po(Kt)]2  is too small to generate three linearly independent 
constant tangential components on the edges of Kt .  Therefore we need to take one higher 
degree polynomial from the space [P' (Kt)I2.  

Hence the lowest-order element ( K t ,  P, 9) on the reference triangular domain Kt is 
equipped with the polynomial space 

where t, stands for the unit tangential vector to the edge e, of Kt.  The orientation of the 
edges is shown in Figure 7.7. 

- 1  

Figure 7.7 Orientation of the edges on the reference domain Kt . 

For future reference let us write the unit tangential vectors to the edges explicitly, 
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It is left to the reader as an easy exercise to verify that 

N p  = d i m ( P )  = 3 

Accordingly the set of degrees of freedom contains three linear forms, 2 = { Lp1 ,o ,  L,,,o, Le3 ,O 

where i,, ,o : P + R is defined as the integral 

i,, ,O (k)  = /", E . t, d[ for all E E P (7.95) 

of the tangential component of the field E on the edge el 

Lemma 7.7 (Unisolvency) The$nite element ( K ~ ,  P ,  2) is unisolvent. 

Proof: According to Definition 3.2 we have to show that the following implication holds: 

Le, ,o(g)  = Lpz ,o(g)  = i e 3 , 0 ( g )  = 0 + g = 0 for all g E P .  (7.96) 

Let us find some basis in the space P first. A general polynomial g E [P1(Kt ) ]2  has the 
form 

g(11,Ez) = (ao + a161 + aaE2,bo + biEi  + b z E ~ ) ~ .  

The condition g . t ,  = const. on the edge el ,  where 

g .  2, = g(E1, (2) . (1, 0IT = ao + a l ~ l  + a 2 ~ 2  = a0 + a l t l  - a2, 

implies that a1 = 0. Similarly the condition g . (0, l)T = const. on the edge eg yields 
ba = 0, and the last condition g . (- 1,l)" = const. on the edge e2 means that a2 = +. 
Hence any polynomial g E P has the form 

S(E1,EZ) = (a0 + azE2,bo - a z t l ) T ,  

and, for example, the set 

is a basis in P .  Now any g E P can be expressed uniquely as 

(7.97) 
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Since the coefficient matrix of this equation, 

(7.98) 

is nonsingular, we conclude that (Y = 02  = ( i g  = 0. 

Nodal basis of the element ( K t ,  P ,  9) Next let us apply the standard procedure 
from Paragraph 3.1.1 to construct the nodal basis satisfying the delta property (3.2). Using 
the basis (7.97) as the underlying basis, the generalized Vandermonde matrix (3.7) has the 
form (7.98). The inverse of L, 

L - L q  : -1 1 1 1 ) .  

-1 -1 1 

determines that the nodal shape functions 8,. 8,. & have the form 

Another equivalent expression of the Whitney shape functions (7.99) is 

where u, is the unit outer normal vector to the edge p i ,  

(7.100) 

and the barycentric coordinates X7 (t) are affine functions satisfying 

0 on the edge p i .  

1 
(7.101) 

at the remaining vertex of Kt not lying at e,. 
Xi ( '$  = 

For Kt the barycentric coordinates have the form 
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A third way to express the Whitney shape functions 41, 8 2 ,  and & is 

The equivalence of relations (7.99), (7.100), and (7.103) is left to the reader as an easy 
exercise. 

Whitney element on a triangular domain K E 7& Proper treatment of orientation 
of the tangential vectors to mesh edges is essential when working with edge elements. 
Assume a mesh edge s, with endpoints x,, and x , ~ .  Define the global orientation of this 
edge as s, = x,,xt2 if il < 22 and s, = x,,x,, otherwise. 

and the affine reference map XK : Kt + K 
with J K  = det(DxK/D<) > 0 defined in (3.21). By a l .  a2, and as denote the edges of 
K so that al  = X K ( P ~ ) ,  a2 = X K ( P ~ ) ,  and a3 = z ~ ( e : $ ) .  Locally on K, each edge a, is 
assigned a unique orientation flag O K , ? ,  

Consider a triangular element K E 

1 if the orientations of a, and X K ( ~ , )  are the same. i -1 otherwise. 
OK. ,  = 

Then the Whitney edge element on K is defined as a triad (K. P K .  C K ) ,  where 

Ph- = { E E  [P ' (K)] ' ;  E.t,l,, isconstant. j =  1: . . . .  3 ) .  (7.104) 

The symbol t, stands for the unit tangential vector to the edge a, that corresponds to its 
unique global orientation in The set of degrees of freedom C K  comprises three linear 
forms L,,,o. L,2.() and L,:,,o defined by 

(7.105) 

Lemma 7.8 (Unisolvency) Thejinite element ( K .  P,. C,) is unisolvent. 

Proof: Analogous to the proof of Lemma 7.7. 

Nodal basis of the element ( K ,  P K ,  C K )  The unique nodal basis satisfying the 
delta property (3.2) can be designed routinely using the inverse of the Vandermonde matrix 
(3.7), analogously to what was done above for the Whitney element (K t .  P. 9) on the 
reference domain. 

Alternatively, for the Whitney element (K. P K ,  C K )  the delta property L a Z , o ( B J )  = 6,, 
is equivalent to the condition 

8, . Oh,,, t ,  = - 6,, for all 1 5 z, j 5 3 
la, I 

(7.106) 
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Thus, for example, the formulae (7.100) can naturally be extended to 

(7.107) 

where t ,  and v, are the unit tangential and normal vectors to the edge a, of K ,  respectively, 
and XJ(z) are the corresponding barycentric coordinates on K defined analogously to 
(7.101). 

€quiwa/enceofthee/ements(K,, P ,  2) and(K, P K ,  C,) Beforethediscretiza- 
tion can be performed in an element-by-element fashion on the reference domain Kt, as 
usual we need to find a suitable linear operator +K : P + P K  so that the equivalence of 
the elements ( K t ,  P ,  2)  and ( K ,  P K ,  C K )  according to Definition 3.8 can be established. 
At this point it is customary to use the De Rham diagram to make a quick argument leading 
directly to the correct map + K .  However, let us save this for later and first show in Example 
7.1 why a straightforward extension of the usual operator @ . ~ ( g )  = g o zkl, which was 
used to establish the equivalence of Lagrange elements, does not work for edge elements. 

EXAMPLE 7.1 (Trying the map *(E) = E o zL1) 

By * K  : P + P K  denote the linear operator from Definition 3.8,  and suppose for 
a moment that it has the form 

*&) = E 0 zK1. (7.108) 

Let K be an element with the vertices [O,O], [0,1], [-1,O] and z~ : Kt + K the 
corresponding affine reference map, 

as shown in Figure 7.8. 

v j  { z h  

-I 

V I  - I  V Z  - I  

Figure 7.8 Affine transformation X K  : Kt + 
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With the edges of K oriented as shown in Figure 7.8, i t  is O K , ~  = 0K.2 = O K , ~  = 1 
and by (7.107) the basis function 6'1 on K has the form 

However, relation (7.108) yields a different result, 

which has nonconstant tangential components on all edges a1 , a2 and u3, and thus 
does not lie in the polynomial space P K  ! 

The reason for this incompatibility is that the map Q K  transformed both vector 
components of 8, on all edges from Kt to K exactly, but the direction of the unit 
tangential vectors to the edges changed. 

The way to solve the problem encountered in Example 7.1 is to define 

* K  = Q K  0 0, 

where the linear transformation 0 : Iw2 + R2 adjusts the field on the reference domain Kt 
so that 

where OK,,t ,  is the unit tangential vector to the edge a, of K oriented compatibly with 2, 
through the map XK. 

The tangential vectors t,  are transformed by x~ according to the relation 

(7.1 10) 

Let the matrix T of the type 2 x 2 represent the transformation 0. Then, after substituting 
for O K , , ~ ,  from (7.1 lo), relation (7.109) becomes 

which in turn is equivalent to 

To satisfy equation (7.1 1 l), the matrix T has to have the form 

Thus finally the correct transformation relation is 
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E = @~(h). 

where 

(7.1 12) 

(7.1 13) 

Lemma 7.9 The jinite elements ( K t .  P .  2)  cind ( K .  P K ,  C K )  are equivalent under the 
transformcition @ K  : P + PR- de$ned in (7.112), (7.113). 

Proof: According to Definition 3.8, we need to verify that 

OK(@) = P K .  (7.1 14) 

and 

i cJ , " (k)  = L a , , " ( @ ~ ( h ) )  forall E E P and j = 1 . 2 . 3 .  (7.1 15) 

However, (7.1 14) is clear from the linearity of the transformation 0 and affinity of the 
reference map X K .  To verify relation (7.1 15), calculate 

LRJ,O(E) = J E . 2 ,  dE 
CJ 

Design of basis functions Let a polygonal domain Oh c R2 be covered with a finite 
element mesh T),p consisting of M triangular Whitney elements K 1 ,  K2, . . . , h'hl. Then 
the Galerkin subspace of the space V = H(cur1. O h )  has the form 

KL ?, = {Eh E V: Eh I-' E [P'(K,)I2 for all K, E '&+. 
Eh,p . t,, I s ,  = const. for every mesh edge s,} 

(we do not consider essential boundary conditions at this point, the incorporation of bound- 
ary conditions will be discussed later). In this case the dimension of the space Vh.?, is 

where Me is the number of unconstrained edges in the mesh ThTh.p. By unconstrained, as 
before, we mean an edge where degrees of freedom are present. 
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Assume such edge sJ in the mesh, along with the corresponding element patch, 

where 

N, (J )  = { k ;  Kk E Th,p .  sJ is an edge of Kk} ,  

as shown in Figure 7.9. 

(7.1 16) 

(7.117) 

> 
X I  

Figure 7.9 Element patch Se(j) corresponding to an interior mesh edge s3 

For each element Kk E S,(J), by em denote the edge of the reference domain Kt ,  such 
that X K ~  (eTn)  = s,. Define OK~,,, = 1 if the orientations of Z K ~  (eTrL) and sJ are the same, 
and O K ~ , ~ ~ ~  = -1 otherwise . The lowest-order (Whitney) basis function E: associated 
with the edge sJ is zero in \ Se( j ) ,  and in S R ( j )  it is defined by 

where 6,, is the Whitney shape function on the reference domain Kt corresponding to the 
edge eTrl.  Let us remark that as usual no explicit inversion of the maps ZK, is needed for 
the assembling algorithm. 

7.5.3 Higher-order edge elements of Nedelec 

Next let us generalize the lowest-order edge elements from Paragraph 7.5.2 to the first family 
of NCdClec elements 1871. For this we need a special polynomial space on the reference 
triangular domain Kt.  We begin with defining a space of scalar homogeneous polynomials 
of degree k ,  

P k  = span {(it;; i + 3 = k ;  [ E Kt 

and a special subspace of homogeneous vector polynomials of degree k ,  

sk = { p  E (P”? [ . p ( [ )  = o}, (7.118) 
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- k  
where E . p(E)  = < 1 ~ ) ~ ( < ~ ,  <2) + < 2 p ~ ( < ~ ,  (2). Let us calculate the dimension of S : The 
space (7.1 18) is the nullspace of the linear transformation p E (P')' + E . p E Pk+', 
which is a surjection (for every q E Pk+' there exists a p E ( f ' k ) 2  such that q = . p ) .  It 

follows from Lemma A.9 that the dimension of Sk is 

dim(?) = dirn((Pk)') - dim(P"') 

= 2 d i m ( P k )  - dim(P"') = 2(k  + 1) - ( k  + 2) = k .  

- k  
The following lemma gives a geometrical characterization of polynomials in the space S : 

Lemma 7.10 Let p E S . Then the tangential component of p along any straight line is a 
( k  - 1)th-degree polynomial. 

Proof: Any straight line w in R2 can be written as w ( s )  = (41 + s q ,  q2 + S V ~ ) ~ ,  where 
q = (41, ~ 2 ) ~  is a point in R2, 'u = ( ~ 1 ,  ~ 2 ) ~  a unitary directional vector (tangential to w) 
and s a real parameter. The condition E . p ( [ )  = 0 on w yields 

~k 

0 = 5 'P(5) lW 

= 4 s )  . P(4.1) 
= (Sl + sVl)Pl(w(s)) + (S2 + s7Jz)m(w(s)) 

S l P l ( 4 S ) )  + S2P2(4S)) + S [ W l ( 4 S ) )  + V2P2(4S))I = 
" " 

EP"R) V - P ( W ( s ) )  

Since sz) . p ( w ( s ) )  E Pk(R) ,  necessarily it is 'u . p ( w ( s ) )  E Pk- ' (R) ,  which concludes 
the proof. 

The polynomial space on the general NCdClec element is defined as 

Pk = [P"-1(Kt)]2 a3 sk. (7.1 19) 

indeed is the space on the lowest-order Whitney element. The basis (7.97) confirms that 
The dimension is calculated easily, 

- k  - k  k ( k +  1) 
N p  = d i m ( P  ) = 2dim(Pk- ' (Kt))  + d i m ( S  ) = 2- + k = k ( k  + 2). 

2 

- k  
It follows from Lemma 7.10 that the traces of the tangential components of P -functions 
to the edges of Kt are polynomials of the degree less than or equal to k - 1. The Whitney 
space (7.94) obeyed the same rule. 

Lemma 7.11 The space P is a part of an algebraic decomposition 
- k  

k 
[P"(Kt)]2 = P @ VPk+l  

Proof: Let k E Pk n VP"'. Then there is some homogeneous scalar polynomial p in 

Pk+' such that E = Vp. The facts that V p  E Pk and V p  E Pk imply that V p  E Sk. 
From here it follows that 5. Vp(5) = 0. Since p E Pk+l, it satisfies 
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andthereforecp = 0. T h u s P k n V P k + l  = (0). Sincedim([Pk(Kt)I2) = ( k + l ) ( k + 2 ) ,  

d i m ( P k )  = k ( k  + 2) and dim(VPk+')  = k + 2, it is 

dim([Pk(Kt)I2)  = d i m ( p k )  + dim(Vpk+ ' ) ,  

which concludes the proof. 

The following result is needed for the unisolvency proof of higher-order nodal edge 
elements: 

Lemma 7.12 Let E E Pk be such that 

v x E = o  

(where V x E = i3E2'2/dz1 - d E l / d z 2  is the suface curl). Then there exists p E Pk ( K,) 
such that E = Vcp. 

Proof: It follows from the De Rham diagram (see, e.g., [ 11 11) that for E E Pk such that 
V x E = 0 there exists a scalar potential cp E H' (K, )  such that E = Vcp. It follows from 
E E [Pk(Kt)I2 that p E PkS-'(Kt).  Let us write cp = cp1 + cp2 where cp1 E P k ( K t )  and 

cp2 E P"'. Since k E P , Lemma 7.11 implies that Vcp2 = 0. The fact that cp2 is a 

Nedelec element on the reference domain Kt For a given k 2 1 the NCdClec 

element of degree k on the reference triangular domain Kt is defined as a triad ( Kt , P , C k ) ,  
where the set of degrees of freedom k k  comprises N p  = k ( k  + 2) linear forms associated 
with the edges and interior of Kt. To begin with, for each edge e ,  there are k degrees of 
freedom of the form 

- k  

homogeneous polynomial implies that p 2  = 0, which concludes the proof. 

- k  - 

ieZ,,(k) = E.t2,q!"ddJ f o r a l l j  = 0,1, .  . . , k  - 1, (7.120) 

where the functions qiz) are the Legendre polynomials L,, transformed to the edge e,. For 
j = 0 one obtains the degrees of freedom Let,0 on the lowest-order (Whitney) element 
(7.95). The ( k  - 1)k interior (bubble) degrees of freedom are defined by 

(7.121) 

where q3, j = 1 , 2 , .  . . , ( k  - l ) k ,  is a basis of the space [Pk-2(Kt)]2.  The reason why 
these degrees of freedom are called interior is that the traces of the corresponding nodal 
shape functions vanish on the whole boundary of Kt (to be shown in detail in Paragraph 
7.5.5). 

The edge and bubble degrees of freedom (7.120) and (7.121) together constitute the set 
g k .  Now the unisolvency result from Lemma 7.7 can be extended to the general polynomial 
degree k 2 1: 
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- k  - 
Lemma 7.13 (Unisolvency) The,finire elenzrnt ( 

Proof: Let E E Pk be arbitrary such that all the k ( k  + 2) degrees of freedom (7.120) 
and (7.121) vanish on E. It is our aim to show that necessarily E = 0. By Lemma 7.10 it 
is E ' 2 ,  E ~ " - ' ( e , )  for all 1 5 i 5 3. Since 

P . C k )  is i~nisol~~enr. 

for all basis functions Gj" E Pk- ' ( e7 ) ,  the tangential component E . 2, is L2-orthogonal 

to the whole space P"-'(e,), and therefore it  has to be zero on e, .  This holds for all three 
edges of Kt .  Hence Stokes' theorem of calculus (see, e.g., [36]) yields 

(7.122) 

for all 4 E P k - ' ( K f ) .  Here, similarly to Lemma 7.12, we prefer to use the surface 
curl V x E = B E 2 / B z l  - aEl/Bi2 and the vector-valued curl of a scalar function, 
vq = (-8q/&, aq/i3(l)T, over going with the curl operator to 3D as we did in Section 
7.4. 

E [ P x - 2 ( K t ) ] 2  and all the volume degrees of freedom (7.121) vanish, by 
(7.122) we have that 

Since 0 x 

(V x E ) q d <  = 0 for all ij E P"'(Kt).  

and thus V x E = 0 in K f .  By Lemma 7.12 there exists y E PP((Kt) such that E = Vp. 
Since the tangential component of E on i)Kf is zero, y is constant on a K f .  Without loss of 
generality, we can assume that this constant is zero. Herewith the proof is finished fork 5 2. 
For higher polynomial degrees k 2 3 the function y can be expressed using the barycentric 
coordinates (7.102), p = i l & i 3 $ ,  where $ E P"-"(Kt). Since all the volume degrees 
of freedom (7.121) are zero, it  is @ = 0 and consequently E = 0, which concludes the 
proof. rn 

- P  
The unique nodal basis of the space P can be constructed routinely via the generalized 

Vandermonde matrix (3.7). In the following let us design the NedClec element on a general 
triangular domain and discuss the affine equivalence of NedClec elements. 

Nedelec element on a triangular domain K E 7h,p Let every mesh edge be 
equipped with a unique global orientation given by the global enumeration of vertices. 
Consider a triangular element K E ?;,,p and the affine reference map z~ : Kt + K with 
a positive Jacobian J K  = det(DzK/DE) > 0 defined in (3.21). By ul,u,2 and ug denote 
the edges of K so that al  = z ~ ( e l ) ,  u2 = z ~ ( e 2 )  and a3 = z ~ ( e 3 ) .  Locally on K ,  each 
edge a, is assigned a unique orientation flag O K , ,  analogously to the lowest-order case. The 
NedClec edge element on K is defined as a triad ( K ,  P k >  C",), where 

Pt .  = [P"'-'(K)]2 69 sk3 (7.123) 

and the subspace Sk of homogeneous vector polynomials is defined analogously to (7.1 18). 
The set of degrees of freedom C k  consists of N p  = k ( k  + 2) linear forms associated with 
the edges and interior of K .  The edge degrees of freedom have the form 



EDGE ELEMENTS 313 

(7.1 24) 

where J = 0 , l .  . . . , k - 1. For each j = 0.1.. . . . k - 1 the function qj') again is chosen to 
be the Legendre polynomial Lo, L1,. . . , L k P l ,  transformed to the edge a,. The (k - 1)k  
interior degrees of freedom have the form 

where q,, J = 1 , 2 , .  . . . ( k  - l ) k ,  is the basis of the space [P"'(K)]' defined using the 
basis q,, j = 1.2 , .  . . . ( k  - l )k ,  of [P"'(K,)]' and the reference map XK as follows, 

(7.126) 

Itislefttothereaderasaneasyexercisetoprovethatthefunctionsq,,j = 1 , 2 , .  . . , (k- l )k ,  
indeed constitute a basis in the space [P"'(K)]'. 

Lemma 7.14 (Unisolvency) Thejinite element ( K ,  P:. Zk)  is unisolvent. 

Proof: Analogous to the proof of Lemma 7.13. 

Equivalence of the elements ( K t ,  Pk, gk) and ( K ,  P k ,  E&) At this point it 
remains to be shown that the general NCdClec elements are equivalent under transformation 
(7.1 12), (7.1 13): E = @ K ( E ) ,  

(7.127) 

which was derived for the lowest-order elements. 

Lemma 7.15 The jinite elements ( K t ,  P k ,  ?k) and ( K ;  P k ,  E k )  are equivalent under 

the transformation @ K  ; P + P; dejined in (7.127). 

Proof: It follows from the definition (7.1 19) of the space Pk and the definition (7.127) 
of the transformation @ K  that @K(P) = P K .  Recall the transformation relation (7.1 10) 
for the unit tangential vectors 2, to the edges of Kt ,  

- k  

(7.128) 
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For the edge degrees of freedom Lc, ,J ,  0 _< 3 5 k - 1 and 1 5 z 5 3,  we have 

Let,3(E) = l , E . i t 4 J z ) d <  

7.5.4 Transformation of weak forms to the reference domain 

In this paragraph we transform the integrals involved in the weak formulation (7.77) of the 
model problem to the reference domain, as required by the element-by-element assembling 
procedure. We focus on triangular elements, but we will point out where the quadrilateral 
case differs. Recall from Paragraph 7.4.3 the weak formulation: Find E E V such that 

a(E,  F )  = 1(F) for all F E V, (7.129) 

where the sesquilinear form a( . ,  .) is defined on V x V by 

and the linear form I ( . )  is defined on V as 

l ( f )  = (aj  f ) n  + (g ,  f r ) r , .  

The Hilbert space V was defined in (7.76), 

(7. I3 I )  
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v = { E  E W(cur1,O); Y x = 0 on r p }  

Let K E 7j,p be a triangular mesh element and XK : Kt + K the corresponding affine 
reference map. Recall that in the quadrilateral case the reference map is biaffine, and the 
element K must be convex so that the map is a bijection. The determinant of the Jacobi 
matrix of the reference map XK([) is denoted by J K ( [ ) .  Without loss of generality, we 
assume that J K ( ~ )  > 0 in Kt .  Moreover, J K  is constant in the triangular case. When the 
field E transforms from Kt to K according to the rule (7.127), its curl changes to 

(see, e.g., [45, 831 and [ 1 1 1 I). For clarity, we use the symbol V for the nabla operator in 
the reference coordinates t on Kt . 

The first part of the form (7.130), restricted to the element K ,  transforms as 

Although the existence and uniqueness analysis in Section 7.4 was restricted to piecewise- 
isotropic materials, generally the relative permittivity eT is a tensor, 

For the second term on the right-hand side of (7.130) we obtain 

k2(ETe, f ) ~  = k2  L [ c , ( z ) e ( z ) l  . f(z) d z  

The last volume integral to be transformed is the first term on the right-hand side of (7.131), 

Next assume an edge a of the element K that lies on the impedance boundary rr. Let e, 
be the edge of Kt such that a = X K ( ~ , ) .  It follows from (7.128) that 
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As before, the symbol 2, stands for the unit tangential vector to the edge e, ,  oriented as 
shown in Figure 7.7. It follows from (7.127) and (7.128) that the tangential components 
are transformed via the relation 

Using this identity, the reader can transform all boundary integrals involved in the forms 
(7.130) and (7.13 1) easily. The only point where one has to be careful is to keep the global 
orientation of the boundary edges on rr consistent with the outer normal vector to r‘I, 
v x f = v1 f 2  - vzfl = t . f on rr. In other words, the direction of the boundary edges 
lying on rI cannot be chosen arbitrarily, since the tangential vector is determined by the 
outer normal vector, t = (v l ,  - ~ 2 ) ~ .  In the next paragraph let us briefly mention the 
interpolation on the nodal edge elements. 

7.5.5 Interpolation on edge elements 

The interpolation on the edge elements of NedClec exactly fits into the general framework 
of interpolation on nodal elements (see Paragraph 3.3.1). It is sufficient to discuss the 
situation on the reference domain K,, since the field from an arbitrary triangular mesh 
element K E 7 h , p  can be transformed to k, and the interpolant back to K ,  using the 
relation (7.1 13) in both directions. 

The set of degrees of freedom on the kth-degree edge element ( K t ,  P k ,  f?) contains 
the 3k linear forms (7.120), 

L F J , J ( E )  = lz E - t ,  q)”d<. 3 = 0.1,. . . , k  - 1. (7.133) 

where qt), q!’), . . . , qt!l are the Legendre polynomials Lo. L1,.  . . , L k P l ,  transformed to 
the edge e,. The ( k  - l ) k  interior degrees of freedom (7.121) have the form 

(7.134) 

where qJ,  J = 1 , 2 , .  . . , ( k  - l ) k ,  is a suitable basis of the space [Pk-2(Kt)]2 .  The choice 
of this basis influences the conditioning of the discrete problem, but we will not discuss this 
issue at the moment. 

As we said before, the unique set of nodal shape functions can be constructed routinely 
by inverting the generalized Vandermonde matrix (see Paragraph 3.1.2). Explicit formulae 
of the lowest-order (Whitney) shape functions were introduced in (7.103). For simplicity, 
by Qe,,3 and Ob,, we denote the nodal shape functions corresponding to the edge degrees of 
freedom (7.133) and the bubble degrees of freedom (7.134), respectively. 

Let E E H(cur1, K,) for which all the degrees of freedom (7.133), (7.134) are defined. 
Then the local nodal interpolant is given by (3.28), 

3 k-1  ( k - l ) k  

z K t ( k )  = ~ ~ L ~ , , J ( E ) ~ ~ ,  ~ ( 5 )  + 2 L b , j ( E : ) & . j ( < ) .  (7.135) 
2=13=0 J= l  
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The edge degrees of freedom (7.133) are not defined for all functions from the space 
H(cur1, Rt,). The question of finding largest function spaces where all the linear forms are 
defined is discussed, e.g., in [39,40] and [83]. 

7.5.6 Conformity of edge elements to the space H(cur1) 

Let r7;,,p = { K1, K,, . . . , K h f }  be a finite element mesh over a polygonal domain fl,, C R2, 
consisting of M NCdClec edge elements of the same polynomial degree k 2 1. In order to 
verify the conformity to the space V = H(cur1, Oh),  one performs the following steps: 

1 .  Consider an arbitrary function g E V such that all degrees of freedom LeL,J (9)  and 
Lt,.J on all elements K,,,, 1 5 m 5 A l ,  are defined. 

2. Construct the local interpolant ZK,,, for each element K,,, using (7.135). 

3. Construct the global interpolant Z by "glueing together" the local interpolants ZK,~, , 
1 5 711 5 A.1 (this operation is described exactly in Definition 3.6). 

4. Check whether the piecewise-polynomial function Z lies in  the space V. 

We know from Paragraph 7.5.1 that the conformity requirement of the space H(cur l ,R~ , )  
is the continuity of the tangential component of the global interpolant Z on all element 
interfaces. The desired conformity result is based on the properties of the nodal shape 
functions defined on the reference domain: 

Lemma 7.16 Let (K t .  P k .  P k )  be the Nidilec edge element of the degree k 2 1 on the 
reference domain Kf , equipped with the polynomial space (7. I 19) and the edge and bubble 
degrees of,freedom (7.120) and (7.121), respectively. Let Qe,,J,  j = 0. 1;. . . , k - 1, and 
Hr,.,7, j = 1,2 . .  . . . ( k  - l ) k  be the unique set ofnodal shape,functions satisfiing the delta 
property 

i(,,.7.(8f ,,.,) = jbrallO 5 r'.s 5 k - 1. (7.136) 

i ( , , . , (d t j , s )  = 0 , f b r ~ l l O  5 'T 5 X: - 1. 15 s 5 (A: - l ) k ,  (7.137) 

Lrj.,.(8f,,,,s) = 0 ,forall 1 5 r' 5 ( k  - 1)k. o 5 s 5 I; - 1. 
"~ 

Lb., (Ht j , .3)  = h,,\ &al l  1 5 T .  s 5 ( k  - 1)k .  

Then .for every i = 1; 2 , 3  and j = 0.1. . . . . k - 1 the truce ($the tangential component 
d?, ,, . t, ofthe edge function d(,, to the edge e ,  is the Legendre polynomial L,, trunsforrned 
to the edge c , .  The trace o f  the tangential component ofQf., ,, vanishes on the remaining 
two edges of Kt. For every j = 1,2. . . . ( k  - l ) k  the trace of the tangential component of 
the bubble fitnction dIj,, vanishes on the whole boundary of K,. 
Proof: It follows from the definition of the edge degrees of freedom (7.120) and the delta 
property (7.136) that 

6,.,$ = ic,,r(h) = 1, dc~, . s  . 2, i:!) d< for all 0 5 r'. s 5 k - 1 

Since the tramformed Legendre polynomial\ 4:'' form an L2-orthonormal system in the 
space P"'(r,) ,  for every 0 5 5 5 I ,  - 1 the trace of the function 8, ~ t ,  E P'.-'(r,) to 
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the edge e L  necessarily is the transformed Legendre polynomial 4:). By the same token it 
follows from (7.137) that the traces of the bubble functions .Gb,s, 1 5 T 5 ( k  - l ) k  vanish 
on all edges e,, i = 1,2,3. Similarly, the trace of the tangential component of Be, ,s vanishes 

It is easy to see that these properties translate to a general mesh element K E ? ; L , p .  From 
here it follows that the bubble part of the local nodal interpolants (7.135) cannot influence 
the tangential component of the global interpolant on element interfaces. We know from 
Paragraph 7.5.1 that the tangential components of H(cur1, Oh)-functions are continuous on 
element interfaces. Consider an edge a, shared by a pair of mesh elements, say, K, and K,. 
Taking into account that the traces of the tangential components of the local interpolants 
ZK, and ZK,~ to the edge a are the transformed Legendre polynomials, and that the edge 
degrees of freedom (7.133) perform the L2-projection on the edge a of a function that is the 
same for both elements K ,  and K,, we conclude that the trace of the tangential component 
of the global interpolant Z necessarily is continuous on the edge a,. This means that the 
NCdClec elements conform to the space H(cur1. Oh) .  

on the remaining two edges of Kt . 

7.6 EXERCISES 

Exercise 7.1 Consider a continuous, piecewise-pol.ynomial approximation pr, ,h,p of the 
scalar electric potential pe. Show that the approximate electric field E h . p  = - u p e , h , p  

lies in the space H(cur1). 

Exercise 7.2 Verify that equations (7.29) and (7.30) are invariant under the gauge trans- 
formations (7.31), (7.32). 

Exercise 7.3 Show that (7.49) is equivalent to (7.46) in the case of piecewise-constant 
material parameters. 

Exercise 7.4 Vertjjj inequalities (7.80) and (7.81) in the proof ($Theorem 7.2. 

Exercise 7.5 Show that d i m ( P )  = 3 for the lowest-order edge elements defined in (7.94). 

Exercise 7.6 Check the equivalence ofdefinitions (7.99), (7. loo), and (7.103). 

Exercise 7.7 Construct the unique nodal basis of the Whitney element ( K ,  P K ,  EK), where 
K E l h ,  p is a triangular domain, P the polynomial space (7.104) and C K  the set of degrees 
offreedom (7.105). 

Exercise 7.8 Construct the unique nodal basis of the edge element (K t .  P , C2) on the 
reference domain. 

Exercise 7.9 Show that ifthe functions q j ,  j = 0, 1, .  . . , ( k  - l ) k  - 1, constitute a basis 
in the space [P"2(Kt)]2.  then the functions qJ,  j = 0.1.. . . , ( k  - 1)k - 1, obtained by 
(7.1241, constitute a basis in the space [P";2(K)]2. 

Exercise 7.10 Let K E Th ,p  be a triangular element whose edge a, lies on the boundary r'1, 

and let e, be the corresponding edge of the reference domain K+ such that X K  ( e , )  = (L. Use 
relation (7.132) to transform to the reference domain the corresponding part ofthe boundary 
integrals (Xey,, f T ) r ,  and (9. f r ) r ,  which are involved in the weak,formulation (7.130), 

- 2  - 

(7. 131). 



APPENDIX A 

BASICS OF FUNCTIONAL ANALYSIS 

This chapter presents elementary linear functional analysis which is needed for a first course 
in PDEs and modern numerical methods. Linear spaces are presented in increasing order 
of complexity, as shown in Figure A. 1. 

Figure A.1 Structure of linear spaces discussed in this chapter. 

This text is not a traditional course in functional analysis. It assumes less at the beginning 
and does not address all abstract concepts of a standard functional-analytic course. On the 
other hand, topics needed for the study of PDEs and numerical methods, such as the LP and 
Sobolev spaces, are discussed in more detail, and many examples are provided. 
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A.1 LINEAR SPACES 

In the first section let us refresh the knowledge of linear algebra and show its application 
to finite-dimensional spaces of functions. 

A.l. l  

A linear space V usually is defined over a general commutative body (field) B. However, the 
real line R and the complex plane C are the only commutative bodies of practical importance 
for most applications related to partial differential equations and numerical methods. 

Real and complex linear space 

Definition A.l (Linear space) Let B = R or  B = @. A nonempty Libstract set V endowed 
with two binary operations ‘ + I :  V x V + V (addition) nnd ‘ , I :  B x V + V (multiplictrtion 
by scalars) is (real or complex) linear space i fnnd only if the following ten conditions are 
satisjedfor all a ,  b E B and u. i i  and 11’ E V :  

1. v + ILI  belongs to I! (Closure of V under addition.) 

2. IL + (11 + U J )  = (IL + 11) + i l l .  (Associativity of addition in V )  

3. There exists a neutrd element 0 in V ,  such thatfor all elements 71 in V ,  71 + 0 = ii. 
(Existence of an additive identity element in V . )  

4. For all v in V ,  there exists an element 11’  in V ,  such that v + 71) = 0. (Existence of 
additive inverses in V .  1 

5. ii + iii  = U I  + i i .  (Commutativity of oddition in V.)  

6. (L . ii belongs to V. (Closure of V under scalar multiplication.) 

7. (I, . ( b  . v) = ( a h )  . 11. (Associativit.y ofsccilar multiplicntion in V . )  

8. I f  1 denotes the multiplicative identit-y cfthe comrnutative body 13, then 1 . 1 1  = 11. 

(Neutrality of one.) 

9. a . (v + I L J )  = (L  . 1 )  + a . ul. (Distributivitv with respect to  oddition.) 

10. ( u  + b)  . 11 = (L . v + b . 7). (Distributivity with respect to scalar addition.) 

The multiplication by scalars u . u usually is abbreviated to ( L U ,  and u + (- 1) i i  is written 
shortly as u - IJ. Definition A.1 only imposes linearity to some set of abstract objects, 
without limiting the properties of the objects in any other way. For example, a linear space 
V may contain real or complex numbers, while another linear space W may consist of real 
or complex vectors, matrices, infinite real sequences, functions, etc. In what follows, by 
space we always mean linear space. The type of objects contained in a space always will 
be clear from the context. Most of the time we shall simply say “the set V is a linear space” 
when the binary operations ’+’ and ’.’ are clear from the context. 

Definition A.1 says nothing about the size of the objects lying in a linear space. The 
notion of size will first be introduced in Section A.2 in the context of normed spaces. 
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A.1.2 Checking whether a set is a linear space 

Frequently one needs to decide whether a set V is or is not a linear space. Before verifying 
all properties listed in Definition A. I ,  it is useful to ask the following two simpler questions: 

0 Does the set V contain a zero element? 

0 Is the set V closed under linear combination? 

Negative answer to any of them prevents V from being a linear space. Try to verify the 
following assertions: 

W EXAMPLEA.1 

1. The set R of all real numbers is a linear space 

2. The set R+ of all positive real numbers is not a linear space. 

3. The set of all natural numbers is not a linear space. 

4. Let ri be a natural number. The set Rft of all real vectors with n components (n- 
dimensional Euclidean space) is a linear space. 

5. The set V{ of all real vectors in R" with zero average of entries is a linear space. 

6. The set V;' of all real vectors in R" whose average of entries equals one is not a linear 
space. 

7. The set V& of all real vectors in R" whose both the first and the last entries are zero 
is a linear space. 

8. Let 7ri  and n be natural numbers. The set M'Ix"' of all real 71 x ? I L  matrices is a 
linear space. 

9. The set of all real r i  x ri  matrices whose diagonal only contains zeros is a 
linear space. 

10. The set M ~ " "  of all real 71 x '71 matrices whose diagonal only contains the number 
2 is not a linear space. 

1 I .  The set M;i,Y" of all real 71 x 71 matrices whose sum of all entries is zero is a linear 
space. 

12. The set F ( u .  6 )  of all real-valued functions defined in a bounded real interval (a .  h )  
i s  a linear space. 

13. The set F p ( u . 6 )  of all real-valued functions which are negative in (a .6)  is not a 
linear space. 

14. The set Fo(n. b )  of all real-valued integrable functions whose integral mean value in 
(u. b )  is zero is a linear space. 

15. The set F1 ( a ,  b )  of all real-valued integrable functions whose integral mean value in 
(a .  6 )  is one is not a linear space. 

16. The set O ( a ,  6 )  containing the zero function only is a linear space. 
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17. The set C(a,  b)  of all real-valued functions continuous in ( a ,  b )  is a linear space. 

18. The set D(u,  b)  of all real-valued functions containing at least one discontinuity in 
(a ,  b )  is not a linear space. 

19. In the closed interval [a,  61, the set C1.b  = { u  E G([a ,  b ] ) ;  u(b) = l} is not a linear 
space (see Figure A.2). 

FigureA.2 The set Cl,t, does not contain the zero function, therefore it cannot be a linear space. 

20. The set C O , ~ , ~  of all real-valued continuous functions which vanish at both endpoints 
of [a, b] is a linear space. 

21. The set Gk(a ,  b) of all real-valued functions in (u ,  6) which are k-times continuously 
differentiable is a linear space. 

22. The set Pk(u ,  b)  of all polynomials of the degree Ic or lower in (a .  b ) ,  is a linear space. 

23. The set Pk(u ,  6) \ Pk-' (a,  b)  of all polynomials of degree exactly k in (a, b)  is not 
a linear space. 

24. The set of all infinite real sequences 

endowed with the binary operations 

is a linear space. 

25. The set SO of all real sequences whose eleventh entry is zero is a linear space 

26. The set S1 of all real sequences whose first entry is one is not a linear space. 

27. The set SSo of all real sequences such that the sum of the first fifty entries is zero is 
a linear space. 
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A.1.3 Intersection and union of subspaces 

Next let us define the subspace of a linear space and introduce basic operations with sub- 
spaces, such as their intersection, union, sum, and direct sum. 

Definition A.2 (Subspace of a linear space) Let B = R or B = Q: and V a (real or 
complex) linear space. A nonempfy subset W C V is a subspace of V if 

1. u , v E W J u + v E W ,  

2. a E B , u E  W + a u ~  W, 

i.e., when W is a linear space itse& 

EXAMPLE A.2 (Subspaces) 

1. Let V = R2 be the two-dimensional Euclidean space and (0, O)T # w E V. The 
space 

W = (cYu1; 0. E R}, 

which is a line passing through the origin, is a subspace of V (Figure A.3). 

FigureA.3 Subspace W corresponding to the vector ui = (2, l ) T .  

2. Also for PU = ( O , O ) T ,  the space W = (cy7u; cy E R} = { ( O , O ) T }  is a (trivial) 
subspace of V .  

3 .  Let V = R3 and u, v be a pair of nonzero vectors in V which do not lie on the same 
line. Then the space 

which is a plane passing through the origin, is a subspace of V. The space 

W2 = (cYu; cy E R}, 

is a subspace of V and also a subspace of Wl . 
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4. The space IY = 'DD"Xn of all diagonal ri x n matrices (where the zero matrix also is 
considered diagonal) is a subspace of the space V = M f 1 x 7 1  of all 72 x 72, matrices. 

5.  Consider the space V = Po (a .  b )  of polynomials of degree less or equal to n in some 
interval ( u ,  b )  C Iw. For any 0 5 711 5 71 the polynomial space U' = P"'((I ,  b )  is a 
subspace of V .  

6. The space I V  = Cn(u, b )  , 72 2 0 of /,-times continuously differentiable functions is 
a subspace of V = C(n.  b )  = CO(a b ) .  

When checking whether a subset of a linear space V is a subspace of V ,  a good first 
question to ask is whether U' contains the zero entry. If the answer is negative, then I t 7  
cannot be a linear space. Otherwise we need to verify the above two properties of subspaces. 
The intersection of subspaces of a linear space always is a linear space: 

Lemma A.l Every intersection 1.t- = 1%; n H-2 n . . . n 1.5;., k 2 2, of subspaces \I, of (1 

linear space V is a linear space. 

Proof: The zero element 0 E V lies in all subspaces I f 7 * .  . . . .I{,. and therefore also 
in W .  Every pair of elements u. u E W' lies in all linear spaces 1.11'1. It,,. . . . . L V k . .  Therefore 
also + i i  lies in all linear spaces W 1 .  MTL. . . . . ~.VA, and consequently in It'. Implication 2. 
of Definition A.2 can be verified similarly. 

EXAMPLE A.3 (Intersection of subspaces) 

1. Let V = R2 and ? i l l ,  2(5 a pair of nonzero vectors that do not lie on the same line. 
Figure A.4 shows that the intersection of the spaces 

and 

I\'* = { 0 7 r * :  (I E R} 

is the trivial linear space Hr = (0). 

'7' Figure A.4 
( : 3 .  l l T ,  respectively. 

Intersection of subspaces M-8 and It; given by the vectors I P ~  = (2. 1) and I ~ ' . L  = 
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2. Let Iil,; = Snx‘L and I&’, = be the spaces of symmetric and antisymmetric 
real 72 x n matrices, respectively. Both Wl and W, are subspaces of V = M n x n .  
The intersection W = Wl f’ W, = {0}, where 0 stands for the zero matrix. Indeed 
W is a linear space and subspace of V .  

3. Consider the polynomial spaces V = P’‘(u. b ) ,  1.1’1 = PT(u .  b)  and W2 = P”(a, b) ,  
where O 5 r 5 s 5 n and ( a ,  b)  c R. Then both W1 and W, are subspaces of V ,  
and so is their intersection, which is W’1. 

One has to be more careful with the union of subspaces, since it is not necessarily a 
linear space: 

EXAMPLE A.4 (Union of subspaces) 

1 .  Considerthelinearspacev = R2andapairofvectorsiul = (-2, 1)T,w2 = (3 .  l)T. 
Define the subspaces Wl = {cuwl: CY E R} and W2 = {aw;?: CY E R}. By W 
denote the union Wl U W,. Evidently both the vectors 1111 and 2112 lie in W but 
211 = w1 + 7112 6 W (Figure AS) .  Therefore W = LVl U W2 is not a linear space. 

r andW.2 = ( 3 , l )  . FigureA.5 Union of subspaces W ,  and W2 given by the vectors w1 = (-2, 

2. Consider the linear space V = C(o,  b ) ,  a, b E R, a < b of continuous functions 
defined in the interval (a .  b) .  Choose r .  d E (u.  b ) ,  c # d. Define linear spaces 

Iil; = {.f E v; f ( c )  = O } .  w 2  = ( 9  E v: g ( d )  = 0) 

Obviously W1. W2 c V. The union of l.V1 and 14’2 is defined as 

Choose now some functions f l .  f 2  E V such that f l  ( c )  = 0 # f l  ( d )  and yl (c) # 
0 = (d ) .  Then f l .  yl E W but .fl + 91 @ I$-. Therefore W is not a linear space. 

Proposition A.1 Let H’2 c IV c V be linenrspuces. 117 this case the union W U W 2  = W ,  
which is n subspnce of V. 
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A.1.4 Linear combination and linear span 

Definition A.3 (Linear Combination) Let V be a real or complex linear space, v1, v2, 
. . . , v k  elements of v, and a l ,  a2, .  . . , a k  real or complex coeficients. The element 

k 

21 = c a,v, 
2 = 1  

of V is said to be a linear combination of the elements 1)1,112.  . . . , zik with the coeficients 
a l .  0 2 , .  . . ak. 

Definition A.4 (Linear span) Let S be a subset of a linear space V (not necessarily a 
subspace of V) .  The linear span of S, usually denoted by [S] or span(S), is dejined to be 
the intersection of all subspaces of the space V that contain the set S. 

Recall that the zero element always lies in a linear span since it is contained in every 
linear space. 

EXAMPLE A S  (Linear span) 

Consider an interval ( a ,  b)  C R, the linear space V = C(a,  b )  of continuous functions 
in ( a ,  b ) ,  and the set S = { l , ~ ,  x’} C V .  The linear span of S, 

[S] = {a” + a1z + u2x2; ao, n1.02 E R}, 

is nothing else than the space of quadratic polynomials, i.e., [S] = P2(u,  b) .  

Lemma A.2 Let S be a subset o f a  linear space V .  Then the linear span [S] is the smallest 
subspace of V containing the set S with respect to inclusion. In other words, there is no 
subspace W of V such that W c [S], W # [S]. and S c W .  

Proof: Defined as intersection of subspaces of V ,  the linear span [S] is a subspace of V 
(Lemma A. 1). Definition A.4 further says that [S] is subset of every subspace W c V such 
that S c W .  

Lemma A.3 Let S be a subset of a linear space V .  The linear span [S] is identical with 
the set of all linear combinations of elements of S. 

Proof: By W let us denote the set of all linear combinations of elements of S. The zero 
element (trivial linear combination) lies in W .  For all u, v E W the sum u + v (another 
linear combination) lies in W .  Similarly, for all a E Band u E W the product au lies in W .  
Hence, according to Definition A.2, W is a subspace of V .  Obviously S C W .  According 
to Lemma A.2, [S] c W .  Conversely, it is easy to see that W is subset of every subspace 

rn 

Lemma A.4 Let W, W, be subsets of a linear space V (not necessarily subspaces). Then 

2 c V such that S C 2. Therefore LV C [S]. 

1. MT c [W], 

2. if W c ”2, then [W] is a subspace of[1112], 

3. “Wll = [WI, 

4. if W = 0, then [W] = { O }  (not an empty set!), 

5. ifW c W2 c [W], then [W] = [W2]. 

Proof: All the above properties follow easily from Definition A.4. rn 
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A.1.5 Sum and direct sum of subspaces 

Definition A S  (Sum and direct sum) Let W1 and W2 be subspaces o f a  linear space V .  
By the sum Wl + Wz we mean the linear span of the union of W1 and W2, i.e., [Wl U Wz]. 

We say that V is a direct sum of its subspaces W,  and W2 (written as V = W1@ W2) if 

I .  v = W, + W,, 

2. W, n W, = ( 0 ) .  

IfV = Wl 
V = W1 @ W2 is direct decomposition of V into subspaces W1, W,. 

W2 then W2 is direct complement of W1 and vice versa. We also say that 

Lemma A S  A linear space V is a direct sum of its subspaces W1, M;z if and only if every 
element v E V can be expressed uniquely as v = w1 + w2, where w1 E W1 and w2 E W2. 

Proof: If V = Wl @ W2, it follows from property 1. of Definition A S  that every element 
v E V can be expressed as v = w1 + w2 with w1 E Wl and w2 E W2. Assume that 
moreover v = v1 + v2, where v1 E Wl and v2 E W2. Then from w1 + w2 = v1 + v2 it 
follows that the element w1 - u1 = v2 - w2 lies in the intersection Wl n W2. Property 
2. of Definition A S  implies that v1 = w1 and v2 = w2, and thus the decomposition of the 
element v is unique. 

Now assume that every element v E V can be decomposed uniquely into a sum w = 
w1 + w2 with w1 E Wl and w2 E Wz. This means that V = Wl + "2. It remains to be 
verified that Wl n W2 = (0). Every element u E Wl n W, can be written in the form 

Both Definition A S  and Lemma A S  can be naturally extended to a finite and countable 

u = u + 0 = 0 + u. Uniqueness of the decomposition yields that u = 0. 

infinite number of subspaces. 

EXAMPLE A.6 (Sums and direct sums) 

1. Consider the linear space V = R2 and a pair of vectors v1 = (-1, l)T, 712 = 
(-1, -l)T. Define the subspaces W1 = {cyvl; cy E R} and W2 = {awz; cy E R}. 
It is V = W1 + W2 and moreover W1 Ti Wz = { (0, O ) T ) ,  therefore V = Wl @ W2. 

According to Lemma A S  this is equivalent to the fact that every vector v E V can be 
written uniquely as v = a11 + 1u2, where 7Lf1 E Wl and wz E W, (Figure A.6). 

Figure A.6 Unique decomposition of a vector in a direct sum of subspaces. 
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2. Consider the space V = M J L x  of real n x 71 matrices and its subspaces 

V1 

V2 

& 

= 

= 

= 

MiX' '  = {Af E V :  m,, = 0 if j 2 i } .  

MLx" = {Af E V ;  ~n, , ,  = 0 if j # i } .  

M;lix" = { A 1  E V :  m,, = 0 if j 5 i }  

of lower-diagonal, diagonal, and upper-diagonal matrices, respectively. Clearly, it 
is V = V1 + V2 + V,. Since, in addition, Vl n V, = { 0 } ,  V1 n Vs = { 0 } ,  and 
V;, n V ,  = {0}, it is V = Vl @ V2 8 I($. Accordingly, every matrix A l  E V can be 
decomposed uniquely into A 1  = Af, + A f 2  + Af.3, where Af, E V,,  i = 1. . . . . 3 .  

3. Consider an interval (a ,  b )  c R and the space of continuous functions V = C(o. b)  
= ( 7 1 9  E C ( a  b ) ;  with its subspaces W1 = (w1 E C(a. b ) ;  w l ( a )  = 0} and 

w 2 ( b )  = O}. Clearly it is V = I+'] + LV2. Since 

according to Definition A S  the space V cannot be direct sum of Wl and LL'2 

There is a one-to-one relation between direct sums and idempotent linear operators. (An 
operator P : V + V is said to be idempotent if P2 = P.) These operators are called 
projections, and we will study them in more detail in  Paragraph A.3.S. 

A.1.6 Linear independence, basis, and dimension 

Next let us introduce the notion of linear independence, basis, and dimension of a linear 
space. 

Definition A.6 (Linear independence) Let V he LI red or comnp1e.x linear space and let 
~ 1 , 1 1 2 .  . . . . uk  E V .  These elements are said to he linearly dependent i f  there exists n 
nontrivial set of real or complex coeficients u1. ( 1 2 .  . . . . ah.. respectively, such that 

h c a,11, = 0 
2 = 0  

(by nontrivial we mean that at least one coqficient (L, is nonzero). In the opposite c a ~ e  the 
elements v1,7)2, . . . . vk are said to be linearly independent. Sometimes a subset s C V is 
called linenr1.y dependenthdependent ifall its elements are linearly dependent/independent. 

EXAMPLE A.7 (Linear independence) 

1. In the space V = R" consider three vectors ( ' 1  = ( l . O . O ) T ,  02 = (1.1. l)T, and 
v3 = (4,  -2, - 2 ) 7 .  These vectors are linearly dependent since 

2. Let us decide if the functions irl = .I, ( i i 2  = 2 - 3 ~ ,  and w3 = 1 + .r2 in the space 
V = P2(-1, 1 )  are linearly independent. If 
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then clearly a3 = 0 since the square of 2 in 2 ~ 3  cannot be eliminated by any linear 
combination of the functions w1 and w2. Thus 

The constant 2 in 1/12 cannot be eliminated by wl, and therefore a2 = 0. Therefore 
also u1 = 0 and the functions wl, w2, and 1/13 are linearly independent. 

The following lemma gives a useful characterization of linear independence. 

Lemma A.6 Consider a subset S of a linear space V .  Then 

1. S is linearly independent ifnnd only if none of its elements can be expressed US N 

linear combination o f  its remaining elements. 

2. S is linear1.y independent if and only if the following implication holds: I f  R C S 
and [R] = [S] then R = S. 

3. Let 11 E V .  IfS is linearly independent and S + { u }  linearly dependent, then i !  E [S].  

Proof: The proof is a simple exercise using Definition A.6. 

Definition A.7 (Basis of a linear space) Let V be a linear space. Every linearly indepen- 
dent subset S c V such thnt [S]  = V is said to be n basis ofthe space V .  

A linear space V may have many different bases: Any set of linearly independent ele- 
ments of V that generate the whole space is a basis. This is illustrated in Example A.8. 

EXAMPLE A.8 (Nonuniqueness of basis) 

1 .  Let V = Iw". The set 

B = {(1,0,0)? (0, (0.0,l)")  

is a basis of V (canonical basis). Any other set of vectors 

where (1, p, y are nonzero real numbers, also is a basis of V .  Herewith the list is 
not complete, since obviously the basis vectors can have more than just one nonzero 
components. 

2. Consider the polynomial space V = P1(O, 1) and its monomial basis 

Another example of a basis in this space is, e.g., 



330 B A S I C S  OF F U N C T I O N A L  ANALYSIS 

a2 = {x, 1 - x } .  

3. Let S be the space of all real sequences from Example A. 1. The infinite set Bl = 
{ T ~ ,  7-2, T Q ,  . . .}, where T,  is a real sequence whose entries are all zero except for the 
ith entry which is one, is a basis of S.  Another infinite set B2 = {sl, s2, .  . .}, where 
s, is a real sequence whose entries are all equal to one except for the ith entry which 
is zero, also is a basis of S. 

After presenting a few concrete examples of bases, the following Theorem A. 1 guarantees 
that every linear space has at least one. 

Theorem A.l  (Existence of basis) Every linear spuce V has a basis. 

Proof: Let V be a linear space and & the set of all its linearly independent subsets. 
Obviously the empty set lies in & thus E is not empty. It is easy to see that the set & is 
partially ordered by inclusion (the union of a chain of linearly independent subsets of V is 
again a linearly independent subset of V). Hence the Zorn's Lemma implies the existence 
of a maximal element S in &. Assume that there exists an element v E V such that a $? S. 
The maximality of S implies that S U {u}  is linearly dependent. According to LemmaA.6, 
assertion 3., u E [S] .  Thus [S] = V and therefore S is a basis of the linear space V .  

For future reference lat us introduce the notion of separable space. 

Definition A.8 (Separable space) A linear space V is called separable if there exists a 
finite or a countable infinite basis of V .  

The following Lemmas A.7 and A.8 have a technical nature, but they are useful for the 
definition of the dimension of a linear space. 

Lemma A.7 Let V be a linear space. Any set o fn  linearly independent elements u1, u2, 

. . ., u,, E V cannot be expressed by lineur combinations ofany n - 1 elements v1, 212. . . . 

v,,-1 E v. 
Proof: 
that the assertion is valid for n and not valid for 71 + 1. Thus it is possible to express 

Let us proceed by induction. Obviously the assertion is valid for n = 1. Assume 

u1 = a1.101 + . . . + (L1.,LV1, 

u~ = a2.1211 + . . . + a2.7L1111 

IL,, = a71.1II1 + . . . + %L.?Lv?L 

a7l+l.l'u1 + ' ' . + arL+l,flvTL. 
- 

%,+1 - 

The elements u l ,  u2,. . . , u,+1 are linearly independent. Hence u,,+1 # 0 and at least one 
of the coefficients in the last equation is nonzero. Assume for example that u,,+~,~, # 0. 
Let us calculate II,, from the last equation and insert it to the first n equations. We obtain a 
smaller system of TL equations of the form 

u1 + c1u,+1 

I12 + C2U,,+I 

= b,.I,Ol + . . . + b1.7,v,, 

h2.1P'l + . . . + b2,,L21,L = 
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This is a contradiction with the assumption for n if we show that the n elements u1 + 
c1u,+1, u2 + c2un+1,. . . , u, + c,uL,,+l are linearly independent. Assume that they are 
not, i.e., that there exists a nontrivial linear combination 

Since ul, 7 L 2 , .  . . , u,,+~ are linearly independent, necessarily dl = d2 = . . . = d, = 0 
which is a contradiction. rn 

Lemma A.8 All bases o f a  linear space V have the same cardinality. 

Proof: The assertion follows straightforward from Lemma A.7 both when the cardinality 
of the basis is finite and infinite. rn 

Now, using the assertion of Lemma A.8, we finally can define the dimension of a linear 
space. 

Definition A.9 (Dimension of a linear space) Cardinaliry of any basis of a linear space 
V is said to be the dimension of V ,  denoted by dim(V). 

Before we approach linear operators, let us define expansion coefficients of elements of 
linear spaces in terms of a basis. 

Definition A.10 (Expansion coefficients) Let V be a linear space of dimension n and 
B = ( ~ 1 ~ ~ 1 2 ,  . . . , urL} its basis. Every element u E V can be written uniquely as 

n 

z = 1  

The coeflcients c1, ~ 2 ,  . . . , c, are called expansion coefficients of u with respect to the basis 
B, and we write them in a vector form 

rn EXAMPLE A.9 (Expansion coefficients) 

1. The set Bv = {?Il,u'&u3}, where u1 = ( l , l , O ) T ,  7 ~ 2  = ( l , O , l ) T  and vg = 
(0.1, l)T, is a basis of the space V = R3. The expansion coefficients of the element 
u = (1,2, 3)T are obtained from the vector equation 

Componentwise, this yields a system of three linear algebraic equations. After solving 
the system, we obtain 
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2. The set BNJ = {uq ~ t u 2 .  q j } ,  where U J ~  = x2 - T ,  (112 = z2 - 1 and 1113 = .r2 + .r 
is a basis in the space P2(-1,  1). The expansion coefficients of the function iii = 

3 . 2  + 2 2  + 1 are obtained from the equation 

Comparing the coefficients of monomials of the same degree, we obtain a system of 
three linear algebraic equations which yields 

(to)&l = (1, -2,3)7'. 

A.1.7 Linear operator, null space, range 

In this paragraph let us introduce linear operators and mention some of their basic properties, 
including the one-to-one relation to matrices in finite-dimensional spaces. 

Definition A . l l  (Linear operator, null space, range) Let U and V be real or  complex 
linear spaces. A map f : U + V is said to be linear operator if and only if 

1. f ( 1 L  + t i )  = f ( 7 L )  + f (1 i ) fo ra l l  ? L .  7) E u, 
2. f (mi,) = a f ( 7 1 )  f o r  all 7.1 E U and nll coeficients u. 

The null space N (  f )  of the linear operator f is the set 

N(f )  = {u E u: f ( u )  = 0) 

The range R( f )  of the operator f is defined as 

R ( f )  = { i i  E V; tlierf cxists (L E U sncli that f ( v )  = I ) } .  

The linear operator f is said to be an injection if N(f )  = { O } ,  surjection ( f R ( f )  = V and 
bijection (one-to-one) if it is both injection and surjection. 

Basic properties of the null space and range of linear operators are summarized in the 
following lemma. 

Lemma A.9 Let U and V be real or cornplex linear spices mid f : U + V [ I  linear 
operatoi: Then the following holds: 

I .  N( f )  is a subspace ofU. 

2. R( f )  is a subspace of V. 

3. I f  d im(U) anddiin(V) arejnite then 

tiiin(U) = tiiiii(N(f)) + diiii(R(f)) 

Proof: These assertions follow easily from the linearity of ,f. Let us begin with the first 
one: 
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for all coefficients CY, 0. Ad 2: For every u l .  va E R ( f )  there exist u1, u2 E U such that 
f ( u l )  = v1 and f(u2) = 7I2. Then 

CYu1 + 4lI2  = af(u1) + i j f (u2)  = f(CYU1 + iau2), - 
EU 

and therefore C Y U ~  + 07~2 E R ( f ) .  
Ad3: SinceN(f)  isalinearspace,ithasabasis{wl, w2,. . . ,wk}. Let ( v 1 , v ~ .  . . . ,urn} 

be a basis of R ( f ) .  For every 1 5 j 5 m let GJ E U be such that f ( G 3 )  = 71,. It is sufficient 
to show that the set 

B G  = {Wl, w2,. . . . Wk, 61, 62,. . . , . i f l n }  

is a basis of U. First let us see that its elements are linearly independent: Assume a set of 
coefficients such that 

z = 1  J=1 

Applying the linear operator f to both sides, we obtain that 

m 

?,=I 3=1 3=1 

Since the elements v1,v2,.  . . ,v, are linearly independent, it is = 62 = . . . = 4, = 0. 
It follows from (A. 1) that also a1 = C Y ~  = . . . = C Y ~  = 0. It remains to be shown that every 
u E U can be represented by the elements of 1 3 ~ :  Since f(u) lies in R ( f ) ,  we can express 

ni 

The coefficients rJ can be used to define 

711 

UR = z’yjb, E U. 
] = I  

The proof is finished by realizing that u - U R  E N ( f ) .  

EXAMPLE A.10 (Linear operators) 

1. Consider the spaces V = EX3 and W = EX3, along with a map f : V + W defined 

by 
f(u) = 2u for all u E V. 

For every u,v  E V it is f ( u  + v) = 2(u + v) = 2u + 2u = f ( u )  + f ( u )  and 
moreover ~ ( C Y U )  = 2au = C Y ~ U  = af(u)  for every u E V and CY E R. Therefore f 
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is a linear operator. It is easy to see that N ( f )  = ((0; 0. O ) T } .  Moreover, since for 
every vector 7u E W we can define a vector v = w/2  E V such that f ( u )  = w, it is 
R ( f )  = W .  Therefore f is a bijection. 

2. Next consider the polynomial spaces V = P4(-l, 1) and W = P3(-11 l), and a 
map D : V + W defined by 

du  
d x  

D(7L) = - = ‘U’ for all u E V. 

Foreveryu,v E Vit i sD(u+,u)  = (u+71)’ = 7s’+21’ = D(u)+D(u)andmoreover 
D(cuu) = (cuu)’ = cyu’ = cyD(u) for every u E V and cu E R. Therefore D is a linear 
operator. Since D ( u )  = 0 if and only if u is constant, we have N ( D )  = Po(-l, 1). 
Further, for every w E V we can find a u E V so that w = D ( v )  (take some primitive 
function of w), and thus R ( D )  = W .  Hence D is a surjection but not a bijection. 

3. Let V = P2(-1, l), W = R, and A : V + W be defined by 

1 

A(u)  = .(x) dx for all u E V. 1, 
The linearity of A easily follows from the linearity of the integral. In this case 
N ( A )  = {u E V ;  sll u(x) d z  = 0}, which is the space of all quadratic polynomials 
with zero integral mean value in the interval (-1,l). Since for any given number 
w E R we can define a constant function u = t u /2  E V such that A(v) = w, we 
have R(V)  = W .  Hence the operator A is a surjection but not a bijection. 

Next let us define the linear space C ( V ,  W )  of all linear operators L : V + W .  

Definition A.12 (Space of linear operators) Let V and W be realorcomplexlinearspaces. 
Let f ,  g : V + W be linear operators. We define 

for all u E V and all coeflcients a. With these operations we can define the linear space of 
all linear operators from V to W and denote it b-y C (V ,  W ) .  

Lemma A.10 (Inverse operator) Let V and W be real or complex linear spaces and let 
f E C ( V ,  W )  be a bijection. Then f is invertible and f -’ E C(W, V )  is a bijection. 

Proof: Follows easily from Definition A. 11. rn 
Next, Definition A. 13 introduces the matrix representation of linear operators in finite- 

dimensional spaces. The equivalence of linear operators and matrices is established in 
Lemma A. 1 1 and illustrated in Example A. 1 1. 

Definition A.13 (Matrix representation in finite-dimensional spaces) Let V and W be 
jinite-dimensional real or complex linear spaces ofdimensions dim( V )  = m and dim( W )  = 
n. Let Bv = {q, u2,. . . , u,} be a basis of V ,  Bw = {wl,  w2.. . . , wTL} a basis of W ,  
and f E L(V, W ) .  For every element vJ E Bv the element f ( u J )  lies in W ,  and thus we 
can express it in terms of the basis Bw with a unique set ofcoefJicient.7 m13, m23, . . . , mn3, 



LINEAR SPACES 335 

7 1  

f ( v j )  = ~ 7 r ~ z , ~ w ?  
2=1 

The n x rri matrix Mf, ( A f f ) z j  = mrj, 1 5 i 5 n, 1 5 j 5 m, is said to be the matrix 
representation of the linear operator f with respect to the bases Bv and Bw. Or, we just 
say that h f f  is the matrix qf the linear operator f .  

In other words, the matrix Mf of a linear operator f is constructed by taking basis vectors 
of V, expressing their images through f by means of the basis vectors in W ,  and writing 
the sets of the corresponding expansion coefficients as columns of the matrix hf f .  

Lemma A . l l  Let V, W be real or complex linear spaces of dimensions m, n and let 
Bv, Bw be their bases, respectively. Let f E C ( V ,  W ) .  The n x m matrix M f  rep- 
resents the linear operator f ifand only if it holds 

Proof: 
denote ( v ) ~ ~ ,  = (b l ,  6 2 , .  . . , bm)T and calculate 

First assume that M f  is the matrix of the linear operator f .  For every 21 E V we 

Thus the expansion coefficients o f f  (v) to the basis Bw are 

T 
m m 

= Mf (v)Bb 

Now the opposite implication. Assume some n x m matrix fi such that 

( f  (v))Bu, = fi(u)B\, for all v E V. 64.4) 

Let Mf be the matrix of the linear operator f from Definition A.13. By the implication 
that we already proved, ( ~ ( w ) ) B ~  = M f ( v ) ~ ~  for all v E V. Relation (A.4) yields 
fi(v)~, = Mf(u)p,,  for all v E V. The choice ( v ) B ~  = (1,0,0, .  . . , O)T now yields 

rn that the first column of fi is identical to the first column of M f ,  and so on. 

EXAMPLE A.11 (Matrix representation of linear operators) 

1. Let us begin with a linear operator f that rotates vectors in the space V = R2 coun- 
terclockwise by a given angle a: E R. Hence W = V. 

Using the canonical bases BI/ = { (1, O ) T ,  (0 ,  l)T} = (211, v2} and Bw = { (1, O ) T ,  
(0 ,  l ) T }  = (w1, wa}, and Figure A.7, it is easy to see that 
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Figure A.7 Linear operator in R2 (rotation of vectors). 

and 

Therefore f is represented by the matrix 

Choosing now an arbitrary two-dimensional vector 7 )  = (u,  b)’ E V ,  for f( v )  we 
have 

2. Let us return to the derivative operator D E C ( V ,  W ) ,  D ( ~ u )  = u’, from Example 
A. 10. In the spaces V = P4 (- 1.1) and W’ = P 3  (- 1, l )  we consider the monomial 
bases Bv = { l , x , x 2 , x 3 . x 4 }  = { ~ 1 1 , ~ ~ 2 ! ~ ~ ~ , ~ ~ ~ ~ ~ ) ~ }  and Btv = {1:z,x2,x3} = 

(1111, ~ 2 ,  wy, w4}, respectively. It is easy to calculate 

( D ( v 1 ) ) ~ ~ .  = (0)Bis. = ( O , O . O . O ) T .  

(D(u2))B12- = ( 1 ) B , .  = ( l .o ,o .o)T .  

(D(%))BLq. = ( 2 2 ) B L I .  = (0.2.0: O ) T ,  

( D ( u ~ ) ) B ~  = ( 3 z 2 ) ~ & \ .  = (0,O; 3,  O ) T ,  

( D ( u ~ ) ) B ~ .  = (4x3))o,. = (0.0,O. 4)T. 

Hence the derivative operator D ( u )  = 7 ~ ’  is represented by the 4 x 5 matrix 

0 1 0 0 0  

0 0 0 3 0  0) 

0 0 0 0 4  

This means that now we can perform derivatives of fourth-degree polynomials using 
a matrix-vector multiplication. ydke, e.g., ti = 3 + 2x2 - 3x3 + x4 E v, whose 
expansion with respect to the basis Bv is 
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(l i)r; , .  = ( 3 . 0 . 2 .  -3.1)'7 

For the derivative ?I' = D(w) we have 

/ o  1 0  0 o \ ,  / 3 \  

:3 = (0,4, -9,4)T. 

Thus II' = D ( v )  = 42  - 9z2 + 4~". 

In what follows, by the symbol I we denote the n x n identity matrix, I = diag(1, 
1, .  . . , 1) (the dimension n will always be clear from the context). 

Definition A.14 (Nonsingular, singular, and inverse matrix) Let AI be a real or complex 
n x n matrix. Then A f  is said to be nonsingular ifits n columns are linearly independent 
vector.s. Otherwise A1 is singular. The matrix Af -' such that AfAf-' = Af-'Al = I is 
said to be the inverse o f M .  

In Definition A. 14 one can use linearly independent rows instead of linearly independent 
columns. 

Lemma A.12 Let V and W be real or complex linenr spaces ofthe same dimension n and 
let f E C( V. W )  be represented by a matrix A f f .  The matrix hlf is nonsingular ifand only 
i f N ( f )  = (0) (i.e., i f f  is bijection). 

Proof: Follows easily from Lemma A. 1 1. rn 

A.1.8 Composed operators and change of basis 

Composition of linear operators is analogous to composition of functions in real analysis: 

Lemma A.13 (Composition of linear operators) Let U ,  V ,  and W be real or complex 
linear spaces, f E C(U, V )  and g E C(V,  W ) .  Then the composition g o f E C(U,  W ) .  

Proof: Follows easily from Definition A.11. 

Lemma A.14 (Representation of composed operators) Let U ,  V ,  and W bejnite-dimen- 
sional real or complex linear spaces with bases Bu, Bv, and Bu,, respectively. Let 
f E C( U; V )  be represented by  matrix M f  with respect to the bases BU and Bv, and let 
g E C(V. W )  be represented by matrix illg with respect to the bases Bv and Bw. Then 
the composition g o f E C(U,  W )  is represented by the matrix hl,hff. 

Proof: Follows easily from Lemma A. 1 1. rn 

Corollary A . l  (Inverse operator & inverse matrix) Let V and M.' be real or complex 
linear spaces of dimension n and let f E C ( V ,  W ) ,  represented by matrix Aff, be a 
bijection. Then the matrix Aff is nonsingular and f -' E C(W,  V )  is represented by the 
inverse matrix MF '. 
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Definition A.15 (Transition matrix) Let V be a real or complex linear space ofdimension 
n and let B1  and B2 be its (d(fferent) bases. By transition matrix from the basis B1 to the 
basis B2 we mean the n x n matrix ill representing the identity Z E C(V.  V ) ,  

rn EXAMPLE A.12 (Change of basis) 

1. Let V = EX3. It is our aim to construct the transition matrix from the basis B1 to the 
basis B2, where 

I / -  -, - ,  > 

x3 f ;.. f w3 
X 2 1  

' ! XI 

Figure A.8 Canonical basis of R3 

In this case it is convenient to construct the transition matrix A4-l from B2 to B1 
first, since it just contains the vectors w1, w2, and w3 in its columns, 

M - ' = (  1 1 0  1 0 1). 

0 1 1  
Inverting the matrix M - ' ,  we obtain the desired transition matrix A&, 

2. Next consider the space V = P3(0, 1) equipped with the monomial basis B1 = 
{ 1, x, x2, x3} and another basis 

Bz = {z, 1 - s , z ( ~  - z ) , x ( ~  - x ) ( ~ x  - 1)/2} 
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(which is better, e.g., for finite element approximation). Let us construct a transition 
matrix from B1 to Bz. Since 1 = z + (1 - z) it is ( q ) ~ ~  = (1, l , O , O ) T .  The 
second element of B1 is identical to the first element of Bz, and therefore ( v 2 ) ~ ,  = 
(1,0,0, O ) T .  Using the identity x2 = z - (z - z2), we obtain 

( U 3 ) B 2  = ( l ,O>- l ,O)T ,  

and finally, 

( v ~ ) B ,  = (1,0,  -3/2, -l)T. 

Hence the transition matrix M has the form 

A.1.9 Determinants, eigenvalues, and eigenvectors 

Eigenvalues and eigenvectors (eigenfunctions) play an important role in computational 
engineering and science. On the practical side, they often are connected with vibrations, 
resonance, or related phenomena. One also needs them for theoretical purposes in numerical 
linear algebra, analysis of partial differential equations, numerical methods, and other fields. 

Definition A.16 (Permutation and its sign) By S,,, n > 0, we denote the set of all bi- 
jections of the set { 1 , 2 ,  . . . , n}  into itseg Every P E Sn is called permutation on the 
set {1 ,2 , .  . . ,n}. For a permutation P E Sn let rri be the number of pairs ( i , j )  C 
{ 1 , 2 , .  . . , n}, i < j. such that P( i )  > P(J ) .  We define 

sgn(P) = (-1)’” 

and call P even or odd i fsgn( P )  = 1 or sgn( P )  = - 1, respectively. 

Definition A.17 (Determinant) Let M be a real or complex n x n matrix. Determinant 
of M is de$ned as 

n 

PES,, J=1 

Lemma A.15 (Basic rules for determinants) Let M be a real or complex n x n matrix. 
Then 

1. det(MT) = det(A4). 

2. Let M be a matrix obtained by pe$orming a permutation Q E S, to the rows (or 
columns) of A4. Then det(M) = sgn(Q) . det(M). 

3. The matrix M is nonsingular ifand only i f de t (M)  # 0. 
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4. Let nf be a matrix obtained by  multiplying a row (or column) of A 1  with a coefficient 
c. Then det(&l) = cdet(M). 

5. det(cAl) = cn det(A1). 

6. For all 1 5 J 5 n it is 

71 

det(AI) = ~ ( - l ) l + J m , ,  ciet(Af,,) 
I = 1  

where the matrix ,%I,, is obtnined by leaving out ith row and j th  column from the 
matrix AI. Here, (- l)'+J det(Af,,7) is the nlgebraic complement of the entry rri,,. 

7. Let A? be matrix of the same type as A f .  Then (let (A? A f )  = det (A?) det (AI ) .  

8. Let hI be nonsingular and A 1  its inverse. Then det(Al- ' )  = l / d e t ( A f ) .  

Proof: Proofs of these assertions can be found, e.g., in [75]. 

Definition A.18 (Eigenvalue, spectrum) Let A 1  a real or complex n x n matrix. The 
characteristic matrix of M is the polynomial matrix AI - Af.  The characteristic polynomial 
of M is the determinant of AI - M. The eigenvalues ofAI  are the roots of its characteristic 
polynomial. The spectrum o( M) of M is the file of all of its eigenvalues. By (algebraic) 
multiplicity of an eigenvalue one means its multipliciry as a root of the characteristic 
polynomial. 

EXAMPLE A.13 (Complex and real eigenvalues) 

Consider a matrix 

0 -1 

2 0 -1 
h f =  ( 'I 0 -2 

The corresponding characteristic matrix has the form 

A - 1  0 1 

( 1 2  ; A )  X I  - N = 

and the characteristic polynomial is 

det(AI - M) = X(A2 + 1). 

The roots of det(XI - A f )  are 0,z, --2. Hence, as a real matrix, A l  has a single 
eigenvalue A1 = 0. As a complex matrix, it has three eigenvalues XI = 0, X2 = i 
and A3 = -2. 

Lemma A.16 Let M be a real or complex ri x n matrix. There exists a polynomial g(X) 
of the degree n2 or lower such that g( M )  = 0. 
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Proof: The linear space V of all n x n matrices has the dimension n2. Hence the 
n2 + 1 matrices WL2.  M T L 2 - ' , .  . . , M ,  1 E V must be linearly dependent and there exists 
a nontrivial set of coefficients ao, a ' ,  . . . , a , ~  such that 

aon17t2 + a111.17z2--1 + . . . + a " Z - ~ h l  + a7,21 = 0. 

a o ~ ~ z '  + a l ~ n 2 - '  + . . . + a n 2 - 1 ~  + a,z 
Thus 

is the sought polynomial. 

Lemma A. 16 can be strengthened to the following famous theorem. 

Theorem A.2 (Cayley-Hamilton) Every matrix is a root of its characteristic polynomial. 

Proof: rn 

Definition A.19 (Eigenvector) Let hl be a real or complex n x n matrix and X one of its 
eigenvalues. Any vector u # 0 such that 

This proof is slightly more technical and we refer, e.g., to 17.51. 

izfu = xu 

is said to be eigenvector of ILl corresponding to the eigenvalue A. 

The following proposition is introduced for future reference: 

Proposition A.2 Let M be a n x n matrix. There exists at least one eigenvector to every 
eigenvalue X E a ( M ) .  

Proof: Since det(X1 - M )  = 0, by Lemma A.12 the matrix X I  - M is singular. Let 
f : R" + R" be the linear operator represented by the matrix X I  - M .  Then N ( f )  # (0) 
by the same lemma. Thus there exists a nontrivial vector v E N ( f )  such that Mv = Xu.. 

A.1.10 Hermitian, symmetric, and diagonalizable matrices 

Definition A.20 (Diagonalizable matrix) Let M be a real or complex n x n matrix. hi' is 
diagonalizable if there exists a nonsingular matrix C (real or complex, respectively) such 
that the matrix D = C- ' n/f C is diagonal. 

Generally, any two matrices A and B satisfying the above relation B = C-IAC with 
some nonsingular matrix C are called similar. Thus a matrix A1 is diagonalizable if it is 
similar to a diagonal matrix D. 

Theorem A.3 (Diagonalization theorem) Let M be a real or complex n x n matrix. hl 
is diagonalizable if and only if it has n linearly independent eigenvectors. 

Theorem A.3 states that the matrix M is diagonalizable if and only if it is possible to 
construct a basis in R" that consists of the eigenvectors of M .  Then the matrix C from 
Definition A.20 has the eigenvectors in its columns, and it is identical to the transition 
matrix from the eigenvector basis to the canonical basis. The matrix C-' represents the 
transition matrix back to the eigenvector basis. Thus the diagonal matrix D represents the 
same linear operator as M ,  expressed with respect to the eigenvector bases in R" instead 
of the canonical ones. 
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Proof: Assume that M is diagonalizable, i.e., there exists a diagonal matrix D such that 
D = C-* MC. As explained above, the matrix C can be interpreted as a transition matrix 
from some basis B of IW" to the canonical basis of Rn and analogously C-' as a transition 
matrix from the canonical basis back to B. According to Definition A.15, the columns c, 
are the basis vectors of B expressed with respect to the canonical basis. It remains to be 
verified that the vectors c,, 1 5 a 5 n, are eigenvectors of M .  However, this is exactly 
what relation M C  = CD says (look at it column-wise), and moreover it says that diagonal 
entries of the matrix D are eigenvalues of M. 

Now assume that there exists a basis B consisting of eigenvectors el ,  c2, . . . , en of the 
matrix M .  By A,, 1 5 i 5 n denote eigenvalues of M such that Me, = X,ct. Putting these 
relations together for all i ,  we obtain a matrix equation 

hlC = CD, 

where the matrix D =diag(X1, X2,. . . ,An). Hence, 

C-'MC = D 

and M is diagonalizable. 

Definition A.21 (Hermitian and symmetric matrices) Let hf be a complex n x n matrix. 
M is Hermitian $mz3 = ?ii3, for all 1 5 a ,  5 n (the symbol m,, stands for  the complex 
conjugate of m3,). Let M be a real n x n matrix. M is symmetric $mZ3 = mJZ for  all 
1 5 2 , J  5 71. 

Lemma A.17 All eigenvalues of Hermitian matrices are real. 

This lemma obviously covers symmetric real matrices 

Proof: Let M be a Hermitian n x n matrix and X E cr(M) any of its eigenvalues. By 
Proposition A.2 there exists an eigenvector u of M such that M u  = Xu. The ith row of this 
vector identity has the form 

3=1 

where w,,u3 are the ith and j th  components of the vector u. Multiplying with 5, and 
summing over i = 1,2,  . . . , n, we obtain 

n n  n 

2=1,=1 t = l  

Since the sum on the right-hand side obviously is real, it is sufficient to verify that the 
left-hand side is a real number. Indeed this is true since 

n n  n n  n TL n n  x m2,u3D, = 1 C mz3~3ut  = C 1 m32u,V3 = x m Z 3 u , ~ ,  
2 = 1 1 = 1  z = 1  ,=1 a=l,=l t=13=1 
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A.1.11 

Linear forms are special linear operators with values in R or @. They play an essential role 
in the theory of partial differential equations and finite element methods. 

Definition A.22 (Linear form and dual space) Let V be a real or complex linear space. 
Linear operator f from V to R or @ is called linear form. The space of all linear forms 
over the space V is called dual space and denoted by V’. 

Linear forms, dual space, and dual basis 

EXAMPLE A.14 (Linear forms) 

1 .  Let V = RTL. The operator f : V + R defined as the average of vector entries, 

is a linear form over V ,  i.e., f E V’. 

2. Let V = C(a,  b )  be the space of continuous functions in some interval ( a ,  b).  The 
integral operator A : V ---f R defined by 

A ( f )  = f(z) d3: for all f E V, 

is a linear form over V .  

3 .  Again let V = C(a,  b) ,  and let c be some point in the interior of the interval (a ,  b). 
The operator gc  : V + R, associated with the function value at c, 

sJf) = f(c) for all f E v, 
is a linear form over V .  

Lemma A.18 Let V be a real or complex linear space of dimension n. Then the dual space 
V’ has the same dimension n. 

Proof: We leave this to the reader as an exercise. Use Definitions A.6 and A.22. 

Definition A.23 (Dual basis) Let V be a real or complex linear space of dimension n and 
B = {q, 212,. . . , v,} a basis in V .  The basis B’ = {fl ,  f 2 , .  . . , fn} of the space V’ is 
said to be the dual basis to B if 

(A.6) f a  (q ) = 62, 

for  all 1 5 2, J 5 n (the symbol S,, is the Kronecker delta, i.e., S,, = 1 ifi = j and S,, = 0 
otherwise). 

Let us prove the existence of the dual basis in the following Lemma A. 19 and give some 
examples in Example A.15. 

Lemma A.19 (Existence of dual basis) Let V be a real or complex linear space of dimen- 
sion n. To every basis B of V there exists a dual basis B’ of V‘. 
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Proof: Let B = {ul ,  712, . . . , ti,, } be a basis of V. First we define the operators f l ,  fi. . . . . f,) 
on the basis elements only, 

Next we extend them to the whole space V by defining 

f 7  ( 7 1 ,  ) = 67,. (A.7) 

Here the coefficients a1 , a2, . . . , 
with respect to the basis B, 

are the unique expansion coefficients of the element u 

?' ( 4 n  = ( a l , a z  . . . . .  a,) 

Obviously the forms f l :  f 2 ,  . . . , f n  are linear, and it is sufficient to show that they also are 
linearly independent. By contradiction suppose that they are linearly dependent. Then i t  is 
possible to express one of them (for example f 1 )  as a nontrivial linear combination of the 
others, i.e., 

f l  = c2f2 + c3f . j  + . . . + c,,f,, 

However, by (A.7) we obtain 

which finishes the proof. 

EXAMPLE A.15 (Dual basis) 

In the space V = P2(-1. 1) consider the basis 

shown in Figure A.9. 

Figure A.9 Basis B = { v ~  ,712, vg) 
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The dual basis B' = {fl ,  f2,  f3} consists of linear forms fi : V i IR such that 

f i (u)  = u ( z t )  for all ii E V, 

where z1 = -1, 2 2  = 0, and 2 3  = 1. The reader can easily verify that the delta 
property (A.6) indeed holds true. 

Now, since B' = {fl, f 2 , f 3 }  is a basis in V' ,  any linear form in V' can be 
expressed uniquely in terms of the basis functions f l ,  f 2 ,  f3. Let us try, for example, 
the linear form A E V' associated with the integral 

We look for coefficients P1, P 2 ,  P 3  such that 

Applying A to the basis B, by (A.8) and the delta property f i ( u J )  = 6,,, we have 

Calculating the integrals of the basis functions t i l ,  212 and us, we obtain P1 = 113, 
0 2  = 413, ,!?, = 113, and thus 

1 4 1  
3 3 3  

A = -fi + -f2 + -f3. (A.9) 

Thus by (A.9) we can integrate all quadratic polynomials using their function values 
at -1,Oand 1, 

[this is the Simpson's rule for the interval (- 1, l)] 

A.1.12 Exercises 

Exercise A.1 Consider the set M r L X X "  ofall  real n x n matrices. 

1. Show that M" "' is a linear space. 

2. Show that the set D3L of diagonal n x n matrices is a subspace o fMnXn .  

Exercise A.2 Let S = { u  E G(0, l ) ;  u ( 1 )  = a } ,  a E Iw. For what values o f a  is S linear 
space Y 

Exercise A.3 Prove in detail all assertions in Example A.1.2. 

Exercise A.4 Let S be the set (gal l  twice continuously differentiable functions satisfying 
the differential equation 

u"(2) + u(2)  = 0. 
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I .  Prove that S is a linear space. Hint: The equation does not need to be solved. 

2. I s  the set S of all solutions to the differential equation 

U ” ( T )  + u(2) + 1 = 0 

a linear space as well? 

Exercise A S  Prove in detail Proposition A. 1. 

Exercise A.6 Let V = R‘, Wl = { u  E V; 711 = 0} and W2 = { u  E V; v2 = O}. Show 
that W1 and W, are subspaces of V and construct the space Wl n W2. 

Exercise A.7 Prove Lemma A.4. 

Exercise A.8 Let I = (0 , l )  x (0 , l )  c R2. In I consider the sets S1 of all polynomials 
of degree exactly one, S 2  of all polynomials of degree exactly three, and S3 of polynomials 
that in one variable are of degree exactly one and that are of degree three or less in the 
other variable. Construct the linear span S = [Sl U S 2  U Ss] in the linear space P4 ( I )  of 
polynomials of degree lower or equal to four: Hint: The degree of a bivariate polynomial 
f is the highest sum k + 1 of powers among all monomials xk yl appearing in f .  What is 
the dimension of S? 

Exercise A.9 Consider the linear space V = MrL “ from Exercise A. I .  

I .  Show that the set SrLXrL of symmetric n x n matrices is a subspace of V. 

2. Show that the set A“ 

3. Show that V = S @ A. Hint: Symmetric part of a matrix M E V is dejined as 
M,  = ( M  + M T ) / 2  E SnxTL. For all M E V, the transpose M T  is dejined in a 
standard way as ( M T ) Z , 3  = Ad3,%, 1 5 i , ~  5 n. 

Exercise A.10 Prove Lemma A.8, case ofjinite cardinaliry. 

ExerciseA.11 Consider V = R4 and its subspaces Vl = [(-3,0,2, O ) T ]  and V2 = 

[(1,0,2, -3)T, (3 ,2 ,  1,-5)T, (-1,2,1, Computedim(V1+V2)anddim(VlnV2). 
Hint: Select a basis among the vectors generating V2. Check whether the vector generating 
V, lies in V2. 

Exercise A.12 Consider the linear space P3( -1,l) of real-valuedpolynomials dejined in 
the interval (-1,l). Consider the bases 

of antisymmetric n x n, matrices is a subspace of V. 

and 

l + z  1 - 2  1 - 2 2  2 ( 1 - 2 2 )  a={- ~ ~ 

2 ’ 2 ’ 4 >  8 

Construct the transition matrix M from B1 to B2. 
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Exercise A.13 Prove Lemma A.lO. 

Exercise A.14 Let V = R5. Consider the canonical basis 

and another basis 

Construct the transition matrix hl from B1 to B2. 

Exercise A.15 Prove Lemma A.12. 

Exercise A.16 Consider the polynomial spaces V = P6 (- 1 , l )  and W = P4 (- 1 , l )  
equipped with the monomial bases BI/ = { 1, x, x2, x3, x4, x5, x6) and Bw = (1, x, x2, 
x3, x4). 

1. Write the matrix representation of the linear operator 'p V t W ,  

with respect to the bases Bv and Bw. 

2. Determine N ( q )  and R ( p ) .  Is p a  bijection? 

Exercise A.17 Prove Lemma A. 13. 

Exercise A.18 Consider the polynomial spaces 

and 

W = {w E P'(-1,  1),w(x) = - w ( - x ) f o r a l l z  E (-1, I ) ) ,  

equipped with the bases Bv = { 1 ,  x2, x4} and Bw = {z, x3, z5}. 

1. Write the matrix representation MG of the linear operator 11, : V i W ,  11,( f) = F,  
where F is a primitive function to f such that F ( 0 )  = 0. 

2. Determine N(11,) and R(11,). Is $ a bijection? 

3. If 11, is a bijection then jind the inverse operator 11,-' : W + V ,  write its matrix 
representation M,,, - 1 with respect to the bases Bw and Bv. and verih that the matrix 
M,,,-I is inverse to hl$. 

Exercise A.19 Prove Lemma A. 14. 
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Exercise A.20 Consider the real matrices 

Without evaluating the determinants, use rules from Lemma A. 15 to show that det(M1) = 

det(M2). 

Exercise A.21 Prove Lemma A. 18. 

Exercise A.22 Let A E Rnxn be a regular n x n matrix. 

1. Use its characteristic polynomial and the Cayley-Hamilton theorem to derive an 
explicit formula for  its inverse A-l, based on the following matrix operations: (a)  
matrix multiplication and (b) the sum of a matrix with a diagonal matrix. 

2. Consider the matrix 

A = ( :  0 -2 3 i). 
Write its inverse using the above-defined operations (a)  and (b). 

A.2 NORMED SPACES 

Normed spaces are linear spaces endowed with norm (size). The notion of norm allows 
us to define convergence and limit for sequences of vectors, matrices, functions, linear 
operators, and other objects. In norrned spaces we can distinguish between open and closed 
sets, and introduce the notion of completeness. Through complete normed (Banach) spaces 
we arrive at the Lebesgue LP-spaces, which are essential for the study of partial differential 
equations and finite element methods. 

A.2.1 Norm and seminorm 

Definition A.24 (Norm and normed space) Let V be a real or complex linear space. 
A norm on V is any function /I . 11 v : V + R with the following properties: 

1. llullv 2 0 f o r d  u E V ,  and llullv = 0 ifand only i fv  = 0, 

2. llawllv = lalIlu/lvforalluE Vandallcoe$cientsaER (orC) ,  

3. IIu + ullv 5 ~ ~ u ~ ~ v  + liullvforaIIu,u E V .  

A linear space V endowed with a norm 11 . /jv is said to be normed space. 

Remark A.l 

1. In a normed space ~ ~ v / ~ v  < cc for all u E V .  
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2. The subscript V in the symbol 1 1  . 1 1 ~  is often omitted when the meaning of I/ . / I  i s  
clear from the context. 

3. The last condition in Dejinition A.24 (triangular inequality) usually is the most difJicult 
one to prove. 

For future reference, let us mention the triangular inequality for real numbers: 

H EXAMPLE A.16 (Triangular inequality in R) 

Let a.  b E R. Then 

This easily follows from the analysis of four possible cases: a > 0 & b > 0, n 5 
O &  b >  0 , n  > O & b < O a n d n  5 O & b < 0 .  

A linear space may be endowed with many different norms, in which case one obtains 
different normed spaces. Several examples of norms are collected in Example A. 17. In 
what follows the symbols (u:  b) and [a, b] will stand for nonempty bounded intervals. 

EXAMPLE A.17 (Norms) 

1. Let V = R. The absolute value function /I . 11 : V + R, /Iu(I = /uI, clearly satisfies 

(a) 1 1 ~ 1 1  = I v I  > 0 for all 0 # ?I E V ,  

(b) Ila?ill = (a/IuI = Ia/Iii l l for all w E V and all coefficients a, 

(c) IIu + 7111 = Iu + i i l  5 IuI + IwI = IIui/ + l l ? ~ l l  for all I I . ~ '  E V ,  

and thus it is a norm in V .  

2. Let V = R". The function 

(A. 10) 

is a norm in V (discrete maximum norm). The first two properties of Definition A.24 
are obvious, and the triangular inequality is verified as follows: 

3. Let V = R". The function 

(A.11) 
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where v, are the components of v (discrete integral norm), is a norm in V. The proof 
is analogous to the previous case. For 1 5 p < cc this norm generalizes to the 
discrete p-norm, 

4. With p = 2 the discrete p-norm (A. 12) yields the Euclidean norm 

(A. 12) 

(A. 13) 

In this case the proof of the triangular inequality is trivial for ri = 1. Extension to 
general n 2 1 can be done by induction. 

5. The norms defined in R" can be extended naturally to n x n matrices, i.e., to the 
space V = Rnxn. For example, the discrete maximum norm (A. 10) can be extended 
to 

Another extension of the norm (A. lo), which will be useful later, is 

The Euclidean norm in R" is extended to the Frobenius norm. 

(A.14) 

(A.15) 

(A.16) 

Here mtJ is the entry of the matrix Af at the position I ,  J .  

6. Let V = C( [a, b ] )  be the space of functions continuous in a closed interval [a, b].  
The function 

is a norm in V (maximum norm). 

7. Let V = @(a, b) .  The function 

(A. 17) 

(A. 18) 
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is a norm in V. For 1 I p < m this norm can be extended to the p-norm, 

(A. 19) 

Here the subscripts in the norms 11 . / I o c  and 1 1  . are originated in the Lebesgue spaces 
L” and L p  which will be discussed in ParagraphA.2.9. For later use let us define seminorm: 

Definition A.25 (Seminorm) Let V be a real or complex linear space. A seminorm on V 
is any function 1 . I v : V + R with thefollowing properties: 

1. IuII/ 2 0,forull u E V, 

EXAMPLE A.18 (Seminorm) 

In areal interval (a ,  b )  consider the space of smooth functions with bounded derivative, 

v = { u  E CI(u,b); sup lu’(x)/ < m}. 
L €  (a .6)  

The function 

Iul= sup lu’(x)l (A.20) 
I . E ( U . 6 )  

is a seminorm in V. All three properties of Definition A.25 are easy to verify. The 
only difference between norm and seminorm is that while 

Il’ulIv = 0 implies that ’u = 0. 

i t  can be 

as it was with constant functions in (A.20). 

The advantage of seminorms is that they are easier to evaluate than full norms. When 
restricted to a subspace W c V which does not contain the nonzero elements of V where 
the seminorm vanishes, the seminorm becomes a full norm. This is shown in Example 
A. 19. 
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EXAMPLEA.19 (Seminorm which is norm in a subspace) 

Consider the space V from Example A. 18. The functions preventing the seminorm 
(A.20) from being a full norm are nonzero constants. For example, in the subspace 
W c V of functions antisymmetric with respect to the midpoint of the interval (a,  0). 

w =  w E V ; w  ~- { (Y J : )  = 

these functions are not present, and therefore the function 1 1  . I /  = I . I is a norm in I.1' 
The space W is a normed space according to Definition A.24. 

On the other hand, sometimes it is practical to create a full norm by adjusting a seminorm 
so that it does not vanish on nonzero functions. This is shown in Example A.20. 

H EXAMPLE A.20 (Changing seminorm to a norm) 

Consider the space V from Example A. 18 again and adjust the seminorm (A.20) to 

(A.2 1 ) 

Now the nonzero constants make 1 1 .  / I  no longer vanish, and therefore it is a norm in V .  
The first two properties of Definition A.24 are obvious, and the triangular inequality 
also is easy to show: 

The space V endowed with the norm (A.2 1) is a normed space according to Definition 
A.24. 

A.2.2 Convergence and limit 

This paragraph is devoted to the asymptotic behavior of infinite sequences in norrned spaces. 
Let us begin by introducing the notion of boundedness: 

Definition A.26 (Bounded sequence) Let V be a normed space. The sequence { uTz 
V is said to be bounded in V ifthere exists a C > 0 such that Ilu, 11 5 C,for all n. 

C 

Next let us use the notion of norm to define the convergence and limit of a sequence: 

Definition A.27 (Convergence and limit of a sequence) Let V be a normed space. The 
sequence { U ~ ~ } F = ~  c V is said to be convergent in V ifthere exists an element v E V such 
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that for  every 0 < 6 E R there exists an index 11, such that llv - u, 1 1  < c for  nll n > 71,. 

The element 7 ’  is the limit ofthe sequence { P L , ~ } ? = ~ .  We usunlly write 

or 

Lemma A.20 summarizes basic facts about convergent sequences. 

Lemma A.20 Let V he a normed spnce, { u l 1 } ~ = ~  (1 sequence in V and 1: E V .  The 
,following holds: 

1 .  

2. 

lim u,, = I! fhen { I L ~ ~ } ~ = ~  is bounded. 
I t  - x 

3. 

lirri u,, = u then lim llull+l - = 0 
11-x 1 L - X  

Proof: Left to the reader as an easy exercise. 

Let us present a few examples illustrating the concept of convergence in normed spaces. 
We begin with showing that the third assertion of Lemma A.20 is not an “if and only if”: 

EXAMPLE A.21 

Let V = R. The sequence 

satisfies 

but it  is well known that 
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EXAMPLE A.22 (Convergence and limit) 

1. Consider the space V = R3 equipped with the discrete maximum norm (A.lO) and 
a sequence of vectors { u , , } ~ = ~  c V, 

The only candidate for a limit is u = ( 1 , O ,  O)?'. The sequence converges to u since 

1 
IIu, - uII, 5 ~ for all n 3 1. 

71 

2. Let V = C(0,l) equipped with the maximum norm (A.17), 

l l% = S U P  Iu(.)l. 
ZE(0.1) 

and consider a sequence of functions { u n } X I  C V, 

u7, (x)  = zn ( l  - 2 )  + + 1 

the only candidate for a limit is u(x) = x 3  + 1. Since 

the sequence converges to u. 

EXAMPLE A.23 (Nonconvergent sequences) 

It is easy to show, using Lemma A.20, that the following sequences do not converge. 

1. Consider the space V = P2([0,  11) equipped with the maximum norm (A.17), and 
the sequence { U ~ } T = ~  c V, u,,(z) = nz(1 - 2 ) .  The sequence is not bounded 
( llurl l j oo  = n / 4  for all n). 

2. In the same space V let {U,,},X=~ C V, u,, ( 2 )  = ( -1)',x( 1 - x). The sequence is 
bounded ( ~ ~ u ~ , ~ ~ ~  = 1/4 for all n), but IIu,+1 - = 1/2 for all n. 

3 .  Let V = C([O, 11) be equipped with the integral norm (A.18), and consider the 
sequence { u , ~ } ~ = ~  c V, un(z)  = 2". It is IIu,,II1 = l / (n  + 1) for all n, but the 
only function u that could be its limit is defined by w(x) = 0 for 2 E [0, 1) and 
u(1)  = 1. However, this function does not lie in the space V. More about this 
situation will be said in Paragraph A.2.7. 
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_ - - _  

_ _ - - -  
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2r 
, 
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A.2.3 Open and closed se t s  

In this paragraph let us continue with the definition of bounded sets, open balls, and open 
and closed sets: 

Definition A.28 (Bounded set) Let V be a normed space and S c V a subset of V .  We 
say that S is bounded in V ifthere exists a positive constant C > 0 such that llxllv 5 C 
for all x E S. 

Definition A.29 (Open ball B(g, r ) )  Let V be a normedspace with the norm / I .  I/ V. g E V 
and 0 < r E R. By the open ball with the center g and radius r we mean the set B(g, r )  = 

{. E v; 11. - SIlV < .>. 

EXAMPLE A.24 (Open balls in R2) 

1.  Consider the linear space V = R2 and the norms 

ll4l = I W  + 14, I I 4 c  = max(lu1l. Iwl), IIuI I2 = t’u? + u:, 
where u E V ,  u = (u1, ~ 2 ) ~ .  The unit open balls B(0,l) in these norms are de- 
picted in Figure A. 10. 

I 

- I - I  c 
- I  

FigureA.10 Examples of unit open balls B ( 0 , l )  in V = R2. 

2. Let V = P 5 ( [ a ,  b ] )  be equipped with the maximum norm (A.17). Consider a real 
number r > 0 and a function u E V .  The open ball B(u, r )  comprises all fifth-degree 
polynomials that lie inside of a “belt” of width 2r around u, as shown in Figure A. 1 1. 

I b ’  i ,  

FigureA.ll Open ball B(u: T-)  in the space V = P’([a,b]) with the maximum norm (A.17). 
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3. In general, sets of functions are too abstract to be visualized like B(u. r )  in Figure 
A. 1 I .  It is sufficient to replace in the previous case the maximum norm (A. 17) with 
the integral norm (A.18), and the visual interpretation of the open ball B(u , r )  is 
lost. In such cases i t  is good idea to forget about concrete shape of the functions and 
imagine them as points (see Figure A. 12). 

i 

Figure A.12 Open ball B(u. r )  in V = P'( [a. h ] )  equipped with the integral norm (A.  18) 

Definition A.30 (Open and closed set) Let V be a rzormed space and S C V .  The set S 
is open in V iffor every g E S there exists r > 0 such that B(g. r )  C S. The set S is closed 
if its complement V \ S is open. 

Example A.25 shows an open set, a closed set and a set that neither is open nor closed. 

EXAMPLE A.25 (Open and closed sets) 

Let V = C( [a; b ] )  be equipped with the maximum norm (A. 17) 

1. Let I I  E V and C > 0. The set 

s1 = ( 0  E v: / / l J  - U l l x  5 C }  

is closed. 

2. Let CI < Cz be real numbers. The set 

Sz = { I )  E V :  C1 < t,(.z) < Cz for all .c E [a.  b ] }  

is open 

3. The set 

S:, = { I ,  E V: 0 5 4 . r )  < 1 for all .I' E [a .b]}  

is neither open nor closed. 
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A.2.4 Continuity of operators 

Definition A.31 (Continuous operator) Let U mid V he normed spuces. An operator 
f : U + V is continuous at g E U if for  every f > 0 there exists a 5 > 0 such that 

We sciy that f i s  continuous in U if i t  is continuous nt everv g E U .  

Usually, integral operators are continuous. Example A.26 shows an integral operator 
that is continuous in the space C( [a, b ] ) .  

H EXAMPLE A.26 (Integral operator) 

Let U = C( (a. b ] )  be equipped with the maximum norm (A. 17) and V = R. Consider 
a linear operator A : U + V, 

1) 

A(u)  = u(.r)d.r 

Let $1 E U be arbitrary. Given a 6 > 0, the open ball B(g. 6) has the form 

B(g.6) = (11 E U: 111<XX I P ( . )  - g(r)1 < h } .  
I E "1 h] 

Every 11 E B(g. 6) satisfies 

Hence, for every t > 0 we can find a h := c / ( h  - ( 1 )  so that the implication (A.22) 
holds. Since (1 E U was arbitrary, the operator A is continuous in the whole space U .  

Differential operators are more tricky. Let us devote Examples A.27, A.28, and A.29 to 
their study. 

EXAMPLE A.27 (Derivative operator I) 

Let U = P'. ([a. b ] )  and V = Pn-l ( [ a .  b ] )  be equipped with the maximum norm 
(A. 17), and consider the operator y : U + V, 

dl/ 

d.r 
p(u) = - (A.23) 

(here k 2 1 is a natural number). Let us show that the operator y is continuous. 
Define k + 1 points = ICO < st < -1'2 < . . . < z k  = 6,  and consider the 

Recall that the functions LO. L1, . . . . L' constitute a basis in  U .  The derivative of 
each polynomial L ,  is bounded by a positive real constant C, > 0, 

Lagrange interpolation polynomials L ,  E P' (a .  h ) ,  L ,  (x,) = 6 , , ,o  5 i . j  5 k .  
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Let g E U and II E B(g. 6), where 6 > 0 is arbitrary. The functions g and 71 can be 
written uniquely as 

The open ball B(y .  6)  has the form 

B(g,6) = ( 1 ’  E U ;  max Iu(.r) - g ( r ) l  < O}, 
~ € [ n  h] 

and therefore each pair of coefficients a,,, and Y,,, are related via the inequality 

k h I 

I ,  where C = ct=o C,. Hence, for every F > 0 we can find a 6 := t/C so that the 
implication (A.22) holds. Since 9 E U was arbitrary, the operator y is continuous in 
the whole space U .  

However, all polynomial spaces are finite-dimensional and as we shall see later, in finite- 
dimensional spaces all linear operators are continuous. Therefore it is more interesting 
to look for the largest space where the derivative operator is continuous. We have to be 
careful, however, not to make the space too big. In Example A.28 we consider the space 
U = C’ (a .  b )  n C( [a. b ] )  equipped with the maximum norm (A. 17). 

EXAMPLE A.28 (Derivative operator 11) 

Consider the space V = C([a. b ] )  equipped with the maximum norm (A.17) and its 
subspace U = C1(n.  b )  nC( [a. b ] ) .  The derivative operator (A.23) is now considered 
as 67 : U + V. The function 

g(.r) = 
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is continuous in [u, b] and therefore 11g11u < 30. However, its derivative g’(x) = 
1/(2-) is unbounded, as shown in Figure A.13. Thus p((g) @ V and p is not 
continuous according to Definition A.3 1. 

I \ / 

I (1 h x 

Figure A.13 The function g ( x )  = and its derivative g’(x) = 1/(2=). 

Finally let us show the continuity of the derivative operator in its natural setting of the 
space of smooth functions with bounded derivatives in Example A.29. 

EXAMPLE A.29 (Derivative operator 111) 

Consider the derivative operator (A.23) as p : U + V, where the space 

is endowed with the norm 

and the space V = C([u:b])  is equipped with the maximum norm (A.17). In this 
case the situation is simple, since 

for all g E U and 6 > 0. Thus for every F > 0 it is sufficient to define 6 := E to 
satisfy the condition of continuity (A.22). 

In numerous situations an equivalent definition of continuity, based on sequences, is 
practical. 

Definition A.32 (Heine definition of continuity) Let U, V be norrned spaces. A function 
f : U + V is continuous at g E U i f f . .  every sequence { u , ~ } ~ = ~  c U such that 

lirn u,, = g. 
71-30 
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it ho1d.s that 

We snj thtrt f is continuous in U i f i t  i s  c'oritinirous nt every {J E U. 

Theorem A.4 Dyfir7ition.s A.31 r u ~ l  A.32 lire ecpivtrler~t 

Proof: The proof for real-valued functions can be found, e.g., in [ 1001. I t  can be gener- 
W alized to functions in normed spaces easily. 

Another important example of a continuous function is the norm 1 1  . 111. itself. 

Lemma A.21 (Continuity of norm) Let V be N r~orri~ed S ~ N L ' ~ .  T/7e iloriii 1 1  . 111. : V + IR 
is coritiriuous in V .  

Proof: I t  is advantageous to use the Heine definition of continuity in this case. Let r E V 
and let 'il,,) + 7) be an arbitrary sequence in V .  I t  is our aim to show that for every F > 0 
there exists an index 71, such that 

Recall the well known "backward triangular inequality" for real numbers, 

Hence, for given t it is sufficient to take u ,  from the definition of convergence u,, + ('. W 

Next let us introduce an important result for linear operators, which states that the 
continuity at one element is equivalent to the continuity in the entire space: 

Lemma A.22 Let U. V be normed sptices tirid L E L(  U. V ) .  The operator L i s  coi~tiriuous 
in the entire space U if tind only if it i s  cotiti~auou.s l i t  letist ut one eletiierit i i  E U. 
Proof: The first implication is obvious. Next, without loss of generality, we show that the 
continuity of L at 0 E U implies its continuity at an arbitrary C U 
be an arbitrary sequence with the limit 71,. The following holds: 

E U. Let 

liri i  %L,, = '(1 liiii ol, = 0. 
?l+X 1 1 - x  

where v , ~  = u,, - u for all 71,. The continuity of L at zero (Heine definition) implies that 

0 = liiri L.u,, = liiri L(?L,, - u )  = liiri (Lu , ,  - L u )  = liiii LzL,, - Lu 
II'X 77 - x 11-x 1,-x 

W 

An interesting consequence of LemmaA.22 is that if there is some IL E U where a linear 
E U. operator L is not continuous, then L cannot be continuous at any other element 
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Lemma A.22 further easily implies the continuity of linear operators in  finite-dimensional 
spaces: 

Proposition A.3 Let U. V be,finite~dirnen.sional norrnedspces. Then every linear operutor 
L E C( U. V )  is continuous. 

Proof: Let dim(U) = 7n, dim(V) = 11,  and &. Bt. be some bases in the spaces U and V ,  
respectively. By Lemma A.l 1 every L 6 C(U.  V )  can be represented by an 71 x m matrix 
A f I ,  SO that 

An arbitrary sequence { g k } ? ? ,  c U satisfies 

and therefore 

Thus the operator L is continuous at 0 E U, and Lemma A.22 yields the continuity in the 

Proposition A.3 will be used to prove that all norms in a finite-dimensional space are 

entire space U. 

equivalent (Theorem AS). 

A.2.5 Operator norm and L(U, V )  a s  a normed space 

Let U and V be normed spaces. In this paragraph we show that the space C(U,  V ) ,  con- 
taining all linear operators from U to V ,  is a normed space. This allows us to consider the 
convergence and limit for sequences of linear operators, and define closed and open sets of 
linear operators. This methodology finds important application in the numerical solution of 
operator equations (including integral equations, PDEs and integro-differential equations), 
where typically some complicated operator L is approximated by means of a sequence of 
simpler operators L,, that converge to L in some appropriate sense. 

Definition A.33 (Operator norm, bounded operator) Let U. V be norrned spaces. The 
norm in L E C(U,  V ) ,  called operator norm, is defined by  

An operator L E C(U. V )  is said to be bounded ifllLll < x. 

An equivalent definition of the operator norm, 

(A.26) 

can easily be obtained from (A.26). 

(A.27) 
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Indeed (A.27) is a norm in C(U,  V):  If L is nonzero then there exists at least one 
0 # u E U such that Lu # 0, and since I / .  1 1 "  is a norm, it is ~ ~ L u l ~ ~ ~  > 0 then. The second 
property in Definition A.24 also follows from the fact that / I  . is a norm. The triangular 
inequality reads 

for all L1, L2 E C(U,  V). Also the following proposition is trivial, but frequently used. 

Proposition A.4 Let U ,  V be norrned spaces and L E C( U ,  V ) .  The following holds: 

for all T L  E U. 

Proof: This follows immediately from the definition of the supremum in (A.26). 

Lemma A.23 (Composition of linear operators) Let U,  V ,  and LV be normed spaces and 
F E C(U,  V ) ,  G E L(V, W )  bounded linear operators. Then the composition G o F also 
is a bounded linear operator, and /IG o FII 5 llGllllFil. 

Proof: By (A.28) it is ll(G o F)ull = /IG(Fu)/I I ~lGll~~Ful~ I IIGIIIIFIIIIuII for all 
u E V .  The conclusion follows. 

Lemma A.24 (Equivalence of continuity and boundedness) Let U, V be norrned spaces 
and L E C ( U ,  V ) .  Then L is continuous ifand only if it is bounded. 

Proof: First assume that L is not bounded. Thus there exists a bounded sequence 
{uTL}r==l c U such that ~ ~ L u T t ~ ~  + m. Without loss of generality, we can assume that 
Lu,, # 0 for all n. Define a new sequence 

which satisfies 

This means that L is not continuous at 0, and therefore it is not continuous anywhere in U .  
Conversely, assume that the operator L is bounded. Then there exists a positive constant 

G such that 

for all u E U .  Thus L is continuous at 0 E U and, by Lemma A.22, in the whole space U.. 
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A.2.6 Equivalence of norms 

Since a linear space V may be endowed with many different norms, it  is natural to ask the 
following questions: 

0 Does a sequence { Z L ~ ~ } ; ~ ~  C V ,  which converges in some norm, remain convergent 
in  another norm? 

0 Does a set S c V ,  which is open in some norm, remain open in another norm? 

The answer is related to the notion of equivalent norms. 

Definition A.34 (Equivalent norms) Let V be N nornzed space and / /  . IIv,1 and I /  . 11v.2 

norms in V .  We say that these norms ure equivalent ifthere exist positive constants C1 and 
C2 .such that 

ClII ’ IIv.1 I II . IIv.2 I GI1 ’ IIv.l 

,for all 71  E V .  

PropositionA.5 Let V he a normed space and 1 1  . I I I . ’ . ~  and 1 1  . Ilv.2 n o r m  which are 
equivalent in V .  

1. Let 7 ’  E V .  The sequence c V converges to 7 1  in the norm 1 1  . IIv.1 ifand 
only ifit  converges to 11 in the norm / I  . Ilv.2. 

II . llv.2. 

2. Any subset S c V is open in the norm / /  . 111-1 if and on1.y if it is open in the norm 

Proof: Left to the reader as an easy exercise. 

Couple of equivalent norms is shown in Examples A.30 and A.3 I .  

EXAMPLE A.30 (Equivalent norms in Euclidean spaces) 

Let U = R”. The discrete maximum norm (A.lO) and the discrete integral norm 
(A. 1 I ) are equivalent, since 

l l 7 l 4 l x  I 1 / 4 1  Inll4lx (A.29) 

for all ( I  E U. The Euclidean norm (A.13) is equivalent to the discrete maximum 
norm since 

I I ? L l l x  I l l 4 2  I fi I I .u . l l x  (A.30) 

for all o E U .  This, obviously, makes the norms 1 1  . 111 and I /  . 11,) equivalent 

The situation is even more interesting in polynomial spaces, where one can practise 
elementary estimates: 

EXAMPLE A.31 (Equivalent norms in polynomial spaces) 

Consider, for example, the space U = Pk([-l. 11) with the maximum norm (A.17) 
and the integral norm (A. 18). We will show that these two norms are equivalent in U. 
The first inequality is easy and it does not even require U to be finite-dimensional: 
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When j(:x) = 1 or f(.r) = -1, (A.31) becomes an equality. Hence the constant 2 
cannot be improved (the estimate is sharp). 

The other inequality requires to go deeper into the structure of the polynomial space 
U ,  and we shall use the Legendre polynomials for this purpose. These polynomials 
will be discussed in more detail in  Example A.44. Now we need their following 
properties: 

1 .  The k + 1 Legendre polynomials LO. L1.. . . LL. form a basis of P!"([-l, 11). 

2. It is -1 5 LllL(:c) 5 1 in [-I. l] for all 7ri = 0.1.2. .  . .. 

3. The following holds: 

where 6,, is the Kronecker delta 

By the first property, every f E U can be written as 

I ,  

J ( . r )  = x o / L , ( . r ) .  
/=I1 

and thus for any 0 5 r u  5 k we can estimate 

Summing the inequalities (A.32) over all r n  = 0. 1 . .  . . . k ,  we obtain 

Thus we conclude that 

1 

k + l  -1lfllx I IlfIIl 52l l . f l l -x 

which means that the norms (A. 17) and (A. IS) are equivalent in  U 

The following theorem confirms the intuition that we gained in the previous two exam- 
ples: 
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Theorem A S  (Finite-dimensional case) Let U he a~nite-dimensionul normed space. Then 
all norms in U ure equivalent. 

Proof: Consider a linear space U of dimension 71, and two arbitrary norms / /  . /Iu.l 
and 1 1  . llu,l. For clarity, by U1 and U2 denote the normed spaces obtained when U is 
equipped with the norms 11 11u.1 and I (  . llu.2, respectively. Consider the identity operator 
T I  : lJ1 + U2, T1u = 7~ for all u E U. This indeed is a linear operator, which by 
Proposition A.3 is continuous. Thus by Lemma A.24 it is bounded, and there exists some 
CI > 0 such that 

This means that we have 

Analogously there is a positive constant C2 > 0, 

for the identity operator 1 2  : U2 + U1. Thus we have 

1 

which concludes the proof. 

However, this result does not extend to infinitely-dimensional normed spaces, as the 
following example shows: 

EXAMPLE A.32 (Nonequivalent norms and the convergence of sequences) 

Let V be the space of bounded integrable functions defined in the interval [0,1]. 
Consider the maximum norm (A. 17) and the p-norm (A.19), 

where 1 5 p < 00. Define a sequence of functions {fil}y3p=1 c V as 

Clearly the only candidate for a limit is the zero function. However, it is 
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At the same time, 

for all 1 5 p < 30. It is easy to show the nonequivalence of the norms using the 
sequence {fn}F=l and Definition A.34. 

Also the following example is related to nonequivalent norms: 

EXAMPLE A.33 (Nonequivalent norms and open and closed sets) 

Let V = C([o.  h ] ) ,  where (a .  b )  C R. Consider now the maximum norm (A. 17) and 
the integral norm (A. 18). The set 

s = { f  E v; 0 5 jf(3)I 5 1: f ( a )  = 0: , f (b )  = 1) 

is closed in the maximum norm, since 0 5 ~ ~ f ~ ~ x  5 1 for all f E S. However, it is 
open in the integral norm, since 0 < I l f l l , ,  < (0 - o ) ’ / P  for all f E S.  The situation 
is illustrated in Figure A. 14. 

.~ b x  

for all f E S a n d  S is open in the integral norm. 
FigureA.14 
0 < l l f l lP  < ( b  - 

The set S does not contain the functions fl(x) = 0 and f * ( x )  = 1. Therefore i t  is 

A.2.7 Banach spaces 

In normed spaces one finds sequences which exhibit all signs of convergence except that 
they miss a limit in V (as it was the case, e.g., in Example A.23). Let us look closer at this 
behavior. The following definition explains what we mean by “all signs of convergence”: 

Definition A.35 (Cauchy sequence) Let V be a normed space. A sequence {un}?& C V 
is said to be a Cauchy sequence if jbr every F > 0 there exists an index no such that 

Here is a trivial observation on convergent sequences: 

Proposition A.6 Let V be a normed space. Every sequence { u ~ ~ } ? = ~  C V that converges 
to some element u E V is a Cauchy sequence. 

Proof: This is an easy exercise using Definition A.27. 



NORMED SPACES 367 

A nonconvergent Cauchy sequence is shown in Example A.34. 

EXAMPLE A.34 (Nonconvergent Cauchy sequence) 

Consider the linear space C( [0,2]) endowed with the integral norm (A. 18), and a 
sequence of functions { f iL} ,X==l  c V defined as 

The sequence f T L  is depicted in Figure A.15. 

I 2 x- 

Figure A.15 Nonconvergent Cauchy sequence in the space C([O, 21). 

It is easy to calculate 

and to verify the Cauchy property 

However, the sequence { fn} ,X=l  does not have a limit in the space C([O, 21). 

The class of linear spaces where this cannot happen was first defined in the dissertation 
of a Polish mathematician Stefan Banach in 1920. S. Banach is assumed to be one of 
the founders of modem functional analysis. He made major contributions to the theory of 
topological spaces, measure and integration theory, set theory, and the analysis of orthogonal 
series. 
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Figure A.16 Stefiin Banach ( 1892-1945). 

Definition A.36 (Banach space) A r i o t - r i d  .spuc.e V is strid to he Banach space if:fi)r c>ivt;i. 

Ctr~rc./i~ sequence { I * , !  }:=, c V there c x i s t s  clri elerrierit t s  E Vs1d7 thtrt l i i i i l ~ A x  P,, = r. 

Here are a few examples of Banach spaces: 

1 .  the real or complex ,wdimensional Euclidean space R" with the discrete maximum 
norm (A.lO) or the discrete 1)-norm (A.12), whose special cases are the discrete 
integral norm (A. 1 1 ) and the Euclidean norm (A. 13). 

2. the space R"x"  ofreal or complex matrices with the norms analogous t o  the previous 
case, for example with the Euclidean norm (A. 16). 

3. the space V = I" of infinite real sequences with the discrete pnorrn 

where 1 5 1) < x, 

4. the space P'([o.O]) with the maximum norm (A.17), 

5. the space C( [a. b ] )  with the maximum norm (A. 17). 

A sufficient condition for a normed linear space to be Banach space is mentioned in Lemma 
A.25. 

Definition A.37 (Reflexivity) A normed spwe V i s  said to he reflexive (f the d u d  S ~ J ~ I C ~  to 
its dual is V ir.se/f; ie . ,  if (V')'  = V. 

Lemma A.25 Every rejexive normed sixice i s  ( I  Barznch space. 

Proof: This proof can be found in most textbooks on functional analysis, e.g., in  [65].  W 

Let us remark that there exist Banach spaces which are not reflexive. We already know 
that with U, V being normed space, the space C(U. V) is a normed space as well. The 
following theorem moreover gives a sufficient condition for C(U, V) to be Banach space. 
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Theorem A.6 (Conditions for C(U.  V )  to be a Banach space) Let U be n nornied sptrce 
trnd V he ( I  Bcinach space. Then ,C( U. V )  is CI Bniicich spice. 

Proof: Let {L,l}T=l be a Cauchy sequence in C(U.  V )  and / I  E U arbitrary. We show 
that {L,)U}:=~ is a Cauchy sequence in V :  

This is clear if ?i, = 0. If ( I  # 0 consider an arbitrary f > 0. There exists an index no so 
that llL,ll - L,,Il 5 f / l l / L l l ~ ~  for all n t . 7 )  2 I / ( ) .  Then 

and indeed {LIJu}:=l is a Cauchy sequence. Since V is a Banach space, this sequence 
converges to some element in V .  Thus we can define the limit L of the sequence 

by 

Lo = liiii L,, (( for all ( I  E U 
,,-x 

I t  is easy t o  see that L is linear, and thus it  remains to be shown that IILIl 5 x: 

7 ) ) .  ti  2 r t  

Let f > 0 be given. There exists some index 121 such that IIL,)) - L,, 1 1  5 f / 2  for all 
Therefore for every 71 E U we have 

and 

for all 2 111. Finally, 

Thus L i \  a bounded linear operator. Since IIL - L,, 1 1  5 i for all rt  2 r t , ,  we have that 
L,, + L in  C(U.  V )  as / t  i x. 

Completion of normedspaces Next let us mention the completion of normed spaces 
to Banach spaces. 

Definition A.38 (Dense subset) Let V be N norined spcice nnd S ci subset of V .  The set S 
is mid to he dense in V iffiw every 71 E V there exists ( I  sequence { s,, } F=l C S such that 

The main result is formulated in the following abstract theorem, which is followed by 
an illustrating example. 

Theorem A.7 (Completion of normed spaces) To every normed space U there exists a 
Banach space IV such that: 
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1. There is ci subspace V C IV and a linear bijection Z U + V satisfiing 

The operator Z is culled isometric isomorphism between the spaces U and V .  

2. The space V is dense in W .  

The space W is called completion of U, and it is unique up to an isometric isomorphism 1. 
Proof: See, e.g., [99]. 

For example, the Banach space W = R is defined to be the set of equivalence classes of 
all Cauchy sequences in the space of rational numbers Q. The space V is then identified 
with Cauchy sequences in Q whose limit lies in Q. The incompleteness of the space Q is 
illustrated in the following example. 

H EXAMPLE A.35 (Completion of rational numbers) 

Consider the normed linear space Q of rational numbers endowed with the standard 
norm 

In order to see that Q is incomplete, let us describe the way the ancient Babylonians 
calculated square roots. To find a rational approximation of the square root of an 
integer a > 0, let 0 < zo E Q be such that 3;; < a. Then 20 5 & 5 a/zo E Q. 
The average of these two values gives an even closer estimate, 

(A.34) 
r!. + a / x ! .  

J A + l  = E Q. 

as depicted in Figure A. 17. 

sqrt(4 

v 
> 

0 'A d r A + ,  'iil d x L  

Figure A.17 Approximate calculation of a square root 

Iterating this formula, we obtain a convergent sequence {zk}& c Q such that 

lirn rk = J;E 

It is left to the reader as an exercise to prove that the sequence is convergent and that 
its limit is &. There are several ways to do this, one of them using the fact that 

k-72 
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The formula (A.34) is still used in modern digital calculators due to its high efficiency. 
Its origin sometimes is attributed to Heron of Alexandria who described it  in his 
famous "Metric", but as a matter of fact the formula was already known to the old 
Babylonians. 

A.2.8 Banach fixed point theorem 

The concept of contractive operators and the Banach fixed point theorem play an important 
role in the analysis and numerical solution of nonlinear problems. Let us mention the basic 
results and show their applications: 

Definition A.39 (Contractive operator) Consider a Banach space V and a (not neces- 
sarily linear) operator L : V i V .  Then L is said t o  be contraction zf there exists a real 
number 0 5 q < 1 such that 

It is important that the number q is strictly less than one. Moreover, if a contractive 
operator L is linear, we have JILulJv 5 qlltllv for all ?L E V, which means that 

The following theorem holds for both linear and nonlinear operators: 

Theorem A.8 (Banach fixed point theorem) Let V be a Banach space and L : V + V 
a contraction with a constant 0 5 q < 1. Then the equation L x  = z has a unique solution 
x E V .  Moreovei; the sequence { x , , } ~ = ~  C V dejined by x,,+1 = Lx,, forall'n, converges 
to x for  every xo E V .  

The element x E V such that Lx = x is called fixed point of L. 

Proof: 
x,+1 = Lz,. We begin with showing that this is a Cauchy sequence: 

Let us choose an arbitrary element z o  E V and define a sequence { x T L } r r o ,  

/ /Z,L+k - 5 7 1  1 1  = ll%l+1 - z T L  + z T L + 2  - z T l + l  + . . . + z71+k - xn+k-1 /I 
k 

Hence, for an arbitrarily small E > 0 we always can find an index no such that 
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and we see that I ~ X , , ~  - .r,, / /  5 c for all m. 7 t  2 no. Thus the sequence {x , ,  }:=[) has a limit 
in V that can be denoted by 2 .  It remains to be shown that L.L = .r: 

Since both 112 - z,, 1 1  and l l x71+~  - 511 converge to zero as n + 30, necessarily it is L x  = .r. 
Suppose that there exist two different elements 2 and y in V such that Lx  = z and Ly = y. 
Subtracting these relations and taking the norm, we obtain 

which is a contradiction. Thus we conclude that the element .I' E V is unique. 

The procedure for finding the fixed point z E V of a contractive operator L,  which was 
used in the proof of Theorem A.8, is called fixed point iteration. The next lemma says 
that under special circumstances the operator L does not even have to be contractive in the 
whole space V to have a fixed point: 

Theorem A.9 (Local fixed point theorem) Let V be a Banach space and S its closed 
subset such that L ( S )  c S (i.e., Ls E S for  all s E S).  Further, let L : V + V be an 
operator which satisjes locally in S the contraction condition 

with some 0 5 q < 1. Then the equation L.1; = .r has a unique solution 2 E S. Moreover; 
the sequence { x , , } ~ = ~ ~ , , , ,  x,,+1 = L.z,,, converges to z f o r  an arbitray 2 0  E S. 

Proof: Let 1c0 be arbitrary element of S. By induction, the sequence {zrL}r?l0 lies in S, 
and so does its limit J: by the closedness of S. For the rest see the proof of Theorem A.8.D 

Many applications of the fixed point theorem are related to the solution of nonlinear 
problems. Let us present a few examples for illustration: 

EXAMPLE A.36 (Fixed point iteration) 

I .  Let V = R. Consider an arbitrary real function y : V + V which is Lipschitz- 
continuous with a constant 0 I q < 1, i.e., such that 

for all 2,  y E R. This requirement obviously is satisfied, e.g., by all smooth functions 
whose derivative satisfies 1g'(z)1 5 q for all s E R. Theorem A.8 guarantees the 
existence of a unique solution to the equation g ( 2 )  = X. The solution can be found 
via the fixed point iteration .c,,+~ = g ( x n ) ,  starting from an arbitrary XU E R. 

2. Now let us apply the fixed point iteration procedure to find all real solutions of the 
equation 
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2 + s - 1 = 0 

The easiest way to transform this equation into the form g ( z )  = z is to define 
g(5) = 1 - x“ .  However, then there exists no finite q > 0 for condition (A.38) to 
hold, since Ig’(x)l + 30 as .1: + m. Another attempt, 

is successful since lg’(.c)l 5 0.7 for all x E V = R. Now Theorem A.8 yields the 
existence of a unique solution z E R. Again, the solution can be found via the fixed 
point iteration z,,+~ = g(z,), starting from an arbitrary xo E R. The situation is 
shown in Figure A.18. 

’1 

n 

2 1 1 2 

X 

-1- 

FigureA.18 Solution of the equation z3 + z - 1 = 0 via fixed point iteration in R (Theorem A.8). 

3. Next let us solve the nonlinear equation 

5 - cos(z) = 0 

in V = R. The original Banach Theorem A.8 cannot be applied since there exist 
points xk = 7r/2 + k.ir such that I cos’(z~;)I = 1, and thus condition (A.38) does not 
hold for any 0 5 q < 1. This can be shown easily using some arbitrary sequence 
{ym}z=l converging to some of the points zk. Fortunately there is a remedy in the 
form of Theorem A.9. We can define a closed set S = [-l,l] and use the fact that 
cos(S) C S. Since I cos’(z)I 5 0.9 for all z E S, Theorem A.9 guarantees the 
existence of a unique solution x E S. Again, this solution can be found iteratively 
using an arbitrary zo E S. The graphs of the functions g(z)  and z are shown in 
Figure A. 19. 

4. In the last example we visit numerical linear algebra. Consider a nonsingular real 
n x n matrix A and a real vector b E V = R”. The Jacobi method for the solution 
of the system 

AX = b 
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-1 

Figure A.19 
(Theorem A.9). 

Solution of the equation s - cos(s) = 0 via fixed point iteration in 1-1. I] C V 

is based on the decomposition 

A = L + D + U  

of the matrix A into the sum of a lower-diagonal matrix L (whose entries on and 
above the diagonal are zero), diagonal matrix D and upper-diagonal matrix U (whose 
entries on and below the diagonal are zero). The equation ( L  + D + U ) x  = 0 can be 
transformed into 

5 = D-yh  - ( L  + U ) x ] .  

(without loss of generality, we can assume that the diagonal entries are not zero ~ 

otherwise we perform a permutation of rows in the linear system). This leads to the 
fixed point iteration scheme 

where xo E V is an arbitrary initial guess. We can now define an operator F : V + V ,  

Fs = D-l[b  - ( L  + U ) X ] .  

F is not linear (more precisely, it is nonlinear for all b # 0), but nevertheless we can 
use the Banach Theorem A.8 to analyze convergence of the Jacobi method: 

Let 11 be the discrete maximum norm (A.lO) in V. For any matrix 11.1 E R n X ”  
and w E V we can estimate 

(A.39) 
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where [lhijl is the matrix norm (A.15), 

Let u, I I  E V .  Substituting D- ' (L  + U )  for M and u - Y for I D  in (A.39), we obtain 

IIFu - Fullm = / ID- l (L  + U ) ( u  - I I ) I l %  I lID-I(L + U ) [ l / / u  - ? J ] l m .  
Hence the operator F is a contraction if 11D-l ( L  + U )  / /  < 1. Looking at the structure 
of the matrix D- ' (L  + U ) ,  we have 

Thus a sufficient condition for the operator F to be contraction is 

71 

(A.40) 

Every matrix A with this property is called strictly diagonally dominant (SDD). We 
have shown using Theorem A.8 that the Jacobi method applied to any SDD matrix 
converges to the solution 5 of the linear system As = b for any right-hand side 
b E RrL. 

A.2.9 Lebesgue integral and LP-spaces 

The Lebesgue LP-spaces have a prominent position within the class of Banach spaces 
because of their importance for the study of partial differential equations. Henri Lton 
Lebesgue was a French mathematician who generalized the Riemann integration and es- 
tablished the basis of modem measure and integration theory. 

Figure A.20 Henri Lion Lebesgue (1875-1941). 



376 BASICS OF FUNCTIONAL ANALYSIS 

Because of space constraints, we only can summarize the basic ideas of the Lebesgue 
integration theory in the next paragraph. For a systematic introduction we refer the reader 
to [28, 981 and [99]. 

A few loose words about the Lebesgue integration theory The measure of a set 
is a rigorous definition of its volume that remains exact even for very complicated sets whose 
volume in the traditional sense is difficult to imagine. The definition of the measure of sets 
precedes the definition of the integral. The Lebesgue measure, which is used to define 
the Lebesgue integral, is an alternative to the Jordan measure upon which the Riemann 
integral was built. There exist rare sets whose Lebesgue measure is undefined, but the 
reader does not have to worry about encountering them. since this is is almost impossible 
in practice. In what follows, all our considerations are based on the Lebesgue measure, 
Lebesgue-measurable sets and Lebesgue integrals of functions defined in such sets. We 
shall not repeat the name of Lebesgue or the measurability assumption anymore. 

We shall say that a set 120 C R" has zero measure in IW" it' its (1-dimensional measure is 
zero. For example, the d-dimensional measure of a set llo consisting of a finite number of 
points or even of a countable infinite set of points. such as the set of rational numbers, is 
zero if (1 2 1. The one-dimensional measure of the interval ( (1.  b )  equals to 0 - ( I ,  but its 
two-dimensional measure n edge of the square ( ( i .  [ I ) ~  c R2, or its three-dimensional 

n edge of the cube (a.  / I ) . '  c R', is zero. Analogously the measure of any curve 
9 : (a. b )  + R" is zero in R" if rl 2 2. The three-dimensional measure of sets consisting 
of up to countable infinite number of points, one-dimensional curves or two-dimensional 
surfaces is zero. 

Let .f : 12 + R, where f2 c R" is an open measurable set. The Lebesgue integral of .f 
over 12 is invariant with respect to the values of the function in zero-measure subsets of 12. 
This can be written as follows, 

So, for example, it  does not matter whether the integral is performed over an open set 
12 c R" or over its closure n. Or, when integrating a function in an interval (a .  b )  C R, it 
does not matter what values it attains on rational numbers. Because of the above-described 
properties the Lebesgue integral is defined for functions where the Riemann integration 
fails, as shown in the following example. 

EXAMPLE A.37 (Riemann vs. Lebesgue integral) 

Let 12 = (a. 0) C R be a nonempty bounded interval. Define 110 = 12 n Q and 
consider the function 

(A.42) 

where Q is the set of rational numbers. The graph of this function is shown in Figure 
A.21. 
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FigureA.21 Graph ofthe function (A.42). 

To define the Riemann integral, cover the interval (a .  b)  with a partition ( I  = .ql < 
. I . ]  < . . . < . r f j  = bsuch that x ,  -.r,-l 5 ( h - - 0 ) / ? 1  forall 1 5 i 5 71. TheRiemann 
integral is defined as 

(A.43) 

where t, is an arbitrary point in the subinterval (.r,- 1 .  . I . / ) .  Clearly the limit (A.43) 
does not exist, because (, always can either be minus one or one (and thus the result of 
the Riemann integration can be anything between - ( h  - a )  and b - (1).  The Lebesgue 
integral, according to (A.41), yields a unique result, 

We shall say “almost everywhere (a.e.) in f2” meaning “everywhere in f l  up to a subset 
120 C f? ,  where 1Q)1 = 0”. Two functions f and f defined almost everywhere in R are said 
to be equivalent in the Lebesgue sense if .f’ = f in  12 \ 110, where 1 Q 1  = 0. In the above 
example, the function g(.r)  was equivalent to G(.r) = -1. 

Definition A.40 (L”-norms and LP-spaces) Let 12 C R“ be cin open set. Con,sider the 
linear space V of measurable functioiz.~ dejined in ( 1 .  For every 1 5 p < x we define the 
L1’-norm in V as 

The L” norm in V is dejned as 

I l f i l m  = ess sup If(z)l. 
X € S >  

where the essential supremum of a function is defined as 

(A.44) 

(A.45) 

The spaces LP(f1) ure dejined us 
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L”(f2) = {f E v: l l f l i p  < m} f o r  d l  1 5 p < O3 

and 

L”(12) = {f E v; fSS S u p  I f 1  < O3}. 
XE12 

Despite its rather complicated definition, the essential supremum is just the “supremum 
that disregards extrema in zero-measure subsets”. If the essential supremum of a function 
is finite, this function is said to be essentially bounded. 

Of course the reader has the right to ask if the relations (A.44) and (A.45) define norms: 
We are going to prove the corresponding triangular inequalities to Paragraph A.2.10. Prior 
to manipulating with LP-functions, however, let us get some feeling for their shapes. 

Shape of Lp  functions in 0 C ]w 

1. Let 62 = ( a ,  b )  C R be bounded. Then every essentially bounded function f : 12 + 

R, If(x)l 5 C a.e. in R, belongs to Lr’(R) for all 1 5 p 5 03. This is obvious for 
p = 03, and for p E [l, 00) we can estimate 

(A.46) 

2. In unbounded sets R C R, essentially bounded functions still lie in Lx(c2) (that is 
the definition). But generally they do not lie in Lp(R) forp E [1, 03). This is obvious 
when taking the function f (x )  = 1 and rewriting (A.46) for a set R c R, 101 = 03. 

3. One of the main purposes for LP-spaces is to control the strength of singularities. 
Consider, for example, the interval R = (0,1) and the function f(z) = 1,””. Then 
the Lp-norm of f ( x )  is 

Hence, real functions defined in R C R lie in the space Lp(R) if either they are 
essentially bounded or if their singularities are weaker than the singularity of 
(at singular points they go to infinity slower than z-l/P). 

4. The other purpose of LP-spaces is to control the rate of decay at infinity on unbounded 
sets. Consider, for example, the interval (2 = ( 1 , ~ )  and the same function as above, 
f(z) = 1 , ’ ~ ~ .  Now the Lp-norm of f(z) is 

1 1 

P 

1 
00 a <  -. 

P 
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We conclude that on unbounded sets R C W, real functions lie in the space L7'(R) if 
they decay faster than lls'l" at infinity. 

Shape of L p  functions in S2 C EXd 

1. Let R c Wd be an open bounded set. Then every essentially bounded function 
f : R + W, If(s)i 5 C a.e. in 0, belongs to LP(R) for all 1 5 p 5 00 (proof is 
analogous to the 1 D case above). 

2. Let R C W d  be an unbounded open set. For the same reason as in the 1D case, 
essentially bounded functions lie in L"(R), but generally they do not lie in LP(R), 
1 5 p < 00. For this they need a sufficient rate of decay at infinity, analogously to 
the 1 D case. We will discuss this in a moment. 

3. In order to analyze the behavior of functions with singularities in bounded open sets, 
it is enough to use the open ball R = B(0, R) C Wd with a finite radius R > 0. 
Consider the function f(z) = 1/r", r ( z )  = dx: + . . . + x i .  Using the integration 
in polar coordinates (which is left to the reader as an exercise), we obtain that 

Thus a function defined in an open bounded set 0 C W d  belongs to LP(R) if and only 
if either it is essentially bounded or its singularities are weaker than the singularity 
of r-d/rl. 

4. On the other hand, for functions on unbounded open sets we can restrict ourselves 
to the open set R = W d  \ B(0, R), where R > 0. For the function f(z) = 1/rn,  
r ( z )  = ds: + . . . + xi, using the integration in polar coordinates again, we obtain 

We conclude that functions defined in open unbounded sets R c W d  belong to LP(R) 
if and only if they decay faster than r-dlP at infinity. 

Let R C Wd be an open set. Then the space LP(R) is infinite-dimensional and its basis, 
obviously, consists of an infinite number of functions. To give an example, the Legendre 
polynomials Lo, L1, Lp, . . . form a basis in the space L2( -1,l). We will discuss them 
in more detail in Paragraph A.3.3. Another important example is the basis of the space 
L2(0 ,  27r) consisting of the functions { c o s ( ~ ~ x ) } ~ = ~  and {sin(nx)}F=l, which is used to 
expand L2-functions into Fourier series. The Fourier series will also be discussed in more 
detail in Paragraph A.3.3. Before we present the most important inequalities in LP-spaces 
in Paragraph A.2.10, let us say a few words about discrete LP-spaces. 
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Discrete LP-spaces Although in this text we focus primarily on infinite-dimensional 
LP-spaces defined in open subsets 0 of R" (case most relevant for the study of partial dif- 
ferential equations and finite element methods), the finite-dimensional spaces R" equipped 
with the discrete p-norm (A. 12) are also worth mentioning. 

Discrete LP-spaces are defined on the so-called counting measure (see, e.g., [99] for 
details), where the integration is equivalent to summation. Then the integral p-norm (A.44) 
comes over to the discretep-norm (A. 12), and the Lxc-norm (A.45) naturally is replaced with 
the discrete maximum norm (A.lO). The finite-dimensional case of RrL can be generalized 
to the space of infinite real (complex) sequences. Used is an analogy of the discrete p-norm 
(A.12), with the sum going from one to infinity, and the analogy of the discrete maximum 
norm (A. lo), where the maximum is replaced with the supremum over absolute values of all 
entries of the sequence. Sometimes the discrete LP-space in R" is denoted by the symbol 
lP(R'L). 

A.2.10 Basic inequalities in LP-spaces 

In this paragraph we prove that the relations (A.44) and (A.45) indeed define norms, and 
we introduce several important inequalities in LP-spaces: The triangular inequality for the 
LP-norms is called Minkowski inequality. The proof of the Minkowski inequality requires 
the Holder inequality, which in turn is based on the Young inequality. 

The following proofs contain numerous algebraic manipulations involving a pair of real 
numbers 1 < p ,  9 < m such that 

1 1  
I I  

- + - = l .  
P Y  

To get more familiar with this relation, check that 

o(I = P + Y 

and 
(P - l ) ( q  - 1) = 1 

are equivalent to (A.47). 

Lemma A.26 (Young inequality) Let u,  0 2 0 and 1 < p, q < cx) such that 

1 1  
- + - = l .  
P 9  

Then 
up bQ 

P Y  
a b < - + - - - .  

(A.47) 

(A.48) 

Proof: For an arbitrary 0 < b E R define a function f : [ O , c x ) )  + R by 

It is easy to verify that f'(so) = 0 if and only if z~ = b*, that f ' ( z )  < 0 for all 17: E (0, xo) 
and that f ' ( z )  > 0 for all z E (zo, m). Evaluating the function f ( z )  at zo = b*, we 
discover that f(q) = 0. Therefore it is 

xP bq 
O < - + - - x b  

P 9  
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for all .T 2 0, and thus (A.48) holds for all a 2 0. 

The following modification of the Young inequality is equally useful: 

Lemma A.27 (Modified Young inequality) Let a. b 2 0, f > 0 cind 1 < p ,  q < x such 
that 

Then 

1 1  
- + - = 1 .  
P c l  

(A.49) 

Proof: Relation (A.49) follows immediately when (A.48) is applied to properly changed 
values ii> h instead of the original values a, h. This is left to the reader as an exercise. 

The Holder inequality was first proved by a German mathematician Otto Ludwig 
Holder in 1884, in the context of convergence analysis of Fourier series. O.L. Holder 
contributed significantly to mathematical analysis and group theory. 

Figure A.22 Otto Ludwig Holder ( I  859-1 937) 

Theorem A.10 (Holder inequality) Let f l  C Rd be an open set and 1 5 p .  q 5 30 such 
that 

1 1  - + - = I  
P c l  

(it is understood thot 11.. = 0). Let I L  E LP(R) and v E L’J(C2). Then 

Proof: 
use the modified Young inequality to obtain 

I f p  = 1, p = cx: or I I iL I I I j  = 0 then the inequality obviously is satisfied. Otherwise 
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for all F > 0. The function 

attains its minimum at €0 = Using the value cg in ( A S  I ), we obtain 
lluIl;;r1 ’ 

f 0 F : ) - ( l  1 1 l? l 4x ) l l 4~ ) l  d x  5 -114;; + -1l4I: = -ll~~ll!~ll4l~~ + - l l ~ l l P 1 / 4 I q  = I l ~ ~ l l P l l ~ I l f ~ ~  
2, (I P 9 

which concludes the proof. 

Let us remark that in the space P (R”) ,  equipped with the discretep-norm (A.12) or the 
discrete maximum norm (A. lo), the Holder inequality (A.50) attains the following form: 
Let u . 1 1  E R”, and 1 5 p ,  q 5 cc such that l / p  + l / q  = 1. Then 

(A.52) 

This inequality sometimes is called discrete Holder inequality. 

The Minkowski inequality carries the name of a German mathematician Hermann 
Minkowski. Although he was mainly interested in topics of pure mathematics such as 
quadratic forms and continued fractions, it is commonly assumed that the greatest contri- 
bution of H. Minkowski was the coupling of the space and time into a four-dimensional 
continuum, that provided the foundation for all later work in relativity. Albert Einstein 
attended several of his courses in Zurich. 

Figure A.23 Hermann Minkowski (1864-1909). 



NORMED SPACES 383 

Lemma A.28 (Minkowski inequality) Let R c Rd be an open set and 1 I p 5 m. Then 

for all u. v E LP(C2). 

Proof: The inequality obviously is satisfied for p = 1 and p = m. Applying the Holder 
inequality, for p E (1,m) we obtain 

IIu + = l2 iu(z) + v ( z ) l P d z  = lu(z) + v(z)lp--‘Iu(z) + v ( z ) l d z  

lu(z)  + v ( ~ ) l ~ ~ - ~ I v ( z ) l  d z  

b 
i u ( z )  + ~(z)l”-~1u(z)1 d z  + 1 2  

I ( L  lu(z)  + v ( ~ ) / ( ~ - ’ ) ~  d z  

= 
1lU + ~l l ; -1 ( l14P + ll4l.D)> 

which concludes the proof. 

Herewith the triangular inequality for the LP-spaces is verified and we can be sure that 
(A.44) and (A.45) are norms. In the space P(R”) ,  equipped with the discrete p-norm 
(A. 12), the discrete Minkowski inequality has the form 

The Young, Holder, and Minkowski inequalities are encountered frequently in the analysis 
of functions in Lp-spaces. The next lemma summarizes several other important properties 
of these spaces: 

Lemma A.29 Let R c Rd be an open set. 

I .  For every 1 5 p 5 m, Lp(R) is a Banach space. 

2. For every 1 5 p 5 oc, every Cauchy sequence in LIJ(R) has a subsequence that 
converges pointwise almost everywhere in R. 

3. Let fl be bounded. Then,for every 1 5 p 5 q I 30, Lq(R) c Lp(R), and we have 
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1 y I - - /  - = - + -  
I’ p (1 

the ,following interpolation property of L”-spue.s holds: 

I l ~ ~ l l r  5 l l ~ ~ l l ; l l ~ ~ l l ; - ~  
Proof: These results are standard, but their proofs are rather technical. See, e.g., [34,65] 

The assumption of boundedness of 0 in the third assertion of Lemma A.29 is important. 
The reason why on bounded sets in R” the L k p a c e s  get smaller as the exponent p rises is 
that the maximum admissible strength of singularities decreases (Figure A.24). 

and [99]. 

FigureA.24 Structure of W s p a c e s  on an open bounded set 12 C R”. (L”’Jt!’ stands for L”.) 

On the other hand, if ( 1  is unbounded, then the implication does not hold since evidently 
not all bounded functions are integrable. 

A.2.11 

Let 61 C R” be an open set. The ability of functions from the space C” ((1) to approximate 
the Wfunctions with an arbitrary accuracy is of great practical importance in the analysis 
of partial differential equations. This result is formulated in Lemma A.30. At the end of 
this paragraph we briefly discuss the duality of the LJ1-spaces. 

Lemma A.30 Let 0 c R“ be an open set. Then for  any 1 5 p < x and any 71 E L”(0)  
there exists cc sequence 

Density of smooth functions in LP-spaces 

C C” (0) such thcct 

lirn llu,, - 0 1 1 , ’  = 0 
11-x 

Proof: See, e.g., [34,65] and [99]. rn 

This means that no function ‘u E LJ’(12) is isolated from C“-functions in the sense that for 
arbitrarily small f > 0 there always is some C“-function in the open ball B( t i .  F )  C LJ’(I?). 
If I2 is bounded, then the result of LemmaA.30 holds even for the space C,? ( (2)  of infinitely 
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smooth functions that vanish on the boundary of 12. The result also holds for every space 
C”’ ( ( I ) ,  r r i  2 0, of rrb-times continuously differentiable functions (including the space 
C((2) = C”(12) of continuous functions). 

Density argument A frequently used technique for proving various properties of func- 
tions in L?’-spaces, called density argument, works as follows: 

0 Let 1’ E LJ’(12) be a function whose property (P) is to be shown. 

0 ydke some sequence in C”(f2) converging to 1 )  in  the / I  Il,-norm (the existence of 
such sequence is guaranteed by Lemma A.30). 

0 Prove that starting with some index no, theelements in  the sequence have the property 
(P). This step usually is much easier for infinitely smooth functions than for the 
original function 7). 

0 Show that also the limit of the sequence has the property (P) 

This technique will be used, for example, to prove the Poincark-Friedrichs’ inequality in 
Paragraph A.4.5. Let us give an example of such sequence: 

H EXAMPLE A.38 (Sequences of c” -functions converging to an L”-function) 

I .  In the interval 0 = (- 1.1) consider the function 

1 .r = 1. 

{ 0 elsewhere in 12 
1 1 ( 3 . )  = 

This function belongs to the space L’’(I1) for all 1 5 p 5 x. The sequence of 
C” (0)-functions {.uli }?==,, 

converges to 1 1  in the p-norm for all 1 5 p < x. The functions ‘ ~ 1 .  1 6 1 0 .  11100. ‘ t ~ 1 0 0 0 ,  

and u 1 O o o o  are shown in Figure A.25. 

U,‘ = (1 - 2)” 

1 

Figure A.25 Example of a sequence converging out of C(-1. 1). 

Since the function 71 is equivalent to the zero function in the Lebesgue sense, one 
can say that the sequence { u , , } ~ = ~  converges to zero in all spaces L”(f2) for all 
1 5 p < x. The sequence does not converge in the Lx-norm. 
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2. Next, in the interval C? = (0,27r) consider the discontinuous function 

x E ( 0 , T ) .  

{ x  x - 27r z E [7r,27r). 
u ( x )  = 

This function again belongs to the space LX(R)  on a bounded set and therefore it 
lies in all spaces LP(R), 1 5 p 5 x. The sequence of Cm(R)-functions { u ~ ~ } ? = ~ ,  

converges tow in the L2-norm (actually it converges in thep-norm for all 1 5 p < x). 
For the explanation, however, the reader will have to wait until ParagraphA.3.3 where 
we arrive at the Fourier series. 

The last topic in the theory of LP-spaces that we would like to discuss in this section is 
their duality: 

Lemma A.31 (Duality of LP-spaces) Let R c Rd be an open set and 1 < p < oc. Then 
an-y dual space V' to the space V = LP( (1) is isomorphic with the space L9 (0)  where 

1 1  
- + - = l .  
P 4  

Proof: Consider the subset S C V' consisting of all linear forms that can be written as 

where uf are arbitrary functions. Since u E V and I l f l l r , (  has to be finite, the Holder 
inequality restricts the functions u f  to lie in the space L'l(R). The next step of the proof is 

Remark A.2 (Dual space for LX (12)) Genemlly, it is not true that the dual space to 
L"O(f2) is L1 (0). This only holds if the measure of the set R is ujinite. More details 
can be found in [99]. 

to show that S = V'. This is more technical and we refer, e.g., to [99]. 

A.2.12 Exercises 

Exercise A.23 Let V = R", TL > 0. Show that the,functions 

and 
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are norms on V .  These norms are called discrete maximum norm (lX-norm), and dis- 
crete integral norm (1‘ -norm), respectively, because oftheir relation to Lebesgue spaces o f  
sequences. 

Exercise A.24 Let V = C( [O, 11). Show thut the function 

is a norm in V .  

Exercise A.25 Consider the space V = C’( [ O , 1 ] )  and decide which of thefollowing is a 
norm and which only is a seminorm: 

h 

5. nlax lu’(.z)/ + .I Iu(x)I d x ,  a. b E (0 , l ) .  (L < b. 
0 < r < l  

Exercise A.26 Use Definition A.27 to prove the equivalent characterization of limit in 
Lemma A.20. 

Exercise A.27 Use Dejinition A.27 to show that the sequence in the third item of Example 
A.22 does not converge in V .  

Exercise A.28 Prove the “bcickwctrd triangular inequality ” (A.25) and the corresponding 
resu1t.fornormedspace.s: li/unl/v - llubllvl 5 IIu, - iihllv forallu,,utl E V .  

Exercise A.29 Prove Proposition A S .  

Exercise A.30 Prove inequalities (A.29) and (A.30) in Example A.30 (equivalence of the 
discrete maximum norm, discrete integral norm, and the Euclidean norm in R”). 

ExerciseA.31 Consider the space C’(O,1) n C([O. 11). Prove thar thefollowing norms 
are equivalent: 

and 

Hint: Use the main theorem of calculus or the integrul mean value theorem. The latter says 
that for  every 9 E C( [0, 11) there is a < E [0, 11 such that 
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Exercise A.32 Adjust the procedure ,from Example A.31 to prove the equivalence of the 
maximum norm (A.17) and the p-norm (A.19) with p = 2 in the space P h  ( [ - 1 .  l]), where 
h. is an nrbitruty natural number: 

Exercise A.33 Let ( a ,  0 )  c R be a nonempty hoimded intervul 

I .  Construct an injinite sequence offunctions in the spuce V = C( [a, b ] )  that converges 
in the p-norm,for al! 1 5 p < 3~ hut which does not converge in the muximum norm. 

2. Use this sequence and Definition A.34 to show thrit the rnaximLim and p-nornzs ure 
not equivalent in V. 

3. Is it possible to construct ci sequence in V which converges in the ma.rimuni norm hirt 
does not converge in the y-norm? Present a proof: 

4. Find A siibset S C V that is open in the p-norm but is not open in the intixiinurn norm. 
Cun you do this vice ver.sn cis well.') 

Exercise A.34 Show that the definitions of the operator norin (A.26) and (A.27) ure equi11- 
dent .  

Exercise A.35 Prove Proposition A.6 (every convergent sequence in n izorined spnce is n 
Cmchy sequence). 

Exercise A.36 Let V be a normed spnce cincl { i i , ,  } :=, c V ( I  Cuucliy sequence. Suppow 
that there is n subsequence { }?=, c { u l )  and .some element (1 E V such that 

Show thut 

Exercise A.37 Show thut the sequence (A.34) is contvrgent and tliut the limit is &. Hint: 
Use, ,fi)r example, (A.35). 

Exercise A.38 Consider the open hall B(0. R )  c Wr, d = 3, with ci ,finite rudiL1.s R > 
0, and the ,function f (x) = I/?, ~ ( x )  = d.r: + . . . + .I.:. Show thut the ,following 
.statements hold: 

I .  Let 12 = B(0. R). Then f(x) E L"(12) i fund only i f (>  < d / p  

2. Let 12 = Iw" \ B(0. R). Then f(x) E L"(12) / fund  on!\ $(I  > d / p .  

Describe in detuil the applicrition of the Siibstitirtion Theorem ,for inregrution in sphericul 
coordinates, and write the corresponding i-esulting ,finite integrul. 
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Exercise A.39 Prove the rizodijed Young inequcrlity (A.49) iising the Young inequality 
(A.48). 

Exercise A.40 Let S2 c R" be cin open set nnd 1 5 pl.  p ~ .  . . . . pt,, such that 

1 1  1 - + - + . . . + -  = 1 
P I  P2 P r n  

Use the Hiilder ineyrmlity (A.50) to prove the genemli;ed Hiilder ineqriality 

Hint: Proceed bv iridricrion 

Exercise A.41 Consider the spcice V = L1 (-1. 1) cindthe .step,funcriorz ~ ( x )  E V ,  V ( Z )  = 
(),for d l  .r < 0 arid 'o(x) = 1,for all 1: 2 0. Construct sonic concrete .secluerice {'u,, c 
C"(-1. 1) .sLl(.h that 

Hint: The n o r m  I I ~ L , ~  - uII 1 d o  not have to be cnlciilated exclctly ( f  yori can esfimcite them 
by some  dies that converge to zero. 

A.3 INNER PRODUCT SPACES 

Some linear spaces can be endowed with inner product, which is a binary operation similar 
to the "dot-product'' 

, I  

(7L. 1')p." = I /  I ]  = c IL, (A.56) 
,=1 

of vectors in R". Such spaces are called inner product spaces. Orthogonality in a general 
inner product space V is defined analogously to the orthogonality of vectors in R", 

u I l i  u (u. 0)I .  = 0. (A.57) 

The notion of orthogonality and orthogonal projection makes inner product spaces extremely 
convenient for the study of partial differential equations and finite element methods. After 
discussing the most important concepts and techniques available in inner product spaces, 
at the end of this section we also mention compactness and weak convergence. 

A.3.1 Inner product 

Definition A.41 (Inner product) Let V be a real or complex linecirspace. An inner product 
in V is any,fiiriction (-. .)v : V x V + R (or C )  with the,following properties: 

1. For any u E V ,  ('u, U ) V  2 0 und moreover ( u .  u)" = 0 i f  arid on1.y i f  u = 0. 

2. For any u, o E V ,  ( u . 2 ) ) ~  = ( u . ) ~ .  

3. For any u. 71, 'ui E V cind all a.  b E Iw (or C) we have (om + bv. w ) ~  = a( IL. u : ) ~  + 

~ 

b(,u. ' 1 1 l ) r . .  
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In real inner product spaces the second axiom reduces to the symmetry assumption: 

The subscript V usually is left out when the space V is clear from the context. We restrict 
ourselves to real inner product spaces in the following. 

EXAMPLE A.39 (Inner product spaces I 2  (R" ) and L2 (12)) 

1. It is a simple exercise to verify that the standard "dot-product'' (A.56) in R" is an 
inner product in the sense of Definition A.41. Adding this inner product to R", we 
obtain the inner product space L2(R") that we first encountered at the end of Paragraph 
A.2.9. 

2. Let 0 c R" be an open set. It is another simple exercise to verify that the relation 

defines an inner product in  the normed space L2(Q)  

Next let us show that every inner product space is a normed space: 

Lemma A.32 (Inner product induces norm) Let V he uiz inner product space. Then the 
function 

is a norm in V .  

Proof: 
obvious. Hence, let us choose any 7 ~ .  21 E V and write 

Among all required properties of a norm, only the triangular inequality is not 

IIU + U 1 I 2  = ( 2 L  + U , ? f  + (1) = (U. I L )  + 2 ( U .  ( 1 )  + ( ( 1 . 7 1 )  

(A.59) 2 5 11412 + 12(% ( ) ) I  + ll4 . 

Now let us verify that 

for all u,11 E V. If u = 0 or 71 = 0, (A.60) hold5 
nonnegative real function 

If ( L  # 0 and v # 0 we define a 

0 5 p(t) = (u  + t l l .  u + f r )  = (u,  7 L )  + 2 ( I L .  u ) t  + ( ( 3 .  ? I ) t J .  

Since p(t) is a parabola, its discriminant must be nonpositive, 

which proves (A.60). Returning to (A.59), finally we obtain 
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which concludes the proof. 

Inequality (A.60) is of essential importance in inner product spaces, and therefore let us 
formulate it once more in a separate theorem: 

Theorem A . l l  (Cauchy-Schwarz inequality) Ler V be an inner product space and / /  . 1 1  
the norm induced by the inner product (., .). Then 

for all u ,  ’11 E V .  

Proof: See the proof of inequality (A.60) 

EXAMPLE A.40 (Holder implies Cauchy-Schwarz) 

1. The discrete Holder inequality (A.52) with p = q = 2, 

together with the triangular inequality 

pv71 I ~ l u 7 u 7 1 .  r = l  

z = 1  

imply the Cauchy-Schwarz inequality in the inner product space l2 (W), 

2. Let fl be an open subset of Rd. Also in the space L2(s2) the Cauchy-Schwarz 
inequality, 

is a consequence of the Holder inequality (A.50) with p = q = 2 and the triangular 
inequality. 

We know from Lemma A.32 that every inner product induces a norm. Conversely, there 
are norms which induce an inner product: 
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theii it indirces mi iriner proclirct iri V .  This iriner prodiict is rlcfined hx the relrition 

1 
(u. P) = - (1111 + ('112 - 1 1 / /  - l.112) (A.63) 

I t  I $  easy to \ee that (u. / I )  2 0 for all IL  E V and that ( ( I .  ( I )  = 0 if and only if 
4 

Proof: 
( L  = 0. Second, 

1 
4 

( / I .  I ( )  = - (110 + I ' l l 2  - / I f 1  - (,112) = ( ( 1 .  P) 

verifies the symmetry. Next the linearity of the relation (A.63) has to be verified, i.e., we 
are asking if the following two conditions hold: 

and 
( f lu .  1 ' )  = ( 1 ( / 1 .  / I )  for all ( I  E R. f /  E v. 

To begin with, it is 

(A.64) 

1 
4 

( / / .  / P )  + ( 7 1 .  (11) = - ( I lu  + if9112 - 1111 - f f * l 1 2  + 1 1 1 ,  + (1'112 - 111' - f / l l 1 2 )  

I t  is left to the reader to verify that the right-hand sides are equal, using the parallelogram 
rule (A.62). Also use the decomposition 

which holds for all elements i r .  ii E V .  I t  remains to verify relation (A.64): For arbitrary 
(1. 11 E V define a real-valued function 

It is sufficient to show that 

f ( o )  = ( i f ( 1 )  for all ( I  E R. 

After some calculation, we obtain that 

(A.65) 
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It is , f ( O )  = 0. Taking ;y = 0, we obtain 

f(.c) = 2 f (I) 
Relation (A.66) yields f(x) - f ( y )  = f(.c - g). Therefore f ( ~ )  is a linear function passing 

H through the origin [O. 01, and (A.65) holds. 

Remark A.3 

1. 61 ci complex norined space the relcrtiori (A.63) only defines the r e d  pcirt of the inner 
product. The complex part is defined analogously, repliicing ‘ i ~  with j i ~ .  

2. l f ( 7 ~ .  1 1 )  is inrierprodilct in a real linear space V ,  then it scitisfies (A.631, 

1 
- [2( U .  / I )  + 2 ( 7 J ,  7 L ) ]  = 

= ( 1 L . 1 J ) .  

4 

3. The norin I /  . 1 1  = induced by this inner product satisfies the parnllelogmrn 
ride (A.62), 

I I ~ L  + 1 ~ 1 1 ~  + I I ? L  - 1111~ = ((L + u . u  + ‘0) + (u - 7i.11 - 1 1 )  

= (7L. 7 L )  + (71,. 1 1 )  f (71. 71) + (71. 71) 

+ ( U .  11) - ( 7 L . 1 1 )  - (71. U )  + (71, 1 ) )  

= 2117L1/2 + 21/7q12. 

H EXAMPLEA.41 (Parallelogram rules in z2(R”) and L 2 ( 0 ) )  

I .  Consider the normed space Z2(R7’). The parallelogram rule (A.62) reads: 

2. Consider the normed space L2(R) in an open set R C R“. In this case the parallelo- 
gram rule (A.62) has the form 
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Let R C Rd be an open set. The parallelogram rule determines that L2(R)  is the only 
inner product space among the Lebesgue L"-spaces: 

Remark A.4 (Lq(fl), q # 2, is not inner product space) Fr,r ang 1 5 y 5 x, q # 2, the 
relation (u. v) dejined by (A.63) is not linear in u, and therefore it cannot represent an inner 
product. Analogous conclusion holdsfor the discrete Lebesgue spaces P(Il%"). 

Every inner product is continuous with respect to the norm it  induces: 

Lemma A.34 Let V be an innerproduct space, u E V and { ~ L , ~ } F = ~  C V .  I f  

lim I I U , ~  - ~ L I I  = 0 
71 + 3c 

then for  anv ?I E V 
liiii (uT1 ~ v) = (u. 1 1 ) .  

r t - x  

Proof: Using the Cauchy-Schwarz inequality we immediately obtain 

1 ( ~ 7 ~ , v )  - (u, ())I = I ( %  - uL;7j)I 5 II%I - 7 l l l l l 7 j l l .  

The conclusion follows from the fact that /Iv//  is a finite number and lIuTl - z ~ l l  + 0 as 
n + m. rn 

A.3.2 Hilbert spaces 

From the point of view of convergence analysis i t  is convenient to work in complete inner 
product spaces. This class of linear spaces carries the name of a German mathematician 
David Hilbert, who contributed to many branches of mathematics, including invariants, 
algebraic number fields, functional analysis, integral equations, mathematical physics, and 
the calculus of variations. 

Figure A.26 David Hilbert ( 1  862-1943). 

Because of the importance of the Hilbert spaces, we reserved this paragraph for their 
definition and a few examples. Most of the time we shall stay in real Hilbert spaces. 

Definition A.42 Evety complete inner product space is said to be a Hilbert space. 
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EXAMPLE A.42 (Hilbert spaces) 

A sufficient condition for an inner product space to be Hilbert space is that the under- 
lying normed space be a Banach space: 

1. The space V = L2(Rd), i.e., R” equipped with the “dot-product’’ (A.56), is a Hilbert 
space. 

2. The space V = lz(R’LxT’), i.e., RT’x” equipped with the Frobenius inner product 

(which induces the Frobenius norm (A.16)) is a Hilbert space. 

3 .  The space V = l 2  of infinite real sequences, equipped with the 12-product 

x 

(u, 71) = c 1 L , l J , .  (A.67) 
,=1 

is a Hilbert space. 

4. Let R be an open subset of Rd. The space L2(f2) equipped with the L2-product 
(A.58) is a Hilbert space. By Remark A.4 this is the only Hilbert space among the 
Lebesgue L%paces. 

A.3.3 Generalized angle and orthogonality 

In this paragraph we define generalized angle and orthogonality of elements in Hilbert 
spaces. 

Definition A.43 (Generalized angle) Let V be a Hilbert space. The angle of two elements 
0 # u. ’11 E V is a real number cr E [O, .-) such thut 

EXAMPLE A.43 (Generalized angle) 

Some of the inner products used below can be found in Example A.42. 

I .  In the space V = L2(Rd) the formula (A.68) reduces to the standard relation 

(A.68) 

To give a concrete example, the angle of the vectors u = (1,l.  O ) T  and li = (0,1, l)T 
in R“ is 



396 BASICS OF FUNCTIONAL ANALYSIS 

2. Consider the matrices 

A = ( 0  1 0 1 0 ) .  1 B = ( l  0 0 1 0 1) 
1 0 1 0 1 0 

in the space V = l'((Iw"'"). The angle of A and B is 

3. Next let us calculate the angle of arbitrary geometrical sequences L( = {u,i)T==l 
and 'v = { u , ~ } : = ~  in the space I' equipped with the 12-product (A.67). Consider 
geometrical sequences given by the parameters ( I , ,  = u()r"- ' ,  P ) )  = q~.s"-l. 0 < 
7'. s < 1, 0 < 7 4 ) .  710 E R. We have 

4. Last consider an open set 12 = (-1.1) c R and the Hilbert space L'(f2). The angle 
of the functions f ( ~ )  = 1 and g ( r )  = .c is 

(they are orthogonal). The same result will be obtained for any two L2(-1. 1)- 
functions f and g. where f is even and 9 odd or vice versa. 

Orthogonality of elements in Hilbert spaces is defined as the reader expects: 

Definition A.44 (Orthogonality and OG complement) Let V be an Hilbert space. The 
elements 0 # u, 21 E V are xiid 10 be orthogonal if(.. 21) = 0. An element 0 # 71 E V is 
said to be orthogonal to u nonempty siibset S C V if (71.  s) = 0,fOr all s E S. We dejine 
orthogonal complement OfS as 
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Lemma A.35 (OG complement) Let S be a nonempty subset (?fa Hilbert space V .  Then 
S‘ is LZ closed subspace of V .  

Proof: Immediately from Definition A.2. rn 

Definition A.45 (OG and ON basis) Let B = { i i l ,  up, . . .} be a basis o f a  Hilbert space 
V .  B is said to be orthogonal (OG) (f 

( l i t ,  v J )  = 0 whenever i # j .  

The basis B is orthonormal (ON) (f 

Every basis of a separable Hilbert space can be transformed into an orthonormal basis. (A 
linear space is separable if it has a finite or countable infinite basis.) The orthonormalization 
procedure is called after a German mathematician Erhardt Schmidt (1876-1959), who 
contributed significantly to the development of the theory of Hilbert spaces. He published 
this result in 1907. 

Theorem A.12 (Gram-Schmidt orthogonalization) Let B = ( 7 ~ ~ .  ‘1LJ2,. . .} be some ba- 
s i s  in n Hilbert space V .  Then there exists an orthonormal basis B = {?)I, u;?. . . .} such 
that 

,for all 71 2 1. 

Proof: The proof is done inductively. For n = 1 define 711 = w ~ / / I ~ u ~ I I .  Next assume the 
existence of n, - 1 orthonormal functions 711,712, . . . ~ ii,- 1 satisfying 

V, Ip l  = S p m { 7 1 1 . 7 ) 2  , . . . .  = spari{uil.wp,. . . ,~uuin-1}.  

Define an element W,, E v3-l by 

r , - 1  

w,, := - y ( w ? , . 7 ~ l ) u l .  
1=1 

and another element (i~: := u i r ,  - t i ] , , .  For any 1 5 k 5 7) - 1 we have 

(A.70) 

and thus .i;f E v+-l. Since ui,, $ vI-l, i t  is IlU’;f 1 1  # 0, and we can define 

which finishes the proof. 

For example, the Legendre polynomials can be constructed via the Gram-Schmidt pro- 
cedure: 
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W EXAMPLE A.44 (Legendre polynomials) 

LetususethemonomialbasisofthespaceV = L2(-1. l),B,,LO,L = {w1, ~ 1 2 . ~ 1 3 ,  u14, 
. . .} = { 1. I:, x 2 ,  5''. . . .}  and the Gram-Schmidt process to create an orthonormal 
basisofthespacev. Inthefirststepnormalize,cul,Lo(i:) = ~ 1 1  = W ~ / ~ ~ ~ U J ~ ~ ~  = 1/&, 
and define Vl = span{ til }. Next define the element C J ~  E Vl by 

Thus GI$ = w 2  - U;2 = .c. Normalizing ~ T J $ ,  we obtain 

Define V;, = spari(zJ1 u2}, and the element eii:3 E V2 by 

=o 

The fourth Legendre polynomial Ls, obtained analogously, has the form 

L:3(:r) = 'el1 = -(.9 - 3.1.) .  d 
The Legendre polynomials of higher degrees are usually defined by means of recurrent 
formulae (to be found in many books, see, e.g., [ 1 I I ]  and [ 1 171). First few Legendre 
polynomials are depicted in Figure A.27. 

Figure A.27 First tive Legendre polynomial\ LO. L1. . . . . L I .  
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A.3.4 Generalized Fourier series 

The expansion of an element ‘ i ~  of a Hilbert space V into an orthonormal basis of V can be 
viewed as the construction of generalized Fourier series. 

Jean Baptiste Joseph Fourier was a French mathematician who made significant contri- 
butions to the mathematical theory of propagation of heat in solid bodies. His theory of 
heat provoked great controversy at his time. The Fourier expansions of real functions into 
trigonometric series were present already in his famous work “On the Propagation of Heat 
in Solid Bodies” from 1807. 

Figure A.28 Jean Baptiste Joseph Fourier ( 1  768-1 830). 

After introducing the general theorem, we show an application to the classical Fourier 
series in  Example A.45. Although all results in this paragraph are formulated for infinite- 
dimensional Hilbert spaces, they obviously hold in the finite-dimensional cases as well. 

Theorem A.13 (Generalized Fourier series) Let V be n Hilbert space and B = (111, 112, 

. . . } nn orthonormal basis of V .  Then any  element IL E V can be written ns 

Proof: Any element (L E V can be written as 

/ = I  

From the orthonormality of the basis functions one obtains 

(A.71) 

and (A.7 I ) follows. 
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Important consequences of Theorem A. I3 are the generalized Parseval equality and the 
generalized Bessel inequality: 

Lemma A.36 (Generalized Parseval equality) Let V he ci real Hilhert space, 13 = { ol, 
712, . . . } an orthonormal basis OfV and i i  E V .  Then 

I x  

(A.72) 

Proof: Write llu112 = ( u . ~ )  andapplyTheoremA.13. 

Let us remark that in complex Hilbert spaces, (A.72) holds in the form 

Lemma A.37 (Generalized Bessel inequality) Let V be [ i  red Hilhert spce .  B = { 
112, . . . } an orthonormal basis of V and 7 1  E V .  Then 

I 1  

C ( U , I ~ ~ ) ~  5 llu112 fi)r any rt 2 1. (A.73) 
, = O  

Proof: Immediately from (A.72). 

In complex Hilbert spaces (A.73) holds in the form 

rn 

rn EXAMPLE A.45 (Fourier series) 

It is well known (see, e.g., [26, 381 and [84]) that the 2n-periodic functions 

1 cos(n.) siii(.r) cos(2:r) siri(2.r) 
. . . .  (A.74) ~ ~ ~ _ _ _ _ _  

Jz;;' & ' & .  J;;. J;; 
constitute an orthonormal basis in  the space L'( -T. T). But we are not limited to the 
interval ( -T .  T). Consider, for example, the function E L ' ( 0 . 2 ~ )  defined by 

.r E ( 0 . T ) .  
i ( . c )  = { 2. :2T . t ,  E [n .2n) .  

Using the 2~-periodicity of the basis functions (A.74), equivalently we can consider 
the function g(:r) = .L in the interval (-n. n).  The Fourier series, obtained using the 
procedure from Theorem A. 13, has the form 

l l  siii(/,r) 
&(.z-) = 2 - y - l ) l f ' -  . r t  = 1.2. 
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This series can be visualized, e.g., in Maple: 

> gl(x) := ‘if1(x<3.141593,x,NULL): 
> g2(x) := ‘if‘(x>3.141593,~-2*3.141593,NULL): 
> n : =  100: 
> g_n(x) := 2*sum(sin(i+x)+(l./i)*(-l)^(i+l),i=l..n): 
> plot([g-n(x) ,gl(x) ,g2(x)], x=O. .2*3.141593, thickness=l); 

The functions qTL for ri  = 1,2 ,3 ,4 ,5 ;  6.20,200, and 5000 are presented in Figure 
A.29 (only the period ( 0 . 2 ~ )  is shown). 

FigureA.29 Fourier series of the discontinuous function 9 E L2(0,  2 7 ~ ) .  

A.3.5 Projections and orthogonal projections 

Projections form the basis of many modem numerical methods including the finite element 
method. As promised at the end of Paragraph A.1.5, let us study in more detail their 
properties and relations to direct sums. 
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Definition A.46 (Projection operator) Let V be a linear spuc'e. An operator P : V + V 
is said to be a projection ifit  is both linear and idempotent (P2  = P). The runge R ( P )  of 
a projection operator P is culled the projection subspace. 

Sometimes one uses the symbol P ( V )  for the range R(P) .  By saying P2 = P we mean 
that P(Pv)  = P ( v )  for all v E V .  There is a one-to-one relation between projections and 
direct sums: 

Lemma A.38 (Projections and direct sums) Let V be a linear space. IfV is a direct sun1 
V = V1 @ V2 of subspaces Vl, V2 c V ,  then there exists u unique projection operator 
P : V + V ,  P2 = P, P ( V )  = v,, ( I  - P ) ( v )  = ~ 1 .  Conversely, every projection 
operator P determines a decomposition ofthe space V into the direct sum 

v = P ( V )  @ ( I  - P ) ( V )  

Proof: First assume that V = Vl @ VJ. Then every element 11 E V can be decomposed 
uniquely into v = v1 + v2, where w1 E V, and v;? E V2. Define the operator P : V + V 
by Pv := vl. This operator is unique by its definition and i t  is easy to verify that P is both 
linear and idempotent. Moreover, P(V) = V1, and since 112 = ( I  - P)v for all v E V, it 
also holds ( I  - P ) ( V )  = V2. 

Conversely, assume a projection operator P : V + V .  Since both P and I - P are linear 
operators, their ranges Vl = { Pv; v E V} and V2 = {v - Pv; 71 E V }  are subspaces of 
V (see Lemma A.9). Every element v E V can be decomposed into v = iil + v2, where 
v1 = Pv E V1 and v2 = v - Pv E V2. Using the property P2 = P, it is easy to see that 
Vl n V2 = ( 0 ) .  

The interpolation is an example of a projection operator: 

W EXAMPLE A.46 (Lagrange interpolation as a projection operator) 

Let V = C( [a,  b ] )  and Mi = Pn( [a, b ] )  c V. Consider a partition u = 20 < z1 < 
. . . < X , ~ - I  < z,, = b. Define P : V + V by 

(A.75) 

Here Pv is the unique Lagrange interpolant of 11, satisfying Pv E W and ( P v ) ( z Z )  = 

v(z,) for all i = 0,1, .  . . , n. It is easy to verify that the operator P is linear and 
idempotent. The projection subspace P ( V )  = W .  According to Lemma A.38 the 
space V can be written as the direct sum V = Prl(a. b)  @ ( I  - P) (V) ,  where the 
space ( I  - P ) ( V )  contains continuous functions that vanish at all interpolation points 

201 , . ' I x71' 

Next let us return to Hilbert spaces and introduce orthogonal projections and orthogonal 
direct sums: 

Definition A.47 (Orthogonal projection) Let V be a Hilbert space. An operator P : V + 

V is said to be orthogonal projection ifit  is linear, idempotent (P2  = P )  and if 

( v - P v , w ) v = O  f o r a l l v E V ,  U J E P ( V ) .  (A.76) 

The space P( V )  is said to be the projection subspace. 
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Definition A.48 (Orthogonal direct sum) Let V be a Hilbert space. A direct sum V = 

V, @ V2 is said to be orthogonal u 2 )  = 0,for all 

The following theorem summarizes several properties of orthogonal projections and their 

E V1, 712 E V2. 

relation to orthogonal direct sums: 

Theorem A.14 (OG projections and OG direct sums) Let V be a Hilbert space and V1 C 
V a closed subspace ofV endowed with an orthonormal basis Bv, = { ,wl .  w2. . . .}. Then 
the relation 

P ( U )  = C ( * u w , ) v , w i  fiwa1l.u E v (A.77) 

dejines a unique orthogonal projection operator P E C ( V ;  V ) ,  P2 = P, (v - P ~ J ,  w) = 0 
for  all 1: E V and w E P(V) .  Moreover, llpll = 1 and V = P ( V )  Cg ( I  - P ) ( V )  is an 
orthogonal direct sum. 

x 

,=I 

The assumption of closedness of the subspace Vl is essential and we will discuss it in 
more detail in Remark A.5 and Example A.48. On the contrary, the assumption of the 
existence of an orthonormal basis Bv, is not necessary, since one always can have such 
basis by Theorem A. 12. Nevertheless, we find it useful to introduce the orthonormal basis 
explicitly, since this is how the orthogonal projections always are done in practice. 

Proof: Given the operator (A.77), let us verify all properties listed in the lemma. First, 
the linearity of P follows easily from the linearity of the inner product (.. .)v. The operator 
is idempotent, since 

x / x  \ 

x x  

j = 1  

Obviously V1 is the projection subspace. It is sufficient to verify the orthogonality condition 
( u  - P v ,  w k )  = 0 for all u E V and all elements of the basis W k  E &, : 

It is easy to see that \\PI\ = 1 since it follows from the Bessel inequality and the Parseval 
equality immediately that 

The rest is straightforward. In particular, V2 = ( I  - P ) ( V )  = V: is a closed subspace of 
V (Lemma A.35) and I - P is a unique projection operator onto V2. 
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Remark A S  (Closedness of projection subspaces) Ever.v~nite-dimensionnl.sub.space W 
of a Hilbert space V obviously is a Hilbert space. However; this generally is no longer 
true when the subspace W is infinitelv-dimensional. The problem is that Cauchy sequences 
lying in W can “converge out” of W into V .  This can happen, for example, when the 
subspace W is dense in V (see Example A.48). Therejbre one has to add to IV the limits c$ 
all Cauchy sequences lying in W .  The completion is possible by Theorem A.  7. 

EXAMPLE A.47 (An OG projection operator in V = R2) 

Let V = R2 endowed with the standard Euclidean inner product. Let us define an 
operator P : V + V via the relation 

PV = (v l ,  o ) ~  for all v E V. u = (vl. c ia) ” .  

(Thus P erases the second component of vectors in V . )  Let us see that P is both 
linear and idempotent, identify the projection subspace P ( V ) ,  and check whether P 
is an orthogonal projection. First the linearity: 

The idempotency follows from the fact that the second vector component only can be 
erased once, 

Hence P i s  a projection. Clearly the projection subspace P ( V )  = [(l, O)‘] = [u i l ] .  

Since 

( u  - P O , W ~ )  = (vl - v l ,v2) .  ( 1 . 0 ) ~  = 0 for all I I  E V, 

we see that P is an orthogonal projection operator. 

Another reason why orthogonal projections are so useful, is that Pi1 is the closest element 
to 71 E V among all elements in the projection space P ( V ) :  

Lemma A.39 Let V be a Hilbert space and W a closed subspace of V equipped with an 
orthonormal basis Bw = { w1, w2, . . .}. Let P be an orthogonal projection operator such 
that P ( V )  = W .  Then for any v E V we have 

llii - Pull = inf /I21 - ~ 1 1 1 .  

WE w 
Proof: Write w = Pv + z. Since w E W and P v  E W ,  necessarily also z E W .  We 
have IIv - w1I2 = (v - w , v  - w) = (11 - Pu - z , v  - Pv - z). Since z E W it is 
( u  - Pv, z) = 0. Therefore 

(v - Pv - z,v - P v  - z) = 111: - Pull2 + 112112 2 / / v  - Pv112, 

which had to be shown. 

Let us close this paragraph by showing a subspace of a Hilbert space which is not closed: 
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H EXAMPLE A.48 (Subspaces which cannot be projection subspaces) 

Let V be a Hilbert space and W' C V a dense subspace of V such that LV # V. In 
this case an orthogonal projection cannot be defined. Namely, it follows from Lemma 
A.39 that the projection P7i E W of any 7 '  E V \ IV would have to satisfy 

However, this minimum is zero by the density of W in V .  In turn 2) = Pv which is in 
contradiction to W # V .  For illustration take, e.g., the Hilbert space V = L2(a ,  b ) ,  
where (a .  b)  c R is a bounded interval, and its dense subspace W = Pfirl(a. b )  of 
polynomials of finite degrees. 

A.3.6 Representation of linear forms (Riesz) 

The Riesz representation theorem is a fundamental tool in the solvability analysis of elliptic 
partial differential equations. It was first proved in 1907 for the Lebesgue L2-space by 
Frigyes Riesz, a Hungarian mathematician who is assumed to be one of the founders of 
functional analysis and operator theory. F. Riesz introduced the concept of weak conver- 
gence (to be discussed in Paragraph A.3.8), and he made many contributions to other areas 
of mathematics including orthonormal series, ergodic theory, and topology. 

Figure A.30 Frigyes Riesz ( I  880-1956) 

Theorem A.15 (Riesz) Let V be a Hilbert space and 9 E V' an arbitrary linear,form on 
V .  Then there exists a unique element u E V such that 

p( i i )  = (u. ( 1 )  for all L' E V. 

Moreover, Ilpllv. = IIullv. 

Proof: We restrict ourselves to real Hilbert spaces (see, e.g., [65] for the complex case). 
First let us prove the uniqueness: If there exist two elements u, U E V such that 



406 BASICS OF FUNCTIONAL ANALYSIS 

y (  I ; )  = ( r .  u )  = ( P. (7) for all 7 '  E V. 

then by the linearity of the inner product it  is 

( u .  ( L  - (7) = 0 for all I '  E V. 

Taking II = u - 6, we see that ?L = ,(7. 

Next let us prove theexistence: If the null space N ( y )  = V ,  then y is the zero functional 
and we can define u = 0. If N ( y )  # V ,  then there exists an element 710 E V such that 
y(110) # 0. Since N(p) is a closed subspace of V ,  it is possible to write V as an orthogonal 
direct sum V = N ( y )  8 N ( y ) ' .  Thus the element ti() E V can be decomposed uniquely 
into the sum v g  = i i l  + 712, (711.712) = 0. where 1 '1  E N(p) and 29 E Ar(y)'. In particular, 
it is y(112) # 0. The following holds: 

Thus 

Since v2 E N(y) ' ,  i t  is 

From this equation we obtain 

and thus 

(A.78) 

It remains to be shown that llpllv~ = //u/Iv. The Cauchy-Schwarz inequality yields 

which establishes the equality Ilyllvl = II'uII \I. 

The procedure shown in the proof of the Riesz theorem allows us to construct the rep- 
resentants of linear forms over Hilbert spaces explicitly, via the formula (A.78). Another 
important consequence of the Riesz theorem is the reflexivity of Hilbert spaces: 
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Lemma A.40 Every Hilbert space V is reflexive, i.e., (V’)’ = V. 

Proof: See, e.g., [99]. rn 

A.3.7 Compactness, compact operators, and the Fredholm alternative 

Besides the Lax-Milgram lemma, the Fredholm alternative is another basic tool for proving 
the existence and uniqueness of solution to certain classes of operator equations. This 
technique does not assume the V-ellipticity of the underlying operator. Instead, it  assumes 
its compactness. 

Definition A.49 (Compact and precompact set) Let V be n normed space. Then a subset 
S c V is said to be compact ifevery sequence c S contains a subsequence that 
converges to some element s E S. A subset S (fa normed space V is precompact (relatively 
compact) ifits closure S is compact. 

The following characterization of compactness holds for finite-dimensional spaces: 

Theorem A.16 (Heine-Borel) Let V be ajnite-dimensional normed space and let S be n 
subset of V. Then S is compact if and only i fS is both closed and bounded. 

Proof: See, e.g., [99]. rn 
The situation is much less trivial in infinite-dimensional spaces, where one can find sets 

which are both closed and bounded, but not compact. This is illustrated in the following 
example. 

rn EXAMPLE A.49 (Noncompactness of the closed unit ball in 1 2 )  

Consider the normed space V = l 2  of infinite real sequences with the discrete L2-norm 

The closure of the unit ball 

clearly is both closed and bounded. By ui E V we denote a sequence which has 1 at 
the 2th position and zeros everywhere else. It is 

/luzllv = 1 for all i = 1.2 , .  . . (A.79) 

and therefore u, E B(O,l) for all i = 1.2,  . . .. The only candidate for the limit of the 
sequence {71z}200_1 C B(O,l) is the zero sequence, but by (A.79) the sequence { u , } ~ x = l  
does not contain any convergent subsequence. Therefore, according to Definition 
A.49, B(O.l) is not compact. 

Corollary A.2 An immediate consequence of Theorem A. 16 is that in a$nite-dimensional 
normed space every bounded sequence contains n convergent subsequence. 

Next let us introduce the notion of a compact operator: 
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Definition AS0 (Compact operator) Let V. M’ be norriied sprices. A litietrr operator A : 
V + W 7  is said to be compact ifthe inluge of any hounded subset of V is relatively compact 
in IV. 

Indeed any compact operator is bounded. A standard way to prove the compactness of an 
operator is to show that the image { A,u,, }R C IV of any bounded sequence { u,, }:=;”=, C V 
contains a convergent subsequence. The following lemma characterizes the composition of 
bounded and compact operators: 

LemmaA.41 Let V. W, Z he nornied spaces, arid let A ; V + It’ cind B : W + Z 
be bounded linear operators. The composition C = &4B is compact i f  at least one of the 
operators A,  B is compact. 

Proof: This is a classical result, see, e.g., [loo]. 

Another basis result characterizes the compactness of the identity operator: 

Lemma A.42 Let V be a norined spce .  The identity operator I 1 V + V is compact if 
and only if the space V isJinite-dimensiorznl. 

Proof: The right-left implication is a simple consequence of Theorem A. 16. For the other 

Now we can introduce the Fredholm alternative, or, more precisely, its version that is 
most suitable for our primary purpose, which is the application to the Maxwell’s equations 
in Chapter 7. This theorem can be found in greater generality, e.g., in [73] and [ 1001. 

Theorem A.17 (Fredholm alternative) Let V he ii Hilbert splice arid B : V + V a 
bounded linear operator ofthe,fiv-m B = I + A, where I is the identity operator and A is 
compact. Then exact1.y one of the following holds: 

implication see, e.g., [ 1001. 

I .  The homogeneous equation B,u = 0 has a unique solution u = 0. Then the inhomo- 
geneous equation Bu = f has a ~inique solution,for every f E I/. 

2. The honzogeneous equation BU = 0 has T L  linearly independent solutions ul, ,112, . . ., 

u,, in V ,  where p > 0 is un integer niinibeK 

Proof: See, e.g., [73] and [loo]. 

A.3.8 Weak convergence 

The concept of weak convergence was introduced by F. Riesz around 19 10. It finds important 
applications in the theory of PDEs and finite element methods by generalizing the standard 
(strong) convergence in norm: 

Definition AS1 (Weak convergence) Let V be a Hilbert space and V’ the dual of V .  We 
say that a sequence { u , ~ } ~ = ~  c V converges weakly to an element u E V if 

lim ‘ p ( u r L )  = p(u)  ,for all ‘p E V’ 
n - x  

The element 7~ is said to be the weak limit of the sequence. 

It is easy to see that the weak limit is unique and identical to the strong one if they 
both exist. Moreover, the convergence in norm implies the weak convergence, since for an 
arbitrary ‘p E V’ we have 

IY( (h )  -%+)I I I l ‘ p l l V ~ l l ~ I L  - 4 V .  
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However, the next example shows that the weak convergence does not imply the convergence 
in norm: 

EXAMPLE A S 0  (Weak convergence Q convergence in norm) 

Consider the sequence { u ~ ~ } ? = ~ ,  'u,, = siii(n.r)/&, in the space V = L2(-7r, T ) .  

By the Riesz theorem, for an arbitrary linear form 9 E V' we have 

p(ul,) = ( 7 ~ + , ~ 1 1 ~ , )  

where ~u, E V is the unique representant of the form 9. Since the elements u?, 
belong to the orthonorrnal basis (A.74) of the space V ,  and the entries (u,. u , , ) ~  of 
the Parseval sum (A.72) of u+ must converge to zero as ri + cc, we see that 

for all I )  = 1 . 2 , .  . . . 

h i  Y ? ( ~ L , , )  = O for all 9 E V' .  
t i  - x 

Thus { 
zero strongly since 1 1  u,, I /  = 1 for all 7 1 .  

From Corollary A.2 we know that every bounded sequence in a finite-dimensional 
normed space contains a convergent subsequence. This is not true in infinite-dimensional 
spaces, but there is an important weaker analogy: 

converges weakly to zero. However, the sequence cannot converge to 

Theorem A.18 (Eberlein-Smulyan) Ever?. bounded .seyirence in CI rejiexive Bnncich spnce 
V contuins N wenklyconvergent subsequence. 

Proof: See, e.g., [34] and [93]. 

A.3.9 Exercises 

Exercise A.42 Use Dejinition A.41 to verib in detail that the "dot-product" (A.56) in R" 
nnd the L2-inner product (A.58) indeed ure inner products. 

Exercise A.43 In the space L'(0,l) cnlculnte the angle ofthe,functions ,f,,, ( n )  = :r7" and 
g,, ( : I : )  = .r", where rn.. I?, ure urbitrar.y nuturd numbers. 

Exercise A.44 In R2 consider (I  geriernl pnrclllelogr~ini ABCD, ns shown i r i  Figure A.31. 
Use the Tlieorem ofPythngorns toprove thcit IADI2 + JBCI2 = 21ABl' + 21ACI2. 

' ; I  

Figure A.31 Parallelogram ABCD in R'. 
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Exercise A.45 Consider ci rionned .space I/ cvliere the norm I/ . I( scitisfies the paramllelogram 
rule (A.62), 

IIu + v(I2 + Ilu - ? : ( I 2  = 211i~ll' + 21(iil12 ,forall u. ti  E V 

Show that the identity 

~ ( I I  + 1) + ~ r ( ( '  - ( ( I /  + 71 - ~ r ( ( '  = ( I n  + f r i l ( 2  - / (u  - ? / r ( ( '  + / ( I I  + ul( (  2 - l ( 7 i  - w(( 2 

hold.s,for nll u. (1% 711 E V .  

Exercise A.46 Prove Lemma A.35: If S is a iioriempty subset of N I ~  inner prodiict space V ,  
then SL is ci subspace of V .  

Exercise A.47 Consider the Hilbert .spuce V = JIB:', endowed with the standard Euclidecin 
innerproduct, and itssubspuce bt'given bya  basis &. = { (0. 1. O)y' .  (l/fi. 0. l/fi)'}. 

1. Show that Bur is ( I  orthonormnl basis of W. 

2. Use CI vector ('3 = (0;  0, 1)' and the Grcrin-Schmidt orthogonalizntion procedure to 
extend the basis Bw to an orthogoncil basis Bt, of V .  

Exercise A.48 Given ii = (1. 2.3)" E R", ccilculate its projection to the subspace 1I.',frorn 
Exercise A.47. 

Exercise A.49 Let V = L'( -r. T ) .  Use the relation (A. 71) arid the Fourier basis of V,from 
Example A.45 to construct the Fourier series ofthe,function y(s), dejined n s  { ~ ( r )  = -1 
,for all .r E ( -T.  0) and g ( x )  = 1 in [O.  T ) .  Present ri,formula for  general n cind c o m p i i t e ~  
genercited plots ofJir.st ten different entries of the series. Hint :  Si17cr 9 is an odd,fiinction 
in ( -T.  T ) ,  the cosinus purt o f  fhe series is riot present. Additional cancellations occii~: 

Exercise A.50 Repeat Exercise A.49 with the,flinctiori i ( . r )  = :I' in the space L2( -T.  T ) .  

Check your result with Figure A.29. Hint: Use the irite~~ration-by-pnrt.s,fori~~ilc~ to integmte 
fiinctions of the,form x siri(rri.r). 

Exercise A S 1  Use Definition A.46 to verifs that thut the Lugrange interpolation operotor 
P introdiiced in Example A.46 is n topological prnjection. What ,firrictions belong to the 
subspcice V2 = ( I  - P ) ( V )  c V ?  

Exercise A S 2  Consider the Hilbert spcrce V = P'(-l. 1) endowed with the L2-inner 
product, and the subspace U' = P"(-l. 1 )  c V .  Let Btt- = {Lo. L1. L2. L:%}, where L ,  
ore the Legendre polynomials derived in Excrniple A.44. Ccrlculcite the orthogoricrl projection 
Pi4.(,fo) of the function f O ( x )  = 1 + .r2 - .r" + :I;' - x' onto 1,17. Calculnte the distance 
dist(fo. U') = inft,.Eiv ((hl - w / ( .  Hint: By LeminciA.39 the distciiice is ( /J l  - Pl~~(fO)((. 

Exercise A S 3  Let V = R" equipped with the "dot-product " (A.56). Consider the lineor 
opercrtor f : V + V ,  f (71 )  = Av, nshere 

1 -1 0 2 

0 2 3 -3 -5 
2 0 3 0 
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Construct nn orthonorind brisis of the nullspoce N ( f  ). 

Exercise A S 4  Consider the Hilhert space V = P5(-l. 1 )  equipped with the L2-inner 
~~roduct .  

a What is the dimension of the subspace IV = { I P  E V :  ? i i ( O )  = O } ?  

Choose some basis B of W .  

Use rhe basis B to construct an orthonornd basis B ~ N  of W. 

Explciin why there exists a uniqiie orthogonal projection operotor P : V -+ W. 

Assume the,function y(x) = x3 + x? + z + 1 E V .  Calculate P(,y) .  

Calculate the distance d = dist(g, 14'). i.e., 

Exercise A S 5  Consider the Hilbert space V = l 2  ofinjinite real sequences equipped with 
the inner product 

3c 

( U L , 7 1 ) ~ 2  = c2L71J7, 

f (u )  = c uz. 

1 = I  

nnd the linear,form f E V' ,  
l(10 

,=I 

Find the unique Riesz representant o f f  in the space V .  

Exercise A S 6  Consider the Hilbert space V = L 2  (- 1.1) and the linearforin f E V' ,  

112 

f (?L) = 1 J' 71 (:I-) d z  
2 -1/2 

Find the unique Ries: representant o f f  in the spnce V .  

Exercise A S 7  Consider the Hilbert space V = P'(-l. 1) equipped with the L2-inner 
product. Let the linear,fi,rni f E V' be given by f(u) = u(0). Find the unique Riesz 
representcint oJ ' f  in the space V .  Hint: The results of Exercise AS4 include an orthonormal 
basis in the nullspace N ( f ). Choose some suitnble 'i:o E V \ N ( f ) nnd app1.v the Riesz 
,forinula (A.  78). 

Exercise A S 8  Let V,  Pi7 he Hilbert spnces. Use Dclfinition A S 0  to show that every compact 
operator A : V + W is hounded. 

Exercise A S 9  Consider the Hilhert space 12,from Exercise A S S .  Find a sequence {uT1 }?= 
that converges weakly to the zero sequence hiit does not converge in norm (prove both 
statements). 

Exercise A.60 Let V be a Hilbert S ~ J ~ I C ~  m d  { ( I , ?  C V u sequence in V .  Show that if 
t i .  71  E I/ are weak limits qf the sequence, then u = IJ. Furthei; suppose that the sequence 
is convergent in norm to an element 7u E V .  Show that necessarily 71 = l i t .  
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A.4 SOBOLEV SPACES 

We know from Paragraph A.2.9 that the Lebesgue LJ'-spaces control the regularity of func- 
tions: They do not admit functions with singularities whose strength exceeds certain limit 
or, in  unbounded domains, whose decay at infinity is slower than certain rate. The Sobolev 
spaces 14'".7' are subspaces of LP-spaces that, moreover, control the regularity of the deriva- 
tives. Their structure and properties make them particularly suitable for the analysis of 
partial differential equations. 

These spaces were introduced in the 1930s by Sergei Lvovich Sobolev, a Russian math- 
ematician who essentially influenced the field of analysis and solution of partial differential 
equations. To mention at least a few of his results, he derived important inequalities on the 
norms in the Sobolev spaces, formulated and proved results on their embeddings (some of 
them to be mentioned in Paragraph A.4.6), introduced the notion of generalized functions 
(distributions), etc. In the 1950s he turned his attention to the computational mathemat- 
ics and achieved important results in  interpolation of multivariate functions and numerical 
quadrature in higher spatial dimensions. 

Figure A.32 Sergei Lvovich Sobolev ( 1908-1989) 

The Sobolev spaces will be presented in Paragraph A.4.3, after imposing certain reg- 
ularity to the boundaries of open sets in  Paragraph A.4.1 and introducing the concepts of 
distributions and weak derivatives in Paragraph A.4.2. 

A.4.1 

Until now we have worked with open bounded sets without paying special attention to their 
boundaries. This will change in this section, since we will need to use the unit outer normal 
vector to the boundary and calculate surface integrals. Let us begin with introducing the 
notion of a domain: 

Definition A S 2  (Domain in R") A subsef 12 C R" is .snicl fo he ( I  domain i f i f  is noneinpf?; 
open nnd connected. 

Domain boundary and its regularity 

Set 12 c Rd is said to be connected if every two points in  s1 can be connected by a 
continuous curve that lies in f?. 
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Figure A.33 illustrates what is and what is not a domain: 

I 

Figure A.33 An open bounded set which (a) is and (b) is not a domain. 

The boundary of some domains may be highly irregular, as shown in Example A S  I .  

EXAMPLE A S 1  (Bounded set with infinitely long boundary) 

Consider an infinite sequence of bounded domains {Olt}z=o, Q, c 0,,+1, where 
the domain Oo is, e.g., a symmetric equilateral hexagon with unit edge length. For 
every 11 the domain Rl,+l is obtained from R,, as follows: Each edge of R,, is split 
into three equally long parts e l e f t ,  errIz,jr and e,.,g/t+. An open equilateral triangle of 
the edge-length lr ,112dl is attached from outside to e l r I z d .  Points lying in the interior 
off',,,,,) are added. This is illustrated in Figure A.34. 

Figure A.34 Construction of a bounded set with infinitely long boundary: domains C 2 0 ,  C21 

I t  is easy to see that 

~x21,1 = G - for all 7) = 0. 1.. . . . (:> 'I 

and to show that the limit set 12 is bounded. The unit outer normal vector to the 
boundary ill2 is defined nowhere on 30. 

The above-described situation cannot occur when the boundary tX2 is Lipschitz-continuous: 

Lipschitz-continuity ofaR 
continuity for real-valued functions of one and more variables. The exact definition of the 
Lipschitz continuity for boundaries of domains in R" is rather technical. Roughly speak- 
ing, the boundary 8C2 is said to be Lipschitz-continuous if there exists a finite covering 

We assume that the reader knows the definition of Lipschitz- 
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of 80 consisting of open d-dimensional rectangles such that in each rectangle, 812 can 
be expressed as a Lipschitz-continuous function of d - 1 variables. See, e.g., [55] for an 
exact definition. For simply-connected domains (i.e., domains 12 C R" such that Rd \ f2 is 
connected), the Lipschitz-continuity is equivalent to the cone condition: 

Cone condition We say that the boundary 80 of a d-dimensional bounded domain 12 
satisfies the cone condition if and only if there exist constants el > 0 and .3 > 0 such 
that for every point 20 E df2 there are two open d-dimensional cones C27Lt(z() .  yl, h l )  and 
C c . . r t ( z ~ , ~ ~ r  h2) sharing the vertex 20, with vertex angles 0 < f 1  5 y1>y2 and heights 
0 < € 2  5 h1,h2 ,  such that C,,,t(zo,yl.hl) C R and C,>,.t(zo.y2.h2) C Rd \ (2 .  Figure 
A.35 gives examples of domains whose boundary Of2 (a) is, and (b)-(d) is not Lipschitz- 
continuous. In the case (d) the cone condition is satisfied, but the Lipschitz-continuity is 
violated at the center of the circle (this situation could not occur if R was simply-connected). 

Figure A.35 2D domains whose boundary (a) IS, and (b)-(d) IS not Lipschitz-continuous. 

A unique unit outer normal vector is defined almost everywhere on 30 when the boundary 
80 is Lipschitz-continuous (see, e.g., [ I ]  and 1551). 

A.4.2 Distributions and weak derivatives 

The following compact notation is practical for operations with partial derivatives: 

Definition A.53 (Multi-index) Let d be the spatial dimension. Multi-index is a vector 
( (21,  ( 2 2 ,  . . . ,o,i) consisting of d nonnegative integers. By l a  = c,=l a, we denote the 
length of the multi-index a. Let f be an m-times continuously differentiable function. We 
dejne the cvth partial derivative o f f  by 

d 

Note that D" f = f for o = (0,O.. . . .O). To give at least two other examples, we have 

for a = (1.0.0. . . . . O ) ,  and for N = (1.1. . . . . 1) one obtains 
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The Lebesgue LP-spaces contain nonsmooth and discontinuous functions whose derivatives 
are not defined in the classical sense. However, in many cases the classical derivatives exist 
almost everywhere. What needs to be done is to generalize the notion of the derivative to be 
independent of zero-measure subsets. This was done by S.L. Sobolev, who introduced weak 
derivatives. The basic ingredient for the definition of weak derivatives are distributions: 

Definition A S 4  (Distributions) Let 0 c Rd be an open set. The space ofdistributions 
(injinitely smooth functions with compact support) is dejined by 

Cr (0 )  = {p E C m ( 0 ) ;  supp(p) c (1: supp(p) iscoriipact}. 

Sometimes one uses the symbols D ( 0 )  or D((2) instead of Cr(0) .  Recall that the 
support 

always is both closed and bounded. 

EXAMPLE A S 2  (Distributions) 

Consider a bounded domain 0 = (- 1, l )  c R and the functions 

p(x) = cos(7rz) + 1, 
1 

$(x) = e-I-.2, 

depicted in Figure A.36. 

Figure A.36 The functions 9 and ,,!I. 

Neither p nor $ is a distribution in SZ, since 

supp(p) = SUPP($) = [-I, 11 q' 0. 

However, the function $ can be extended by zero to be a distribution in the interval 
0 = (-1 - E. 1 + E), where E > 0. This is not possible for the function p, since 
already its second derivative would be discontinuous in f?. 

Remark A.6 Since the support supp(p) of every distribution p E ( ( 2 )  is ( I  closed set, 
it cannot touch the boundary of the open set (2. Thereforefor every p E C(7 ( ( 2 )  there is at 
least a thin belt along the boundary 80 where p vanishes entire1.v 
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Next let us review elementary results related to the integration by parts in higher spatial 
dimensions, which will be used for the definition of the weak derivatives: 

Theorem A.19 (Gauss' theorem) Let f l  C R" be (I boirnclecl domuin rvith Lipschit;- 
continuous boundary. For every 11. t i  E C' (11) n C(n) >ce hcrve 

Here u(x) = (u1 v ~ ;  . . . . v(l)"(x) is the iiriit outer riorrnal vector to the boinidury d12. 

Proof: See, e.g., [361. 

The formula (A.80) generalizes easily to the divergence of vector fields: 

Theorem A.20 (Stokes' theorem) Let 12 c R" he CI horiiided doinnin wit17 Lipschit:- 
continuous boundary. Every sn7ooth vectorfield w E [C' (12) n C(D)]" stiti,$es 

(A.8 1 ) 
. 

where u(x) is the unit outer normil to dfl. 

Proof: This is an easy exercise using Theorem A. 19. 

By repeated application of Theorem A. 19 one easily arrives at the following result: 

Theorem A.21 Let (2 c R" be nn open set, f E C"' (12)  trnd (1 ( I  multi-index such thtrt 
la1 5 'm. Thefollowing holds: 

1 2 D " f ( x ) p ( x ) d x  = (-1)I"l ,f(i)D"q(x)tla: forcrllq E C'(T((2). (A.82) .b 
With this result we are very close to defining the weak derivatives. One last thing we 

need is the space LElc (11): 

Definition A S 5  (Space of locally-integrable functions) Let f l  c R" be an open set mid 
1 5 p < oc. A function f : 11 + R is xiid to be locally p-integrable in f l  i f f  E LJ ' (K)  
for every compact subset K C 12. The spcrce of all locally p-integrable ,functions in Q is 
denoted by Lc), (Q) .  

Remark A.7 Two remarks to spaces of loccrlly p-integrcrhle,fiinction,s are in order: 

1. Obviously it is LTJ(Q) C LElc(Cl),fi)r e v e n  open set 11 c R" and every 1 5 p < x. 
The spaces Lglc are very large. For excirnple, the,function l1.r does not belong to the 
space L7'(0, x ) f o r  any p 2 1, but it lies in the space Li:),(O. x ) f o r  crll p 2 1. 

2. Let f2 c E%" be an open (not necessarily bounded) set. The jdlowing inclusion holds: 

Note that ,for the LT)-spuce.s, such inclusion w w  only valid on bounded .sets (see 
Lemma A.29). 
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Finally, the weak derivatives can be defined: 

Definition A S 6  (Weak derivative) Let 52 C R" be nn open set, ,f E L:c>c(52) and let a be 
LI multi-index. The,firnction 0::. f E L,lc)c(C2) is suid to be the weak nth derivative of ,f if 

= (-1)I"l f D " p d x  f o r a l l y  E C(T(12). (A.83) .b 
The following result is needed for the proof of uniqueness of the weak derivative: 

Lemma A.43 (Generalized variational lemma) Let f E L:,,,.(S2) rvhere 52 c R" is an 
open set. I f  

then f = 0 almost everywhere in R 
Proof: Assume that there exists a nonzero-measure subset D c 12 such that f # 0 in 
D.  Without loss of generality, we can assume that D is open and f > 0 in D. Taking a 
nonnegative p E C(T(CZ) with a nonempty support supp(p) c D,  we arrive at a positive 

rn 

Lemma A.44 (Uniqueness of weak derivatives) Let C2 c R" bean open set, f E L;oc(CZ) 
and let CY be a multi-index. The weak cyth derivative 0::. f E L;oc (0)  is dejined uniquely in 
51 up to n zero-measure subset of R. 
Proof: Assume that functions g1,g2 E L;c>c(R) are the weak trth derivatives o f f .  Then 
(A.83) implies that 

value of the integral (A.84), which is a contradiction. 

12(gl - g2)pda: = 0 for all p E C(T(C2) 

I t  follows from Lemma A.43 that g1 = g2 almost everywhere in 12. rn 

Lemma A.45 (Compatibility of weak and classical derivatives) Let (1  c R" be an open 
set, f E CT"(C2) and cy a multi-index such that 1 0 1  5 m. Then the clcissical ath derivative 
D" f is identical t o  the weak cyth derivative D::)f. 

Proof: This is an immediate consequence of Theorem A.2 1 .  rn 

rn EXAMPLE A S 3  (Weak differentiability in one dimension I) 

Continuous, piecewise-smooth functions in 1 D are weakly differentiable. This can 
be illustrated on the function f ( z )  = 1 - 1x1 in the interval C 2  = (-1.1): Since f 
is smooth in ( - 1 , O )  and in (0, l), the only candidate for the weak derivative is the 
function 

1. s E (-1.0). i -1, Ic E (0.1). 
D?!f (XI = 
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It remains to be verified that (A.83) holds, with D“y = y’. For an arbitrary y E 

Cr(R)  let us calculate 

1 1 

- 1, f p ’ d x  = -JI’: f p ’ d z  - fy’d.r 

.(I 

= -[fp]yl + / ( + l ) p d x  - [ fy] : ,  + L1(-1)pd:r  
-1  

P 1  

Thus (A.83) holds and the above-defined function D:” f is the weak derivative o f f  

W EXAMPLE A S 4  (Weak differentiability in one dimension 11) 

Discontinuous functions in 1 D are not weakly differentiable: Consider the function 

-1, :1: E ( - L O ] ,  i 1, z E (0, 1). 
f ( x )  = 

By the same token as in Example A.53, the only candidate for the weak derivative 
Dt, f is the zero function (with an arbitrary value at :z: = 0). If zero is the weak 
derivative of f ,  for all p E C(y (- 1, l )  we have 

0 = 1: D;) f p d z  = - f9’d:r = - [: f y ’ d x  - 1’ f y ’ d z  

= [: p‘dz  - i ’ p ’ d z  

1 d o )  - P(-1) - ( 4 1 )  - ~(0)) = 2 ~ ( 0 ) ,  (A.85) 

which is a contradiction. 

A.4.3 Spaces W k 3 P  and H‘“ 

The Sobolev spaces are defined as follows: 

Definition A S 7  (Sobolev spaces) Let 12 C Rd be an open set, k 2 1 an integer number 
and p E [ 1. m]. We define 

M/k.”(R) = { f E Lp((R); 0:) f exists and lies in Lp(12) J;)r all multi-indicesa. I Q /  5 k } .  
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For p = 30 we define 

(A.87) 

In the important special case p = 2 we abbreviate r/c'"i'(R) = H'"(C2). 

In the IYLJ-spaces we use the following standard seminorms: 

Classification of Sobolev spaces 

We already know that all L%paces are Banach spaces and, moreover, that the space L2 is 
a Hilbert space. Let us see about the Sobolev spaces: 

Theorem A.22 (WkJ'( 0 )  is a Banach space) Let R c R" be an open set, k 2 1 an integer 
number and p E [l, m]. The Sobolev space W " p ( 6 2 )  is a Banach space. 

Proof: We need to show that every Cauchy sequence {fTL}r=l c WkJ'(R) has a limit 
f E Wk,T'(0). It follows from the Cauchy property of {f,l}T=l in the W'J-norm that for 
every multi-index la1 5 k the sequence { D ~ i f T l } ~ = l  c P ( R )  is a Cauchy sequence in the 
space L". Therefore for every Icy1 5 k there exists a limit f n  E LT'(R) such that 

linl ll%f7, - fnllp = 0. (A.88) 

For cr = ( 0 , O : .  . . ,O) denote f := f ( ? .  It remains to be shown that f C y  = D:i f for every 
la1 5 I;. Since {fiL}r=c=l c WkJ', we have 

n - x  

l2 D;; f T Z p d x  = (-l)lCyl f , , D " p d x  for all y E C,;"(b?) .b 

.b 
for all 7 1 .  Passing to the limit for n + x, which is justified by ( A M ) ,  we obtain 

Ll j ' (>pdx = (-l)lnl f D " y d x  for all y E C(T(6t). 

Therefore f c Y  = D:, f for all 1 0 1  5 k ,  and thus 

lim Ilfn - , f l l A . . p  = 0. 
7 1 - X  

Lemma A.46 Let 12 C R" be nn open set, k 2 1 (in integer number The Sobolev space 
M.""J'( 12) is reflexive if and only if 1 < p < x. 
Proof: Follows immediately from the reflexitivy of LI'-spaces. 
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Theorem A.23 (H'(C2) = M ! r k , 2  (0) is a Hilbert space) Let R c R" be an open set, k 2 
1 un integer number: The Sobolev space W"'(12), endowed with the inner product 

is a Hilbert space. 

Proof: 
easily from the fact that (A.89) is a finite sum of L'-products of the weak derivatives. 

It is sufficient to show that (A.89) indeed defines an inner product. This follows 
H 

Density of smooth functions in Sobolev spaces We first explained the density 
argument in the context of the Lebesgue LTj-spaces in Paragraph A.2.1 I .  The following 
theorem gives an analogy for the Sobolev spaces. 

Theorem A.24 (Density of smooth functions in IV'J') Let S2 C R" hen boundeddomnin 
with Lipschitz-continuous boundriry and 1 7  E lVk',T'(C2), 1 5 p < x. Then there exists ( I  

sequence {V~~}T= ,  c C"(2)  such that 

Proof: See, e.g., [ I ] .  

Here, C" (2) is the space of infinitely-smooth functions with all derivatives continuous 
up to the boundary 3f2. Theorem A.24 also holds for unbounded domains. 

A.4.4 Discontinuity of H1-functions in Rd, d 2 2 

The density of smooth functions in I/1'".kpaces, stated in Theorem A.24, does not imply 
the smoothness, and not even the continuity of IV"'r'-functions. However, there are special 
cases such as the space H' in ID  or H2 in 2D, whose functions are continuous (this will be 
explained in more detail in  the comments to Theorem A.27). The functions in the frequently 
used H1-spaces in 2D and 3D are not continuous in general, but their discontinuity only 
can have the form of singularities. This is illustrated in the following example: 

EXAMPLE A S 5  (Discontinuity of HI-functions in 2D and 3D) 

Let 12 E R' be an open set. The H'-functions cannot be discontinuous along lines or 
curves in 12, which can be shown using the fact that HI-functions are continuous in 
ID. However, discontinuities can occur in the form of singularities at isolated points 
in  the domain. For example, consider the function 

(A.90) 

in  a domain 12 = B(0. R )  C R', 0 < R < l/(j. I t  is easy to calculate that 

as well as to verify that l i f l l ~ ~  < x. Thus .f E HI ( ( 2 )  despite ,f $! C(f2). 
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In 3D, H1-functions can have singularities both at isolated points and along one- 
dimensional curves. To illustrate the point-singularities, we can consider the function 
(A.90) in B(O, R )  c R3, 0 < R < 1/e, with ~ ( z )  = dx; + .r: + 2:. A line- 
singularity is obtained by adjusting the function (A.90) to 

j ( 2 1 . 5 2 . 2 : 3 )  = f ( J a . x 2 ) .  (A.91) 

The function (A.91) lies in H1(B(O,  R ) ) ,  and it has a singularity along the q-ax is .  

A.4.5 PoincarGFriedrichs' inequality 

A frequently used subspace of Hk(12) is 

Hi(R) = {u E H'"(s1); D"v = 0 on 3l2 for all I C Y /  < k } .  (A.92) 

In the case of k = 1 this is the space 

where, for example, the weak formulation of second-order PDEs with Dirichlet boundary 
conditions usually takes place. The Poincark-Friedrichs' inequality says that the H k -  
seminorm 

is a norm in the space H,$(R) on every bounded domain R C Rd. This norm, moreover, is 
equivalent to the full Hk-norm 

The notion of equivalence of norms was first introduced in Definition A.34. The equivalence 
of I . lk.2 and 11 . l /k ,2  in the space H,$(R) finds application in the solvability and uniqueness 
analysis of partial differential equations as well as in practical computations. 

Theorem A.25 (Basic PoincarbFriedrichs' inequality in HA ( s 1 ) )  Assume a bounded do- 
muin R c Rd that is contained in a d-dimensional cube wirh the edge-length C > 0. Then 

llullp 5 CIul1,a for all u E H~(R). (A.93) 

Proof: Since C,"(R) is dense in H,(R), it is sufficient to prove the inequality for all 
u E C,"O(R). Without loss of generality, let s1 C S = {(XI, 2 2 , .  . . . zd); 0 < 2, < C} 
and define u(z )  = 0 for all z E S \ R. Then 
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The boundary term vanishes, and the Cauchy-Schwarz inequality yields 

Since the right-hand side is independent of r l ,  it follows that 

Now it suffices to integrate over the whole cube S to obtain 

(A.94) 

rn 

Theorem A.26 (General PoincarbFriedrichs' inequality in H,$ (R)) Let R c Rd be a 
bounded domain. Then the seminorm 1 lk.2 is a norm in the space H,$(62), equivalent to 
the norm I /  . / lk ,2 .  If0 is contained in a d-dimensional cube with the side length C, then 

1 4 . 2  i 1 1 4 . 2  I (1 + c ) k I u l k . 2  

for all 'u E H,$ (O). 

Proof: We use the PoincarC-Fnedrichs' inequality (A.94) for the derivatives to obtain 

for all 1 0 1  5 k - 1 and u E Hk(R). The rest is shown by induction. 

Remark A.8 The proof of the PoincarP-Friedrichs ' inequality actually requires weaker 
assumptions - the space Ht(R) can be replaced with the space 

V = { u  E Hk(R); D"v = Oon I? for  all 1 0 1  < k } ,  

where I? is a nonempty open subset c$aR, and the equivalence of norms I . lk.2 and 11 . lIk.2 

remains valid. 

A.4.6 Embeddings of Sobolev spaces 

Sometimes we need to decide whether all functions f that belong to a Banach space U also 
lie in another Banach space V .  Thus we are asking if the following implication holds: 

llfllu < 00 =+ llfllv < 00. 
This is equivalent to the question whether the identity operator Z : U + V is continuous. 
The reader already knows the answer in some situations. For example, when R C Rd is a 
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bounded domain, U = LP(R) and V = Lq(R). In this case the answer is positive if q 5 p 
(see Lemma A.29, Paragraph A.2.10). We also know the answer when U is a Lebesgue 
Lp-space and V some space of continuous or smooth functions (in this case it is negative). 
Some more results of this type for Sobolev spaces will be presented in this paragraph. Most 
of them will be given without proofs, since their difficulty goes beyond the scope of this 
text. For the following definition recall Definition A.50 of compactness for operators in 
normed spaces: 

Definition A.58 (Embedding of Banach spaces) Let U, V be Banach spaces such that 
U c V .  We say that U is continuously embedded into V, and write U - V ,  ifthere 
exists a constant CU~V such that for every TL E U it holds 

l l 4 v  I Cu.v/I~IIu. (A.95) 

We say that the embedding is compact, and write U -- V ,  i f  the identity operator Z 
moreover is compact. 

If (A.95) holds, then obviously 

(see Definition A.33). Since Z is linear, it is continuous if and only if it is bounded (see 
Lemma A.24). The following definition generalizes the Lipschitz continuity of functions 
and introduces the Holder spaces: 

Definition A.59 (Holder continuity, Holder space Cks@(R)) We say that a function f E 
C ( 2 )  is Holder-continuous with the exponent p > 0 ifthere exists a constant C f  such that 

If(zi) -f(zz)l I Cfllzi - z z l l B  f o r u l l z i , z 2  E R. 

The space Ckyp (0) consists offunctions whose cuthpartialderivatives are Holder-continuous 
with the exponent p > 0 for  all multi-indices a such that la1 5 k. 

Theorem A.27 (Embedding theorem) Let s1 c Rd be a bounded domain with Lipschitz- 
continuous boundary and 1 I p < 03. We have the following embedding results: 

I .  I f  k p  < d,  then 

for all q < p* such that l/p* = l / p  - d / k .  

2. r f k p  = d,  then 

for all q < 03. 

3. If k p  > d,  then 
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where [ j  = [ d / p ]  + 1 - d / p  if d / p  i s  not un integer; or  8 E (0. 1) arbitrury if d / p  i s  
an integeK 

4. I f k p  > d ,  then 

where /3 E [O. [ d l p ]  + 1 - d / p ) .  Herefor (I, E R the symbol [a] stands j?)r the integer 
purr of a. 

Proof: The proof can be found, e.g., in [ 11. 

The W"J'-functions become smoother as the product k p  increases. The critical value is 
the spatial dimension d. The W"r)-functions are continuous (or, more precisely, equivalent 
to continuous functions) when k p  > d,  

P if X: > - 
ct 

W " J )  't ~ ( 2 )  

By applying this result to the partial derivatives, it is easy to see that 

1' 
d 

w ~ , I ~  - c"' (2) if k - r n  > - . 

If k p  < d, then a W"J'-function belongs to L"' ( ( 2 )  for an exponent p* greater than p .  To 
determine the exponent p',  one starts from the inequality k p  < Cl written as 

l l p  - d / k  > 0. 

Then l/p' is defined as l/p* = l/p - d / k .  
Another consequence of Theorem A.27 is the following compact embedding result. 

Corollary A.3 (Compact embedding) Let 0 c Rd be LI bounded doniain with Lipschitz- 
continuous boundary. Let k .  k' be nonnegative integers such that k > k', and 1 5 p 5 30. 

Then 

A.4.7 Traces of Wk3p-functions 

Let 12 c Rd be a bounded domain. Since the Sobolev space LVk.7'(R) always is a subset of 
the corresponding space Lp(R), the W"p-functions are only defined almost everywhere in 
R. Since the boundary dR is a zero-measure subset of 2, i t  might seem that the boundary 
values (traces) of W"p-functions never can be well defined. However, the notion of trace 
is associated with the whole class of W"r)-equivalent functions, and it is defined using a 
representant that is continuous up to the boundary: 

DefinitionA.60 (Trace of a Wh.p-function) For a function f E W " p ( C 2 )  that is contin- 
uous up to the boundary dR we define its trace to the boundary dR as a function f dejned 
on dR, such that 
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Theorem A.28 (Traces of II".p-functions) Let 12 c R" hea houndeddomain with Lipsch- 
itz-continuous boundary and 1 I p < x. Then there exists a continuous lineur operator 
7 : W""(12) + L7'(312) s~ich that 

1. ( 7 f ) ( x )  = f ( z )  fi)rci// x E 812 iff E H ~ ~ +  n C(L). 

2. There exists u constant C > 0 such thnt 

for  ciII f E W',P(R). 

3. The operator 7 : W1+(R) + LJ'(dl2) is compact. 

Proof: See, e.g., [ I ]  for the proof of this theorem as well as for more details on traces in 
general. 

A.4.8 Generalized integration by parts formulae 

In this paragraph let us recall a few standard integral identities that are used frequently in 
the weak formulation of partial differential equations. Assume a bounded domain R C Iwd 
with Lipschitz-continuous boundary. By 

denote the unit outer normal to 30 (defined almost everywhere on dR). The formulae 
(A.80) and (A.81) are generalized as follows: 

Theorem A.29 (Green's theorem for H1-functions) For eve? u. 71 E H'(f2) i f  ho1d.r 

(A.96) 

Proof: See, e.g., [36]. The proof is based on the density of C ' ( 2 )  in H'(12), and it uses 

Theorem A.29 is the basis for various other useful identities. At least two of them are 

the Trace Theorem (Theorem A.28). 

introduced in the following lemma: 

Lemma A.47 For all 7~ E H1 (12) and v E H'(12) it is 

where d v / d v  = V v ( x )  . v ( x ) ,  x E dR. For all u E [H'(c2)]d and 21 E H1(R) it holds 

12(divu)vrlx = - l2 u. V v d x  + kc l (u .  v ) z J d S .  

Proof: Immediately from Theorem A.29. 
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A.4.9 Exercises 

Exercise A.61 Show that the sequence ofdomains { 6 2 , L } ~ = o  in Example A S 1  is un(form1y 
bounded, i.e., that there exists a bounded domain 6 such that R,, c 6 f . r  all n. 

Exercise A.62 Prove Lemma A.46. 

Exercise A.63 Show in detail that (A.89) defines an inner product in H'( f2) .  

ExerciseA.64 Considera function f E C([-l , l])  dejined as f(x) = x"for  -1 5 x 5 0 
and f(x) = x2fOrO 5 2 5 1. Find the largest k for which f E H'(-1,  1). 

Exercise A.65 Consider a domain 62 = B(0, R) c R2, 0 < R < l/e. Show in detail that 
the ,function 

lies in the space H 1  (0). 

Exercise A.66 Prove Theorem A.20 using Theorem A. 19. 

Exercise A.67 Let R C Rd be a bounded domain with Lipschitz-continuous boundary. 
Use the Green's Theorem A.29 to see that every divergence-free vectorjeld w E [H' (O) ld  
satisfies 

~ c 2 w . u d S = 0 .  

where u(x) is the unit outer normal vector to s1 at the point x 6 do2. 

Exercise A.68 Prove Lemma A.47 using Theorem A. 19. 

Exercise A.69 Consider a domain R = (-1,l) x (-1,l) c R2 and afunction 

(1 - x:)(1 - zz). 

A sequence offunctions {fn}?=' is defined by putting fn(x) = f (n ,  x). 

1. VerifL that this sequence lies in H 1 ( R ) .  

2. Show that it converges in Hl-norm andjind the limit g E H 1 ( R )  of the sequence. 

3. Use the fact that { fn}p=l C H,' (R) and a consequence of the Poincark-Friedrichs' 
inequality to simplify the convergence analysis. 



APPENDIX B 

SOFTWARE AND EXAMPLES 

This chapter is devoted to the discussion of selected topics related to finite element software. 
In Section B. 1 we present an efficient way of connecting the packages PETSc, Trilinos and 
UMFPACK to a finite element solver. Section B.2 gives a brief description of the high- 
performance modular finite element system HERMES. The full manual posted on our web 
page offers additional technical details. At the end of Section B.2 we present numerical 
results obtained with HERMES, where the efficiency of the lowest-order FEM and the hp- 
FEM is compared. Since it was not possible to include color pictures with this book, a color 
PDF file with the visualizations is available on our web page. 

B.l SPARSE MATRIX SOLVERS 

Efficient solvers for sparse systems of linear algebraic equations are key ingredients of finite 
element programs. Nowadays an engineer or researcher hardly can afford developing matrix 
solvers on hisher own, and thus public domain software packages play an increasingly 
important role. Moreover, as the finite element software becomes more complex, the 
question of efficient simultaneous interfacing to multiple matrix solver packages matters. 
Every matrix solver comes with its own unique interface. Hardcoding this interface into a 
FEM solver means an unwanted coupling. If the FEM solver deals with multiple PDEs that 
produce matrices with substantially different properties (this is the case, e.g., with second- 
order elliptic PDEs and Maxwell’s equations), the application of multiple matrix solvers 
becomes a need. 
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For this reason we decided to put an additional interface between the finite element solver 
and the matrix solvers, that we call the sMatr ix  utility. The basic version of the sMatr ix  
utility is described in Paragraph B. 1 . 1 .  The class sMatr ix  allows the user to operate with 
sparse matrices in the same way as with full matrices. Internally, the sparse matrices are 
represented via arrays of pointerchains, so that not even an estimate of the number of nonzero 
entries per row has to be provided. The library comprises 10 iterative matrix solvers based 
on ILU-preconditioned CG, BiCG, and other standard methods. These solvers work fine for 
moderately ill-conditioned problems. In Paragraph B. 1.2 we provide an example where the 
sMatr ix  utility is incorporated into a simple finite element code. Both the data structures 
and algorithms in the sMatr ix  utility can be replaced easily while maintaining the original 
interface to the finite element solver. This is demonstrated in Paragraphs B. 1.3-B. 1.5, where 
we provide a brief description of the packages PETSc, Trilinos, and UMFPACK, and show 
how to connect them with a finite element solver through the sMatr ix  interface. 

B.l.l The sMatrix utility 

The software package sMatr ix  comprises the files 

src/s.cpp, 
inc/sMatrix .h, 
inc/sMatrix-f.cpp, 
inc/sMatrix-PETSc.cpp, 
inc/sMatrix-Trilinos.cpp, 
inc/sMatrix-UMFPACK.cpp, 
inc/Solvers.f, 
Makef ile, 
obj/. 

The file s .  cpp contains a simple piecewise-affine one-dimensional finite element solver 
for the model problem from Paragraph 2.2.1, which uses the sMatr ix  utility. The file 
inc /sMatr ix_f  . cpp is the default version of the sMatr ix  utility which contains sev- 
eral standard ILU-preconditioned matrix solvers for both symmetric and nonsymmetric 
problems. These solvers are collected in the Fortran file i n c / S o l v e r s  . f .  The files 
sMatrix-PETSc . cpp, s M a t r i x - T r i l i n o s  . cpp, and sMatrix-UMFPACK . cppemploy, un- 
der the same interface, iterative and direct matrix solvers provided by the packages PETSc, 
Trilinos, and UMFPACK. These packages must be downloaded and installed separately. 
The directory obj / is used to store object files. 

lncluding the sMatrix utility The sMatr ix  utility is included into a C/C++ code 
via the header file s M a t r i x .  h after the standard system includes. 

initialization of a sparse matrix The size of the matrix Ndof must be known at the 
time of initialization. An empty sparse matrix S is initialized by the command sMatr ix  * S  
= new sMatr ix(Ndof,  Nnz). The input parameter Nnz is ignored unless the packages 
PETSc, Trilinos, or UMFPACK are employed (this will be discussed later). The parameter 
Nnz either is a single integer number defining the maximum number of nonzeros per row, 
or it is an integer array of the length Ndof whose entries define the maximum number of 
nonzero entries in each row. 

Adding nonzero entries The operation S,, = S,, +value, where ual ue is an arbitrary 
real number, is performed via the command S->Add(i, j , v a l u e ) .  The indices start 
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from 0, which is a standard C/C++ convention (as opposed to Fortran, where indices start 
from 1 ). This means that the indices i = 0 and j = 0 correspond to the upper left comer 
of the matrix. Nonzero entries can be added to any position and as many times as the user 
wishes. A new entry in the sparse matrix structure is created when a first contribution to a 
position ( i ,  j) is made, and further contributions to an existing entry only change its value. 

Transforming the matrix into the CSR format After the process of filling the sparse 
matrix is finished, the number of nonzero entries in the matrix can be calculated by calling 

S->ComputeNonZeros () ; 

Next the matrix can be transformed into the Compressed Sparse Row (CSR) format (see 
Paragraph 2.5.1 ) by calling the functions 

S->Alloc-CSR-arraysO; 
S->Fill-CSR-array-IAO; 
S->Fill-CSR-array- JA 0 ; 
S->Fill-CSR_array-A() ; 

If for some reason one needs to reset all entries of the matrix to zero while preserving its 
sparse structure (i.e., the arrays I A  and JA), the command 

S->Setzero() ; 

can be used. After the IA, JA, and A arrays have been created, the matrix is stored twice in 
the computer memory. Hence the original sparse structure may be deleted via the command 

S->DeleteSparseStructure(); 

Solving the system of linear algebraic equations With a right-hand side vector 
F of the length S->Rank, the system SY = F is solved by calling the function 

SolveSparseSystem(S->Rank, S->NonZeroNum, S->IA, S->JA, S->A, 
F, Solver, Max-iter-num, Iter-error, 
Nun-of-iter); 

The solution vector Y is returned in the vector F. This function is defined outside of the 
sMatrix class so that it can be used independently, with any sparse matrix represented in 
terms of the three CSR arrays. The input parameters i n t  Solver, i n t  Max-iternum, and 
double I t e r - e r ro r ,  and the output parameter i n t  &Nunof - i t e r  have the following 
meaning: 

Solver is a nonzero integer number between -10 and 10 that determines which numer- 
ical method from the file Solver.  f is be used. This parameter is ignored when PETSc, 
Trilinos, or UMFPACK are employed: 

1 . . . pbcg(): BiCG (biconjugate gradient method), nonsymmetric 
2 . .  . pbcgmr(): BiCGMR2 (BiCGStab2 with full two-dimensional minimiza- 

3 . . . pegs(): (squared BiCG), nonsymmetric 
4 . . . pscgs(): SCGS (smoothed squared BiCG), nonsymmetric 
5 . . . pdcgs(): DCGS (twice smoothed squared BiCG), nonsymmetric 
6 . .  . pqmr(): QMR (quasi minimum residual method), nonsymmetric 
7 . . . pstab(): BiCGStab, nonsymmetric 

tion of the symmetric method), nonsymmetric 
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8 . . . pstab2(): BiCGStab2, nonsymmetric 
9 . . . pgcgm(): GCGM (generalized conjugate gradient method), symmetric 
10 . . . pmr(): (minimum residual method), symmetric 

See, e.g., [ 1031 for the description of these methods. The 'p' in the name of the method 
stands for "ILU-preconditioned". When flipping the sign, the same method is used without 
preconditioning. Max-iternum is the maximum allowed number of iterations (to avoid 
an infinite loop in the case of convergence problems), I t e r - e r r o r  is the accuracy of the 
solver (more precisely, the upper bound for the residual), and Num-of - i t e r  returns the 
number of iterations actually performed. After the sparse linear algebraic system is solved, 
the function 

S->Delete-CSR-arrays 0 ; 

may be used to delete the CSR arrays from the computer memory. Additional functions 
can be found in the header file sMatrix . h, and the source code sMatrix . cpp contains the 
description of additional internal variables that we have not mentioned. The source code 
sMatrix-f . cpp is too lengthy to be printed here, but the reader finds it included with the 
sMatrix package. 

B.1.2 An example application 

Let us return to the model problem stated in Paragraph 2.2.1 : Given the real coefficients 
a1 > 0 and a0 2 0, an interval R = (q , z l ) ,  and a finite element mesh Th,p over R 
consisting of M 2 1 equally-spaced affine elements, find a piecewise-affine approximate 
solution to the equation 

equipped with homogeneous Dirichlet boundary conditions. 
The corresponding C++ finite element code that employs the sMatrix utility is shown 

below. The input parameters a1 > O,ao 2 0 , ~  < 51 and M 2 1 are hardcoded for 
simplicity, but the user is free to change them. 

/* 
This short code illustrates the use 
of the utility sMatrix. Solved is 
a model problem -(a1 u')' + a0 u = 1 
with homogeneous Dirichlet conditions 
in a 1D interval (x0, xl) by piecewise 
-affine equally-spaced elements. 
*/  

//system includes 
# include <stdio.h> 
# include <string.h> 
# include <math.h> 
# include <stdlib.h> 
# include <unistd.h> 

//the sMatrix utility 
# include ' I .  . /inc/sMatrix. h" 

int main(int argv, char **argc) t 
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/*** DEFINING PROBLEM PARAMETERS ***/ 

double x0 = 0, xl = 1; //computational domain Omega = (x0, xl) 
double a1 = 1; //coefficient, must be greater than zero 
double a0 = 0; //coefficient, must be greater than 

//or equal to zero 
int M = 10000; //number of equally-spaced elements in (x0,xl) 

/*** PRINTING PROBLEM PARAMETERS ***/ 

printf("\n----------------------------------------\n,,). 

printf("----------------------------------------\n"). 
printf(" This is a demo for the sMatrix utility\n"); 

printf ("Domain: Omega = (%g, %g) .\n", x0, xl); 
printf ("Equation: -(a1 u ' )  ' + a0 u = l\n"); 
printf("Bdy conditions: u(x0) = u(x1) = O.\n"); 
printf("Coeffs: a1 = %g, a0 = %g.\n", al, aO); 
printf ("Subdivision into %d elements.\n" , M) ; 

/*** DEFINING ELEMENT LENGTH ***/ 

double h = (xl - xO)/M; 

/*** DEFINING THE NUMBER OF UNKNOWNS ***/ 

int ndof = M - 1: 

/*** ALLOCATING THE SPARSE MATRIX ***/ 

//the second parameter is ignored unless 
//the PETSc or Trilinos packages are used 
//(to be explained later) 
sMatrix *S = new sMatrix(ndof, 3 ) ;  

/*** ALLOCATING THE RHS ***/ 

double *f = (double*)malloc(sizeof(double)*ndof); 
if(f == NULL) Error("Not enough memory for the right-hand side."); 

/*** FILLING THE SPARSE MATRIX AND THE RHS ***/ 
/*** (THE ELEMENT LOOP) ***/ 

//setting the RHS zero 
for(int i=O; i<ndof; i++) fCil = 0; 

//first element 
S->Add(O,O, al/h + aO*h/3); 
f[O] = h/2; 

//loop over internal elements 
for(int i=2; i<M; i++) 1 
S->Add(i-2, i-2, al/h + aO*h/3); 
S->Add(i-2, i-1, -al/h + aO*h/6); 
S->Add(i-l, i-2, -al/h + aO*h/6); 
S->Add(i-1, i-1, al/h + aO*h/3); 
f[i-21 += h/2; 
f[i-11 += h/2; 

> 
//last element 
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S->Add(M-2,M-2, al/h + aO*h/3); 
f CM-21 += h/2; 

/*** CONTROL OUTPUT OF THE MATRIX IN MATLAB FORMAT ***/ 

/* 
string name = "matrix"; 
S->OutputMatrixMatlab(name); 
printf("Contro1 output of the matrix in Matlab format.\n"); 
*/ 

/*** CONTROL OUTPUT OF THE MATRIX IN ASCI FORMAT ***/ 

/ *  
//string name = "matrix"; 
S->OutputMatrixASCI (name) ; 
printf("Contro1 output of the matrix in ASCI format.\n"); 
* /  

/*** CONTROL OUTPUT OF THE RHS IN ASCI FORMAT ***/ 

/* 
printf ("RHS = "1;  
for(int i=O; i<ndof; i++) printf ("%g " , f [il) ; 
printf ("\n") ; 
*/ 

/*** TRANSLATING THE MATRIX INTO THE CSR FORMAT ***/ 

S-XomputeNonZerosO; 
S->Alloc-CSR-arrays(); 
S->Fill_CSR_array-IAO ; 
S->Fill-CSR-array_JAO; 
S->Fill-CSR-array-AO; 

/*** RELEASING MEMORY FOR THE SPARSE MATRIX STRUCTURE ***/ 

S->Deletesparsestructure 0 ; 

/*** DEFINING SPARSE MATRIX SOLVER PARAMETERS ***/ 

//choosing the iterative sparse matrix solver 
//(ignored when the PETSc or Trilinos packages are used) 
int solver = 9; / /9 for ILU-preconditioned Conjugate Gradients 

//defining accuracy of the iterative sparse matrix 
double iter-error = le-10; 

//setting a limit to the number of iterations of the solver 
int max-iter-num = 1000; 

//declaring a variable where the solver returns the number 
//of iterations actually performed 
int num-of-iter; 

solver 

/*** SOLVING THE SPARSE LINEAR ALGEBRAIC SYSTEM ***/ 

SolveSparseSystem(S->Rank, S->NonZeroNum, S->IA, 
S->JA, S->A, f, solver, 
max-iter-num, iter-error, num-of-iter); 
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printf ("Matrix solver performed %d iterations. \n" , nun-of-iter) ; 

/*** RELEASING MEMORY FOR THE CSR SPARSE MATRIX ARRAYS ***/ 

S->Delete_CSR-arraysO; 

/*** OUTPUT OF SOLUTION ***/ 

FILE *g = fopen("solution.gnu", "wb"); 
if (g == NULL) Error("Cou1d not open the output file. ") ; 
fprintf (9, "%g O\n" , x0) ; 
for(int i=O; icndof; I++) fprintf(g, "%g %g\n", x0 + (i+l)*h, f[il); 
fprintf (g, "%g O\n", XI) ; 
f close (g) ; 
printf ("Gnuplot file solution.gnu created. \n") ; 

delete S; 
free(f) ; 
printf ("Bye.\n"); 
return 1; 

1 

B.1.3 Interfacing with PETSc 

The PETSc solver package (Portable, Extensible Toolkit for  Scientijc Computation) was de- 
veloped at Argonne National Labs. It can be downloaded from the web page h t t p  : //www- 
unix .  mcs . an1 . gov/petsc/pets~-2/index. html where also installation instructions, 
documentation and an extensive amount of additional information can be found. Rather 
than trying to give another description of the package here, let us present the source code 
sMatrix-PETSc . cpp. This is a PETSc version of the sMatrix utility, with an interface 
identical to the original sMatrix. Every finite element solver that works with the original 
sMatrix will work with sMatrixF'ETSc as well. 

The source code of sMatrix-PETSc . cpp 
//implementation of PETSc solvers under the sMatrix interface 

#include "sMatrix. h" 

#ifdef --cplusplus 
extern "C"  { 
#endif 

#include <petsc.h> 
#include <petscvec.h> 
#include <petSCmat.h> 
#include <petscksp.h> 

#ifdef --cplusplus 

#endif 
1 

#include <sstream> 
#include <fstream> 
#include ciamanip> 
#include <cstdio> 
#include <cstdlib> 
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using namespace std; 

void Error(char *msg) c 
fprintf (stderr, "%s\n", msg) ; 
fflush(stderr); 
exit ( 0 )  ; 

1 

//class sMatrix 
sMatrix::sMatrix(int iRank, int nz = 0 )  

{ 
Petsc Init ializeNoArgument s ( ) ; 
Rank = iRank; 
A = (double*)malloc(sizeof(Mat)); 
MatCreateSeqAIJ(PETSC_COMM-SELF, Rank, Rank, 

IA = NULL; 
JA = NULL; 
NonZeroNum = 0; 

nz > 0 ? nz : PETSC-DEFAULT, PETSC-NULL, (Mat*)A); 

1 

sMatrix::sMatrix(int iRank, int *nz) 

P e t s c I n i t i a l i z e N o A r g e n t s  () ; 
Rank = iRank; 
A = (double*)malloc(sizeof (Mat)) ; 
MatCreateSeqAI J (PETSC-COMM-SELF, Rank, Rank, 
PETSC-DEFAULT, nz,  (Mat*)A); 

IA = NULL; 
JA = NULL; 
NonZeroNum = 0; 

i 

> 
double sMatrix::GiveEntry(int iRow, int iColumn) 
c 
if (iRow < 0 I I  icolumn < 0 I1 

iRow >= Rank I I  icolumn >= Rank) 
Error("interna1 in sMatrix: :GiveEntryO . " )  ; 

PetscScalar Val; 
MatGetValues(*(Mat*)A, 1, &iRow, 1. &iColumn, &Val); 
return (doublelval; 

3 

void sMatrix::SetZeroO 
I 

> 
MatZeroEntries (* (Mat*)A) ; 

void sMatrix::ComputeNonZeros() 
c 
//counting nonzeros 
MatAssemblyBegin(*(Mat*)A, MAT-FINAL-ASSEMBLY); 
MatAssemblyEnd(* (Mat*)A, MAT-FINAL-ASSEMBLY) ; 
MatInfo info; 
MatGetInfo(*(Mat+)A, MAT-LOCAL, &info); 
NonZeroNum = (int)info.nz-used; 

J 

void sMatrix::Alloc-CSR-arraysO 
I 

MatAssemblyBegin(*(Mat*)A, MAT-FINAL-ASSEMBLY); 
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MatAssemblyEnd(* (Mat*)A, MAT-FINAL-ASSEMBLY) ; 
> 
void sMatrix: :Delete-CSR-arraysO 
c 
> 

void sMatrix::FillLCSR-array-IAO 
c 

MatAssemblyBegin(*(Mat+)A, MAT-FINAL-ASSEMBLY); 
MatAssemblyEnd(+(Mat*)A, MAT-FINAL-ASSEMBLY); 

> 
void sMatrix: :Fill-CSR_array-JAo 
c 

MatAssemblyBegin(+(Mat+)A, MAT-FINAL-ASSEMBLY); 
MatAssemblyEnd(* (Mat*)A, MAT-FINAL-ASSEMBLY) ; 

> 
void sMatrix::Fill-CSR-array-A~) 
c 

MatAssemblyBegin(*(Mat*)A, MAT-FINAL-ASSEMBLY) ; 
MatAssemblyEnd(+ (Mat*)A, MAT-FINAL-ASSEMBLY) ; 

> 
void sMatrix::Add(int Row, int Column, double Value) 
c 

1 
MatSetValue(*(Mat*)A, Row, Column, Value, ADD-VALUES) ; 

//this function compares the sparse matrix with 
//a given full matrix ( for  debug purposes) 
void sMatrix::TestVsFullMatrix(double **A, double precision) 
c 
Error("TestVsFullMatrix0 not done in PETSc version."); 

> 

void sMatrix::OutputMatrixMatlab(string ProjectName) 

string MatlabFileName = ProjectName + ".mat"; 

PetscViewer w; 
PetscViewerASCIIOpen(PETSC_COMM_SELF, 

PetscViewerSetFormat(w, PETSC-VIEWER-ASCII-MATLAB); 
MatView(+(Mat+)A, w); 
PetscViewerDestroy(w) ; 

MatlabFileName. c-stro, &w) ; 

> 
void sMatrix::OutputMatrixASCI(string ProjectName) 
c 
string TxtFileName = ProjectName + It .txt"; 

PetscViewer w; 
PetscViewerASCIIOpen(PETSC-COMM-SELF, 

MatView(*(Mat*)A, w); 
PetscViewerDestroy(w); 

TxtFileName. c-stro , &w) ; 

1 

void sMatrix::DeleteSparseStructureo 
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void SolveSparseSystem(int Rank, int NonZeroNum, int *IA, 
int * JA, double *A, double *X, 
int Solver, int Max-iter-num, 
double Iter-error, int &Nm_of_iter) 

t 
Vec rhs, x; 
VecCreateSeqWithArray(PETSC-COMM-SELF, Rank, X ,  &rhs); 
VecDuplicate(rhs, &x) ; 

KSP ksp; 
KSPCreate (PETSC-COMM-SELF, &ksp) ; 
KSPSetTolerances(ksp, Iter-error, PETSC-DEFAULT, 
PETSC-DEFAULT, Max-iter-num); 

KSPSetFromOptions(ksp) ; 
KSPSetOperators(ksp, * (Mat*)A, * (Mat*)A, SAME-PRECONDITIONER) ; 
//VERSION 2.2.0: 
//KSPSetRhs(ksp, rhs); 
//KSPSetSolution(ksp, x); 
//KSPSolve(ksp) ; 
//VERSION 2 . 2 . 1 :  
KSPSolve(ksp,rhs,x); 

PetscReal r-norm; 
KSPGetResidualNorm(ksp, &r_norm); 
KSPGetIterationNumber(ksp, &Num-of-iter); 
printf ("Matrix solver step %d, residual %g.\n" , 
Nm-of-iter, r-norm); 

PetscScalar *p; 
VecGetArray(x, &p) ; 
for(int i=O; i<Rank; i++) 

X C i l  = plil ; 
1 
VecRestoreArray(x, &p) ; 

KSPDestroy(ksp1; 
VecDestroy(rhs) ; 
VecDestroy(x); 

1 

B.1.4 Interfacing with Trilinos 

Trilinos is a large collection of linear and nonlinear algebraic solvers developed at Sandia 
National Labs. Documentation on the Trilinos project can be found on the web page 
http: //software. sandia. gov/trilinos/. Here we present its rather simple serial 
application. The following source code sMatrix-Trilinos. cpp is the Trilinos version of 
the sMatrix utility, that again preserves the original sMatrix interface. 

The source code of sMatrix-Trilinos . cpp 

//implementation of Trilinos solvers under the sMatrix interface 

#include "sMatrix .h" 

#include <Epetra_ConfigDefs.h> 
#include <Epetra-SerialComm.h> 
#include <Epetra-CrsMatrix.h> 
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#include <Epetra_Map.h> 
#include <Epetra_Vector.h> 
#include <Epetra-LinearProblem.h> 
#include <AztecOO.h> 

#include <sstream> 
#include <fstream> 
#include <iomanip> 
#include <cstdio> 
#include <cstdlib> 

using namespace std; 

void Error(char +msg) { 
fprintf (stderr, "%s\n", rnsg); 
fflush(stderr1; 
exit ( 0 )  ; 

> 
//class sMatrix 
sMatrix::sMatrix(int iRank, int nz) 
c 

Rank = iRank; 
Epetra-SerialComm *Cam = new Epetra-SerialComm; 
Epetra-Map +Map = new Epetra-Map(Rank, 0, *Corn); 
Epetra-CrsMatrix +Crs = new Epetra_CrsMatrix(Copy, +Map, nz); 
A = (double*)Crs; 
IA = NULL; 
JA = NULL; 
NonZeroNm = 0; 

> 
sMatrix::sMatrix(int iRank, int *nz) 
c 

Rank = iRank; 
Epetra-SerialComm *Corn = new Epetra-SerialComm; 
Epetra-Map +Map = new Epetra-Map(Rank, 0, +Corn); 
Epetra-CrsMatrix +Crs = new Epetra-CrsMatrix(Copy, *Map, nz); 
A = (double*)Crs; 
IA = NULL; 
JA = NULL; 
NonZeroNum = 0; 

> 
double sMatrix::GiveEntry(int iRow, int iColumn) 
c 
if (iRow < 0 I I  iColumn < 0 I 1  

iRow >= Rank I I iColumn >= Rank) 
Error("interna1 in sMatrix: :GiveEntry() . " ) ;  

Error("GiveEntry0 not done i n  Trilinos version."); 
return 0.0; 

1 

void sMatrix::SetZero() 
{ 

Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix+)A; 
Crs->PutScalar(O.O); 

> 
void sMatrix::ComputeNonZeroso 
{ 
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//counting nonzeros 
Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*)A; 
Crs->FillCompleteO ; 
NonZeroNum = Crs->NumGlobalNonzerosO ; 

> 
void sMatrix::Alloc-CSR-arrays0 
e 
Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*)A; 
Crs->FillCompleteO ; 

> 
void sMatrix::Delete-CSR-arrays0 
c 
1 

void sMatrix::Fill-CSR-array-IAO 
{ 
Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*)A; 
Crs->FillCompleteO; 

> 
void sMatrix: : Fill-CSR-array-JAO 
e 
Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*) A ; 
Crs->FillCompleteO; 

> 
void sMatrix::Fill_CSR_array_AO 
c 
Epetra-CrsMatrix *Crs = (Epetra_CrsMatrix*)A; 
Crs->FillComplete() ; 

> 
void sMatrix::Add(int Row, int Column, double Value) 
c 
Epetra-CrsMatrix +Crs = (Epetra-CrsMatrix*)A; 
int ret = Crs->SumIntoGlobalValues(Row, 1, &Value, &Column); 
if (ret!=O) t 

> 
Crs->InsertClobalValues(Row, 1, &Value, &Column); 

> 
//this function compares the sparse matrix with 
//a given f u l l  matrix ( f o r  debug purposes) 
void sMatrix::TestVsFullMatrix(double **A,  double precision) 

Error("TestVsFullMatrix0 not done in Trilinos version."); 
e 

> 
void sMatrix::OutputMatrixMatlab(string ProjectName) 
t 

> 
Error("OutputMatrixMatlab0 not done in Trilinos version."); 

void sMatrix::OutputMatrixASCI(string ProjectName) 

Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*)A; 
cout << *Crs << endl; 

c 
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void sMatrix::DeleteSparseStructureO C 
} 

void SolveSparseSystern(int Rank, int NonZeroNun, int *IA, 
int * JA, double * A ,  double *X, 
int Solver, int Max-iter-num, 
double Iter-error, int &Num-of-iter) 

Epetra-CrsMatrix *Crs = (Epetra-CrsMatrix*)A; 
Epetra-Vector rhs(Copy, Crs->RowMapO, X); 
Epetra-Vector x(Crs->RowMapO ; 
x. Random0 ; 
Epetra-Linearproblem Problem(Crs, &x, &rhs); 

Aztec00 KSP(Prob1em) ; 
KSP. Iterate(Max-iter-num, Iter-error) ; 
Nun-of-iter = KSP.NunIters0; 

x.ExtractCopy(X); 

B.1.5 Interfacing with UMFPACK 

UMFPACK is a set of routines for solving nonsymmetric sparse linear systems by means 
of the Unsymmetric MultiFrontal method. The software was developed at the University 
of Florida at Gainesville. Being a direct solver, UMFPACK is substantially different from 
the iterative solvers Trilinos and PETSc. We use it  successfully for indefinite problems 
arising in the discretization of the time-harmonic Maxwell’s equations, where the iterative 
solvers do not perform well. Documentation and source codes can be found on the web page 
http: //www. cise .uf 1. edu/research/spar se/umfpack. Building the UMFPACK 
functionality into the sMatrix utility was slightly more technical because of its specific 
data structures, but the original sMatrix interface could be preserved exactly. The source 
code sMatrix-UMFPACK . cpp is not printed here because of its length. 

B.2 THE HIGH-PERFORMANCE MODULAR FINITE ELEMENT SYSTEM 
HERMES 

Nodal elements (such as the Lagrange, Whitney, or NCdClec elements) are naturally suited 
for meshes where all elements have the same polynomial degree. This is why they are most 
suitable for problems with “nice” solutions. However, many problems in computational 
engineering and science exhibit significant local behavior in  the form of steep gradients, 
singularities, boundary andor  internal layers, etc. These phenomena can be most efficiently 
resolved by means of hierarchic finite element methods (hp-FEM), which are capable of 
combining elements of variable size and polynomial degree. The impact on the efficiency 
of the method is tremendous. A few numerical examples at the end of this section give the 
reader some feeling for the difference. An introduction to hierarchic finite element methods 
can be found, e.g., in [ 1 1 11, on which the implementation of HERMES is based. 
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8.2.1 Modular structure of HERMES 

HERMES is a modular object-oriented FEM system designed to facilitate the portability 
of the hp-FEM technology to various PDE models in engineering and science. The system 
consists of two main modules: 

0 FEM/hp-FEM Module containing the finite element discretization technology, such 
as the mesh processing algorithms, interior mode elimination algorithms, assembling 
algorithms, a-posteriori error estimation algorithms, etc. 

0 Algebraic Module with a variety of solvers for systems of linear and nonlinear al- 
gebraic equations, such as ILU preconditioned CG and BiCG methods, and solvers 
provided by the packages PETSc, Trilinos, and UMFPACK. Additional solvers can 
be added easily. 

The FEMIhp-FEM and Algebraic Modules communicate through the universal sMatrix 
interface that was described in Paragraph B. I .  1. 

The FEM/hp-FEM module is the most complex part of the system. It comprises: 

0 FEM/hp-FEM kernel containing PDE-independent algorithms, 

0 smaller modules representing PDE-dependent data, such as various types of finite 
elements. 

In  this way the discretization technology is fully separated from the physics of the solved 
problems, which reduces the development cost and increases the portability of the system 
to various PDE applications. The modular structure is depicted in Figure B. 1. 

, I FEMhp-FEM Module 

element5 

Formulation 
Bdy. Cond. 

FEM/hp-FEM Kernel 

\Matrix Interface Discrete 
Problem 

Trillno\ PETSc UMFPACK Other 

Algebraic Module 

Solution f 

Figure B.1 Structure of the modular FEM system HERMES. 

Currently two different PDE modules are implemented in the FEMIhp-FEM module: 

0 Elliptic Module with hierarchic continuous elements for systems of arbitrary number 
of nonlinear elliptic equations, 
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0 Maxwell’s Modulecontaining hierarchic edge elements for time-harmonic Maxwell’s 
equations. 

The Stokes Module with hierarchic higher-order Taylor-Hood elements is under construc- 
tion. Each type of PDE problem can be supplemented with appropriate boundary conditions. 

B.2.2 The elliptic module 

The system of nonlinear PDEs is entered via the definition of nonzero components of the 
vectors and matrices in the matrix equation 

+ P ~ ( z .  IL. VU)’U(Z) = F ( x .  U ,  VU). 

Here ~ ( x )  = ( u l ( z ) .  ~ ( 2 ) .  . . . . l L ~ ~ ~ ( x ) ) ’ “  is the unknown solution with thecomponents 
i ~ ,  E H1(C!) ,  1 = 1, . . . Nr,y. The matrix parameters PI. PJ.. . . . P7 of the type Ncy x Nc,(, 
may be arbitrary, some of them can be zero, but each equation in the system must stay a 
scalar second-order elliptic PDE. All parameters may depend on the spatial variable z, on 
the solution u and/or on the gradient Vu. The same applies to the right-hand side function 
F = ( G . .  . . . FN*<,)’~(z, u, Vu).  By applying B/axl and d/&2 to vectors, we mean that 
the derivatives are applied to every component. 

The variable N,, is set to one when a single scalar equation is solved, in  which case 
obviously the matrix and vector parameters become scalars. In this way the model equa- 
tion (B.2) covers a large variety of nonlinear, possibly vector-valued second-order elliptic 
problems. 

Boundary conditions Boundary conditions can be prescribed in a general form. For 
each solution component, the boundary of the domain is split into two parts r D . L  and r N , / ,  

i = 1.2.  . . . , N,,,. These boundary parts do not have to be connected, and moreover either 
r N . t  or ru., can be empty, provided that the other parameters guarantee unique solvability. 

On r D , &  one prescribes the Dirichlet boundary condition 

lL(z)  = yD. l (x ) .  2 E rD.[. i = 1.2.. . . . N,,,. 

where yo.,  are given functions. 
The Neumann boundary conditions, S N . ~ ,  on F N , ?  are defined in the form 

where y ~ , / ( z )  are the given functions, Y = ( q ( x ) .  v ~ ( x ) ) ~  is the unitary outer normal 
vector to 80, x E rN ,, and 1 = 1.2. .  . . . Nf<l.  
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Vector formulation With the notation 

the problem (B.2) can be rewritten to 

Spatial discretization The polynomial degrees 1 5 p 5 10 on the finite elements 
can be defined either via a data file or by means of a function in the code that assigns the 
polynomial degrees to elements based on the coordinates of their vertices. The polynomial 
degrees may differ from element to element. The solver constructs the corresponding 
hierarchic basis of the (vector-valued) finite element space Vh,p c (H1(C2))N<<i, B = 

(91, 92.. . . . p ~ } .  The unknown solution is sought in the form 

where y = (yl ,  yz, . . . , y ~ ) ? '  is the vector of unknown coefficients of the length N .  Equa- 
tion (B.2) is formulated in the variational sense and the usual finite element discretization 
is performed. The result of the discretization is a system of nonlinear algebraic equations 
in the form 

4 Y ) Y  = f ( Y ) .  (B.3) 

Here A is a square matrix of the type N x N depending on the vector y. It contains the 
nonlinearity coming from the coefficients P I ,  P2,. . . , P7. The right-hand side f (y )  is a 
vector of the length N that also depends on y. The discrete system is solved via a fixed 
point iteration 

starting from a suitable initial guess yo. Each iteration of this process includes the solution 
of a system of linear algebraic equations with a given matrix A' = A(yk). For this purpose 
we use the previously mentioned sMatrix utility. 

A(y')y"' = f(y')), k = 0,1,3, .  . . , (B.4) 

B.2.3 The Maxwell's module 

The time-harmonic Maxwell's equation (7.62) is considered in the two-dimensional form 

where E is the complex phasor of the electric field (i.e., the underlined quantity in (7.61)). 
In the two-dimensional setting, the relative permeability pr = p T ( z )  is a scalar in 2D, 
whereas the relative permittivity E, = E ,  (z) is a 2 x 2 tensor. By w and IC = w m  we 
denote the frequency and wave number, respectively. Here, as in Chapter 7, the symbol 
0 = ( d / d x z ,  - d / d ~ ~ ) ~  stands for the vector-valued curl of a scalar quantity, and V E  = 
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i3E2/dx1 - dEl /dxa  is the surface curl. Equation (B.5) is considered in an open bounded 
domain R c R2. 

The code works with the normalized values (7.67). 

and (7.68), 

P 
P7. = - 

PO ' 

where the conductivity y is a function of the spatial variable. 

Boundary conditions The boundary dR can be split into two open (not necessarily 
connected) disjoint parts r p  and rr. We consider the perfect conductor boundary condition 
(7.571, 

E . t = O  o n r p ,  

and the impedance boundary condition (7.7 l), 

p7T1VE - j d E .  t = g . t on rr .  
Here t = t ( z )  is the positively-oriented unit tangential vector t = (-v2. v l ) " ,  where v = 

( v l ,  ~ 2 ) ~  is the unit outer normal vector to the boundary dR. The impedance X = X(z )  > 0 
was defined in (7.72). Only the tangential component of g = g(z) is relevant. 

Spatial discretization The discretization of the time-harmonic Maxwell's equations 
is analogous to second-order elliptic problems. The solver constructs a hierarchic basis 
of the corresponding finite element subspace of H(cur1, Rh), B = {$,, &, . . . , $N}. 
Recall that the space H(cur1) only requires the continuity of the tangential component of 
the approximation across element interfaces. The unknown solution Eh,+ is sought in the 
form 

where z = ( z 1 , 2 2 , .  . . , Z N ) ~  E CN is the vector of unknown complex coefficients. 

equations of the form 

Here A is an N x N complex matrix and f a complex vector. Only the complex version 
of UMFPACK can handle the complex arithmetics. However, the code is written in such 
a way that also real solvers can be employed. This is done by representing the complex 
system as a 2N x 2N real system. 

All matrix solvers available in HERMES (ILU preconditioned CG and BiCG methods, 
PETSc, Trilinos, UMFPACK, and Gaussian elimination) can be employed to solve the 
linear system (B.7). However, the convergence of the iterative solvers in this case may be 
unsatisfactory due to the indefinite nature of the matrix A. As we said earlier, UMFPACK 
seems to be most appropriate for the discretized time-harmonic Maxwell's equations. 

The usual finite element discretization yields a system of complex-valued linear algebraic 

A z =  f .  (B.7) 
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B.2.4 Example 1 : L-shape domain problem 

The first numerical example deals with a problem whose exact solution 7~ is known, and 
thus the error function e / L , p  = (L - utL,/, can be calculated exactly. We consider an L-shape 
domain R C R2 with a reentrant corner, shown in Figure B.2. 

A 
I :  

Figure B.2 Geometry of the L-shape domain 

Considered is the equation -A.u = 0 in 11 with the Dirichlet boundary conditions 

.(z) = R(z)~/ : '  siii(28(z)/3 + n/3)  for all x E 8 1 .  
Here E ( z )  and O ( z )  are the standard spherical coordinates in the plane. The exact solution 
has the form 

,u(x) = R(z)'/" sin(20(z) /3  + n/:3) for all x E ( 2 .  

The magnitude of the gradient IVuI of the exact solution (whose calculation is left to the 
reader as an exercise) exhibits a singularity at the reentrant corner. Singularities are typical 
for second-order elliptic problems in domains with reentrant corners, and they make their 
numerical solution challenging. Despite being very local in space, they are a significant 
source of error. The error can be measured in a variety of different ways. The HI-norm 

Y I I ~ / ~ , J H I ( Q )  = I,(/' - 1 ~ / i . p 1 ~  + lvll - v ~ ~ / t . ~ J 2 d x  (.b 
is a natural choice from the point of view of the weak formulation of the problem. The 
L3"-norrn 

llf%.pIlL=(Q) = SLIP l4z) - t[/L,,(z)l. 
XELl 

on the other hand, gives the maximum difference of u and u/i.p. We use the H'-norm in 
what follows. The problem was solved twice, using the piecewise-affine FEM and the hp 
FEM. In both cases it was our goal to attain the best possible accuracy using as few degrees 
of freedom as possible. The approximate solution, its gradient, finite element meshes, and 
a-posteriori error estimate e / t .p  = Ur4f - ii/i.TJ based on a very accurate reference solution 
? I , . ,  f ,  are shown in Figures B.3-B.7. The efficiency of the piecewise-affine FEM and the 
I p F E M  is compared in Table B. I .  
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Figure B.3 Approximate solution oi ,  of the L-shape domain problem. 

Figure B.4 Detailed view of ~ V U I , . , ~ ~  at the reentrant cornei- (7ooiii = 70). 
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Figure B.5 
quadratic elements cover the vicinity of the reentrant corner. 

The hp-mesh. Large fifth-order elements are used far from the singularity, and small 

Figure B.6 The hp-mesh, details of the reentrant corner (zoom = 70). 



THE HIGH-PERFORMANCE MODULAR FINITE ELEMENT SYSTEM HERMES 447 

Figure B.7 A-posteriori error estimate for utL,{,,  details of the reentrant corner (zoom = 70) 

The geometry of the piecewise-affine mesh was identical to the hp-mesh, but the piecewise- 
affine mesh was moreover uniformly subdivided to reach the required accuracy (each edge 
was split into 60 equally long parts). 

An efficiency comparison of the piecewise-affine FEM and hp-FEM is shown in Table 
B. 1. Both computations, as well as all other computations shown in the following, were 
performed using our modular FEM system HERMES under identical conditions on a desk- 
top Linux PC with a 3 GHz Pentium 4 processor and 2 GB of memory. 

Table B.l 
iterations of the matrix solver, and the CPU-time. 

Comparison of the number of DOF, relative error in the HI-norm, number of 

Affine elements h p  elements 

DOF 143161 839 
Error 0.1876% 0.1603% 
Iterations 42 1 30 
CPU time 2.1 min 0.35 sec 

Acknowledgment The numerical results presented in this section were obtained with the 
help of the triangular mesh generatorTriangle [ 1071 by Richard Shewchuk (see h t t p  : //www-2. c s  . cmu 
and the visualization tool General Mesh Viewer (GMV) by Frank Ortega(see h t t p  : //www-xdiv . l an l  . 
GMVHome . html). 
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B.2.5 Example 2: Insulator problem 

This time i t  is our goal to calculate the distribution of the electric field induced by an 
insulated conductor in the vicinity of a point where the conductor leaves the wall. The 
computational domain R C R2 corresponding to this axisymmetric problem is depicted in 
Figure B.8. 

A 1- 1 

Figure B.8 Computational domain (all measures are in millimeters) 

The wall itself, where we are not interested in the solution, is not included in the domain 
( 1 .  The same holds for the conductor along the horizontal axis of symmetry. Both the 
wall and the conductor are handled via suitable boundary conditions (to be defined below). 
The hatched subdomain 512 C 12 represents the insulator with the relative permittivity 
f,. = 10. The relative permittivity in the rest of the domain is F ,  = 1. This problem is 
more difficult compared to the previous one, because in addition to a reentrant corner there 
is a material interface in the domain along which the electric field E is discontinuous (i.e., 
across which the scalar potential p has a significant jump in the derivative). Solved is the 
standard potential equation of electrostatics (7.25) in cylindrical coordinates, equipped with 
the following boundary conditions: 

p = 2 2 O V  o n r , .  

and 

Again we compare the results obtained by means of the piecewise-affine FEM and I ) , / -  
FEM. The approximate solution, its gradient, finite element meshes, and an a-posteriori 
error estimate are shown in Figures B.9-B. 13. The efficiency of the piecewise-affine FEM 
and the I p F E M  is compared in Table B.2. 
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Figure B.9 Approximate solution ~ j , . , )  of the insulator problem 

Figure B.10 
discontinuity along the material interface (zoom = 1000). 

Details of the singularity of lE,,.,,l = I - Vpj,.,,I at the reentrant corner, and the 

Figure B.11 The Irp-mesh, global view. Large fifth-order elements are used far from the singularity 
and material interface, small quadratic elements are placed close to the reentrant corner and the material 
interface 
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Figure B.12 The hp-mesh, details of the reentrant corner (zoom = 1000). 

Figure B.13 A-posteriori error estimate for p~i~.,>, details of the reentrant corner (zoom = 4) 

The piecewise-affine mesh had geometry identical to the hp-mesh, but it was uniformly 
subdivided so that an accuracy similar to the hp-FEM could be reached (each edge was split 
into 23 equally long parts). An efficiency comparison is shown in Table B.2. 

Table B.2 
iterations of the matrix solver, and the CPU-time. 

Comparison of the number of DOF, relative error in the HI-norm, number of 

Affine elements hp elements 
~ 

DOF 259393 633 1 
Error 1.617% 1.521% 
Iterations 228 60 
CPU time 34 min 11.58 sec 
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B.2.6 Example 3: Sphere-cone problem 

The next problem also deals with electrostatics. A metallic sphere of the radius 200 mm 
carries an electric potential p,s = 100 kV. The distance of the sphere to the ground is 1000 
mm. There is a metallic cone 100 mm above the sphere with zero electric potential. The cone 
is 500 mm high and its bottom has the radius 100 mm. The axisymmetric computational 
domain C? is depicted in Figure B. 14 (notice that the figure describes the boundary conditions 
used). We solve equation (7.25) in cylindrical coordinates and compare the performance of 
the piecewise-affine and hp-FEM. The approximate solution, its gradient, the finite element 
meshes, and an a-posteriori error estimate are shown in Figures B.15-B.19. The efficiency 
of the piecewise-affine FEM and the I p F E M  is compared in Table B.3. 

Figure B.14 Computational domain of the cone-sphere problem 
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Figure B.15 Approximate solution ( p h , p  of the cone-sphere problem 

Figure B.16 
.50,000). 

Details of the singularity of IE/,.,,l = 1 ~ V;/,,,,l at the tip of the cone (zooin = 
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Figure B.17 The hp-mesh, global view. Large seventh-order elements are used far from the 
singularity and small quadratic elements at the tip of the cone. 

Figure B.18 The hp-mesh, details of the tip of the cone (zoom = 50,000). 
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Figure B.19 A-posteriori error estimate for +/t .r , .  details of the reentrant corner (zoom = 200,000). 

The geometry of the piecewise-affine mesh was identical to the hp-mesh, but the piecewise 
affine mesh was moreover uniformly subdivided in order to reach the required level of ac- 
curacy (each edge was split into 48 equally long parts). An efficiency comparison is shown 
in Table B.3. 

Table B.3 
iterations of the matrix solver, and the CPU-time. 

Comparison of the number of DOF, relative error in the Hl-norm, number of 

Affine elements lip elements 

DOF 488542 3317 
Error 0.5858% 0.2804% 
Iterations 859 44 
CPU time 30 min 10.53 sec 
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B.2.7 Example 4: Electrostatic micromotor problem 

This computation is rooted in the construction of electrostatic micromotors. These devices, 
which are capable of transforming the electric energy into motion analogously to standard 
electromotors, do not contain any coils or electric circuits that could be destroyed by strong 
electromagnetic waves. The goal of this computation is a highly-accurate approximation of 
the distribution of the electric field in a domain containing two electrodes and a thin object 
placed between them. The problem is plane-symmetric, and Figure B.20 shows one-half 
of the domain R. 

Figure B.20 
provided). The electrode is modeled via a Dirichlet boundary condition. 

Computational domain (the scaling was adjusted, but true measures in millimeters are 

The gray subdomain 022 represents the moving part of the device, while the white sub- 
domain 022 represents the electrodes that are fixed. The distribution of the electric potential 
p is governed equation (7.25), 

- V .  ( ~ , ( z ) V p ( z ) )  = 0 in R, 

equipped with the Dirichlet boundary conditions 

and 
p = 50 V on r2. 

The relative permittivity E ,  is piecewise-constant, E = 1 in R1 and E = 10 in 0 2 .  We solve 
the problem twice, using the piecewise-affine and hp-FEM. The solution, gradient of the 
solution, a-posteriori error estimate, and the meshes are shown in Figures B.21-B.22. The 
efficiency of the piecewise-affine FEM and the hp-FEM is compared in Table B.4. 
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Figure B.21 Approximate solution of the micromotor problem. Top: electric potential !pjt .,, (zoom 
= 1 and 6). Bottom left: detailed view of the singularity of lE,l.,,l = I - Vy,,.F)l at a corner of the 
electrode (zoom = 1000). Bottom right: Error estimate based on a reference solution (zoom = 1000). 
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Figure B.22 
the electrodes and small quadratic elements are placed at the reentrant corners. 

The hpmesh  (zoom = I ,  6, 50, 1000). Large sixth-order elements are used far from 
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The piecewise-affine mesh had geometry identical to the hp-mesh, but it was uniformly 
subdivided so that an accuracy similar to the hp-FEM could be reached (each edge was split 
into 44 equally long parts). An efficiency comparison is shown in Table B.4. 

Table B.4 
iterations of the matrix solver, and the CPU-time. 

Comparison of the number of DOF, relative error in the HI-norm, number of 

Affine elements hp elements 

DOF 472384 451 1 
Error 0.2024% 0.173% 
Iterations 387 71 
CPU time 32 min 17 sec 

B.2.8 Example 5: Diffraction problem 

The last example taken from [76] is concerned with an electromagnetic diffraction problem 
in the domain R = (-10, \ (0,lO) x (-10,O) with reentrant comer. The Maxwell’s 
module of HERMES (see Paragraph B.2.3) is employed to discretize the time-harmonic 
Maxwell’s equations by means of hierarchic tip edge elements. The edge elements use the 
same hp-FEM kernel as the elliptic module that was described in Paragraph B.2.2. The 
technology of the hierarchic edge elements is slightly different from the NCdClec elements. 
The hierarchic vector-valued shape functions used in HERMES can be found in [ 1 1 11. The 
reference transformation (7.1 13) derived in Paragraph 7.5.2 is used without changes. 

The problem involves perfect perfect conducting boundary conditions on the edges meet- 
ing at the reentrant corner, and impedance boundary conditions on the rest of the boundary 
(see [76] for their exact definition). The exact solution to this problem is given by 

where the symbol 0 = (a/ax,, - d / d x ~ ) ~  stands for the vector-valued curl, cy = 213, 
J ,  is the Bessel function of the first kind, and (T ,  4)  are the cylindrical coordinates in the 
plane. The approximate solution Eh,p (whose singularity was truncated for visualization 
purposes) is depicted in Figure B.23. The approximate solution obtained on the lowest- 
order mesh is optically identical to Eh,p. Figures B.24 and B.25 show the hp-mesh and 
lowest-order mesh consisting of the Whitney elements. An efficiency comparison is shown 
in Table B.5. 

By the way, this example illustrates that [H’ (R)I2 is not a subspace of H(cur1,R): The 
asymptotic expansion of the exact solution (B.8) at T = 0 reveals a singularity O ( T - ~ / ~ ) ,  
which is too strong for E to lie in the space [H1(R)I2. Thus, as we said at the beginning 
of Section 7.5, no Galerkin sequence could be constructed using subspaces of [H1(R)I2. 
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Figure B.23 Approximate solution to the diffraction problem (the magnitude of the phasor of the 
electromagnetic field IEiL,,J). The singularity at the reentrant corner was truncated for visualization 
purposes. 

Figure B.24 The hp-mesh consisting of hierarchic edge elements. 
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Figure B.25 The mesh consisting of the lowest-order (Whitney) edge elements. 

The lowest-order mesh shown in Figure B.25 was uniformly subdivided in order to reach 
a n  accuracy comparable to the hpFEM (each edge w a s  split into 10 equally long parts). 
An efficiency comparison is shown in Table B.5. 

Table B.5 
CPU-time. 

Comparison of the number of DOF, relative error in the H(cur1)-norm, and the 

Whitney edge elements h p  edge elements 

DOF 2586540 4324 
Error 0.6445% 0.62 1 1 o/c 
CPU time 21.2 min 2.49 sec 
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perfect conductor, 287 
shear force. 2 I3 
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siinply \upported. 249 
\lope. 2 I3 
\oft-supported. 250 
\ymmetry. 287 
traction, 249 
truncation. 286 

collocation. I97 
entropy. 38 
initial. 30 
interface. 277. 286 

conductivity 
electric, 274 
thermal, 5 

conductor, 275 
cone condition. 414 
conformity 

definition. I 18 
to the \pace H(cur1). 301 
to the \pace H , I 19 

con\crvation law. 37 
hyperbolic. 37 

consi\tency 
error. I73 
order. 173 

constitutive relation\, 274 
continuation. I72 
coiit iniii t y 

Hdlder. 423 
Lipschiti ot huundary, 413 
of operator\. 357 

Heine detinition. 360 
of a \equence, 3.52 
of one-step method\. I74 
Wong. 408 
weal.  408 

convergence 

Courant Richard. I 1 0  
Curie'\ polnt. 277 
data structure 

1" in 2 ~ .  I 34 
f'1'IQl' in  2D. 157 
i n  ID. 77 

deflection. 2 I 0  
deiiwy 

argtiiiient. 385 
of electric Hux. 270 
of inagiietic flux. 270 

detrrmiiiaiit. 339 
dielectric\. 275 
diinen\ioii. 33 I 
Dirichlet Johann Petei- Gusts\,. 1 3  
Dii-ichlet li l t .  20 
diwrete problem. 46 
di\trihution\. 3 I4 
doiii;iin 

boundary. J I3 
dehnition. 41 2 

dual \pace. 343 

clgeilvalue. 340 
ellective \hearing force. 249 

eigenvector. 34 I 
electric charge. 273 

density. 273 
element 

A r g y w  
higher-order. 265 
quintic. 255 

N6dklec. 309 
Whitney, 302 

genei-a1 nodal. I04 
Hermite 

cubic in ID, 218 
cubic in  2D. 236 
higher-order hierarchic i n  ID, 222 
higher-order nodal i n  ID. 220 
higher-order nodal i n  2D, 238 

biaftine (2' i n  2D. 108 
higher-order PI' in 2D. IS2 
higher-order Q".' in  2D. 143 
higher-order hierarchic in  ID, 74 
higher-order nodal in ID. 7 0  
lineai- I" i n  2D. 1 1 0  

edge 

Lagrange 

ellipticity. 3 

embedding 
uniform, 28 

compact. 423 
continuous. 423 

energy norm. 16 
entropy condition\. 38 
equation 

Burger'\. 6 
continuity. 274 
elliptic. 2 
heat transfer. 5 
Hcliiiholt/. 28X 
hyperbolic. 2 
parabolic. 2 
Par\evaI. 400 
Pois\on. 4 
potential. 4 
wavc. 5. 2x3 

Maxwell's 
equation\ 

d i Were n t i a I form. 273 
integral form. 272 
time-harinonic. 2x7 

equipotentials. 280 
eqiiiv;ilence of  eleinent\. I2 I 
eri-oi- 

coii\i\tency. I73 
di\creti/atioii, I73 

explicit. 175 
implicit. 176 

Eulei- method 

expan\ion coefficient\. 33 I 
Fehlherg'\ trick. 182 
tield 

con\ei-vative. 280 
divergence-free. 28 I 
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electric. 270 
irrotational, 279 
magnetic, 270 

tixed point iteration, 372 
Rux function. 36 
force lines, 280 
Fourier Jean Baptiste Joseph. 399 
Fourier series. 399 
Galerkin Bark Grigorievich, 46 
<ra"<'e c c  

Coulomb, 282 
Lorenrz, 282 
tran\formation\, 282 

generaliied angle, 395 
Gerinain Sophie, 243 
Gram-Schmidt orthogonaliration, 397 
Holder Otto Ludwig, 381 
Hadainard's well posedness, 5 
Hadaniard Jacques Salomon, 5 
Heine continuity, 359 
Helmholtz decomposition, 294 
Hilbert David, 394 
hyperbolicity 

of conservation laws. 37 
\!ricf. 40 

hysteresis curve. 277 
identity 

cu r lku r l .  283 
Parseval, 400 

impedance, 290 
inequality 

backward triangular, 360 
Be\\el, 400 
Cauchy-Schwarr, 39 I 
discrete Hiilder, 382 
Holder, 38 I 
Minkowski, 382 
modified Young, 381 
PoincarC-Friedrichs', 42 I 
triangular, 348-349 
Young, 380 

injection. 332 
inner product. 389 
integral 

Lebecgue, 375 
Riemann, 376 

best 
interpolant 

definition. 94 
in the space II' i n  ID, 95 
in the space H 2  in ID. 233 

Chehyshev. 101 
general nodal 

global. I 17 
local, I15 

Hermite in  ID, 235 
Lagrange, 402 

i n  ID. 99 
on PI /Q'-elements in 2D. 137 
on  Pl'/Q~'-elements in 2D, I66 

Nedelec, 316 

pr(i.jectioii-ba\ed. 233 
in  the space H I i n  ID. 96 
in the \pace I f 2  in ID. 233 
local optiiiiality. 98. 235 

inverse i iutr ix .  337 
Lagrange interpolation polynoiiiinl. 70 
Lagrange Joseph-Loui\. 70 
law 

Aiiipi.re's. 272 
Faraday's, 272 
Gau\s' for electricity. 273 
Cam\' tor magneti.\m. 27.7 
Hooke's, 210 

Lehesgue constant. I48 
Lehesgue Henri Leon. 376 
leiiiiiia 

tea.\. 49 
generalired variationd. 417 
Lax-Milgram. 25 
Zorn'\. 330 

combination, 326 
form. 343 
indepeiidence. 328 
operator, 332 

span. 326 

linear 

\pace. 320 

Lipschitc boundary. 414 
magnetiration, 176 
map 

reference. 68 
reference aftine ID, 68 
rcfcrrnce alline 2D. I I 2 
reference biaffinc 2D. 109 
reference isoparametric. 109 

mass lumping. 17.5 
inatrix 

charactcri\tic. 340 
diagonali7ahle. 34 I 
Hermitinn. 342 
invene. 337 
non\ingular. 337 
positive definite, 48 
similar. 341 
\ingulnr. 337 
stiffne\\. 48 
\ymmetric. 342 
tramition. 338 

Jordan. 376 
Lebe\gue, 376 
7ero. 376 

diamagnetic, 276 
dielectrically anisotropic. 776 
dielectrically hard, 276 
dielectrically isotropic. 276 
dielectrically linear. 276 
dielectrically nonlinear, 276 
dielectrically soft. 276 

measure 

medium 

disperse. 27s 
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ferromagnetic. 276 
homogcneous. 275 
indisperse. 275 
inhomogeneous, 275 
isotropic. 27.5 
linear. 275 
paramagnetic. 276 

hybrid. 128 
regular. I I6 

method 
collocation, 197 
Euler 

explicit. 175 
implicit, 176 

me\h 

Galerkin. 46 
Jacob:. 373 
Newton’s 

ica1. 203 
simplified, 204 
termination criterion. 205 

of lines. I68 
Ritz, 24. 5 I 
Rungc-Kutta 

Dormand-Prince. 183 
embedded. 182 
explicit, 179 
implicit, I84 
Radau, 201 

Minkow\ki Hermann. 382 
model 

elastic beam 
Euler-Bernoulli, 2 10 
Timoshenko. 210 

Kirchhoff, 246 
Reissner-Mindlin. 243 

modulus of elasticity, 210 
monotonicity. 10 
multi-index, 414 
neutral surface, 21 1 
nodal bass, 105 
nodal finite element, 104 
nodal points 

elastic plate 

Chebyshev, 71 
equidistant, 86 
Fekete. 149 
Gauss-Lobatto. 7 I 

norm, 348 
I”, 407 
p - ,  3s  I 
continuity of, 360 
discrete p - .  350 
discrete integral, 350 
discrete maximum, 349 
energy, 16 
equivalent, 363 
Euclidean. 3.50 
Frobenius, 85,  350 
integral, 35 I 
Lebesgue LIJ-, 317 

maximum, 350 
operator, 36 I 
Sobolev L i ’ h , ’ J - .  418 

one-step method, I73 
open ball. 355 
operator 

hounded, 361 
closed, 9 

composition, 362 
continuous, 357 
contractive. 37 I 
idempotent, 328 
integral, 357 
inver\e. 334 
linear. 332 
monotone, 10 
null  space. 332 
range. 332 

compact, 408 

orthogonal complement, 396 
orthogonal direct sum, 403 
orthogonality, 196 

parallelogram rule, 392 
Parseval equality. 400 
permeability 

of vacuum. 274 
relative, 277 

of vacuum, 276 
relative. 276 

permutation, 339 
phase flow, I7 1 

continuow 172 
discrete. I73 

permittivity 

phasor, 287 
Poisson’s ratio. 245 
polariution vector, 275 
polynomials 

potential 
Legendre, 398 

electric. 279 
of divergence-free field, 282 
of irrotational field, 279 
scalar magnetic, 28 1 
vector magnetic. 282 

comparison, 28 
maximum, 26 
minimum, 28 

orthogonal, 402 
topological. 402 

quadrature 
adaptive, 63 
Gaussian 

in ID, S9 
on quads, I39 
on triangle\, 140 

principle 

projection 

reflexivity, 368 
Rieinann Georg Friedrich Bernhard, 4 I 
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Rieinann problem, 4 I 
Riesi Frigye\. 405 
seinidiscretiiaricin. 169 
\erninorm 

definition, 35 I 
Soholev, 4 I9 

hounded. 352 
Cauchy. 366 
convergent, 352 
liinit of, 352 

bounded. 3.55 
clo\ed, 355 
compact, 407 
convex, 25 
dense, 369 
open, 355 
precompact. 407 

shape functions 
for 1”-eleinents in 2D. I13 
for P”-elements in  2D. 152 
for Q’.’ -elements in 2D. 143 
for Q’-elements i n  2D. 108 
for Argyri\ elements i n  2D. 257 
for Hermite elements in  ID 

\equence 

set 

hierarchic. 223 
nodal. 22 I 

for Hermite elements i n  2D. 237 
Lagrange nodal in ID, 70 
Lohatto hierarchic i n  ID. 74 

shear force, 2 12 
Sobolev Sergei Lvovich. 4 I2 
solution 

ical, 14 
weak, IS 

Banach, 366 
dual. 343 
Euclidean, 321 
Hdlder. 423 
Hilhert, 394 
inner product. 389 
Lebesgue. 375 
linear, 320 
normed. 348 
reflexive, 368 
reparable. 330 
Soholev, 41 2 

space 

classitication. 419 
embedding. 423 

specific heat. 5 
spectral radius. 84 
spectrum, 84, 340 
speed of light, 282 
stahility, I86 

A-, 195 

1,-. 195 
a\ymptotic. 186 
domain. 188 
function, 189 
L.japunov. I X6 

stage derivative. 202 
\ t i the\\ .  177 
strain. 2 10 
stre\\. 2 10 
subpace\ 

definition. 323 
dense. 369 
direct \uni.  327 
intei-section, 324 
S U I l l ,  327 
union. 325 

direct. 327 
direct orthogonal. 403 

surjection. 332 
theorem 

sum 

Banach fixed point. 371 
Caldcron exteii\ion, 299 
Cayley-Hamilton. 34 I 
Eherlein-Smulyan. 409 
Fredholiii alternative, 408 
Gau\\‘. 4 I6 
Green‘\. 425 
Hahii-Banach. 9 
Heine-Borcl. 407 
local tixed point. 372 
Reynold\’ tranqxirt. 37 
Riev repre\entntion. 305 
Stoke\’. 416 
\uh\titution. I39 
tr;ice\, 425 

time dif.lerence 
backward. I76 
forwaid. I75 

detinition. 324 
theorem. 425 

check. 106 
definition, 105 
olArgyri\ elements in 2D. 25.5 
of Herinite elements in ID. 218 
of Hermite element\ in 2D. 239 

trace 

unisolvency 

variati(iiiaI crime. 127 
vectol- 

load. 38 
unknown coetticient. 18 

wave number, 288 
weak derivative. 4 17 

uniqueness of. 4 17 
weah formulation. I4 
well-po\edness. 5 
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