
Dis create _Mathematics
SECOND EDITION

PROFESSIONALR ýaynle& L. 0 n°p y
H F

NOT FOR' [RtPALE

Discrete
Mathematics

Second Edition

James L. Hein

Portland State University

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts

BOSTON TORONTO LONDON SINGAPORE

World Headquarters Jones and Bartlett Pub- Jones and Bartlett Pub-
Jones and Bartlett Pub- lishers Canada lishers International
lishers 2406 Nikanna Road Barb House, Barb Mews
40 Tall Pine Drive Mississauga, ON L5C London W6 7PA
Sudbury, MA 01776 2W6 UK
978-443-5000 CANADA
info4jbpub.com
www.jbpub.corn

Copyright @ 2003 by Jones and Bartlett Publishers, Inc.

Library of Congress Cataloging-in-Publication Data

Hein, James L.
Discrete mathematics / James L. Hein.-2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-7637-2210-3
1. Computer science-Mathematics. I. Title.

QA76.9.M35 H46 2002
004'.01'51-dc2l

2002069533

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or any information storage or retrieval system, without
written permission from the copyright owner.

Editor-in-Chief-College: J. Michael Stranz
Production Manager: Amy Rose
Senior Marketing Manager: Nathan Schultz
Associate Production Editor: Tara McCormick
Production Assistant: Karen Ferreira
Editorial Assistant: Theresa DiDonato
Composition: Northeast Compositors, Inc.
Technical Artist: George Nichols
Text Design: Anne Spencer
Cover Design: Kristin E. Ohlin
Printing and Binding: Courier Westford
Cover Printing: John P. Pow

This book was typeset in Textures 2.1 on a Macintosh G4. The font families
used were Computer Modern, Rotis Sans Serif, Rotis Serif, and Prestige Elite.
The first printing was printed on 40# Highland Plus.

Printed in the United States of America

06 05 04 0302 1098765432 1

To My Mother, Ruth Holzer Hein

She taught all eight grades in a one-room country schoolhouse in Minnesota.
One cold winter morning after a snowstorm, she was riding a two-horse sleigh to
school when one of the horses fell dead in its tracks. She ran to the nearest farm
and called home. Her father and brother harnessed a fresh horse and met her
back at the sleigh, where they harnessed the new team and drove her to school
so that she could open the door and start a fire for her waiting students.

I hope that this book opens up the door and starts a fire for waiting students
too.

Preface

The last thing one discovers in writing a book

is what to put first.

-Blaise Pascal (1623-1662)

This book is designed for an introductory course in discrete mathematics for the
prospective computer scientist, applied mathematician, or engineer who would
like to learn how the ideas apply to computer science. The choice of topics-
and the depth and breadth of coverage-reflects the desire to provide students
with the foundations needed to successfully complete courses in undergraduate
computer science programs. The book is the outgrowth of a course at Portland
State University that has evolved over twenty years from a course for upper-
division students into a course for sophomores.

The book can be read by anyone with a good background in high school
mathematics; therefore, it could also be used at the freshman level or at the
advanced high school level. Although the book is intended for future computer
scientists, applied mathematicians, or engineers, it may also be suitable for a
wider audience. For example, it could be used in courses for students who intend
to teach discrete mathematics in high school.

This book differs in several ways from current books about discrete math-
ematics. It presents an elementary and unified introduction to a collection of
topics that previously have not been available in a single source. A major fea-
ture of the book is the unification of the material so that it doesn't fragment
into a vast collection of seemingly unrelated ideas. This is accomplished through

organization and focus.
The book is organized more along the lines of technique than on a subject-

by-subject basis. The focus throughout the book is on the computation and con-
struction of objects. Therefore, many traditional topics are dispersed throughout
the text to places where they fit naturally with the techniques under discus-

v

vi PREFACE

sion. For example, to read about properties of-and techniques for processing-
natural numbers, lists, strings, graphs, or trees, it's necessary to look in the index
or scan the table of contents to find the several places where they are found.

The logic coverage is much more extensive than in current books at this level.
Logic is of fundamental importance in computer science not only for its use in
problem solving but also for its use in formal specification of programs, formal
verification of programs, and its growing use in many areas such as databases,
artificial intelligence, robotics, automatic reasoning systems, and logic program-
ming languages.

Logic is also dispersed throughout the text. For example, we introduce infor-
mal proof techniques in the first section of Chapter 1. Then we use informal logic
without much comment until Chapter 4, where inductive proof techniques are
presented. After the informal use of logic is well in hand, we move to the formal
aspects of logic in Chapters 6 and 7, where equivalence proofs and inference-based
proofs are introduced. Formal logic is applied to proving correctness properties
of programs in Chapter 8, where we also introduce higher forms of logic. We
introduce automatic reasoning and logic programming in Chapter 9.

The coverage of algebraic structures differs from that in other texts. In
Chapter 10, we give elementary introductions to algebras and algebraic tech-
niques that apply directly to computer science. In addition to the traditional
topic of Boolean algebra, we introduce algebras for abstract data types, rela-
tional algebra for relational databases, functional algebra for reasoning about
programs, congruences with applications to cryptology, and a few other alge-
braic ideas that are directly applicable to computing problems.

Some Notes

"* Each chapter begins with a chapter guide that gives a brief outline of the
topics to be covered in each section.

"* Each chapter ends with a chapter summary that gives a brief description of
the main ideas covered in the chapter.

"* Algorithms in the text are presented in a variety of ways. Some are simply
a few sentences of explanation. Others are presented in a more traditional
notation. For example, we use assignment statements like x := t and control
statements like if A then B else C fl, while A do B od, and for i :=
1 to 10 do C od. We avoid the use of begin-end or {-} pairs by using
indentation. We'll also present some algorithms as logic programs after logic
programming has been introduced.

"* The word "proof" makes some people feel uncomfortable. It shouldn't, but
it does. Maybe words like "show" or "verify" make you cringe. Most of the
time we'll discuss things informally and incorporate proofs as part of the
prose. At times we'll start a proof with the word "Proof," and we'll end

PREFACE vii

it with QED. QED is short for the Latin phrase quod erat demonstrandum,
which means "which was to be proved."

* A laboratory component for a course is a natural way to motivate and study
the topics of the book. The course at Portland State University has evolved
into a laboratory course. The ideal laboratory component uses an interactive,
exploratory language such as Prolog or one of the various mathematical
computing systems. The labs seem to work quite well when experiments are
short and specific so that instant feedback is obtained when trying to solve
a problem. Visit http://discretestructures.jbpub.com/ for a copy of both a
Maple Lab Manual and a Prolog Lab Manual.

Notes for the Second Edition

"* Almost every section has been rewritten to clarify and update the exposition.
In addition, each section now contains many subtopic headings to identify
specific areas of discussion.

"* Several hundred new exercises have been added to the book so that there
are now over 1,500 exercises. Answers are provided for about half of the
exercises. These exercises are identified with colored numbers.

"* The exercises at the end of each section are now listed by topic and ordered
by difficulty within each topic. There is also a collection of proofs and/or
challenges at the end of each set of exercises.

"• The number of examples has been increased to make more connections be-
tween ideas and applications.

"* Special attention has been paid to the report by the ACM/IEEE Joint Task
Force on Computing Curricula entitled "Computing Curricula 2001." The
book covers all topics listed in the report for the area of discrete structures
(DS), which includes logic. The book also covers topics from the following
areas listed in the report: recursion (PF4); basic algorithm analysis (AM);
formal methods (SE 10); knowledge representation and reasoning (IS3).

Using the Book

As with most books, there are some dependencies among the topics. For example,
all parts of the book depend on the introductory material contained in Chapter
1 and Section 2.1. But you should feel free to jump into the book at whatever

viii PREFACE

topic suits your fancy and then refer back to unfamiliar definitions. Here are a
few more topics with associated dependencies:

"* Inductive Definitions: They are used throughout the text after being intro-
duced in Section 3.1.

"* Recursively Defined Functions: They are discussed in Section 3.2 and depend
somewhat on inductive definitions in Section 3.1.

"* Logic: Informal proof techniques are introduced in Section 1.1. The tech-
nique of proof by induction is covered in Section 4.4, which can be read inde-
pendently with only a few references back to unfamiliar definitions. Chapter
6 and Chapter 7 should be read in order. Then Chapters 8 and 9 can be
read in either order.

"* Analysis: Chapter 5 introduces some tools that are necessary for analyzing
algorithms. It uses proof by induction, which is discussed in Section 4.4.

"* Algebra: Chapter 10 uses recursively defined functions as discussed in Sec-
tion 3.2, and it uses proof by induction as discussed in Section 4.4.

Course Suggestions

The topics in the book can be presented in a variety of ways, depending on
the length of the course, the emphasis, and student background. The major
portion of the text has been taught for several years to sophomores at Portland
State University. Here are a few suggestions for courses of various lengths and
emphases. (Assume that a lecture is a 50-minute period.)

Discrete mathematics with minimal formal logic

Chapters or Sections 1--4, 5.1-5.4, 6.2, 7.1, 10.1-10.2. Pace: About 40
to 45 lectures for an average-pace course. A course of 60 lectures might
go at a slower pace or add some additional sections.

Discrete mathematics with some formal logic

Chapters or Sections 1--5, 6.2-6.3, 7, 8.1 8.2, 10.1-10.2, and 10.5.1-
10.5.2. Pace: About 60 lectures for an average-pace course. A course of
80 lectures might go at a slower pace or add some additional sections.

Discrete mathematics and formal logic (a full course)

Chapters: 1-10. Pace: About 90 lectures for an average-pace course.

PREFACE ix

Logic

Chapters 6-9 with references to Sections 1.1, 1.2, 2.1, and 4.4. Pace: About 40
to 45 lectures for an average-pace course. A slower-pace course of 60 lectures
might spend more time on 1.1 and 4.4.

Acknowledgments

Many people helped me create this book in the first place and many people have
influenced the content and form of the second edition. Thanks go especially
to the students and teachers who have kept my e-mail quite interesting over
the past several years with questions, suggestions, and criticisms. They have
all influenced this book. At Jones and Bartlett, I thank Michael Stranz for
maintaining the entrepreneurial spirit, and I thank Amy Rose for overseeing the
production. I also thank my family for their constant help and support.

J.L.H.
Portland, Oregon

Contents

1 Elementary Notions and Notations 1
1.1 A Proof Primer 2

1.1.1 Logical Statements 2
1.1.2 Something to Talk About 5
1.1.3 Proof Techniques 6
Exercises 12

1.2 Sets 13
1.2.1 Definition of a Set 13
1.2.2 Operations on Sets 18

1.2.3 Counting Finite Sets 26
1.2.4 Bags (Multisets) 29
1.2.5 Sets Should Not Be Too Complicated 30

Exercises 31
1.3 Ordered Structures 35

1.3.1 Tuples 35
1.3.2 Lists 39
1.3.3 Strings and Languages 41

1.3.4 Relations 46
1.3.5 Counting Tuples 49

Exercises 52
1.4 Graphs and Trees 55

1.4.1 Definition of a Graph 55

1.4.2 Paths and Graphs 59
1.4.3 Graph Traversals 61

1.4.4 Trees 63

1.4.5 Spanning Trees 68
Exercises 70

1.5 Chapter Summary 72

xi

xii CONTENTS

2 Facts about Functions 73
2.1 Definitions and Examples 74

2.1.1 Definition of a Function 74
2.1.2 Some Useful Functions 79
2.1.3 Partial Functions 87
Exercises 88

2.2 Constructing Functions 91
2.2.1 Composition of Functions 91
2.2.2 The Map Function 96
Exercises 98

2.3 Properties of Functions 100
2.3.1 Injections and Surjections 100
2.3.2 Bijections and Inverses 102
2.3.3 The Pigeonhole Principle 105
2.3.4 Simple Ciphers 106
2.3.5 Hash Functions 109
Exercises 111

2.4 Countability 115
2.4.1 Comparing the Size of Sets 115
2.4.2 Sets that Are Countable 116
2.4.3 Diagonalization 119
2.4.4 Limits on Computability 121
Exercises 124

2.5 Chapter Summary 125

3 Construction Techniques 127
3.1 Inductively Defined Sets 128

3.1.1 Numbers 129
3.1.2 Strings 132
3.1.3 Lists 134
3.1.4 Binary Trees 138
3.1.5 Cartesian Products of Sets 140
Exercises 142

3.2 Recursive Functions and Procedures 145
3.2.1 Numbers 146
3.2.2 Strings 150
3.2.3 Lists 153
3.2.4 Binary Trees 159
3.2.5 Two More Problems 163
3.2.6 Infinite Sequences 165
Exercises 168

3.3 Grammars 173
3.3.1 Recalling English Grammar 173
3.3.2 Structure of Grammars 174
3.3.3 Derivations 177

CONTENTS Xiii

3.3.4 Constructing Grammars 181
3.3.5 Meaning and Ambiguity 186
Exercises 188

3.4 Chapter Summary 191

4 Equivalence, Order, and Inductive Proof 193
4.1 Properties of Binary Relations 194

4.1.1 Composition of Relations 195
4.1.2 Closures 199
4.1.3 Path Problems 204
Exercises 209

4.2 Equivalence Relations 213
4.2.1 Definition and Examples 214
4.2.2 Equivalence Classes 218
4.2.3 Partitions 219
4.2.4 Generating Equivalence Relations 225
Exercises 229

4.3 Order Relations 232
4.3.1 Partial Orders 233
4.3.2 Topological Sorting 239
4.3.3 Well-Founded Orders 242
4.3.4 Ordinal Numbers 250
Exercises 251

4.4 Inductive Proof 253
4.4.1 Proof by Mathematical Induction 253
4.4.2 Proof by Well-Founded Induction 259
4.4.3 A Variety of Examples 261
Exercises 267

4.5 Chapter Summary 272

5 Analysis Techniques 273

5.1 Analyzing Algorithms 274
5.1.1 Worst-Case Running Time 274
5.1.2 Decision Trees 277
Exercises 281

5.2 Finding Closed Forms 281
5.2.1 Closed Forms for Sums 282
Exercises 287

5.3 Counting and Discrete Probability 289
5.3.1 Permutations (Order Is Important) 289
5.3.2 Combinations (Order Is Not Important) 293
5.3.3 Discrete Probability 298

Exercises 309
5.4 Solving Recurrences 312

5.4.1 Solving Simple Recurrences 313

xiv CONTENTS

5.4.2 Generating Functions 319
Exercises 332

5.5 Comparing Rates of Growth 334
5.5.1 Big Theta 334
5.5.2 Little Oh 338
5.5.3 Big Oh and Big Omega 339
Exercises 341

5.6 Chapter Summary 342

6 Elementary Logic 345
6.1 How Do We Reason? 346

6.1.1 What Is a Calculus? 347
6.1.2 How Can We Tell Whether Something Is a Proof? 348

6.2 Propositional Calculus 348

6.2.1 Well-Formed Formulas and Semantics 349
6.2.2 Equivalence 353
6.2.3 Truth Functions and Normal Forms 358
6.2.4 Complete Sets of Connectives 365
Exercises 367

6.3 Formal Reasoning 369
6.3.1 Inference Rules 370
6.3.2 Formal Proof 372

6.3.3 Proof Notes 380
Exercises 381

6.4 Formal Axiom Systems 384
6.4.1 An Example Axiom System 384

6.4.2 Other Axiom Systems 391
Exercises 392

6.5 Chapter Summary 394

7 Predicate Logic 397
7.1 First-Order Predicate Calculus 397

7.1.1 Predicates and Quantifiers 398

7.1.2 Well-Formed Formulas 402
7.1.3 Semantics and Interpretations 404
7.1.4 Validity 409
7.1.5 The Validity Problem 413
Exercises 413

7.2 Equivalent Formulas 416
7.2.1 Equivalence 416
7.2.2 Normal Forms 424
7.2.3 Formalizing English Sentences 427
7.2.4 Summary 429
Exercises 430

7.3 Formal Proofs in Predicate Calculus 432

CONTENTS xv

7.3.1 Universal Instantiation (UI) 433
7.3.2 Existential Generalization (EG) 437

7.3.3 Existential Instantiation (EI) 438

7.3.4 Universal Generalization (UG) 440
7.3.5 Examples of Formal Proofs 443

7.3.6 Summary of Quantifier Proof Rules 450
Exercises 451

7.4 Chapter Summary 456

8 Applied Logic 457

8.1 Equality 458

8.1.1 Describing Equality 458
8.1.2 Extending Equals for Equals 464

Exercises 465

8.2 Program Correctness 466

8.2.1 Imperative Program Correctness 467

8.2.2 Array Assignment 478

8.2.3 Termination 482

Exercises 486

8.3 Higher-Order Logics 491

8.3.1 Classifying Higher-Order Logics 492

8.3.2 Semantics 496

8.3.3 Higher-Order Reasoning 498
Exercises 501

8.4 Chapter Summary 503

9 Computational Logic 505

9.1 Automatic Reasoning 505

9.1.1 Clauses and Clausal Forms 506

9.1.2 Resolution for Propositions 512
9.1.3 Substitution and Unification 514

9.1.4 Resolution: The General Case 521

9.1.5 Theorem Proving with Resolution 526

9.1.6 Remarks 529

Exercises 530
9.2 Logic Programming 533

9.2.1 Family Trees 534
9.2.2 Definition of a Logic Program 536

9.2.3 Resolution and Logic Programming 537

9.2.4 Logic Programming Techniques 549

Exercises 553
9.3 Chapter Summary 555

xvi CONTENTS

10 Algebraic Structures and Techniques 557
10.1 What Is an Algebra? 558

10.1.1 Definition of an Algebra 560
10.1.2 Concrete Versus Abstract 562
10.1.3 Working in Algebras 564

Exercises 570
10.2 Boolean Algebra 572

10.2.1 Simplifying Boolean Expressions 574
10.2.2 Digital Circuits 578
Exercises 583

10.3 Abstract Data Types as Algebras 585
10.3.1 Natural Numbers 585
10.3.2 Lists and Strings 589
10.3.3 Stacks and Queues 592
10.3.4 Binary Trees and Priority Queues 596
Exercises 599

10.4 Computational Algebras 601
10.4.1 Relational Algebras 601
10.4.2 Functional Algebras 607

Exercises 611
10.5 Other Algebraic Ideas 613

10.5.1 Congruence 613
10.5.2 Cryptology: The RSA Algorithm 616
10.5.3 Subalgebras 621
10.5.4 Morphisms 623
Exercises 629

10.6 Chapter Summary 632

Answers to Selected Exercises 633

Bibliography 707

Greek Alphabet 711

Symbol Glossary 713

Index 719

Elementary
Notions and
Notations

'Excellent!' I cried. 'Elementary,' said he.

-Watson in The Crooked Man
by Arthur Conan Doyle (1859 1930)

To communicate, we sometimes need to agree on the meaning of certain terms. If
the same idea is mentioned several times in a discussion, we often replace it with
some shorthand notation. The choice of notation can help us avoid wordiness
and ambiguity, and it can help us achieve conciseness and clarity in our written
and oral expression.

Many problems of computer science, as well as other areas of thought, deal
with reasoning about things and representing things. Since much of our com-
munication involves reasoning about things, we'll begin the chapter with a short
discussion about the notions of informal proof. The rest of the chapter is devoted
to introducing the basic notions and notations for sets, tuples, graphs, and trees.
The treatment here is introductory in nature, and we'll expand on these ideas
in later chapters as the need arises.

Section 1.1 introduces some proof techniques that are used throughout the book.
We'll practice each technique with a proof about numbers.

Section 1.2 introduces the basic ideas about sets. We'll see how to compare
them and how to combine them, and we'll introduce some elementary ways
to count them. We'll also introduce bags, which are like sets but which might
contain repeated occurrences of elements, and we'll have a little discussion
about why we should stick with uncomplicated sets.

Section 1.3 introduces some basic ideas about ordered structures and how to
represent them. Tuples are introduced as a notation for ordered information.
We'll introduce the notions and notations for lists, strings, and relations.
We'll also see some elementary ways to count tuples.

1

2 CHAPTER 1 E ELEMENTARY NOTIONS AND NOTATIONS

Section 1.4 introduces the basic ideas about graphs and trees. We'll discuss ways
to represent them, ways to traverse them, and we'll see a famous algorithm
for constructing a spanning tree for a graph.

1.1 A Proof Primer

For our purposes an informal proof is a demonstration that some statement is
true. We normally communicate an informal proof in an English-like language
that mixes everyday English with symbols that appear in the statement to be
proved. In the next few paragraphs we'll discuss some basic techniques for doing
informal proofs. These techniques will come in handy in trying to understand
someone's proof or in trying to construct a proof of your own, so keep them in
your mental tool kit.

We'll start off with a short refresher on logical statements followed by a short
discussion about numbers. This will give us something to talk about when we
look at examples of informal proof techniques.

1.1.1 Logical Statements

For this primer we'll consider only statements that are either true or false. We'll
start by discussing some familiar ways to structure logical statements.

Negation

If S represents some statement, then the negation of S is the statement "not S,"
whose truth value is opposite that of S. We can represent this relationship with
a truth table in which each row gives a value for S and the corresponding value
for not S:

S not S

true false

false true

We often paraphrase the negation of a statement to make it more under-
standable. For example, to negate the statement "Earth is a star," we normally
say, "Earth is not a star," or "It is not the case that Earth is a star," rather
than "Not Earth is a star."

We should also observe that negation relates statements about every case
with statements about some case. For example, the statement "Not every planet
has a moon" has the same meaning as "Some planet does not have a moon."
Similarly, the statement "It is not the case that some planet is a star" has the
same meaning as "Every planet is not a star."

1.1 u A PROOF PRIMER 3

A B AandB AorB

true true true true
true false false true
false true false true
false false false false

Figure 1.1 Truth tables.

Conjunction and Disjunction

The conjunction of A and B is the statement "A and B," which is true when
both A and B are true. The disjunction of A and B is the statement "A or
B," which is true if either or both of A and B are true. The truth tables for
conjunction and disjunction are given in Figure 1.1.

Sometimes we paraphrase conjunctions and disjunctions. For example, in-
stead of "Earth is a planet and Mars is a planet," we might write "Earth and
Mars are planets." Instead of "x is positive or y is positive," we might write
"Either x or y is positive."

Conditional Statements
Many statements are written in the general form "If A then B," where A and B
are also logical statements. Such a statement is called a conditional statement
in which A is the hypothesis and B is the conclusion. We can read "If A then B"
in several other ways: "A is a sufficient condition for B," or "B is a necessary

condition for A," or simply "A implies B." The truth table for a conditional
statement is contained in Figure 1.2.

Let's make a few comments about this table. Notice that the conditional is
false only when the hypothesis is true and the conclusion is false. It's true in
the other three cases. The conditional truth table gives some people fits because
they interpret "If A then B" to mean "B can be proved from A," which assumes
that A and B are related in some way. But we've all heard statements like "If the
moon is made of green cheese, then 1 = 2." We nod our heads and agree that the
statement is true, even though there is no relationship between the hypothesis
and conclusion. Similarly, we shake our heads and don't agree with a statement
like "If 1 = 1, then the moon is made of green cheese."

A B if Athen B

true true true
true false false
false true true
false false true

Figure 1.2 Truth table.

4 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

When the hypothesis of a conditional is false, we say that the conditional is
vacuously true. For example, the statement "If 1 = 2, then 39 = 12" is vacuously
true because the hypothesis is false. If the conclusion is true, we say that the
conditional is trivially true. For example, the statement "If 1 = 2, then 2 + 2
= 4" is trivially true because the conclusion is true. We leave it to the reader to
convince at least one person that the conditional truth table is defined properly.

The converse of "If A then B" is "If B then A." The converse does not
always have the same truth value. For example, we know that the following
statement about numbers is true.

If x > 0 and y > 0, then x + y > 0.

The converse of this statement is

If x + y > 0, then x > 0 and y > 0.

This converse is false. For example, let x = 3 and y = -2. Then the statement
becomes "If 3 + (-2) > 0, then 3 > 0 and -2 > 0," which is false.

Equivalent Statements

Sometimes it's convenient to write a statement in a different form but with the
same truth value. Two statements are said to be equivalent if they have the
same truth value for any assignment of truth values to the variables that occur
in the statements.

We can combine negation with either conjunction or disjunction to obtain
the following pairs of equivalent statements.

"not (A and B)" is equivalent to "(not A) or (not B)."
"not (A or B)" is equivalent to "(not A) and (not B)."

For example, the statement "not (x > 0 and y > 0)" is equivalent to the statement
"44 < 0 or y < 0." The statement "not (x > 0 or y > 0)" is equivalent to the
statement "x < 0 and y < 0."

Conjunctions and disjunctions distribute over each other in the following
sense:

"A and (B or C)" is equivalent to "(A and B) or (A and C)."

"A or (B and C)" is equivalent to "(A or B) and (A or C)."

For example, the statement "0 < x and (x < 4 or x < 9)" is equivalent to the
statement "0 < i < 4 or 0 < x < 9." The statement "x > 0 or (x > 2 and x > 1)"
is equivalent to "(x > 0 or x > 2) and (x > 0 or x > 1)."

The contrapositive of the conditional statement "If A then B" is the equiv-
alent statement "If not B then not A." For example, the statement

If (x> 0 and y > 0), then x + y > 0

1.1 n A PROOF PRIMER 5

is equivalent to the statement

If x + y < 0, then (x < 0 or y < 0).

We can also express the conditional statement "If A, then B" in terms of
the equivalent statement "(not A) or B." For example, the statement

If x > 0 and y > 0, then x + y > 0.

is equivalent to the statement

(x < 0 or y < 0) or x + y > 0.

Since we can express a conditional in terms of negation and disjunction,
it follows that the statements "not (If A then B)" and "A and (not B)" are
equivalent. For example, the statement

It is not the case that if Earth is a planet, then Earth is a star.

is equivalent to the statement

Earth is a planet and Earth is not a star.

Let's summarize the equivalences that we have discussed. Each row of the
following table contains two equivalent statements S and T.

S (is equivalent to) T

not (A and B) (not Al or (not B)

not (A or B) (not A) and (not B)

A and (B or C) (A and B) or (A and C)

A or (B and C) (A or B) and (A or C)

if A then B if not 8 then not A

if A then B (not A) or B

not (if A then B) A and (not B)

1 .1 .2 Something to Talk About

To discuss proof techniques, we need something to talk about when giving sample
proofs. Since numbers are familiar to everyone, that's what we'll talk about. But
to make sure that we all start on the same page, we'll review a little terminology.

The numbers that we'll be discussing are called integers, and we can list
them as follows:

...- 4, -3, -2, -1,0, 1,2,3,4,.

6 CHAPTER 1 n ELEMENTARY NOTIONS AND NOTATIONS

The integers in the following list are called even integers:

... , -4, -2, 0, 2, 4,

The integers in the following list are called odd integers:

... 3, -1, 1, 3,....

So every integer is either even or odd but not both. In fact, every even integer
has the form 2n for some integer n. Similarly, every odd integer has the form
2n + 1 for some integer n.

Divisibility and Prime Numbers

An integer d divides an integer n if d 7 0 and there is an integer k such that
n = dk. For example, 3 divides 18 because we can write 18 = (3)(6). But 5 does
not divide 18 because there is no integer k such that 18 = 5k. The following list
shows all the divisors of 18.

-18, -9, -6, -3, -2, -1,1, 2, 3, 6, 9, 18.

Some alternative words for d divides n are d is a divisor of n or n is divisible
by d. We often denote the fact that d divides n with the following shorthand
notation:

din

For example, we have -919, -319, -119, 119, 319, and 919. Here are two properties
of divisibility that we'll record for future use.

Divisibility Properties (1.1)

a. If dia and alb, then dib.

b. If dia and dlb, then dI(ax + by) for any integers x and y.

An integer p > 1 is called a prime number if 1 and p are its only positive
divisors. For example, the first eight prime numbers are

2, 3, 5, 7, 11, 13, 17, 19.

Prime numbers have many important properties and they have many applications
in computer science. But for now all we need to know is the definiton of a prime.

1.1.3 Proof Techniques

Now that we have something to talk about, we'll discuss some fundamental proof
techniques and give some sample proofs for each technique.

1.1 m A PROOF PRIMER 7

Proof by Exhaustive Checking

When a statement asserts that each of a finite number of things has a certain
property, then we might be able to prove the statement by checking that each
thing has the stated property. For example, suppose someone says, "If n is an
integer and 2 < n < 7, then n2 + 2 is not divisible by 4." We can prove the
statement by exhaustive checking. For 2 < n < 7, the corresponding values of
n2 + 2 are

6, 11, 18, 27, 38, 51.

We can check that these numbers are not divisible by 4. For another example,
suppose someone says, "If n is an integer and 2 < n < 500, then n2 + 2 is not
divisible by 4." Again, this statement can be proved by exhaustive checking, but
perhaps by a computer rather than a person.

Exhaustive checking cannot be used to prove a statement that requires in-
finitely many things to check. For example, consider the statement, "If n is an
integer, then n2 + 2 is not divisible by 4." This statement is true, but there
are infinitely many things to check. So another proof technique will be required.
We'll get to it after a few more paragraphs.

An example that proves a statement false is often called a counterexample.
Sometimes counterexamples can be found by exhaustive checking. For example,
consider the statement, "Every odd number greater than 1 that is not prime has
the form 2 + p for some prime p." We can observe that the statement is false
because 27 is a counterexample.

Conditional Proof

Many statements that we wish to prove are in conditional form or can be phrased
in conditional form (if A then B). The direct approach to proving such a state-
ment starts with the assumption that the hypothesis A is true. The next step is
to find a statement that is implied by the assumption or known facts. Each step
proceeds in this fashion to find a statement that is implied by any of the previous
statements or known facts. The conditional proof ends when the conclusion B
is reached.

_ 1.1 A Proof About Sums

We'll prove the following general statement about integers:

The sum of any two odd integers is an even integer.

We can rephrase the statement in the conditional form

If x and y are odd integers, then x + y is an even integer.

8 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

Proof: Assume the hypothesis that x and y are odd integers. It follows that x
and y can be written in the the form x = 2k + 1 and y = 2m + 1, where k and
m are arbitrary integers. Now substitute for x and y in x + y to obtain

x + y = (2k + 1) + (2m + 1) = 2k + 2m + 2 = 2(k + m + 1).

Since the expression on the right-hand side contains 2 as a factor, it represents
an even integer. QED.

J 1.2 A Divisibility Proof

We'll prove the following statement (1.1a) about divisibility:

If dja and alb, then dib.

Proof: Assume the hypothesis that d a and al b. It follows from the definition of
divisibility that there are integers m and n such that a = dm and b = an. Now
substitute for a in the second equation.

b = an = (dm)n = d(mn).

This equation says that dlb. QED.

Proving the Contrapositive

Recall that a conditional statement "if A then B" and its contrapositive "if not
B then not A" have the same truth table. So a proof of one is also a proof

of the other. The indirect approach to proving "if A then B" is to prove the
contrapositve. Start with the assumption that B is false. The next step is to

find a statement that is implied by the assumption or known facts. Each step
proceeds in this fashion to find a statement that is implied by any of the previous
statements or known facts. The proof ends when an implied statement says that
A is false.

J 1.3 An Odd Proof

We'll prove the following statement about the integers:

If x2 is odd, then x is odd.

To prove the statement, we'll prove its contrapositive:

If x is even, then x 2 is even.

1.1 a A PROOF PRIMER 9

Proof: Assume the hypothesis (of the contrapositive) that x is even. It follows
that x = 2k for some integer k. Now square x and substitute for x to obtain

x2 - (2k) 2 = 4k 2
- 2(2k 2).

The expression on the right side of the equation represents an even number.
Therefore x 2 is even. QED.

Proof by Contradiction

A contradiction is a false statement. Another kind of indirect proof is proof by
contradiction, where we start out by assuming that the statement to be proved is
false. Then we argue until we reach a contradiction. Such an argument is often
called a refutation.

Proof by contradiction is often the method of choice because we can wander
wherever the proof takes us to find a contradiction. We'll give two examples to
show the wandering that can take place.

j 1.4 A Not-Divisible Proof

We'll prove the following statement about divisibility:

If n is an integer, then n2 + 2 is not divisible by 4.

Proof: Assume the statement is false. Then 4 (n 2 + 2) for some integer n. This
means that n 2 + 2 = 4k for some integer k. We'll consider the two cases where
n is even and where n is odd. If n is even, then n = 2m for some integer m.
Substituting for n we obtain

4k = n 2 + 2 = (2m) 2 + 2 = 4m 2 + 2.

We can divide both sides of the equation by 2 to obtain

2k = 2m 2 + 1.

This says that an even number (2k) is equal to an odd number (2m 2 + 1), which
is a contradiction. Therefore, n cannot be even. Now assume n is odd. Then
n = 2m + 1 for some integer m. Substituting for n we obtain

4k = n 2 + 2 = (2m + 1)2 + 2 = 4m 2 + 4m + 3.

Isolate 3 on the right side of the equation to obtain

4k - 4m 2 - 4m = 3.

10 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

This is a contradiction because the left side is even and the right side is odd.
Therefore, n cannot be odd. QED.

J 1.5 Prime Numbers

We'll prove the following statement about integers:

Every integer greater than 1 is divisible by a prime.

Proof: Assume the statement is false. Then some integer n > 1 is not divisible
by a prime. Since a prime divides itself, n cannot be a prime. So there is at
least one integer d such that d In and 1 < d < n. Assume that d is the smallest

divisior of n between 1 and n. Now d is not prime, or else it would be a prime
divisor of n. So there is an integer a such that ai d and 1 < a < d. Since aI d
and d In, it follows from (1.1a) that a In. But now we have a In and 1 < a < d,
which contradicts the assumption that d is the smallest such divisor of n. QED.

If and Only If Proofs

The statement "A if and only if B" is shorthand for the two statements "If A
then B" and "If B then A." The abbreviation "A iff B" is often used for "A
if and only if B." Instead of "A iff B," some people write "A is a necessary
and sufficient condition for B" or "B is a necessary and sufficient condition for
A." Remember that two proofs are required for an iff statement, one for each

conditional statement.

1.6 An liffProof

We'll prove the following iff statement about integers:

x is odd if and only if 8 1 (X2 - 1).

To prove this iff statement, we must prove the following two statements:

a. If x is odd, then 8 1 (x2 - 1).

b. If 81 (X2 - 1), then x is odd.

Proof of (a): Assume x is odd. Then we can write x in the form x = 2k + 1 for

some integer k. Substituting for x in x 2 - 1 gives

x2 1 = 4k 2 + 4k = 4k(k + 1).

1.1 . A PROOF PRIMER 11

Since k and k + 1 are consecutive integers, one is odd and the other is even, so
the product k(k + 1) is even. So k(k + 1) = 2m for some integer m. Substituting
for k(k + 1) gives

x2- 1 = 4k(k + 1) = 4(2m) = 8m.

Therefore, 8 1(x2 - 1), so part (a) is proven.
Proof of (b): Assume 81 (x2

- 1). Then X2 - 1 = 8k for some integer k.
Therefore, we have x2 = 8k + 1 = 2(4k) + 1, which has the form of an odd
integer. So x2 is odd, and it follows from Example 1.3 that x is odd, so part (b)
is proven. Therefore, the iff statement is proven. QED.

Sometimes we encounter iff statements that can be proven by using state-
ments that are related to each other by iff. Then a proof can be constructed as
a sequence of iff statements. For example, to prove A iff B we might be able to
find a statement C such that A iff C and C iff B are both true. Then we can
conclude that A iff B is true. The proof could then be put in the form A iff C
iff B.

F 1.7 Two Proofs in One

We'll prove the following statement about integers:

x is odd if and only if x2 + 2x + 1 is even.

Proof: The following sequence of iff statements connects the left side to the right
side. (The reason for each step is given in parentheses.)

x is odd iff x = 2k + 1 for some integer k (definition)

iff x + 1 = 2k + 2 for some integer k (algebra)
iff x + 1 = 2m for some integer m (algebra)

iff x + 1 is even (definition)

iff (x + 1)2 is even (Exercise 8a)

iff + 2x + 1 is even (algebra) QED

On Constructive Existence

If a statement asserts that some object exists, then we can try to prove the
statement in either of two ways. One way is to use proof by contradiction, in
which we assume that the object does not exist and then come up with some
kind of contradiction. The second way is to construct an instance of the object.
In either case we know that the object exists, but the second way also gives us an

12 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

instance of the object. Computer science leans toward the construction of objects
by algorithms. So the constructive approach is usually preferred, although it's
not always possible.

Important Note

Always try to write out your proofs. Use complete sentences that describe your
reasoning. If your proof seems to consist only of a bunch of equations or ex-
pressions, you still need to describe how they contribute to the proof. Try to
write your proofs the same way you would write a letter to a friend who wants
to understand what you have written.

O Exercises

1. See whether you can convince yourself, or a friend, that the conditional truth
table is correct by making up English sentences of the form "If A then B."

2. Verify that the truth tables for each of the following pairs of statements are
identical.

a. "not (A and B)" and "(not A) or (not B)."

b. "not (A or B)" and "(not A) and (not B)."

c. "if A, then B" and "if (not B), then (not A)."

d. "if A, then B" and "(not A) or B."

e. "not (if A then B)" and "A and (not B)."

3. Prove or disprove each of the following statements by exhaustive checking.

a. There is a prime number between 45 and 54.

b. The product of any two of the four numbers 2, 3, 4, and 5 is even.
c. Every odd integer between 2 and 26 is either prime or the product of

two primes.

d. IfdIab,then dIaor dIb.
e. If m and n are integers, then (3m + 2)(3n + 2) has the form (3k + 2)

for some integer k.

4. Prove each of the following statements about the integers.

a. If x and y are even, then x + y is even.

b. If x is even and y is odd, then x + y is odd.
c. If x and y are odd, then x y is even.

d. If 3n is even, then n is even.

5. Write down the converse of the following statement about integers:

If x and y are odd, then x - y is even.

Is the statement that you wrote down true or false? Prove your answer.

1.2 n SETS 13

6. Prove each of the following statements, where m and n are integers.

a. If x = 3m + 4 and y = 3n + 4, then xy = 3k + 4 for some integer k.

b. If x = 5m + 6 and y = 5n + 6, then xy = 5k + 6 for some integer k.

c. If x = 7m + 8 and y = 7n + 8, then xy = 7k + 8 for some integer k.

7. Prove each of the following statements about divisibility of integers.

a,. If dl(da + b), then dlb.

b. If dl(a + b) and dla, then dlb.

c.. (L1.b) If dIa and dIb, then dI(ax + by) for any integers x and y.

S. Prove each of the following iff statements about integers.

a. x is even if and only if x2 is even.

b. xy is odd if and only if x is odd and y is odd.

c. x is odd if and only if x2 - 6x + 9 is even.

d. minandnlmifandonlyifn = morn =-m.

1.2 Sets
In our everyday discourse we sometimes run into the problem of trying to define
a word in terms of other words whose definitions may include the word we are
trying to define. That's the problem we have in trying to define the word set.
To illustrate the point, we often think of some (perhaps all) of the words

set, collection, bunch, group, class

as synonyms for each other. We pick up the meaning for such a word intuitively
by seeing how it is used.

1.2.1 Definition of a Set

We'll simply say that a set is a collection of things called its elements, members,
or objects. Sometimes the word collection is used in place of set to clarify a
sentence. For example, "a collection of sets" seems clearer than "a set of sets."
We say that a set contains its elements, or that the elements belong to the set,
or that the elements are in the set. If S is a set and x is an element in S, then
we write

x E S.

If x is not an element of S, then we write x V S. If x C S and y E S, we often
denote this fact by the shorthand notation

x, y G S.

14 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

Describing Sets

To describe a set we need to describe its elements in some way. One way to define
a set is to explicitly name its elements. A set defined in this way is denoted
by listing its elements, separated by commas, and surrounding the listing with
braces. For example, the set S consisting of the letters x, y, and z is denoted by

S = {x, y, z}.

Sets can have other sets as elements. For example, the set A = {x, {x, y}} has
two elements. One element is x, and the other element is {x, y}. So we can write
x G A and {x, y} G A.

An important characteristic of sets is that there are no repeated occurrences

of elements. For example, {H, E, L, L, O} is not a set since there are two
occurrences of the letter L.

We often use the three-dot ellipsis, ... , to informally denote a sequence of
elements that we do not wish to write down. For example, the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

can be denoted in several different ways with ellipses, two of which are

{1, 2, ... , 12} and {1, 2, 3, ... ,11, 12}.

The set with no elements is called the empty set some people refer to it as
the null set. The empty set is denoted by { } or more often by the symbol

0.

A set with one element is called a singleton. For example, {a} and {b} are
singletons.

Equality of Sets

Two sets are equal if they have the same elements. We denote the fact that two
sets A and B are equal by writing

A = B.

An important characteristic of sets is that there is no particular order or
arrangement of the elements. For example, the set whose elements are g, h, and
u can be represented in many different ways, two of which are

{u, g, h} = {h, u, g}.

If the sets A and B are not equal, we write

A*B.

1.2 . SETS 15

For example, {a, b, c} 7# {a, b} because c is an element of only one of the sets.
We also have {a} # 0 because the empty set doesn't have any elements.

Before we go any further let's record the two important characteristics of
sets that we have discussed.

Two Characteristics of Sets

1. There are no repeated occurrences of elements.

2. There is no particular order or arrangement of the elements.

Finite and Infinite Sets

Suppose we start counting the elements of a set S one element per second of
time with a stop watch. If S = 0, then we don't need to start, because there
are no elements to count. But if S # 0, we agree to start the counting after we
have started the timer. If a point in time is reached when all the elements of S
have been counted, then we stop the timer, or in some cases we might need to
have one of our descendants stop the timer. In this case we say that S is a finite

set. If the counting never stops, then S is an infinite set. All the examples that
we have discussed to this point are finite sets. We will discuss counting finite
and infinite sets in other parts of the book as the need arises.

Natural Numbers and Integers

Familiar infinite sets are sometimes denoted by listing a few of the elements
followed by an ellipsis. We reserve some letters to denote specific sets that we'll
refer to throughout the book. For example, the set of natural numbers will be
denoted by N1 and the set of integers by Z. So we can write

N={0,1,2,3,...} and Z={...,-3, -2,--1,0,1,2,3,...}.

Describing Sets by Properties

Many sets are hard to describe by listing elements. Examples that come to mind
are the rational numbers, which we denote by Q, and the real numbers, which we
denote by IR. Instead of listing the elements, we can often describe a property
that the elements of the set satisfy. For example, the set of odd integers consists
of integers having the form 2k + 1 for some integer k.

1
Some people consider the natural numbers to be the set {1, 2, 3, ... }. If you are one of

these people, then think of N as the nonnegative integers.

16 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

If P is a property, then the set S whose elements have property P is denoted
by writing

S = {x I x has property P}.

We read this as "S is the set of all x such that x has property P." For example,
if we let Odd be the set of odd integers, then we can describe Odd in several
ways.

Odd ={... ,-5,-3,-1,1,3,5,...}

= {x I x is an odd integer}

= {x Ix = 2k + 1 for some integer k}
=f{x x = 2k + 1 for some k E Z}.

Of course, we can also describe finite sets by finding properties that they possess.
For example,

{1, 2,..., 12} = I{x I x N and I < x < 12}.

We can also describe a set by writing expressions for the elements. For example,
the set Odd has the following additional descriptions.

Odd = {2k + I I k is an integer}.

= {2k + 1 k E 2}.

Subsets

If A and B are sets and every element of A is also an element of B, then we say
that A is a subset of B and write

A c B.

For example, we have {a, b} C {a, b, c}, {0, 1, 2} c N, and N c Z. It follows
from the definition that every set A is a subset of itself. Thus we have A C A.
It also follows from the definition that the empty set is a subset of any set A. So
we have 0 c A. Can you see why? We'll leave this as an exercise.

If A c B and there is some element in B that does not occur in A, then
A is called a proper subset of B. For example, {a, b} is a proper subset of
{ a, b, c}. We also conclude that N is a proper subset of Z, Z is a proper subset
of Q, and Q is a proper subset of R.

If A is not a subset of B, we sometimes write

A t B.

For example, {a, b} • {a, c} and {0, -1. -2} V N. Remember that the idea of
subset is different from the idea of membership. For example, if A = {a, b, c},
then {a} C A and a C A. But {a} ý A and a V- A. For another example, let
A = {a, {b}}. Then a c A, {b} E A, {a} c A, and {{b}} C A. But b ý A and
{b} b A.

1.2 m SETS 17

D A B

Figure 1.3 Venn diagram of proper subset A C B.

The Power Set

The collection of all subsets of a set S is called the power set of S, which we
denote by power(S). For example, if S = {a, b, c}, then the power set of S can
be written as follows:

power(S) = {0 , {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, S}.

An interesting programming problem is to construct the power set of a finite set.
We'll discuss this problem later, once we've developed some tools to help build
an easy solution.

Venn Diagrams

In dealing with sets, it's often useful to draw a picture in order to visualize the
situation. A Venn diagram--named after the logician John Venn (1834-1923)-
consists of one or more closed curves in which the interior of each curve represents
a set. For example, the Venn diagram in Figure 1.3 represents the fact that A
is a proper subset of B and x is an element of B that does not occur in A.

Proof Strategies with Subsets and Equality

Subsets allow us to give a precise definition of set equality: Two sets are equal
if they are subsets of each other. In more concise form we can write

Equality of Sets (1.2)

A = B means A C B and B C A

Let's record three useful proof strategies for comparing two sets.

Statement to Prove Proof Strategy

A c B For arbitrary x E A, show that x c B.

A t B Find an element x G A such that x ý B.

A=B Show that A c B and show that B C A.

18 CHAPTER 1 E ELEMENTARY NOTIONS AND NOTATIONS

1.8 Subset Proof

We'll show that A C B, where A and B are defined as follows:

A = IxIx is a prime number and 42 <x<51},

B = {xlx =4k+3 and k e N}.

We start the proof by letting x c A. Then either x = 43 or x = 47. We can
write 43 = 4(10) + 3 and 47 = 4(11) + 3. So in either case, x has the form of
an element of B. Thus x G B. Therefore, A C B.

S1.9 Not-Subset Proof

We'll show that A 9 B and B t A, where A and B are defined by

A = {3k + 1 1 k G N} and B = {4k + 1 I k C N}.

By listing a few elements from each set we can write A and B as follows:

A = {1, 4, 7, ... } and B = {1, 5, 9, ...}.

Now it's easy to prove that A 0 B because 4 e A and 4 ý B. We can also prove
that B t A by observing that 5 E B and 5 ý A.

F 1.10 Equal Sets Proof

We'll show that A = B, where A and B are defined as follows:

A = {xlx is prime and 12 <x < 18},

B= {xlx=4k+land kC {3,4}}.

First we'll show that A C B. Let x c A. Then either x = 13 or x = 17. We can
write 13 = 4(3) + 1 and 17 = 4(4) + 1. It follows that x E B. Therefore, A C B.
Next we'll show that B C A. Let x E B. It follows that either x = 4(3) + 1 or
x = 4(4) + 1. In either case, x is a prime number between 12 and 18. Therefore,
B c A. So A = B.

1 .2.2 Operations on Sets

We'll discuss the operations of union, intersection, and complement, all of which
combine sets to form new sets.

1.2 m SETS 19

Figure 1.4 Venn diagram of A U B.

Union of Sets

The union of two sets A and B is the set of all elements that are either in A or
in B or in both A and B. The union is denoted by A U B and we can give the
following formal definition.

Union of Sets (1.3)

A U B = {x I x E A or x E B}.

The use of the word "or" in the definition is taken to mean "either or both."
For example, if A = {a, b, c} and B = {c, d}, then A U B = {a, b, c, d}.
The union of two sets A and B is represented by the shaded regions of the Venn
diagram in Figure 1.4.

The following properties give some basic facts about the union operation.

Properties of Union (1.4)
a. AUo=A.
b. A U B = B U A. (U is commutative.)
c. AU(BUC)=(AUB)UC. (U is associative.)
d. AUA=A.
e. ACBifandonlyifAUB=B.

.1.11 A Subset Condition

We'll prove the following statement (1.4e) and leave the other parts as exercises.

A C B if and only if A U B = B.

Proof: Since this is an if and only if statement we have two statements to prove.
First we'll prove that A C B implies A U B = B. Assume that A c B. With
this assumption we must show that A U B = B. Let x E A U B. It follows that
x E A or x G B. Since we have assumed that A C B, it follows that x E B. Thus
A U B C B. But since we always have B C A U B, it follows from (1.2) that

20 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

A U B = B. So the first part is proven. Next we'll prove that A U B = B
implies A c B. Assume that A U B = B. If x E A, then x E A U B. Since we

are assuming that A U B = B, it follows that x e B. Therefore A C B. So the
second part is proven. QED.

The union operation can be defined for an arbitrary collection of sets in a
natural way. For example, the union of the n sets A1 , ... , A, can be denoted
in the following way:

UA =A, u... u An-
i=1

The union of the infinite collection of sets A 1 , A2 , ... , An, ... can be denoted
in the following way.

00

U A=A 1 u ... UA• u.. ..
i=1

If I is a set of indices and Ai is a set for each i e I, then the union of the sets
in the collection can be denoted in the following way:

U A,.
iCI

' 1.12 English Words as a Union

Let W be the set of all words in the English language. Then we can represent
W as an infinite union of sets. For each i > 0, let Ai denote the set of all words
with i letters. Then W has the following representation:

00

W= U A,.
i-1

If no English word has more than 25 letters, then Ai = 0 for i > 25. In this
case we could write W as the finite union

25

W U A,.
i= 1

1.2 n SETS 21

4S. 1.13 An Infinite Union of Finite Sets

Suppose we want to calculate the union of the sets Ai {-2i, 2i} where i is an

odd natural number. For example, A3 = {-6, 6} and A5 = {10, -10}. If we let
Odd be the set of odd natural numbers, then we can write

U Ai- {..,-10,-6,-2,2,6,1, ...0}.

iEOdd

Intersection of Sets

The intersection of two sets A and B is the set of all elements that are in both
A and B. The intersection is denoted by A n B and we can give the following
formal definition.

Intersection of Sets (1.5)

ANB = {x x E A and x E B}.

For example, if A = {a, b, c} and B = {c, d}, then A n B = {c}. If
A n B = 0, then A and B are said to be disjoint. The nonempty intersection
of two sets A and B is represented by the shaded region of the Venn diagram in
Figure 1.5.

The following properties give some basic facts about the intersection opera-
tion.

Properties of Intersection (1.6)

a. Ano=o.

b. A n B = B n A. (n is commutative.)

c. A n (B n C) = (A n B) n C. (n is associative.)

d. A n A = A.

e. A C B if and only if A N B = A.

Figure 1.5 Venn diagram of A n B.

22 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

The intersection operation can be defined for an arbitrary collection of sets
in a natural way. For example, the intersection of the n sets A 1, ... , A,, can be
denoted in the following way:

nAi = A, n ... n An-

i=1

The intersection of the infinite collection of sets A 1 , A2 , ... , A 0 , ... can be
denoted in the following way:

00nA = A 1, ... AAn o....

i=1

If I is a set of indices and Ai is a set for each i G 1, then the intersection of the
sets in the collection can be denoted in the following way:

n Ai.

iCI

1.14 An Infinite Intersection

For each odd natural number i let Ai = {x I x E N and -i < x < i}. For
example, A3 = {-3, -2, -1, 0, 1, 2, 3}. Letting Odd be the set of odd natural
numbers, we can represent the intersection of the sets Ai as

fn Ai = {-1,0,1}.
icOdd

Difference of Sets

If A and B are sets, then the difference A - B (also called the relative complement

of B in A) is the set of elements in A that are not in B, which we can describe
as a difference of sets.

Difference of Sets (1.7)

A - B = Ix A and x ý B}.

For example, if A = {a, b, c} and B = {c, d}, then A - B = {a, b}. We can
picture the difference A - B of two general sets A and B by the shaded region

of the Venn diagram in Figure 1.6.

1.2 0 SETS 23

ID
Figure 1.6 Venn diagram of A - B.

A natural extension of the difference A - B is the symmetric difference of
sets A and B, which is the union of A - B with B - A and is denoted by A D B.
The set A D B is represented by the shaded regions of the Venn diagram in
Figure 1.7.

We can define the symmetric difference by using the "exclusive" form of "or"
as follows:

Symmetric Difference of Sets (1.8)

A G B = {x I x G Aorx E B but not both}.

As is usually the case, there are many relationships to discover. For example,
it's easy to see that

A E B = (A U B) - (A n B).

Can you verify that (A f B) B C = A D (B D C)? For example, try to draw
two Venn diagrams, one for each side of the equation.

Complement of a Set

If the discussion always refers to sets that are subsets of a particular set U,
then U is called the universe of discourse, and the difference U - A is called
the complement of A, which we denote by A'. The Venn diagram in Figure 1.8
pictures the universe U as a rectangle, with two subsets A and B, where the
shaded region represents the complement (A U B)'.

Figure 1.7 Venn diagram of A G B.

24 CHAPTER 1 s ELEMENTARY NOTIONS AND NOTATIONS

U

Figure 1.8 Venn diagram of (A U B)'.

Combining Set Operations

There are many useful properties that combine different set operations. Venn
diagrams are often quite useful in trying to visualize sets that are constructed
with different operations. For example, the set A n (B U C) is represented by
the shaded regions of the Venn diagram in Figure 1.9.

Here are two distributive properties and two absorption properties that com-
bine the operations of union and intersection.

Combining Properties of Union and Intersection (1.9)
a. A N (B U C) = (An B) U (A n C). (n distributes over U.)

b. A U (B n C) = (A U B) n (A U C). (U distributes over n.)

c. A n (A U B) =A. (absorption law)

d. A U (A n B) =A. (absorption law)

j 1.1 5 A Distributive Proof

We'll prove the following statement (1.9a) about distribution:

A n (B U C) = (A n B) U (A n C).

A B

CC

Figure 1.9 Venn diagramn of A U (B U C).

1.2 0 SETS 25

Proof: We'll show that x E A n (B U C) if and only if x E (A n B) U (A n C).

xEAn (BUC) iff xEAandxEBUC
iff x e A, and either x E B or x e C

iff either (xEAandxcB) or (xGAandxGC)

iff xc (A nB) U(AnC). QED.

The complement operation combines with the other operations in many in-
teresting ways. Here's a list of some of the useful properties.

Properties of Complement (1.10)
a. (A')' = A.

b. 0' = U and U' = 0.
c. A n A= 0 and A U A'= U.

d. A C B if and only if B' C A.
e. (A U B)' = A' n B' (De Morgan's law).

f. (A n B)' = A' U B' (De Morgan's law).

g. A n (A' U B) = A n B (absorption law).

h. A U (A' n B) = A u B (absorption law).

_ _ 1.16 Subset Conditions

We'll prove the following statement (1.10d):

A C B if and only if B' C A'.

Proof: In this case we're able to connect the two sides of the iff statement with
a sequence of iff statements. Be sure that you know the reason for each step.

A C B iff x A implies x E B
iff x • B implies x ý A

iff x C B' implies x e A'

iff B' c A'. QED.

26 CHAPTER 1 0 ELEMENTARY NOTIONS AND NOTATIONS

1 .2.3 Counting Finite Sets

Let's apply some of our knowledge about sets to counting finite sets. The size
of a set S is called its cardinality, which we'll denote by

ISl.

For example, if S = {a, b, c}, then ISI = I{a, b, c}l = 3. We can say "the
cardinality of S is 3," or "3 is the cardinal number of S," or simply "S has three
elements."

Counting by Inclusion and Exclusion

Suppose we want to count the union of two sets. For example, suppose we have
A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8}. Since A U B = {1, 2, 3, 4, 5, 6,
8}, it follows that JA U BI= 7. Similarly, since A n B = {2, 4}, it follows that
IA n BI= 2. If we know any three of the four numbers JAI, JBI, IA n BI, and
IA U BJ, then we can find the fourth by using the following counting rule for
finite sets:

Union Rule (1.11)

IA u B = JAI + BI A n BI.

It's easy to discover this rule by drawing a Venn diagram.
The union rule extends to three or more sets. For example, the following

calculation gives the union rule for three finite sets:

JA u B U CI = IA u (B u C)J (1.12)

= JAI + (B U CI - JA n (B u C)
JAI +IBI+ ICI - BfnCI - jAf(BUQC)

JAI + IBJ + ICI - IB n CI - I(A n B) U (A n C)
= AI + IBI + ICI - IB n CI - IAn BI - An n C] + IA n B n CI.

The popular name for the union rule and its extensions to three or more
sets is the principle of inclusion and exclusion. The name is appropriate because
the rule says to add (include) the count of each individual set. Then subtract
(exclude) the count of all intersecting pairs of sets. Next, include the count of
all intersections of three sets. Then exclude the count of all intersections of four
sets, and so on.

J 1.17 A Building Project

Suppose A, B, and C are sets of tools needed by three workers on a job. For
convenience let's call the workers A, B, and C. Suppose further that the workers

1.2 n SETS 27

share some of the tools (for example, on a housing project, all three workers
might share a single table saw). Suppose that A uses 8 tools, B uses 10 tools,
and C uses 5 tools. Suppose further that A and B share 3 tools, A and C share
2 tools, and B and C share 2 tools. Finally, suppose that A, B, and C share the
use of 2 tools. How many distinct tools are necessary to do the job? Thus we
want to find the value

IA U B U C1.

We can apply the result of (1.12) to obtain:

JAUBUCI = JAI+ IBI + ICI - IAnBI - IAnCI - IBnCI+ IAnBnCI

-8 8+10+5-3-2-2+2

- 18 tools.

j 1.18 Surveys

Suppose we survey 200 students to see whether they are taking courses in com-
puter science, mathematics, or physics. The results show that 90 students take
computer science, 110 take mathematics, and 60 take physics. Further, 20 stu-
dents take computer science and mathematics, 20 take computer science and
physics, and 30 take mathematics and physics. We are interested in those stu-
dents that take courses in all three areas. Do we have enough information? Let
C, M, and P stand for the sets of students that take computer science, mathe-
matics, and physics. So we are interested in the number

IC n Mn PI.

From the information given we know that 200 > I C U M U P 1. The reason for
the inequality is that some students may not be taking any courses in the three
areas. The statistics also give us the following information.

IC = 90

IM = 110

IP = 60

IC n MI = 20
IC n PI = 20

iMnPI =30.

Applying the result of (1.12), we have
200 > ICI + IMI + IPI - IC n MI - IC n PI - IMn PI + IC n M n PI

= 90 + 110 + 60 - 20 - 20 - 30 + IC n Mn PI

= 190+ ICRMnP1.

28 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

Therefore, C N M < PI - 10. So we can say that at most 10 of the students
polled take courses in all three areas. We would get an exact answer if we knew
that each student in the survey took at least one course from one of the three
areas.

Counting the Difference of Two Sets

Suppose we need to count the difference of two sets. For example, if A {1, 3,
5, 7, 9} and B = {2, 3, 4, 8, 101, then A - B = {1, 5, 7, 9}. So A - BI = 4.
If we know any two of the numbers AIl, JA - BI, and JA n BI, then we can find
the third by using the following counting rule for finite sets.

Difference Rule (1.13)

IA- BI = JAI-IAnBI.

It's easy to discover this rule by drawing a Venn diagram. Two special cases of
(1.13) are also intuitive and can be stated as follows:

IfBcA, then IA-BI = IAI- 1BI. (1.14)
If ANB=0, then IA-BI = IAI. (1.15)

j 1.19 Tool Boxes

Continuing with the data from Example 1.17, suppose we want to know how
many personal tools each worker needs (tools not shared with other workers).
For example, Worker A needs a tool box of size

IA (B u C)Q.

We can compute this value using both the difference rule (1.13) and the union
rule (1.11) as follows.

IA- (BuC) IAI - IAn(BuC)

= IAI-I(ANB)U(ANC)I
= IAI - (I(AnB)I+ I(AnC) -InnB nCI)

= 8- (3 + 2-2)

= 5 personal tools for A.

1.2 n SETS 29

1.2.4 Bags (Multisets)

A bag (or multiset) is a collection of objects that may contain repeated occur-
rences of elements. Here are the important characteristics.

Two Characteristics of Bags

1. There may be repeated occurrences of elements.

2. There is no particular order or arrangement of the elements.

To differentiate bags from sets, we'll use brackets to enclose the elements. For
example, [h, u, g, h] is a bag with four elements. Two bags A and B are equal if
the number of occurrences of each element in A or B is the same in either bag.
If A and B are equal bags, we write A = B. For example, [h, u, g, h] = [h, h, g,
u], but [h, u, g, h] zý [h, u, g].

We can also define the subbag notion. Define A to be a subbag of B, and
write A C B, if the number of occurrences of each element x in A is less than
or equal to the number of occurrences of x in B. For example, [a, b] C [a, b, a] ,
but [a, b, a] • [a, b] . It follows from the definition of subbag that two bags A
and B are equal if and only if A is a subbag of B and B is a subbag of A.

If A and B are bags, we define the sum of A and B, denoted by A + B, as
follows: If x occurs m times in A and n times in B, then x occurs m + n times
in A + B. For example,

[2, 2, 3] + [2, 3, 3, 4] = [2, 2, 2, 3, 3, 3, 4].

We can define union and intersection for bags also (we will use the same
symbols as for sets). Let A and B be bags, and let m and n be the number of
times x occurs in A and B, respectively. Put the larger of m and n occurrences of
x in A U B. Put the smaller of m and n occurrences of x in A n B. For example,
we have

[2, 2, 3] U [2, 3, 3, 4] = [2, 2, 3, 3, 4]

and

[2, 2, 3] n [2, 3, 3, 4] = [2, 3].

1.20 Least and Greatest

Let p(x) denote the bag of prime numbers that occur in the prime factorization
of the natural number x. For example, we have

p(54) = [2, 3, 3, 3] and p(12) = [2, 2, 3].

30 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

Let's compute the union and intersection of these two bags. The union gives
p(54) U p(12) = [2, 2, 3, 3, 3] = p(108), and 108 is the least common multiple
of 54 and 12 (i.e., the smallest positive integer that they both divide). Similarly,
we get p(54) n p(12) = [2, 3] = p(6), and 6 is the greatest common divisor of
54 and 12 (i.e., the largest positive integer that divides them both). Can we
discover anything here? It appears that p(x) U p(y) and p(x) n p(y) compute
the least common multiple and the greatest common divisor of x and y. Can
you convince yourself?

1.2.5 Sets Should Not Be Too Complicated

Set theory was created by the mathematician Georg Cantor (1845-1918) during
the period 1874 to 1895. Later some contradictions were found in the theory.
Everything works fine as long as we don't allow sets to be too complicated.
Basically, we never allow a set to be defined by a test that checks whether a
set is a member of itself. If we allowed such a thing, then we could not decide
some questions of set membership. For example, suppose we define the set T as
follows:

T = {A A is a set and A V A}.

In other words, T is the set of all sets that are not members of themselves. Now
ask the question "Is T E T?" If so, then the condition for membership in T
must hold. But this says that T ý T. On the other hand, if we assume that
T ý T, then we must conclude that T G T. In either case we get a contradic-
tion. This example is known as Russell's paradox after the philosopher and
mathematician Bertrand Russell (1872-1970).

This kind of paradox led to a more careful study of the foundations of set
theory. For example, Whitehead and Russell [1910] developed a theory of sets
based on a hierarchy of levels that they called types. The lowest type contains
individual elements. Any other type contains only sets whose elements are from
the next lower type in the hierarchy. We can list the hierarchy of types as To,
T1, ... , Tk, ... , where To is the lowest type containing individual elements and
in general Tk+1 is the type consisting of sets whose elements are from Tk. So
any set in this theory belongs to exactly one type Tk for some k > 1.

As a consequence of the definition, we can say that A ý A for all sets A
in the theory. To see this, suppose A is a set of type Tk+l. This means that
the elements of A are of type Tk. If we assume that A E A, we would have
to conclude that A is also a set of type Tk. This says that A belongs to the
two types Tk and Tk+l, contrary to the fact that A must belong to exactly one
type.

Let's examine why Russell's paradox can't happen in this new theory of
sets. Since A ý A for all sets A in the theory, the original definition of T can
be simplified to T = {A I A is a set}. This says that T contains all sets. But

1.2 * SETS 31

T itself isn't even a set in the theory because it contains sets of different types.

In order for T to be a set in the theory, each A in T must belong to the same
type. For example, we could pick some type Tk and define T = {A I A has type
Tk}. This says that T is a set of type Tk+I. Now since T is a set in the theory,
we know that T ý T. But this fact doesn't lead us to any kind of contradictory

statement.

O Exercises

Describing Sets

1. The set Ix I x is a vowel} can also be described by {a, e, i, o, u}. Describe

each of the following sets by listing its elements.

a. {xIxENandO<x<8}.

b. {2k + 1 ý k is an even integer between 1 and 10}.

c. {x I x is an odd prime less than 201.

d. {x I x is a month ending with the letter "y"}.

e. {x I x is a letter in the words MISSISSIPPI RIVER}.

f. {x I x G N and x divides 24}.

2. The set {a, e, i, o, u} can also be described by {x I x is a vowel}. Describe

each of the following sets in terms of a property of its elements.

a. The set of dates in the month of January.

b. {1, 3, 5, 7, 9, 11, 13, 151.

c. {1, 4, 9, 16, 25, 36, 49, 64}.

d. The set of even integers {..., -4, -2, 0, 2, 4,...}.

Subsets

3. Let A = {a, 01. Answer true or false for each of the following statements.

a. a A. b. {a}cA. c. acA. d. {a}CA.

e. OcA. f. OEA. g. {o}cA. h. {o}eA.

4. Show that 0 c A for every set A.

5. Find two finite sets A and B such that A E B and A c B.

6. Write down the power set for each of the following sets.

a. {x, y, z, w}. b. {a, la, b}}. c. 0
d. {0}. e. {{a}, 0}.

7. For each collection of sets, find the smallest set A such that the collection is
a subset of power(A).

a. {{a}, {b, c}}. b. {{a}, {0}}. c. {{a}, {{at}}.

d. {{a}, {{b}}, {a, b}}.

32 CHAPTER 1 E ELEMENTARY NOTIONS AND NOTATIONS

Set Operations

8. Suppose A and B are sets defined as follows:

A = {xix = 4k+ 1 and kE NJ,

B = {xix = 3k+5 and k E N}.

a. List ten elements of A U B.

b. List four elements of A n B.

9. Is power(A U B) = power(A) U power(B)?

10. For each integer i, define Ai as follows:

If i is even then Ai = {x I x C 7Z and x <-ior i <x}.

If i is odd then Ai = {x I x G Z and -i <x < i}.

a. Describe each of the sets A0 , A 1 , A 2, A3 , A- 2 , and A- 3.

b. Find the union of the collection {A, I i e {1, 3, 5, 7, 9}}.

c. Find the union of the collection {Aj I i is even}.

d. Find the union of the collection {A, I i is odd}.

e. Find the union of the collection { Ai] i c N}.

f. Find the intersection of the collection {A, I i E {1, 3, 5, 7, 9}}.

g. Find the intersection of the collection {AI i is even}.

h. Find the intersection of the collection {A, I i is odd}.

i. Find the intersection of the collection {AI i c N}.

11. For each natural number n, let An be defined by

An = {x I x E N and x divides n with no remainder}.

a. Describe each of the sets A0 , A 1 , A2 , A3 , A4 , A 5 , A6 , A 7 , and A100 .

b. Find the union of the collection {A, I n E {1, 2, 3, 4, 5, 6, 7}}.
c. Find the intersection of the collection {An I n E {1, 2, 3, 4, 5, 6, 7}}.

d. Find the union of the collection {A, I n C N}.

e. Find the intersection of the collection {An I n c N}.

12. For each of the following expressions, use a Venn diagram representing a
universe U and two subsets A and B. Shade the part of the diagram that
corresponds to the given set.

a. A'. b. B'. c. (A U B)'.

d. A' nB'. e. A'U B'. f. (AnB)'.

13. Each Venn diagram in the following figure represents a set whose regions are

indicated by the letter x. Find an expression for each of the three sets in
terms of set operations. Try to simplify your answers.

1.2 0 SETS 33

.-b. c.

A B A B A B

x x

x x

x x
CCC

Counting Finite Sets

]I. Discover an inclusion exclusion formula for the number of elements in the
union of four sets A, B, C, and D.

15. Given three sets A, B, and C. Suppose the union of the three sets has car-
dinality 280. Suppose also that IAI = 100, 1BI = 200, and I ClI = 150. And
suppose we also know JA n BI = 50, IA n C1 = 80, and IB n C1 = 90. Find
the cardinality of the intersection of the three given sets.

16. Suppose A, B, and C represent three bus routes through a suburb of your
favorite city. Let A, B, and C also be sets whose elements are the bus stops
for the corresponding bus route. Suppose A has 25 stops, B has 30 stops,
and C has 40 stops. Suppose further that A and B share (have in common)
6 stops, A and C share 5 stops, and B and C share 4 stops. Lastly, suppose
that A, B, and C share 2 stops. Answer each of the following questions.

a. How many distinct stops are on the three bus routes?

b. How many stops for A are not stops for B?
c. How many stops for A are not stops for both B and C?
d. How many stops for A are not stops for any other bus?

17. Suppose a highway survey crew noticed the following information about 500
vehicles: In 100 vehicles the driver was smoking, in 200 vehicles the driver
was talking to a passenger, and in 300 vehicles the driver was tuning the
radio. Further, in 50 vehicles the driver was smoking and talking, in 40
vehicles the driver was smoking and tuning the radio, and in 30 vehicles
the driver was talking and tuning the radio. What can you say about the
number of drivers who were smoking, talking, and tuning the radio?

18. Suppose the following people went to a summer camp: 27 boys, 15 city
children, 27 men, 21 noncity boys, 42 people from the city, 18 city males,
and 21 noncity females. How many people went to summer camp?

34 CHAPTER 1 * ELEMENTARY NOTIONS AND NOTATIONS

Bags

19. Find the union and intersection of each of the following pairs of bags.

a. [x, y] and [x, y, z].

b. [x, y, x] and [y, x, y, x].

c. [a, a, a, b] and [a, a, b, b, c].

d. [1, 2, 2, 3, 3, 4, 4] and [2, 3, 3, 4, 5].

e. [x, x, [a, a], [a, a]] and [a, a, x, x].

f. [a, a, [b, b[, [a, [b][] and [a, a, [b], [b]].

20. Find a bag B that solves the following two simultaneous bag equations:

B U [2,2,3,41 = [2,2,3,3,4,4,5],

Bn [2,2,3,4,5] = [2,3,4,5].

21. How would you define the difference operation for bags? Try to make your
definition agree with the difference operation for sets whenever the bags are

like sets (without repeated occurrences of elements).

Proofs and Challenges

22. Prove each of the following facts about the union operation (1.3). Use subset
arguments that are written in complete sentences.

a. AUzr=A.

b. AUB=BUA.

c. AUA=A.

d. AU(BUC)=(AUB)UC.

23. Prove each of the following facts about the intersection operation (1.6). Use
subset arguments that are written in complete sentences.

a. AN0 =0.

b. AnB=BnA.

C. An(BnC)=(AnB)nC.
d. AnA=A.

e. AcBifandonlyifAflBz= A.

24. Prove that power(A n B) = power(A) n power(B).

25. Prove that A U (B n C) = (A U B) 0 (A U C).

26. Prove each of the following absorption laws (1.9) twice. The first proof should
use subset arguments. The second proof should use an already known result.

a. An(BU A)= A.

b. Au(Br0A)=A.

1.3 m ORDERED STRUCTURES 35

27. Show that (A n B) U C = A n (B U C) if and only if C c A.

28. Give a proof or a counterexample for each of the following statements.

a. AN(BUA)=ANB.

b. A-(BOA)= A -B.
c. AO(BUC)=(AUB)o(AuC).

d. AqiA=A.

29. Prove each of the following properties of the complement (1.10).

a. (A')' = A.

b. 0' = U and U' = o.

c. AnA'=0andAUA'= U.

d. (A U B)' = A' n B'. (De Morgan's law)

e. (A n B)' = A' U B'. (De Morgan's law)

f. A n (A' U B) = A n B. (absorption law)

g. A U (A' n B) = A U B. (absorption law)

30. Try to find a description of a set A satisfying the equation A = {a, A, b}.
Notice in this case that A E A.

1.3 Ordered Structures

In the previous section we saw that sets and bags are used to represent un-
ordered information. In this section we'll introduce some notions and notations
for structures that have some kind of ordering to them.

1.3.1 Tuples

When we write down a sentence, it always has a sequential nature. For example,
in the previous sentence the word "When" is the first word, the word "we" is
the second word, and so on. Informally, a tuple is a collection of things, called
its elements, where there is a first element, a second element, and so on. The
elements of a tuple are also called members, objects, or components. We'll denote
a tuple by writing down its elements, separated by commas, and surrounding
everything with the two symbols "(" and ")". For example, the tuple (12, R,
9) has three elements. The first element is 12, the second element is the letter
R, and third element is 9. The beginning sentence of this paragraph can be
represented by the following tuple:

(When, we, write, down, ... , sequential, nature).

36 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

If a tuple has n elements, we say that its length is n, and we call it an n-tuple.
So the tuple (8, k, hello) is a 3-tuple, and (xj, ... , x8) is an 8-tuple. The 0-tuple
is denoted by (), and we call it the empty tuple. A 2-tuple is often called an
ordered pair, and a 3-tuple might be called an ordered triple. Other words used
in place of the word tuple are vector and sequence, possibly modified by the word
ordered.

Two n-tuples (xi, ... , xn) and (yi, ... , y,,) are said to be equal if xi = yj
for 1 < i < n, and we denote this by (xi, ... , xl,) = (yi, ... , y,•). Thus the
ordered pairs (3, 7) and (7, 3) are not equal, and we write (3, 7) # (7, 3). Since
tuples convey the idea of order, they are different from sets and bags. Here are
some examples:

Sets: {b, a, t} = {t, a, b}.

Bags: [t, o, o, t] = [o, t, t, o].

Tuples: (t, o, o, t) $ (o, t, t, o) and (b, a, t) # (t, a, b).

Here are the two important characteristics of tuples.

Two Characteristics of Tuples

1. There may be repeated occurrences of elements.

2. There is an order or arrangement of the elements.

The rest of this section introduces structures that are represented as tuples.

We'll also see in the next section that graphs and trees are often represented
using tuples.

Cartesian Product of Sets

We often need to represent information in the form of tuples, where the elements
in each tuple come from known sets. Such a set is called a Cartesian product,
in honor of Ren6 Descartes (1596-1650), who introduced the idea of graphing
ordered pairs. The Cartesian product is also referred to as the cross product.
Here's the formal definition.

Definition of Cartesian Product
If A and B are sets, then the Cartesian product of A and B, which is denoted

by A x B, is the set of all ordered pairs (a, b) such that a e A and b G B. In
other words, we have

A x B = {(a, b) I a E A and b G B}.

1.3 s ORDERED STRUCTURES 37

For example, if A = {x, y} and B = {0, 1}, then

A x B = {(x, 0), (x, 1), (y, 0), (y, 1)}.

Suppose we let A = 0 and B = {0, 1} and then ask the question: "What is
A x B?". If we apply the definition of Cartesian product, we must conclude that
there are no ordered pairs with first elements from the empty set. Therefore,
A x B = 0. So it's easy to generalize and say that A x B is nonempty if and
only if both A and B are nonempty sets. The Cartesian product of two sets is
easily extended to any number of sets A1, ... , An, by writing

A, x ... x A,, = {(Xl, x., X) I xi E Ail.

If all the sets Ai in a Cartesian product are the same set A, then we use
the abbreviated notation A' = A x ... x A. With this notation we have the
following definitions for the sets A1 and A':

A' = {(a) I a G A} andd° = {()}.

So we must conclude that A1 7 A and A° : 0.

.1.21 Some Products

Let A = {a, b, c}. Then we have the following Cartesian products:

A° = {0},

A1
= {(a), (b), (c)},

A2 {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)},

A3 is bigger yet, with twenty-seven 3-tuples.

When working with tuples, we need the ability to randomly access any com-
ponent. The components of an n-tuple can be indexed in several different ways
depending on the problem at hand. For example, if t c A x B x C, then we
might represent t in any of the following ways:

(t1, t2, W3,

(t (1), t(2), t(3)),

(t [1], t[2], t[3]),

(t (A), t(B), t(C)),

(A (t), B (t), C (t)).

Let's look at an example that shows how Cartesian products and tuples are
related to some familiar objects of programming.

38 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

j 1.22 Arrays, Matrices, and Records

In computer science, a 1-dimensional array of size n with elements in the set A
is an n-tuple in the Cartesian product A'. So we can think of the Cartesian
product A' as the set of all 1-dimensional arrays of size n over A. If x = (xl, ... ,
xn), then the component xi is usually denoted in programming languages-by
x[i].

A 2-dimensional array-also called a matrix-can be thought of as a table
of objects that are indexed by rows and columns. If x is a matrix with m rows
and n columns, we say that x is an m by n matrix. For example, if x is a 3 by
4 matrix, then x can be represented by the following diagram:

X1i X12 X13 X14

£ £X21 X22 X23 X24

[X31 X32 X33 X34

We can also represent x as a 3-tuple whose components are 4-tuples as follows:

X = ((xIi, X12, X13, X14), (X21, X22, X23, x24), (£31, £32, X £34)).

In programming, the component xij is usually denoted by x[i, j]. We can think
of the Cartesian product (A 4) 3 as the set of all 2-dimensional arrays over A with
3 rows and 4 columns. Of course, this idea extends to higher dimensions. For
example, ((A 5)7)4 represents the set of all 3-dimensional arrays over A consisting
of 4-tuples whose components are 7-tuples whose components are 5-tuples of
elements of A.

For another example, we can think of A x B as the set of all records, or
structures, with two fields A and B. For a record r = (a, b) E A x B the
components a and b are normally denoted by r.A and r.B.

There are at least three nice things about tuples: They are easy to un-
derstand; they are basic building blocks for the representation of information;
and they are easily implemented by a computer, which we'll discuss in the next
example.

1.23 Computer Repesentation of Tuples

Computers represent tuples in contiguous cells of memory so that each compo-
nent can be accessed quickly. For example, suppose that each component of the

tuple x = (x1, ... , Xn) needs M memory cells to store it. If B is the beginning
address of memory allocated for the tuple x, then x£ is at location B, X2 is at
location B + M, and in general, Xk is at location

B + M(k - 1).

1.3 0 ORDERED STRUCTURES 39

So each component xk of x can be accessed in the amount of time that it takes
to evaluate B + M(k - 1).

For multidimensional arrays, the access time is also fast. For example, sup-
pose x is a 3 by 4 matrix represented in the following "row-major" form as a
three tuple of rows, where each row is a 4-tuple.

X = ((Xll, X 1 2 , X 1 3 , X14), (X 2 1 , X22, X23, X2 4), (X31, X32, X 3 3 , X34)).

Suppose that each component of x needs M memory cells. If B is the beginning
address of memory allocated for x, then x~l is at location B, X21 is at location
B + 4M, and X31 is at location B + 8M. The location of an arbitrary element
Xik is given by the expression

B + 4M(j - 1) + M(k -1).

Expressions such as this are called address polynomials. Each component Xik

can be accessed in the amount of time that it takes to evaluate the address
polynomial, which is close to a constant for any j and k.

1.3.2 Lists

A list is a finite ordered sequence of zero or more elements that can be repeated.
At this point a list seems just like a tuple. So what's the difference between tuples
and lists? The difference-a big one in computer science-is in what parts can be
randomly accessed. In the case of tuples we can randomly access any component
in a constant amount of time. In the case of lists we can randomly access only
two things in a constant amount of time: the first component of a list, which is
called its head, and the list made up of everything except the first component,
which is called its tail.

So we'll use a different notation for lists. We'll denote a list by writing down
its elements, separated by commas, and surrounding everything with the two
symbols "(" and ")". The empty list is denoted by

().

The number of elements in a list is called its length. For example, the list

(w, X, y, z),

has length 4, its head is w, and its tail is the list (x, y, z). If L is a list, we'll use
the notation

head(L) and tail(L)

to denote the head of L and the tail of L. For example,

head((w, x, y, z)) = w,
tail((w, x, y, z)) = (x, y, z).

40 CHAPTER 1 E ELEMENTARY NOTIONS AND NOTATIONS

Notice that the empty list 0) does not have a head or tail.
An important computational property of lists is the ability to easily construct

a new list by adding a new element at the head of an existing list. The name
cons will be used to denote this construction operation. If h is an element of
some kind and L is a list, then

cons(h, L)

denotes the list whose head is h and whose tail is L. Here are a few examples:

cons(w, (x, y, z)) = (w X, M y,
cons(a, ()) = (a).
cons(this, (is, helpful)) = (this, is, helpful).

The operations head, tail, and cons can be done efficiently and dynamically
during the execution of a program. The three operations are related by the
following equation for any nonempty list L.

cons(head(L), tail(L)) = L.

There is no restriction on the kind object that a list can contain. In fact, it is
often quite useful to represent information in the form of lists whose elements
may be lists, and the elements of those lists may be lists, and so on. Here are a
few examples of such lists, together with their heads and tails.

L head(L) tail(L)

(a, (b)) a ((b))

((a), (b, a)) (a) ((b, a))
(() , a, ()), b,)I) ((a,() (b,()

If all the elements of a list L are from a particular set A, then L is said to
be a list over A. For example, each of the following lists is a list over {a, b, c}.

S), (a), (a, b), Kb, a), (b, c, a, b, c).

We'll denote the collection of all lists over A by

lists(A).

There are at least four nice things about lists: They are easy to understand;
they are basic building blocks for the representation of information; they are eas-
ily implemented by a computer; and they are easily manipulated by a computer
program. We'll discuss this in the next example.

1.24 Computer Repesentation of Lists

A simple way to represent a list in a computer is to allocate a block of memory
for each element of the list. The block of memory contains the element together

1.3 . ORDERED STRUCTURES 41

head (L) = b tail (L)

cons (a, L) 1- EA

Figure 1.10 Memory representation of a list.

with an address (called a pointer or link) to the next block of memory for the
next element of the list. In this way there is no need to have list elements next
to each other in memory, so that the creation and deletion of list elements can
occur dynamically during the execution of a program.

For example, let's consider the list L = (b, c, d, eý. Figure 1.10 shows the
memory representation of L in which each arrow represents an address (i.e., a
pointer or link) and each box represents a block of memory containing an element
of the list and an arrow pointing to the address of the next box. The last arrow
in the box for e points to the "ground" symbol to signify the end of the list.
Empty lists point to the ground symbol, too. The figure also shows head(L) = b
and tail(L) = (c, d, e). So head and tail are easily calculated from L. The figure
also shows how the cons operation constructs a new list cons(a, L) = (a, b, c,
d, e) by allocating a new block of memory to contain a and a pointer to L.

1 .3.3 Strings and Languages

A string is a finite ordered sequence of zero or more elements that are placed
next to each other in juxtaposition. The individual elements that make up a
string are taken from a finite set called an alphabet. If A is an alphabet, then a
string of elements from A is said to be a string over A. For example, here are a
few strings over {a, b, c}:

a, ba, bba, aacabb.

The string with no elements is called the empty string, and we denote it by
the Greek capital letter lambda:

A.

The number of elements that occur in a string s is called the length of s,
which we sometimes denote by

Fnh.

For example, ýAj = 0 and Jaacabbý = 6 over the alphabet fa, b, c}.

42 CHAPTER 1 U ELEMENTARY NOTIONS AND NOTATIONS

Concatenation of Strings

The operation of placing two strings s and t next to each other to form a new
string st is called concatenation. For example, if aab and ba are two strings over
the alphabet {a, b}, then the concatenation of aab and ba is the string

aabba.

We should note that if the empty string occurs as part of another string, then it
does not contribute anything new to the string. In other words, if s is a string,
then

sA = As = s.

Strings are used in the world of written communication to represent infor-
mation: computer programs; written text in all the languages of the world; and
formal notation for logic, mathematics, and the sciences.

There is a strong association between strings and lists because both are de-
fined as finite sequences of elements. This association is important in computer
science because computer programs must be able to recognize certain kinds of
strings. This means that a string must be decomposed into its individual ele-
ments, which can then be represented by a list. For example, the string aacabb

can be represented by the list (a, a, c, a, b, b). Similarly, the empty string A can
be represented by the empty list ().

Languages (Sets of Strings)

A language is a set of strings. If A is an alphabet, then a language over A is

a set of strings over A. The set of all strings over A is denoted by A*. So any
language over A is a subset of A*. Four simple examples of languages over an
alphabet A are the sets 0, {A}, A, and A*.

For example, if A = {a}, then these four simple languages over A become

0, {A}, {a}, and {A, a, aa, aaa, ... }.

For any natural number n the concatenation of a string s with itself n times is

denoted by sn. For example,

so = A, s' = S, 82 = 8s, and s3 = sss.

J 1.25 Language Representations

The exponent notation allows us to represent some languages in a nice concise
manner. Here are a few examples of languages.

{an I n e N} = {A, a, aa, aaa, ... }.
{ab I n e N} = {a, ab, abb, abbb,...}.

1.3 U ORDERED STRUCTURES 43

{anbn I n G NJ = {A, ab, aabb, aaabbb,...}
{(ab)n I n E N} = {A, ab, abab, ababab,...

_ _ 1.26 Numerals

A numeral is a written number. In terms of strings, we can say that a numeral is
a nonempty string of symbols that represents a number. Most of us are familiar
with the following three numeral systems. The Roman numerals represent the
set of nonnegative integers by using the alphabet

{I, V, X, L, C, D, M}.

The decimal numerals represent the set of natural numbers by using the alphabet

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The binary numerals represent the natural numbers by using the alphabet

{0, 1}.

For example, the Roman numeral MDCLXVI, the decimal numeral 1666, and
the binary numeral 11010000010 all represent the same number.

Products of Languages

Since languages are sets of strings, they can be combined by the usual set oper-
ations of union, intersection, difference, and complement. But there is another
important way to combine languages.

We can combine two languages L and M to obtain the set of all concatena-
tions of strings in L with strings in M. This new language is called the product
of L and M and is denoted by LM. Here's a formal definition.

Product of Languages
The product of languages L and M is the language

LM = {st I s G L and t c M}.

For example, if L = {ab, ac} and M = {a, bc, abc}, then the product LM
is the language

LM = {aba, abbc, ababc, aca, acbc, acabc}.

44 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

It's easy to see, from the definition of product, that the following simple
properties hold for any language L.

L{A} = {A}L = L.

Lo = oL = 0.

It's also easy to see that the product is associative. In other words, if L, M,
and N are languages, then L(MN) = (LM)N. Thus we can write down products
without using parentheses. On the other hand, it's easy to see that the product
is not commutative. In other words, we can find two languages L and M such
that LM z ML.

For any natural number n, the product of a language L with itself n times
is denoted by Ln. In other words, we have

Ln = {8182... 8, 1 8 k c L for each k}.

The special case when n = 0 has the following definition.

L° = {Af.

j 1.27 Some Language Products

We'll calculate some products for the langauge L = {a, bb}.

L° = {A},
L' = L = {a, bb},
L2 = LL = {aa, abb, bba, bbbb},
L3 = LL 2 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}.

Closure of a Language

If L is a language, then the closure of L, denoted by L*, is the set of all possible
concatenations of strings from L. In other words, we have

L* = LO U L1 U L2 U ... U L n U

So x G L* if and only if x G L' for some n. Therefore, we have

x L* if and only if either x = A or x = 1112...ln

for some n > 1, where lk C L for 1 < k < n.
If L is a language, then the positive closure of L, which is denoted by L+, is

defined by

L+ = L' U L 2 UL 3 U

1.3 * ORDERED STRUCTURES 45

It follows from the definition that L* = L+ U {A}. But it's not necessarily true
that L+ = L* - {A}. For example, if L = {A, a}, then L+ = L*.
- We should observe that any alphabet A is itself a language and its closure
coincides with our original definition of A* as the set of all strings over A. The
following properties give some basic facts about the closure of languages.

Properties of Closure (1.16)

a. {A}* = o* = {A}.

b. AE L if and only if L+ = L*.

C. L* = L*L* = (L*)*.

d. (L*M*)* = (L* U M*)* = (L U M)*.

e. L(ML)* = (LM)*L.

Proof: We'll prove part (e) and leave the others as exercises. We'll start by
examining the structure of an arbitrary string x G L(ML)*. Since L(ML)* is the
product of L and (ML)*, we can write x = ly, where 1 E L and y C (ML)*. Since
y E (ML)*, it follows that y G (ML)' for some n. If n = 0, then y = A and we
have x = ly = 1A = I E L.

If n > 0, then y = wl...w., where wk C ML for 1 < k < n. So we can
write each wk in the form Wk = mklk , where mk E M and Ik e L. Now we can
collect our facts and write x as a concatenation of strings from L and M.

x = ly where 1 E L and y c (ML)*

= 1(wl ... wn) where 1 E L and each Wk E (ML)

= I(mill ... mnin/) where 1 C L and each Ik c L, and mk C M.

Since we can group strings with parentheses any way we want, we can put things
back together in the following order.

= (Im1l1 ... Mn)in where 1 E L and each lk E L, and Mk G M

= (z1 ... zn)l where each zk E LM and 1n E L

= ul where u E (LM)* and 1n G L.

So x G (LM)*L. Therefore, L(ML)* C (LM)*L. The argument is reversible. So
we have L(ML)* = (LM)*L. QED.

F 1.28 Decimal Numerals

The product is a useful tool for describing languages in terms of simpler lan-
guages. For example, suppose we need to describe the language L of all strings

46 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

of the form a.b, where a and b are decimal numerals. For example, the strings
0.45, 1.569, 000.34000 are elements of L. If we let

D = {.} and N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

Then we can describe L as the following product in terms of D and N.

L = N(N)* DN(N)*.

1.3.4 Relations

Definition of Relation

Ideas such as kinship, connection, and association of objects are keys to the
concept of a relation. Informally, a relation is a set of n-tuples, where the elements
in each tuple are related in some way.

For example, the parent-child relation can be described as the following set

of ordered pairs:

isParentOf = {(x, y) I x is a parent of y}.

For another example, recall from geometry that if the sides of a right tri-

angle have lengths x, y, and z, where z is the hypotenuse, then x2 + y2 =

z 2 . Any 3-tuple of positive real numbers (x, y, z) with this propoerty is called a
Pythagorean triple. For example, (1, 13, 2) and (3, 4, 5) are Pythagorean triples.
The Pythagorean triple relation can be described as the following set of ordered
triples:

PT = {(x, y, z) Ix2 + y2 = z 2}.

When we discuss relations in terms of where the tuples come from, there is

some terminology that can be helpful.

Definition of Relation

If R is a subset of A 1 x ... x An, then R is said to be an n-ary relation on
(or over) A 1 x ... x An. If R is a subset of A', then we say R is an n-ary

relation on A. Instead of 1-ary, 2-ary, and 3-ary, we say unary, binary, and
ternary.

For example, the isParentOf relation is a binary relation on the set of people
and the Pythagorean triple relation is a ternary operation on the set of positive
real numbers. In formal terms, if P is the set of all people who are living or who
have ever lived, then

isParentOf C P x P.

1.3 U ORDERED STRUCTURES 47

Similarly, if we let IR+ denote the set of positive real numbers, then

PT C iR+ x 1R+ x R+.

Since there are many subsets of a set, there can be many relations. The
smallest relation is the empty set 0, which is called the empty relation. The
largest relation is A1 x ... x An itself, which is called the universal relation.

If R is a relation and (xi, ... , xn) E R, this fact is often denoted by the
prefix expression

R(Xl, ... , x.).

For example, PT(1, v/'3, 2) means that (1, v'3, 2) E PT.
If R is a binary relation, then the statement (x, y) e R can be denoted by

R(x, y), but it is often denoted by the infix expression

x R y.

For example, "John isParentOf Mary" means that (John, Mary) e isParentOf.
We use many binary relations without even thinking about it. For example,

we use the less-than relation on numbers m and n by writing m < n instead of
(m, n) E < or < (m, n). We also use equality without thinking about it as a
binary relation. The equality relation on a set A is the set

{(x, x) lx C A}.

For example, if A = {a, b, c}, then the equality relation on A is the set {(a,
a), (b, b), (c, c)}. We normally denote equality by the symbol = and we write
a = a instead of (a, a) E = or = (a, a).

Since unary relations are sets of 1-tuples, we usually dispense with the tuple
notation and simply write a unary relation as a set of elements. For example,
instead of writing R = {(2), (3), (5), (7)1 we write R = {2, 3, 5, 7}. So R(2)
and 2 E R mean the same thing.

Relational Databases

A relational database is a collection of facts that are represented by tuples in
such a way that the tuples can be accessed in various ways to answer queries
about the facts. To accomplish these tasks each component of a tuple must have
an associated name, called an attribute.

For example, suppose we have a database called Borders that describes
the foreign countries and large bodies of water that border each state of the
United States. The following table represents a sample of the information in the
database with attribute names State, Foreign, and Water.

48 CHAPTER 1 I ELEMENTARY NOTIONS AND NOTATIONS

Borders

State Foreign Water

Washington Canada Pacific Ocean
Minnesota Canada Lake Superior
Wisconsin None Lake Michigan
Oregon None Pacific Ocean
Maine Canada Atlantic Ocean
Michigan Canada Lake Superior
Michigan Canada Lake Huron
Michigan Canada Lake Michigan
California Mexico Pacific Ocean

Arizona Mexico None

There is no special order to the rows of a relational database. So the table can
be represented as a set of tuples.

Borders { (Washington, Canada, Pacific Ocean),

(Minnesota, Canada, Lake Superior),

(Wisconsin, None, Lake Michigan),... .

_ _ 1.29 Questions about Borders

Let's look at a few questions or queries that can be asked about the Borders
database. Each question can be answered by describing a set or a relation. For
example, suppose we ask the question

What states border Mexico?

The answer is the set

{x I (x, Mexico, z) G Borders, for some z}.

Here are a few more questions that we'll leave for the exercises.

What bodies of water border Michigan?

What states border the Pacific Ocean?

What states are landlocked?

What relation represents the state-water pairs?

What state-water pairs contain a state bordering Canada?

Queries can be answered not only by describing a set or a relation as in
the example, but also by describing an expression in terms of basic operations
that construct new relations by selecting certain tuples, by eliminating certain
attributes, or by combining attributes of two relations. We'll discuss these basic
operations on relational databases in Section 10.4.

1.3 * ORDERED STRUCTURES 49

1 .3.5 Counting Tuples
How can we count a set of tuples, lists, or strings? Since tuples, lists, and
strings represent finite ordered sequences of objects, the only difference is how
we represent them, not whether there are more of one kind than another. For
example, over the set {a, b} there are eight 3-tuples, eight lists of length 3, and
eight strings of length 3. So without any loss of generality we'll discuss counting
sets of tuples. The main tools that we'll use are the rules for counting Cartesian
products of finite sets.

The Product Rule

Suppose we need to know the cardinality of A x B for finite sets A and B. In
other words, we want to know how many 2-tuples are in A x B. For example,
suppose that A = {a, b, c} and B = {0, 1, 2, 3}. The sets A and B are small
enough so that we can write down all 12 of the tuples. The exercise might also
help us notice that each element of A can be paired with any one of the four
elements in B. Since there are three elements in A, it follows that

IA x BI = (3)(4) = 12.

This is an example of a general counting technique called the product rule,
which we'll state as follows for any two finite sets A and B.

Product Rule (1.17)

IA x BI IA=IBI.

It's easy to see that (1.17) generalizes to a Cartesian product of three or
more finite sets. For example, A x B x C and A x (B x C) are not actually
equal because an arbitrary element in A x B x C is a 3-tuple (a, b, c), while
an arbitrary element in A x (B x C) is a 2-tuple (a, (b, c)). Still the two sets
have the same cardinality. Can you convince yourself of this fact? Now proceed
as follows:

JA x B x Cl = JA x (B x Q)l

= IAI IB x CI

= JAIIBI ICI.

The extension of (1.17) to any number of sets allows us to obtain other useful
formulas for counting tuples of things. For example, for any finite set A and any
natural number n we have the following product rule.

IA n = IAIn . (1.18)

50 CHAPTER 1 N ELEMENTARY NOTIONS AND NOTATIONS

Counting Strings as Tuples

We can use product rules to count strings as well as tuples because a string can
be represented as a tuple. In each of the following examples, the problem to be
solved is expressed in terms of strings.

S1.30 Counting All Strings

Suppose we need to count the number of strings of length 5 over the alphabet
A = {a, b, c}. Any string of length 5 can be considered as a 5-tuple. For
example, the string abcbc can be represented by the tuple (a, b, c, b, c). So the
number of strings of length 5 over A equals the number of 5-tuples over A, which
by product rule (1.18) is

lA 51 = IA15 = 35 = 243.

1.31 Strings with Restrictions

Suppose we need to count the number of strings of length 6 over the alphabet
A = {a, b, c, d} that begin with either a or c and contain at least one occurrence
of b.

Since strings can be represented by tuples, we'll count the number of 6-tuples
over A that begin with either a or c and contain at least one occurrence of b.
We'll break up the problem into two simpler problems. First, let U be the set
of 6-tuples over A that begin with a or c. In other words, U = {a, c} x A5 .
Next, let S be the subset of U consisting of those 6-tuples that do not contain
any occurrences of b. In other words, S = {a, c} x {a, c, d} 5 . Then the set
U - S is the desired set of 6-tuples over A that begin with either a or c and
contain at least one occurrence of b. So we have

IU - SI = Igl - ISI by (1.14)

= I{a, c} x A I - I{a, c} x {a, c, d}5 1

= I {a,c} IAI5 - I {a,c}l {a,c,d}5 (1.17) and (1.18)
= 2(45) - 2(35)
= 1,562.

S1.32 Strings with More Restrictions

We'll count the number of strings of length 6 over A = {a, b, c, d} that start
with a or c and contain at least one occurrence of either b or d.

As in the previous example, let U be the set of 6-tuples over A that start
with a or c. Then U = {a, c} x A5 and I U1 = 2(45). Now let S be the subset

1.3 * ORDERED STRUCTURES 51

of U whose 6-tuples do not contain any occurrences of b and do not contain
any occurrences of d. So S =- {a, c} 6 and ISI = 26. Then the set U - S is the
desired set of 6-tuples over A that begin with either a or c and contain at least
one occurrence of either b or d. So by (1.14) we have

lU - SI =IUI- ISI
= 2(45) - 26

-1,984.

S1.33 Strings with More Restrictions

Suppose we need to count the number of strings of length 6 over A - {a, b, c, d}
that start with a or c and contain at least one occurrence of b and at least one
occurrence of d.

In this case we'll break up the problem into three simpler problems. First,
let U be the set of 6-tuples that start with a or c. So U = {a, c} x A 5 and
I UI = 2(45). Next, let S be the subset of U whose 6-tuples don't contain b. So
S = {a, c} x {a, c, d} 5 and ISI = 2(35). Similarly, let T be the subset of U
whose 6-tuples don't contain d. So T = {a, c} x {a, b, c}5 and ITI = 2(35).
Then the set U - (S U T) is the desired set of 6-tuples that start with a or c
and contain at least one occurrence of b and at least one occurrence of d. The
cardinality of this set has the form

IU - (S U T)I = 1 UI - IS U TI (by 1.14)

= IUI - (ISI + ITI - ISN TI). (by 1.11)

We'll be done if we can calculate the cardinality of S A T. Notice that

S A T = {a, c} x {a, c, d} 5 n {a, c} x {a, b, c} 5

= {a, c} x {a, c} 5

= {a, c} 6 .

So IS A TI= 26. Now we can complete the calculation of I U - (S U T)I.

IU- (SUT)I = VUI - (ISI + ITI - ISATI)

= 2 (45) - [2 (35) +2(35) - 26]

= 1,140.

52 CHAPTER 1 n ELEMENTARY NOTIONS AND NOTATIONS

P Exercises

Tuples

1. Write down all possible 3-tuples over the set {x, y}.

2. Let A = {a, b, c} and B = {a, b}. Compute each of the following sets.

a. AxB. b. BxA. c. A0 .
d. A1 . e. A2 . f. A2 n (A x B).

Lists

3. Write down all possible lists of length 2 or less over the set A = {a, b}.

4. Find the head and tail of each list.

a. (a). b. (a, b, c). c. ((a, b), c).
d. ((a, b), (a, c)).

5. For positive integers m and n let D be the list of integers greater than 1
that divide both m and n, where D is ordered from smallest to largest. For
example, if m = 12 and n = 18, then D = (2, 3, 6). We'll combine this
information into a list (in, n, D) = (12, 18, (2, 3, 6)). Construct (m, n, D)
for each of the following cases.

a. m =24and n =60.
b. m = 36 and n = 36.

c. m= 14 and n = 15.

6. Write down all possible lists over {a, b} that can be represented with five
symbols, where the symbols that we count are a or b or (or). For example,
(a, ()) uses five of the symbols. Can you do the same for lists over A that
have six symbols? There are quite a few of them.

Strings and Languages

7. Write down all possible strings of length 2 over the set A = {a, b, c}.

8. Let L = {A, abb, b} and M = {bba, ab, a}. Evaluate each of the following
language expressions.

a. LM. b. ML. c. L°. d. L1 . e. L2 .

1.3 m ORDERED STRUCTURES 53

9. Use your wits to solve each of the following language equations for the un-
known language.

a. {A, a, ab} L = {b, ab, ba, aba, abb, abba}.

b. L {a, b} = {a, baa, b, bab}.

c. {a, aa, ab} L = {ab, aab, abb, aa, aaa, aba}.

d. L {A, a} = {A, a, b, ab, ba, aba}.

e. {a, b} L = {a, b, aba, bba}.

f. L {b, A, ab} = {abb, ab, abab, bab, b, bb}.

10. Let L and M be two languages. For each of the following languages describe
the general structure of a string x by writing it as a concatenation of strings
that are in either L or M.

a. LML. b. LM*. c. (L U M)*.

d. (L n M)*. e. L*M*. f. (LM)*.

11. Try to describe each of the following languages in some way.

a. {a, b}* n {b, c}* b. {a, b}* - {b}*. c. {a, b, c* - {a}*.

Relations

12. Represent each relation as a set by listing each individual tuple.

a. {(d, 12) d > 0 and d divides 12}.

b. {(d, n) I d, n G {2, 3, 4, 5, 6} and d divides n }.

c. {(x, y, z) I x = y + z, where x, y, z E {1, 2, 3}}.

d. Let (x, y) E S if and only ifx < y and x, y E {1, 2, 3}.

e. Let (x, y) - U if and only if x E {a, b} andy E {1, 2}.

13. Each of the following database queries refers to the Borders relational database
given prior to Example 1.29. Express each answer by defining a set or rela-
tion in the same manner as the answer given in Example 1.29.

a. What bodies of water border Michigan?

b. What states border the Pacific Ocean?

c. What states are landlocked?

d. What relation represents the state-water pairs?

e. What state-water pairs contain a state bordering Canada?

Counting Tuples

14. For each of the following cases, find the number of strings over the alphabet
{a, b, c, d, e} that satisfy the given conditions.

54 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

a. Length 4, begins with a or b, contains at least one c.
b. Length 5, begins with a, ends with b, contains at least one c or d.

c. Length 6, begins with d, ends with b or d, contains no c's.

d. Length 6, contains at least one a and at least one b.

15. Find a formula for the number of strings of length n over an alphabet A such
that each string contains at least one occurrence of a letter from a subset B
of A. Express the answer in terms of IAI and IBI.

Proofs and Challenges

16. Prove each of the following statements about combining set operations with
Cartesian product.

a. (AU B) x C=(A x C) U(B x C).
b. (A-B) x C=(A x C) -(B x C).

c. Find and prove a similar equality using the intersection operation.

17. Let L, M, and N be languages. Prove each of the following properties of the
product operation on languages.

a. L{A}-={A}L=L.
b. Lo=0L=o.

c. L(MUN)-=LMULN and (MUN)L=MLUNL.
d. L(MnN) cLMnLN and (MnN)LCMLnNL.

18. Let L and M be languages. Prove each of the following statements about
the closure of languages (1.16).

a. {A}* = 0 = J{A}.
b. AELif and only if L+=L*.

c. L* = L*L* = (L*)*.
d. (L*M*)* = (L* U M*)* (LU M)*.

19. (Tuples Are Special Sets). We can define the concept of tuples in terms of
sets. For example, we'll define

() =0, (x) = {x}, and (x, y) = {{x},{x, y}}.

Use this definition to verify each of the following statements.

a. Show that (3, 7) $ (7, 3).
b. Show that (x, y) = (u, v) if and only if x = u and y = v.

c. Find an example to show that the definition (x, y) = {x, {y}} will not
distinguish between distinct 2-tuples.

1.4 3 GRAPHS AND TREES 55

20. (Tuples Are Special Sets). Continuing with Exercise 19, we can define a
3-tuple in terms of sets by letting S be the set representing the ordered pair
(x, y) from Exercise 19. Then define

(x, y, z) = {{S}, {S, z}}.

a. Write down the complete set to represent (x, y, z).

b. Show that (a, b, c) = (d, e, f) if and only if a = d, b = e, and c
c. Find an example to show that the definition

(x, y, z) = {{x}, {x, y}, {x, y, z}}

will not distinguish between distinct 3-tuples.

Note: We could continue in this manner and define n-tuples as sets for any
natural number n. Although defining a tuple as a set is not at all intuitive,
it does illustrate how sets can be used as a foundation from which to build
objects and ideas. It also shows why good notation is so important for
communicating ideas.

21. Use Example 1.23 as a guide to find the address polynomial for an arbitrary
element in each of the following cases. Assume that all indexes start with
1, that the beginning address is B, and each component needs M memory
cells.

a. A matrix of size 3 by 4 stored in column-major form as a 4-tuple of
columns, each of which is a 3-tuple.

b. A matrix of size m by n stored in row-major form.
c. A three-dimensional array of size I by m by n stored as an l-tuple where

each component is an m by n matrix stored in row-major form.

1 .4 Graphs and Trees

When we think about graphs we might think about pictures of some kind that
are used to represent information. The graphs that we'll discuss can be thought
about in the same way. But we need to describe them in a little more detail
if they are to be much use to us. We'll also see that trees are special kinds of
graphs.

1.4.1 Definition of a Graph

Informally, a graph is a set of objects in which some of the objects are connected
to each other in some way. The objects are called vertices or nodes, and the

56 CHAPTER 1 * ELEMENTARY NOTIONS AND NOTATIONS

3 2 3 2

Figure 1.11 Graphs.

connections are called edges. For example, the United States can be represented
by a graph where the vertices are states and the edges are the common borders
between adjacent states. In this case, Hawaii and Alaska would be vertices
without any edges connected to them. We say that two vertices are adjacent if

there is an edge connecting them.

Picturing a Graph

We can picture a graph in several ways. For example, Figure 1.11 shows two
ways to represent the graph with vertices 1, 2, and 3 and edges connecting 1 to
2 and 1 to 3.

S1.34 States and Provinces

Figure 1.12 represents a graph of those states in the United States and those
provinces in Canada that touch the Pacific Ocean or that touch states and
provinces that touch the Pacific Ocean.

Coloring a Graph

An interesting problem dealing with maps is to try to color a map with the
fewest number of colors subject to the restriction that any two adjacent areas
must have distinct colors. From a graph point of view, this means that any two
distinct adjacent vertices must have different colors. Before reading any further,
try to color the graph in Figure 1.12 with the fewest colors. It's usually easier
to represent the colors by numbers like 1, 2,.

Alaska Yukon

••NW Territories

British Columbia

AAlberta

Washington Montana

Oregon Idaho
Nevada

California Arizona

* Hawaii

Figure 1.12 Graph of states and provinces.

1.4 0 GRAPHS AND TREES 57

A graph is n-colorable if there is an assignment of n colors to its vertices
such that any two distinct adjacent vertices have distinct colors. The chromatic
number of a graph is the smallest n for which it is n-colorable. For example, the
chromatic number of the graph in Figure 1.12 is 3. A graph whose edges are the
connections between all pairs of distinct vertices is called a complete graph. It's
easy to see that the chromatic number of a complete graph with n vertices is n.

A graph is planar if it can be drawn on a plane such that no edges intersect.
For example, the graph in Figure 1.12 is planar. A complete graph with four
vertices is planar, but a complete graph with five vertices is not planar. See
whether you can convince yourself of these facts. A fundamental result on graph
coloring-which remained an unproven conjecture for over 100 years-states that
every planar graph is 4-colorable. The result was proven in 1976 by Kenneth
Appel and Wolfgang Haken. They used a computer to test over 1900 special
cases. For example, see Appel and Haken [1976, 1977].

More Terminology

A directed graph (digraph for short) is a graph where each edge points in one
direction. For example, the vertices could be cities and the edges could be the
one-way air routes between them. For digraphs we use arrows to denote the
edges. For example, Figure 1.13 shows two ways to represent the digraph with
three vertices a, b, and c and edges from a to b, c to a, and c to b.

The degree of a vertex is the number of edges that it touches. However, we
add two to the degree of a vertex if it has a loop, which is an edge that starts
and ends at the same vertex. For directed graphs the indegree of a vertex is the
number of edges pointing at the vertex, whereas the outdegree of a vertex is the
number of edges pointing away from the vertex. In a digraph a vertex is called
a source if its indegree is zero and a sink if its outdegree is zero. For example,
in the digraph of Figure 1.13, c is a source and b is a sink.

If a graph has more than one edge between some pair of vertices, the graph
is called a multigraph, or a directed multigraph in case the edges point in the
same direction. For example, there are usually two or more road routes between
most cities. So a graph representing road routes between a set of cites is most
likely a multigraph.

Fub 0 b

Figure 1.13 Directed graphs.

58 CHAPTER 1 * ELEMENTARY NOTIONS AND NOTATIONS

Representaions of Graphs
From a computational point of view, we need to represent graphs as data. This
is easy to do because we can define a graph in terms of tuples, sets, and bags.
For example, we can define a graph G as an ordered pair (V, E), where V is a
set of vertices and E is a set or bag of edges. If G is a digraph, then the edges in
E can be represented by ordered pairs, where (a, b) represents the edge with an

arrow from a to b. In this case the set E of edges is a subset of V x V. In other
words, E is a binary relation on V. For example, the digraph in Figure 1.13 has
vertex set {a, b, c} and edge set

{(a, b), (c, b), (c, a)}.

If G is a directed multigraph, then we can represent the edges as a bag (or
multiset) of ordered pairs. For example, the bag [(a, b), (a, b), (b, a)] represents
three edges: two from a to b and one from b to a.

If a graph is not directed, we have more ways to represent the edges. We
could still represent an edge as an ordered pair (a, b) and agree that it represents
an undirected line between a and b. But we can also represent an edge between
vertices a and b by a set {a, b}. For example, the graph in Figure 1.11 has
vertex set {1, 2, 3} and edge set {{1, 2}, {1, 3}}.

Weighted Graphs

We often encounter graphs that have information attached to each edge. For
example, a good road map places distances along the roads between major in-
tersections. A graph is called weighted if each edge is assigned a number, called
a weight. We can represent an edge (a, b) that has weight w by the 3-tuple

(a, b, w).

In some cases we might want to represent an unweighted graph as a weighted
graph. For example, if we have a multigraph in which we wish to distinguish
between multiple edges that occur between two vertices, then we can assign a
different weight to each edge, thereby creating a weighted multigraph.

Graphs and Binary Relations
We can observe from our discussion of graphs that any binary relation R on a
set A can be thought of as a digraph G = (A, R) with vertices A and edges R.
For example, let A = {1, 2, 3} and

R = {(1, 2), (1, 3), (2, 3), (3, 3)}.

Figure 1.14 shows the digraph corresponding to this binary relation. Repre-
senting a binary relation as a graph is often quite useful in trying to establish
properties of the relation.

1.4 U GRAPHS AND TREES 59

2

3

Figure 1.14 Digraph of binary relation.

Subgraphs

Sometimes we need to discuss graphs that are part of other graphs. A graph
(V', E') is a subgraph of a graph (V, E) if V' C V and E' C E. For example,
the four graphs in Figure 1.15 are subgraphs of the graph in Figure 1.14.

1 .4.2 Paths in Graphs

Problems that use graphs often involve moving from one vertex to another along
a sequence of edges, where each edge shares a vertex with the next edge in the
sequence. In formal terms, a path from x0 to x, is a sequence of edges that we
denote by a sequence of vertices x0, xj, ... , x,, such that there is an edge from
xi-1 to xi for 1 < i < n. A path allows the possibility that some edge or some
vertex occurs more than once. A cycle is a path whose beginning and ending
vertices are equal and in which no edge occurs more than once. A graph with
no cycles is called acyclic. The length of the path x0, •. , xn is the number n of
edges.

22

3 3ý

2 2

33

Figure 1.15 Subgraphs.

60 CHAPTER 1 0 ELEMENTARY NOTIONS AND NOTATIONS

b

<>
d

C

Figure 1.16 Sample graph.

1.35 Paths in a Graph

We'll examine a few paths in the graph pictured in Figure 1.16.

1. The path b, c, d, b, a visits b twice. The length of the path is 4.

2. The path a, b, c, b, d visits b twice and uses the edge between b and c twice.
The length of the path is 4.

3. The path a, b, c, a is a cycle of length 3.

4. The path a, b, a is not a cycle because the edge from a to b occurs twice.
The path has length 2.

Connected Graphs

Let's emphasize here that the definitions for path and cycle apply to both graphs
and directed graphs. But now we come to an idea that needs a separate definition
for each type of graph. A graph is connected if there is a path between every
pair of vertices. A directed graph is connected if, when direction is ignored, the
resulting undirected graph is connected.

Two Graph Problems

Let's look at two graph problems that you may have seen. For the first problem
you are to trace the first diagram in Figure 1.17 without taking your pencil off
the paper and without retracing any line.

After some fiddling, it's easy to see that it can be done by starting at one
of the bottom two corners and finishing at the other bottom corner. The second
diagram in Figure 1.17 emphasizes the graphical nature of the problem. From
this point of view we can say that there is a path that travels each edge exactly
once.

The second famous problem is named after the seven bridges of Kbnigsberg
that, in the early 1800s, connected two islands in the river Pregel to the rest of
the town. The problem is to tour the town by walking across each of the seven

1.4 u GRAPHS AND TREES 61

Figure 1.17 Tracing a graph.

Figure 1.18 Seven bridges of K6nigsberg.

bridges exactly once. In Figure 1.18 we've pictured the two islands and seven
bridges of Kdnigsberg together with a multigraph representing the situation. The
vertices of the multigraph represent the four land areas and the edges represent
the seven bridges.

The mathematician Leonhard Euler (1707-1783) proved that there aren't
any such paths by finding a general condition for such paths to exist. In his
honor, any path that contains each edge of a graph exactly once is called an
Euler path. For example, the graph for the tracing problem has an Euler path,
but the seven bridges problem does not. We can go one step further and define
an Euler circuit to be any path that begins and ends at the same vertex and
contains each edge of a graph exactly once. There are no Euler circuits in the
graphs of Figure 1.17 and Figure 1.18. We'll discuss conditions for the existence
of Euler paths and Euler circuits in the exercises.

1 .4.3 Graph Traversals

A graph traversal starts at some vertex v and visits all vertices x that can be
reached from v by traveling along some path from v to x. If a vertex has already
been visited, it is not visited again. Two popular traversal algorithms are called
breadth-first and depth-first.

Breadth-First Traversal

To describe breadth-first traversal, we'll let visit(v, k) denote the procedure that
visits every vertex x not yet visited for which there is a length k path from v
to x. If the graph has n vertices, a breadth-first traversal starting at v can be

62 CHAPTER 1 a ELEMENTARY NOTIONS AND NOTATIONS

a

b C

d

C4 ff

g

Figure 1.19 Sample graph.

described as follows:

for k := 0 to n - 1 do visit(v, k) od.

Since we haven't specified how visit(v, k) does it's job, there are usually several
different traversals from any given starting vertex.

r__ 1.36 Breadth-First Traversals

We'll do some breadth-first traversals of the graph in Figure 1.19. If we start
at vertex a, then there are four possible breadth-first traversals, which we've
represented by the following strings:

abcdefg abcdfeg acbdefg acbdfeg.

Of course, we can start a breadth-first traversal at any vertex. For example, one
of several breadth-first traversals that start with d is represented by the string

dbefagc.

Depth-First Traversal

We can describe depth-first traversal with a recursive procedure-one that calls
itself. Let DF(v) denote the depth-first procedure that traverses the graph start-
ing at vertex v. Then DF(v) has the following definition.

DF(v): if v has not been visited then

visit V;

for each edge from v to x do DF(x) od

fi

Since we haven't specified how each edge from v to x is picked in the for loop,
there are usually several different traversals from any given starting vertex.

1.4 m GRAPHS AND TREES 63

_ _ 1.37 Depth-First Traversals

We'll do some depth-first traversals of the graph represented in Figure 1.19. For
example, starting from vertex a in the graph, there are four possible depth-first
traversals, which are represented by the following strings:

abdegfc abdfgec acbdegf acbdfge.

1.4.4 Trees
From an informal point of view, a tree is a structure that looks like a real tree.
For example, a family tree and an organizational chart for a business are both
trees. From a formal point of view we can say that a tree is a graph that is
connected and has no cycles. Such a graph can be drawn to look like a real tree.
The vertices and edges of a tree are called nodes and branches, respectively.

In computer science, and some other areas, trees are usually pictured as
upside down versions of real trees, as in Figure 1.20. For trees represented this
way, the node at the top is called the root. The nodes that hang immediately
below a given node are its children, and the node immediately above a given
node is its parent. If a node is childless, then it is a leaf. The height or depth
of a tree is the length of the longest path from the root to the leaves. The path
from a node to the root contains all the ancestors of the node. Any path from
a node to a leaf contains descendants of the node.

A tree with a designated root is often called a rooted tree. Otherwise, it is
called a free tree or an unrooted tree. We'll use the term tree and let the context
indicate the type of tree.

F 1.38 Parts of a Tree

We'll make some observations about the tree in Figure 1.20. The root is A. The
children of A are B, C, and D. The parent of F is B. The leaves of the tree are
are E, F, J, H, and 1. The height or depth of the tree is 3.

A

0B C D

Figure 1.20 Sample tree.

64 CHAPTER 1 M ELEMENTARY NOTIONS AND NOTATIONS

A

Figure 1.21 A subtree.

Subtrees

If x is a node in a tree T, then x together with all its descendants forms a tree
S with x as its root. S is called a subtree of T. If y is the parent of x, then S is
sometimes called a subtree of y.

j 1.39 A Subtree

The tree pictured in Figure 1.21 is a subtree of the tree in Figure 1.20. Since A
is the parent of B, we can also say that this tree is a subtree of node A.

Ordered and Unordered Trees

If we don't care about the ordering of the children of a tree, then the tree is
called an unordered tree. A tree is ordered if there is a unique ordering of the
children of each node. For example, any algebraic expression can be represented
as ordered tree.

F 1.40 Representing Algebraic Expressions

The expression x - y can be represented by a tree whose root is the minus sign
and with two subtrees, one for x on the left and one for y on the right. Ordering
is important here because the subtraction operation is not commutative. For
example, Figure 1.22 shows the expression 3 - (4 + 8) and Figure 1.23 shows

the expression (4 + 8) - 3.

3 + + 3

4 8 4 8

Figure 1.22 Tree for 3 - (4 + 8). Figure 1.23 Tree for (4 + 8) - 3.

1.4 u GRAPHS AND TREES 65

r

b x e

c d y w u

z

Figure 1.24 Sample tree.

Representations of Trees

How can we represent a tree as a data object? The key to any representation is
that we should be able to recover the tree from its representation. One method
is to let the tree be a list whose first element is the root and whose next elements
are lists that represent the subtrees of the root.

For example, the tree with a single node r is represented by (r), and the list

representation of the tree for the algebraic expression a - b is

(-, (a), (b)).

For another example, the list representation of the tree for the arithmetic ex-
pression 3 - (4 + 8) is

(-, (3), +,(4), (8))).

For a more complicated example, let's consider the tree represented by the
following list.

T = (r, (b, (c), (d)), (x, (y, (z)), (w)), (e, (u))).

Notice that T has root r, which has the following three subtrees:

(b, (c), (d))
(x, (y, (z)), (w))

(e, (u)).

Similarly, the subtree (b, (c), (d)) has root b, which has two children c and d.
We can continue in this way to recover the picture of T in Figure 1.24.

.1.41 Computer Repesentation of Trees

Let's represent a tree as a list and then see what it looks like in computer memory.
For example, let T be the following tree.

a

b c dI
e

66 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

Figure 1.25 Computer representation of a tree.

We'll represent the tree as the list T = (a, (b), (c), Kd, (e)))). Figure 1.25
shows the representation of T in computer memory, where we have used the
same notation as Example 1.24.

Binary Trees

A binary tree is an ordered tree that may be empty or else has the property
that each node has two subtrees, called the left and right subtrees of the node,
which are binary trees. We can represent the empty binary tree by the empty
list (). Since each node has two subtrees, we represent nonempty binary trees
as 3-element lists of the form

(L, x, R),

where x is the root, L is the left subtree, and R is the right subtree. For example,

the tree with one node x is represented by the list ()I X, ,))}.
When we draw a picture of a binary tree, it is common practice to omit the

empty subtrees. For example, the binary tree represented by the list

< (0,1a, ()), b, ())

is usually, but not always, pictured as the simpler tree in Figure 1.26.

b b

rather than

Figure 1.26 Simplified binary tree.

1.4 U GRAPHS AND TREES 67

Figure 1.27 Computer representation of a binary tree.

_1.42 Computer Repesentation of Binary Trees

Let's see what the representation of a binary tree as a list looks like in computer
memory. For example, let T be the following tree.

a

b c

d e

Figure 1.27 shows the representation of T in computer memory, where each block
of memory contains a node and pointers to the left and right subtrees.

Binary Search Trees

Binary trees can be used to represent sets whose elements have some ordering.
Such a tree is called a binary search tree and has the property that for each node
of the tree, each element in its left subtree precedes the node element and each
element in its right subtree succeeds the node element.

_ 1.43 A BinarySearch Tree

The binary search tree in Figure 1.28 holds three-letter abbreviations for six of

the months, where we are using the dictionary ordering of the words. So the
correct order is FEB, JAN, JUL, NOV, OCT, SEP.

68 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

JUL

JAN OCT

FEB NOV SEP

Figure 1.28 Binary search tree.

Figure 1.29 Two spanning trees.

This binary search tree has depth 2. There are many other binary search
trees to hold these six months. Find another one that has depth 2. Then find
one that has depth 3.

1 .4.5 Spanning Trees
A spanning tree for a connected graph is a subgraph that is a tree and contains
all the vertices of the graph. For example, Figure 1.29 shows a graph followed
by two of its spanning trees. This example shows that a graph can have many
spanning trees. A minimal spanning tree for a connected weighted graph is
a spanning tree such that the sum of the edge weights is minimum among all
spanning trees.

Prim's Algorithm

A famous algorithm, due to Prim [1957], constructs a minimal spanning tree
for any undirected connected weighted graph. Starting with any vertex, the
algorithm searches for an edge of minimum weight connected to the vertex. It
adds the edge to the tree and then continues by trying to find new edges of
minimum weight such that one vertex is in the tree and the other vertex is not.
Here's an informal description of the algorithm.

Prim's Algorithm (1.19)

Construct a minimal spanning tree for an undirected connected weighted
graph. The variables: V is the vertex set of the graph; W is the vertex set
and S is the edge set of the spanning tree.

I•ontinued*

1.4 E GRAPHS AND TREES 69

1. Initialize S := 0.

2. Pick any vertex v c V and set W {v}.

3. while W , V do

Find a minimum weight edge {x, y}, where x c W and
y E V -W;

S := su {{x, y}};

W:= W U {y}

od

Of course, Prim's algorithm can also be used to find a spanning tree for
an unweighted graph. Just assign a weight of 1 to each edge of the graph. Or
modify the first statement in the while loop to read "Find an edge {x, y} such
that x E W and y G V- W."

1.44 A Minimal Spanning Tree

We'll construct a minimal spanning tree for the following weighted graph.
a

2 1

e *2 1

d

To see how the algorithm works we'll do a trace of each step showing the values
of the variables S and W. The algorithm gives us several choices since it is not
implemented as a computer program. So we'll start with the letter a since it's

the first letter of the alphabet.

S W

{} {a}
{{a, b}} {a, b}

{{a, b}, {b, c}} {a, b, c}

{{a, b}, {b, c}, {c, d}} {a, b, c, d}

{{a, b}, {b, c}, {cd, {c,g}} {a, b, c, d, g}

{{a, b}, {b, c}, {c, d}, {c, g}, {g, f}} {a, b, c, d, g, f}

{{a,b}, {b,c},{c,d}l,{c,g},{g,f}, {f,e}} {a,b,c,d,g,f,e}

70 CHAPTER 1 m ELEMENTARY NOTIONS AND NOTATIONS

The algorithm stops because W = V. So S is a spanning tree.

w Exercises

Graphs

1. Draw a picture of a graph that represents those states of the United States
and those provinces of Canada that touch the Atlantic Ocean or touch states
or provinces that do.

2. Find planar graphs with the smallest possible number of vertices that have
chromatic numbers of 1, 2, 3, and 4.

3. What is the chromatic number of the graph representing the map of the
United States? Explain your answer.

4. Draw a picture of the directed graph that corresponds to each of the following
binary relations.

a. {(a, a), (b, b), (c, c)}.

b. {(a, b), (b, b), (b, c), (c, a)}.
c. The relation < on the set {1, 2, 3}.

5. Given the following graph:

a

b c

d

f f

9

a. Write down all breadth-first traversals that start at vertex f.
b. Write down all depth-first traversals that start at vertex f

6. Given the following graph.

a b

d

f

h

1.4 m GRAPHS AND TREES 71

a. Write down one breadth-first traversal that starts at vertex f
b. Write down one depth-first traversal that starts at vertex f.

7. Given the following graph:

0

d .- b f

a Wi o b e tha

a. Write down one breadth-first traversal that starts at vertex a.
b. Write down one depth-first traversal that starts at vertex a.

Trees

8. Given the algebraic expression a x (b + c) - (d / e). Draw a picture of
the tree representation of this expression. Then convert the tree into a list
representation of the expression.

9. Draw a picture of the ordered tree that is represented by the list

(a, ýb, (c), (d, ýe))), ýr, (s), (t)), ýx)).

10. Draw a picture of a binary search tree containing the three-letter abbrevia-
tions for the 12 months of the year in dictionary order. Make sure that your
tree has the least possible depth.

11. Find two distinct minimal spanning trees for the following weighted graph.

a 2 b

0' 2 f

12. For the weighted graph in Example 1.44, find two distinct minimal spanning
trees that are different from the spanning tree given.

Path Problems

13. Try to find a necessary and sufficient condition for an undirected graph to
have an Euler path. Hint: Look at the degrees of the vertices.

14. Try to find a necessary and sufficient condition for an undirected graph to
have an Euler circuit. Hint: Look at the degrees of the vertices.

72 CHAPTER 1 * ELEMENTARY NOTIONS AND NOTATIONS

1 .5 Chapter Summary
S..
We normally prove things informally, and we use a variety of proof techniques:
proof by exhaustive checking, conditional proof, indirect proofs (i.e., proving the
contrapositive and proof by contradiction), and iff proofs.

Sets are characterized by lack of order and no repeated occurrences of ele-
ments. There are easy techniques for comparing sets by subset and by equal-
ity. Sets can be combined by the operations of union, intersection, difference,
and complement. Venn diagrams are useful for representing these operations.
Two useful rules for counting sets are the union rule also called the inclusion-
exclusion principle-and the difference rule.

Bags-also called multisets-are characterized by lack of order, and they
may contain repeated occurrences of elements.

Tuples are characterized by order, and they may contain repeated occur-
rences of elements. Many useful structures are related to tuples. Cartesian
products of sets are collections of tuples. Lists are similar to tuples except that
lists can be accessed only by head and tail. Strings are like lists except that
elements from an alphabet are placed next to each other in juxtaposition. Lan-
guages are sets of strings and they can be combined by concatenating strings as
well as by set operations. Relations are sets of tuples that are related in some
way. A useful rule for counting tuples is the product rule.

Graphs are characterized by a set of vertices and a set of edges, where the
edges may be undirected or directed. Graphs can be colored, and they can be
traversed. Trees are special graphs that look like real trees. Prim's algorithm
constructs a minimal spanning tree for an undirected, connected, weighted graph.

Facts about
Functions

All my discoveries were simply improvements in notation.

-Gottfried Wilhelm von Leibniz (1646-1716)1

Functions can often make life simpler. In this chapter we'll start with the basic
notions and notations for functions. Then we'll introduce some functions that
are especially important in computer science. Since programs can be functions
and functions can be programs, we'll spend some time discussing techniques for
constructing new functions from simpler ones. We'll also discuss other properties
of functions that are useful in problem solving.

Section 2.1 introduces the basic ideas of functions what they are, and how to
represent them. We'll give many examples, including several functions that
are especially useful to computer scientists.

Section 2.2 introduces the important idea of composition as a way to combine
functions to construct new functions. We'll see that the map function is a

useful tool for constructing functions that calculate lists.
Section 2.3 introduces three important properties of functions-injective, sur-

jective, and bijective. We'll see how these properties are used when we
discuss the pigeonhole principle, cryptology, and hash functions.

Section 2.4 gives a brief introduction to techniques for comparing infinite sets.
We'll discuss the ideas of countable and uncountable sets. We'll introduce
the diagonalization technique, and we'll discuss whether we can compute
everything.

'Leibniz introduced the word "function" around 1692. He is responsible for such diverse
ideas as binary arithmetic, symbolic logic, combinatorics, and calculus. Around 1694 he built
a calculating machine that could add and multiply.

73

74 CHAPTER 2 0 FACTS ABOUT FUNCTIONS

2.1 Definitions and Examples

In this section we'll give the definition of a function along with various ways
to describe functions. We'll also spend some time with functions that are very
useful in computer science.

2.1.1 Definition of a Function

Suppose A and B are sets and for each element in A we associate exactly one
element in B. Such an association is called a function from A to B. The main
idea is that each element of A is associated with exactly one element of B. In
other words, if x E A is associated with y E B, then x is not associated with any
other element of B.

Functions are normally denoted by letters like f, g, and h or other descriptive
names or symbols. If f is a function from A to B and f associates the element x
E A with the element y E B, then we write f(x) = y or y = f(x). The expression
f (x) is read, "f of x," or "f at x," or "f applied to x." When f(x) = y, we
often say, "f maps x to y." Some other words for "function" are mapping,
transformation, and operator.

Describing Functions

Functions can be described in many ways. Sometimes a formula will do the job.
For example, the function f from N to N that maps every natural number x to
its square can be described by the following formula:

f(x) = x2 .

Other times, we'll have to write down all possible associations. For example, the
following associations define a function g from A = {a, b, c} to B = {1, 2, 3}:

g(a) = 1,g(b) = 1, and g(c) = 2.

We can also describe a function by a drawing a figure. For example, Figure 2.1
shows three ways to represent the function g. The top figure uses Venn diagrams
together with a digraph. The lower-left figure is a digraph. The lower-right
figure is the familiar Cartesian graph, in which each ordered pair (x, g(x)) is
plotted as a point.

Figure 2.2 shows two associations that are not functions. Be sure to explain

why these associations do not represent functions from A to B.

Terminology

To communicate with each other about functions, we need to introduce some
more terminology. If f is a function from A to B, we denote this by writing

f:A----B.

2.1 n DEFINITIONS AND EXAMPLES 75

A B

0 3

b 2

A B 3--

0 1 1 2--
b l 2 1 --

c 3 IA
o b c

Figure 2.1 Three ways to describe the same function.

A B A B
a - - al

b 2 b 2

C 3 c 3

Figure 2.2 Two associations that are not functions.

The set A is the domain of f and the set B is the codomain of f. We also say
that f has type A -- B. The expression A --* B denotes the set of all functions
from A to B.

If f(x) = y, then x is called an argument of f, and y is called a value of f.
If the domain of f is the Cartesian product AI x ... x A,, we say f has arity
n or f has n arguments. In this case, if (xl, ... , x,n) E Ax ." x An, then

f (Xi,...- , xn)

denotes the value of f at (xl,... , xn). A function f with two arguments is called
a binary function and we have the option of writing f(x, y) in the popular infix
form x f y. For example, 4 + 5 is usually preferable to +(4, 5).

Ranges, Images, and Pre-Images

At times it is necessary to discuss certain subsets of the domain and codomain of
a function f : A -4 B. The range of f, denoted by range(f), is the set of elements
in the codomain B that are associated with some element of A. In other words,
we have

range(f) = {f(a) I a E A}.

76 CHAPTER 2 u FACTS ABOUT FUNCTIONS

For any subset S C A, the image of S under f, denoted by f(S), is the set
of elements in B that are associated with some element of S. In other words, we
have

f(S) = {f(x) Ix E S}.

Notice that we always have the special case f(A) = range(f). Notice also that
images allow us to think of f not only as a function from A to B, but also as a

function from power(A) to power(B).
For any subset T C B the pre-image of T under f, denoted by f `(T), is

the set of elements in A that associate with elements of T. In other words, we
have

f '(T) = {a e A I f(a) c T}.

Notice that we always have the special case f-1(B) = A. Notice also that pre-
images allow us to think of f- 1 as a function from power(B) to power(A).

j 2.1 Sample Notations

Consider the function f : {a, b, c} --* {1, 2, 3} defined by f(a) = 1, f(b) = 1,
and f(c) = 2. We can make the following observations.

f has type {a, b, c} -4 {1, 2, 3}.
The domain of f is {a, b, c}.
The codomain of f is {1, 2, 3}.
The range of f is {1, 2}.

Some sample images are

f({a}) = {1},
f({a, b}) {1},
f(A) = f({a, b, c}) = {1, 2} = range(f).

Some sample pre-images are

f- 1 ({1, 3}) = {a, b},
f-'(131) = 0,
f- 1 (B) =f -'({1, 2, 3}) = {a, b, c}l= A.

2.2 Functions and Not Functions

Let P be the set of all people, alive or dead. We'll make some associations and
discuss whether each is function of type P -- P.

2.1 m DEFINITIONS AND EXAMPLES 77

1. f(x) is a parent of x.

In this case f is not a function of type P --* P because people have two
parents. For example, if q has mother m and father p, then f(q) = m and
f (q) = p, which is contrary to the requirement that each domain element be
associated with exactly one codomain element.

2. f(x) is the mother of x.

In this case f is a function of type P -- P because each person has exactly
one mother. In other words, each x E P maps to exactly one person, the
mother of x. If m is a mother, what is the pre-image of the set {m} under
f?

3. f(x) is the oldest child of x.

In this case f is not a function of type P -* P because some person has no

children. Therefore, f(x) is not defined for some x G P.

4. f(x) is the set of all children of x.

In this case f is not a function of type P --* P because each person is
associated with a set of people rather than a person. However, f is a function
of type P --+ power(P). Can you see why?

.. 2.3 Tuples Are Functions

Any ordered sequence of objects can be thought of as a function. For example,
the tuple (22, 14, 55, 1, 700, 67) can be thought of as a listing of the values of
the function

f {0, 1,2,3,4,5} - N

where f is defined by the equality

(f(0), f(1), f(2), f(3), f(4), f(5)) = (22, 14, 55, 1, 700, 67).

Similarly, any infinite sequence of objects can also be thought of as a function.
For example, suppose that (b 0, bh, .. , b., ...) is an infinite sequence of objects
from a set S. Then the sequence can be thought of as a listing of values in the
range of the function f : N -- S defined by f(n) = b,,.

78 CHAPTER 2 " FACTS ABOUT FUNCTIONS

2.4 Functions and Binary Relations

Any function can be defined as a special kind of binary relation. A function
f : A -* B is a binary relation from A to B such that no two ordered pairs have
the same first element. We can also describe this uniqueness condition as: If
(a, b), (a, c) e f, then b = c. The notation f(a) = b is normally preferred over
the relational notations f(a, b) and (a, b) c f.

Equality of Functions
Two functions are equal if they have the same type and the same values for each
domain element. In other words, if f and g are functions of type A -i B, then
f and g are said to be equal if f((x) = g(x) for all x e A. If f and g are equal,
we write

f =g.

For example, suppose f and g are functions of type N -- N defined by the
formulas f(x) = x + x and g(x) = 2x. It's easy to see that f = g.

Defining a Function by Cases

Functions can often be defined by cases. For example, the absolute value function
"abs" has type IR -- IR, and it can be defined by the following rule:

abs(xW) fX ifX>0
-X if x < 0.

A definition by cases can also be written in terms of the if-then-else rule. For

example, we can write the preceding definition in the following form:

abs(x) = if x > 0 then x else - x.

The if-then-else rule can be used more than once if there are several cases to

define. For example, suppose we want to classify the roots of a quadratic equation
having the following form:

ax 2 + bx + c = 0.

We can define the function "classifyRoots" to give the appropriate statements
as follows:

classifyRoots(a, b, c) = if b2 - 4ac > 0 then

"The roots are real and distinct."

else if b2 - 4ac < 0 then

"The roots are complex conjugates."

else
"The roots are real and repeated."

2.1 U DEFINITIONS AND EXAMPLES 79

2.1.2 Some Useful Functions

Now let's look at some functions that are especially useful in computer science.
These functions are used for tasks such as analyzing properties of data, analyzing
properties of programs, and constructing programs.

The Floor and Ceiling Functions

Let's discuss two important functions that "integerize" real numbers by going
down or up to the nearest integer. The floor function has type R --* Z and is
defined by setting floor(x) to the closest integer less than or equal to x. For
example, floor(8) = 8, floor(8.9) = 8, and floor(-3.5) = -4. A useful shorthand
notation for floor(x) is

[xj.

The ceiling function also has type R -- Z and is defined by setting ceiling(x)
to the closest integer greater than or equal to x. For example, ceiling(8) = 8,
ceiling(8.9) = 9, and ceiling(-3.5) = -3. The shorthand notation for ceiling(r) is

FrI.

Figure 2.3 gives a few sample values for the floor and ceiling functions.
Can you find some relationships between floor and ceiling? For example, is

[xJ = [x - 1] ? It's pretty easy to see that if x is an integer, then the statement is
false. But if x is not an integer, then there is some integer n such that n < x < n
+ landthusalson l<x l<n. In this case it follows that Lxi =n= [x-l1i.
So we can say that [xJ = [x - 1] if and only if x ý Z. This property and some
others are listed below. The proofs are similar to the argument we just made.

Floor and Ceiling Properties (2.1)

a. [x~ + 1] = LJ + 1.

b. rx - 11 = [rx - 1.

c. Fx] = Lxi if and only if x G Z.

d. [x] = [x] + 1 if and only if x Z.

e. Lxi = rx - 1] if and only if x Z.

x -2.0 -1.7 -1.3 -1.0 -0.7 -0.3 0,0 0.3 0.7 1.0 1.3 1.7 2.0

LxJ -2 -2 -2 -1 -1 -1 0 0 0 1 1 1 2

F-x- -2 -1 -1 -1 0 0 0 1 1 1 2 2 2

Figure 2.3 Some floor and ceiling values.

80 CHAPTER 2 m FACTS ABOUT FUNCTIONS

Greatest Common Divisor
Let's recall from Section 1.1 that an integer d divides an integer n if d 5 0 and

there is an integer k such that n = dk, and we denote this fact with dI n. Our
focus here will be on the largest of all common divisiors for two integers.

Definiton of Greatest Common Divisor
The greatest common divisor of two integers, not both zero, is the largest
integer that divides them both. We denote the greatest common divisor of a
and b by

gcd(a, b).

For example, the common divisors of 12 and 18 are ±1, ±2, ±3, ±6. So the
greatest common divisor of 12 and 18 is 6, and we write gcd(12, 18) = 6. Other

examples are gcd(-44, -12) = 4 and gcd(5, 0) = 5. If a • 0, then gcd(a, 0) = IaJ.
An important and useful special case occurs when gcd(a, b) = 1. In this case a
and b are said to be relatively prime. For example, 9 and 4 are relatively prime.

Here are some properties of the greatest common divisor function.

Greatest Common Divisor Properties (2.2)

a. gcd(a, b) = gcd(b, a) = gcd(a, -b).

b. gcd(a, b) = gcd(b, a - bq) for any integer q.

c. If g = gcd(a, b), then there are integers x and y such that g = ax + by.

d. If dI ab and gcd(d, a) = 1, then dI b.

Property (2.2a) confirms that the ordering of the arguments doesn't matter
and that negative numbers have positive greatest common divisors. For example,
gcd(-4, -6) = ged(-4, 6) = gcd(6, -4) = gcd(6, 4) = 2. We'll see shortly how
property (2.2b) can help us compute greatest common divisors. Property (2.2c)
says that we can write gcd(a, b) in terms of a and b. For example, gcd(15, 9) = 3,
and we can write 3 in terms of 15 and 9 as

3 = gcd(15, 9) = 15(2) + 9(-3).

Property (2.2d) is a divisibility property that we'll be using later.
Now let's get down to brass tacks and describe an algorithm to compute

the greatest common divisor. Most of us recall from elementary school that we
can divide an integer a by a nonzero integer b to obtain two other integers, a
quotient q and a remainder r, which satisfy an equation like the following:

a = bq + r.

2.1 s DEFINITIONS AND EXAMPLES 81

For example, if a = -16 and b = 3, then we can write many equations, each with
different values for q and r. For example, the following four equations all have
the form a = bq + r:

-16 = 3. (-4) + (-4)

-16 = 3. (-5) + (-1)

-16 = 3 (-6) + 2

-16 = 3. (-7) + 5.

In mathematics and computer science the third equation is by far the most

useful. In fact it's a result of a theorem called the division algorithm, which we'll
state for the record.

Division Algorithm
If a and b are integers and b • 0, then there are unique integers q and r such
that a = bq + r, where 0 < r < Ibl.

The division algorithm together with property (2.2b) gives us the seeds of an

algorithm to compute greatest common divisors. Suppose a and b are integers
and b : 0. The division algorithm gives us the equation a = bq + r, where
0 < r < I b . Solving the equation for r gives r = a - bq. This fits the form of
(2.2b). So we have the nice equation

gcd(a, b) = gcd(b, a - bq) = gcd(b, r).

The important point about this equation is that the numbers in gcd(b, r) are
getting closer to zero. Let's see how we can use this equation to compute the
greatest common divisor. For example, to compute gcd(315, 54), we apply the
division algorithm to obtain the equation 315 = 54 - 5 + 45. Thus we know that

gcd(315, 54) = gcd(54, 45).

Now apply the division algorithm again to obtain 54 = 45 - 1 + 9. So we have

gcd(315, 54) = gcd(54, 45) = gcd(45, 9).

Continuing, we have 45 = 9 • 5 + 0, which extends our computation to

gcd(315, 54) = gcd(54, 45) = gcd(45, 9) = gcd(9, 0) = 9.

The algorithm that we have been demonstrating is called Euclid's algorithm.

Since greatest common divisors are always positive, we'll describe the algorithm
to calculate gcd(a, b) for the case in which a and b are natural numbers that are
not both zero.

82 CHAPTER 2 * FACTS ABOUT FUNCTIONS

Euclid's Algorithm (2.3)

Input natural numbers a and b, not both zero, and output gcd(a, b).

while b > 0 do
Construct a = bq + r, where 0 < r < b; (by the division algorithm)
a : b;
b r

od;
Output a.

We can use Euclid's algorithm to show how property (2.2c) is satisfied. The
idea is to keep track of the equations a = bq + r from each execution of the loop.
Then work backwards through the equations to solve for gcd(a, b) in terms of
a and b. For example, in our calculation of gcd(315, 54) we obtained the three
equations

315 = 54 .5 + 45

54 = 45 1 + 9

45 = 95 + 0.

Starting with the second equation, we can solve for 9. Then we can use the
first equation to replace 45. The result is an expression for 9 = gcd(315, 54)
written in terms of 315 and 54 as 9 = 315 • (-l) + 54 • 6.

The Mod Function

If a and b are integers, where b > 0, then the division algorithm states that there
are two unique integers q and r such that

a= bq + r where 0<r<b.

We say that q is the quotient and r is the remainder upon division of a by b.
The remainder r = a - bq is the topic of interest.

Definition of Mod Function

If a and b are integers with b > 0, then the remainder upon the division of a

by b is denoted

a mod b

If we agree to fix n as a positive integer, then z mod n takes values in the set
{0, 1, ... , n - 1}, which is the set of possible remainders obtained upon division
of any integer x by n. For example, each row of the table in Figure 2.4 gives
some sample values for x mod n.

2.1 m DEFINITIONS AND EXAMPLES 83

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

"x mod 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

"x mod 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

"x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

"x mod 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

"x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0

Figure 2.4 Sample values of mood function.

We sometimes let N,, denote the set

N, = {0, 1, 2, ... , n - 1}.

For example, No 0 0, N1 = {0}, and N2 = {0, 1}. So for fixed n, the function
f defined by f(x) = x mod n has type Z -- Nn.

A Formula for Mod

Can we find a formula for a mod b in terms of a and b? Sure. We have the
following formula

amod b= r = a- bq, where O<r<b.

So we'll have a formula for a mod b if we can find a formula for the quotient q in
terms of a and b. Starting with the inequality 0 < r < b we have the following
sequence of inequalities.

o < r <b.

-b < -r < 0,

a - b < a - r < a,

a-b a-r a

b < b b'
a a-r a-- 1< -- K
b b b'
a a a--r
-- 1<q< since=
bb b

Since q is an integer, the last inequality implies that q can be written as the
floor expression

q = [a/bJ

Since r = a - bq, we have the following representation of r when b > 0.

r = a - b[a/bj.

84 CHAPTER 2 m FACTS ABOUT FUNCTIONS

This gives us a formula for the mod function.

Formula for Mod Function

a mod b = a - bLa/bJ.

Properties of Mod

The mod function has many properties. For example, the definition of mod tells
us that 0 < x mod n < n for any integer x. So for any integer x we have

(xmodn) mod n=xmod n

and

x mod n = x iff 0 < x < n.

The following list contains some of the most useful properties of the mod function.

Mod Function Properties (2.4)

a. xmod n = ymod niffndividesx- y iff(x-y) mod n =0.

b. (x + y) mod n = ((x mod n) + (y mod n)) mod n.

c. (xy) mod n = ((x mod n)(y mod n)) mod n.

d. If ax mod n = ay mod n and gcd(a, n) = 1, then x mod n = y mod n.

e. If gcd(a, n) = 1, then 1 mod n = ax mod n for some integer x.

Proof: We'll prove parts (a) and (d) and discuss the other properties in the
exercises. Using the definition of mod we can write

xmodn=x -nql and ymod n = y -nq 2

for some integers q, and q2. Now we have a string of iff statements.

xmodn=ymodn iff x - nql = y - nq 2

iff x - y = n(ql - q2)

iff n divides (x - y)

iff (x-y) modn=0.

So part (a) is true.
For part (d), assume that ax mod n = ay mod n and gcd(a, n) = 1. By

part (a) we can say that n divides (ax - ay). So n divides the product a(x - y).
Since gcd(a, n) = 1, it follows from (2.2d) that n divides (x - y). So again by
part (a) we have x mod n = y mod n. QED.

2.1 u DEFINITIONS AND EXAMPLES 85

• 2.5 Converting Decimal to Binary

How can we convert a decimal number to binary? For example, the decimal
number 53 has the binary representation 110101. The rightmost bit (binary
digit) in this representation of 53 is 1 because 53 is an odd number. In general,
we can find the rightmost bit (binary digit) of the binary representation of a
natural decimal number x by evaluating the expression x mod 2. In our example,
53 mod 2 = 1, which is the rightmost bit.

So we can apply the division algorithm, dividing 53 by 2, to obtain the
rightmost bit as the remainder. This gives us the equation

53 = 2 . 26 + 1.

Now do the same thing for the quotient 26 and the succeeding quotients.

53 = 2 26+1

26 = 2 13+0

13 = 2.6+1

6 2-3+0
3 2.1+1

1 = 2.0+1

0. (done)

We can read off the remainders in the above equations from bottom to top to
obtain the binary representation 110101 for 53. An important point to notice is
that we can represent any natural number x in the form

x = 2[x/2j + x mod 2.

So an algorithm to convert x to binary can be implemented with the floor and
mod functions.

The Log Function

The "log" function-which is shorthand for logarithm-measures the size of
exponents. We start with a positive real number b 5 1. If x is a positive real
number, then

logb x = y means by = x,

and we say, "log base b of x is y."
The base-2 log function log2 occurs frequently in computer science because

many algorithms make binary decisions (two choices) and binary trees are useful
data structures. For example, suppose we have a binary search tree with 16
nodes having the structure shown in Figure 2.5.

86 CHAPTER 2 m FACTS ABOUT FUNCTIONS

Figure 2.5 Sample binary tree.

x 1 2 4 8 16 32 64 128 256 512 1024

1092X 0 1 2 3 4 5 6 7 8 9 10

Figure 2.6 Sample log values.

The depth of the tree is 4, so a maximum of 5 comparisons are needed to find
any element in the tree. Notice in this case that 16 = 24, so we can write the
depth in terms of the number of nodes: 4 = log 2 16. Figure 2.6 gives a few choice
values for the log 2 function.

Of course, log2 takes real values also. For example, if 8 < x < 16, then

3 < log2 x < 4.

For any real number b > 1, the function lOgb is an increasing function with

the positive real numbers as its domain and the real numbers as its range. In
this case the graph of lOgb has the general form shown in Figure 2.7. What does
the graph look like if 0 < b < 1?

The log function has many properties. For example, it's easy to see that

lOgb 1 = 0 and logb b = 1.

log x

r 2x

Figure 2.7 Graph of a log function.

2.1 u DEFINITIONS AND EXAMPLES 87

The following list contains some of the most useful properties of the log
function. We'll leave the proofs as exercises in applying the definition of log.

Log Function Properties (2.5)

a. 1ogb (V) = x.

b. logb (x y) = logb X + logb y.

C. logb(X
5

) = y logb X.

d. logb (x/y) = logb x - Logb y.

e. log, x = (log, b) (logb x). (change of base)

These properties are useful in the evaluation of log expressions. For example,
suppose we need to evaluate the expression log2(2 734). Make sure you can justify
each step in the following evaluation:

log2 (2 734) = log2(2 7) + log2(3 4) = 7 log 2 (2) + 4 log2(3) = 7 + 4 log2(3).

At this point we're stuck for an exact answer. But we can make an estimate.
We know that 1 = log2(2) < log 2 (3) < log 2 (4) = 2. Therefore, 1 < log2(3) < 2.
Thus we have the following estimate of the answer:

11 < 10g2(27 34) < 15.

2.1.3 Partial Functions

A partial function from A to B is like a function except that it might not be
defined for some elements of A. In other words, some elements of A might not
be associated with any element of B. But we still have the requirement that if x
E A is associated with y C B, then x can't be associated with any other element
of B. For example, we know that division by zero is not allowed. Therefore, ±

is a partial function of type R x R -* R because + is not defined for all pairs of
the form (x, 0).

To avoid confusion when discussing partial functions, we use the term total
function to mean a function that is defined on all its domain. Any partial
function can be transformed into a total function. One simple technique is to
shrink the domain to the set of elements for which the partial function is defined.
For example, - is a total function of type R x (R - {0}) --4 R.

A second technique keeps the domain the same but increases the size of the
codomain. For example, suppose f : A --+ B is a partial function. Pick some
symbol that is not in B, say # V B, and assign f(x) = # whenever f(x) is not
defined. Then we can think of f as a total function of type A --4 B U {#}. In
programming, the analogy would be to pick an error message to indicate that

an incorrect input string has been received.

88 CHAPTER 2 U FACTS ABOUT FUNCTIONS

o Exercises

Definitions and Examples

1. Describe all possible functions for each of the following types.

a. {a, b} -f {1}.

b. {a} -* {1, 2, 3}.

c. {a, b} -- {1, 2}.

d. {a, b, cf} {1, 2}.

2. Suppose we have a function f : N --- N defined by f(x) = 2x + 1. Describe

each of the following sets, where E and 0 denote the sets of even and odd
natural numbers, respectively.

a. range(f). b. f(E). c. f(O).

d. f(of). e. f- 1 (E). f. f-1(0).

Some Useful Functions

3. Evaluate each of the following expressions.

a. [-4.li. b. [-4.1]. c. [4.1] d. [4.1].

4. Evaluate each of the following expressions.

a. gcd(-12, 15). b. ged(98, 35). c. gcd(872, 45).

5. Find gcd(296, 872) and write the answer in the form 296x + 872y.

6. Evaluate each of the following expressions.

a. 15 mod 12. b. -15 mod 12.

c. -12 mod 15. d. -21 mod 15.

7. Let f : N6 -- N6 be defined by f(x) = 2x mod 6. Find the image under f
of each of the following sets:

a. o. b. {0, 3}. c. {2, 5}.

d. {3, 5}. e. {1, 2, 3}. f. N6.

8. For a real number x, let trunc(w) denote the truncation of x, which is the
integer obtained from x by deleting the part of w to the right of the decimal

point.

a. Write the floor function in terms of trunc.

b. Write the ceiling function in terms of trunc.

9. For integers x and y # 0, let f(x, y) x - y trunc(w/y), where trunc is
from Exercise 8. How does f compare to the mod function?

2.1 . DEFINITIONS AND EXAMPLES 80

10. Does it make sense to extend the definition of the mod function to real
numbers? What would be the range of the function f defined by f(x) =

x mod 2.5?

11. Evaluate each of the following expressions.

a. log5 625. b. log2 8192. c. log 3 (1/27).

12. For a subset S of a set U, the characteristic function Xs : U -* {0, 1} is a
test for membership in S and is defined by

Xs(x) = if x E S then 1 else 0.

a. Verify that the following equation is correct for subsets A and B of U.

XAUB (X) = XA(X) + XB(X) - XA(X)XB(X)

b. Find a formula for XAnB(X) in terms of XA(x) and XB(X)

c. Find a formula for XA-B(X) in terms of XA(x) and XB(X).

13. Given a function f : A -- A. An element a G A is called a fixed point of f
if f(a) = a. Find the set of fixed points for each of the following functions.

a. f: A -f Awhere f(x) = x.

b. f: N- Nwheref(x) =x +1.

c. f N6 -N 6 where f(x) = 2x mod 6.
d. f N6 -N 6 where f(x) = 3x mod 6.

Proofs and Challenges

14. Prove each of the following statements about floor and ceiling.

a. [x+lj = [xj -1.

c. [x] = [xJ if and only if x E Z.
d. [x] = [xj + 1 if and only if x C Z.

15. Use the definition of the logarithm function to prove each of the following
facts.

a. logb 1 = 0.

b. logb b = 1.

C. lOgb (bx) = x.
d. logb (x y) logb X+ logh y.

e. 1Ogb(X') ylogb X.

f. logb(x/y) = logb X- logb y.

g. loga x = (log. b) (lOgb x). (change of base)

90 CHAPTER 2 U FACTS ABOUT FUNCTIONS

16. Prove each of the following facts about greatest common divisors.

a. gcd(a, b) = gcd(b, a) = gcd(a, -b).

b. gcd(a, b) = gcd(b, a - bq) for any integer q.
c. If d lab and gcd(d, a) = 1, then d lb. Hint: Use (2.2c).

17. Given the result of the division algorithm a = bq + r, where 0 < r < lb 1,
prove the following statement:

If b < 0 then r = a - b[a/b].

18. Let f : A -• B be a function, and let E and F be subsets of A. Prove each
of the following facts about images.

a. f(E U F) = f(E) U f(F).

b. f(E n F) C f(E) n f(F).
c. Find an example to show that part (b) can be a proper subset.

19. Let f : A -* B be a function, and let G and H be subsets of B. Prove each
of the following facts about pre-images.

a. f-l(G U H) f-`(G) U f/- 1 ().

b. f- 1 (G n H) - f- 1 (G) n f- 1 (H).
c. E C f-l(f(E)).

d. f(f -(G)) c G.
e. Find examples to show that parts (c) and (d) can be a proper subsets.

20. Prove each of the following properties of the mod function. Hint: Use (2.4a)
for parts (a) and (b), and use (2.2c) and parts (a) and (b) for part (c).

a. (x + y) mod n = ((x mod n) + (y mod n)) mod n.

b. (xy) mod n = ((x mod n)(y mod n)) mod n.
c. If gcd(a, n) = 1, then there is an integer b such that 1 = ab mod n.

21. We'll start a proof of (2.2c): If g = gcd(a, b), then there are integers x and
y such that g = ax + by. Proof: Let S {ax + by I x, y C - and ax + by
> 0} and let d be the smallest number in S. Then there are integers x and y
such that d = ax + by. The idea is to show that g = d. Since g la and g lb,
it follows from (.1Ib) that g Id. So g < d. If we can show that d Ia and d Ib,
then we must conclude that d = g because g is the greatest common divisor
of a and b. Finish the proof by showing that d Ia and d Ib. Hint: To show
d la, write a = dq + r, where 0 < r < d. Argue that r must be 0.

2.2 E CONSTRUCTING FUNCTIONS 91

2.2 Constructing Functions

We often construct a new function by combining other simpler functions in some
way. The combining method that we'll discuss in this section is called compo-
sition. We'll see that it is a powerful tool to create new functions. We'll also
introduce the map function as a useful tool for displaying a list of values of a
function. Many programming systems and languages rely on the ideas of this
section.

2.2.1 Composition of Functions

Composition of functions is a natural process that we often use without even
thinking. For example, the expression floor(log 2 (5)) involves the composition of
the two functions floor and log2. To evaluate the expression, we first evaluate
log2(5), which is a number between 2 and 3. Then we apply the floor function
to this number, obtaining the value 2.

Definition of Composition

The composition of two functions f and g is the function denoted by f o g
and defined by

(f o g)(x) = f(g(x)).

Notice that composition makes sense only for values of x in the domain of g

such that g(x) is in the domain of f. So if g : A -* B and f : C -- D and
B C C, then the composition f o g makes sense. In other words, for every
x E A it follows that g(x) E B, and since B C C it follows that f(g(x)) E D. It

also follows that f o g : A - D.
For example, we'll consider the floor and log2 functions. These functions

have types

log2 : R+ --* R and floor: R - Z,

where R+ denotes the set of positive real numbers. So for any positve real
number x, the expression log2(x) is a real number and thus floor(log 2 (x)) is an
integer. So the composition floor 0 log2 is defined and

floor o log 2 : R+ -* Z.

Composition of functions is associative. In other words, if f, g, and h are
functions of the right type such that (f a g) - h and f - (g a h) make sense,
then

(f a g) o h f a (g o h).

92 CHAPTER 2 U FACTS ABOUT FUNCTIONS

This is easy to establish by noticing that the two expressions ((f o g) o h)(x)

and (f o (g o h))(x) are equal:

((f o g) o h)(x) = (f o g)(h(x)) = f(g(h(x))).

(f o (g o h))(x) = f((g o h)(x)) = f(g(h(x))).

So we can feel free to write the composition of three or more functions without
the use of parentheses.

But we should observe that composition is usually not a commutative op-
eration. For example, suppose that f and g are defined by f(x) = x + 1 and
g(x) = x 2 . To show that f o g 7 g o f, we only need to find one number x such
that (f o g)(x) : (g o f)(x). We'll try x = 5 and observe that

(f o g)(5) = f(g(5)) = f(5 2) = 52 + 1 = 26.

(g o f)(5) = g(f(5)) = g(5 + 1) = (5 + 1)2 = 36.

A function that always returns its argument is called an identity function. For
a set A we sometimes write "idA" to denote the identity function defined by
idA(a) = a for all a e A. If f : A --* B, then we always have the following
equation.

f o idA = f = idB o f.

The Sequence, Distribute, and Pairs Functions

We'll describe here three functions that are quite useful as basic tools to construct
more complicated functions that involve lists.

The sequence function "seq"' has type N -- lists(N) and is defined as follows
for any natural number n:

seq(n) = (0, 1, ... , n).

For example, seq(0) = (0) and seq(4) = (0, 1, 2, 3, 4).
The distribute function "dist" has type A x lists(B) --+ lists(A x B). It takes

an element x from A and a list y from lists(B) and returns the list of pairs made
up by pairing x with each element of y. For example,

dist(x, (r, s, t)) = ((x, r), (x, s), (x, t)).

The pairs function takes two lists of equal length and returns the list of pairs

of corresponding elements. For example,

pairs((a, b, c), (d, e, f)) = ((a, d), (b, e), (c, f)).

Since the domain of pairs is a proper subset of lists(A) x lists(B), it is a partial
function of type lists(A) x lists(B) -* lists(A x B).

2.2 m CONSTRUCTING FUNCTIONS 93

Composing Functions with Different Arities

Composition can also occur between functions with different arities. For exam-
ple, suppose we define the following function.

f(x, y) = dist(x, seq(y)).

In this case dist has two arguments and seq has one argument. For example,
we'll evaluate the expression f(5, 3).

f(5,3) = dist(5,seq(3))

= dist(5, (0, 1, 2, 3))

= ((5, 0), (5, 1), (5, 2), (5, 3)).

In the next example we'll show that the definition f(x, y) = dist(x, seq(y)) is a
special case of the following more general form of composition, where X can be
replaced by any number of arguments.

f(X) = h(gI(X), ... , (X))

. 2.6 Distribute a Sequence

We'll show that the definition f(x, y) = dist(x, seq(y)) fits the general form of
composition. To make it fit the form, we'll define the functions one(x, y) = x

and two(x, y) = y. Then we have the following representation of f.

f(x, y) = dist(x, seq(y))

= dist(one(x, y), seq(two(x, y)))

= dist(one(x, y), (seq o two)(x, y))).

The last expression has the general form of composition

f(X) = h(gi(X), g2 (X)),

where X = (x, y), h = dist, g, = one, and g2 = seq o two.

r . 2.7 The Max Function

Suppose we define the function "max," to return the maximum of two numbers
as follows.

max(x, y) = if x < y then y else x.

Then we can use max to define the function "max3," which returns the maximum
of three numbers, by the following composition.

max3(x, y, z) = max(max(x, y), z).

94 CHAPTER 2 n FACTS ABOUT FUNCTIONS

We can often construct a function by first writing down an informal definition
and then proceeding by stages to transform the definition into a formal one that
suits our needs. For example, we might start with an informal definition of some
function f such as

f (x) = expression involving x.

Now we try to transform the right side of the equality into an expression that
has the degree of formality that we need. For example, we might try to reach a
composition of known functions as follows:

f (x) = expression involving x

= another expression involving x

= g(h(x)).

From a programming point of view, our goal would be to find an expression that
involves known functions that already exist in the programming language being
used. Let's do some examples to demonstrate how composition can be useful in
solving problems.

S2.8 Minimum Depth of a Binary Tree

Suppose we want to find the minimum depth of a binary tree in terms of the
numbers of nodes. Figure 2.8 lists a few sample cases in which the trees are as
compact as possible, which means that they have the least depth for the number
of nodes. Let n denote the number of nodes. Notice that when 4 < n < 8, the
depth is 2. Similarly, the depth is 3 whenever 8 < n < 16.

At the same time we know that log2(4) = 2, log2(8) = 3, and for 4 < n < 8
we have 2 < log2 (n) < 3. So log2 (n) almost works as the depth function.
The problem is that the depth must be exactly 2 whenever 4 < n < 8. Can
we make this happen? Sure-just apply the floor function to log2 (n) to get
floor(log2 (n)) = 2 if 4 _< n < 8. This idea extends to the other intervals that
make up N. For example, if 8 < n < 16, then floor(log2 (n)) = 3.

So it makes sense to define our minimum depth function as the composition
of the floor function and the log2 function:

minDepth(n) = fioor(log 2 (n)).

2.9 A List of Pairs

Suppose we want to construct a definition for the following function in terms of

known functions.

f(n) = ((0, 0), (1, 1), ... , (n, n)) for any n G N.

2.2 U CONSTRUCTING FUNCTIONS 95

Binary tree Nodes Depth

0 1 0

/~21
A~31

4 2

S7 2

15 3

Figure 2.8 Compact binary trees.

Starting with this informal definition, we'll transform it into a composition
of known functions.

f (n) -- (0, 0), (1, 1),.. ,(n, n))

- pairs((O, 1,... n), (0, 1,... ,n))

- pairs(seq(n), seq(n)).

Can you figure out the type of f?

_ _ 2.10 Another List of Pairs

Suppose we want to construct a definition for the following function in terms of
known functions.

g(k) = ((k, 0), (k, 1), ... , (k, k)) for any k E N.

96 CHAPTER 2 E FACTS ABOUT FUNCTIONS

Starting with this informal definition, we'll transform it into a composition of
known functions.

g(k) = ((k, 0), (k, 1),... ,(k, k))

=dist(k, (o, 1,... ,k))

= dist(k, seq(k)).

Can you figure out the type of g?

2.2.2 The Map Function

We sometimes need to compute a list of values of a function. A useful tool to
accomplish this is the map function. It takes a function f : A - B and a list
of elements from A and it returns the list of elements from B constructed by
applying f to each element of the given list from A. Here is the definition.

Definition of the Map Function

Let f be a function with domain A and let (x 1 , ... , x,) be a list of elements

from A. Then

map(f, (Xi, ... , xn)) = (f(xi), ... , x .

So the type of the map function can be written as

map: (A -- B) x lists(A) -> lists(B).

Here are some example calculations.

map(floor, (-1, 5, -0.5, 0.5, 1.5, 2.5))

(floor(-1.5), floor(-0.5), floor(0.5), fioor(1.5), floor(2.5))

(-2, -1,0, 1, 2).

map(floor o log 2, (2, 3, 4, 5))

= (floor(log 2 (2)), floor(log 2 (3)), floor(log 2 (4)), fioor(log 2 (5)))

= (1, 1,2,2).

map(+,((1, 2), (3, 4), (5, 6), (7, 8), (9, 10)))

= (+(1, 2), +(3, 4), +(5, 6), +(7, 8), +(9, 10))

= (3, 7, 11, 15, 19).

The map function is an example of a higher-order function, which is any
function that either has a function as an argument or has a function as a value.
This is an important property that most good programming languages possess.

2.2 M CONSTRUCTING FUNCTIONS 97

The composition and tupling operations are examples of functions that take
other functions as arguments and return functions as results.

S2.11 A List of Squares

Suppose we want to compute sequences of squares of natural numbers, such as
0, 1, 4, 9, 16. In other words, we want to compute f : N --+ lists(N) defined by
f(n) = (0, 1, 4, ... , n 2). We'll present two solutions. For the first solution we'll
define s(x) = x * x and then construct a definition for f in terms of map, s, and
seq as follows.

f(n) =(0, 1,4,... ,n 2)

= (s(0),s(1),s(2),... ,s(n))

= map(s, (0, 1,2,... ,n))

= map(s, seq(n)).

For the second solution we'll construct a definition for f without using the func-
tion s that we defined for the first solution.

f(n) =(0, 1,4,... ,n 2)

= (0*0,1*1,2*2,... ,n*n)

= map(*, ((0,0), (1, 1), 2,2),... , (n, n))

=map(*, pairs((0, 1, 2,... , n), (0, 1, 2,... , nf))

= map(*, pairs(seq(n), seq(n))).

2.12 Graphing with Map

Suppose we have a function f defined on the closed interval [a, b] and we have a
list of numbers (ax, ... , xn) that form a regular partition of [a, b]. We want to
find the following sequence of n + 1 points:

((Xo, f(XO)), ... , (Xn, f(xý))).

The partition is defined by xi = a + dk for 0 < k < n, where d = (b - a)/n.
So the sequence is a function of a, d, and n. If we can somehow create the two
lists (xo, ... , xn) and (f(xo), ... , f(x,)), then the desired sequence of points
can be obtained by applying the pairs function to these two sequences.

Let "makeSeq" be the function that returns the list (x*, ... , x,). We'll
start by trying to define makeSeq in terms of functions that are already at hand.
First we write down the desired value of the expression, makeSeq(a, d, n) and

98 CHAPTER 2 E FACTS ABOUT FUNCTIONS

then try to gradually transform the value into an expression involving known
functions and the arguments a, d, and n.

makeSeq(a, d, n)
= ýX0, X1,. X,*)
=-(a,a-d,a+2d,... ,a+nd)

= map(+, ((a, 0), (a, d), (a, 2d),... , (a, rid)))

= map(+, dist(a, (0, d, 2d,... ,nd)))

map(+, dist(a, map(*, ((d, 0), (d, 1), (d, 2),... , (d, n)))))

= map((+, dist(a, map(, dist(d, (0, 1, 2,... , n)))))

= map((+, dist(a, map(*, dist(d, seq(n))))).

The last expression contains only known functions and the arguments a, d, and
n. So we have a definition for makeSeq. Now it's an easy matter to build the
second list. Just notice that

(f(xi), f(x.,)) = map(f, x0, Xi,.))

= map(f, makeSeq(a, d, n)).

Now let "makeGraph" be the name of the function that returns the desired
sequence of points. Then inakeGraph can be written as follows:

makeGraph(f, a, d, n) = ((xo, f(xo)),... , (X,, f(Xn)))

= pairsr(makeSeq(a, d, n), map(f, makeSeq(a, d, n))).

This gives us a definition of makeGraph in terms of known functions and the
variables f, a, d, and n.

From the programming point of view, there are many other interesting ways
to combine functions. But they will take us too far afield. The primary purpose
now is to get a feel for what a function is and to grasp the idea of building a
function from other functions by composition.

0 Exercises

Composing Functions

1. Evaluate each of the following expressions.

a. floor(log 2 17).

b. ceiling(log 2 25).

c. gcd(14 mod 6, 18 mod 7).

d. gcd(12, 18) mod 5.

e. dist(4, seq(3)).

f. pairs(seq(3), seq(3)).

g. dist(+, pairs(seq(2), seq(2))).

2.2 m CONSTRUCTING FUNCTIONS 99

2. In each case find the compositions f o g and g o f, and find an integer x
such that f(g(x)) • g(f(x)).

a. f(x) = ceiling(x/2) and g(x) = 2x.

b. f(x) = floor(x/2) and g(x) = 2x + 1.

c. f(x) = gcd(x, 10) and g(x) = x mod 5.

3. Let f(x) = x2 and g(x, y) = x + y. Find compositions that use the functions
f and g for each of the following expressions.

a. (x + y) 2 . b. x2 + y2 . c. (x + y + z) 2. d. x2 + y2 + Z2.

4. Describe the set of natural numbers x satisfying each equation.

a. floor(log2 (x)) = 7.

b. ceiling(log2 (x)) = 7.

5. Find a definition for the function max4 that calculates the maximum value
of four numbers. Use only composition and the function max that returns
the maximum value of two numbers.

6. Find a formula for the number of binary digits in the binary representation
of a nonzero natural number x. Hint: Notice, for example, that the numbers
from 4 through 7 require three binary digits, while the numbers 8 through
15 require five binary digits, and so on.

Composing with the Map Function

7. Evaluate each expression:

a. map(floor o log2, (1, 2, 3, ... , 16)).
b. map(ceiling o log2, (1, 2, 3, ... , 16)).

8. Suppose that f: N -- lists(N) is defined by f(n) = (0, 2, 4, 6, ... , 2n). For
example, f(5) = (0, 2, 4, 6, 8, 10). In each case find a definition for f as a
composition of the listed functions.

a. map, ±, pairs, seq.

b. map,., dist, seq.

9. For each of the following functions, construct a definition of the function
as a composition of known functions. Assume that all of the variables are
natural numbers.

a. f(n, k) = (n, n + 1, n + 2, ... , n + k).

b. f(n, k) = (0, k, 2k, 3k, ... , nk).

c. f(n, m) =(n, n + 1, n + 2,..., m - 1, m), where n < m.

100 CHAPTER 2 U FACTS ABOUT FUNCTIONS

d. f (n) = n, n -- 1, n -2, ... , 1, 0).

e. f (n) = ((0, n), (1, n -1),. . ., (n -1, 1), (n, 0)).

f. f(n) =(1, 3, 5, ... , 2 n + 1I.

g. f(g, n) = ((0, g(0)), (1, g(1)), ... , (n, g(n))).
h . fPg, ýXl, X2, ... , X.)}) =- ((X1, g(Xl)), (X2, g(X2)), .. ,(Xn, g(xrn))ý.

i. f(g, h, (xl, ... , x.)) = ((g(xl), h(xl)), ... , (g(xn), h(x,,))).

10. We defined seq(n) = (0, 1, 2, 3, ... , n). Suppose we want the sequence to
start with the number 1. In other words, for n > 0, we want to define a

function f(n) = (1, 2, 3, ... , n). Find a definition for f as a composition of
the functions map, +, dist, and seq.

Proofs

11. Prove each of the following statements.

a. floor(ceiling(x)) = ceiling(x).
b. ceiling(floor(x)) = floor(x).
c. floor(log2 (x)) = floor(log2 (floor(x))) for x > 1.

2.3 Properties Of Functions

Functions that satisfy one or both of two special properties can be very useful
in solving a variety of computational problems. One property is that distinct
elements map to distinct elements. The other property is that the range is equal
to the codomain. We'll discuss these properties in more detail and give some
examples where they are useful.

2.3.1 Injections and Surjections

Injective Functions

A function f : A -* B is called injective (also one-to-one, or an embedding) if it
maps distinct elements of A to distinct elements of B. Another way to say this
is that f is injective if x : y implies f(x) $ f(y). Yet another way to say this
is that f is injective if f(x) = f(y) implies x y. An injective function is called
an injection.

For example, Figure 2.9 illustrates an injection from a set A to a B.

Surjective Functions

A function f : A --* B is called surjective (also onto) if the range of f is the
codomain B. Another way to say this is that f is surjective if each element

2.3 w PROPERTIES OF FUNCTIONS 101

A B

Figure 2.9 An injection.

A

Figure 2.10 A surjection.

b e B can be written as b = f(x) for some element x c A. A surjective function

is called a surjection.
For example, Figure 2.10 pictures a surjection from A to B.

.. 2.13 injective or Surjective

We'll give a few examples of functions that have one or the other of the injective

and surjective properties.

1. The function f : R --- Z defined by f(x) = Fx + 1 is surjective because for

any y G Z there is a number in R, namely y - 1, such that f(y - 1) = y.

But f is not injective because, for example, f(3.5) = f(3).

2. The function f : N8 -- N8 defined by f(x) = 2x mood 8 is not injective

because, for example, f(0) f(4). f is not surjective because the range of
f is only the set {0, 2, 4, 6}.

3. Let g : N --* N x N be defined by g(x) = (x, x). Then g is injective because
if x, y C N and x h y, then g(x) = (x, x) # (y, y) = g(y). But g is not

surjective because, for example, nothing maps to (0, 1).

4. The function f : N x N -- N defined by f(x, y) = 2x + y is surjective.
To see this, notice that any z G N is either even or odd. If z is even, then

z = 2k for some k E N, so f(k, 0) = z. If z is odd, then z = 2k + 1 for some

102 CHAPTER 2 U FACTS ABOUT FUNCTIONS

A B

Figure 2.11 A bijection.

k e N, so f(k, 1) = z. Thus f is surjective. But f is not injective because,

for example, f(0, 2) = f(1, 0).

2.3.2 Bijections and Inverses

Bijections

A function is called bijective if it is both injective and surjective. Another term

for bijective is "one-to-one and onto." A bijective function is called a bijection

or a "one-to-one correspondence."

For example, Figure 2.11 pictures a bijection from A to B.

J 2.14 A Bijection

Let (0, 1) = {x E R 1 0 < x < 1} and let R+ denote the set of positive real

numbers. We'll show that the function f: (0, 1) -* IR+ defined by

f~)-1- X:

is a bijection. To show that f is an injection, let f(x) = f(y). Then

x y
1 -x 1l-y'

which can be cross multiplied to get x - xy = y - xy. Subtract -xy from both

sides to get x = y. Thus f is injective. To show that f is surjective, let y > 0

and try to find x E (0, 1) such that f(x) = y. We'll solve the equation

x
-y.1-r-x

Cross multiply and solve for x to obtain

Y

y+l

It follows that f(y/(y+l)) = y, and since y > 0, it follows that 0 < y/(y+l) < 1.

Thus f is surjective. Therefore, f is a bijection.

2.3 E PROPERTIES OF FUNCTIONS 103

Inverse Functions

Bijections always come in pairs. If f : A -- B is a bijection, then there is a
function g : B --* A, called the inverse of f, defined by g(b) = a if f(a) = b. Of
course, the inverse of f is also a bijection and we have g(f(a)) = a for all a E A
and f(g(b)) = b for all b E B. In other words, g o f = idA and f o g = idB.

We should note that there is exactly one inverse of any bijection f. Suppose
that g and h are two inverses of f. Then for any x G B we have

g(x) = g(idB(x))

= g(f(h(x))) (since f o h = idB)

= idA (h(x)) (since g o f = idA)

= h(x).

This tells us that g = h. The inverse of f is often denoted by the symbol f- 1 . So
if f is a bijection and f(a) = b, then f-l(b) = a. Notice the close relationship
between the equation f 1 (b) = a and the pre-image equation f- 1'({b}) = {a}.

F 2.15 Inverses

We'll look at two bijective functions together with their inverses.

1. Let Odd and Even be the sets of odd and even natural numbers, respectively.
The function f : Odd -+ Even defined by f(x) = x - 1 is a bijection. Check
it out. The inverse of f can be defined by f-l(x) = x + 1. Notice that
f l(f(x)) = f-(x - 1) = (x - 1) + 1 = x.

2. The function f: N5 -÷ N5 defined by f(x) = 2x mod 5 is bijective because,
f(o) = 0, f(1) = 2, f(2) = 4, f(3) = 1, and f(4) = 3. The inverse of f
can be defined by f -(x) = 3x mod 5. For example, f-l(f(4)) = 3f(4)
mod 5 = 9 mod 5 = 4. Check the other values too.

The fact that the function f : N 5 -* N5 defined by f(x) = 2x mod 5 (in the
preceding example) is a bijection is an instance of an interesting and useful fact
about the mod function and inverses. Here is the result.

The Mod Function and Inverses (2.6)
Let n > 1 and let f : N -* Nn be defined as follows, where a and b are
integers.

f(x) = (ax + b) mod n.
Continued .*

104 CHAPTER 2 m FACTS ABOUT FUNCTIONS

Then f is a bijection if and only if gcd(a, n) = 1. When this is the case, the
inverse function f 1 is defined by

f-'(x) = (kx + c) mod n,

where c is an integer such that f(c) = 0, and k is an integer such that
1 = ak + nm for some integer m.

Proof: We'll prove the iff part of the statement and leave the form of the inverse
as an exercise.

Assume that f is a bijection and show that gcd(a, n) = 1. Then f is
surjective, so there are numbers s, c E Nn such that f(s) = 1 and f(c) = 0.
Using the definition of f, these equations become

(as + b) mod n = 1 and (ac + b) mod n = 0.

Therefore, there are intgers q, and q2 such that the two equations become

as + b + nql = 1 and ac + b + nq2 = 0.

Solve the second equation for b to get b = ac - nq2, and substitute for b in
the first equation to get

1 = a(s - c) + n(q1 - nq2).

Since gcd(a, n) divides both a and n, it divides the right side of the equation
(1.1b) and therefore must also divide 1. Therefore, gcd(a, n) = 1.

Now assume that gcd(a, n) = 1 and show that f is a bijection. Since Nn is
finite, we need only show that f is an injection to conclude that it is a bijection.
So let x, y 6 Nn and let f(x) = f(y). Then

(ax + b) mod n = (ay + b) mod n,

which by (2.4a) implies that n divides (ax + b) - (ay + b). Therefore, n divides
a(x - y), and since gcd(a, n) = 1, we conclude from (2.2d) that n divides x -
y. But the only way for n to divide x - y is for x - y = 0 because both x, y
e N,. Thus x = y, and it follows that f is injective, hence also surjective, and
therefore bijective. QED.

Relationships

An interesting property that relates injections and surjections is that if there is
an injection from A to B, then there is a surjection from B to A, and conversely.
A less surprising fact is that if the composition f o 9 makes sense and if both
f and g have one of the properties injective, surjective, or bijective, then f o g
also has the property. We'll list these facts for the record.

2.3 U PROPERTIES OF FUNCTIONS 105

Injective and Surjective Relationships (2.7)

a. If f and g are injective, then g o f is injective.

b. If f and g are surjective, then g o f is surjective.

c. If f and g are bijective, then g o f is bijective.

d. There is an injection from A to B if and only if there is a surjection from B to
A.

Proof: We'll prove (2.7d) and leave the others as exercises. Suppose that f is
an injection from A to B. We'll define a function g from B to A. Since f is an
injection, it follows that for each b E range(f) there is exactly one a E A such
that b = f(a). In this case, we define g(b) = a. For each b c B - range(f)
we have the freedom to let g map b to any element of A that we like. So g
is a function from B to A and we defined g so that range(g) = A. Thus g is
surjective.

For the other direction, assume that g is a surjection from B to A. We'll
define a function f from A to B. Since g is a surjection, it follows that for each
a e A, the pre-image g-1 ({a}) :7 0. So we can pick an element b e g-1 ({a}) and
define f(a) = b. Thus f is a function from A to B. Now if x, y E A and x ? y,
then g- 1 ({x}) n g- 1 ({y}) = 0. Since f(x) G g-1 ({x}) and f(y) E g-1 ({y}), it
follows that f(x) , f(y). Thus f is injective. QED.

2.3.3 The Pigeonhole Principle

We're going to describe a useful rule that we often use without thinking. For
example, suppose 21 pieces of mail are placed in 20 mail boxes. Then one
mailbox receives at least two pieces of mail. This is an example of the pigeonhole
principle, where we think of the pieces of mail as pigeons and the mail boxes as
pigeonholes.

Pigeonhole Principle
If m pigeons fly into to n pigeonholes where m > n, then one pigeonhole will
have two or more pigeons.

We can describe the pigeonhole principle in more formal terms as follows: If A
and B are finite sets with JAI > JBI, then every function from A to B maps at
least two elements of A to a single element of B. This is the same as saying that
no function from A to B is an injection.

This simple idea is used often in many different settings. We'll be using it
at several places in the book.

106 CHAPTER 2 * FACTS ABOUT FUNCTIONS

S2.16 Pigeonhole Examples

Here are a few sample statements that can be justified by the pigeonhole
principle.

1. The "musical chairs" game is played with n people and n 1 chairs for them

to sit on when the music stops.

2. In a group of eight people, two were born on the same day of the week.

3. If a six-sided die is tossed seven times, one side will come up twice.

4. If a directed graph with n vertices has a path of length n or longer, then the
path must pass through some vertex at least twice. This implies that the
graph contains a cycle.

5. In any set of n + 1 integers, there are two numbers that have the same
remainder on division by n. This follows because there are only n remainders

possible on division by n.

6. The decimal expansion of any rational number contains a repeating sequence
of digits (they might be all zeros). For example, 359/495 = 0.7252525....
7/3 = 2.333..., and 2/5 = 0.4000. .. . To see this, let m/n be a rational
number. Divide rn by n until all the digits of m are used up. This gets us
to the decimal point. Now continue the division by n for n + 1 more steps.
This gives us n + 1 remainders. Since there are only n remainders possible
on division by n, the pigeonhole principle tells us that one of remainders will
be repeated. So the sequence of remainders between the repeated remainders

will be repeated forever. This causes the corresponding sequence of digits in
the decimal expansion to be repeated forever.

2.3.4 Simple Ciphers

Bijections and inverse functions play an important role when working with sys-
tems (called ciphers) to encipher and decipher information. We'll give a few
examples to illustrate the connections. For ease of discussion we'll denote the 26
letters of the lowercase alphabet by the set N26 = {0, 1, 2, ... , 25}, where we
identify a with 0, b with 1, and so on.

To get things started we'll describe a cipher to transform a string of text by
means of a simple translation of the characters. For example, the message 'abc'
translated by 5 letters becomes 'fgh'. The cipher is easy to write once we figure
out how wrap around the end of the alphabet. For example, to translate the
letter z (i.e., 25) by 5 letters we need to come up with the letter e (i.e., 4). All
we need to do is add the two numbers mod 26:

(25 + 5) mod 26 - 4.

2.3 * PROPERTIES OF FUNCTIONS 107

So we can define a cipher f to translate any letter by 5 letters as

f(x) = (x + 5) mod 26.

Is f a bijection? Yes, because f has type N26 --- N26 . So we have a cipher
for transforming letters. For example, the message 'hello' transforms to 'mjqqt'.
To decode the message we need to reverse the process, which is easy in this case
because the inverse of f is easy to guess.

f-l(x) = (x -5) mod 26.

For example, to see that e maps back to z, we can observe that 4 maps to 25.

f- 1 (4) = (4 - 5) mod 26 = (-1) mod 26 = 25.

The cipher we've been talking about is called an additive cipher. A cryptanalyst
who intercepts the message 'mjqqt' can easily check whether it was created by
an additive cipher. An additive cipher is an example of a monoalphabetic cipher,
which is a cipher that always replaces any character of the alphabet by the same
character from the cipher alphabet.

A multiplicative cipher is a monoalphabetic cipher that translates each letter

by using a multiplier. For example, suppose we define the cipher

g(x) = 3x mod 26.

For example, this cipher maps a to a, c to g, and m to k. Is g a bijection? You

can convince yourself that it is by exaustive checking. But it's easier to use (2.6).
Since gcd(3, 26) = 1 it follows that g is a bijection. What abut deciphering?
Again, (2.6) comes to the rescue to tell us the form of g- 1 . Since we can write
gcd(3, 26) = 1 = 3(9) + 26(-1), and since g(O) = 0, it follows that we can define
9-1 as

g-1 (x) = 9x mod 26.

There are some questions to ask about multiplicative ciphers. Which keys act
as an identity (not changing the message)? Is there always one letter that never
changes no matter what the key? Do fractions work as keys? What about de-
coding (i.e., deciphering) a message? Do you need a new deciphering algorithm?

An affine cipher is a monoalphabetic cipher that translates each letter by

using two kinds of translation. For example, we can start with a pair of keys
(M, A) and transform a letter by first applying the additive cipher with key A
to get an intermediate letter. Then apply the multiplicative cipher with key M
to that letter to obtain the desired letter. For example, we might use the pair of
keys (5, 3) and define f as

f(x) = 3((x + 5) mod 26) mod 26 = (3x + 5) mod 26.

108 CHAPTER 2 m FACTS ABOUT FUNCTIONS

We can use (2.6) to conclude that f is a bijection because gcd(3, 26) = 1. So we
can also decipher messages with f 1-, which we can construct using (2.6) as

f- 1 (x) = (9x + 7) mod 26.

Some ciphers leave one or more letters fixed. For example, an additive cipher
that translates by a multiple of 26 will leave all letters fixed. A multiplicative
cipher always sends 0 to 0, so one letter is fixed. But what about an affine cipher
of the form f(x) = (ax + b) mod 26? When can we be sure that no letters are
fixed? In other words, when can we be sure that f(x) ? x for all x c N26 ? The
answer is, when gcd(a - 1, 26) does not divide b. Here is the general result that
we've been discussing.

The Mod Function and Fixed Points (2.8)

Let n > 1 and let f : N, -* N, be defined as follows, where a and b are
integers.

f(x) = (ax + b) mod n.

Then f has no fixed points (i.e., f changes every letter of an alphabet) if and
only if gcd(a - 1, n) does not divide b.

This result follows from an old and easy result from number theory, and we'll
discuss it in the exercises. Let's see how the result helps our cipher problem.

2.17 Simple Ciphers

The function f(x) = (3x + 5) mod 26 does not have any fixed points because
gcd(3 - 1, 26) = gcd(2, 26) = 2, and 2 does not divide 5. It's nice to know that
we don't have to check all 26 values of f.

On the other hand, the function f(x) = (3x + 4) mod 26 has fixed points
because gcd(3 - 1, 26) = 2 and 2 divides 4. For this example, we can observe
that f(11) = 11 and f(24) = 24. So in terms of our association of letters with
numbers we would have f(1) = 1 and f(y) = y.

Whatever cipher we use, we always have some questions: Is it a bijection?
What is the range of values for the keys? Is it hard to decipher an intercepted
message?

2.3 U PROPERTIES OF FUNCTIONS 109

2.3.5 Hash Functions

Suppose we wish to retrieve some information stored in a table of size n with
indexes 0, 1, ... , n- 1. The items in the table can be very general things. For

example, the items might be strings of letters, or they might be large records
with many fields of information. To look up a table item we need a key to the
information we desire.

For example, if the table contains records of information for the 12 months

of the year, the keys might be the three-letter abbreviations for the 12 months.
To look up the record for January, we would present the key Jan to a lookup
program. The program uses the key to find the table entry for the January
record of information. Then the information would be available to us.

An easy way to look up the January record is to search the table until the
key Jan is found. This might be OK for a small table with 12 entries. But it
may be impossibly slow for large tables with thousands of entries. Here is the
general problem that we want to solve:

Given a key, find the table entry containing the key without searching.

This may seem impossible at first glance. But let's consider a way to use a
function to map each key directly to its table location.

Definition of Hash Function

A hash function is a function that maps a set S of keys to a finite set of table
indexes, which we'll assume are 0, 1, ... , n - 1. A table whose information
is found by a hash function is called a hash table.

For example, let S be the set of three-letter abreviations for the months
of the year. We might define a hash function f : S -± {0, 1, ... , l1} in the
following way.

f(XYZ) = (ord(X) + ord(Y) + ord(Z)) mod 12.

where ord(X) denotes the integer value of the ASCII code for X. (The ASCII
values for A to Z and a to z are 65 to 90 and 97 to 122, respectively.) For
example, we'll compute the value for the key Jan.

f(Jan) = (ord(J) + ord(a) + ord(n)) mod 12

= (74+97+110) mod 12
=5.

Most programming languages have efficient implementations of the ord and mod
functions, so hash functions constructed from them are quite fast. Here is the
listing of all the values of f.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

5 5 0 3 7 1 11 9 8 6 7 4

110 CHAPTER 2 a FACTS ABOUT FUNCTIONS

Notice the function f is not injective. For example, f(Jan) = f(Feb) = 5. So
if we use f to construct a hash table, we can't put the information for January

and February at the same address. Let's discuss this problem.

Collisions

If a hash function is injective, then it maps every key to the index of the hash

table where the information is stored and no searching is involved. Often this is
not possible. When two keys map to the same table index, the result is called
a collision. So if a hash function is not injective, it has collisions. Our example
hash function has collisions f(Jan) = f(Feb) and f(May) = f(Nov).

When collisions occur, we store the information for one of the keys in the
common table location and must find some other location for the other keys.
There are many ways to find the location for a key that has collided with another
key. One technique is called linear probing. With this technique the program
searches the remaining locations in a "linear" manner.

For example, if location k is the collision index, then the following sequence
of table locations is searched

(k + 1) modn, (k +2) modn, ... , (k + n) mod n.

In constructing the table in the first place, these locations would be searched to
find the first open table entry. Then the key would be placed in that location.

2.18 A Hash Table

We'll use the sample hash function f to construct a hash table for the months of
the year by placing the three-letter abreviations in the table one by one, starting
with Jan and continuing to Dec. We'll use linear probing to resolve collisions that
occur in the process. For example, since f(Jan) = 5, we place Jan in position 5
of the table. Next, since f(Feb) = 5 and since postition 5 is full, we look for the
next available position and place Feb in postition 6. Continuing in this way, we
eventually construct the following hash table, where entries in parentheses need
some searching to be found.

0 1 2 3 4 5 6 7 819 10 11
Mar Jun (Nov) Apr Dec Jan Sep Aug (Oct) Jul

There are many questions. Can we find an injection so there are no collisions?
If we increased the size of the table, would it give us a better chance of finding
an injection? If the table size is increased, can we scatter the elements so that
collisions can be searched for in less time?

2.3 M PROPERTIES OF FUNCTIONS 111

Probe Sequences

Linear probing that looks at locations one step at a time may not be the best
way to resolve collisions for some kinds of keys. An alternative is to try linear
probing with a "gap" between table locations in order to "scatter" or "hash"
the information to different parts of the table. The idea is to keep the number
of searches to a minimum. Let g be a gap, where I < g < n. Then the following
sequence of table locations is searched in case a collision occurs at location k:

(k + g) mod n, (k + 2g) mod n,..., (k + ng) mod n.

Some problems can occur if we're not careful with our choice of g. For example,
suppose n = 12 and g = 4. Then the probe sequence can skip some table entries.
For example, if k = 7, the above sequence becomes

11, 3, 7, 11, 3, 7, 11, 3, 7, 11, 3, 7.

So we would miss table entries 0, 1, 2, 4, 5, 6, 8, 9, and 10. Let's try another
value for g. Suppose we try g = 5. Then we obtain the following probe sequence
starting at k = 7:

0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7.

In this case we cover the entire set {0, 1, ... , 11}. In other words, we've defined

a bijection f : N1 2 --+ N12 by f(x) = 5x mod 12. Can we always find a probe
sequence that hits all the elements of {0, 1, ... , n - 1}? Happily, the answer
is yes. Just pick g and n so that they are relatively prime, gcd(g, n) = 1. For
example, if we pick n to be a prime number, then (g, n) = 1 for any g in the
interval 1 < g < n. That's why table sizes are often prime numbers, even though
the data set may have fewer entries than the table size.

There are many ways to define hash functions and to resolve collisions. The
paper by Cichelli [1980] examines some bijective hash functions.

M Exercises

Injections, Surjections, and Bijections

1. The fatherOf function from People to People is neither injective nor surjec-

tive. Why?

2. For each of the following cases, construct a function satisfying the given
condition, where the domain and codomain are chosen from the sets

A = {a, b, c}, B = {x, y, z}, C = {1, 2}.

a. Injective but not surjective.

b. Surjective but not injective.

c. Bijective.

d. Neither injective nor surjective.

112 CHAPTER 2 * FACTS ABOUT FUNCTIONS

3. For each of the following types, compile some statistics: the number of func-
tions of that type; the number that are injective; the number that are sur-
jective; the number that are bijective; the number that are neither injective,
surjective, nor bijective.

a. {a, b, c} - {1, 2}.

b. {a, b} -* {1, 2, 3}.

c. {a, b, c} -*{1, 2, 3}.

4. Show that each function f : N -- N has the listed properties.

a. f(x) = 2x. (injective and not surjective)

b. f(x) = x + 1. (injective and not surjective)

c. f(x) = floor(x/2). (surjective and not injective)

d. f(x) = ceiling(log 2 (x + 1)). (surjective and not injective)

e. f(x) =if z is odd then x - 1 else x+ 1. (bijective)

5. For each of the following functions, state which of the properties injective
and surjective holds.

a. f: IR Z-* , where f(x) = floor(x).

b. f: N - N, where f(x) = x mod 10.

c. f: Z N defined by f(x) =x + 1.

d. seq : N --* lists(N).

e. dist : A x lists(B) -* lists(A x B).

f. f: A -• power(A), A is any set, and f(x) = {x}.

g. f : lists(A) - power(A), A is finite, and f((xi, x,)) = {Xl,
1'.

h. f: lists(A) -- bags(A), A is finite, and f((zx,, x,z)) = [x1 , ... , x,].

i. f : bags(A) - power(A), A is finite, and f([xi, ... , xz,]) = {xj,
Xn}.

6. Let R+ and R- denote the sets of positive and negative real numbers, re-
spectively. If a, b G R and a < b, let (a, b) = {x E R I a < x < b}. Show
that each of the following functions is a bijection.

a. f: (0, 1) - (a, b) defined by f(x) =(b - a)x + a.

b. f: R+ -* (0, 1) defined by f(x) = 1/(x + 1).

c. f : (1/2, 1) --- R+ defined by f(z) = 1/(2x - 1) - 1.

d. f: (0, 1/2) --- R defined by f(x) = 1/(2x - 1) + 1.

I/(2x - 1) - 1 if 1/2 < x < 1

e. f: (0, 1) -* R defined by f (x) 0 if x = 1/2

1/(2x-1)+1 if0<x< 1/2

2.3 E PROPERTIES OF FUNCTIONS 113

The Pigeonhole Principle

7. Use the pigeonhole principle for each of the following statements.

a. How many people are needed in a group to say that three were born on
the same day of the week?

b. How many people are needed in a group to say that four were born in
the same month?

c. Why does any set of 10 nonempty strings over {a, b, c} contain two
different strings whose starting letters agree and whose ending letters
agree?

d. Find the size needed for a set of nonempty strings over {a, b, c, d}
to contain two strings whose starting letters agree and whose ending
letters agree.

8. Use the pigeonhole principle to verify each of the following statements.

a. In any set of 11 natural numbers, there are two numbers whose decimal

representations contain a common digit.

b. In any set of four numbers picked from the set {1, 2, 3, 4, 5, 6}, there
are two numbers whose sum is seven.

c. If five distinct numbers are chosen from the set {1, 2, 3, 4, 5, 6, 7, 8},

then two of the numbers chosen are consecutive (i.e., of the form n and
n + 1). Hint: List the five numbers chosen as, xl, x 2 , x3, x 4 , x 5 and
list the successors as x, + 1, x2 + 1, x3 + 1, x 4 + 1, x5 + 1. Are there
more than eight numbers listed?

Simple Ciphers and the Mod Function

9. Each of the following functions has the form f(x) = (ax + b) mod n. Assume
that each function has type Nn -* Nn, so that we can think of f as a cipher
for an alphabet represented by the numbers 0, 1, ... , n - 1. Use (2.6)
to determine whether each function is a bijection, and, if so, construct its
inverse. Then use (2.8) to determine whether the function has fixed points
(i.e., letters that don't change), and, if so, find them.

a. f(x) = 2x mod 6.

b. f(x) = 2x mod 5.

c. f(x) = 5x mod 6.

d. f(x) = (3x + 2) mod 6.

e. f(x) = (2x + 3) mod 7.

f. f(x) = (5x + 3) mod 12.

g. f(x) = (25x + 7) mod 16.

10. Think of the letters A to Z as the numbers numbers 0 to 25 and let f be a

cipher of the form f(x) = (ax + b) mod 26.

114 CHAPTER 2 * FACTS ABOUT FUNCTIONS

a. Use (2.6) to find all values of a (0 < a < 26) that will make f bijective.

b. For the values of a in part (a) that make f bijective, use (2.8) to find
a general statement about the values of b (0 < b < 26) that will ensure
that f maps each letter to a different letter.

Hash Functions

11. Let S = {one, two, three, four, five, six, seven, eight, nine} and let f :S -

N9 be defined by f(x) = (31xl) mod 9, where IxI means the number of letters
in x. For each of the following gaps, construct a hash table that contains
the strings of S by choosing a string for entry in the table by the order that
it is listed in S. Resolve collisions by linear probing with the given gap and

observe whether all strings can be placed in the table.

a. Gap= 1. b. Gap=2. c. Gap=3.

12. Repeat Exercise 11 for the set S = {Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday} and the function f: S - N7 defined by f(x) =

(21xl + 3) mod 7.

13. Repeat Exercise 11 for the set S = {January, February, March, April, May,
June, July, August} and f: S --+ N7 defined by f(x) = (Ixi + 3) mod 8.

Proofs and Challenges

14. Find integers a and b such that the function f : N12 -- N 12 defined by
f(x) = (ax + b) mod 12 is bijective and f- 1 = f.

15. Let f A -- B and g : B --4 C. Prove each of the following statements.

a. If f and g are injective, then g o f is injective.

b. If f and g are surjective, then g o f is surjective.

c. If f and g are bijective, then g o f is bijective.

16. Let f and g be bijections of type A --* A such that g(f(x)) = x for all
x c A. Prove that f(g(x)) = x for all x G A.

17. Assume that the functions f and g can be formed into a composition g o f.

a. If g o f is surjective, what can you say about f or g ?

b. If g o f is injective, what can you say about f or g ?

18. Let g : A --* B and h : A -* C and let f be defined by f(x) = (g(x), h(x)).
Show that each of the following statements holds.

a. If f is surjective, then g and h are surjective. Find an example to show
that the converse is false.

b. If g or h is injective, then f is injective. Find an example to show that
the converse is false.

2.4 m COUNTABILITY 115

19. Prove that the equation ax mod n = b mod n has a solution x if and only
if gcd(a, n) divides b.

20. Use the result of Exercise 19 to prove (2.8): Let n > 1 and f : Nn -+ Nn be
defined by f(x) = (ax + b) mod n. Then f has no fixed points if and only
if gcd(a - 1, n) does not divide b.

21. Prove the second part of (2.6). In other words, assume the following facts.

f : Nn -* Nn is defined by f(x) = (ax + b) mod n.

f is a bijection, which also means that gcd(a, n) = 1.

c is an integer such that f(c) = 0.

k is an integer such that 1 = ak + nm for some integer m.

g : Nn --* Nn is defined by g(x) = (kx + c) mod n.

Prove that g = f-.O

2.4 Countability

Let's have a short discussion about counting sets that may not be finite. We'll
have to examine what it means to count an infinite set and what it means to
compare the size of infinite sets. In so doing we'll find some useful techniques
that can be applied to questions in computer science. For example, we'll see
as a consequence of our discussions that there are some limits on what can be
computed. We'll start with some simplifying notation.

2.4.1 Comparing the Size of Sets

Let A and B be sets. If there is a bijection between A and B, we'll denote the

fact by writing

JAI = IBI.

In this case we'll say that A and B have the same size or have the same cardi-
nality, or are equipotent.

2.19 Cardinality of a Finite Set

Let A = {(x + 1)3 I x C N and 1 < (x + 1)3 < 3000}. Let's find the cardinality
of A. After a few calculations we can observe that

(0 + 1) 3 =1,(1+1)3 - 8, .. ,(13 + 1) 3 = 2744 and (14 + 1)3 = 3375.

So we have a bijection f: {0, 1,..., 13} --* A, where f(x) = (x + 1)3. Therefore,
JAI = 1{0, 1, ... , 13}I= 14.

116 CHAPTER 2 * FACTS ABOUT FUNCTIONS

S2.20 Cardinality of an Infinite Set

Let Odd denote the set of odd natural numbers. Then the function f : N -- Odd
defined by f(x) = 2x + 1 is a bijection. So Odd and N have the same size and
we write IOddl = IN1.

If there is an injection from A to B, we'll denote the fact by writing

JAI < IBI.

In this case we'll say that the size, or cardinality, of A is less than or the same

as that of B. Recall that there is an injection from A to B if and only if there
is a surjection from B to A. So IAI < •BI also means that there is a surjection
from B to A.

If there is an injection from A to B but no bijection between them, we'll
denote the fact by writing

JAI < JBI.

In this case we'll say that the size, or cardinality, of A is less than that of B. So
JAI < IBI means that JAI < IBI and JAI : IBI.

2.4.2 Sets that Are Countable

Informally, a set is countable if its elements can be counted in a step by step
fashion (e.g., count one element each second), even if it takes as many seconds
as there are natural numbers. Let's clarify the idea by relating sets that can be
counted to subsets of the natural numbers.

If A is a finite set with n elements, then we can represent the elements of A

by listing them in the following sequence:

Xo, X1,X2, -.. ,X.--1.

If we associate each xk with the subscript k, we get a bijection between A and

the set {O, 1, ... , n -1}.
Suppose A is an infinite set such that we can represent all the elements of A

by listing them in the following infinite sequence:

Xo,X1,X2,. ... ,Xn....

If we associate each Xk with the subscript k, we get a bijection between A and

the set N of natural numbers.

Definition of Countable

The preceding descriptions give us the seeds for a definition of countable. A set
is countable if it is finite or if there is a bijection between it and N. In the latter

case, the set is said to be countably infinite. In terms of size we can say that

2.4 m COUNTABILITY 117

a set S is countable if ISI = I{O, 1, ... , n - 1} for some natural number n or
SI = NI. If a set is not countable, it is said to be uncountable.

Countable Properties

a. Every subset of N is countable.

b. S is countable if and only if JSJ < •NI.

c. Any subset of a countable set is countable.

d. Any image of a countable set is countable.

Proof. We'll prove (a) and (b) and leave (c) and (d) as exercises. Let S be a
subset of N. If S is finite, then it is countable by definition. So assume that S
is infinite. Now since S is a set of natural numbers, it has a smallest element
that we'll represent by x0. Next, we'll let x, be the smallest element of the set
S - {xo}. We'll continue in this manner, letting xu be the smallest element of
S - {x0, . .. , Xn-}. In this way we obtain an infinite listing of the elements of S:

XO, Xl, X2 , ... , Xn,

Notice that each element m C S is in the listing because there are at most m
elements of S that are less than m. So m must be represented as one of the
elements xo, Xl, X2, ... , xm in the sequence. The association Xk to k gives a
bijection between S and N. So ISI = INI and thus S is countable.

(b) If S is countable then ISI < INI by definition. So assume that SI < INI.
Then there is an injection f: S -* N. So ISI = if(S)I. Since f(S) is a subset of
N, it is countable by (a). Therefore f(S) is either finite or If(S)I=IN1. So S is
either finite or ISI = If(S)I=INI. QED

Techniques to Show Countability

An interesting and useful fact about countablity is that the set N x N is count-
able. We'll state it for the record.

Theorem (2.9)

N x N is a countable set.

Proof: We need to describe a bijection between N x N and N. We'll do this by
arranging the elements of N x N in such a way that they can be easily counted.
One way to do this is shown in the following listing, where each row lists a

118 CHAPTER 2 a FACTS ABOUT FUNCTIONS

sequence of tuples in N x N followed by a corresponding sequence of natural
numbers.

(0,0), - 0,
A0 1), (1, 0), 1, 2

(0, 2), (1, 1), (2, 0), - 3,4, 5,

(0,n),... (n2 +n)/2,...

Notice that each row of the listing contains all the tuples whose components add
up to the same number. For example, the sequence (0, 2), (1, 1), (2, 0) consists
of all tuples whose components add up to 2. So we have a bijection between
N x N and N. Therefore, N x N is countable. QED.

We should note that the bijection described in (2.9) is called Cantor's pairing
function. It maps each pair of natural numbers (x, y) to the natural number

(x + y) 2 + 3x + y

2

We can use (2.9) to prove the following result that the union of a countable
collection of countable sets is countable.

Counting Unions of Countable Sets (2.10)

If SO, S1, ... , Sn, ... is a sequence of countable sets, then the union

SOUS1U...USnU...

is a countable set.

Proof: Since each set is countable, its elements can be indexed by natural num-
bers. So for each set Sn we'll list its elements as xno, Xnl, Xn2, ... If S, is a
finite set then we'll list one of its elements repeatedly to make the listing infinite.
In the same way, if there are only finitely many sets, then we'll list one of the
sets repeatedly to make the sequence infinite. In this way we can associate each
tuple (i, n) in N x N with an element Xmn in the union of the given sets. The
mapping may not be a bijection since some elements of the union might be re-
peated in the listings. But the mapping is a surjection from N x N to the union
of the sets. So, since N x N is countable, it follows that the union is countable.
QED.

2.4 * COUNTABILITY 119

'. 2.21 Countability of the Rationals

We'll show that the set Q of rational numbers is countable by showing that
IQ = INI. Let Q+ denote the set of positive rational numbers. So we can
represent Q+ as the following set of fractions, where repetitions are included
(e.g., 1/1 and 2/2 are both elements of the set).

Q+ {m/n I m, n C N and n = 0}.

Now we'll associate each fraction m/n with the tuple (m, n) in N x N. This
association is an injection, so we have IQ+± < IN x NJ. Since N x N is countable,
it follows that Q+ is countable. In the same way, the set Q- of negative rational
numbers is countable. Now we can write Q as the union of three countable sets:

Q = Q+ u {o} u Q-.

Since each set in the union is countable, it follows from (2.10) that the union of
the sets is countable.

Counting Strings

An important consequence of (2.10) is the following fact about the countability
of the set of all strings over a finite alphabet.

Theorem (2.11)

The set A* of all strings over a finite alphabet A is countably infinite.

Proof: For each n E N, let An be the set of strings over A having length n. It
follows that A* is the union of the sets A0 , A1 , ... , An, Since each set An
is finite, we can apply (2.10) to conclude that A* is countable. QED.

2.4.3 Diagonalization

Let's discuss a classic construction technique, called diagonalization, which is
quite useful in several different settings that deal with counting. The technique
was introduced by Cantor when he showed that the real numbers are uncount-
able. Here is a general description of diagonalization.

Diagonalization (2.12)

Let A be an alphabet with two or more symbols and let S0 , S1, ... , Sn, ..,
be a countable listing of sequences of the form Sn = (anO, a ... , ann, ...),
where a,,i e A. The sequences are listed as the rows of the following infinite
matrix.

Continued a

120 CHAPTER 2 * FACTS ABOUT FUNCTIONS

0 1 2 ... n ...
So a0o a 0o a 0 2 ... aon ."'

S1 al 0 all a 1 2 • • aln ...

S2 a 2 0 a 2 1 a 22 ... a2n •

Sn ano an, an2 ann ...

Then there is a sequence S = (ao, a,, a 2 ,... ,an,...) over A that is not in
the original list. We can construct S from the list of diagonal elements (aoo,
a11 , a 22, ... , ann, ...) by changing each element so that an # ann for each
n. Therefore, S differs from each Sn at the nth element. For example, pick
two elements x, y c A and define

= x if ann= yan = y if ann y.

Uncountable Sets

Now we're in position to give some examples of uncountable sets. We'll demon-
strate the method of Cantor, which uses proof by contradiction together with
the diagonalization technique.

• 2.22 Uncountability of the Reals

We'll show that the set R of real numbers is uncountable. It was shown in
Exercise 6e of Section 2.3 that there is a bijection between R and the set U of
real numbers between 0 and 1. So R1 =]U1 and we need only show that U is
uncountable. Assume, by way of contradiction, that U is countable. Then we
can list all the numbers between 0 and 1 as a countable sequence

T'0 , T1 , r2, . .. 7"n,

Each real number in between 0 and 1 can be represented as an infinite decimal.
So for each n there is a representation rn .dnodnl. , where each dni
is a decimal digit. Since we can also represent rn by the sequence of decimal
digits (dodnli... dnn...), it follows by diagonalization (2.12) that there is an
infinite decimal that is not in the list. For example, we'll choose the digits 1 and

2.4 m COUNTABILITY 121

2 to construct the number s = O.So8182... where

Sk = 1 if dkk = 2
2 if dkk : 2.

So 0 < s < 1 and s differs from each r, at the nth decimal place. Thus s is not
in the list, contrary to our assumption that we have listed all numbers in U. So
the set U is uncountable, and hence also R is uncountable.

S2.23 Natural Number Functions

How many different functions are there from N to N? We'll show that the set of
all such functions is uncountable. Assume, by way of contradiction, that the set
is countable. Then we can list all the functions type N --* N as fo, fl, . . . fn. ...
We'll represent each function fn, as the sequence of its values (fIn(0), fn(1), ... ,
fn(n), ...). Now (2.12) tells us there is a function missing from the list, which
contradicts our assumption that all functions are in the list. So the set of all
functions of type N - N is uncountable.

For example, we might choose the numbers 1, 2 e N and define a function
g: N --+ N by

(1Ji if fn(n) =2
) 2 if f,(n) 2

Then the sequence of values (g(0), g(1), ... , g (n), ...) is different from each of
the sequences for the listed functions because g(n) $ f,,(n) for each n. In this
example there are many different ways to define g : N -- N so that it is not in
the list. For example, instead of picking 1 and 2, we could pick any two natural
numbers to define g. We could also define g by

g(n) = f •(n) + 1.

This definition gives us a function g from N to N such such that g(n) 1 fn(n)
for each n. So g cannot be in the list f0, fi, ... f

2.4.4 Limits on Computability

Let's have a short discussion about whether there are limits on what can be
computed. As another application of (2.11) we can answer the question: How
many programs can be written in your favorite programming language? The
answer is countably infinite. Here is the result.

122 CHAPTER 2 U FACTS ABOUT FUNCTIONS

Theorem (2.13)
The set of programs for a programming language is countably infinite.

Proof: One way to see this is to consider each program as a finite string of symbols
over a fixed finite alphabet A. For example, A might consist of all characters that
can be typed from a keyboard. Now we can proceed as in the proof of (2.11).
For each natural number n, let Pn denote the set of all programs that are strings
of length n over A. For example, the program

{print('help')}

is in P 15 because it's a string of length 15. So the set of all programs is the
union of the sets P0 , P 1 , ... , P Since each P, is finite, hence countable,
it follows from (2.10) that the union is countable. QED

Not Everything Is Computable

Since there are "only" a countable number of computer programs, it follows that
there are limits on what can be computed. For example, there are an uncountable
number of functions of type N -- N. So there are programs to calculate only a
countable subset of these functions.

Can any real number be computed to any given number of decimal places?
The answer is no. The reason is that there are "only" a countable number of
computer programs (2.13) but the set of real numbers is uncountable. Therefore,
there are only a countable number of computable numbers in R because each
computable number needs a program to compute it. If we remove the computable
numbers from R, the resulting set is still uncountable. Can you see why? So
most real numbers cannot be computed.

The rational numbers can be computed, and there are also many irrational
numbers that can be computed. Pi is the most famous example of a computable
irrational number. In fact, there are countably infinitely many computable irra-
tional numbers.

Higher Cardinalities

It's easy to find infinite sets having many different cardinalities because Cantor
proved that there are more subsets of a set than there are elements of the set.
In other words, for any set A, we have the following result.

Theorem (2.14)

JAI < lpower(A)l.

2.4 m COUNTABILITY 123

We know this is true for finite sets. But it's also true for infinite sets. We'll
discuss the proof in an exercise. Notice that if A is countably infinite, then we
can conclude from (2.14) that power(A) is uncountable. So, for example, we can

conclude that power(N) is uncountable.
For another example, we might wonder how many different languages there

are over a finite alphabet such as { a, b}. Since a language over { a, b} is a set
of strings over {a, b}, it follows that such a language is a subset of {a, bI*, the

set of all strings over {a, b}. So the set of all languages over {a, b} is power({a,
b}*). From (2.11) we can conclude that {a, b}* is countably infinite. In other
words, we have I{a, b}*I = INI. So we can use (2.14) to obtain

INI = I{a, b}*I < Ipower({a, b}*)I.

Therefore, power({ a, b}*) is uncountable, which is the same as saying that there
are uncountably many languages over the alphabet {a, b}. Of course, this gen-
eralizes to any finite alphabet. So we have the following statement.

Theorem (2.15)
There are uncountably many languages over a finite alphabet.

We can use (2.14) to find infinite sequences of sets of higher and higher
cardinality. For example, we have

INI < power(N)l < lpower(power(N))l < ...

Can we associate these sets with more familiar sets? Sure, it can be shown that
I RI = Ipower(N)I, which we'll discuss in an exercise. So we have

INI < IRI < Ipower(power(N))l < ...

Is there any "well-known" set S such that ISI = Ipower(power(N))I? Since the
real numbers are hard enough to imagine, how can we comprehend all the ele-
ments in power(power(N))? Luckily, in computer science we will seldom, if ever,
have occasion to worry about sets having higher cardinality than the set of real

numbers.

The Continuum Hypothesis

We'll close the discussion with a question: Is there a set S whose cardinality
is between that of N and that of the real numbers R? In other words, does

there exist a set S such that INI < ISI < IRlI? The answer is that no one knows.
Interestingly, it has been shown that people who assume that the answer is yes
won't run into any contradictions by using the assumption in their reasoning.
Similarly, it has been shown that people who assume that the answer is no won't
run into any contradictions by using the assumption in their arguments! The
assumption that the answer is no is called the continuum hypothesis.

124 CHAPTER 2 M FACTS ABOUT FUNCTIONS

If we accept the continuum hypothesis, then we can use it as part of a proof

technique. For example, suppose that for some set S we can show that INI <
ISI < IRI. Then we can conclude that ýNI = JSI by the continuum hypothesis.

O Exercises

Finite Sets

1. Find the cardinality of each set by establishing a bijection between it and a

set of the form {0, 1, ... , n}.

a. {2x+h51xCNandl_<2x+5_<100}.

b. {x2 IxENand0< x 2 < 500}.

c. {2, 5, 8, 11, 14, 17, ... , 44, 47}.

Countable Infinite Sets

2. Show that each of the following sets is countable by establishing a bijection
between the set and N.

a. The set of even natural numbers.

b. The set of negative integers.

c. The set of strings over {a}.

d. The set of lists over {a} that have even length.

e. The set Z of integers.

f. The set of odd integers.

g. The set of even integers.

3. Use (2.10) to show that each of the following sets is countable by describing
the set as as a union of countable sets.

a. The set of strings over {a, b} of that have odd length.

b. The set of all lists over {a, b}.

c. The set of all binary trees over {a, b}.

d. N x N x N.

Diagonalization

4. For each countable set of infinite sequences, use diagonalization (2.12) to

construct an infinite sequence of the same type that is not in the set.

a. {(f.(0), f.(1), ... , fn(n), ...)I f,(k) E {hello, world} for n, k E N}.

b. {(f(n, 0), f(n, 1), ... , f(n, n), ...)I f(n, k) E {a, b, c} for n,
k E NJ.

C. fnýal . . In }ank E{f2, 4, 6, 8}for n, k ENJ

2.5 E CHAPTER SUMMARY 125

5. To show that power(N) is uncountable, we can proceed by way of contradic-
tion. Assume that it is countable, so that all the subsets of N can be listed

S0, S1 , S 2, ... , Sn, ... Complete the proof by finding a way to repre-
sent each subset of N as an infinite sequence of l's and 0's, where 1 means
true and 0 means false. Then a contradiction arises by using diagonalization
(2.12) to construct an infinite sequence of the same type that represents a
subset of N that is not listed.

Proofs and Challenges

6. Show that if A is uncountable and B is a countable subset of A, then the
set A - B is uncountable.

7. Prove each statement about countable sets:

a. Any subset of a countable set is countable.

b. Any image of a countable set is countable.

8. Let A be a countably infinite alphabet A = {ao, a,, a2, ... }. Let A* denote
the set of all strings over A. For each n E N, let A, denote the set of all
strings in A* having length n.

a. Show that A, is countable for n G N. Hint: Use (2.10).

b. Show that A* is countable. Hint: Use (2.10) and part (a).

9. Let finite(N) denote the set of all finite subsets of N. Use (2.10) to show

that finite(N) is countable.

10. We'll start a proof that JAI < lpower(A)l for any set A. Proof: Since each
element x E A can be associated with {x} E power(A), it follows that
AIg <_ lpower(A)I. To show that JAI < lpower(A)l we'll assume, by way

of contradiction, that there is a bijection A -- power(A). So each x e A is
associated with a subset Sx of A. Now, define the following subset of A.

S-- {Ix A Ix V Sx}.

Since S is a subset of A, our assumed bijection tells us that there must be
an element y in A that is associated with S. In other words, Sy = S. Find a
contradiction by observing where y is and where it is not.

2.5 Chapter Summary
S..

Functions allow us to associate different sets of objects. They are characterized
by associating each domain element with a unique codomain element. For any
function f : A -* B, subsets of the domain A have images in the codomain B

126 CHAPTER 2 m FACTS ABOUT FUNCTIONS

and subsets of B have pre-images in A. The image of A is the range of f. Partial
functions need not be defined for all domain elements.

Some functions that are particularly useful in computer science are floor,
ceiling, greatest common divisor (with the associated division algorithm), mod,
and log.

Composition is a powerful tool for constructing new functions from known
functions. Three functions that are useful in programming with lists are se-
quence, distribute, and pairs. The map function is a useful tool for computing
lists of values of a function.

Three important properties of functions that allow us to compare sets are
injective, surjective, and bijective. These properties are useful in describing the
pigeonhole principle and in working with ciphers and hash functions. These
properties are also useful in comparing the cardinality of sets.

A set is countable if it is finite or has the same cardinality as the set of
natural numbers. Countable unions of countable sets are countable. The set of
all computer programs is countable. The diagonalization technique can be used

to show that some countable listings are not exhaustive. It can also be used to
show that some sets, such as the real numbers, are uncountable. So we can't
compute all the real numbers. Any set has smaller cardinality than its power
set, even when the set is infinite.

Construction
Techniques

When we build, let us think that we
build forever.

John Ruskin (1819-1900)

To construct an object, we need some kind of description. If we're lucky, the
description might include a construction technique. Otherwise, we may need to
use our wits and our experience to construct the object. This chapter focuses
on gaining some construction experience.

The only way to learn a technique is to use it on a wide variety of problems.
We'll present each technique in the framework of objects that occur in computer
science, and as we go along, we'll extend our knowledge of these objects. We'll
begin by introducing the technique of inductive definition for sets. Then we'll
discuss techniques for describing recursively defined functions and procedures.
Last but not least, we'll introduce grammars for describing sets of strings.

There are usually two parts to solving a problem. The first is to guess at a
solution and the second is to verify that the guess is correct. The focus of this
chapter is to introduce techniques to help us make good guesses. We'll usually
check a few cases to satisfy ourselves that our guesses are correct. In the next
chapter we'll study inductive proof techniques that can be used to actually prove
correctness of claims about objects constructed by the techniques of this chapter.

Section 3.1 introduces the inductive definition technique. We'll apply the tech-
nique by defining various sets of numbers, strings, lists, binary trees, and
Cartesian products.

Section 3.2 introduces the technique of recursive definition for functions and pro-
cedures. We'll apply the technique to functions and procedures that process
numbers, strings, lists, and binary trees. We'll solve the repeated element

127

128 CHAPTER 3 M CONSTRUCTION TECHNIQUES

problem and the power set problem, and we'll construct some functions for
infinite sequences.

Section 3.3 introduces the idea of a grammar as a way to describe a language.
We'll see that grammars describe the strings of a language in an inductive
fashion, and we'll see that they provide recursive rules for testing whether a
string belongs to a language.

3.1 Inductively Defined Sets

When we write down an informal statement such as A = {3, 5, 7, 9, ... }, most
of us will agree that we mean the set A = {2k + 3 1 k G N}. Another way to
describe A is to observe that 3 E A, that x C A implies x + 2 G A, and that the
only way an element gets in A is by the previous two steps. This description has
three ingredients, which we'll state informally as follows:

1. There is a starting element (3 in this case).

2. There is a construction operation to build new elements from existing ele-
ments (addition by 2 in this case).

3. There is a statement that no other elements are in the set.

Definition of Inductive Definition

This process is an example of an inductive definition of a set. The set of objects
defined is called an inductive set. An inductive set consists of objects that are
constructed, in some way, from objects that are already in the set. So nothing
can be constructed unless there is at least one object in the set to start the
process. Inductive sets are important in computer science because the objects
can be used to represent information and the construction rules can often be
programmed. We give the following formal definition.

An inductive definition of a set S consists of three steps: (3.1)

Basis: Specify one or more elements of S.

Induction: Give one or more rules to construct new elements of S from ex-
isting elements of S.

Closure: State that S consists exactly of the elements obtained by the
basis and induction steps. This step is usually assumed rather
than stated explicitly.

The closure step is a very important part of the definition. Without it, there
could be lots of sets satisfying the first two steps of an inductive definition. For
example, the two sets N and {3, 5, 7, . .. } both contain the number 3, and if x

3.1 m INDUCTIVELY DEFINED SETS 129

is in either set, then so is x + 2. It's the closure statement that tells us that the
only set defined by the basis and induction steps is {3, 5, 7, ... }. So the closure
statement tells us that we're defining exactly one set, namely, the smallest set
satisfying the basis and induction steps. We'll always omit the specific mention
of closure in our inductive definitions.

The constructors of an inductive set are the basis elements and the rules for
constructing new elements. For example, the inductive set {3, 5, 7, 9, ... } has
two constructors, the number 3 and the operation of adding 2 to a number.

For the rest of this section we'll use the technique of inductive definition to
construct sets of objects that are often used in computer science.

3.1.1 Numbers

The set of natural numbers N = {0, 1, 2,... } is an inductive set. Its basis element
is 0, and we can construct a new element from an existing one by adding the
number 1. So we can write an inductive definition for N in the following way.

Basis: 0 G N.

Induction: If n E N, then n + 1 G N.

The constructors of N are the integer 0 and the operation that adds 1 to an
element of N. The operation of adding 1 to n is called the successor function,
which we write as

succ(n) = n + 1.

Using the successor function, we can rewrite the induction step in the above
definition of N in the alternative form

If n E N, then succ(n) C N.

So we can say that N is an inductive set with two constructors, 0 and succ.

_ _ 3.1 Some Familiar Odd Numbers

We'll give an inductive definition of A = {1, 3, 7, 15, 31, ... }. Of course, the
basis case should place 1 in A. If x c A, then we can construct another element
of A with the expression 2x + 1. So the constructors of A are the number 1 and
the operation of multiplying by 2 and adding 1. An inductive definition of A can
be written as follows:

Basis: 1 C A.

Induction: If x E A, then 2x + 1 C A.

130 CHAPTER 3 U CONSTRUCTION TECHNIQUES

S3.2 Some Even and Odd Numbers

Is the following set inductive?

A = {2, 3, 4, 7, 8, 11, 15, 16, ...

It might be easier if we think of A as the union of the two sets

B= {2,4,8, 16,...} and C= {3,7, 11, 15,...}.

Both these sets are inductive. The constructors of B are the number 2 and the
operation of nmultiplying by 2. The constructors of C are the number 3 and the
operation of adding by 4. We can combine these definitions to give an inductive
definition of A.

Basis: 2, 3 A.

Induction: If x E A and x is odd, then x + 4 E A.

If x c A and x is even, then 2x G A.

This example shows that there can be more than one basis element, more than
one induction rule, and tests can be included.

S3.3 Communicating with a Robot

Suppose we want to communicate the idea of the natural numbers to a robot that
knows about functions, has a loose notion of sets, and can follow an inductive
definition. Symbols like 0, 1, ... , and + make no sense to the robot. How can
we convey the idea of N? We'll tell the robot that N is the name of the set we
want to construct.

Suppose we start by telling the robot to put the symbol 0 in N. For the
induction case we need to tell the robot about the successor function. We tell
the robot that s : N -- N is a function, and whenever an element x G N, then
put the element s(x) e N. After a pause, the robot says, "N = {0} because I'm
letting s be the function defined by s(0) = 0."

Since we don't want s(0) = 0, we have to tell the robot that s(0) # 0. Then
the robot says, "N = {0, s(0)} because s(s(O)) - 0." So we tell the robot that
s(s(O)) 7 0. Since this could go on forever, let's tell the robot that s(x) does not
equal any previously defined element. Do we have it? Yes. The robot responds
with "N = {0, s(0), s(s(O)), s(s(s(O))), ... }." So we can give the robot the
following definition:

Basis: 0 E N.

Induction: If x E N, then put s(x) E N, where s(x) 7# 0 and s(x) is not equal
to any previously defined element of N.

3.1 0 INDUCTIVELY DEFINED SETS 131

This definition of the natural numbers along with a closure statement--is due

to the mathematician and logician Giuseppe Peano (1858-1932).

__ 3.4 Communicating with Another Robot

Suppose we want to define the natural numbers for a robot that knows about
sets and can follow an inductive definition. How can we convey the idea of N to
the robot? Since we can use only the notation of sets, let's use 0 to stand for
the number 0.

What about the number 1? Can we somehow convey the idea of 1 using
the empty set? Let's let {0} stand for 1. What about 2? We can't use {o,

0}, because {0, 0} = {o}. Let's let {O, {0}} stand for 2 because it has two

distinct elements. Notice the little pattern we have going: If s is the set standing
for a number, then s U {s} stands for the successor of the number.

Starting with 0 as the basis element, we have an inductive definition. Letting
Nat be the set that we are defining for the robot, we have the following inductive

definition.

Basis: 0 E Nat.

Induction: If s E Nat, then s U {s} E Nat.

For example, since 2 is represented by the set {0, {0}}, the number 3 is repre-
sented by the set

{o, {o}} u {{o, {0}}} = {0, {o} t{, {0}}}.

This is not fun. After a while we might try to introduce some of our own notation
to the robot. For example, we'll introduce the decimal numerals in the following
way.

0 -0,

1 = 0 U {0},

2 =1 U {1},

Now we can think about the natural numbers in the following way.

0 =0,

1 -0 U {}0 U {0} = {0},

2 = 1 U {1} = {0} U {1} = {0, 1},

Therefore, each number is the set of numbers that precede it.

132 CHAPTER 3 E CONSTRUCTION TECHNIQUES

3.1.2 Strings

We often define strings of things inductively without even thinking about it. For
example, in high school algebra we might say that an algebraic expression is
either a number or a variable, and if A and B are algebraic expressions, then so
are (A), A + B, A - B, AB, and A + B. So the set of algebraic expressions is a
set of strings. For example, if x and y are variables, then the following strings
are algebraic expressions.

x, y, 25, 25x, x + y, (4x + 5y), (x + y)(2yx), 3x+ 4.

If we like, we can make our definition more formal by specifying the basis and
induction parts. For example, if we let E denote the set of algebraic expressions
as we have described them, then we have the following inductive definition for
E.

Basis: If x is a variable or a number, then x E E.

Induction: If A, B e E, then (A), A + B, A - B, AB, A ± B e E.

Let's recall that for an alphabet A, the set of all strings over A is denoted
by A*. This set has the following inductive definition.

All Strings over A (3.2)

Basis: A G A*.

Induction: If s e A* and a E A, then as E A*.

We should note that when we place two strings next to each other in juxta-
position to form a new string, we are concatenating the two strings. So, from
a computational point of view, concatenation is the operation we are using to
construct new strings.

Recall that any set of strings is called a language. If A is an alphabet, then
any language over A is one of the subsets of A*. Many languages can be defined
inductively. Here are some examples.

r 3.5 Three Languages

We'll give an inductive definition for each of three languages.

1. S = {a, ab, abb, abbb, ... } = {abn I n .

Informally, we can say that the strings of S consist of the letter a followed by
zero or more b's. But we can also say that the letter a is in S, and if x is a string
in S, then so is xb. This gives us an inductive definition for S.

3.1 0 INDUCTIVELY DEFINED SETS 133

Basis: a C S.

Induction: If x E S, then xb G S.

2. S = {A, ab, aabb, aaabbb, ... } = {anbn I n E N}.

Informally, we can say that the strings of S consist of any number of a's followed
by the same number of b's. But we can also say that the empty string A is in S,
and if x is a string in S, then so is axb. This gives us an inductive definition for
S.

Basis: A E S.

Induction: If x C S, then axb E S.

3. S = {A , ab, abab, ababab, ... } = {(ab)" I n c N}.

Informally, we can say that the strings of S consist of any number of ab pairs.
But we can also say that the empty string A is in S, and if x is a string in S,
then so is abx. This gives us an inductive definition for S.

Basis: A C S.

Induction: If x c S, then abx E S.

3.6 Decimal Numerals

Let's give an inductive definition for the set of decimal numerals. Recall that a
decimal numeral is a nonempty string of decimal digits. For example, 2340 and
002965 are decimal numerals. If we let D denote the set of decimal numerals, we
can describe D by saying that any decimal digit is in D, and if x is in D and d is
a decimal digit, then dx is in D. This gives us the following inductive definition
for D:

Basis: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} C D.

Induction: If x G D and d is a decimal digit, then dx E D.

134 CHAPTER 3 U CONSTRUCTION TECHNIQUES

3.1.3 Lists

Recall that a list is an ordered sequence of elements. Let's try to find an inductive
definition for the set of lists with elements from a set A. In Chapter 1 we denoted
the set of all lists over A by lists(A), and we'll continue to do so. We also
mentioned that from a computational point of view the only parts of a nonempty
list that can be accessed randomly are its head and its tail. Head and tail are
sometimes called destructors, since they are used to destroy a list (take it apart).
For example, the list (x, y, z) has x as its head and (y, z) as its tail, which we
write as

head((x, y, z)) = x and tail((x, y, z)) = (y, z)

We also introduced the operation "cons" to construct lists, where if h is
an element and t is a list, the new list whose head is h and whose, tail is t is
represented by the expression

cons(h, t).

So cons is a constructor of lists. For example, we have

cons(x, (y, z)) = (x, y, z)

cons(x, ()) = (x).

The operations cons, head, and tail work nicely together. For example, we
can write

(x, y, z) = cons(x, (y, z)) = cons(head((x, y, z)), tail((x, y, z))).

So if L is any nonempty list, then we have the equation

L = cons(head(L), tail(L)).

Now we have the proper tools, so let's get down to business and write an
inductive definition for lists(A). Informally, we can say that lists(A) is the set
of all ordered sequences of elements taken from the set A. But we can also say
that () is in lists(A), and if L is in lists(A), then so is cons(a, L) for any a in A.
This gives us an inductive definition for lists(A), which we can state formally as
follows.

All Lists over A (3.3)

Basis: () G lists(A).

Induction: If x G A and L E lists(A), then cons(x, L) e lists(A).

3.1 U INDUCTIVELY DEFINED SETS 135

_ 3.7 List Membership

Let A = {a, b}. We'll use (3.3) to show how some lists become members of
lists(A). The basis case puts E) lists(A). Since a E A and () lists(A), the
induction step gives

(a) cons(a, (C) - lists(A).

In the same way we get (b) E lists(A). Now since a E A and (a) c lists(A), the
induction step puts (a, a) E lists(A). Similarly, we get (b, a), (a, b), and (b, b)
as elements of lists(A), and so on.

A Notational Convenience

It's convenient when working with lists to use an infix notation for cons to
simplify the notation for list expressions. We'll use the double colon symbol
so that the infix form of cons(x, L) is x :: L.

x :: L.

For example, the list (a, b, c) can be constructed using cons as

cons(a, cons(b, cons(c, ()))) cons(a, cons(b, (c)))

= cons(a, (b, c))

= (a,b,c).

Using the infix form, we construct (a, b, c) as follows:

a :: (b :: (c :: ())) = a :: (b :: (c)) = a :: (b, c) = (a, b, c).

The infix form of cons allows us to omit parentheses by agreeing that :: is right
associative. In other words, a :: b :: L = a :: (b :: L). Thus we can represent
the list (a, b, c) by writing

a :: b :: c :: () instead of a :: (b :: (c :: ())).

Many programming problems involve processing data represented by lists.
The operations cons, head, and tail provide basic tools for writing programs to
create and manipulate lists. So they are necessary for programmers. Now let's
look at a few examples.

F 3.8 Lists of Binary Digits

Suppose we need to define the set S of all nonempty lists over the set {0, 1} with
the property that adjacent elements in each list are distinct. We can get an idea
about S by listing a few elements:

S = {(0), (1), (1,0), (0, 1), (0, 1, 0), (1, 0, 1),...}.

136 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

Let's try (0) and (1) as basis elements of S. Then we can construct a new list
from a list L E S by testing whether head(L) is 0 or 1. If head(L) = 0, then we
place 1 at the left of L. Otherwise, we place 0 at the left of L. So we can write
the following inductive definition for S.

Basis: (0), (1) G S.

Induction: If L E S and head(L) = 0, then cons(l, L) E S.
If L E S and head(L) = 1, then cons(0, L) E S.

The infix form of this induction rules looks like

If L C S and head(L) = 0, then 1 :: L G S.
If L E S and head(L) = 1, then 0 ::L E S.

• 3.9 Lists of Letters

Suppose we need to define the set S of all lists over {a, b} that begin with the
single letter a followed by zero or more occurrences of b. We can describe S
informally by writing a few of its elements:

S = {(a), (a, b), (a, b, b), (a, b, b, b),...}.

It seems appropriate to make (a) the basis element of S. Then we can construct
a new list from any list L E S by attaching the letter b on the right end of L. But
cons places new elements at the left end of a list. We can overcome the problem
in the following way:

If x G S, then cons(a, cons(b, tail(L)) G S.

In infix form the statement reads as follows:

If x G S, then a :: b :: tail(L) E S.

For example, if L = (a), then we construct the list

a :: b :: tail((a)) = a :: b :: () = a :: (b) = (a, b).

So we have the following inductive definition of S:

Basis: (a) C S.

Induction: If L C S, then a :: b :: tail(L) E S.

3.1 0 INDUCTIVELY DEFINED SETS 137

. .3.1 0 All Possible Lists

Can we find an inductive definition for the set of all possible lists over {a, b},
including lists that can contain other lists? Suppose we start with lists having a
small number of symbols, including the symbols (and). Then, for each n > 2, we
can write down the lists made up of n symbols (not including commas). Figure
3.1 shows these listings for the first few values of n.

If we start with the empty list),then with a and b we can construct three
more lists as follows:

a:: () = (a),

b :: () = (b)

Now if we take these three lists together with (), then with a and b we can
construct many more lists. For example,

a:: (a) = (a, a),
<a) (:)> = a>>,
<)) :: b) <(()) ,b) ,

(b) :: (()) =(b, ()).

Using this idea, we'll make an inductive definition for the set S of all possible
lists over A.

Basis: () E S. (3.4)

Induction: If x G A U S and L E S, then x L LE S.

2 3 4 5 6

(b) <a, a) ((b>><) ><>

(a,b) ((),a) (a, a,()

(b,a) ((),b) (a,(),a)

(b,b) (o,()) ((ba,a)

(b, b > < , •, <)

(0,a,aa) (a,b,a,b)

Figure 3.1 A listing of lists by size.

138 CHAPTER 3 M CONSTRUCTION TECHNIQUES

3.1.4 Binary Trees

Recall that a binary tree is either empty or it has a left and right subtree, each
of which is a binary tree. This is an informal inductive description of the set of
binary trees. To give a formal definition and to work with binary trees, we need
some operations to pick off parts of a tree and to construct new trees.

In Chapter 1 we represented binary trees by lists, where the empty binary
tree is denoted by () and a nonempty binary tree is denoted by the list (L, x, R),
where x is the root, L is the left subtree, and R is the right subtree. This gives
us the ingredients for a more formal inductive definition of the set of all binary
trees.

For convenience we'll let tree(L, x, R) denote the binary tree with root x,
left subtree L, and right subtree R. If we still want to represent binary trees as
tuples, then of course we can write

tree(L, x, R) = (L, x, R).

Now suppose A is any set. Then we can describe the set B of all binary
trees whose nodes come from A by saying that K) is in B, and if L and R are in
B, then so is tree(L, a, R) for any a in A. This gives us an inductive definition,

which we can state formally as follows.

All Binary Trees over A (3.5)

Basis: () E B.

Induction: If x E A and L, R G B, then tree(L, x, R) e B.

We also have destructor operations for binary trees. We'll let left, root, and
right denote the operations that return the left subtree, the root, and the right
subtree, respectively, of a nonempty tree. For example, if

T = tree(L, x, R), then left(T) = L, root(T) = x, and right(T) = R.

So for any nonempty binary tree T we have

T = tree(left(T), root(T), right(T).

3.11 Binary Trees of Twins

Let A = {0, 1}. Suppose we need to work with the set Twins of all binary

trees T over A that have the following property: The left and right subtrees of
each node in T are identical in structure and node content. For example, Twins
contains the empty tree and any single-node tree. Twins also contains the two
trees shown in Figure 3.2.

3.1 0 INDUCTIVELY DEFINED SETS 139

0

AK
Figure 3.2 Twins as subtrees.

We can give an inductive definition of Twins by simply making sure that
each new tree has the same left and right subtrees. Here's the definition:

Basis: () E Twins.

Induction: If x G A and T G Twins, then tree(T, x, T) E Twins.

j 3.12 Binary Trees of Opposites

Let A = {0, 1}, and suppose that Opps is the set of all nonempty binary trees T
over A with the following property: The left and right subtrees of each node of
T have identical structures, but the 0's and l's are interchanged. For example,
the single node trees are in Opps, as well as the two trees shown in Figure 3.3.

Since our set does not include the empty tree, the two singleton trees with
nodes 1 and 0 should be the basis trees in Opps. The inductive definition of
Opps can be given as follows:

Basis: tree((), 0, ()), tree((), 1, K)) E Opps.

Induction: Let x E A and T C Opps.
If root(T) = 0, then

tree(T, x, tree(right(T), 1, left(T))) E Opps.
Otherwise,

tree(T, x, tree(right(T), 0, left(T))) G Opps.

Does this definition work? Try out some examples. See whether the definition
builds the four possible three-node trees.

AK

1 0 0 1 1 0

Figure 3.3 Opposites as subtrees.

140 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

3.1 .5 Cartesian Products of Sets

Let's consider the problem of finding inductive definitions for subsets of the
Cartesian product of two sets. For example, the set N x N can be defined
inductively by starting with the pair (0, 0) as the basis element. Then, for any
pair (x, y) in the set, we can construct the following three pairs.

(x + 1, y + 1), (x, y + 1), and (x + 1, y).

The graph in Figure 3.4 shows an arbitrary point (x, y) together with the
three new points. It seems clear that this definition will define all elements of
N x N, although some points will be defined more than once. For example, the
point (1, 1) is constructed from the basis element (0, 0), but it is also constructed
from the point (0, 1) and from the point (1, 0).

y+ 1 ---... -- I

x x+1

Figure 3.4 Four integer points.

3.13 Cartesian Product

A Cartesian product can be defined inductively if at least one of the sets in that
product can be defined inductively. For example, if A is any set, then we have
the following inductive definition of N x A:

Basis: (0, a) G N x A for all a E A.

Induction: If (x, y) e N x A, then (x + 1, y) c N x A.

S3.14 Part of a Plane

Let S = {(x, y)I x, y G N and x < y}. From the point of view of a plane, S is
the set of points in the first quadrant with integer coordinates on or above the
main diagonal. We can define S inductively as follows:

Basis: (0, 0) E S.

Induction: If (x, y) E S, then (x, y + 1), (x + 1, y + 1) E S.

3.1 0 INDUCTIVELY DEFINED SETS 141

For example, we can use (0, 0) to construct (0, 1) and (1, 1). From (0, 1) we
construct (0, 2) and (1, 2). From (1, 1) we construct (1, 2) and (2, 2). So some
pairs get defined more than once.

F 3.15 Describing an Area

Suppose we need to describe some area as a set of points. From a computational
point of view, the area will be represented by discrete points, like pixels on a
computer screen. So we can think of the area as a set of ordered pairs (x, y)
forming a subset of N x N.

To keep things simple we'll describe the the area A under the curve of a
function f between two points a and b on the x-axis. Figure 3.5 shows a general
picture of the area A.

So the area A can be described as the following set of points.

A = {(x, y) Ix, y N, a < x < b, and 0 < y < f(x)}.

There are several ways we might proceed to give an inductive definition of A.
For example, we can start with the point (a, 0) on the x-axis. From (a, 0) we
can construct the column of points above it and the point (a + 1, 0), from which
the next column of points can be constructed. Here's the definition.

Basis: (a, 0) E A.

Induction: If (x, 0) G A and x < b, then (x + 1, 0) c A.
If (x, y) G A and y < f(x), then (x, y + 1) E A.

For example, the column of points (a, 0), (a, 1), (a, 2), ... , (a, f(a)) is con-
structed by starting with the basis point (a, 0) and by repeatedly using the
second if-then statement. The first if-then statement constructs the points on
the x-axis that are then used to construct the other columns of points. Notice
with this definition that each pair is constructed exactly once.

f W)

f

A

0
a b

Figure 3.5 Area under a curve.

142 CHAPTER 3 M CONSTRUCTION TECHNIQUES

o Exercises

Numbers

1. For each of the following inductive definitions, start with the basis element
and construct ten elements in the set.

a. Basis: 3 E S.

Induction: If x G S, then 2x - 1 E S.

b. Basis: 1 G S.

Induction: If x E S, then 2x, 2x + 1 E S.

2. Find an inductive definition for each set S.

a. {1, 3, 5, 7, ...).

b. {0, 2, 4, 6, 8, ... }.

c. -3, -1,1,3,5,...1.

d. {..., -7, -4, -1,2,5,8,...}.

e. {1, 4, 9, 16, 25, ... }.

f. {1, 3, 7, 15, 31, 63, ... 1.

3. Find an inductive definition for each set S.

a. {4, 7, 10, 13, ... } U {3, 6, 9, 12, ... I.

b. {3, 4, 5, 8, 9, 12, 16, 17, ... }. Hint: Write the set as a union.

4. Find an inductive definition for each set S.

a. {x c NI floor(x/2) is even}.

b. {x E N I floor(x/2) is odd}.

c. {xCNIxmod5=2}.

d. {x E N I 2x mod 7 =3}.

5. The following inductive definition was given in Example 3.4, the second robot
example.

Basis: 0 E Nat.

Induction: If s C Nat, then s U {s} E Nat.

In Example 3.4 we identified natural numbers with the elements of Nat by
setting 0 = 0 and n = n U {n} for n $ 0. Show that 4 = {0, 1, 2, 3}.

Strings

6. Find an inductive definition for each set S of strings.

3.1 m INDUCTIVELY DEFINED SETS 143

a. {anbcn I n E N}.
b. {a 2

I n E N}.

C. fa2n+1 In N}.

d. {a m bn m, n c N}.

e. { am bcn m, n e N}.
f. {ambn Im, n G N, wherem > 0}.

g. {ambn m, n EN, wheren >0}.

h. {ambn m, n E N, where m > 0 and n > 0}.

i. {ambbn m, n E N, wherem >0or n>0}.

j. {a 2 I n E N} U {b2n+1 I n E N}.

k. {s G {a, b}* I s has the same number of a's and b's}.

7. Find an inductive definition for each set S of strings.

a. Even palindromes over the set {a, b}.

b. Odd palindromes over the set {a, b}.

c. All palindromes over the set {a, b}.

d. The binary numerals.

8. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity 1. We can define the set of
terms over these symbols by saying that any constant or variable is a term
and if t is a term, then so are f(t) and g(t). Find an inductive definition for
the set T of terms.

Lists

9. For each of the following inductive definitions, start with the basis element

and construct five elements in the set.

a. Basis: (a) C S.

Induction: If x E S, then b :: x C S.

b. Basis: (1) C S.

Induction: If x C S, then 2 • head(x) :: x C S.

10. Find an inductive definition for each set S of lists. Use the cons constructor.

a. {(a), (a, a), (a, a, a), ...
b. f<1), (2, 1), <3, 2, 1>,.. }

c. {(a, b), (b, a), (a, a, b), (b, b, a), (a, a, a, b), (b, b, b, a), ... }.

d. {L L has even length over {a}}.

e. {L L has even length over {0, 1, 2}}.

f. {L I L has even length over a set A}.

144 CHAPTER 3 * CONSTRUCTION TECHNIQUES

g. {L I L has odd length over {a}}.

h. {L I L has odd length over {0, 1, 2}}.
i. {L I L has odd length over a set A}.

11. Find an inductive definition for each set S of lists. You may use the "consR"
operation, where consR(L, x) is the list constructed from the list L by adding
a new element x on the right end. Similarly, you may use the "headR" and
"tailR" operations, which are like head and tail but look at things from the
right side of a list.

a. {(a), (a, b), (a, b, b),
b- f{(1), (1, 2), ýI, 2, 3),..}

c. { L E lists({a, b}) I L has the same number of a's and b's}.

12. Find an inductive definition for the set S of all lists over A = {a, b} that
alternate a's and b's. For example, the lists (), (a), (b), (a, b, a), and (b,
a) are in S. But (a, a) is not in S.

Binary Trees

13. Given the following inductive definition for a set S of binary trees. Start
with the basis element and draw pictures of four binary trees in the set.
Don't draw the empty subtrees.

Basis: tree((), a, ()) G S.
Induction: If T E S, then tree(tree((), a, ()), a, T) C S.

14. Find an inductive definition for the set B of binary trees that represent
arithmetic expressions that are either numbers in N or expressions that use
operations +o or .

15. Find an inductive definition for the set B of nonempty binary trees over {a}
in which each non-leaf node has two subtrees, one of which is a leaf and the
other of which is either a leaf or a member of B.

Cartesian Products

16. Given the following inductive definition for a subset B of N x N.

Basis: (0, 0) E B.

Induction: If (x, y) e B, then (x + 1, y), (x + 1, y + 1) G B.

a. Describe the set B as a set of the form {(x, y) I some property holds}.

b. Describe those elements in B that get defined in more than one way.

17. Find an inductive definition for each subset S of N x N.

a. S = {(x, y) y =x or y = x + 1}.

b. S = {(x, y) x is even and y < x/2}.

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 145

18. Find an inductive definition for each product set S.

a. S = lists(A) x lists(A) for some set A.

b. S = A x lists(A).

c. S = N x lists(N).

d. S=NxNxN

Proofs and Challenges

19. Let A be a set. Suppose 0 is the set of binary trees over A that contain an
odd number of nodes. Similarly, let E be the set of binary trees over A that
contain an even number of nodes. Find inductive definitions for 0 and E.
Hint: You can use 0 when defining E, and you can use E when defining 0.

20. Use Example 3.15 as a guide to construct an inductive definition for the set
of points in N x N that describe the area A between two curves f and g
defined as follows for two natural numbers a and b:

A = {(x, y) Ix, y C N, a < x < b, and g(x) < y < f(x)}.

21. Prove that a set defined by (3.1) is countable if the basis elements in Step
1 are countable, the outside elements used in Step 2 are countable, and the
rules specified in Step 2 are finite. No

3.2 Recursive Functions and Procedures

Since we're going to be constructing functions and procedures in this section,
we'd better agree on the idea of a procedure. From a computer science point
of view a procedure is a program that performs one or more actions. So there
is no requirement to return a specific value. For example, the execution of a
statement like print(x, y) will cause the values of x and y to be printed. In
this case, two actions are performed, and no values are returned. A procedure
may also return one or more values through its argument list. For example, a
statement like allocate(m, a, s) might perform the action of allocating a block of
m memory cells and return the values a and s, where a is the beginning address
of the block and the s tells whether the allocation was succesful.

Definition of Recursively Defined

A function or a procedure is said to be recursively defined if it is defined in
terms of itself. In other words, a function f is recursively defined if at least one
value f(x) is defined in terms of another value f(y), where x 5 y. Similarly, a
procedure P is recursively defined if the actions of P for some argument x are
defined in terms of the actions of P for another argument y, where x 5 y.

146 CHAPTER 3 . CONSTRUCTION TECHNIQUES

Many useful recursively defined functions have domains that are inductively
defined sets. Similarly, many recursively defined procedures process elements
from inductively defined sets. For these cases there are very useful construction
techniques. Let's describe the two techniques.

Constructing a Recursively Defined Function (3.6)

If S is an inductively defined set, then we can construct a function f with
domain S as follows:

1. For each basis element x E S, specify a value for f(x).

2. Give rules that, for any inductively defined element x C S, will define
f (x) in terms of previously defined values of f.

Any function constructed by (3.6) is recursively defined because it is de-
fined in terms of itself by the induction part of the definition. In a similar way

we can construct a recursively defined procedure to process the elements of an
inductively defined set.

Constructing a Recursively Defined Procedure (3.7)

If S is an inductively defined set, we can construct a procedure P to process

the elements of S as follows:

1. For each basis element x C S, specify a set of actions for P(x).

2. Give rules that, for any inductively defined element x C S, will define the
actions of P(x) in terms of previously defined actions of P.

In the following paragraphs we'll see how (3.6) and (3.7) can be used to con-

struct recursively defined functions and procedures over a variety of inductively
defined sets. Most of our examples will be functions. But we'll define a few
procedures too.

3.2.1 Numbers

Let's see how some number functions can be defined recursively. To illustrate
the idea, suppose we want to calculate the sum of the first n natural numbers
for any n G N. Letting f(n) denote the desired sum, we can write the informal
definition

f(n) =0+1I+-2+.-.+n.

We can observe, for example, that f(0) = 0, f(1) = 1, f(2) = 3, and so on. After

a while we might notice that f(3) = f(2) + 3 = 6 and f(4) = f(3) + 4 = 10.

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 147

In other words, when n > 0, the definition can be transformed in the following
way:

f(n) =0+l+2+...+n
=(0 + I +2 +.-+ (n - 1)) +n

=f(n-1)+n.

This gives us the recursive part of a definition of f for any n > 0. For the basis
case we have f(0) = 0. So we can write the following recursive definition for f:

f (0) = 0,

f(n)=(n-l)+n for n>0.

There are two alternative forms that can be used to write a recursive defini-
tion. One form expresses the definition as an if-then-else equation. For example,
f can be described in the following way.

f(n) = if n = 0 then 0 else f(n - 1) + n.

Another form expresses the definition as equations whose left sides determine
which equation to use in the evaluation of an expression rather than a conditional
like n > 0. Such a form is called a pattern-matching definition because the
equation chosen to evaluate f(x) is determined uniquely by which left side f(x)
matches. For example, f can be described in the following way.

f (0) = 1,

f(n+ 1)= f(n)+n+ n .

For example, f(3) matches f(n + 1) with n = 2, so we would choose the second
equation to evaluate f(3) = f(2) + 3, and so on.

A recursively defined function can be evaluated by a technique called un-
folding the definition. For example, we'll evaluate the expression f (4).

f(4) =f(3)+4

=f (2) + 3+4

f(1) +2 +3+4
=f (0) + 1 + 2 + 3 + 4

=0+1+2+3+4

= 10.

148 CHAPTER 3 M CONSTRUCTION TECHNIQUES

S3.16 Using the Floor Function

Let f : N -* N be defined in terms of the floor function as follows:

f(O) = O,

f(n) = f(floor(n/2))+n for n> 0.

Notice in this case that f(n) is not defined in terms of f(n - 1) but rather in
terms of f(floor(n/2)). For example, f(16) = f(8) + 16. The first few values are
f(0) = 0, f(1) = 1, f(2) = 3, f(3) = 4, and f(4) = 7. We'll calculate f(25).

f (25) = f (12) + 25

= f (6) + 12 + 25

= f(3) + 6 + 12 + 25

= f (1) + 3 + 6 + 12 + 25
= f (0) + 1 + 3 + 6 + 12 + 25

=0+1+3+6+12+25

= 47.

j 3.17 Adding Odd Numbers

Let f : N -- N denote the function to add up the first n odd natural numbers.
So f has the following informal definition.

f(n) = 1 +3 " + .+(2n + 1).

For example, the definition tells us that f(0) = 1. For n > 0 we can make the
following transformation of f(n) into an expression in terms of f(n - 1):

f(n)= 1 +3+...+(2n+1)
= (I1+ 3+-. + (2n - 1)) + (2n + 1)

= (I1+3...+42 (n - 1) +41) + (2n4+1)

= f (n - 1) + 2n + 1.

So we can make the following recursive definition of f:

f (0) = 1,
f(n)=f(n-1)+2n+l forn>0.

Alternatively, we can write the recursive part of the definition as

f(n + 1) = f(n) + 2n + 3.

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 149

We can also write the defintion in the following if-then-else form.

f(n) = if n = 0 then 1 else f(n - 1) + 2n + 1.

Here is the evaluation of f (3) using the if-then-else definition:

f (3) =f (2) + 2 (3) + 1

==f(1) + 2(2) + 1 + 2(3) ± 1

= f (0) + 2(1) + 1 + 2 (2) + 1 + 2(3) + 1

= 1 + 2(1) + 1 + 2 (2) + 1 + 2(3) + 1

= 1+3+5+7

= 16.

3.18 The Rabbit Problem

The Fibonacci numbers are the numbers in the sequence

0, 1, 1, 2, 3, 5, 8, 13, ...

where each number after the first two is computed by adding the preceding
two numbers. These numbers are named after the mathematician Leonardo
Fibonacci, who in 1202 introduced them in his book Liber Abaci, in which he
proposed and solved the following problem: Starting with a pair of rabbits, how
many pairs of rabbits can be produced from that pair in a year if it is assumed
that every month each pair produces a new pair that becomes productive after
one month?

For example, if we don't count the original pair and assume that the original
pair needs one month to mature and that no rabbits die, then the number of new
pairs produced each month for 12 consecutive months is given by the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.

The sum of these numbers, which is 232, is the number of pairs of rabbits pro-
duced in one year from the original pair.

Fibonacci numbers seem to occur naturally in many unrelated problems. Of
course, they can also be defined recursively. For example, letting fib(n) be the
nth Fibonacci number, we can define fib recursively as follows:

fib (0) = 0,

fib (1) = 1,

fib(n)z=fib(n-X)+fib(n-2) forn>2.

The third line could be written in pattern matching form as

fib(n + 2) = fib(n + 1) + fib(n).

150 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

The definition of fib in if-then-else form looks like

fib(n) = if n-- 0 then 0

else if n = 1 then 1

else fib (n - 1) + fib (n - 2).

Sum and Product Notation

Many definitions and properties that we use without thinking are recursively
defined. For example, given a sequence of numbers (a,, a 2 , ... , an) we can
represent the sum of the sequence with summation notation using the symbol E
as follows.

n

Sai = a, a2+.+ an.
i: 1

This notation has the following recursive definition, which makes the practical
assumption that an empty sum is 0.

n n-i

Eaj = if n = 0 then 0 else an + E aj.
i=1 i=I

Similarly we can represent the product of the sequence with the following
product notation, where the practical assumption is that an empty product is 1.

n n-i

J-J ai = if n =0 then 1 else an aj.
i=1 i~1

In the special case where (a,, a 2 , ... , an) = (1, 2, ... , n) the product defines
popular factorial function, which is denoted by n! and is read "n factorial." In
other words, we have

n! =(1) (2)...-(n - 1) (n).

For example, 4! = 4.3-2.1 = 24, and 0! = 1. So we can define n! in the
following recursive form.

n! = if n = 0 then 1 else n. (n- 1)!.

3.2.2 Strings
Let's see how some string functions can be defined recursively. To illustrate
the idea, suppose we want to calculate the complement of any string over the
alphabet {a, b}. For example, the complement of the string bbab is aaba.

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 151

Let f(x) be the complement of x. To find a recursive definition for f we'll
start by observing that an arbitrary string over { a, b} is either A or has the form
ay or by for some string y. So we'll define the result of f applied to each of these
forms as follows:

f(A) =A,

f (ax) =bf (x),

f(bx) = af(x).

For example, we'll evaluate f (bbab):

f(bbab) = af(bab)

= aaf(ab)

= aabf(b)

= aaba.

Here are some more examples.

S3.19 Prefixes of Strings

Consider the problem of finding the longest common prefix of two strings. A
string p is a prefix of the string x if x can be written in the form x = ps for
some string s. For example, aab is the longest common prefix of the two strings
aabbab and aababb.

For two strings over {a, b1, let f(x, y) be the longest common prefix of x
and y. To find a recursive definition for f we can start by observing that an
arbitrary string over {a, b} is either the empty string A or has the form as or
bs for some string s. In other words, the strings over {a, b} are an inductively
defined set. So we can define f(s, t) by making sure that we take care to define
it for all combinations of s and t. Here is a definition of f in pattern-matching
form:

f(A, x) = A,

f(x, A) A,

f(ax,by) = A,

f(bx, ay) A,

f(ax, ay) af(x, y),

f(bx, by) bf(x, y).

We can put the definition in if-then-else form as follows:

f(s, t) = if s = A or t = A then A

else if s = ax and t = ay then af(x, y)

else if s = bx and t = by then bf(x, y)

else A.

152 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

We'll demonstrate the definition of f by calculating f(aabbab, aababb):

f (aabbab, aababb) = af (abbab, ababb)

= aaf (bbab, babb)
= aabf (bab, abb)

= aabA

= aab.

j 3.20 Converting Natural Numbers to Binary

Recall from Section 2.1 that we can represent a natural number x as

x = 2(floor(x/2)) + x mod 2.

This formula can be used to create a binary representation of x because x mod
2 is the rightmost bit of the representation. The next bit is found by computing
floor(x/2) mod 2. The next bit is floor(floor(x/2)/2) mod 2, and so on. For
example, we'll compute the binary representation of 13.

13 = 2L13/2J +13rmod2 = 2(6)+i

6 = 2[6/2j +6mod2 = 2(3)+0
3 = 2(3/2j+3mod2 = 2(1)+i

1 = 2[1/2]+lmod2 = 2(0)+l

We can read off the remainders in reverse order to obtain 1101, which is the
binary representation of 13.

Let's try to use this idea to write a recursive definition for the function
"binary" to compute the binary representation for a natural number. If x = 0
or x = 1, then x is its own binary representation. If x > 1, then the binary
representation of x is that of floor(x/2) with the bit x mod 2 attached on the
right end. So our recursive definition of binary can be written as follows, where
"cat" is the string concatenation function.

binary(0) = 0, (3.8)

binary (1) 1,

binary (x) = cat (binary ([x/2J) , r mod 2) for x > 1.

The definition can be written in if-then-else form as

binary (x) = if x = 0 or x = 1 then x

else cat (binary (floor (x/2)) ,x mod 2).

3.2 0 RECURSIVE FUNCTIONS AND PROCEDURES 153

For example, we'll unfold the definition to calculate binary(13):

binary (13) = cat (binary (6), 1)

= cat (cat (binary (3) , 0), 1)

= cat (cat (cat (binary (1), 1), 0), 1)

= cat (cat (cat (1, 1) , 0) , 1)

= cat (cat (11, 0), 1)

= cat (110, 1)

= 1101.

3.2.3 Lists
Let's see how some functions that use lists can be defined recursively. To illus-
trate the idea, suppose we need to define the function f : N --+ lists(N) that
computes the following backwards sequence:

f (n) = (n, n -1,., 1, 0).

With a little help from the cons function for lists, we can transform the informal
definition of f(n) into a computable expression in terms of f(n - 1):

f(n) =(n,n- 1,... , 1,0)
=cons (n, (n- 1,... , 1,0))

= cons (n, fr(n - 1)).

Therefore, f can be defined recursively by

f(0) =(0).

f(n) =cons (n, f(n - 1)) for n > 0.

This definition can be written in if-then-else form as

f(n) = if n = 0 then (0) else cons(n, f(n - 1)).

To see how the evaluation works, look at the unfolding that results when we
evaluate f(3):

f(3) = cons (3, f(2))

= cons (3, cons (2, f(1)))

= cons (3, cons (2, cons (1, f(0))))

= cons (3, cons (2, cons (1, (0))))

= cons (3, cons (2, (1, 0}))

= cons (3, (2, 1, 0))

= (3,2, 1,0).

154 CHAPTER 3 M CONSTRUCTION TECHNIQUES

We haven't given a recursively defined procedure yet. So let's give one for
the problem we've been discussing. For example, suppose that P(n) prints out
the numbers in the list (n, n - 1, ... , 0). A recursive definition of P can be
written as follows.

P(n): if n = 0 then print(0)

else

print(n);

P(n - 1)

fi.

3.21 Length of a List

Let S be a set and let "length" be the function of type lists(S) -* N, which
returns the number of elements in a list. We can define length recursively by
noticing that the length of an empty list is zero and the length of a nonempty
list is one plus the length of its tail. A definition follows.

length(()) = 0,

length (cons (x, t)) = 1 + length (t).

Recall that the infix form of cons(r, t) is x :: t. So we could just as well write

the second equation as

length(x :: t) = 1 + length(t).

Also, we could write the recursive part of the definition with a condition as
follows:

length (L) = 1 + length (tail (L)) for L 7)

In if-then-else form the definition can be written as follows:

length(L) = if L = () then 0 else 1 + length(tail(L)).

The length function can be evaluated by unfolding its definition. For example,
we'll evaluate length((a, b, c)).

length ((a, b, c)) = 1 + length ((b, c))

= 1 + 1 + length ((c))

= 11+ 1 + length(()
= 1+1+-1+0

=3.

3.2 s RECURSIVE FUNCTIONS AND PROCEDURES 155

3.22 The Distribute Function

Suppose we want to write a recursive definition for the distribute function, which
we'll denote by "dist." Recall, for example, that

dist(a, (b, c, d, e)) = ((a, b), (a, c), (a, d), (a, e)).

To discover the recursive part of the definition, we'll rewrite the example equation
by splitting up the lists into head and tail components as follows:

dist (a, (b, c, d, e)) = ((a, b), (a, c), (a, d), (a, e))

= (a, b) :: ((a, c), (a, d), (a, e))

= (a, b) :: dist(a, (c, d, e)).

That's the key to the recursive part of the definition. Since we are working
with lists, the basis case is dist(a, ()), which we define as (). So the recursive
definition can be written as follows:

dist(x, ()) = (),
dist(x, h :: T) = (x, h) :: dist (x, T).

For example, we'll evaluate the expression dist(3, (10, 20)):

dist (3, (10, 20)) = (3, 10) :: dist (3, (20))

= (3, 10):: (3, 20):: dist (3, ()

= (3,10):: (3, 20)::

= (3,10):: ((3,20))

= ((3, 10), (3, 20)).

An if-then-else difinition of dist takes the following form:

dist(x,L) = if L = () then ()

else (x,head(L)) :: dist(x, tail(L)).

3.23 The Pairs Function

Recall that the "pairs" function creates a list of pairs of corresponding elements
from two lists. For example,

pairs((a, b, c), (1, 2, 3)) = ((a, 1), (b, 2), (c, 3)).

To discover the recursive part of the definition, we'll rewrite the example equation
by splitting up the lists into head and tail components as follows:

pairs((a, b, c), (1, 2, 3))= ((a, 1), (b, 2), (c, 3))

- (a, 1):: ((b, 2), (c, 3))
=(a, 1) ::pairs ((b, c), (2, 3)).

156 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

Now the pairs function can be defined recursively by the following equations:

pairs ((>, I () = (),I

pairs (x :: T, y :: U) = (x, y) :: pairs(T, U).

For example, we'll evaluate the expression pairs((a, b), (1, 2)):

pairs (Ka, b), (1, 2)) = (a, 1):: pairs ((b) , (1))

= (a, 1):: (b, 2) :: pairs((), ()
= (a, 1):: (b, 2))

= (a, 1) :: (b, 2))

= ((a, 1), (b, 2))

S3.24 The ConsRight Function

Suppose we need to give a recursive definition for the sequence function. Re-
call, for example, that seq(4) = (0, 1, 2, 3, 4). Good old "cons" doesn't seem
up to the task. For example, if we somehow have computed seq(3), then
cons(4, seq(3)) = (4, 0, 1, 2, 3). It would be nice if we had a constructor to
place an element on the right of a list, just as cons places an element on the left
of a list. We'll write a definition for the function "consR" to do just that. For
example, we want

consR((a, b, c), d) = (a, b, c, d).

We can get an idea of how to proceed by rewriting the above equation as follows
in terms of the infix form of cons:

consR ((a, b, c), d) (a, b, c, d)

= a :: (b,c,d)

= a :: consR ((b, c), d).

So the clue is to split the list (a, b, c) into its head and tail. We can write the
recursive definition of consR using the if-then-else form as follows:

consR(L,a) = if L = () then (a)

else head (L) :: consR (tail (L), a).

This definition can be written in pattern-matching form as follows:

consR((),a) = a :: (),
consR (b :: T, a) = b :: consR (T, a).

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 157

For example, we can construct the list (x, y) with consR as follows:

consR (consR ((),x), y) = consR (x :: (), y)

= x consR),y)
= x:: y:: ()
- x :. (y)

(x,•).

3.25 Concatenation of Lists

An important operation on lists is the concatenation of two lists into a single
list. Let "cat" denote the concatenation function. Its type is lists(A) x lists(A)

lists(A). For example,

cat((a, b), (c, d))= (a, b, c, d).

Since both arguments are lists, we have some choices to make. Notice, for ex-
ample, that we can rewrite the equation as follows:

cat((a, b), (c, d)) = (a, b, c, d)

= a :: (b,c,d)

= a:: cat((b), (c, d))

So the recursive part can be written in terms of the head and tail of the first
argument list. Here's an if-then-else definition for cat.

cat(L,M) = if L = () then M

else head(L) :: cat(tail(L), M).

We'll unfold the definition to evaluate the expression cat((a, b), (c, d)):

cat ((a, b), (c, d)) = a :: cat ((b), (c, d))

= a :: b :: cat (() , (c,d))

=a::b:: (c,d)

- a :: (b, c, d)

- (a,b,c,d).

We can also write cat as a recursively defined procedure that prints out the
elements of the two lists:

cat(K, L): if K () then print(L)

else
print(head(K));

cat(tail(K), L)
fi.

158 CHAPTER 3 U CONSTRUCTION TECHNIQUES

3.26 Sorting a List by Insertion

Let's define a function to sort a list of numbers by repeatedly inserting a new
number into an already sorted list of numbers. Suppose "insert" is a function
that does this job. Then the sort function itself is easy. For a basis case, notice
that the empty list is already sorted. For the recursive case we sort the list x :: L
by inserting x into the list obtained by sorting L. The definition can be written
as follows:

sort(()) = (>,
sort (x :: L) = insert (x, sort (L)).

Everything seems to make sense as long as insert does its job. We'll assume that
whenever the number to be inserted is already in the list, then a new copy will
be placed to the left of the one already there. Now let's define insert. Again, the
basis case is easy. The empty list is sorted, and to insert x into (), we simply
create the singleton list (x). Otherwise-if the sorted list is not empty either
x belongs on the left of the list, or it should actually be inserted somewhere else
in the list. An if-then-else definition can be written as follows:

insert (x, S) = if S = () then (x)

else if x < head (S) then x :: S

else head (S) :: insert (x, tail (S)).

Notice that insert works only when S is already sorted. For example, we'll unfold

the definition of insert(3, (1, 2, 6, 8)):

insert (3, (1, 2, 6, 8)) = 1:: insert (3, (2, 6, 8))

= 1:: 2:: insert (3, (6, 8))

= 1:: 2 :: 3 :: (6,8)

= (1, 2, 3, 6,8).

J 3.27 The Map Function

We'll construct a recursive definition for the map function. Recall, for example
that

map(f, (a, b, c)) = (f(a), f(b), f(c)).

Since the second argument is a list, it makes sense to define the basis case as
map(f, ()) = (). To discover the recursive part of the definition, we'll rewrite
the example equation as follows:

map(f, (a, b, c)) = (f(a), f(b), f(c))

= f(a) :: (f(b), f(c))

= f(a) :: map(f, (b, c)).

3.2 0 RECURSIVE FUNCTIONS AND PROCEDURES 159

So the recursive part can be written in terms of the head and tail of the input
list. Here's an if-then-else definition for map.

map(f,L) =if L= () then ()
else f(head(L)) :: map(f, tail(L)).

For example, we'll evaluate the expression map(f, (a, b, c)).

map (f, (a, b, c)) = f(a) :: map (f, (b, c))

= f(a) f(b) map (f, (c))

= f(a) f(b) :: f(c) :: map (f, ())

= f(a) f(b) :: f(c) :: ()

= (f(a),f(b),f(c)).

3.2.4 Binary Trees

Let's look at some functions that compute properties of binary trees. To start,
suppose we need to know the number of nodes in a binary tree. Since the set of
binary trees over a particular set can be defined inductively, we should be able
to come up with a recursively defined function that suits our needs. Let "nodes"
be the function that returns the number of nodes in a binary tree. Since the
empty tree has no nodes, we have nodes(()) = 0. If the tree is not empty, then
the number of nodes can be computed by adding 1 to the number of nodes in
the left and right subtrees. The equational definition of nodes can be written as
follows:

nodes (()) 0,

nodes (tree (L, a, R)) 1 + nodes (L) + nodes (R).

If we want the corresponding if-then-else form of the definition, it looks like

nodes(T) = if T = () then 0

else 1 + nodes (left (T)) + nodes (right (T)).

For example, we'll evaluate nodes(T) for T = (((), a, ()), 1, ())

nodes (T) = 1 + nodes (((), a,())) + nodes(())

= 1 + 1 + nodes (()) + nodes (()) + nodes (())

=2.

S3.28 A Binary Search Tree

Suppose we have a binary search tree whose nodes are numbers, and we want to
add a new number to the tree, under the assumption that the new tree is still a

160 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

binary search tree. A function to do the job needs two arguments, a number x
and a binary search tree T. Let the name of the function be "insert."

The basis case is easy. If T = (), then return tree((), x, ()). The
recursive part is straightforward. If x < root(T), then we need to replace
the subtree left(T) by insert(x, left(T)). Otherwise, we replace right(T) by
insert(x, right(T)). Notice that repeated elements are entered to the right. If we
didn't want to add repeated elements, then we could simply return T whenever
x = root(T). The if-then-else form of the definition is

insert (x,T) = if T = () then tree(() ,x,)

else if x < root (T) then

tree (insert (x, left (T)), root (T), right (T))

else

tree (left (T), root (T), insert (x, right (T))).

Now suppose we want to build a binary search tree from a given list of numbers
in which the numbers are in no particular order. We can use the insert function
as the main ingredient in a recursive definition. Let "makeTree" be the name of
the function. We'll use two variables to describe the function, a binary search
tree T and a list of numbers L.

makeTree (T, L) = if L = () then T (3.9)

else makeTree (insert (head (L), T), tail (L)).

To construct a binary search tree with this function, we apply makeTree to the
pair of arguments ((), L). As an example, the reader should unfold the definition
for the call makeTree((), (3, 2, 4)).

The function makeTree can be defined another way. Suppose we consider

the following definition for constructing a binary search tree:

makeTree (T, L) = if L = () then T (3.10)

else insert (head (L), makeTree (T, tail (L))).

You should evaluate the expression makeTree((), (3, 2, 4)) by unfolding this
alternative definition. It should help explain the difference between the two
definitions.

Traversing Binary Trees

There are several useful ways to list the nodes of a binary tree. The three most

popular methods of traversing a binary tree are called preorder, inorder, and
postorder. We'll start with the definition of a preorder traversal.

3.2 U RECURSIVE FUNCTIONS AND PROCEDURES 161

b c

d e

Figure 3.6 A binary tree.

Preorder Traversal

The preorder traversal of a binary tree starts by visiting the root. Then there
is a preorder traversal of the left subtree followed by a preorder traversal of
the right subtree.

For example, the preorder listing of the nodes of the binary tree in Figure
3.6 is (a, b, c, d, e). It's common practice to write the listing without any
punctuation symbols as

a b c d e.

S3.29 A Preorder Procedure

Since binary trees are inductively defined, we can easily write a recursively
defined procedure to output the preorder listing of a binary tree. For exam-
ple, the following recursively defined procedure prints the preorder listing of its
argument T.

Preorder(T): if T 5 () then

print(root(T));
Preorder (left(T));
Preorder(right(T))

ft.

' 3.30 A Preorder Function

Now let's write a function to compute the preorder listing of a binary tree.
Letting "preOrd" be the name of the preorder function, an equational definition
can be written as follows:

preOrd)) = (),
preOrd (tree (L, x, R)) = x :: cat (preOrd (L), preOrd (R)).

162 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

The if-then-else form of preOrd can be written as follows:

preOrd(T) = if T = () then ()
else root (T) :: cat (preOrd (left (T)) , preOrd (right (T)))

We'll evaluate the expression preOrd(T) for the tree T =K(), a, ()), b, ():

preOrd (T) = b cat (preOrd ((() , a K))) , preOrd (K)))

= b cat (a cat (preOrd (K), preOrd (K)),preOrd (K))
= b :: cat (a :: K),K))
= b:: cat ((a),))

b:: Ka)
=b, a).

The definitions for the inorder and postorder traversals of a binary tree are
similar to the preorder traversal. The only difference is when the root is visited
during the traversal.

Inorder Traversal

The inorder traversal of a binary tree starts with an inorder traversal of the
left subtree. Then the root is visited. Lastly, there is an inorder traversal of
the right subtree.

For example, the inorder listing of the tree in Figure 3.6 is

b a d c e.

Postorder Traversal
The postorder traversal of a binary tree starts with a postorder traversal of
the left subtree and is followed by a postorder traversal of the right subtree.
Lastly, the root is visited.

The postorder listing of the tree in Figure 3.6 is

b d e c a.

We'll leave the construction of the inorder and postorder procedures and
functions as exercises.

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 163

3.2.5 Two More Problems

We'll look at two more problems, each of which requires a little extra thinking
on the way to a solution.

The Repeated Element Problem

Suppose we want to remove repeated elements from a list. Depending on how
we proceed, there might be different solutions. For example, we can remove the
repeated elements from the list (u, g, u, h, u) in three ways, depending on which
occurrence of u we keep: (u, g, h), (g, u, h), or (g, h, u). We'll solve the problem
by always keeping the leftmost occurrence of each element. Let "remove" be the
function that takes a list L and returns the list remove(L), which has no repeated
elements and contains the leftmost occurrence of each element of L.

To start things off, we can say remove(()) = (). Now if L 74 (), then L has
the form L = b :: M for some list M. In this case, the head of remove(L) should
be b. The tail of remove(L) can be obtained by removing all occurrences of b
from M and then removing all repeated elements from the resulting list. So we
need a new function to remove all occurrences of an element from a list.

Let removeAll(b, M) denote the list obtained from M by removing all occur-
rences of b. Now we can write an equational definition for the remove function
as follows:

remove(()) = (

remove (b :: M) = b :: remove (removeAll (b, M)).

We can rewrite the solution in if-then-else form as follows:

remove(L) = if L = () then ()

else head (L) :: remove (removeAll (head (L), tail (L))).

To complete the task, we need to define the "removeAll" function. The basis
case is removeAll(b, ()) = (). If M 54 (), then the value of removeAll(b, M)
depends on head(M). If head(M) = b, then throw it away and return the value
of removeAll(b, tail(M)). But if head(M) 74 b, then it's a keeper. So we should
return the value head(M) :: removeAll(b, tail(M)). We can write the definition
in if-then-else form as follows:

removeAll (b, M) = if M = K) then K
else if head (M) = b then

removeAll (b, tail (M))

else

head (M) :: removeAll (b, tail (M)).

164 CHAPTER 3 * CONSTRUCTION TECHNIQUES

We'll evaluate the expression removeAll(b, (a, b, c, bý):

removeAll (b, (a, b, c, b)) = a :: removeAll (b, (b, c, b))

= a:: removeAll (b, (c, b))

= a c :: removeAll (b, (b))

= a :: c :: removeAll (b,)
a c::c::)

- a (C)

= (a, c).

Try to write out each unfolding step in the evaluation of the expression
remove(Kb, a, b)). Be sure to start writing at the left-hand edge of your paper.

The Power Set Problem

Suppose we want to construct the power set of a finite set. One solution uses the
fact that power({x} U T) is the union of power(T) and the set obtained from
power(T) by adding x to each of its elements. Let's see whether we can discover
a solution technique by considering a small example. Let S = {a, b, c}. Then
we can write power(S) as follows:

power (S)= {{},{a}, {b},{c},{a,b}, {a, c}l, {b, c} , {a, b, c}}
f f{}, f{b), f{c}, f{b, c}} U f{{a}, {a, bI , fa, c} , fa, b, c}} .

We've written power(S) = A U B, where B is obtained from A by adding the
underlined element a to each set in A. If we represent S as the list Ka, b, c), then
we can restate the definition for power(S) as the concatenation of the following
two lists:

((K), Kb, (Kc, Kb, c)) and ((a), Ka, b), Ka, c), (a, b, c)).

The first of these lists is power((b, c)). The second list can be obtained from
power(Kb, c)) by working backward to the answer as follows:

(Ka), (a,b), Ka, c), Ka,b,cý) - (a :: K),a :: (b),a :: Kc),a :: Kb,c))
= map(::,(a, ()), Ka, (b)), a, (c), (a, (b, c))))

= map (::, dist (a, power (Kb, cý))).

This example is the key to the recursive part of the definition. Using the
fact that power(K)) = KK)) as the basis case, we can write down the following
definition for power:

power (()) = KK))
power (a :: L) = cat (power (L), map (::, dist (a, power (L)))).

3.2 m RECURSIVE FUNCTIONS AND PROCEDURES 165

The if-then-else form of the definition can be written as follows:

power(L) = if L (then (()) else
cat (power (tail (L)), map (::, dist (head (L), power (tail (L))))).

We'll evaluate the expression power((a, b)). The first step yields the equation

power((a, b)) = cat(power((b)), map(::, dist(a, power((b))))).

Now we'll evaluate power((b)) and substitute it in the preceding equation:

power((b)) =cat (power (()), map (::, dist (b, power(())))

= cat (()) Imap (::, dist (b, (()))))

= cat((()),map(::, ((b, ()))))
=cat(/(}) (b :: ()

= cat((()), (Kb)))
=((), (b)).

Now we can continue with the evaluation of power((a, b)):

power ((a, b)) = cat (power (Kb)), map (::, dist (a, power ((b)))))

= cat (((), (b)), map (::, dist (a, ((), (b)))))

= cat (((),Kb)) ,map (::, ((a, ,)) (a, (b)))))

= cat(((),(b)),(a :: (),a :: (b)))

= cat ((), (b), ((a), K a,b)))
= { ý), (b) , ýa) , (a, bi}.

3.2.6 Infinite Sequences

Let's see how some infinite sequences can be defined recursively. To illustrate
the idea, suppose the function "ints" returns the following infinite sequence for
any integer x:

ints(x) = (x, x + 1, x + 2,...).

We'll assume that that the list operations of cons, head, and tail work for infinite
sequences. For example, the following relationships hold.

ints (x) = x :: ints (x + 1),

head (ints (x)) = x,

tail (ints (x)) = ints (x + 1).

166 CHAPTER 3 M CONSTRUCTION TECHNIQUES

Even though the definition of ints does not conform to (3.6), it is still recursively
defined because it is defined in terms of itself. If we executed the definition, an
infinite loop would construct the infinite sequence. For example, ints(O) would
construct the infinite sequence of natural numbers as follows:

ints (0) = 0 :: ints (1)

= 0 :: 1 ints (2)

= 0:: 1:: 2 :: ints (3)

In practice, an infinite sequence is used as an argument and is is evaluated only
when some of its values are needed. Once the needed values are computed, the
evaluation stops. This is an example of a technique called lazy evaluation. For
example, the following function returns the nth element of an infinite sequence s.

get(n, s) = if n = 1 then head(s) else get(n - 1, tail(s)).

3.31 Picking Elements

We'll get the third element from the infinite sequence ints(6) by unfolding the
expression get(3, ints(6)).

get (3, ints (6)) = get (2, tail (ints (6)))

= get (1, tail (tail (ints (6))))

= head (tail (tail (ints (6))))

= head (tail (tail (6 :: ints (7))))

= head (tail (ints (7)))

= head (tail (7 :: ints (8)))

= head (ints (8))

= head (8 :: ints (9))

-8.

3.32 Summing

Suppose we need a function to sum the first n elements in an infinite sequence
s of integers. The following definition does the trick:

sum(n, s) = if n = 0 then 0 else head(s) + sum(n - 1, tail(s)).

3.2 N RECURSIVE FUNCTIONS AND PROCEDURES 167

We'll compute the sum of the first three numbers in ints(4):

sum (3, ints (4)) = 4 + sum (2, ints (5))

= 4 + 5 + sum (1, ints (6))

= 4 + 5 + 6 + sum (0, ints (7))
= 4+5+6+0

= 15.

. 3.33 The Sieve of Eratosthenes

Suppose we want to study prime numbers. For example, we might want to find
the 500th prime, we might want to find the difference between the 500th and
501st primes, and so on. One way to proceed might be to define functions to
extract information from the following infinite sequence of all prime numbers.

Primes = (2, 3, 5, 7, 11, 13, 17, ...).

We'll construct this infinite sequence by the method of Eratosthenes (called the
sieve of Eratosthenes). The method starts with the infinite sequence ints(2):

ints(2) = (2, 3, 4, 5, 6, 7, 8, 9, 10, ...).

The next step removes all multiples of 2 (except 2) to obtain the infinite sequence

(2, 3, 5, 7, 9, 11, 13, 15, ...).

The next step removes all multiples of 3 (except 3) to obtain the infinite sequence

(2, 3, 5, 7, 11,13, 17,...).

The process continues in this way.
We can construct the desired infinite sequence of primes once we have the

function to remove multiples of a number from an infinite sequence. If we let
remove(n, s) denote the infinite sequence obtained from s by removing all multi-
ples of n, then we can define the sieve process as follows for an infinite sequence
s of numbers:

sieve(s) = head(s) :: sieve(remove(head(s), tail(s))).

But we need to define the remove function. Notice that for natural numbers m
and n with n > 0 that we have the following equivalences:

m is a multiple of n iff n divides m iff m mod n = 0.

168 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

This allows us to write the following definition for the remove function:

remove (n, s) = if head (s) mod n = 0 then remove (n, tail (s))

else head (s) :: remove (n, tail (s)).

Then our desired sequence of primes is represented by the expression

Primes = sieve(ints(2)).

In the exercises we'll evaluate some functions dealing with primes.

P Exercises

Evaluating Recursively Defined Functions

1. Given the following definition for the nth Fibonacci number:

fib (0) =0,

fib (1) 1,

fib(n)=fib(n-1)+fib(n--2) ifn>l.

Write down each step in the evaluation of fib(4).

2. Given the following definition for the length of a list:

length(L) = if L = () then 0 else 1 + length(tail(L)).

Write down each step in the evaluation of length((r, s, t, u)).

3. For each of the two definitions of "makeTree" given by (3.9) and (3.10), write
down all steps to evaluate makeTree((), (3, 2, 4)).

Numbers

4. Construct a recursive definition for each of the following functions, where all
variables are natural numbers.

a. f(n)=0+2+4+... +2n.

b. f(n) floor(0/2) + floor(1/2) + ... + floor(n/2).

c. f(k,n) = gcd(1, n) + gcd(2, n) + ... + gcd(k, n) for k > 0.

d. f(n) = (0 mod 2) + (1 mod 3) + + (n mod (n + 2)).

e. f(n, k) =0+ k + 2k +... + nk.
f. f (n, k) =k + (k + 1) + (k + 2) +.. + (k + n).

3.2 8 RECURSIVE FUNCTIONS AND PROCEDURES 169

Strings

5. Construct a recursive definition for each of the following string functions for

strings over the alphabet { a, b}.

a. f(x) returns the reverse of x.

b. f(x) = xy, where y is the reverse of x.

(. f(x, y) tests whether x is a prefix of y.

d. f(x, y) tests whether x = y.

e. f(x) tests whether x is a palindrome.

Lists

6. Construct a recursive definition for each of the following functions that in-
volve lists. Use the infix form of cons in the recursive part of each definition.
In other words, write h :: t in place of cons(h, t).

a. f(n) = (2n, 2(n - 1), ... , 2, 0).

b. max(L) is the maximum value in nonempty list L of numbers.

c. f(x, (ao, ... ,an)) = ao + aix + a 2x
2 +... + axn.

d. f(L) is the list of elements x in list L that have property P.
e. f (a, (Xl, ... , Xn)) = (XI + a, ... , xn + a).

f. f(a, ((xi, Y), ... , (xn, Yn))) = ((xi + a, yi), ... , (xn + a, yn)).

g. f(n) = ((0, n), (1, n - 1), ... , (n - 1, 1), (n, 0)). Hint: Use part (f).

h. f(g, (X1 , X2, ... , xn)) = ((Xl, g(x 1)), (x 2 , 9(x 2)), ... , (xX., g(xn))).
i. f (g, h, (iX, ... , x.)) = <(gxiz), h(xi)), ... , (gxn), h(xn))>

Using Cat or ConsR

7. Construct a recursive definition for each of the following functions that in-
volve lists. Use the cat operation or consR operation in the recursive part
of each definition. (Notice that for any list L and element x we have cat(L,

(x)) = consR(L, x).)

a. f(n) (0, 1, ... , n).

b. f(n) =(0, 2, 4,...,2)

c. f(n) =(1, 3, 5, ... ,2n + 1).

d. f(n, k) =(n, n + 1, n + 2, ... , n + k).

e. f(n, k) ((0, k, 2k, 3k, ... , nk).

f. f(g, n) = ((0, g(0)), (1, g(l)), ... , (n , g(n))).
g. f (n, m) =(n, n + 1, n + 2, ... , 7m- 1, m}, where n < m.

8. Let insert be a function that extends any binary function so that it evalutates
a list of two or more arguments. For example,

insert(+, (1, 4, 2, 9)) = 1 + (4 + (2 + 9)) = 16.

170 CHAPTER 3 U CONSTRUCTION TECHNIQUES

Write a recursive definition for insert(f, L), where f is any binary function
and L is a list of two or more arguments.

9. Write a recursive definition for the function "eq" to check two lists for equal-
ity.

10. Write recursive definitions for the following list functions.

a. The function "last" that returns the last element of a nonempty list.
For example, last((a, b, cý) = c.

b. The function "front" that returns the list obtained by removing the last
element of a nonempty list. For example, front((a, b, c)) = (a, b).

11. Write down a recursive definition for the function "pal" that tests a list of
letters to see whether their concatenations form a palindrome. For example,
pal((r, a, d, a,r)) = true since radar is a palindrome. Hint: Use the functions
of Exercise 10.

12. Solve the repeated element problem with the restriction that we want to keep
the rightmost occurrence of each repeated element. Hint: Use the functions

of Exercise 10.

Binary Trees

13. Given the algebraic expression a + (b.(d + e)), draw a picture of the binary
tree representation of the expression. Then write down the preorder, inorder,
and postorder listings of the tree. Are any of the listings familiar to you?

14. Write down recursive definitions for each of the following procedures to print
the nodes of a binary tree.

a. In: Prints the nodes of a binary tree from an inorder traversal.
b. Post: Prints the nodes of a binary tree from a postorder traversal.

15. Write down recursive definitions for each of the following functions. Include
both the equational and if-then-else forms for each definition.

a. leaves: Returns the number of leaf nodes in a binary tree.

b. inOrd: Returns the inorder listing of nodes in a binary tree.

c. postOrd: Returns the postorder listing of nodes in a binary tree.

16. Construct a recursive definition for each of the following functions that in-
volve trees. Represent binary trees as lists where () is the empty tree and
any nonempty binary tree has the form (L, r, R), where r is the root and L
and R are its left and right subtrees.

a. f(T) = sum of values of the nodes of T.

b. f(T) = depth of a binary tree T. Let the empty tree have depth --1.

c. f(T) = list of nodes r in binary tree T that have property p.

d. f (T) = maximum value of nodes in the nonempty binary tree T.

3.2 n RECURSIVE FUNCTIONS AND PROCEDURES 171

Trees and Algebraic Expressions

17. Recall from Section 1.4 that any algebraic expression can be represented as
a tree and the tree can be represented as a list whose head is the root and
whose tail is the list of operands in the form of trees. For example, the
algebraic expression a*b + f (c, d, e), can be represented by the list

(+, (*, (a), (b)), (f, (c), (d), (e))).

a. Draw the picture of the tree for the given algebraic expression.

b. Construct a recursive definition for the function "post" that takes an
algebraic expression written in the form of a list, as above, and returns
the list of nodes in the algebraic expression tree in postfix notation.
For example,

post((+, (*, (a), (b)), (f, (c), (d), (e)))) = (a, b, *, c, d, e, f, +).

Relations as Lists of Tuples

18. Construct a recursive definition for each of the following functions that in-
volve lists of tuples. If x is an n-tuple, then xk represents the kth component
of x.

a. f(k, L) is the list of kth components Xk of tuples x in the list L.

b. sel(k, a, L) is the list of tuples x in the list L such that Xk = a.

Sets Represented as Lists

19. Write a recursive definition for each of the following functions, in which the
input arguments are sets represented as lists. Use the primitive operations
of cons, head, and tail to build your functions (along with functions already
defined):

a. isMember. For example, isMember(a, (b, a, c)) is true.

b. isSubset. For example, isSubset((a, b) , (b, c, a)) is true.

c. areEqual. For example, areEqual((a, b) , (b, a)) is true.

d. union. For example, union((a, b) , (c, a)) = (a, b, c).

e. intersect. For example, intersect((a, b) , (c, a)) = (a).

f. difference. For example, difference((a, b, c) , (b, d)) = (a, c).

Challenges

20. Conway's challenge sequence is defined recursively as follows:

Basis: f(1) = f(2) = 1.

Recursion: f(n) = f(f(n - 1)) + f(n - fr(n - 1)) for n > 2.

Calculate the first 17 elements f(1), f(2), ... , f(17). The article by Mallows
[1991] contains an account of this sequence.

172 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

21. Let fib(k) denote the kth Fibonacci number, and let

sum(k) = I+2+... + k.

Write a recursive definition for the function f : N -* N defined by f(n) =

sum(fib(n)). Hint: Write down several examples, such as f(0), f(1), f(2),
f(3), f(4), Then try to find a way to write f(4) in terms of f(3). This
might help you discover a pattern.

22. Write a function in if-then-else form to produce the Cartesian product set

of two finite sets. You may assume that the sets are represented as lists.

23. We can approximate the square root of a number by using the Newton-
Raphson method, which gives an infinite sequence of approximations to the
square root of x by starting with an initial guess g. We can define the
sequence with the following function:

sqrt(x, p) - g :: sqrt(x, (0.5)(g + (x/g))).

Find the first three numbers in each of the following infinite sequences, and
compare the values with the square root obtained by a calculator.

a. sqrt(4, 1). b. sqrt(4, 2). c. sqrt(4, 3).

d. sqrt(2, 1). e. sqrt(9, 1). f. sqrt(9, 5).

24. Find a definition for each of the following infinite sequence functions.

a. Square: Squares each element in a sequence of numbers.

b. Diff: Finds the difference of the nth and mth numbers of a sequence.

c. Prod: Finds the product of the first n numbers of a sequence.

d. Add: Adds corresponding elements of two numeric sequences.

e. Skip(x,k) = (x,x + k,x + 2k, x + 3k,...).

f. Map: Applies a function to each element of a sequence.

g. ListOf: Finds the list of the first n elements of a sequence.

25. Evaluate each of the following expressions by unfolding the definitions for
Primes and remove from Example 3.33.

a. head(Primes)

b. tail(Primes) until reaching the value sieve(remove (2, ints (3))).

c. remove(2, ints (0)) until reaching the value 1 :: 2 :: remove(2, ints (4)).

26. Suppose we define the function f : N -- N by

f(x) = if x > 10 then x - 10 else f(f(x + 11)).

This function is recursively defined even though it is not defined by (3.6).

Give a simple definition of the function. No

3.3 0 GRAMMARS 173

3.3 Grammars

Informally, a grammar is a set of rules used to define the structure of the strings
in a language. Grammars are important in computer science not only for defining
programming languages, but also for defining data sets for programs. Typical

applications try to build algorithms that test whether or not an arbitrary string
belongs to some language. In this section we'll see that grammars provide a
convenient and useful way to describe languages in a fashion similar to an induc-
tive definition, which we discussed in Section 3.1. We'll also see that grammars
provide a technique to test whether a string belongs to a language in a fashion
similar to the calculation of a recursively defined function, which we described
in Section 3.2. So let's get to it.

3.3.1 Recalling English Grammar

We can think of an English sentence as a string of characters if we agree to
let the alphabet consist of the usual letters together with the blank character,
period, comma, and so on. To parse a sentence means break it up into parts
that conform to a given grammar.

For example, if an English sentence consists of a subject followed by a pred-
icate, then the sentence

"The big dog chased the cat"

would be broken up into two parts, a subject and a predicate, as follows:

subject = The big dog,

predicate = chased the cat.

To denote the fact that a sentence consists of a subject followed by a predi-

cate we'll write the following grammar rule:

sentence -* subject predicate.

If we agree that a subject can be an article followed by either a noun or an

adjective followed by a noun, then we can break up "The big dog" into smaller
parts. The corresponding grammar rule can be written as follows:

subject --+ article adjective noun.

Similarly, if we agree that a predicate is a verb followed by an object, then we
can break up "chased the cat" into smaller parts. The corresponding grammar
rule can be written as follows:

predicate --• verb object.

This is the kind of activity that can be used to detect whether or not a sentence
is grammatically correct.

A parsed sentence is often represented as a tree, called the parse tree or

derivation tree. The parse tree for "The big dog chased the cat" is pictured in
Figure 3.7.

174 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

sentence

subject predicate

article adjective noun verb objectI I I I l '
The big dog chased article nounI I

the cat

Figure 3.7 Parse tree.

3.3.2 Structure of Grammars

Now that we've recalled a bit of English grammar, let's describe the general
structure of grammars for arbitrary languages. If L is a language over an alphabet
A, then a grammar for L consists of a set of grammar rules of the form

a -* /,

where a and 13 denote strings of symbols taken from A and from a set of grammar
symbols disjoint from A.

The grammar rule a -4 /is often called a production, and it can be read in
several different ways as

replace a by /3,
a produces /3,
a rewrites to /3,
a reduces to /3.

Every grammar has a special grammar symbol called the start symbol, and there
must be at least one production with the left side consisting of only the start
symbol. For example, if S is the start symbol for a grammar, then there must
be at least one production of the form

S , /3.

A Beginning Example
Let's give an example of a grammar for a language and then discuss the process
of deriving strings from the productions. Let A = {a, b, c}. Then a grammar

3.3 m GRAMMARS 175

for the language A* can be described by the following four productions:

S -A (3.11)

S -- aS

S -- bS

S -* cS.

How do we know that this grammar describes the language A*? We must
be able to describe each string of the language in terms of the grammar rules.
For example, let's see how we can use the productions (3.11) to show that the
string aacb is in A*. We'll begin with the start symbol S. Next we'll replace S
by the right side of production S -- aS. We chose production S -- aS because
aacb matches the right hand side of S --* aS by letting S = acb. The process
of replacing S by aS is called a derivation, and we say, "S derives aS." We'll
denote this derivation by writing

S = aS.

The symbol = means "derives in one step." The right-hand side of this derivation
contains the symbol S. So we again replace S by aS using the production S
aS a second time. This results in the derivation

S =ý aS = aaS.

The right-hand side of this derivation contains S. In this case we'll replace S by
the right side of S --+ cS. This gives the derivation

S =ý aS =ý aaS =ý' aacS.

Continuing, we replace S by the right side of S -W bS. This gives the derivation

S =>. aS =ý aaS =• aacS = aacbS.

Since we want this derivation to produce the string aacb, we now replace S by
the right side of S -- A . This gives the desired derivation of the string aacb:

S =ý' aS =ý aaS =• aacS =• aacbS zý aacbA = aacb.

Each step in a derivation corresponds to attaching a new subtree to the parse
tree whose root is the start symbol. For example, the parse trees corresponding
to the first three steps of our example are shown in Figure 3.8. The completed
derivation and parse tree are shown in Figure 3.9.

176 CHAPTER 3 * CONSTRUCTION TECHNIQUES

S= aS S =S aS aaS S > as= aaS= aacS

S S S

a S a S a S

a S a S

c S

Figure 3.8 Partial derivations and parse trees.

S = aS = aaS • aacS = aacbS = aacbA = aact

s

a 5

C s

c s

b S

A

Figure 3.9 Derivation and parse tree.

Definition of a Grammar
Now that we've introduced the idea of a grammar, let's take a minute to describe
the four main ingredients of any grammar.

The Four Parts of a Grammar (3.12)

1. An alphabet N of grammar symbols called nonterminals.

2. An alphabet T of symbols called terminals. The terminals are distinct
from the nonterminals.

3. A specific nonterminal S, called the start symbol.

4. A finite set of productions of the form a -- /3, where a and /3 are strings
over the alphabet N U T with the restriction that a is not the empty
string. There is at least one production with only the start symbol S
on its left side. Each nonterminal must appear on the left side of some
production.

3.3 s GRAMMARS 177

Assumption: In this chapter, all grammar productions will have a
single nonterminal on the left side. In Chapter 14 we'll see examples

of grammars that allow productions to have strings of more than one
symbol on the left side.

When two or more productions have the same left side, we can simplify the
notation by writing one production with alternate right sides separated by the
vertical line 1. For example, the four productions (3.11) can be written in the
following shorthand form:

S -- A I aS I bS I cS,

and we say, "S can be replaced by either A , or aS, or b5, or cS."

We can represent a grammar G as a 4-tuple G = (N, T, S, P), where P is
the set of productions. For example, if P is the set of productions (3.11), then

the grammar can be represented by the 4-tuple

({S}, {a, b, c}, S, P).

The 4-tuple notation is useful for discussing general properties of grammars.
But for a particular grammar it's common practice to write down only the pro-
ductions of the grammar, where the nonterminals are uppercase letters and the
first production listed contains the start symbol on its left side. For example,
suppose we're given the following grammar:

S-AB

A-* A aA

B -- AIbB.

We can deduce that the nonterminals are S, A, and B, the start symbol is S, and
the terminals are a and b.

3.3.3 Derivations

To discuss grammars further, we need to formalize things a bit. Suppose we're
given some grammar. A string made up of terminals and/or nonterminals is
called a sentential form. Now we can formalize the idea of a derivation.

Definition of Derivation (3.13)
If x and y are sentential forms and a -• f3 is a production, then the replace-
ment of a by f in xay is called a derivation, and we denote it by writing

xay •ý x/3y.

178 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

The following three symbols with their associated meanings are used quite
often in discussing derivations:

=3 derives in one step,
3+ derives in one or more steps,
3" derives in zero or more steps.

For example, suppose we have the following grammar:

S -AB

A-- A IaA
B- AIbB.

Let's consider the string aab. The statement S =v+ aab means that there exists
a derivation of aab that takes one or more steps. For example, we have

S =: AB =- aAB =ý aaAB => aaB => aabB =z aab.

In some grammars it may be possible to find several different derivations
of the same string. Two kinds of derivations are worthy of note. A derivation
is called a leftmost derivation if at each step the leftmost nonterminal of the
sentential form is reduced by some production. Similarly, a derivation is called a
rightmost derivation if at each step the rightmost nonterminal of the sentential
form is reduced by some production. For example, the preceding derivation of
aab is a leftmost derivation. Here's a rightmost derivation of aab:

S =: AB =; AbB => Ab rý aAb =* aaAb => aab.

The Language of a Grammar

Sometimes it can be quite difficult, or impossible, to write down a grammar for
a given language. So we had better nail down the idea of the language that is
associated with a grammar. If G is a grammar, then the language of G is the
set of terminal strings derived from the start symbol of G. The language of G is
denoted by

L(G).

We can also describe L(G) more formally.

The Language of a Grammar (3.14)
If G is a grammar with start symbol S and set of terminals T, then the
language of G is the set

L(G) = {s Is E T* and S •+ s}.

When we're trying to write a grammar for a language, we should at least
check to see whether the language is finite or infinite. If the language is finite,

3.3 E GRAMMARS 179

then a grammar can consist of all productions of the form S -* w for each string
w in the language. For example, the language {a, ab} can be described by the
grammar S -- a Iab.

If the language is infinite, then some production or sequence of productions
must be used repeatedly to construct the derivations. To see this, notice that
there is no bound on the length of strings in an infinite language. Therefore,
there is no bound on the number of derivation steps used to derive the strings.
If the grammar has n productions, then any derivation consisting of n + 1 steps
must use some production twice (by the pigeonhole principle).

For example, the infinite language {a'b I n > 0} can be described by the
grammar

S -* b I aS.

To derive the string a' b, we would use the production S -* aS repeatedly-n
times to be exact and then stop the derivation by using the production S -4 b.
The situation is similar to the way we make inductive definitions for sets. For
example, the production S -* aS allows us to make the informal statement "If
S derives w, then it also derives aw."

Recursive Productions

A production is called recursive if its left side occurs on its right side. For
example, the production S -* aS is recursive. A production A --+ a is indirectly
recursive if A derives a sentential form that contains A. For example, suppose
we have the following grammar:

S--* b aA

A -- c bS.

The productions S --+ aA and A -* bS are both indirectly recursive because of
the following derivations:

S = aA =: abS,

A =z bS =z baA.

A grammar is recursive if it contains either a recursive production or an indirectly
recursive production. So we can make the following more precise statement about
grammars for infinite languages:

A grammar for an infinite language must be recursive.

Now let's look at the opposite problem of describing the language of a gram-
mar. We know-by definition-that the language of a grammar is the set of all
strings derived from the grammar. But we can also make another interesting
observation about any language defined by a grammar:

Any language defined by a grammar is an inductively defined set.

180 CHAPTER 3 U CONSTRUCTION TECHNIQUES

Let's see why this is the case for any grammar G. The following inductive
definition does the job, where S denotes the start symbol of G. To simplify the
description, we'll say that a derivation is recursive if some nonterminal occurs
twice due to a recursive production or due to a series of indirectly recursive
productions.

Inductive Definition of L(G) (3.15)

1. For all strings w that can be derived from S without using a recursive
derivation, put w in L(G).

2. If w c L(G) and there is a derivation of S = w that contains a non-
terminal from a recursive or indirectly recursive production, then use the
production to modify the derivation to obtain a new derivation S 3+ x,
and put x in L(G).

Proof: Let G be a grammar and let M be the inductive set defined by (3.15).
We need to show that M = L(G). It's clear that M C L(G) because all strings
in M are derived from the start symbol of G. Assume, by way of contradiction,
that M z L(G). In other words, we have L(G) - M 7 0. Since S derives all the
elements of L(G) - M, there must be some string w G L(G) - M that has the
shortest leftmost derivation among elements of L(G) - M. We can assume that
this derivation is recursive. Otherwise, the basis case of (3.15) would force us
to put w G M, contrary to our assumption that w E L(G) - M. So the leftmost
derivation of w must have the following form, where s and t are terminal strings
and a, 3, and -y are sentential forms that don't include B:

S + sB7 h=> +stB/3oy => stol3f zz"* w.

We can replace sBy =+ stB3 -y in this derivation with sB-y => sa 'Y to obtain
the following derivation of a string u of terminals:

S 3z>+ sB- =3 sa-y =3>* u.

This derivation is shorter than the derivation of w. So we must conclude that u E
M. Now we can apply the induction part of (3.15) to this latter derivation of u to
obtain the derivation of w. This tells us that w G M, contrary to our assumption
that w ý M. The only thing left for us to conclude is that our assumption that
M • L(G) was wrong. Therefore M = L(G). QED.

Let's do a simple example to illustrate the use of (3.15).

S3.34 From Grammar to Inductive Definition

Suppose we're given the following grammar G:

S , A aB
B , b bB.

3.3 U GRAMMARS 181

We'll give an inductive definition for L(G). There are two derivations that don't
contain recursive productions: S =:. A and S =z, aB =- ab. This gives us the
basis part of the definition for L(G).

Basis: A , ab C L(G).

Now let's find the induction part of the definition. The only recursive production
of G is B -* bB. So any element of L(G) whose derivation contains an occurrence
of B must have the general form S => aB >+ ay for some string y. So we can
use the production B - bB to add one more step to the derivation as follows:

S =ý aB =-# abB =:+ ayy.

This gives us the induction step in the definition of L(G).

Induction: If ay G L(G), then put aby in L(G).

For example, the basis case tells us that ab E L(G) and the derivation S => aB
= ab contains an occurrence of B. So we add one more step to the derivation

using the production B -- bB to obtain the derivation

S = aB =• abB => abb.

So ab c L(G) implies that abb C L(G), which in turn implies ab3 E L(G), and
so on. Thus we can conjecture with some confidence that L(G) is the language
{A} U {ab n I N}.

3.3.4 Constructing Grammars

Now let's get down to business and construct some grammars. We'll start with a
few simple examples, and then we'll give some techniques for combining simple
grammars. We should note that a language might have more than one gram-
mar. So we shouldn't be surprised when two people come up with two different
grammars for the same language.

.. 3.35 Three Simple Grammars

We'll write a grammar for each of three simple languages. In each case we'll
include a sample derivation of a string in the language. Test each grammar by
constructing a few more derivations for strings.

1. {A , a, aa, ... , an, ... I = tan I n ENJ.

Notice that any string in this language is either A or of the form ax for some
string x in the language. The following grammar will derive any of these
strings:

S -- A aS.

182 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

For example, we'll derive the string aaa:

S =* aS • aaS •# aaaS •ý aaa.

2. {A , ab, aabb, ... , anbn, ... } -anbn I n c NJ.

Notice that any string in this language is either A or of the form axb for
some string x in the language. The following grammar will derive any of
these strings:

S - A I aSb.

For example, we'll derive the string aaabbb:

S =ý> aSb == aaSbb =ý' aaaSbbb =ý> aaabbb.

3. {A, ab, abab,..., (ab)n,...} = {(ab)n I n E N}.

Notice that any string in this language is either A or of the form abx for
some string x in the language. The following grammar will derive any of
these strings:

S -* A I abS.

For example, we'll derive the string ababab:

S * abS •. ababS =:. abababS = ababab.

Combining Grammars

Sometimes a language can be written in terms of simpler languages, and a gram-
mar can be constructed for the language in terms of the grammars for the simpler
languages. We'll concentrate here on the operations of union, product, and clo-
sure.

Combining Grammars (3.16)

Suppose M and N are languages whose grammars have disjoint sets of non-
terminals. (Rename them if necessary.) Suppose also that the start symbols
for the grammars of M and N are A and B, respectively. Then we have the
following new languages and grammars:

Union Rule: The language M U N starts with the two productions

S -, A B.

3.3 m GRAMMARS 183

Product Rule: The language MN starts with the production

S -, AB.

Closure Rule: The language M* starts with the production

S , AS A.

• 3.36 Using the Union Rule

Let's write a grammar for the following language:

L = {A , a, b, aa, bb, ... , a n, b n, .. }

After some thinking we notice that L can be written as a union L = M U N,
where M = {a' I n E NJ and N = {bf I n E N}. Thus we can write the following
grammar for L.

S-* AIB union rule,

A -- A IaA grammar for M,

B - A IbB grammar for N.

. 3.37 Using the Product Rule

We'll write a grammar for the following language:

L {ambn I m, n e NJ.

After a little thinking we notice that L can be written as a product L = MN,

where M = {am I m E NJ and N = {bn I n E NJ. Thus we can write the

following grammar for L:

S - AB product rule,

A A A aA grammar for M,

B A IbB grammar for N.

184 CHAPTER 3 0 CONSTRUCTION TECHNIQUES

r 3.38 Using the Closure Rule

We'll construct a grammar for the language L of all strings with zero or more
occurrences of aa or bb. In other words, L = {aa, bb}*. If we let M {aa, bb},
then L = M*. Thus we can write the following grammar for L.

S - ASI A closure rule,

A - aa bb grammar for M.

We can simplify this grammar by substituting for A to obtain the following
grammar:

S - aaS I bbS I A.

3.39 Decimal Numerals

We can find a grammar for the language of decimal numerals by observing that
a decimal numeral is either a digit or a digit followed by a decimal numeral. The
following grammar rules reflect this idea:

S ---+ D IDS

D --- 0 11 213141516171819.

We can say that S is replaced by either D or DS, and D can be replaced by any
decimal digit. A derivation of the numeral 7801 can be written as follows:

S =z DS • 7S =ý 7DS > 7DDS • 78DS => 780S => 780D => 7801.

This derivation is not unique. For example, another derivation of 7801 can be
written as follows:

S • DS > DDS = DSS > DSDS > D80S # D80D > D801 > 7801.

S3.40 Even Decimal Numerals

We can find a grammar for the language of decimal numerals for the even natural
numbers by observing that each numeral must have an even digit on its right

3.3 * GRAMMARS 185

side. In other words, either it's an even digit or it's a decimal numeral followed
by an even digit. The following grammar will do the job:

S--, E]NE

N-*DIDN
E - 01214 16 18

-• 0111213141516171819.

For example, the even numeral 136 has the derivation

S =ý NE =ý N6 => DN6 => DD6 • D36 => 136.

_ 3.41 Identifiers

Most programming languages have identifiers for names of things. Suppose we
want to describe a grammar for the set of identifiers that start with a letter
of the alphabet followed by zero or more letters or digits. Let S be the start
symbol. Then the grammar can be described by the following productions:

S - L LA

A - LAIDAIA
L albl ... Iz
D - 0 111 ... 19.

We'll give a derivation of the string a2b to show that it is an identifier.

S => LA zz> aA • aDA • a2A => a2LA = a2bA => a2b.

_ 3.42 Some Rational Numerals

Let's find a grammar for those rational numbers that have a finite decimal rep-
resentation. In other words, we want to describe a grammar for the language of
strings having the form m.n or -m.n, where m and n are decimal numerals. For
example, 0.0 represents the number 0. Let S be the start symbol. We can start
the grammar with the two productions

S -- N.N -N.N.

186 CHAPTER 3 E CONSTRUCTION TECHNIQUES

To finish the job, we need to write some productions that allow N to derive a
decimal numeral. Try out the following productions:

N-* DIDN
D --- 0111213141516171819

S3.43 Palindromes

We can write a grammar for the set of all palindromes over an alphabet A. Recall
that a palindrome is a string that is the same when written in reverse order. For
example, let A = {a, b, c}. Let P be the start symbol. Then the language of
palindromes over the alphabet A has the grammar

P -+ aPa I bPb I cPc I a I bI c I A.

For example, the palindrome abcba can be derived as follows:

P => aPa zt, abPba > abcba.

3.3.5 Meaning and Ambiguity

Most of the time we attach meanings to the strings in our lives. For example,
the string 3+4 means 7 to most people. The string 3-4-2 may have two distinct
meanings to two different people. One person may think that

3-4-2 = (3-4)-2 =-3,

while another person might think that

3-4-2 = 3-(4-2) =1.

If we have a grammar, then we can define the meaning of any string in the
grammar's language to be the parse tree produced by a derivation. We can often
write a grammar so that each string in the grammar's language has exactly one
meaning (i.e., one parse tree). When this is not the case, we have an ambiguous
grammar. Here's the formal definition.

Definition of Ambiguous Grammar

A grammar is said to be ambiguous if its language contains some string that
has two different parse trees. This is equivalent to saying that some string
has two distinct leftmost derivations or that some string has two distinct
rightmost derivations.

3.3 5 GRAMMARS 187

E E

E - E - EI /T\ Ak
E - E E - t

b a a b

Figure 3.10 Parse trees for an ambiguous string.

To illustrate the ideas, we'll look at some grammars for simple arithmetic
expressions. For example, suppose we define a set of arithmetic expressions by
the grammar

E - a I b I E-E.

The language of this grammar contains strings like a, b, b-a, a-b-a, and
b-b-a-b. This grammar is ambiguous because it has a string, namely, a-b-a,
that has two distinct parse trees as shown in Figure 3.10.

Since having two distinct parse trees means the same thing as having two
distinct leftmost derivations, it's no problem to find the following two distinct
leftmost derivations of a-b-a.

E E - E a - E •- a - E - E =ý a - b - E •' a - b - a.

E E - F E - E - E • a - E - E = a - b - E • a - b - a.

The two trees in Figure 3.10 reflect the two ways we could choose to evaluate
a-b-a. The first tree indicates the meaning

a-b-a = a-(b-a),

while the second tree indicates

a-b-a = (a-b)-a.

How can we make sure there is only one parse tree for every string in the lan-
guage? We can try to find a different grammar for the same set of strings. For
example, suppose we want a-b-a to mean (a-b)-a. In other words, we want
the first minus sign to be evaluated before the second minus sign. We can give
the first minus sign higher precedence than the second by introducing a new
nonterminal as shown in the following grammar:

E- E -TIT

T -- alb.

188 CHAPTER 3 * CONSTRUCTION TECHNIQUES

E

E -T

a b

Figure 3.11 Unique parse tree.

Notice that T can be replaced in a derivation only by either a or b. Therefore,
every derivation of a-b-a produces the unique parse tree in Figure 3.11.

• Exercises

Derivations

1. Given the following grammar.

S - DIDS
D --*0111213141516171819.

a. Find the production used in each step of the following derivation.

S =* DS => 7S => 7DS zt 7DDS => 78DS => 780S =: 780D => 7801.

b. Find a leftmost derivation of the string 7801.

c. Find a rightmost derivation of the string 7801.

2. Given the following grammar.

S - S[S] IA.

For each of the following strings, construct a leftmost derivation, a rightmost
derivation, and a parse tree.
a. []. b- [[]]- c. [[. d. [] [] .

Constructing Grammars

3. Find a grammar for each of the following languages.

3.3 m GRAMMARS 189

a. {bb, bbbb, bbbbbb,...} {(bb)y~ n G N}

b. {a,ba,bba,bbba,...} = {bnaIn E N}.

c. {A, ab, abab, ababab, . . . = {(ab)'b n E N}.

d. {bb, bab, baab, baaab,...} = {ba'bIn c N}.
e. {ab, abab,.. . ,(ab)n+l,. .. J = I{(ab)- Inl C-• NJ .

f. {ab, aabb, ... ,abn...} = {an+abn+ n c N}.
g. 0b, bbb,... , b~n +l,... I fb b2n+1I n E NJ .

h. {b, abc, aabcc,... , a'•bc',.. . } = {abc'" In E N}.

i. {ac, abc, abbc,... , abnc,... I } {abnc n E N}.

j. {A, aa, aaaa,...,a 2n,...} = {a 2f nEN}.

4. Find a grammar for each language.

a. {ambn n m, n C N}.

b. {a'bc' I n E N}.

c. {ambn I m, n cN, where m>O}.

d. {ambn I m, n E N, where n > 0}.

e. {a' bn I m, n c N, where m > 0 and n > 0}.

5. Find a grammar for each language.

a. The even palindromes over {a, b, c}.

b. The odd palindromes over { a, b, c}.

c. {a 2 n I n G N} U {b 2n+l I n E N}.

d. {anbc' I c NJ U {b m a' I m, n c NJ

e. {ambn I m, n c N, where m > 0 or n > 0}.

Mathematical Expressions

6. Find a grammar for each of the following languages.

a. The set of binary numerals that represent odd natural numbers.

b. The set of binary numerals that represent even natural numbers.

c. The set of decimal numerals that represent odd natural numbers.

7. Find a grammar for each of the following languages.

a. The set of arithmetic expressions that are constructed from decimal

numerals, +, and parentheses. Examples: 17, 2+3, (3+(4+5)), and

5+9+20.

b. The set of arithmetic expressions that are constructed from decimal
numerals, - (subtraction), and parentheses, with the property that each
expression has only one meaning. For example, 9-34-10 is not allowed.

190 CHAPTER 3 U CONSTRUCTION TECHNIQUES

8. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity 1. We can define the set of
terms over these symbols by saying that any constant or variable is a term
and if t is a term, then so are f(t) and g(t).

a. Find a grammar for the set of terms.
b. Find a derivation for the expresssion f(g(f(x))).

9. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity 1 and 2, respectively. We
can define the set of terms over these symbols by saying that any constant
or variable is a term and if s and t are terms, then so are f(t) and g(s, t).

a. Find a grammar for the set of terms.
b. Find a derivation for the expresssion f(g(x, f(b))).

10. Find a grammar to capture the precedence * over + in the absence of paren-
theses. For example, the meaning of a + b * c should be a + (b * c).

Ambiguity

11. Show that each of the following grammars is ambiguous. In other words,
find a string that has two different parse trees (equivalently, two different
leftmost derivations or two different rightmost derivations).

a. S-- a I SbS.

b. S -- abB I AB and A --+ AI Aa and B -* A I bB.

c. S aS ISa a.
d. S- aS (Sa b.

e. S- S[S]S I A.
f. S- Ab I A and A-- b I bA.

Challenges

12. Find a grammar for the language of all strings over {a, b} that have the
same number of a's and b's.

13. For each grammar, try to find an equivalent grammar that is not ambiguous.

a. S- a I SbS.
b. S • abB (AB and A --- A I Aa and B - A I b

c. S a aS ISa.
d. S-- b I aS Sa.

e. S- S[SJS IA.
f. S AbIAandA-6bIbA.

3.4 m CHAPTER SUMMARY 191

14. For each grammar, find an equivalent grammar that has no occurrence of A
on the right side of any rule.

a. S- AB b. S- AcAB

A- Aa a A- aA A

B -Bb A. B -bB b.

15. For each grammar G, use (3.15) to find an inductive definition for L(G).

a. S-AlAaaS.

b. S--+a~aBcandb--blbB.

3.4 Chapter Summary

This chapter covered some basic construction techniques that apply to many
objects of importance to computer science.

Inductively defined sets are characterized by a basis case, an induction case,
and a closure case that is always assumed without comment. The constructors of
an inductively defined set are the elements listed in the basis case and the rules
specified in the induction case. Many sets of objects used in computer science
can be defined inductively-numbers, strings, lists, binary trees, and Cartesian
products of sets.

A recursively defined function is defined in terms of itself. Most recursively
defined functions have domains that are inductively defined sets. These func-
tions are normally defined by a basis case and a recursive case. The situation
is similar for recursively defined procedures. Some infinite sequence functions
can be defined recursively. Recursively defined functions and procedures yield
powerful programs that are simply stated.

Grammars provide useful ways to describe languages. Grammar productions
are used to derive the strings of a language. Any grammar for an infinite language
must contain at least one production that is recursive or indirectly recursive.
Grammars for different languages can be combined to form new grammars for
unions, products, and closures of the languages. Some grammars are ambiguous.

Equivalence,
Order, and
Inductive Proof

Good order is the foundation of all things.

-Edmund Burke (1729-1797)

Classifying things and ordering things are activities in which we all engage from
time to time. Whenever we classify or order a set of things, we usually compare
them in some way. That's how binary relations enter the picture.

In this chapter we'll discuss some special properties of binary relations that
are useful for solving comparison problems. We'll introduce techniques to con-
struct binary relations with the properties that we need. We'll discuss the idea
of equivalence by considering properties of the equality relation. We'll also study
the properties of binary relations that characterize our intuitive ideas about or-
dering. We'll also see that ordering is the fundamental ingredient needed to
discuss inductive proof techniques.

Section 4.1 introduces some of the desired properties of binary relations and
shows how to construct new relations by composition and closure. We'll see
how the results apply to solving path problems in graphs.

Section 4.2 concentrates on the idea of equivalence. We'll see that equivalence
is closely related to partitioning of sets. We'll show how to generate equiv-
alence relations, we'll solve a typical equivalence problem, and we'll see an
application for finding a spanning tree for a graph.

Section 4.3 introduces the idea of order. We'll discuss partial orders and how to
sort them. We'll introduce well-founded orders and show some techniques
for constructing them. Ordinal numbers are also introduced.

Section 4.4 introduces inductive proof techniques. We'll discuss the technique
of mathematical induction for proving statements indexed by the natural
numbers. Then we'll extend the discussion to inductive proof techniques for
any well-founded set.

193

194 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

4.1 Properties of Binary Relations

Recall that the statement "R is a binary relation on the set A" means that
R relates certain pairs of elements of A. Thus R can be represented as a set
of ordered pairs (x, y), where x, y G A. In other words, R is a subset of the
Cartesian product A x A. When (x, y) E R, we also write x R y.

Binary relations that satisfy certain special properties can be very useful in
solving computational problems. So let's discuss these properties.

Three Special Properties

For a binary relation R on a set A, we have the following definitions.

a. R is reflexive if x R x for all x E A.

b. R is symmetric if x R y implies y R x for all x, y e A.

c. R is transitive if x R y and y R z implies x R z for all x, y, z E A.

Since a binary relation can be represented by a directed graph, we can describe
the three properties in terms of edges: R is reflexive if there is an edge from x
to x for each x E A; R is symmetric if for each edge from x to y, there is also
an edge from y to x. R is transitive if whenever there are edges from x to y and
from y to z, there must also be an edge from x to z.

There are two useful opposite properties of the reflexive and symmetric prop-
erties.

Two Opposite Properties
For a binary relation R on a set A, we have the following definitions.

a. R is irreflexive if (x, x) ý R for all x E A.

b. R is antisymmetric if x R y and y R x implies x = y for all x, y E A.

From a graphical point of view we can say that R is irreflexive if there are no
loop edges from x to x for all x c A; and R is antisymmetric if whenever there
is an edge from x to y with x 7 y, then there is no edge from y to x.

Many well-known relations satisfy one or more of the properties that we've
been discussing. So we better look at a few examples.

r 4.1 Five Binary Relations

Here are some sample binary relations with the properties that they satisfy.

a. The equality relation on any set is reflexive, symmetric, transitive, and antisym-
metric.

4.1 * PROPERTIES OF BINARY RELATIONS 195

b. The < relation on real numbers is transitive, irreflexive, and antisymmetric.

c. The < relation on real numbers is reflexive, transitive, and antisymmetric.

d. The "is parent of" relation is irreflexive and antisymmetric.

e. The "has the same birthday as" relation is reflexive, symmetric, and transitive.

4. 1. 1 Composition of Relations

Relations can often be defined in terms of other relations. For example, we can
describe the "is grandparent of" relation in terms of the "is parent of" relation by
saying that "a is grandparent of c" if and only if there is some b such that "a is
parent of b" and "b is parent of c". This example demonstrates the fundamental
idea of composing binary relations.

Definition of Composition

If R and S are binary relations, then the composition of R and S, which we
denote by R o S, is the following relation:

R o S = {(a, c) I (a, b) e R and (b, c) G S for some element b}.

From a directed graph point of view, if we find an edge from a to b in the graph
of R and we find an edge from b to c in the graph of S, then we must have an
edge from a to c in the graph of R o S.

A 4.2 Grandparents

To construct the "isGrandparentOf" relation we can compose "isParentOf" with
itself.

isGrandparentOf = isParentOf o isParentOf.

Similarly, we can construct the "isGreatGrandparentOf" relation by the follow-
ing composition:

isGreatGrandparentOf = isGrandparentOf o isParentOf.

S4.3 Numeric Relations

Suppose we consider the relations "less," "greater," "equal," and "notEqual"
over the set R of real numbers. We want to compose some of these relations to
see what we get. For example, let's verify the following equality.

196 CHAPTER 4 a EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

greater o less = JR x R.

For any pair (x, y), the definition of composition says that x (greater o less) y if
and only if there is some number z such that x greater z and z less y. We can
write this statement more concisely as follows:

x (> o <) y iff there is some number z such that x > z and z < y.

We know that for any two real numbers x and y there is always another number
z that is less than both. So the composition must be the whole universe JR x R.
Many combinations are possible. For example, it's easy to verify the following
two equalities:

equal o notEqual = notEqual,

notEqual o notEqual = R x JR.

Other Combining Methods

Since relations are just sets (of ordered pairs), they can also be combined by the
usual set operations of union, intersection, difference, and complement.

• 4.4 Combining Relations

The following samples show how we can combine some familiar numeric relations.
Check out each one with a few example pairs of numbers.

equal n less = 0.

equal n lessOrEqual = equal,

(lessOrEqual)' = greater,

greaterOrEqual - equal = greater,

equal U greater = greaterOrEqual,
less U greater = notEqual.

Let's list some fundamental properties of combining relations.We'll leave the
proofs of these properties as exercises.

4.1 * PROPERTIES OF BINARY RELATIONS 197

Properties of Combining Relation (4.1)

a. R o (S o T) = (R o S) o T. (associativity)

b. R o (S U T)= R o S U R o T.

c. Ro (Sn T) c Ro Sn Ro T.

Notice that part (c) is stated as a set containment rather than an equality. For
example, let R, S, and T be the following relations:

R = {(a, b), (a, c)}, S = {(b, b)}, T = {(b, c), (c, b)}.

Then S n T = 0, R o S = {(a, b)}, and R o T {(a, c), (a, b)}. Therefore

R o (S n T) =0 and R a S n R o T ={(a, b)}.

So (4.1c) isn't always an equality. But there are cases in which equality holds.
For example, if R = 0 or if R = S = T, then (4.1c) is an equality.

Representations

If R is a binary relation on A, then we'll denote the composition of R with itself
n times by writing

Rn.

For example, if we compose isParentOf with itself, we get some familiar names
as follows:

isParentOf 2 = isGrandparentOf,

isParentOf 3 = isGreatGrandparentOf.

We mentioned in Chapter 1 that binary relations can be thought of as di-
graphs and, conversely, that digraphs can be thought of as binary relations. In
other words, we can think of (x, y) as an edge from x to y in a digraph and as

a member of a binary relation. So we can talk about the digraph of a binary
relation.

An important and useful representation of R' is as the digraph consisting of

all edges (z, y) such that there is a path of length n from x to y. For example,
if (z, y) e R 2 , then (x, z), (z, y) e R for some element z. This says that there

is a path of length 2 from x to y in the digraph of R.

4.5 Compositions

Let R = {(a, b), (b, c), (c, d)}. The digraphs shown in Figure 4.1 are the
digraphs for the three relations R, R 2 , and R 3 .

198 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

a'--'* b "- c - d a b c d

R

R
2

a b c d

R
3

Figure 4.1 Composing a relation.

Let's give a more precise definition of R' using induction. (Notice the in-
teresting choice for RO.)

R°={(a, a) ja € A} (basic equality)

Rn+l = n o R.

We defined R° as the basic equality relation because we want to infer the equality
R1 =- R from the definition. To see this, observe the following evaluation of RI:

R1 = R°+1 = R° o R = {(a, a)l a E A} o R R.

We also could have defined Rn+1 = R o Rn instead of Rn+1l R n o R because
composition of binary operations is associative by (4.1a).

Let's note a few other interesting relationships between R and R .

Inheritance Properties (4.2)

a. If R is reflexive, then R' is reflexive.

b. If R is symmetric, then R' is symmetric.

c. If R is transitive, then R n is transitive.

On the other hand, if R is irrefiexive, then it may not be the case that Rn is

irreflexive. Similarly, if R is antisymmetric, it may not be the case that Rn

is antisymmetric. We'll examine these statements in the exercises.

4.6 Integer Relations

Let R = {(x, y) E Z x Z I x + y is odd}. We'll calculate R 2 and R 3 . To
calculate R2 , we'll examine an arbitrary element (X, y) G R2 . This means there
is an element z such that (x, z) e R and (z, y) e R. So x + z is odd and z +
y is odd. We know that a sum is odd if and only if one number is even and the
other number is odd. If x is even, then since x + z is odd, it follows that z is

4.1 M PROPERTIES OF BINARY RELATIONS 199

odd. So, since z + y is odd, it follows that y is even. Similarly, if x is odd, the
same kind of reasoning shows that y is odd. So we have

R2
- {(x, y) c Z x Z I x and y are both even or both odd}.

To calculate R 3 , we'll examine an arbitrary element (x, y) E R 3 . This means
there is an element z such that (x, z) E R and (z, y) e R 2 . In other words, x +
z is odd and z and y are both even or both odd. If x is even, then since x + z is
odd, it follows that z is odd. So y must be odd. Similarly, if x is odd, the same
kind of reasoning shows that y is even. So if (x, y) c R', then one of x and y is
even and the other is odd. In other words, x + y is odd. Therefore

R3 = R.

We don't have to go to higher powers now because, for example,

= R3 o R = R o R = R 2 .

4.1.2 Closures

We've seen how to construct a new relation by composing two existing relations.
Let's look at another way to construct a new relation from an existing relation.
Here we'll start with a binary relation R and try to construct another relation
containing R that also satisfies some particular property. For example, from the
"isParentOf" relation, we may want to construct the "isAncestorOf" relation.
To discuss this further we need to introduce the idea of closures.

Definition of Closure

If R is a binary relation and p is some property, then the p closure of R is
the smallest binary relation containing R that satisfies property p. Our goal is
to construct closures for each of the three properties reflexive, symmetric, and
transitive. We'll denote the reflexive closure of R by r(R), the symmetric closure
of R by s(R), and the transitive closure of R by t(R).

To introduce each of the three closures as well as construction techniques,
we'll use the following relation on the set A = {a, b, c}:

R = {(a, a), (a, b), (b, a), (b, c)}.

Notice that R is not reflexive, not symmetric, and not transitive. So the closures
of R that we construct will all contain R as a proper subset.

Reflexive Closure

If R is a binary relation on A, then the reflexive closure r(R) can be constructed
by including all pairs (x, x) that are not already in R. Recall that the relation
{(x, x) I x G A} is called the equality relation on A and it is also denoted by R°.
So we can say that

r(R) = R U R°.

200 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

In our example, the pairs (b, b) and (c, c) are missing from R. So r(R) is R

together with these two pairs.

r(R) = {(a, a), (a, b), (b, a), (b, c), (b, b), (c, c)}.

Symmetric Closure

To construct the symmetric closure s(R), we must include all pairs (x, y) for
which (y, x) e R. The set {(x, y) I (y, x) c R} is called the converse of R, which
we'll denote by Rc. So we can say that

s(R) = R U RC.

Notice that R is symmetric if and only if R = Rc.
In our example, the only problem is with the pair (b, c) E R. Once we include

the pair (c, b) we'll have s(R).

s(R) {(a, a), (a, b), (b, a), (b, c), (c, b)}.

Transitive Closure

To discuss the transitive closure t(R), we'll start with our example. Notice that

R contains the pairs (a, b) and (b, c), but (a, c) is not in R. Similarly, R contains
the pairs (b, a) and (a, b), but (b, b) is not in R. So t(R) must contain the pairs
(a, c) and (b, b). Is there some relation that we can union with R that will add
the two needed pairs? The answer is yes, it's R 2 . Notice that

R' = {(a, a), (a, b), (b, a), (b, b), (a, c)}.

It contains the two missing pairs along with three other pairs that are already
in R. Thus we have

t(R) = R U R 2
= {(a, a), (a, b), (b, a), (b, c), (a, c), (b, b)}.

To get some further insight into constructing the transitive closure, we need

to look at another example. Let A = {a, b, c, d}, and let R be the following
relation.

R = {(a, b), (b, c), (c, d)}.

To compute t(R), we need to add the three pairs (a, c), (b, d), and (a, d).
In this case, R2 = {(a, c), (b, d)}. So the union of R with R 2 is missing (a, d).

Can we find another relation to union with R and R 2 that will add this missing
pair? Notice that R 3

= {(a, d)}. So for this example, t(R) is the union

t(R) =RUR
2 UR 3

f {(a,b), (b,c), (c,d), (a,c), (b,d),(a,d)}.

As the examples show, t(R) is a bit more difficult to construct than the
other two closures.

4.1 U PROPERTIES OF BINARY RELATIONS 201

Constructing the Three Closures

The three closures can be calculated by composition and union. Here are the
construction techniques.

Constructing Closures (4.3)

If R is a binary relation over a set A, then:

a. r(R) = R U R° (R° is the equality relation.)

b. s(R) = R U RC (RC is the converse relation.)

c. t(R) = R U R2 U R3 U

d. If A is finite with n elements, then t(R) = R U R 2 U ... U Rn.

Let's discuss part (4.3d), which assures us that t(R) can be calculated by
taking the union of n powers of R if the cardinality of A is n. To see this, notice
that any pair (x, y) G t(R) represents a path from x to y in the digraph of R.
Similarly, any pair (x, y) G Rk represents a path of length k from x to y in the
digraph of R. Now if (x, y) C R'+', then there is a path of length n + 1 from x
to y in the digraph of R.

Since A has n elements, it follows that some element of A occurs twice in
the path from x to y. So there is a shorter path from x to y. Thus (x, y) E Rk

for some k < n. So nothing new gets added to t(R) by adding powers of R that
are higher than the cardinality of A.

Sometimes we don't have to compute all the powers of R. For example, let
A = {a, b, c, d, e} and R = {(a, b), (b, c), (b, d), (d, e)}. The digraphs of R

and t(R) are drawn in Figure 4.2. Convince yourself that t(R) = R U R 2 U R 3 .
In other words, the relations R4 and R5 don't add anything new. In fact, you
should verify that R4

4 = 0.

a - * b 4

d ' 'd

ee

Graph of R Graph of t(R)

Figure 4.2 R and its transitive closure.

202 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

S4.7 A Big Transitive Closure

Let A = {a, b, c} and R = {(a, b), (b, c), (c, a)}. Then we have

R' = {(a, c), (c, b), (b, a)} and R3 = {(a, a), (b, b), (c, c)}.

So the transitive closure of R is the union

t(R) = R U R2 U R 3 = A x A.

4.8 A Small Transitive Closure

Let A = {a, b, c} and R = {(a, b), (b, c), (c, b)}. Then we have

R2 = {(a, c), (b, b), (c, c)} and R 3 = {(a, b), (b, c), (c, b)} = R.

So the transitive closure of R is the union of the sets, which gives

t(R) = {(a, b), (b, c), (c, b), (a, c), (b, b), (c, c)}.

4.9 Generating Less-Than

Suppose R = {(x, x + 1) 1 x c N}. Then R' = {(x, x + 2) 1x (E N}. In general,
for any natural number k > 0 we have

R k = {(x, x + k) I x E N}.

Since t(R) is the union of all these sets, it follows that t(R) is the familiar "less"
relation over N. Just notice that if x < y, then y = x + k for some k, so the
pair (x, y) is in Rk.

S4.10 Closures of Numeric Relations

We'll list some closures for the numeric relations "less" and "notEqual" over the
set N of natural numbers.

r (less) = lessOrEqual,
s (less) = notEqual,

t (less) = less,

r (notEqual) = N x N,

s (notEqual) = notEqual,

t (notEqual) = N x N.

4.1 u PROPERTIES OF BINARY RELATIONS 203

Properties of Closures

Some properties are retained by closures. For example, we have the following
results, which we'll leave as exercises:

Inheritance Properties (4.4)

a. If R is reflexive, then s (R) and t (R) are reflexive.

b. If R is symmetric, then r(R) and t(R) are symmetric.

c. If R is transitive, then r(R) is transitive.

Notice that (4.4c) doesn't include the statement "s(R) is transitive" in its
conclusion. To see why, we can let R = {(a, b), (b, c), (a, c)}. It follows that
R is transitive. But s(R) is not transitive because, for example, we have (a, b),
(b, a) E s(R) and (a, a) V s(R).

Sometimes, it's possible to take two closures of a relation and not worry
about the order. Other times, we have to worry. For example, we might be
interested in the double closure r(s(R)), which we'll denote by rs(R). Do we get
the same relation if we interchange r and s and compute sr(R)? The inheritance
properties (4.4) should help us see that the answer is yes. Here are the facts:

Double Closure Properties (4.5)

a. rt(R) = tr(R).

b..rs(R) =sr (R).

c. st (R) C ts (R).

Notice that (4.5c) is not an equality. To see why, let A = {a, b, c}, and
consider the relation R = {(a, b), (b, c)}. Then st(R) and ts(R) are

st(R) = {(a,b), (b,a), (b,c), (c, b) , (a, c) , (c,a)}.

ts(R) = A x A.

Therefore, st(R) is a proper subset of ts(R). Of course, there are also situations
in which st(R) = ts(R). For example, if R = {(a, a), (b, b), (a, b), (a, c)}, then

st(R) = ts(R) = {(a, a), (b, b), (a, b), (a, c), (b, a), (c, a)}.

Before we finish this discussion of closures, we should remark that the sym-
bols R+ and R* are often used to denote the closures t(R) and rt(R).

204 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

4.1.3 Path Problems

Suppose we need to write a program that inputs two points in a city and outputs
a bus route between the two points. A solution to the problem depends on the
definition of "point." For example, if a point is any street intersection, then the
solution may be harder than in the case in which a point is a bus stop.

This problem is an instance of a path problem. Let's consider some typical
path problems in terms of a digraph.

Some Path Problems (4.6)

Given a digraph and two of its vertices i and j.

a. Find out whether there is a path from i to j. For example, find out whether
there is a bus route from i to j.

b. Find a path from i to j. For example, find a bus route from i to j.

c. Find a path from i to j with the minimum number of edges. For example, find
a bus route from i to j with the minimum number of stops.

d. Find a shortest path from i to j, where each edge has a nonnegative weight.
For example, find the shortest bus route from i to j, where shortest might refer
to distance or time.

e. Find the length of a shortest path from i to j. For example, find the number
of stops (or the time or miles) on the shortest bus route from i to j.

Each problem listed in (4.6) can be phrased as a question and the same
question is often asked over and over again (e.g., different people asking about
the same bus route). So it makes sense to get the answers in advance if possible.
We'll see how to solve each of the problems in (4.6).

Adjacency Matrix

A useful way to represent a binary relation R over a finite set A (equivalently,

a digraph with vertices A and edges R) is as a special kind of matrix called an
adjacency matrix (or incidence matrix). For ease of notation we'll assume that
A = {1,..., n} for some n. The adjacency matrix for R is an n by n matrix M
with entries defined as follows:

Mij = if (i, j) e R then 1 else 0.

' 4.11 An Adjacency Matirx

Consider the relation R = {(1, 2), (2, 3), (3, 4), (4, 3)} over A = {1, 2, 3, 4}.
We can represent R as a directed graph or as an adjacency matrix M. Figure 4.3
shows the two representations.

4.1 * PROPERTIES OF BINARY RELATIONS 205

F0 1 00]
0 0 10

1 -• 2 - .- 3 -. 4 M =

100 1

Figure 4.3 Directed graph and adjacency matrix.

If we look at the digraph in Figure 4.3, it's easy to see that R is neither
reflexive, symmetric, nor transitive. We can see from the matrix M in Figure
4.3 that R is not reflexive because there is at least one zero on the main diagonal
formed by the elements Mij. Similarly, R is not symmetric because a reflection
on the main diagonal is not the same as the original matrix. In other words,
there are indices i and j such that Mij € Mji. R is not transitive, but there
isn't any visual pattern in M that corresponds to transitivity.

It's an easy task to construct the adjacency matrix for r(R): Just place l's
on the main diagonal of the adjacency matrix. It's also an easy task to construct
the adjacency matrix for s(R). We'll leave this one as an exercise.

Warshall's Algorithm for Transitive Closure

Let's look at an interesting algorithm to construct the adjacency matrix for t(R).
The idea, of course, is to repeat the following process until no new edges can
be added to the adjacency matrix: If (i, k) and (k, j) are edges, then construct
a new edge (i, j). The following algorithm to accomplish this feat with three
for-loops is due to Warshall [1962].

Warshall's Algorithm for Transitive Closure (4.7)

Let M be the adjacency matrix for a relation R over {1,..., n}. The algorithm
replaces M with the adjacency matrix for t(R).

for k := 1 to n do

for i := 1 to n do

for j := 1 to n do
if (Mik = MkJ = 1) then M, := 1

od od od

S4.12 Applying Warshall's Algorithm

We'll apply Warshall's algorithm to find the transitive closure of the relation
R given in Example 4.11. So the input to the algorithm will be the adjacency
matrix M for R shown in Figure 4.3. The four matrices in Figure 4.4 show how

206 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

k=1 k=2 k=3 k=4

00 1 0 0 1 0 0 1 1 2 0 1

M0--->
.0 0 0 1 0][0 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 11

0 0 1 0 0 1 0 0 1 1 0 0 1

Figure 4.4 Matrix transformations via Warshall's algorithm.

Warshall's algorithm transforms M into the adjacency matrix for t(R). Each
matrix represents the value of M for the given value of k after the inner i and j
loops have executed. To get some insight into how Warshall's algorithm works,
draw the four digraphs for the adjacency matrices in Figure 4.4.

Now we have an easy way find out whether there is a path from i to j in
a digraph. Let R be the set of edges in the digraph. First we represent R
as an adjacency matrix. Then we apply Warshall's algorithm to construct the
adjacency matrix for t(R). Now we can check to see whether there is a path from
i to j in the original digraph by checking Mij in the adjacency matrix M for
t(R). So we have all the solutions to problem (4.6a).

Floyd's Algorithm for Length of Shortest Path

Let's look at problem (4.6e). Can we compute the length of a shortest path in
a weighted digraph? Sure. Let R denote the set of edges in the digraph. We'll
represent the digraph as a weighted adjacency matrix M as follows: First of all,
we set Mi, = 0 for 1 < i < n because we're not interested in the shortest path
from i to itself. Next, for each edge (i, j) G R with i 5 j, we set Mij to be the
nonnegative weight for that edge. Lastly, if (i, j) V R with i : j, then we set
Mij = oo , where oc represents some number that is larger than the sum of all
the weights on all the edges of the digraph.

4.1 3 A Weighted Adjacency Matrix

The diagram in Figure 4.5 represents the weighted adjacency matrix M for a
weighted digraph over the vertex set {1, 2, 3, 4, 5, 6}.

Now we can present an algorithm to compute the shortest distances between
vertices in a weighted digraph. The algorithm, due to Floyd [1962], modifies

4.1 0 PROPERTIES OF BINARY RELATIONS 207

1 2 3 4 5 6

1 0 10 10 -0 20 10

2 0 0 0 30 00 00

3 - - 0 30 - 00

4 0 ,0 0 0 0 w0

5 oo 00 40 0 m0

6 0 0 00 5 0

Figure 4.5 Sample weighted adjacency matrix.

the weighted adjacency matrix M so that Mij is the shortest distance between
distinct vertices i and j. For example, if there are two paths from i to j, then
the entry Mij denotes the smaller of the two path weights. So again, transitive
closure comes into play. Here's the algorithm.

Floyd's Algorithm for Shortest Distances (4.8)

Let M be the weighted adjacency matrix for a weighted digraph over the set
{1,..., n}. The algorithm replaces M with a weighted adjacency matrix that
represents the shortest distances between distinct vertices.

for k := 1 to n do

fori:= I to n do

for j := 1to n do
Mij := min{Mj, Mik + Mk3 }

od od od

• 4.14 Applying Floyd's Algorithm

We'll apply Floyd's algorithm to the weighted adjacency matrix in Figure 4.5.
The result is given in Figure 4.6. The entries Mij that are not zero and not oc
represent the minimum distances (weights) required to travel from i to j in the
original digraph.

Let's summarize our results so far. Algorithm (4.8) creates a matrix M that
allows us to easily answer two questions: Is there a path from i to j for distinct
vertices i and j? Yes, if Mij 5 oc. What is the distance of a shortest path from
i to j? It's Mij if Mij $ oc.

208 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

1 2 3 4 5 6

1 0 10 10 40 15 10

2 -c 0 -c 30 cc c

3 c 00 0 30 -c c

4 cc c c 0 cc c

5 cc c c 40 0 cc

6 ccc c45 5 0

Figure 4.6 The result of Floyd's algorithm.

Floyd's Algorithm for Finding the Shortest Path

Now let's try to find a shortest path. We can make a slight modification to (4.8)
to compute a "path" matrix P, which will hold the key to finding a shortest
path. We'll initialize P to be all zeros. The algorithm will modify P so that
Pij = 0 means that the shortest path from i to j is the edge from i to j and
Pij = k means that a shortest path from i to j goes through k. The modified
algorithm, which computes M and P, is stated as follows:

Shortest Distances and Shortest Paths Algorithm (4.9)

Let M be the weighted adjacency matrix for a weighted digraph over the set
{1,..., n}. Let P be the n by n matrix of zeros. The algorithm replaces M
by a matrix of shortest distances and it replaces P by a path matrix.

for k := 1tondo
for i := 1 to n do

for j := 1 to n do

if Mik + Mkj < Mij then
M,3:= Mk + Mkj;

Pij :=k

od od od fi

j 4.15 The Path Matrix

We'll apply (4.9) to the weighted adjacency matrix in Figure 4.5. The algorithm
produces the matrix M in Figure 4.6, and it produces the path matrix P given
in Figure 4.7.

For example, the shortest path between 1 and 4 passes through 2 because
P 14 = 2. Since P 12 = 0 and P 24 = 0, the shortest path between 1 and 4 consists
of the sequence 1, 2, 4. Similarly, the shortest path between 1 and 5 is the

4.1 m PROPERTIES OF BINARY RELATIONS 209

1 2 3 4 5 6

1 0 0 0 2 6 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 5 0 0

Figure 4.7 A path matrix.

sequence 1, 6, 5, and the shortest path between 6 and 4 is the sequence 6, 5, 4.
So once we have matrix P from (4.9), it's an easy matter to compute a shortest
path between two points. We'll leave this as an exercise.

Let's make a few observations about Example 4.15. We should note that
there is another shortest path from 1 to 4, namely, 1, 3, 4. The algorithm
picked 2 as the intermediate point of the shortest path because the outer index
k increments from 1 to n. When the computation got to k = 3, the value M 14
had already been set to the minimal value, and P 24 had been set to 2. So
the condition of the if-then statement was false, and no changes were made.
Therefore, Pij gets the value of k closest to 1 whenever there are two or more
values of k that give the same value to the expression Mik + Mkj, and that
value is less than Mij.

Before we finish with this topic, let's make a couple of comments. If we
have a digraph that is not weighted, then we can still find shortest distances and
shortest paths with (4.8) and (4.9). Just let each edge have weight 1. Then the
matrix M produced by either (4.8) or (4.9) will give us the length of a shortest
path, and the matrix P produced by (4.9) will allow us to find a path of shortest
length.

If we have a weighted graph that is not directed, then we can still use (4.8)
and (4.9) to find shortest distances and shortest paths. Just modify the weighted
adjacency matrix M as follows: For each edge between i and j having weight d,
set Mij = Mji = d.

o Exercises

Properties

1. Write down all of the properties that each of the following binary relations
satisfies from among the five properties reflexive, symmetric, transitive, ir-
reflexive, and antisymmetric.

210 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

a. The similarity relation on the set of triangles.

b. The congruence relation on the set of triangles.
c. The relation on people that relates people with the same parents.

d. The subset relation on sets.
e. The if and only if relation on the set of statements that may be true or

false.
f. The relation on people that relates people with bachelor's degrees in

computer science.

g. The "is brother of" relation on the set of people.
h. The "has a common national language with" relation on countries.
i. The "speaks the primary language of" relation on the set of people.
j. The "is father of" relation on the set of people.

2. Write down all of the properties that each of the following relations satisfies
from among the properties reflexive, symmetric, transitive, irreflexive, and
antisymmetric.

a. R = {(a, b) a 2 + b2 = 1} over the real numbers.

b. R= {(a, b) I a2 = b2} over the real numbers.
c. R {= (x, y)I xmody =0andx, y G{f1,2,3,4}}.
d. R = {(x, y) x divides y} over the positive integers.
e. R = {(x, y) gcd(x, y) = 1} over the positive integers.

3. Explain why each of the following relations has the properties listed.

a. The empty relation 0 over any set is irreflexive, symmetric, antisym-
metric, and transitive.

b. For any set A, the universal relation A x A is reflexive, symmetric, and
transitive. If JAI = 1, then A x A is also antisymmetric.

4. For each of the following conditions, find the smallest relation over the set
A = {a, b, c} that satisfies the stated properties.

a. Reflexive but not symmetric and not transitive.

b. Symmetric but not reflexive and not transitive.
c. Transitive but not reflexive and not symmetric.

d. Reflexive and symmetric but not transitive.
e. Reflexive and transitive but not symmetric.
f. Symmetric and transitive but not reflexive.
g. Reflexive, symmetric, and transitive.

Composition

5. Write down suitable names for each of the following compositions.

a. isChildOf o isChildOf.

4.1 0 PROPERTIES OF BINARY RELATIONS 211

b. isSisterOf o isParentOf.
c. isSonOf o isSiblingOf.

d. isChildOf o isSiblingOf o isParentOf.

6. Suppose we define x R y to mean "x is the father of y and y has a brother."
Write R as the composition of two well-known relations.

7. For each of the following properties, find a binary relation R such that R
has the property but R2 does not.

a. Irreflexive.
b. Antisymmetric.

8. Given the relation "less" over the natural numbers N, describe each of the
following compositions as a set of the form {(x, y) I property}.

a. less o less.

b. less o less o less.

9. Given the three relations "less," "greater," and "notEqual" over the natural
numbers N, find each of the following compositions.

a. less o greater.

b. greater o less.

c. notEqual o less.

d. greater o notEqual.

10. Let R 1 {(x, y) e 2 x Z I x + y is even}. Find R2 .

Closure

11. Describe the reflexive closure of the empty relation 0 over a set A.

12. Find the symmetric closure of each of the following relations over the set { a,
b, c}.

a. 0.
b. {(a, b), (b, a)}.
c. {f(a, b), (b, c)}1.
d. {(a, a), (a, b), (c, b), (c, a)}.

13. Find the transitive closure of each of the following relations over the set {a,
b, c, d}.

a. 0.
b. {(a, b), (a, c), (b, c)}.
c. {(a, b), (b, a)}.

d. {(a, b), (b, c), (c, d), (d, a)}.

212 CHAPTER 4 u EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

14. Let R = {(x, y) E Z x Z I x + y is odd}. Use the results of Example 4.6 to
calculate t(R).

15. Find an appropriate name for the transitive closure of each of the following

relations.

a. isParentOf.

b. isChildOf.
c. {(x + 1, X) Ix N}.

Path Problems

16. Suppose G is the following weighted digraph, where the triple (i, j, d) rep-
resents edge (i, j) with distance d:

{(1, 2, 20), (1, 4, 5), (2, 3, 10), (3, 4, 10), (4, 3, 5), (4, 2, 10)}.

a. Draw the weighted adjacency matrix for G.
b. Use (4.9) to compute the two matrices representing the shortest dis-

tances and the shortest paths in G.

17. Write an algorithm to compute the shortest path between two points of a
weighted digraph from the matrix P produced by (4.9).

18. How many distinct path matrices can describe the shortest paths in the
following graph, where it is assumed that all edges have weight = 1?

19. Write algorithms to perform each of the following actions for a binary relation
R represented as an adjacency matrix.

a. Check R for reflexivity.

b. Check R for symmetry.
c. Check R for transitivity.

d. Compute r(R).
e. Compute s(R).

Proofs and Challenges

20. For each of the following properties, show that if R has the property, then
so does R 2 .

a. Reflexive.

b. Symmetric.
c. Transitive.

21. For the "less" relation over N, show that st(less) h ts(less).

4.2 n EQUIVALENCE RELATIONS 213

22. Prove each of the following statements about binary relations.

a. R o (S o T) = (R o S) o T. (associativity)

b. R o (S U T)= R o S U R o T.

c. Ro(SN T) CRoSnRo T.

23. Let A be a set, R be any binary relation on A, and E be the equality relation
on A. Show that E o R = R o E = R.

24. Prove each of the following statements about a binary relation R over a

set A.
a. If R is reflexive, then s(R) and t(R) are reflexive.

b. If R is symmetric, then r(R) and t(R) are symmetric.

c. If R is transitive, then r(R) is transitive.

25. Prove each of the following statements about a binary relation R over a
set A.

a. rt(R) = tr(R).

b. rs(R) = sr(R).

C. st(R) C ts(R).

4.2 Equivalence Relations

The word "equivalent" is used in many ways. For example, we've all seen state-
ments like "Two triangles are equivalent if their corresponding angles are equal."
We want to find some general properties that describe the idea of "equivalence."

The Equality Problem

We'll start by discussing the idea of "equality" because, to most people, "equal"
things are examples of "equivalent" things, whatever meaning is attached to the
word "equivalent." Let's consider the following problem.

The Equality Problem

Write a computer program to check whether two objects are equal.

What is equality? Does it depend on the elements of the set? Why is
equality important? What are some properties of equality? We all have an
intuitive notion of what equality is because we use it all the time. Equality is
important in computer science because programs use equality tests on data. If
a programming language doesn't provide an equality test for certain data, then
the programmer may need to implement such a test.

214 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

The simplest equality on a set A is basic equality: {(x, x) I x c A}. But most
of the time we use the word "equality" in a much broader context. For example,
suppose A is the set of arithmetic expressions made from natural numbers and
the symbol +. Thus A contains expressions like 3 + 7, 8, and 9 + 3 + 78. Most of
us already have a pretty good idea of what equality means for these expressions.
For example, we probably agree that 3 + 2 and 2 + 1 + 2 are equal. In other
words, two expressions (syntactic objects) are equal if they have the same value
(meaning or semantics), which is obtained by evaluating all + operations.

Are there some fundamental properties that hold for any definition of equal-
ity on a set A? Certainly we want to have x = x for each element x in A (the basic
equality on A). Also, whenever x = y, it ought to follow that y = x. Lastly, if
x = y and y = z, then x = z should hold. Of course, these are the three properties
reflexive, symmetric, and transitive.

Most equalities are more than just basic equality. That is, they equate differ-
ent syntactic objects that have the same meaning. In these cases the symmetric
and transitive properties are needed to convey our intuitive notion of equality.
For example, the following statements are true if we let "=" mean "has the same
value as":

If 2+3= 1+4, then 1+4= 2+3.

If22+5= 1+6 and 1+6=3+4, then 2+5=3+4.

4.2.1 Definition and Examples

Now we're ready to define equivalence. Any binary relation that is reflexive,
symmetric, and transitive is called an equivalence relation. Sometimes people
refer to an equivalence relation as an RST relation in order to remember the
three properties.

Equivalence relations are all around us. Of course, the basic equality relation
on any set is an equivalence relation. Similarly, the notion of equivalent triangles
is an equivalence relation.

For another example, suppose we relate two books in the Library of Congress
if their call numbers start with the same letter. (This is an instance in which it
seems to be official policy to have a number start with a letter.) This relation
is clearly an equivalence relation. Each book is related to itself (reflexive). If
book A and book B have call numbers that begin with the same letter, then so
do books B and A (symmetric). If books A and B have call numbers beginning
with the same letter and books B and C have call numbers beginning with the
same letter, then so do books A and C (transitive).

~ 4.1 6 Sample Equivalence Relations

Here are a few more samples of equivalence relations, where the symbol - denotes
each relation.

4.2 a EQUIVALENCE RELATIONS 215

a. For the set of integers, let x - y mean x + y is even.

b. For the set of nonzero rational numbers, let x "-. y mean xy > 0.

c. For the set of rational numbers, let x - y mean x - y is an integer.

d. For the set of triangles, let x " y mean x and y are similar.

e. For the set of integers, let x y y mean x mod 4 = y mod 4.

f. For the set of binary trees, let x - y mean x and y have the same depth.

g. For the set of binary trees, let x - y mean x and y have the same number of nodes.

h. For the set of real numbers, let x - y mean x =y

i. For the set of people, let x - y mean x and y have the same mother.

j. For the set of TV programs, let x - y mean x and y start at the same time and
day.

We can always verify that a binary relation is an equivalence relation by checking
that the relation is reflexive, symmetric, and transitive. But in some cases we
can determine equivalence by other means. For example, we have the following
intersection result, which we'll leave as an exercise.

Intersection Property of Equivalence (4.10)

If E and F are equivalence relations on the set A, then E n F is an equivalence
relation on A.

The practical use of (4.10) comes about when we notice that a relation - on a
set A is defined in the following form, where E and F are relations on A.

x - y iff x E y and x F y.

This is just another way of saying that x - y iff (x, y) E E n F. So if we can
show that E and F are equivalence relations, then (4.10) tells us that - is an
equivalence relation.

F 4.17 Equivalent Binary Trees

Suppose we define the relation - on the set of binary trees by

x - y iff x and y have the same depth and the same number of nodes.

From Example 4.16 we know that "has the same depth as" and "has the same
number of nodes as" are both equivalence relations. Therefore, - is an equiva-
lence relation.

216 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Equivalence Relations from Functions (Kernel Relations)

A very powerful technique for obtaining equivalence relations comes from the
fact that any function defines a natural equivalence relation on its domain by
relating elements that map to the same value. In other words, for any function
f : A -- B, we obtain an equivalence relation - on A by

x - y iff f(x) = f(y)

It's easy to see that - is an equivalence relation. The reflexive property fol-
lows because f(x) = f(x) for all x e A. The symmetric property follows be-
cause f(x) = f(y) implies f(y) = f(x). The transitive property follows because
f(x) = f(y) and f(y) = f(z) implies f(x) = f(z).

An equivalence relation defined in this way is called the kernel relation for
f. Let's state the result for reference.

Kernel Relations (4.11)

If f is a function with domain A, then the relation - defined by

x r'j y iff f(x) f(y)

is an equivalence relation on A, and it is called the kernel relation off.

For example, notice that the relation given in part (e) of Example 4.16 is the
kernel relation for the function f(x) = x mod 4. Thus part (e) of Example 4.16
is an equivalence relation by (4.11). Several other parts of Example 4.16 are also
kernel relations. The nice thing about kernel relations is that they are always
equivalence relations. So there is nothing to check. For example, we can use
(4.11) to generalize part (e) of Example 4.16 to the following important result.

Mod Function Equivalence (4.12)
If S is any set of integers and n is a positive integer, then the relation
defined by

x - y iff x mod n = y mod n

is an equivalence relation over S.

In many cases it's possible to show that a relation is an equivalence relation
by rewriting its definition so that it is the kernel relation of some function.

J 4.18 A Numeric Equivalence Relation

Suppose we're given the relation - defined on integers by

x - y if and only if x y is an even integer.

4.2 u EQUIVALENCE RELATIONS 217

We'll show that - is an equivalence relation by writing it as the kernel relation
of a function. Notice that x - y is even if and only if x and y are both even or
both odd. We can test whether an integer x is even or odd by checking whether
x mod 2 = 0 or 1. So we can write our original definition of - in terms of the
mod function:

x -y iff x - y is an even integer

iff x and y are both even or both odd

iff xmod2=ymod2.

We can now conclude that - is an equivalence relation because it's the kernel
relation of the function f defined by f(x) = x mod 2.

The Equivalence Problem

We can generalize the equality problem to the following more realistic problem
of equivalence.

The Equivalence Problem
Write a computer program to check whether two objects are equivalent.

4.19 Binary Trees with the Same Structure

Suppose we need two binary trees to be equivalent whenever they have the same
structure regardless of the values of the nodes. For binary trees S and T, let
equiv(S, T) be true if S and T are equivalent and false otherwise. Here is a
program to compute equiv.

equiv(S,T) =if S = () andT= (T then true

else if S=() orT=() then false

else equiv (left (S), left (T)) and equiv (right (S), right (T)).

218 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

4.2.2 Equivalence Classes

The nice thing about an equivalence relation over a set is that it defines a natural
way to group elements of the set into disjoint subsets. These subsets are called
equivalence classes, and here's the definition.

Equivalence Class

Let R be an equivalence relation on a set S. If a c S, then the equivalence
class of a, denoted by [a], is the subset of S consisting of all elements that
are equivalent to a. In other words, we have

[a] = {x S Ix R a}.

For example, we always have a c [a] because of the property a R a.

4.20 Equivalent Strings

Consider the relation - defined on strings over the alphabet {a, b} by

x - y iff x and y have the same length.

Notice that - is an equivalence relation because it is the kernel relation of the
length function. Some sample equivalences are abb ,- bab and ba - aa. Let's
look at a few equivalence classes.

[A] = {A},

[a] = {a,b},

[ab] = {ab, aa, ba, bb} ,

[aaa] = {aaa, aab, aba, baa, abb, bab, bba, bbb} .

Notice that any member of an equivalence class can define the class. For example,
we have

[a] = [b] = {a, b},

[ab] = [aa] = [ba] = [bb] = {ab, aa, ba, bb}.

Equivalence classes enjoy a very nice property, namely that any two such
classes are either equal or disjoint. Here is the result in more formal terms.

Property of Equivalences (4.13)
Let S be a set with an equivalence relation R. If a, b E S, then
either [a] = [b] or [a] n [b] = 0.

4.2 n EQUIVALENCE RELATIONS 219

Proof. It suffices to show that [a] n [b] - 0 implies [a] = [b]. If [a] n [b] #
0, then there is a common element c e [a] n [b]. It follows that cRa and cRb.
From the symmetric and transitive properties of R, we conclude that aRb. To
show that [a] = [b], we'll show that [a] C [b] and [b] C [a]. Let x e [a]. Then
xRa. Since aRb, the transitive proptery tells us that xRb, which implies that
x E [b]. Therefore, [a] c [b]. In an entirely similar manner we obtain [b] c [a].
Therefore, we have the desired result [a] = [b]. QED.

4.2.3 Partitions

By a partition of a set we mean a collection of nonempty subsets that are disjoint
from each other and whose union is the whole set. For example, the set S = {0,
1, 2, 3, 4, 5, 6, 7, 8, 9} can be partitioned in many ways, one of which consists
of the following three subsets of S:

{O, 1, 4, 9}, {2, 5, 8}, {3, 6, 7}.

Notice that, if we wanted to, we could define an equivalence relation on S by
saying that x - y iff x and y are in the same set of the partition. In other words,
we would have

[0] = {0, 1,4,9},

[2] = {2,5,8}.

[3] = {3, 6, 7}.

We can do this for any partition of any set.
But something more interesting happens when we start with an equivalence

relation on S. For example, let - be the following relation on S:

x - yiff x mod4= y mod 4.

This relation is an equivalence relation because it is the kernel relation of the
function f(x) = x mod 4. Now let's look at some of the equivalence classes.

[0] = {0,4,8}.

[1] = {1,5,9}.

[2] = {2,6}.

[3] = {3, 7}.

Notice that these equivalence classes form a partition of S. This is no fluke. It
always happens for any equivalence relation on any set S. To see this, notice
that if s c S, then s E [s] , which says that S is the union of the equivalence
classes. We also know from (4.13) that distinct equivalence classes are disjoint.
Therefore, the set of equivalence classes forms a partition of S. Here's a summary
of our discussion.

220 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Figure 4.8 A partition of students.

Equivalence Relations and Partitions (4.14)

If R is an equivalence relation on the set S, then the equivalence classes form
a partition of S. Conversely, if P is a partition of a set S, then there is an
equivalence relation on S whose equivalence classes are sets of P.

For example, suppose we relate two books in the Library of Congress if their
call numbers start with the same letter. This relation partitions the set of all
the books into 26 subsets, one subset for each letter of the alphabet.

For another example, let S denote the set of all students at some university,
and let M be the relation on S that relates two students if they have the same
major. (Assume here that every student has exactly one major.) It's easy to
see that M is an equivalence relation on S and each equivalence class is the set
of all the students majoring in the same subject. For example, one equivalence
class is the set of computer science majors. The partition of S is pictured by the
Venn diagram in Figure 4.8.

• 4.21 Partitioning a Set of Strings

The relation from Example 4.20 is defined on the set S = {a, bI* of all strings
over the alphabet {a, b} by

x - y iff x and y have the same length.

For each natural number n, the equivalence class [an] contains all strings over
{a, b} that have length n. The partition of S can be written as

S= {a, b}* - [A] U [a] U [aa] U ... U [an] U._..

4.2 U EQUIVALENCE RELATIONS 221

S4.22 A Partition of the Natural Numbers

Let - be the relation on the natural numbers defined by

x - Y iff [x/10J = Ly/10j.

This is an equivalence relation because it is the kernel relation of the function
f (x) = Lx/10]. After checking a few values we see that each equivalence class is
a decade of numbers. For example,

[0] = {0, 1, 2,3,4, 5, 6, 7,8,9},

[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19},

and in general, for any natural number n,

[IOn] = {1On, IOn + 1, ... , 1On + 9].

So we have N = [0 U [10] U... U [iOn] U..-.

F 4.23 Partitioning with Mod 5

Let R be the equivalence relation on the integers Z defined by

a R b iff a mod 5 = b mod 5.

After some checking we see that the partition of Z consists of the following five
equivalence classes

[0] = . -10, -5,0, 5, 10,....]

[2] -8, -3, 2, 7, 12,....

[3] {{...-7, -2,3,8,13,...},

[4] ...- 6,-1,4,9,14,....

Remember, it doesn't matter which element of a class is used to represent it.
For example, [0] = [5] = [-15]. It is clear that the five classes are disjoint from
each other and that Z is the union of the five classes.

F 4.24 Program Testing

If the input data set for a program is infinite, then the program can't be tested

on every input. However, every program has a finite number of instructions. So
we should be able to find a finite data set to cause all instructions of the program

222 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

to be executed. For example, suppose p is the following program, where x is an
integer and q, r, and s represent other parts of the program:

p(x): if x > 0 then q(x)
else if x is even then r(x)

else s(x)

fi

fi

The condition "x > 0" causes a natural partition of the integers into the positives
and the nonpositives. The condition "x is even" causes a natural partition of the
nonpositives into the even nonpositives and the odd nonpositives. So we have
the following partition of the integers:

{1, 2, 3, ... }, {0, -2, -4, ... },{-1, -3, -5,...

Now we can test the instructions in q, r, and s by picking three numbers, one
from each set of the partition. For example, p(l), p(O), and p(-l) will do the
job. Of course, further partitioning may be necessary if q, r, or s contains
further conditional statements. The equivalence relation induced by the partition
relates two integers x and y if and only if p(x) and p(y) execute the same set of
instructions.

Refinement of a Partition

Suppose that P and Q are two partitions of a set S. If each set of P is a subset
of a set in Q, then P is a refinement of Q. We also say P is finer than Q or Q
is coarser than P. The finest of all partitions on S is the collection of singleton
sets. The coarsest of all partitions of S is the set S itself.

For example, the following partitions of S {a, b, c, d} are successive
refinements from the coarsest to finest:

{ a, b, c, d} (coarsest)
{a, b}, {c, d}
{a, b}, {c}, {d}

{a}, {b}, {c}, {d} (finest).

J 4.25 Partitioning with Mod 2

Let R be the relation over N defined by

a R b iff a mod 2 = b mod 2.

4.2 m EQUIVALENCE RELATIONS 223

Then R is an equivalence relation because it is the kernel relation of the function
f defined by f(x) = x mod 2. The corresponding partition of N consists of the
two subsets

[0] = {0, 2, 4, 6, ... }
[1] = {1,3,5,7,...}.

Can we find a refinement of this partition? Sure. Let T be defined by

a T b iff a mod 4 = b mod 4.

T induces the following partition of N that is a refinement of the partition
induced by R because we get the following four equivalence classes:

[0 ={0,4,8,12,...},
[1)= {1, 5,9,13,...}1,

[2] ={2,6,10,14,...},

[3]= {3, 7,11,15,... }.

This partition is indeed a refinement of the preceding partition. Can we find a
refinement of this partition? Yes, because we can continue the process forever.
Just let k be a power of 2 and define Tk by

a Tk b iff a mod k = b mod k.

So the partition for each T2k is a refinement of the partition for Tk.

We noted in (4.10) that the intersection of equivalence relations over a set
A is also an equivalence relation over A. It also turns out that the equivalence
classes for the intersection are intersections of equivalence classes for the given
relations. Here is the statement and we'll leave the proof as an exercise.

Intersection Property of Equivalence (4.15)

Let E and F be equivalence relations on a set A. Then the equivalence classes
for the relation E n F are of the form [xj = [X] E n [X] F, where [XIE and [x] F
denote the equivalence classes of x for E and F, respectively.

4.26 Intersecting Equivalence Relations

Let - be the relation on the natural numbers defined by

x - y iff [x/10J = [y/10] and x + y is even.

224 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Notice that - is the intersection of two relations E and F, where x E y means
[x/10J = [y/10J and x F y means x + y is even. We can observe that x + y is
even if and only if x mod 2 = y mod 2. So both E and F are kernel relations
of functions and thus are equivalence relations. Therefore, - is an equivalence
relation by (4.10). We computed the equivalence classes for E and F in Examples
4.22 and 4.25. The equivalence classes for E are of the following form for each
natural number n.

[i0n] = {10n, 10n + 1, ... , i0n + 9].

The equivalence classes for F are

[0] = f{0, 2,4,6,...},

[1] = {1,3,5,7,...}.

By (4.15) the equivalence classes for - have the following form for each n:

[10n] n [0] = {10n, 10n + 2, i0n + 4, 10n + 6, iOn + 8},

[10n] n [1] = {10n + 1, 10n + 3, I0n + 5, 10n + 7, i0n + 9}.

S4.27 Solving the Equality Problem

If we want to define an equality relation on a set S of objects that do not have
any established meaning, then we can use the basic equality relation {(X, x) I x
G S}. On the other hand, suppose a meaning has been assigned to each element
of S. We can represent the meaning by a mapping m from S to a set of values
V. In other words, we have a function m : S -- V. It's natural to define two
elements of S to be equal if they have the same meaning. That is, we define x =
y if and only if m(x) m m(y). This equality relation is just the kernel relation
of m.

For example, let S denote the set of arithmetic expressions made from
nonempty unary strings and the symbol +. For example, some typical expres-
sions in S are 1, 11, 111, 1+1, 11+111+1. Now let's assign a meaning to each
expression in S. Let m(1•) = n for each positive natural number n. If e + e' is
an expression of S, we define m(e + e') = m(e) + m(e'). We'll assume that +
is applied left to right. For example, the value of the expression 1 + 111 + 11
can be calculated as follows:

m (1 + III + 11) = n((1 + 111) + 11)

= m (1 + 111) + M, (11)
= m (1) + m (111) + 2

1+3+2

=6.

4.2 m EQUIVALENCE RELATIONS 225

If we define two expressions of S to be equal when they have the same meaning,
then the desired equality relation on S is the kernel relation of m. So the partition
of S induced by the kernel relation of m consists of the sets of expressions
with equal values. For example, the equivalence class [1111 contains the eight
expressions

1+1+1+1, 1+1+11, 1+11+1, 11+1+1, 11+11, 1+111, 111+1, 1111.

4.2.4 Generating Equivalence Relations
Any binary relation can be considered as the generator of an equivalence relation
obtained by adding just enough pairs to make the result reflexive, symmetric, and
transitive. In other words, we can take the reflexive, symmetric, and transitive
closures of the binary relation.

Does the order that we take closures make a difference? For example, what
about str(R)? An example will suffice to show that str(R) need not be an equiv-
alence relation. Let A = {a, b, c} and R = {(a, b), (a, c), (b, b)}. Then

str(R) = {(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)}.

This relation is reflexive and symmetric, but it's not transitive. On the other
hand, we have tsr(R) = A x A, which is an equivalence relation. As the next
result shows, tsr(R) is always an equivalence relation.

The Smallest Equivalence Relation (4.16)

If R is a binary relation on A, then tsr(R) is the smallest equivalence relation
that contains R.

Proof: The inheritance properties of (4.4) tell us that tsr(R) is an equivalence
relation. To see that it's the smallest equivalence relation containing R, we'll
let T be an arbitrary equivalence relation containing R. Since R C T and T
is reflexive, it follows that r(R) c T. Since r(R) C T and T is symmetric, it
follows that sr(R) C T. Since sr(R) C T and T is transitive, it follows that
tsr(R) C T. So tsr(R) is contained in every equivalence relation that contains
R. Thus it's the smallest equivalence relation containing R. QED.

F 4.28 Family Trees

Suppose R is the "is parent of" relation for a set of people. In other words,
(x, y) G R iff x is a parent of y. Suppose we want to answer questions like the
following:

Is x a descendant of y?
Is x an ancestor of y?

226 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Are x and y related in some way?
What is the relationship between x and y?

Each of these questions can be answered from the given information by finding
whether an appropriate path exists between x and y. But if we construct t(R),
then things get better because (x, y) G t(R) iff x is an ancester of y. So we can
find out whether x is an ancestor of y or x is a descendant of y by looking to see
whether (x. y) E t(R) or (y, x) c t(R).

If we want to know whether x and y are related in some way, then we would
have to look for paths in t(R) taking each of x and y to a common ancestor.
But if we construct ts(R), then things get better because (x, y) G ts(R) iff x and
y have a common ancestor. So we can find out whether x and y are related in
some way by looking to see whether (x, y) e ts(R).

If x and y are related, then we might want to know the relationship. This
question is asking for paths from x and y to a common ancestor, which can
be done by searching t(R) for the common ancestor and keeping track of each
person along the way.

Notice also that the set of people can be partitioned into family trees by the
equivalence relation tsr(R). So the simple "is parent of" relation is the generator
of an equivalence relation that constructs family trees.

An Equivalence Problem

Suppose we have an equivalence relation over a set S that is generated by a
given set of pairs. For example, the equivalence relation might be the family
relationship "is related to" and the generators might a set of parent-child pairs.

Can we represent the generators in such a way that we can find out whether
two arbitrary elements of S are equivalent? If two elements are equivalent, can we
find a sequence of generators to confirm the fact? The answer to both questions
is yes. We'll present a solution due to Galler and Fischer [1964], which uses a
special kind of tree structure to represent the equivalence classes.

The idea is to use the generating pairs to build the partition of S induced
by the equivalence relation. For example, let S = {1, 2, ... , 10}, let - denote
the equivalence relation on S, and let the generators be the following pairs:

1 8, 4 5, 9 2, 4 - 10, 3 7, 6 - 3, 4 -9.

To have something concrete in mind, let the numbers 1, 2, ... , 10 be people,
let '-. be "is related to," and let the generators be "parent - child" pairs.

The construction process starts by building the following ten singleton equiv-
alence classes to represent the partition of S caused by the reflexive property

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}.

4.2 E EQUIVALENCE RELATIONS 227

8 9 o3

5 10

2 7

Figure 4.9 Equivalence classes as trees.

i 1 2 3 4 5 6 7 8 9 10

pHi 0 9 6 0 4 0 3 1 4 4

Figure 4.10 Equivalence classes as an array.

Now we process the generators, one at a time. The generator 1 - 8 is
processed by forming the union of the equivalence classes that contain 1 and 8.
In other words, the partition becomes

{1, 8}, {2}, {3}, {4}, {5}, {6}, {7}, {9}, {10}.

Continuing in this manner to process the other generators, we eventually obtain
the partition of S consisting of the following three equivalence classes.

{1, 8}, {2, 4, 5, 9, 10}, {3, 6, 7}.

Representing Equivalence Classes

To answer questions about an equivalence relation, we need to consider its rep-
resentation. We can represent each equivalence class in the partition as a tree,

where the generator a - b will be processed by creating the branch "a is the
parent of b." For our example, if we process the generators in the order in which

they are written, then we obtain the three trees in Figure 4.9.
A simple way to represent these trees is with a 10-tuple (a 1-dimensional

array of size 10) named p, where p[ij denotes the parent of i. We'll let p[i] = 0
mean that i is a root. Figure 4.10 shows the three equivalence classes represented
by p.

Now it's easy to answer the question "Is a - b?" Just find the roots of the
trees to which a and b belong. If the roots are the same, the answer is yes. If
the answer is yes, then there is another question, "Can you find a sequence of

equivalences to show that a - b?" One way to do this is to locate one of the
numbers, say b, and rearrange the tree to which b belongs so that b becomes the

root. This can be done easily by reversing the links from b to the root. Once we
have b at the root, it's an easy matter to read off the equivalences from a to b.
We'll leave it as an exercise to construct an algorithm to do the reversing.

For example, if we ask whether 5 - 2, we find that 5 and 2 belong to the
same tree. So the answer is yes. To find a set of equivalences to prove that

228 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

99

2

5 10

Figure 4.11 Proof that 5 - 2.

5 - 2, we can reverse the links from 2 to the root of the tree. The before and
after pictures are given in Figure 4.11.

Now it's an easy computation to traverse the tree from 5 to the root 2 and
read off the equivalences 5 - 4, 4 - 9, and 9 - 2.

Kruskal's Algorithm for Minimal Spanning Trees

In Chapter 1 we discussed Prim's algorithm to find a minimal spanning tree for
a connected weighted undirected graph. Let's look an another such algorithm,
due to Kruskal [1956], which uses equivalence classes.

The algorithm constructs a minimal spanning tree as follows: Starting with
an empty tree, an edge {a, b} of smallest weight is chosen from the graph. If
there is no path in the tree from a to b, then the edge {a, b} is added to the
tree. This process is repeated with the remaining edges of the graph until the
tree contains all vertices of the graph.

At any point in the algorithm, the edges in the spanning tree define an
equivalence relation on the set of vertices of the graph. Two vertices a and b are
equivalent iff there is a path between a and b in the tree. Whenever an edge { a,
b} is added to the spanning tree, the equivalence relation is modified by creating
the equivalence class [a] U [b]. The algorithm ends when there is exactly one
equivalence class consisting of all the vertices of the graph. Here are the steps
of the algorithm.

Kruskal's Algorithm

1. Sort the edges of the graph by weight, and let L be the sorted list.

2. Let T be the minimal spanning tree and initialize T := 0.

3. For each vertex v of the graph, create the equivalence class [vJ = {v}.

4. while there are 2 or more equivalence classes do
Let {a, b} be the edge at the head of L;
L := tail(L);

if [al # [b1 then
T := T U {{a, b}};

Replace the equivalence classes [a] and [b] by [a] U [b]
fi

od

4.2 u EQUIVALENCE RELATIONS 229

To implement the algorithm, we must find a representation for the equiva-
lence classes. For example, we might use a parent array like the one we've been
discussing.

_ 4.29 Minimal Spanning Trees

We'll use Kruskal's algorithm to construct a minimal spanning tree for the fol-
lowing weighted graph:

2 b

2
C

2
d

To see how the algorithm works, we'll do a trace of each step. We'll assume that
the edges have been sorted by weight in the following order:

{a, e}, {b, d}, {c, d}, {a, b}, {a, d}, {e, d}, {b, c}.

The following table shows the value of the spanning tree T and the equivalence
classes at each step, starting with the initialization values.

Spanning Tree T Equivalence Classes
{} {a}, {b},{c},{d},{e

{{a,e}} {a,e},{b},{c},{d}
{{a,e}, {b,d}} {a,e}, {b,d} , {c}

{{a, e}, {b,d}, {c,d}} {a, e}, {b,c,d}

{{a, e}, {b, d}, {c,d}, {a, b}} {a, b, c, d, e}

The algorithm stops because there is only one equivalence class. So T is a
spanning treee for the graph.

O Exercises

Properties

1. Verify that each of the following relations is an equivalence relation.

a. x - y iff x and y are points in a plane equidistant from a fixed point.
b. s - t iff s and t are strings with the same occurrences of each letter.

230 CHAPTER 4 E EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

c. x - y iff x + y is even, over the set of natural numbers.

d. x - y iff x - y is an integer, over the set of rational numbers.

e. x - y iff xy > 0, over the set of nonzero rational numbers.

2. Each of the following relations is not an equivalence relation. In each case,
find the properties that are not satisfied.

a. a R b iff a + b is odd, over the set of integers.

b. a R b iff a/b is an integer, over the set of nonzero rational numbers.

c. a R b iff Ia - b I <- 5, over the set of natural numbers.

d. aR biffeither amod4= bmod4 or amod6= bmod6,overN.

e. a R biffx < a/10<x + landx < b/l0<x + l for some integer x.

Equivalence Classes

3. For each of the following functions f with domain N, describe the equivalence

classes of the kernel relation of f.

a. f(x) = 7.

b. f(x) = x.
c. f(x) = floor(x/2).

d. f(x) = floor(x/3).

e. f(x) - floor(x/4).

f. f(x) = floor(x/k) for a fixed positive integer k.

g. f(x) =if 0 < x < 10 then 10 else x -1.

4. For each of the following functions f, describe the equivalence classes of the
kernel relation of f that partition the domain of f.

a. f: Z - N is defined by f(x) = Ix1.

b. f : R -Z Z is defined by f(x) = floor(x).

5. Describe the equivalence classes for each of the following relations on N.

a. x- yiffxmod2= ymod2 and xmod3= ymod3.

b. x - yiffxmod2= ymod2 andxmod4= ymod4.

c. x - yiffxmod4= ymod4 andxmod6= ymod6.

6. Given the following set of words.

{rot, tot, root, toot, roto, toto, too, to, ottol.

a. Let f be the function that maps a word to its set of letters. For the
kernel relation of f, describe the equivalence classes.

b. Let f be the function that maps a word to its bag of letters. For the
kernel relation of f, describe the equivalence classes.

4.2 n EQUIVALENCE RELATIONS 231

Spanning Trees

7. Use Kruskal's algorithm to find a minimal spanning tree for each of the
following weighted graphs.

a

a 2 b 2 1

11f 3 b

2 2 2
C d 2 2 2

2 1 3 1

a. 221 C

b. d

Proofs and Challenges

8. Let R be a relation on a set S such that R is symmetric and transitive and
for each x E S there is an element y c S such that x R y. Prove that R is
an equivalence relation (i.e., prove that R is reflexive).

9. Let E and F be equivalence relations on the set A, Show that E n F is an
equivalence relation on A.

10. Let E and F be equivalence relations on a set A and for each x E A let [xIE

and [x] F denote the equivalence classes of x for E and F, respectively. Show
that the equivalence classes for the relation E n F are of the form [x] = [I] E

n [x] F for allx E A.

11. Which relations among the following list are equal to tsr(R), the smallest
equivalence relation generated by R?

trs(R), str(R), srt(R), rst(R), rts(R).

12. In the equivalence problem we represented equivalence classes as a set of
trees, where the nodes of the trees are the numbers 1, 2, ... , n. Suppose the
trees are represented by an array p[1], ... , p[n], where p[i] is the parent of
i. Suppose also that p[i] = 0 when i is a root. Write a procedure that takes
a node i and rearranges the tree that i belongs to so that i is the root, by
reversing the links from the root to i.

13. (Factoring a Function). An interesting consequence of equivalence relations
and partitions is that any function f can be factored into a composition of
two functions, one an injection and one a surjection. For a function f : A
-* B, let P be the partition of A by the kernel relation of f. Then define the
function s : A --- P by s(a) = [a] and define i : P -- B by i([a]) = f(a).
Prove that s is a surjection, i is an injection, and f = i o s.

232 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

4.3 Order Relations

Each day we see the idea of "order" used in many different ways. For example,
we might encounter the expression 1 < 2. We might notice that someone is
older than someone else. We might be interested in the third component of the
tuple (x, d, c, m). We might try to follow a recipe. Or we might see that the
word "aardvark" resides at a certain place in the dictionary. The concept of
order occurs in many different forms, but they all have the common idea of some
object preceding another object.

Two Essential Properties of Order

Let's try to formally describe the concept of order. To have an ordering, we
need a set of elements together with a binary relation having certain properties.

What are these properties?
Well, our intuition tells us that if a, b, and c are objects that are ordered

so that a precedes b and b precedes c, then we certainly want a to precede c.
In other words, an ordering should be transitive. For example, if a, b, and c are
natural numbers and a < b and b < c, then we have a < c.

Our intuition also tells us that we don't want distinct objects preceding each
other. In other words, if a and b are distinct objects and a precedes b, then b
can't precede a. In still other words, if a precedes b and b precedes a then we
better have a = b. For example, if a, b, and c are natural numbers and a < b
and b < a, we certainly want a = b. In other words, an ordering should be
antisymmetric.

For example, over the natural numbers we recognize that the relation < is
an ordering and we notice that it is transitive and antisymmetric. Similarly, the
relation < is an ordering and we notice that it is transitive and antisymmetric. So
the two essential properties of any kind of order are antisymmetric and transitive.

Let's look at how different orderings can occur in trying to perform the tasks

of a recipe.

J 4.30 A Pancake Recipe

Suppose we have the following recipe for making pancakes.

1. Mix the dry ingredients (flour, sugar, baking powder) in a bowl.

2. Mix the wet ingredients (milk, eggs) in a bowl.

3. Mix the wet and dry ingredients together.

4. Oil the pan. (It's an old pan.)

5. Heat the pan.

4.3 N ORDER RELATIONS 233

2-- 3 0 6 -- 7

4 -p. 5 1

Figure 4.12 A pancake recipe.

6. Make a test pancake and throw it away.

7. Make pancakes.

Steps 1 through 7 indicate an ordering for the steps of the recipe. But the steps
could also be done in some other order. To help us discover some other orders,
let's define a relation R on the seven steps of the pancake recipe as follows:

i R j means that step i must be done before step j.

Notice that R is antisymmetric and transitive. We can picture R as the digraph
(without the transitive arrows) in Figure 4.12.

The graph helps us pick out different orders for the steps of the recipe. For
example, the following ordering of steps will produce pancakes just as well.

4, 5, 2, 1, 3, 6, 7.

So there are several ways to perform the recipe. For example, three people could
work in parallel doing tasks 1, 2, and 4 at the same time.

This example demonstrates that different orderings for time-oriented tasks
are possible whenever some tasks can be done at different times without changing
the outcome. The orderings can be discovered by modeling the tasks by a binary
relation R defined by

i R j means that step i must be done before step j.

Notice that R is irreflexive because time-oriented tasks can't be done before
themselves. If there are at least two tasks that are not related by R, as in
Example 4.30, then there will be at least two different orderings of the tasks.

4.3.1 Partial Orders

Now let's get down to business and discuss the basic ideas and techniques of
ordering. The two essential properties of order suffice to define the notion of
partial order.

234 CHAPTER 4 M EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Definition of a Partial Order
A binary relation is called a partial order if it is antisymmetric and transitive.
The set over which a partial order is defined is called a partially ordered set-
or poset for short. If we want to emphasize the fact that R is the partial
order that makes S a poset, we'll write (S, R) and call it a poset.

For example, in our pancake example we defined a partial order R on the
set of recipe steps {1, 2, 3, 4, 5, 6, 7}. So we can say that ({1, 2, 3, 4, 5, 6, 7},R)
is a poset. There are many more examples of partial orders. For example,
(N, <) and (N, <) are posets because the relations < and < are both antisym-
metric and transitive.

The word "partial" is used in the definition because we include the possibility
that some elements may not be related to each other, as in the pancake recipe
example. For another example, consider the subset relation on power({a, b, c}).
Certainly the subset relation is antisymmetric and transitive. So we can say that
(power({a, b, c}), C) is a poset. Notice that there are some subsets that are
not related. For example, {a, b} and {a, c} are not related by the relation C.

Suppose R is a binary relation on a set S and x, y c S. We say that x and
y are comparable if either x R y or y R x. In other words, elements that are
related are comparable. If every pair of distinct elements in a partial order are
comparable, then the order is called a total order (also called a linear order). If
R is a total order on the set S, then we also say that S is a totally ordered set
or a linearly ordered set. For example, the natural numbers are totally ordered
by both "less" and "lessOrEqual." In other words, (N, <) and (N, <) are totally
ordered sets.

S4.31 The Divides Relation

Let's look at some interesting posets that can be defined by the divides relation,
First we'll consider the set N. If aIb and bIc, then aIc. Thus is transitive. Also,
if alb and bla, then it must be the case that a = b. So is antisymmetric.
Therefore,

(N, 1) is a poset.

But (N, 1) is not totally ordered because, for example, 2 and 3 are not comparable.
To obtain a total order, we need to consider subsets of N. For example, it's easy

to see that for any m and n, either 2 m1 2 n or 2 n' 2 m. Therefore,

({2n I n C N}, 1) is a totally ordered set.

Let's consider some finite subsets of N. For example, it's easy to see that

({1, 3, 9, 45}, 1) is a totally ordered set.

4.3 * ORDER RELATIONS 235

It's also easy to see that

({1, 2, 3, 4}, I) is a poset that is not totally ordered

because 3 can't be compared to either 2 or 4.

We should note that the literature contains two different definitions of par-
tial order. All definitions require the antisymmetric and transitive properties,
but some authors also require the reflexive property. Since we require only the
antisymmetric and transitive properties, if a partial order is reflexive and we
wish to emphasize it, we'll call it a reflexive partial order. For example, < is
a reflexive partial order on the integers. If a partial order is irreflexive and we
wish to emphasize it, we'll call it an irreflexive partial order. For example, < is
an irrefiexive partial order on the integers.

Notation for Partial Orders

When talking about partial orders, we'll often use the symbols

-< and -<

to stand for an irreflexive partial order and a reflexive partial order, respectively.
We can read a -< b as "a is less than b," and we can read a -< b as "a is less
than or equal to b." The two symbols can be defined in terms of each other. For
example, if (A, -<) is a poset, then we can define the relation -< in terms of -< by
writing

-<= -U{(x,x) xE A}.

In other words, - is the reflexive closure of -<. So x -j y always means x -< y or
x = y. Similarly, if KB, --<) is a poset, then we can define the relation -< in terms
of -< by writing

-< = - {(x, x) Ix E B}.

Therefore, x -< y always means x _< y and x z y. We also write the expression
y >- x to mean the same thing as x -< y.

Chains

A set of elements in a poset is called a chain if all the elements are comparable-
linked to each other. For example, any totally ordered set is itself a chain. A
sequence of elements xl, X2, X3, ... in a poset is said to be descending chain if
xi ý- xj+1 for each i > 1. We can write the descending chain in the following
familiar form:

X1 > X2 >- X3 - ...

236 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

47

6 12

13 5
4 3

12 4 2

Pancake recipe (Example 4.30) ({2, 3, 4, 12}, I)

Figure 4.13 Two poset diagrams.

For example, 4 > 2 > 0 > -2 > -4 > -6 >... is a descending chain in (2, <).
For another example, {a, b, c} D {a, b} D {a} D 0 is a finite descending chain
in (power({a, b, c}), C). We can define an ascending chain of elements in a
similar way. For example, 1 2 I 4 .. 2' ... is an ascending chain in the
poset (N, 1).

Predecessors and Successors

If x -< y, then we say that x is a predecessor of y, or y is a successor of x. Suppose
that x -< y and there are no elements between x and y. In other words, suppose
we have the following situation:

{z E A I x -< z -< y} = 0.

When this is the case, we say that x is an immediate predecessor of y, or y is an
immediate successor of x. In a finite poset an element with a successor has an
immediate successor. Some infinite poses also have this property. For example,
every natural number x has an immediate successor x + 1 with respect to the
"less" relation. But no rational number has an immediate successor with respect
to the "less" relation.

Poset Diagrams

A poset can be represented by a special graph called a poset diagram or a Hasse
diagram-after the mathematician Helmut Hasse (1898-1979). Whenever x -< y
and x is an immediate predecessor of y, then place an edge (x, y) in the poset
diagram with x at a lower level than y. A poset diagram can often help us
observe certain properties of a poset. For example, the two poset diagrams in
Figure 4.13 represent the pancake recipe poset from Example 4.30 and the poset
({2, 3, 4, 12}, I).

The three poset diagrams shown in Figure 4.14 are for the natural numbers
and the integers with their usual orderings and for power({ a, b}) with the subset
relation.

4.3 U ORDER RELATIONS 237

2
-1 {}b}

2
-2 (1

0 0

Natural numbers Integers Power ({a, b})

Figure 4.14 Three poset diagrams.

Maxima, Minima, and Bounds

When we have a partially ordered set, it's natural to use words like "minimal,"
"least," "maximal," and "greatest." Let's give these words some formal defini-
tions.

Suppose that S is any nonempty subset of a poset P. An element x e S is
called a minimal element of S if x has no predecessors in S. An element x E
S is called the least clement of S if x is minimal and x -_ y for all y E S. For
example, let's consider the poset (N, I).

The subset {2, 4, 5, 10} has two minimal elements, 2 and 5.
The subset {2, 4, 12} has least element 2.
The set N has least element 1 because IIx for all x E N.

For another example, let's consider the poset (power({a, b, c}), C). The subset
{{a, b}, {a}, {b}} has two minimal elements, {a} and {b}. The power set itself
has least element 0.

In a similar way we can define maximal elements and the greatest element
of a subset of a poset. For example, let's consider the poset (N, 1.

The subset {2, 4, 5, 10} has two maximal elements, 4 and 10.
The subset {2, 4, 12} has greatest element 12.
The set N itself has greatest element 0 because x10 for all x E N.

For another example, let's consider the poset (power({a, b, c}), C). The subset
{0, {a}, {b}} has two maximal elements, {a} and {b}. The power set itself has
greatest element {a, b, e}.

Some sets may not have any minimal elements, yet still be bounded below
by some element. For example, the set of positive rational numbers has no least
element yet is bounded below by the number 0. Let's introduce some standard
terminology that can be used to discuss ideas like this.

238 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

6

4 5

2 3

Figure 4.15 A poset diagram.

If S is a nonempty subset of a poset P, an element x E P is called a lower
bound of S if x _• y for all y E S. An element x C P is called the greatest lower
bound (or gib) of S if x is a lower bound and z -< x for all lower bounds z of
S. The expression glb(S) denotes the greatest lower bound of S, if it exists. For

example, if we let Q+ denote the set of positive rational numbers, then over the
poset (Q, <) we have glb(Q+) = 0.

In a similar way we define upper bounds for a subset S of the poset P. An
element x C P is called an upper bound of S if y _- x for all y e S. An element
x G P is called the least upper bound (or lub) of S if x is an upper bound and x
-< z for all upper bounds z of S. The expression lub(S) denotes the least upper
bound of S, if it exists. For example, lub(Q+) does not exist in (Q, <).

For another example, in the poset (N, <) , every finite subset has a glb---the
least element and a lub-the greatest element. Every infinite subset has a glb
but no upper bound.

Can subsets have upper bounds without having a least upper bound? Sure.
Here's an example.

J 4.32 Upper Bounds

Suppose the set {1, 2, 3, 4, 5, 6} represents six time-oriented tasks. You can
think of the numbers as chapters in a book, as processes to be executed on a
computer, or as the steps in a recipe for making ice cream. In any case, suppose
the tasks are partially ordered according to the poset diagram in Figure 4.15.

The subset {2, 3} is bounded above, but it has no least upper bound. Notice
that 4, 5, and 6 are all upper bounds of {2, 3}, but none of them is a least upper
bound.

Lattices

A lattice is a poset with the property that every pair of elements has a glb and
a lub. So the poset of Example 4.32 is not a lattice. For example, (N, <) is a

4.3 * ORDER RELATIONS 239

Figure 4.16 Two lattices.

lattice in which the glb of two elements is their minimum and the lub is their
maximum. For another example, if A is any set, then (power(A), C) is a lattice,
where glb(X, Y) = X n Y and lub(X, Y) = X U Y. The word "lattice" is used
because lattices that aren't totally ordered often have poset diagrams that look
like "latticeworks" or "trellisworks."

For example, the two poset diagrams in Figure 4.16 represent lattices. These
two poset diagrams can represent many different lattices. For example, the poset
diagram on the left represents the lattice whose elements are the positive divisors
of 36, ordered by the divides relation. In other words, it represents the lattice
({1, 2, 3, 4, 6, 9, 12, 18, 36}, 1). See whether you can label the poset diagram with
these numbers. The diagram on the right represents the lattice (power({ a, b, c}),
C). It also represents the lattice whose elements are the positive divisors of 70,
ordered by the divides relation. See whether you can label the poset diagram
with both of these lattices. We'll give some more examples in the exercises.

4.3.2 Topological Sorting

A typical computing task is to sort a list of elements taken from a totally ordered
set. Here's the problem statement.

The Sorting Problem

Find an algorithm to sort a list of elements from a totally ordered set.

For example, suppose we're given the list (Xl, X2, ... , xn), where the ele-
ments of the list are related by a total order relation R. We might sort the list
by a program "sort," which we could call as follows:

sort(R, (Xi, X2, ... ,))

For example, we should be able to obtain the following results with sort:

sort (<, (8, 3, 10, 5)) = (3, 5, 8, 10),

sort (>, (8,3, 10, 5)) = (10, 8, 5, 3).

240 CHAPTER 4 n EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Programming languages normally come equipped with several totally or-
dered sets. If a total order R is not part of the language, then R must be
implemented as a relational test, which can then be called into action whenever
a comparison is required in the sorting algorithm.

Topological Sorting

Can a partially ordered set be sorted? The answer is yes if we broaden our idea
of what sorting means. Here's the problem statement.

The Topological Sorting Problem.

Find an algorithm to sort a list of elements from a partially ordered set.

How can we "sort" a list when some elements may not be comparable? Well,
we try to find a listing that maintains the partial ordering, as in the pancake
recipe from Example 4.30. If R is a partial order on a set, then a list of elements
from the set is topologically sorted if, whenever two elements in the list satisfy a
R b, a is to the left of b in the list.

The ordering of a set of tasks is a topological sorting problem. For example,
the list (4, 5, 2, 1, 3, 6, 7) is a topological sort of the steps in the pancake recipe
from Example 4.30. Another example of a topological sort is the ordering of the
chapters in a textbook in which the partial order is defined to be the dependence
of one chapter upon another. In other words, we hope that we don't have to read
some chapter further on in the book to understand what we're reading now.

Is there a technique to do topological sorting? Yes. Suppose R is a partial
order on a finite set A. For each element y E A, let P(y) be the number of
immediate predecessors of y, and let S(y) be the set of immediate successors of
y. Let Sources be the set of sources minimal elements-in A. Therefore y is a
source if and only if P(y) = 0. A topological sort algorithm goes something like
the following:

Topological Sort Algorithm (4.17)

While the set of sources is not empty, do the following steps:

1. Output a source y.

2. For all z in S(y), decrement P(z); if P(z) = 0, then add z to Sources.

4.3 w ORDER RELATIONS 241

,7

64

1 ", 3
5

1 2 4

Figure 4.17 Poset of a pancake recipe.

A more detailed description of the algorithm can be given as follows:

Detailed Topological Sort

while Sources # 0 do

Pick a source y from Sources;

Output y;

for each z in S(y) do

P(z) := P(z) - 1;

if P(z) = 0 then Sources := Sources U {z}

od;

Sources := Sources - {y};
od

Let's do an example that includes some details on how the data for the

algorithm might be represented.

_ 4.33 A Topological Sort

We'll consider the steps of the pancake recipe from Example 4.30. Figure 4.17
shows the poset diagram for the steps of the recipe.

The initial set of sources is {1, 2, 4}. Letting P be an array of integers, we
get the following initial table of predecessor counts:

i 1 2 3 4 5 6 7

P(i) 0 0 2 0 1 2 1

242 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

The following table is the initial table of successor sets S:

i 1 2 3 4 5 6 7

S(i) {3} {3} {6} {5} {6} {7} 0

You should trace the algorithm for these data representations.

There is a very interesting and efficient implementation of algorithm (4.17) in
Knuth [1968]. It involves the construction of a novel data structure to represent
the set of sources, the sets S(y) for each y, and the numbers P(z) for each z.

4.3.3 Well-Founded Orders

Let's look at a special property of the natural numbers. Suppose we're given a
descending chain of natural numbers that begins as follows:

29> 27> 25 >-.

Can this descending chain continue forever? Of course not. We know that 0
is the least natural number, so the given chain must stop after only a finite
number of terms. This is not an earthshaking discovery, but it is an example of
the property of well-foundedness that we're about to discuss.

Definition of a Well-Founded Order

We're going to consider posets with the property that every descending chain of
elements is finite. So we'll give these posets a name.

Well-Founded
A poset is said to be well-founded if every descending chain of elements is
finite. In this case, the partial order is called a well-founded order.

For example, we've seen that N is a well-founded set with respect to the less
relation <. In fact, any set of integers with a least element is well-founded by <.
For example, the following three sets of integers are well-founded.

{1, 2, 3, 4,... }, {mI m > -3}, and {5, 9, 13, 17,... }.

For another example, any collection of finite sets is well-founded by C. This
is easy to see because any descending chain must start with a finite set. If the
set has n elements, it can start a descending chain of at most n + 1 subsets. For
example, the following expression displays a longest descending chain starting
with the set {a, b, c}.

{a, b, c} D {b, c} D fcf D 0.

4.3 * ORDER RELATIONS 243

So the power set of a finite set is well-founded with respect to C .
But many posets are not well-founded. For example, the integers and the

positive rationals are not well-founded with respect to the less relation because
they have infinite descending chains as the following examples show.

2 > 0 > -2 > -4 > ...
1 1 1 1

The power set of an infinite set is not well-founded by C . For example, if we let
Sk = N - {0, 1,..., k}, then we obtain the following infinite descending chain
in power(N):

So D Si D S 2 D ... D Sk D.

Are well-founded sets good for anything? The answer is yes. We'll see in
the next section that they are basic tools for inductive proofs. So we should
get familiar with them. We'll do this by looking at another property that well-
founded sets possess.

The Minimal Element Property

Does every subset of N have a least element? A quick-witted person might say,
"Yes," and then think a minute and say, "except that the empty set doesn't
have any elements, so it can't have a least element." Suppose the question is

modified to "Does every nonempty subset of N have a least element?". Then a
bit of thought will convince most of us that the answer is yes.

We might reason as follows: Suppose S is some nonempty subset of N and
x, is some element of S. If x, is the least element of S, then we are done. So
assume that x, is not the least element of S. Then x, must have a predecessor X2
in S-otherwise, x, would be the least element of S. If X2 is the least element of
S, then we are done. If X2 is not the least element of S, then it has a predecessor
X3 in S, and so on. If we continue in this manner, we will obtain a descending
chain of distinct elements in S:

X 1 > X2 > X3 >

This looks familiar. We already know that this chain of natural numbers can't
be infinite. So it stops at some value, which must be the least element of S. So
every nonempty subset of the natural numbers has a least element.

This property is not true for all posets. For example, the set of integers has
no least element. The open interval of real numbers (0, 1) has no least element.
Also the power set of a finite set can have collections of subsets that have no
least element.

Notice however that every collection of subsets of a finite set does contain a
minimal element. For example, the collection {f{ a}, {b}, {a, b}} has two minimal
elements {a} and {b}. Remember, the property that we are looking for must be

244 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

true for all well-founded sets. So the existence of least elements is out; it's too
restrictive.

But what about the existence of minimal elements for nonempty subsets of a
well-founded set? This property is true for the natural numbers. (Least elements
are certainly minimal.) It's also true for power sets of finite sets. In fact, this
property is true for all well-founded sets, and we can state the result as follows:

Descending Chains and Minimality (4.1 8)

If A is a well-founded set, then every nonempty subset of A has a minimal
element. Conversely, if every nonempty subset of A has a minimal element,
then A is well-founded.

It follows from (4.18) that the property of finite descending chains is equiv-
alent to the property of nonempty subsets having minimal elements. In other
words, if a poset has one of the properties, then it also has the other property.
Thus it is also correct to define a well-founded set to be a poset with the prop-
erty that every nonempty subset has a minimal element. We will call this latter
property the minimum condition on a poset.1

Whenever a well-founded set is totally ordered, then each nonempty subset
has a single minimal element, the least element. Such a set is called a well-ordered
set. So a well-ordered set is a totally ordered set such that every nonempty subset
has a least element. For example, N is well-ordered by the "less" relation. Let's

examine a few more total orderings to see whether they are well-ordered.

Lexicographic Ordering of Tuples

The linear ordering < on N can be used to create the lexicographic order on Nk,
which is defined as follows.

(XI,..., -- (Yl,, k

if and only if there is an index j 1 such that xj < yj and for each i < j, xi = yi.
This ordering is a total ordering on Nk. It's also a well-ordering.

For example, the lexicographic order on N x N has least element (0, 0).
Every nonempty subset of N x N has a least element, namely, the pair
(x, y) with the smallest value of x, where y is the smallest value among sec-
ond components of pairs with x as the first component. For example, (0, 10)
is the least element in the set {(0, 10), (0, 11), (1, 0)}. Notice that (1, 0) has
infinitely many predecessors of the form (0, y), but (1, 0) has no immediate
predecessor.

'Other names for a well-founded set are poset with minimum condition, poset with descend-

ing chain condition, and Artinian poset, after Emil Artin, who studied algebraic structures
with the descending chain condition. Some people use the term Noetherian, after Emmy
Noether, who studied algebraic structures with the ascending chain condition.

4.3 * ORDER RELATIONS 245

Lexicographic Ordering of Strings

Another type of lexicographic ordering involves strings. To describe it we need
to define the prefix of a string. If a string x can be written as x = uv for some
strings u and v, then u is called a prefix of x. If v 7 A, then u is a proper prefix
of x. For example, the prefixes of the string aba over the alphabet {a, b} are A,
a, ab, and aba. The proper prefixes of aba are A, a, and ab.

Definition

Let A be a finite alphabet with some agreed-upon linear ordering. Then the
lexicographic ordering on A* is defined as follows: x -< y iff either x is a
proper prefix of y or x and y have a longest common proper prefix u such
that x = uv, y = uw, and head(v) precedes head(w) in A.

The lexicographic ordering on A* is often called the dictionary ordering because
it corresponds to the ordering of words that occur in a dictionary. The definition
tells us that if x • y, then either x -- y or y -< x. So the lexicographic ordering
on A* is a total (i.e., linear) ordering. It also follows that every string x has an
immediate successor xa, where a is the first letter of A.

If A has at least two elements, then the lexicographic ordering on A* is not

well-ordered. For example, let A = {a, b} and suppose that a precedes b. Then
the elements in the set {a'b In c N} form an infinite descending chain:

b >- ab >-- aab >- aaab >- .. - - a nb >---- ...

Notice also that b has no immediate predecessor because if x -< b, then we have
x -< xa -- b.

Standard Ordering of Strings

Now let's look at an ordering that is well-ordered. The standard ordering on
strings uses a combination of length and the lexicographic ordering.

Definition

Assume A is a finite alphabet with some agreed-upon linear ordering. The
standard ordering on A* is defined as follows, where -<L denotes the lexico-
graphic ordering on A*:

x -< y iff either length(x) < length(y), or length(x) = length(y) and x -<L Y.

It's easy to see that -< is a total order and every string has an immediate
successor and an immediate predecessor. The standard ordering on A* is also
well-ordered because each string has a finite number of predecessors. For exam-
ple, let A = {a, b} and suppose that a precedes b. Then the first few elements in
the standard order of A* are given as follows:

A, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb,.. .

246 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Constructing Well-Founded Orderings
Collections of strings, lists, trees, graphs, or other structures that programs
process can usually be made into well-founded sets by defining an appropriate

order relation. For example, any finite set can be made into a well-founded set
actually a well-ordered set-by simply listing its elements in any order we wish,
letting the leftmost element be the least element.

Let's look at some ways to build well-founded orderings for infinite sets.

Suppose we want to define a well-founded order on some infinite set S. A simple
and useful technique is to associate each element of S with some element in an
existing well-founded set. For example, the natural numbers are well-founded
by <. So we'll use them as a building block for well-founded constructions.

Constructing a Well-Founded Order (4.19)

Given any function f : S --+ N, there is a well-founded order -< defined on S
in the following way, where x, y C S:

x-<y means f(x) <f(y).

Does the new relation -< make S into a well-founded set? Sure. Suppose we
have a descending chain of elements in S as follows:

x 1 >- X 2 >- X3 > ...

The chain must stop because x >- y is defined to mean f(x) > f(y), and we
know that any descending chain of natural numbers must stop. Let's look at a
few more examples.

4.34 Some Well-Founded Orderings

a. Any set of lists is well-founded: If L and M are lists, let L -< M mean length(L)
< length(M).

b. Any set of strings is well-founded: If s and t are strings, let s -.< t mean length(s)
< length(t).

c. Any set of trees is well-founded: If B and C are trees, let B -- C mean nodes(B)
< nodes(C), where nodes is the function that counts the number of nodes in a
tree.

d. Another well-founded ordering on trees can be defined as follows: If B and C are
trees, define B -< C to mean leaves(B) < leaves(C), where leaves is the function
that returns the number of leaves in a tree.

e. A well-founded ordering on nonempty trees is defined as follows: For nonempty
trees B and C, let B -< C mean depth(B) < depth(C).

4.3 u ORDER RELATIONS 247

f. The set of all people can be well-founded. Let the age of a person be the floor of
the number of years they are old. Then A -ý B if age(A) < age(B). What are the
minimal elements?

g. The set {..., -3, -2, -1} of negative integers is well-founded: Let x -- y mean

X > y.

As the examples show, it's sometimes quite easy to find a well-founded or-

dering for a set. The next example constructs a finite, hence well-founded,
lexicographic order.

F 4.35 A Finite Lexicographic Order

Let S = {0, 1, 2,..., m}. Then we can define a lexicographic ordering on the set
Sk in a natural way. Since S is finite, it follows that the lexicographic ordering
on Sk is well-founded. The least element is (0,..., 0), and the greatest element is
(mi,..., Ir). For example, if k = 3, then the immediate successor of any element
can be defined as

succ ((x, y, z)) = if z < m then (x, y, z + 1)

else if y < m then (x, y + 1, 0)

else if x < m then (x + 1,0,0)

else error (no successor).

Inductively Defined Sets are Well-Founded

It's easy to make an inductively defined set W into a well-founded set. We'll
give two methods. Both methods let the basis elements of W be the minimal

elements of the well-founded order.

Method 1: (4.20)

Define a function f : W -, N as follows:

1. f(c) = 0 for all basis elements c of W.

2. If x E W and x is constructed from elements Yi, Y2,.-., y, in W, then

define f(x) = 1 + max{f(y1), f(Y2),..., f(Y0)}-

Let x -• y mean f(x) < f(y).

248 CHAPTER 4 a EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

(a a) (b, a) (a, b) (b, b)

(a) (b)

Figure 4.18 Part of a poset diagram.

Since 0 is the least element of N and f(c) = 0 for all basis elements c of W,
it follows that the basis elements of W are minimal elements under the ordering
defined by (4.20). For example, if c is a basis element of W and if x -< c, then
f (x) < f(c) = 0, which can't happen with natural numbers. Therefore c is a
minimal element of W.

Let's do an example. Let W be the set of all nonempty lists over {a, b}.
First we'll give an inductive definition of W. The lists (a) and (b) are the basis
elements of W. For the induction case, if L c W, then the lists cons(a, L) and
cons(b, L) are in W. Now we'll use (4.20) to make W into a well-founded set.
The function f of (4.20) turns out to be f(L) = length(L) - 1. So for any lists
L and M in W, we define L - L M to mean f(L) < f(M), which means length(L)
- 1 < length(M) - 1, which also means length(L) < length(M). The diagram in
Figure 4.18 shows the bottom two layers of a poset diagram for W with its two
minimal lists (a) and (b).

If we draw the diagram up to the next level containing triples like (a, a, b)
and (b, b, a) , we would have drawn 32 more lines from the two element lists up
to the three element lists. So Method 1 relates many elements.

Sometimes it isn't necessary to have an ordering that relates so many ele-
ments. This brings us to the second method for defining a well-founded ordering
on an inductively defined set W:

Method 2: (4.21)

The ordering -< is defined as follows:

1. Let the basis elements of W be minimal elements.

2. If x C W and x is constructed from elements yi, Y2,., y, in W, then
define yj -- x for each i = 1,..., n.

The actual ordering is the transitive closure of -•.

The ordering of (4.21) is well-founded because any x can be constructed
from basis elements with finitely many constructions. Therefore, there can be

4.3 m ORDER RELATIONS 249

(a, a) (b, a) (a, b) (b, b)

(a) (b)

Figure 4.19 Part of a poset diagram.

no infinite descending chain starting at x. With this ordering, there can be many
pairs that are not related.

For example, we'll use the preceding example of nonempty lists over the set
{a, b}. The picture in Figure 4.19 shows the bottom two levels of the poset
diagram for the well-founded ordering constructed by (4.21).

Notice that each list has only two immediate successors. For example, the
two successors of (a) are cons(a, (aý)) (a, a) and cons(b, (a)) = (b, a). The two
successors of (b, a) are (a, b, a) and (b, b, a). This is much simpler than the
ordering we got using (4.20).

Let's look at some examples of inductively defined sets that are well-founded
sets by the method of (4.21).

' 4.36 Using One Part of a Product

We'll define the set N x N inductively by using the first copy of N. For the basis
case we put (0, n) E N x N for all n G N. For the induction case, whenever
the pair (m, n) E N x N, we put (m+ 1,n) C N x N. The relation on N x N
induced by this inductive definition and (4.21) is not linearly ordered.

For example, (0, 0) and (0, 1) are not related because they are both basis
elements. Notice that any pair (m, n) is the beginning of a descending chain
containing at most m + 1 pairs. For example, the following chain is the longest
descending chain that starts with (3, 17).

(3, 17), (2, 17), (1, 17), (0, 17).

• 4.37 Using Both Parts of a Product

Let's define the set N x N inductively by using both copies of N. The single basis
element is (0, 0). For the induction case, if (m, n) E N x N, then put the three
pairs (m + 1, n), (m, n + 1), (m + 1, n + 1) C N x N. Notice that each pair with
both components nonzero is defined three times by this definition. The relation
induced by this definition and (4.21) is nonlinear.

250 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

For example, the two pairs (2, 1) and (1, 2) are not related. Any pair (m, n)
is the beginning of a descending chain of at most m + n + 1 pairs. For example,
the following descending chain has maximum length among the descending chains
that start at the pair (2, 3).

(2, 3), (2, 2), (1, 2), (1, 1), (0, 1), (0, 0).

Can you find a different chain of the same length starting at (2, 3)?

4.3.4 Ordinal Numbers

We'll finish our discussion of order by introducing the ordinal numbers. These
numbers are ordered, and they can be used to count things. An ordinal number
is actually a set with certain properties. For example, any ordinal number x has
an immediate successor defined by suce(x) = x U {x}. The expression x + 1 is
also used to denote succ(x). The natural numbers denote ordinal numbers when
we define 0 = 0 and interpret + as addition, in which case it's easy to see that

X + 1 = to'..., X1.

For example, 1 = {0}, 2 = {0, 1}, and 5 = {0, 1, 2, 3, 4}. In this way, each
natural number is an ordinal number, called a finite ordinal.

Now let's define some infinite ordinals. The first infinite ordinal is

ýu = 10, 1, 2..1

the set of natural numbers. The next infinite ordinal is

Le + 1 = succ(W) = W U {w} = {w, 0, 1,... }.

If a is an ordinal number, we'll write a + n in place of succn (a). So the first four
infinite ordinals are w, w + 1, w + 2, and w + 3. The infinite ordinals continue
in this fashion. To get beyond this sequence of ordinals, we need to make a
definition similar to the one for w. The main idea is that any ordinal number
is the union of all its predecessors. For example, we define w2 = w U {w, wu+ 1,
... }. The ordinals continue with w2 + 1, w2 + 2, and so on. Of course, we can
continue and define w3 = w2 U {w2, wo2 + 1,.. }. After w, w2, w3,... comes
the ordinal cA2 Then we get cW2 + 1, cL2 + 2,..., and we eventually get w2+ cL.
Of course, the process goes on forever.

We can order the ordinal numbers by defining a </3 iff a E /3. For example,
we have x < x + 1 for any ordinal x because x E succ(x) = x + 1. So we get the
familiar ordering 0 < 1 < 2 < ... for the finite ordinals. For any finite ordinal n
we have n < cc because n E cw. Similarly, we have cw < cw + 1, and for any finite
ordinal n we have cw + n < cc2. So it goes. There are also uncountable ordinals,
the least of which is denoted by Q. And the ordinals continue on after this too.

4.3 U ORDER RELATIONS 251

Although every ordinal number has an immediate successor, there are some
ordinals that don't have any immediate predecessors. These ordinals are called
limit ordinals because they are defined as "limits" or unions of all their prede-
cessors. The limit ordinals that we've seen are

0, w, w2, w3,..., w 2,.., Q,.

An interesting fact about ordinal numbers states that for any set S there is a
bijection between S and some ordinal number. For example, there is a bijection
between the set {a, b, c} and the ordinal number 3 = {0, 1, 2}. For another
example there are bijections between the set N of natural numbers and each of
the ordinals w, w + 1, w + 2,.... Some people define the cardinality of a set to
be the least ordinal number that is bijective to the set. So we have I{a, b, c}I = 3
and INI = w.

More information about ordinal numbers including ordinal arithmetic-
can be found in the excellent book by Halmos [1960].

M Exercises

Partial Orders

1. Sometimes our intuition about a symbol can be challenged. For example,

suppose we define the relation -< on the integers by saying that x -< y means
Ixj < lyl. Assign the value true or false to each of the following statements.

a. -7 -ý7. b. -7< -.- 6. c.- 6 -<-7. d. -6 -ý2.

2. State whether each of the following relations is a partial order.

a. isFatherOf. b. isAncestorOf. c. isOlderThan.

d. isSisterOf c. {(a, b), (a, a), (b, a)}. f. {(2, 1), (1, 3), (2, 3)}.

3. Draw a poset diagram for each of the following partially ordered relations.

a. {(a, a), (a, b), (b, c), (a, c), (a, d) }.

b. power({a, b, c}), with the subset relation.

c. lists({a, b}), where L -< M if length(L) < length(M).

d. The set of all binary trees over the set {a, b} that contain either one
or two nodes. Let s -< t mean that s is either the left or right subtree
of t.

4. Suppose we wish to evaluate the following expression as a set of time-oriented

tasks:

(f r) + g(x))(f(x)g(x)).

252 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

We'll order the subexpressions by data dependency. In other words, an ex-
pression can't be evaluated until its data are available. So the subexpressions
that occur in the evaluation process are

x, f(x), g(x), f(x) + g(x), f(x)g(x), and (f(x) + g(x))(f(x)g(x)).

Draw the poset diagram for the set of subexpressions. Is the poset a lattice?

5. For any positive integer n, let D,, be the set of positive divisors of n. The
poset (Dr,)} is a lattice. Describe the glb and lub for any pair of elements.

Well-Founded Property

6. Why is it true that every partially ordered relation over a finite set is well-
founded?

7. For each set S, show that the given partial order on S is well-founded.

a. Let S be a set of trees. Let s -• t mean that s has fewer nodes than t.

b. Let S be a set of trees. Let s -< t mean that s has fewer leaves than t.
c. Let S be a set of lists. Let L -• M mean that length(L) < length(M).

8. Example 4.37 discussed a well-founded ordering for the set N x N. Use this
ordering to construct two distinct descending chains that start at the pair
(4, 3), both of which have maximum length.

9. Suppose we define the relation -< on N x N as follows:

(a, b) --< (c, d) if and only if max{a, b} < max{c, d}.

Is N x N well-founded with respect to -<?

Topological Sorting

10. Trace the topological sort algorithm (4.17) for the pancake recipe in Example
4.30 by starting with the source 1. There are several possible answers because
any source can be output by the algorithm.

11. Describe a way to perform a topological sort that uses an adjacency matrix
to represent the partial order.

Proofs and Challenges

12. Show that the two properties irreflexive and transitive imply the antisym-
metric property. So an irreflexive partial order can be defined by just the
two properties irreflexive and transitive.

13. Prove the two statements of (4.18).

4.4 0 INDUCTIVE PROOF 253

14. For a poset P, a function f : P --+ P is said to be monotonic if x -< y
implies f (x) -< f (y) for all x, y c P. For each poset and function definition,

determine whether the function is monotonic.

a. (N, <),f(x) = 2x + 3. b. (N, <),f(X) X2.

c. (, <), f(X) = X2 . d. (N,), f(x) 2x + 3.

e. (N,), f(x) = x2. f. (N, 1), f(x) x mod 5.

g. (power(A), c) for some set A, f(X) = A - X.

h. (power(N), C), f(X) - {n G N I n Ix for some x G X}.

4.4 Inductive Proof

When discussing properties of things we deal not only with numbers, but also
with structures such as strings, lists, trees, graphs, programs, and more compli-
cated structures constructed from them. Do the objects that we construct have
the properties that we expect? Does a program halt when it's supposed to halt

and give the proper answer?
To answer these questions, we must find ways to reason about the objects

that we construct. This section concentrates on a powerful proof technique
called inductive proof. We'll see that the technique springs from the idea of a
well-founded set that we discussed in Section 4.3.

4.4.1 Proof by Mathematical Induction

Suppose we want to find the sum of numbers 2 + 4 +- + 2n for any natural
number n. Consider the following two programs written by two different students
to calculate this sum:

f (n) = if n = 0 then 0 else f (n - 1) + 2n

g (n)=n(n + 1).

Are these programs correct? That is, do they both compute the correct value of

the sum2+4+.-- +2n? We can test a few cases such as n = 0, n= 1, n=
2 until we feel confident that the programs are correct. Or maybe we just can't
get any feeling of confidence in these programs. Is there a way to prove, once
and for all, that these programs are correct for all natural numbers n? Let's look
at the second program. If it's correct, then the following equation must be true
for all natural numbers n:

2+4+... + 2n = n(n + 1).

Certainly we don't have the time to check it for the infinity of natural numbers. Is
there some other way to prove it? Happily, we will be able to prove the infinitely
many cases in just two steps with a technique called proof by induction, which

254 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

we discuss next. If you don't want to see why it works, you can skip ahead to
(4.23).

A Basis for Mathematical Induction

Interestingly, the technique that we present is based on the fact that any nonempty
subset of the natural numbers has a least element. Recall that this is the same
as saying that any descending chain of natural numbers is finite. In fact, this is
just a statement that N is a well-founded set. In fact we can generalize a bit.

Let m be an integer, and let W be the following set.

W={m,m+ 1, m+2,...}.

Every nonempty subset of W has a least element. Let's see whether this property
can help us find a tool to prove infinitely many things in just two steps. First, we
state the following result, which forms a basis for the inductive proof technique.

A Basis for Mathematical Induction (4.22)

Let m E Z and W = {m, m + 1, m + 2,...}. Let S be a nonempty subset
of W such that the following two conditions hold.

1. m e S.

2. Whenever k E S, then k + 1 e S.

Then S = W.

Proof: We'll prove S = W by contradiction. Suppose S 5 W. Then W - S
has a least element x because every nonempty subset of W has a least element.
The first condition of (4.22) tells us that m E S. So it follows that x > m. Thus
x - 1 > m, and it follows that x - 1 e S. Thus we can apply the second condition
to obtain (x - 1) + 1 e S. In other words, we are forced to conclude that x E S.
This is a contradiction, since we can't have both x E S and x c W - S at the
same time. Therefore S = W. QED.

We should note that there is an alternative way to think about (4.22). First,
notice that W is an inductively defined set. The basis case is m E W. The
inductive step states that whenever k E W, then k + 1 C W. Now we can appeal
to the closure part of an inductive definition, which can be stated as follows:
If S is a subset of W and S satisfies the basis and inductive steps for W, then
S = W. From this point of view, (4.22) is just a restatement of the closure part
of the inductive definition of W.

4.4 5 INDUCTIVE PROOF 255

The Principle of Mathematical Induction

Let's put (4.22) into a practical form that can be used as a proof technique for
proving that infinitely many cases of a statement are true. The technique is

called the principle of mathematical induction, which we state as follows.

The Principle of Mathematical Induction (4.23)

Let m - Z. To prove that P(n) is true for all integers n > m, perform the
following two steps:

1. Prove that P(m) is true.

2. Assume that P(k) is true for an arbitrary k > m. Prove that

P(k + 1) is true.

Proof: Let W = {n I n > m}, and let S = {n I n > m and P(n) = true}.

Assume that we have performed the two steps of (4.23). Then S satisfies the
hypothesis of (4.22). Therefore S = W. So P(n) is true for all n = rn. QED.

The principle of mathematical induction contains a technique to prove that

infinitely many statements are true in just two steps. Quite a savings in time.
Let's look at an example. This proof technique is just what we need to prove
our opening example about computing a sum of even natural numbers.

F.. 4.38 A Correct Formula

Let's prove that the following equation is true for all natural numbers n:

2 +4+... +2n = n(n+ 1).

Proof: To see how to use (4.23), we can let P(n) denote the above equation.

Now we need to perform two steps. First, we have to show that P(1) is true.
Second, we have to assume that P(k) is true and then prove that P(k + 1) is
true. When n = 1, the equation becomes the true statement

2 = 1(1 + 1).

Therefore, P(1) is true. Now assume that P(k) is true. This means that we
assume that the following equation is true:

2 +4 +...+ 2k= k(k + 1).

256 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

To prove that P(k + 1) is true, start on the left side of the equation for the
expression P(k + 1):

2+4+..-+2k+2(k+l)=(2+4+.-.+2k)+2(k+1) (associate)

= k (k + 1) + 2 (k + 1) (assumption)

= (k + 1) (k + 2)
=(k + 1) [(k + 1) + 1].

The last term is the right-hand side of P(k + 1). Thus P(k + 1) is true. So
we have performed both steps of (4.23). Therefore, P(n) is true for all natural
numbers n > 1. QED.

S4.39 A Correct Recusively Defined Function

We'll show that the following function computes 2 + 4 + ... + 2n for any natural
number n:

f(n) = if n = 0 then 0 else f(n - 1) + 2n.

Proof: For each n G N, let P(n) = "f(n) = 2 + 4 + ... + 2n." We want to

show that P(n) is true for all n c N. To start, notice that f(0) = 0. Thus P(0)
is true. Now assume that P(k) is true for some k G N. Now we must furnish a
proof that P(k + 1) is true. Starting on the left side of P(k + 1), we have

f (k + 1) =f (k + 1 - 1) + 2 (k + 1) (definition of f)

= f (k) + 2 (k + 1)

(2+4-+...-+ 2k)+2(k+1) (assumption)

=2+4+..+2(k+1).

The last term is the right-hand side of P(k + 1). Therefore, P(k + 1) is true.
So we have performed both steps of (4.23). It follows that P(n) is true for all
n E N. In other words, f(n) = 2 + 4 + -.. + 2n for all n E N. QED.

A Classic Example: Arithmetic Progressions

When Gauss-mathematician Karl Friedrich Gauss (1777-1855)--was a 10-year-
old boy, his schoolmaster, Buttner, gave the class an arithmetic progression of
numbers to add up to keep them busy. We should recall that an arithmetic
progression is a sequence of numbers where each number differs from its successor
by the same constant. Gauss wrote down the answer just after Buttner finished

4.4 m INDUCTIVE PROOF 257

writing the problem. Although the formula was known to Buttner, no child of
10 had ever discovered it.

For example, suppose we want to add up the seven numbers in the following
arithmetic progression:

3, 7, 11, 15, 19, 23, 27.

The trick is to notice that the sum of the first and last numbers, which is 30,
is the same as the sum of the second and next to last numbers, and so on. In
other words, if we list the numbers in reverse order under the original list, each
column totals to 30.

3 7 11 15 19 23 27
27 23 19 15 11 7 3

30 30 30 30 30 30 30

If S is the sum of the progression, then 2S = 7(30) = 210. So S = 105.

The Sum of an Arithmetic Progression

The example illustrates a use of the following formula for the sum of an arithmetic
progression of n numbers a,, a 2 ,..., an.

Sum of Arithmetic Progression (4.24)

a, +a2 - + n -n (a, + an)
2

Proof: We'll prove it by induction. Let P(n) denote Equation (4.24). We'll show
that P(n) is true for all natural numbers n > 1. Starting with P(1), we obtain

(a, + a,)
2

Since this equation is true, P(1) is true. Next we'll assume that P(n) is true, as
stated in (4.24), and try to prove the statement P(n + 1), which is

(n + 1) (a, -a,+,)
2

Since the progression a,, a2 ,..., a+ is arithmetic, there is a constant d such
that it can be written in the following form, where a = a,.

a, a + d, a + 2d,..., a + nd.

258 CHAPTER 4 0 EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

In other words, ak = a + (k - 1)d for 1 < k < n + 1. Starting with the left-hand
side of the equation, we obtain

a, + a2 + .+ a + a,+, (a, + a2 + + an) + a,+l
-n (al + an)n 2 a + an+I (induction)

n(a+a+ (n2 1)d) + (a + nd) (write in terms of d)

2
2na + n (n - 1) d + 2a + 2nd

2
2a(n + 1) + (n + 1) nd

2
(n + 1) (2a + nd)

2
(n + 1) (a, + an+l)

2

Therefore, P(n + 1) is true. So by (4.23), the equation (4.24) is correct for all
arithmetic progressions of n numbers, where n > 1. QED.

We should observe that (4.24) can be used to calculate the sum of the arith-
metic progression 2, 4,..., 2n in Example 4.38. The best known arithmetic
progression is 1, 2,..., n and we can use (4.24) to calculate the following sum.

Well-Known Sum (4.25)

1+2+ +n n (n + 1)
2

A Classic Example: Geometric Progressions

Another important sum adds up the geometric progression 1, x, x2,..., Xr,

where x is any number and n is a natural number. A formula for the sum

1 +X+X 2 +... +xn

can be found by multiplying the given expression by the term x - I to obtain
the equation

(X -1) 1 + X ÷ X2 + -- + x 1) = X n 4-1 1

Now divide both sides by x -- 1 to obtain the following formula for the sum of a
geometric progression.

+ X + X2 +... + xn = (4.26)
T-i

The formula works for all x • 1. We'll prove it by induction.

4.4 U INDUCTIVE PROOF 259

Proof: If n = 0, then both sides are 1. So assume that (4.26) is true for n, and
prove that it is true for n + 1. Starting with the left-hand side, we have

Il+ X+X2 +... + Xn+ X,+l=(tl+ X+X2+.-_.+X71) + xn+l

Xfnl1 + r1

x--
Xf+l - 1 + (x - 1) x+1

X- 1
x--1

Thus, by (4.23), the formula (4.26) is true for all natural numbers n. QED.

Sometimes, (4.23) does not have enough horsepower to do the job. For
example, we might need to assume more than is allowed by (4.23), or we might
be dealing with structures that are not numbers, such as lists, strings, or binary
trees, and there may be no easy way to apply (4.23). The solution to many
of these problems is a stronger version of induction based on well-founded sets.
That's next.

4.4.2 Proof by Well-Founded Induction

Let's extend the idea of inductive proof to well-founded sets. Recall that a
well-founded set is a poset whose nonempty subsets have minimal elements or,
equivalently, every descending chain of elements is finite. We'll start by notic-
ing an easy extension of (4.22) to the case of well-founded sets. If you aren't
interested in why the method works, you can skip ahead to (4.28).

The Basis of Well-Founded Induction (4.27)

Let W be a well-founded set, and let S be a nonempty subset of W satisfying
the following two conditions.

1. S contains all the minimal elements of W.

2. Whenever an element x E W has the property that all its predecessors
are elements of S, then x E S.

Then S = W.

Proof: The proof is by contradiction. Suppose S # W. Then W - S has a
minimal element x. Since x is a minimal element of W - S, each predecessor of
x cannot be in W - S. In other words, each predecessor of x must be in S. The
second condition in the hypothesis of the theorem now forces us to conclude that
x E S. This is a contradiction, since we can't have both x c S and x E W - S
at the same time. Therefore, S = W. QED.

260 CHAPTER 4 R EQUiVALENCE, ORDER, AND INDUCTIVE PROOF

You might notice that condition 1 of (4.27) was not used in the proof. This is
because it's a consequence of condition 2 of (4.27). We'll leave this as an exercise
(something about an element that doesn't have any predecessors). Condition 1
is stated explicitly because it indicates the first thing that must be done in an
inductive proof.

The Technique of Well-Founded Induction

Let's find a more practical form of (4.27) that gives us a technique for proving
a collection of statements of the form P(x) for each x in a well-founded set W.
The technique is called well-founded induction.

Well-Founded Induction (4.28)
Let P(x) be a statement for each x in the well-founded set W. To prove P(x)
is true for all x E W, perform the following two steps:

1. Prove that P(m) is true for all minimal elements m E W.

2. Let x be an arbitrary element of W, and assume that P(y) is true for all
elements y that are predecessors of x. Prove that P(x) is true.

Proof: Let S = f xx c W and P(x) is true}. Assume that we have performed
the two steps of (4.28). Then S satisfies the hypothesis of (4.27). Therefore
S = W. In other words, P(x) is true for all x e W. QED.

Second Principle of Mathematical Induction

Now we can state a corollary of (4.28), which lets us make a bigger assumption
than we were allowed in (4.23):

Second Principle of Mathematical Induction (4.29)

Let m E Z. To prove that P(n) is true for all integers n > m, perform the
following two steps:

1. Prove that P(m) is true.

2. Assume that n is an arbitrary integer n > m, and assume that P(k) is
true for all k in the interval m < k < n. Prove that P(n) is true.

Proof: Let W = {n I n > m}. Notice that W is a well-founded set (actually
well-ordered) whose least element is m. Let S ={n In E W and P(n) is true}.
Assume that Steps 1 and 2 have been performed. Then m E S, and if n > m and
all predecessors of n are in S, then n C S. Therefore, S = W, by (4.28). QED.

4.4 U INDUCTIVE PROOF 261

S4.40 Products of Primes

We'll prove the following well-known result about prime numbers.

Every natural number n > 2 is prime or a product of prime numbers.

Proof: For n > 2, let P(n) be the statement "n is prime or a product of prime
numbers." We need to show that P(n) is true for all n, > 2. Since 2 is prime, it
follows that P(2) is true. So Step 1 of (4.29) is finished. For Step 2 we'll assume
that n > 2 and P(k) is true for 2 < k < n. With this assumption we must show
that P(n) is true. If n is prime, then P(n) is true. So assume that n is not
prime. Then n = xy, where 2 < x < n and 2 < y < n. By our assumption,
P(x) and P(y) are both true, which means that x and y are products of primes.
Therefore, n is a product of primes. So P(n) is true. Now (4.29) implies that
P(n) is true for all n > 2. QED.

Notice that we can't use (4.23) for the proof because its induction assumption
is the single statement that P(n - 1) is true. We need the stronger assumption
that P(k) is true for 2 < k < n to allow us to say that P(x) and P(y) are true.

Things You Must Do

Let's pause and make a few comments about inductive proof. Remember, when
you are going to prove something with an inductive proof technique, there are
always two distinct steps to be performed. First prove the basis case, showing
that the statement is true for each minimal element. Now comes the second step.
The most important part about this step is making an assumption. Let's write
it down for emphasis.

You are required to make an assumption in the inductive step of a proof.

Some people find it hard to make assumptions. But inductive proof tech-
niques require it. So if you find yourself wondering about what to do in an
inductive proof, here are two questions to ask yourself: "Have I made an in-
duction assumption?" If the answer is yes, ask the question, "Have I used the
induction assumption in my proof?" Let's write it down for emphasis:

In the inductive step, MAKE AN ASSUMPTION and then USE IT.

Look at the previous examples, and find the places where the basis case was
proved, where the assumption was made, and where the assumption was used.
Do the same thing as you read through the remaining examples.

4.4.3 A Variety of Examples

Now let's do some examples that do not involve numbers. Thus we'll be us-
ing well-founded induction (4.28). We should note that some people refer to

262 CHAPTER 4 U EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

well-founded induction as "structural induction" because well-founded sets can
contain structures other than numbers, such as lists, strings, binary trees, and
Cartesian products of sets. Whatever it's called, let's see how to use it.

S4.41 Correctness of MakeSet

The following function is supposed to take any list K as input and return the
list obtained by removing all repeated occurrences of elements from K:

makeSet (() = (),

makeSet (a:: L) = if isMember (a, L) then makeSet (L)

else a :: makeSet (L).

We'll assume that isMember correctly checks whether an element is a member
of a list. Let P(K) be the statement "makeSet(K) is a list obtained from K by
removing its repeated elements." Now we'll prove that P(K) is true for any list
K.

Proof: We'll define a well-founded ordering on lists by letting K -< M mean
length(K) < length(M). So the basis element is (). The definition of makeSet
tells us that makeSet(()) = (). Thus P(()) is true. Next, we'll let K be an
arbitrary nonempty list and assume that P(L) is true for all lists L -< K. In other
words, we're assuming that makeSet(L) has no repeated elements for all lists L
-.< K. We need to show that P(K) is true. In other words, we need to show that
makeSet(K) has no repeated elements. Since K is nonempty, we can write K
= a :: L. There are two cases to consider. If isMember(a, L) is true, then the
definition of makeSet gives

makeSet(K) = makeSet(a :: L) = makeSet(L).

Since L --< K, it follows that P(L) is true. Therefore P(K) is true. If isMember(a,
L) is false, then the definition of makeSet gives

makeSet(K) = makeSet(a :: L) = a :: makeSet(L).

Since L -< K, it follows that P(L) is true. Since isMember(a, L) is false, it
follows that the list a :: makeSet(L) has no repeated elements. Thus P(K) is
true. Therefore, (4.28) implies that P(K) is true for all lists K. QED.

S4.42 Using a Lexicographic Ordering

We'll prove that the following function computes the number Ix - yj for any
natural numbers x and y:

f(x, y) = if x = 0 then y else if y = 0 then x else f(x - 1, y - 1).

In other words, we'll prove that f(x, y) = -x yI for all (x, y) in N x N.

4.4 0 INDUCTIVE PROOF 263

Proof: We'll use the well-founded set N x N with the lexicographic ordering.
For the basis case, we'll check the formula for the least element (0, 0) to get
f(0, 0) = 0 = 10 - 01. For the induction case, let (x, y) G N x N and assume
that f(u, v) I u - vI for all (u, v) -• (x, y). We must show f(x, y) = Ix - yl.
The case where x = 0 is taken care of by observing that f(0, y) = y = 10 - yI.
Similarly, if y = 0, then f(x, 0) = x = Ix - 01. The only case remaining is x :ý 0
and y - 0. In this case the definition of f gives f(x, y) = f((x - 1, y - 1). The
lexicographic ordering gives (x - 1, y - 1) -< (x, y). So it follows by induction
that f(x - 1, y - 1) = I(x - 1) - (y - 1)1. Putting the two equations together we
obtain the following result.

f (x, y) = f (x - 1, y - 1) (definition of f)

= J(x - 1) - (y - 1)j (induction assumption)

= Ix - yl

The result now follows from (4.28). QED.

Inducting on One of Several Variables

Sometimes the claims that we wish to prove involve two or more variables, but
we only need one of the variables in the proof. For example, suppose we need to
show that P(x, y) is true for all (x, y) E A x B where the set A is inductively
defined. To show that P(x, y) is true for all (x, y) in A x B, we can perform the
following steps (where y denotes an arbitrary element in B):

1. Show that P(m, y) is true for minimal elements m C A.

2. Assume that P(a, y) is true for all predecessors a of x. Then show that P(x,
y) is true.

This technique is called inducting on a single variable. The form of the
statement P(x, y) often gives us a clue as to whether we can induct on a single
variable. Here are some examples.

4.43 Induction on a Single Variable

Suppose we want to prove that the following function computes the number yx+l
for any natural numbers x and y:

f(x, y) = if x = 0 then y else f(x - 1, y) * y.

In other words, we want to prove that f(x, y) = y'+X for all (x, y) in N x N.
We'll induct on the variable x because it's changing in the definition of f.

264 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

Proof: For the basis case the definition of f gives f(0, y) = y = y0o+. So the
basis case is proved. For the induction case, assume that x > 0 and f(n, y) =
yfn+l for n < x. We must show that f(x, y) = yx+1 . The definition of f and the

induction assumption give us the following equations:

f (x, y) = f (x - 1, y) * y (definition of f)

= yX-1+l * y (induction assumption)

= lX+1

The result now follows from (4.28). QED.

F - 4.44 Inserting an Element in a Binary Search Tree

Let's prove that the following insert function does its job. Given a number x
and a binary search tree T, the function returns a binary search tree obtained
by inserting x in T.

insert (x, T) = if T= K) then tree((),x,)

else if x < root (T) then

tree (insert (x, left (T)), root (T), right (T))

else

tree (left (T) , root (T), insert (x, right (T))).

The claim that we wish to prove is,

insert(x, T) is a binary search tree for all binary search trees T.

Proof: We'll induct on the binary tree variable. Our ordering of binary search
trees will be based on the number of nodes in a tree. For the basis case we must
show that insert(x, ()) is a binary search tree. Since insert(x, ()) = tree((), x,

()) and a single node tree is a binary search tree, the basis case is true. Next,
let T = tree(L, y, R) be a binary search tree, and assume that insert(x, L) and
insert(x, R) are binary search trees. Then we must show that insert(x, T) is
a binary search tree. There are two cases to consider, depending on whether
x < y. First, suppose x < y. Then we have

insert(x, T) = tree(insert(x, L), y, R).

By the induction assumption it follows that insert(x, L) is a binary search tree.
Thus insert(x, T) is a binary search tree. We obtain a similar result if x > y. It
follows from (4.28) that insert(x, T) is a binary search tree for all binary search
trees T. QED.

4.4 U INDUCTIVE PROOF 265

We often see induction proofs that don't mention the word "well-founded."
For example, we might see a statement such as: "We will induct on the depth of
the trees." In such a case the induction assumption might be stated something
like "Assume that P(T) is true for all trees T with depth less than n." Then a
proof is given that uses the assumption to prove that P(T) is true for an arbitrary
tree of depth n. Even though the term "well-founded" may not be mentioned in
a proof, there is always a well-founded ordering lurking underneath the surface.

Before we leave the subject of inductive proof, let's discuss how we can use
inductive proof to help us tell whether inductive definitions of sets are correct.

Proofs about Inductively Defined Sets

Recall that a set S is inductively defined by a basis case, an inductive case, and
a closure case (which we never state explicitly). The closure case says that S is
the smallest set satisfying the basis and inductive cases. The closure case can
also be stated in practical terms as follows.

Closure Property of Inductive Definitions (4.30)
If S is an inductively defined set and T is a set that also satisfies the basis
and inductive cases for the definition of S, and if T C S, then it must be the
case that T = S.

We can use this closure property to see whether an inductive definition cor-
rectly defines a given set. For example, suppose we have an inductive definition
for a set named S, we have some other description of a set named T, and we
wish to prove that T and S are the same set. Then we must prove three things:

1. Prove that T satisfies the basis case of the inductive definition.

2. Prove that T satisfies the inductive case of the inductive definition.

3. Prove that T C S. This can often be accomplished with an induction proof.

S4.45 Describing an Inductive Set

Suppose we have the following inductive definition for a set S:

Basis: 1 C S.

Induction: If x E S, then x + 2 E S.

This gives us a pretty good description of S. For example, suppose someone tells
us that S = {2k + 1 I k G N}. It seems reasonable. Can we prove it? Let's give
it a try. To clarify the situation, we'll let T = {2k + 1 I k c N} and prove that
T = S. We'll be done if we can show that T satisfies the basis and induction

266 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

cases for S and that T C S. Then the closure property of inductive definitions
will tell us that T = S.

Proof: Observe that 1 = 2 • 0 + 1 £ T and if x E T, then x = 2k + 1 and it
follows that x + 2 = 2(k + 1) + 1 G T. So T satisfies the inductive definition.
Next we need to show that T c S. In other words, show that 2k + 1 E S for
all k E N. This calls for an induction proof. If k = 0, we have 2 • 0 + 1 = 1 E
S. Now assume that 2k + 1 E S and show that 2(k + 1) + 1 G S. Since 2k +
1 E S, the inductive definition tells us that (2k + 1) + 2 E S and we can write
the expression in the form 2(k + 1) + 1 = (2k + 1) + 2 E S. Therefore, 2k + 1
E S for all k G N, which proves that T C S. So we've proven the three things
that allow us to conclude by the closure property of inductive definitions--that
T = S. QED.

S4.46 A Correct Grammar

Suppose we're asked to find a grammar for the language {ab' I n G N}, and we
write the following grammar G.

S -- a Sb.

This grammar seems to do the job. But how do we know for sure? One way is
to use (3.15) to create an inductive definition for L(G), the language of G. Then
we can try to prove that L(G) = {abu I n E N}. Using (3.15) we see that the
basis case is a c L(G) because of the derivation S =# a.

For the induction case, if x E L(G) with derivation S =z#+ x, then we can add
one step to the derivation by using the recursive production S -+ Sb to obtain
the derivation S =. Sb >+ xb. So we obtain the following inductive definition
for L(G).

Basis: a c L(G).

Induction: If x G L(G), then put xb in L(G).

Now we'll prove that {abn I n £ N} = L(G). For ease of notation we'll let
M = {ab' I n G N}. So we must prove that M = L(G). By (4.30) we must show
that M satisfies the basis and induction cases and that M C L(G). Then by the
closure property of inductive definitions we will infer that M = L(G).

Proof: Since a = ab° C M, it follows that the basis case of the inductive defini-
tion holds. For the induction case, let x C M. Then x = ab' for some number
n C N. Thus xb = abn+l E M. Therefore, M satisfies the inductive definition.
Now we'll show that M C L(G) with an induction proof. For n = 0, we have
ab0 = a E L(G). Now assume that abn E L(G). Then the definition of L(G)

4.4 a INDUCTIVE PROOF 267

tells us that ab'b G L(G). But abn+ 1 = abnb. So abn+l G L(G). Therefore,
M C L(G). Now the closure property of inductive definitions gives us our con-
clusion M = L(G). QED.

o Exercises

Numbers

1. Find the sum of the arithmetic progression 12, 26, 40, 54, 68,..., 278.

2. Use induction to prove each of the following equations.
a. 1+ 3+ 5 +-- + (2n -1) =n2.

b. 5+9+11+. +±(2n+3)=n2 +4n.

c. 3+7+ 11 +. + (4n -1) =n(2n+ 1).

d. 2+6+ 10+. + (4n-2) =2n 2 .
c. 1+ 5+ 9 +... + (4n + 1) =(n + 1)(2n + 1).

f. 2+8+ 24+. + n2n = (n-1)2n+1 +2.

g. 12 +22 +... + n2 = n(n+1)(2n+1)
6

h. 2+6+ 12 +.. + n(n + 1)- n (n + 1) (n + 2)

3n (n 2-1
i. 2 + 6+ 12+.. + (n2 -n)- 3

j. (1 +2+.-. + n)2 = 13 + 23 + + n 3 .

3. The Fibonacci numbers are defined by F0 = 0, F 1 = 1, and Fn = Fn- 1 +
F,- 2 for n > 2. Use induction to prove each of the following statements.

a. Fo + F1 + "". + F, = F,+ 2 - 1.
b. F"-IFn+l _ Fn2 = (-1)n.

c. F•+n = Fm-iF, + FmFn+x. Hint: Use the lexicographic ordering of
N x N.

d. If m In then Fm IFn. Hint: Use the fact that n = mk for some k and
show the result by inducting on k with the help of part (c).

4. The Lucas numbers are defined by L 0 = 2, L 1 = 1, and Ln = Ln_ 1 + Ln-2
for n > 2. The sequence begins as 2, 1, 3, 4, 7, 11, 18,.... These numbers are
named after the mathematician Edouard Lucas (1842-1891). Use induction
to prove each of the following statements.

a. L 0 +L, +... + L =Ln+2 -1.
b. L, = F,_ 1 + Fn+1 for n > 1, where Fn is the nth Fibonacci number.

268 CHAPTER 4 * EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

5. Let sum(n) = 1 + 2 + ... + n for all natural numbers n. Give an induction
proof to show that the following equation is true for all natural numbers rn
and n: sum(m + n) = sum(m) + sum(n) + mn.

6. We know that 1 + 2 = 3, 4 + 5 + 6 = 7 + 8, and 9 + 10 + 11 + 12 =

13 + 14 + 15. Show that we can continue these equations forever. Hint: The
left side of each equation starts with a number of the form n2 . Formulate
a general summation for each side, and then prove that the two sums are
equal.

Structures

7. Let R = {(x, x + 1) 1 x c N} and let L be the "less than" relation on N.
Prove that t(R) = L.

8. Use induction to prove that a finite set with n elements has 2' subsets.

9. Use induction to prove that the function f computes the length of a list:

f(L) = if L = () then 0 else 1 + f(tail(L)).

10. Use induction to prove that each function performs its stated task.

a. The function g computes the number of nodes in a binary tree:

g (T) = if T = () then 0
else 1 + g (left (T)) + g (right (T)).

b. The function h computes the number of leaves in a binary tree:

h(T)=ifT= () then

else if T = tree((),x,) then 1

else h (left (T)) + h (right (T)).

11. Suppose we have the following two procedures to write out the elements of
a list. One claims to write the elements in the order listed, and one writes
out the elements in reverse order. Prove that each is correct.

a. forward(L): if L # () then {print(head(L)); forward(tail(L))}.
b. back(L): if L 7$ () then {back(tail(L)); print(head(L))}.

12. The following function "sort" takes a list of numbers and returns a sorted
version of the list (from lowest to highest), where "insert" places an element
correctly into a sorted list:

sort (()) = K)I
sort (x :: L) = insert (x, sort (L)).

4.4 U INDUCTIVE PROOF 269

a. Assume that the function insert is correct. That is, if S is sorted, then
insert(x, S) is also sorted. Prove that sort is correct.

b. Prove that the following definition for insert is correct. That is, prove

that insert(x, S) is sorted for all sorted lists S.

insert (x, S) = if S = K > then (x)

else if x < head (S) then x :: S

else head (S) :: insert (x, tail (S)).

13. Show that the following function g correctly computes the greatest common
divisor for each pair of positive integers x and y: Hint: (2.2b) might be
useful.

g(x,y) = if x = y then x

else if x > y then g (x - y, y)

else g (x, y - x).

14. The following program is supposed to input a list of numbers L and output

a binary search tree containing the numbers in L:

f(L)=ifL=() then ()

else insert (head (L) , f (tail (L))).

Assume that insert(x, T) correctly returns the binary search tree obtained
by inserting the number x in the binary search tree T. Prove the following

claim: f(M) is a binary search tree for all lists M.

15. The following program is supposed to return the list obtained by removing
the first occurrence of x from the list L.

delete (x, L) = if 1 = () then ()
else if x = head (L) then tail (L)

else head (L) :: delete (x, tail (L)).

Prove that delete performs as expected.

16. The following function claims to remove all occurrences of an element from

a list:

removeAll (a, L) = if L = () then L

else if a = head (L) then removeAll (a, tail (L))

else head (L) :: removeAll (a, tail (L)).

Prove that removeAll satisfies the claim.

270 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

17. Let r stand for the removeAll function from Exercise 16. Prove the following
property of r for all elements a, b and all lists L:

r(a, r(b, L)) = r(b, r(a, L)).

18. The following program computes a well-known function called Ackermann's
function. Note: If you try out this function, don't let x and y get too large.

f (X,y) = if x = 0 then y + 1

else if y = 0 then f (x- 1,1)

else f (x - 1, f (x, y - 1)).

Prove that f is defined for all pairs (X, y) in N x N. Hint: Use the lexico-
graphic ordering on N x N. This gives the single basis element (0, 0). For
the induction assumption, assume that f(x', y') is defined for all (x', y')
such that (W', y') -< (x, y). Then show that f(x, y) is defined.

19. Let the function "isMember" be defined as follows for any list L:

isMember (a, L) = if L = () then false

else if a = head (L) then true

else isMember (a, tail (L)).

a. Prove that isMember is correct. That is, show that isMember(a, L) is
true if and only if a occurs as an element of L.

b. Prove that the following equation is true for all lists L when a :; b,
where removeAll is the function from Exercise 16:

isMember(a, removeAll(b, L)) = isMember(a, L).

20. Use induction to prove that the following concatenation function is associa-
tive.

cat (x, y) = if =x) then y

else head (x) :: cat (tail (x) , y).

In other words, show that cat(x, cat(y, z)) = cat(cat(x, y), z) for all lists x,
y, and z.

21. Two students came up with the following two solutions to a problem. Both
students used the removeAll function from Exercise 16, which we abbreviate
to r.

4.4 m INDUCTIVE PROOF 271

StudentA: f(L) = if L= ()then ()
else head(L) :: r(head(L), f(tail(L))).

Student B: g(L)= ifL= () then ()
else head(L) :: g(r(head(L), tail(L))).

a. Prove that r(a, g(L)) = g(r(a, L)) for all elements a and all lists L.
Hint: Exercise 17 might be useful in the proof.

b. Prove that f(L) = g(L) for all lists L. Hint: Part (a) could be helpful.

c. Can you find an appropriate name for f and g? Can you prove that
the name you choose is correct?

Challenges

22. Prove that condition 1 of (4.27) is a consequence of condition 2 of (4.27).

23. Let G be the grammar S -* a IabS, and let M = {(ab)na I n E N}. Use
(3.12) to construct an inductive definition for L(G). Then use (4.30) to prove
that M = L(G).

24. A useful technique for recursively defined functions involves keeping or
accumulating the results of function calls in accumulating parameters: The
values in the accumulating parameters can then be used to compute subse-
quent values of the function that are then used to replace the old values in
the accumulating parameters. We call the function by giving initial values
to the accumulating parameters. Often these initial values are basis values
for an inductively defined set of elements.

For example, suppose we define the function f as follows:

f (n, u, v) = if n = 0 then u else f(n - 1, v, u + v).

The second and third arguments to f are accumulating parameters because
they always hold two possible values of the function. Prove each of the
following statements.

a. f(n, 0, 1) = Fn, the nth Fibonacci number.
b. f(n, 2, 1) = Ln, the nth Lucas number.

Hint: For part (a), show that f(n, 0, 1) =f(k, F -k, Fn-k +1) for0 < k < n.
A similar hint applies to part (b).

25. A derangement of a string is an arrangement of the letters of the string
such that no letter remains in the same position. In terms of bijections, a
derangement of a set S is a bijection f on S such that f(x) , x for all x
in S. The number of derangements of an n-element set can be given by the

272 CHAPTER 4 m EQUIVALENCE, ORDER, AND INDUCTIVE PROOF

following recursively defined function:

d (1) =0,

d (2) = 1,
d (n) =(n -1) (d (n -1) + d (n - 2)) (n> 3).

Give an inductive proof that d(n) = nd(n - 1) + (-1)' for n > 2.

4.5 Chapter Summary

Binary relations are common denominators for describing the ideas of equiva-
lence, order, and inductive proof. The basic properties that a binary relation
may or may not possess are reflexive, symmetric, transitive, irreflexive, and an-
tisymmetric. Binary relations can be constructed from other binary relations
by composition and closure, and by the usual set operations. Transitive closure
plays an important part in algorithms for solving path problems-Warshall's
algorithm, Floyd's algorithm, and the modification of Floyd's algorithm to find
shortest paths.

Equivalence relations are characterized by being reflexive, symmetric, and
transitive. These relations generalize the idea of basic equality by partitioning
a set into classes of equivalent elements. Any set has a hierarchy of partitions
ranging from fine to coarse. Equivalence relations can be generated from other
relations by taking the transitive symmetric reflexive closure. They can also be
generated from functions by the kernel relation. The equivalence problem can be
solved by a novel tree structure. Kruskal's algorithm uses an equivalence relation
to find a minimal spanning tree for a weighted undirected graph.

Order relations are characterized by being transitive and antisymmetric.
Sets with these properties are called posets-for partially ordered sets-because
it may be the case that not all pairs of elements are related. The ideas of successor
and predecessor apply to posets. Posets can also be topologically sorted. A
well-founded poset is characterized by the condition that no descending chain
of elements can go on forever. This is equivalent to the condition that any
nonempty subset has a minimal element. Well-founded sets can be constructed
by mapping objects into a known well-founded set such as the natural numbers.
Inductively defined sets are well-founded.

Inductive proof is a powerful technique that can be used to prove infinitely
many statements. The most basic inductive proof technique is the principle
of mathematical induction. Another useful inductive proof technique is well-
founded induction. The important thing to remember about applying inductive
proof techniques is to make an assumption and then use the assumption that you
made. Inductive proof techniques can be used to prove properties of recursively
defined functions and inductively defined sets.

Analysis
Techniques

Remember that time is money.

-Benjamin Franklin (1706 1790)

Time and space are important words in computer science because we want fast
algorithms and we want algorithms that don't use a lot of memory. The purpose
of this chapter is to study some fundamental techniques and tools that can be
used to analyze algorithms for the time and space that they require. Although
the study of algorithm analysis is beyond our scope, we'll give some examples to
show how the process works.

The cornerstone of algorithm analysis is counting. So after an introduction
to the ideas of algorithm analysis, we'll concentrate on techniques to aid the
counting process. We'll discuss techniques for finding closed forms for summa-
tions. Then we'll discuss permutations, combinations, and discrete probability.
Next we'll introduce techniques for solving recurrences. Lastly, with an eye to-
ward comparing algorithms, we'll discuss how to compare the growth rates of
functions.

Section 5.1 introduces some ideas about analyzing algorithms. We'll define the
worst-case performance of an algorithm and the idea of an optimal algorithm.
Then we'll analyze a few example algorithms.

Section 5.2 introduces techniques for finding closed forms for sums that crop up
in the analysis of algorithms.

Section 5.3 introduces basic counting techniques for permutations and combi-
nations. We'll also introduce discrete probability so that we can discuss the
average-case performance of algorithms.

Section 5.4 introduces techniques for solving recurrences that crop up in the
analysis of algorithms.

273

274 CHAPTER 5 * ANALYSIS TECHNIQUES

Section 5.5 introduces techniques for comparing the rates of growth of functions.
We'll apply the results to those functions that describe the approximate
running time of algorithms.

5.1 Analyzing Algorithms

An important question of computer science is: Can you convince another person
that your algorithm is efficient? This takes some discussion. Let's start by
stating the following problem.

The Optimal Algorithm Problem

Suppose algorithm A solves problem P. Is A the best solution to P?

What does "best" mean? Two typical meanings are least time and least
space. In either case, we still need to clarify what it means for an algorithm to
solve a problem in the least time or the least space. For example, an algorithm
running on two different machines may take different amounts of time. Do we
have to compare A to every possible solution of P on every type of machine?
This is impossible. So we need to make a few assumptions in order to discuss the
optimal algorithm problem. We'll concentrate on "least time" as the meaning of
"best" because time is the most important factor in most computations.

5.1.1 Worst-Case Running Time

Instead of executing an algorithm on a real machine to find its running time,
we'll analyze the algorithm by counting the number of certain operations that
it will perform when executed on a real machine. In this way we can compare
two algorithms by simply comparing the number of operations of the same type
that each performs. If we make a good choice of the type of operations to count,
we should get a good measure of an algorithm's performance. For example, we
might count addition operations and multiplication operations for a numerical
problem. On the other hand, we might choose to count comparison operations
for a sorting problem.

The number of operations performed by an algorithm usually depends on
the size or structure of the input. The size of the input again depends on the
problem. For example, for a sorting problem, "size" usually means the number
of items to be sorted. Sometimes inputs of the same size can have different
structures that affect the number of operations performed. For example, some
sorting algorithms perform very well on an input data set that is all mixed up
but perform badly on an input set that is already sorted!

Because of these observations, we need to define the idea of a worst-case
input for an algorithm A. An input of size n is a worst-case input if, when
compared to all other inputs of size n, it causes A to execute the largest number

5.1 m ANALYZING ALGORITHMS 275

of operations. Now let's get down to business. For any input I we'll denote its
size by size(I), and we'll let time(I) denote the number of operations executed
by A on 1. Then the worst-case function for A is defined as follows:

WA(n) = max{time(I) I I is an input and size(I) = n}.

Now let's discuss comparing different algorithms that solve a problem P.
We'll always assume that the algorithms we compare use certain specified op-
erations that we intend to count. If A and B are algorithms that solve P and
if WA(n) <_ WB(n) for all n > 0, then we know algorithm A has worst-case
performance that is better than or equal to that of algorithm B. This gives us
the proper tool to describe the idea of an optimal algorithm.

Definition of Optimal in the Worst Case

An algorithm A is optimal in the worst case for problem P, if for any algorithm
B that exists, or ever will exist, the following relationship holds:

WA(n) <• WB(n) for all n > 0.

How in the world can we ever find an algorithm that is optimal in the worst
case for a problem P? The answer involves the following three steps:

1. (Find an algorithm) Find or design an algorithm A to solve P. Then do an
analysis of A to find the worst-case function WA.

2. (Find a lower bound) Find a function F such that F(n) < WB(n) for all n
> 0 and for all algorithms B that solve P.

3. Compare F and WA. If F = WA, then A is optimal in the worst case.

Suppose we know that F 7 WA in Step 3. This means that F(n) < WA(n)
for some n. In this case there are two possible courses of action to consider:

1. Put on your construction hat and try to build a new algorithm C such that
WC(n) • WA(W) for all n > 0.

2. Put on your analysis hat and try to find a new function G such that
F(n) • G(n) _ WB(n) for all n > 0 and for all algorithms B that solve
P.

We should note that zero is always a lower bound, but it's not very inter-
esting because most algorithms take more than zero time. A few problems have

optimal algorithms. For the vast majority of problems that have solutions, op-
timal algorithms have not yet been found. The examples contain both kinds of
problems.

276 CHAPTER 5 a ANALYSIS TECHNIQUES

F 5.1 Matrix Multiplication

We can "multiply" two n by n matrices A and B to obtain the product AB,
which is the n by n matrix defined by letting the element in the ith row and jth
column of AB be the value of the expression En I AikBkj. For example, let A
and B be the following 2 by 2 matrices:

A=[a b] , B=[f]

The product AB is the following 2 by 2 matrix:

AB-= ae+bg af +bh 1
ce + dg cf + dh

Notice that the computation of AB takes eight multiplications and four addi-
tions. The definition of matrix multiplication of two n by n matrices uses nr3

multiplication operations and n 2 (n - 1) addition operations.
A known lower bound for the number of multiplication operations needed

to multiply two n by n matrices is n2 . Strassen [1969] showed how to multiply
two matrices with about n 2 s.81 multiplication operations. The number 2.81 is an
approximation to the value of log2(7). It stems from the fact that a pair of 2 by
2 matrices can be multiplied by using seven multiplication operations.

Multiplication of larger-size matrices is broken down into multiplying many
2 by 2 matrices. Therefore, the number of multiplication operations becomes less
than n 3 . This revelation got research going in two camps. One camp is trying
to find a better algorithm. The other camp is trying to raise the lower bound
above n 2. In recent years, algorithms have been found with still lower numbers.
Pan [1978] gave an algorithm to multiply two 70 x 70 matrices using 143,640
multiplications, which is less than 702.81 multiplication operations. Coppersmith
and Winograd [1987] gave an algorithm that, for large values of n, uses n2.376

multiplication operations. So it goes.

S5.2 Finding the Minimum

Let's examine an optimal algorithm to find the minimum number in an unsorted
list of n numbers. We'll count the number of comparison operations that an
algorithm makes between elements of the list. To find the minimum number in
a list of n numbers, the minimum number must be compared with the other
n - 1 numbers. Therefore, n - 1 is a lower bound on the number of comparisons
needed to find the minimum number in a list of n numbers.

If we represent the list as an array a indexed from 1 to n, then the following
algorithm is optimal because the operation < is executed exactly n - 1 times.

5.1 n ANALYZING ALGORITHMS 277

m := a[l];
for i := 2 to n do

m := if m < a[i] then m else a[i]

od

5.1.2 Decision Trees

We can often use a tree to represent the decision processes that take place in
an algorithm. A decision tree for an algorithm is a tree whose nodes represent
decision points in the algorithm and whose leaves represent possible outcomes.
Decision trees can be useful in trying to construct an algorithm or trying to find
properties of an algorithm. For example, lower bounds may equate to the depth

of a decision tree.
If an algorithm makes decisions based on the comparison of two objects,

then it can be represented by a binary decision tree. Each nonleaf node in the
tree represents a pair of objects to be compared by the algorithm, and each
branch from that node represents a path taken by the algorithm based on the
comparison. Each leaf can represent an outcome of the algorithm. A ternary
decision tree is similar except that each nonleaf node represents a comparison
that has three possible outcomes.

Lower Bounds for Decision Tree Algorithms

Let's see whether we can compute lower bounds for decision tree algorithms. If

a decision tree has depth d, then some path from the root to a leaf contains d +
1 nodes. Since the leaf is a possible outcome, it follows that there are d decisions
made on the path. Since no other path from the root to a leaf can have more

than d + 1 nodes, it follows that d is the worst-case number of decisions made
by the algorithm.

Now, suppose that a problem has n possible outcomes and it can be solved by
a binary decision tree algorithm. What is the best binary decision tree algorithm?

We may not know the answer, but we can find a lower bound for the depth of
any binary decision tree to solve the problem. Since the problem has n possible
outcomes, it follows that any binary decision tree algorithm to solve the problem
must have at least n leaves, one for each of the n possible outcomes. Recall that

the number of leaves in a binary tree of depth d is at most 2d.
So if d is the depth of a binary decision tree to solve a problem with n

possible outcomes, then we must have n < 2 d. We can solve this inequality for

d by taking log2 of both sides to obtain log2n < d. Since d is a natural number,
it follows that

Flog2nn] < d.

278 CHAPTER 5 E ANALYSIS TECHNIQUES

In other words, any binary decision tree algorithm to solve a problem with n
possible outcomes must have a depth of at least [log 2 nl.

We can do the same analysis for ternary decision trees. The number of leaves
in a ternary tree of depth d is at most 3 d. If d is the depth of a ternary decision
tree to solve a problem with n possible outcomes, then we must have n < 3d.

Solve the inequality for d to obtain

[log13] < d.

In other words, any ternary decision tree algorithm to solve a problem with n
possible outcomes must have a depth of at least [log3 n].

Many sorting and searching algorithms can be analyzed with decision trees
because they perform comparisons. Let's look at some examples to illustrate the
idea.

J 5.3 Binary Search

Suppose we search a sorted list in a binary fashion. That is, we check the middle
element of the list to see whether it's the key we are looking for. If not, then
we perform the same operation on either the left half or the right half of the
list, depending on the value of the key. This algorithm has a nice representation
as a decision tree. For example, suppose we have the following sorted list of 15

numbers:

Xl, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15.

Suppose we're given a number key K, and we must find whether it is in the list.
The decision tree for a binary search of the list has the number X8 at its root.
This represents the comparison of K with X8. If K = xs, then we are successful
in one comparison. If K < x8, then we go to the left child of x8; otherwise we go
to the right child of x8. The result is a ternary decision tree in which the leaves
are labeled with either S, for successful search, or U, for unsuccessful search.
The decision tree is pictured in Figure 5.1.

Since the depth of the tree is 4, it follows that there will be four comparisons
in the worst case to find whether K is in the list. Is this an optimal algorithm?
To see that the answer is yes, we can observe that there are 31 possible outcomes
for the given problem: 15 leaves labeled with S to represent successful searches;

and 16 leaves labeled with U to represent the gaps where K < x1, xi < K < xi +1
for 1 < i < 15, and x15 < K. Therefore, a worst-case lower bound for the number
of comparisons is [1og3311 = 4. Therefore the hyphen algorithm is optimal.

5.1 n ANALYZING ALGORITHMS 279

x8

x4 S x12

X2 116 X10 S x14

Xl S X3 X5 S X7 X9 S XI1I X13 S Xl15

U SU U SU U SU U SU U SU U SU U SU U SU

Figure 5.1 Decision tree for binary search.

.. 5.4 Finding a Bad Coin

Suppose we are asked to use a pan balance to find the heavy coin among eight
coins with the assumption that they all look alike and the other seven all have
the same weight. One way to proceed is to always place coins in the two pans
that include the bad coin, so the pan will always go down.

This gives a binary decision tree, where each internal node of the tree rep-
resents the pan balance. If the left side goes down, then the heavy coin is on
the left side of the balance. Otherwise, the heavy coin is on the right side of the
balance. Each leaf represents one coin that is the heavy coin. Suppose we label
the coins with the numbers 1, 2,..., 8.

The decision tree for one algorithm is shown in Figure 5.2, where the numbers
on either side of a nonleaf node represent the coins on either side of the pan
balance. This algorithm finds the heavy coin in three weighings. Can we do any
better? Look at the next example.

1 2 3 4 5 6 7 8

Figure 5.2 A binary decision tree.

280 CHAPTER 5 U ANALYSIS TECHNIQUES

1.2,3 4,5,6

1l 2 7 8 4 5

1 3 2 7 8 4 6 5

Figure 5.3 An optimal decision tree.

5.5 An Optimal Solution

The problem is the same as in Example 5.4. We are asked to use a pan balance
to find the heavy coin among eight coins with the assumption that they all look
alike and the other seven all have the same weight. In this case we'll weigh coins
with the possibility that the two pans are balanced. So a decision tree can have
nodes with three children.

We don't have to use all eight coins on the first weighing. For example,
Figure 5.3 shows the decision tree for one algorithm. Notice that there is no
middle branch on the middle subtree because, at this point, one of the coins 7 or
8 must be the heavy one. This algorithm finds the heavy coin in two weighings.

This algorithm is an optimal pan-balance algorithm for the problem, where
we are counting the number of weighings to find the heavy coin. To see this,
notice that any one of the eight coins could be the heavy one. Therefore, there
must be at least eight leaves on any algorithm's decision tree. But a binary tree
of depth d can have 2 d possible leaves. So to get eight leaves, we must have 2 d

> 8. This implies that d > 3. But a ternary tree of depth d can have 3 d possible
leaves. So to get eight leaves, we must have 3 d > 8, or d > 2. Therefore, 2
is a lower bound for the number of weighings. Since the algorithm solves the
problem in two weighings, it is optimal.

5.6 A Lower Bound Computation

Suppose we have a set of 13 coins in which at most one coin is bad and a bad
coin may be heavier or lighter than the other coins. The problem is to use a pan
balance to find the bad coin if it exists and say whether it is heavy or light. We'll
find a lower bound on the heights of decision trees for pan-balance algorithms to
solve the problem.

Any solution must tell whether a bad coin is heavy or light. Thus there are
27 possible conditions: no bad coin and the 13 pairs of conditions (ith coin light,
ith coin heavy). Therefore, any decision tree for the problem must have at least
27 leaves. So a ternary decision tree of depth d must satisfy 3 d > 27, or d > 3.
This gives us a lower bound of 3.

5.2 m FINDING CLOSED FORMS 281

Now the big question: Is there an algorithm to solve the problem, where
the decision tree of the algorithm has depth 3? The answer is no. Just look at
the cases of different initial weighings, and note in each case that the remaining
possible conditions cannot be distinguished with just two more weighings. Thus
any decision tree for this problem must have depth 4 or more.

o Exercises

1. Draw a picture of the decision tree for an optimal algorithm to find the
maximum number in the list x1, £2, X3, X4.

2. Suppose there are 95 possible answers to some problem. For each of the
following types of decision tree, find a reasonable lower bound for the number
of decisions necessary to solve the problem.

a. Binary tree. b. Ternary tree. c. Four-way tree.

3. Find a nonzero lower bound on the number of weighings necessary for any
ternary pan-balance algorithm to solve the following problem: A set of 30
coins contains at most one bad coin, which may be heavy or light. Is there
a bad coin? If so, state whether it's heavy or light.

4. Find an optimal pan-balance algorithm to find a bad coin, if it exists, from
12 coins, where at most one coin is bad (i.e., heavier or lighter than the
others). Hint: Once you've decided on the coins to weigh for the root of the
tree, then the coins that you choose at the second level should be the same
coins for all three branches of the tree.

5.2 Finding Closed Forms

In trying to count things we often come up with expressions or relationships
that need to be simplified to a form that can be easily computed with familiar
operations.

Definition of Closed Form

A closed form is an expression that can be computed by applying a fixed number
of familiar operations to the arguments. A closed form can't have an ellipsis
because the number of operations to evaluate the form would not be fixed. For
example, the expression n(n+l)/2 is a closed form, but the expression 1 +
2 + ... + 'n is not a closed form. In this section we'll introduce some closed
forms for sums.

282 CHAPTER 5 E ANALYSIS TECHNIQUES

5.2.1 Closed Forms for Sums

Let's start by reviewing a few important facts about summation notation and
the indexes used for summing. We can use summation notation to represent a
sum like a, + a 2 + --- + an by writing

n

ai = a, + a 2 + + ± an.
i 1

Many problems can be solved by the simple manipulation of sums. So we'll begin
by listing some useful facts about sums, which are easily verified.

Summation Facts (5.1)
n

a. cc= (n-m +)c.

b. (ai + bi) E ai + bi.
i--Tni--m i=m

c. Zcai =c ai.
i=-- i~m

n n+k

d. ai+k = ai. (k is any integer)

nm n2

e. > aixi+k = Xk Z aix'. (k is any integer)

These facts are very useful in manipulating sums into simpler forms from
which we might be able to find closed forms. So we better look at a few closed
forms for some elementary sums. We already know some of them.

Closed Forms of Elementary Finite Sums (5.2)

a. i n(n+1)
2

i-1

b. j2 n(n + l)(2n + l)
6i=1

n an+l

c. a -a (aE1).
1-0

d n Zai a - (n + 1)a n+14 +na n+2

i=1 (a- 1)2

5.2 U FINDING CLOSED FORMS 283

These closed forms are quite useful because they pop up in many situations
when we are trying to count the number of operations performed by an algorithm.
Are closed forms easy to find? Sometimes yes, sometimes no. Many techniques
to find closed forms use properties (5.1) to manipulate sums into sums that have
known closed forms such as those in (5.2). The following examples show a variety
of ways to find closed forms.

_ 5.7 A Sum of Odd Numbers

Suppose we need a closed form for the sum of the odd natural numbers up to a
certain point:

1+3+5+...+ (2n + 1).

We can write this expression using summation notation as follows:

S(2i + 1) = 1+3+5+...+ (2n+ 1).
i=0

Now, let's manipulate the sum to find a closed form. Make sure you can supply
the reason for each step:

n n n

(2i + 1) = 2i + E 1
i=0 i=0 i=0

n n

/=0 i=0

2 + (n+l)=(nl+)2.

S5.8 Finding a Geometric Progression

Suppose we forgot the closed form for a geometric progression (5.2c). Can we
find it again? Here's one way. Let Sn be the following geometric progression,
where a ? 1.

Sn = 1+ a+ a 2 + + a".

Notice that we can write the sum Sn+l in two different ways in terms of S,:

Sn+i = 1 +a+ a 2 + .. + an+l

= (S+a+a2+...+an)+an+1
= S n + -a - ,

284 CHAPTER 5 0 ANALYSIS TECHNIQUES

and

S,++=1+a+ a2 +...+an+l

= 1 +a (I+a+a 2 +... - an)

= 1+ aS.

So we can equate the two expressions for S++ to obtain the equation

S, + an++l = 1 + aS,.

Since a :ý 1, we can solve the equation for Sn to obtain the well-known formula
(5.2c) for a geometric progression.

n a n+l -1

E a a-i
i--O

We can verify the answer by mathematical induction on n or by multiplying
both sides by a - 1 to get an equality.

5.9 Finding a Closed Formula

Let's try to derive the closed formula given in (5.2d) for the sum F_', iai.

Suppose we let S, = J:=1 ia'. As in Example 5.8, we'll find two expressions for

S,+I in terms of Sn. One expression is easy:

n+1 n

Sn+j = Zia+ : Zia' + (n + 1)a n+ 1 Sn + (n + 1)an+1 .
i=1 i=1

For the other expression we can proceed as follows:

n+1
S.+1 =iai

E Z (i + 1) a'+' (5.1d)
i=0

E iai+ + E a'+' (algebra and 5.1b)
i=0 i=0

n n

Sa E ia i + a E ai (5.1e)

i-0 i=0

a an,- +1 (5.2c).
aS,, + a -

5.2 m FINDING CLOSED FORMS 285

So we can equate the two expressions for S,+, to obtain the equation

S, + (n + 1)an'+'= aS + a (a -• •1

Now solve the equation for S, to obtain the closed form (5.2d):

n - a - (n + 1) an+ 1 + nafn+2

i=1 (a -

_ _ 5.10 A Sum of Powers

A sum like En iP can be solved in terms of the two sums

i and P
2 .

i=1 i=1

We'll start by adding the term (n + 1)4 to 41 i4' Then we obtain the following

equations.

E i4 + (n+)4 (i +1)4

i=1 i=O

Y Z (i4 + 4i 3 + 6i 2 + 4i + 1)
i=O

Ei4 4 +4Yi3 +6 6Ei2 +4E + E 1.
i=1 i=1 i=1 i=1 i=O

Now subtract the term Pi=1 i
4 from both sides of the above equation to obtain

the following equation:

(n + 1)4 =4 Ei3+6 Ei 2 + 4Ei+ E- 1. (5.3)
i=1 i=1 i-1 i=0

Since we know the closed forms for the latter three sums on the right side of the
equation, we can solve for EI= i 3 to find its closed form. We'll leave this as an
exercise. We can use the same method to find a closed form for the expression

ji=1 ik for any natural number k.

286 CHAPTER 5 U ANALYSIS TECHNIQUES

S5.11 The Polynomial Problem

Suppose we're interested in the number of arithmetic operations needed to eval-
uate the following polynomial at some number x.

CO + C1 X + C 2 x2 +_-f _ + Cnxn.

The number of operations performed will depend on how we evaluate it. For
example, suppose that we compute each term in isolation and then add up all
the terms. There are n addition operations and each term of the form cixi

takes i multiplication operations. So the total number of arithmetic operations
is given by the following sum:

n
n +(0 +I+ 2 +... +n) =n+ 1:i

i=O

n+ + (n+ 1)

2
n 2 + 3n

2

So for even small values of n there are many operations to perform. For example,
if n = 30, then there are 495 arithmetic operations to perform. Can we do better?
Sure, we can group terms so that we don't have to repeatedly compute the same
powers of x. We'll continue the discussion after we've introduced recurrences.

5.12 Simple Sort

In this example we'll construct a simple sorting algorithm and analyze it to find
the number of comparison operations. We'll sort an array a of numbers indexed
from 1 to n as follows: Find the smallest element in a, and exchange it with
the first element. Then find the smallest element in positions 2 through n, and
exchange it with the element in position 2. Continue in this manner to obtain a
sorted array. To write the algorithm, we'll use a function "min" and a procedure
"exchange," which are defined as follows:

min(a, i, n) is the index of the minimum number among the elements
a[i], a[i + 1]., a[n]. We can easily modify the algorithm in Example
5.2 on page 276 to accomplish this task with with n - i comparisons.

exchange(a[i], a[j]) is the usual operation of swapping elements and does
not use any comparisons.

5.2 U FINDING CLOSED FORMS 287

Now we can write the sorting algorithm as follows:

for i := 1 to n - 1 do

j min(a, i, n);

exchange(a[i], aj])

od

Now let's compute the number of comparison operations. The algorithm for
min(a, i, n) makes n - i comparisons. So as i moves from 1 to n - 1, the
number of comparison operations moves from n - 1 to n - (n - 1). Adding these
comparisons gives the sum of an arithmetic progression,

n(n -)
(n-1) + (n-2)+-+l- = 2

The algorithm makes the same number of comparisons no matter what the form
of the input array, even if it is sorted to begin with. So any arrangement of
numbers is a worst-case input. For example, to sort 1,000 items it would take

499,500 comparisons, no matter how the items are arranged at the start

There are many faster sorting algorithms. For example, an algorithm called
"heapsort" takes no more than 2n log2 n comparisons for its worst-case per-
formance. So for 1,000 items, heapsort would take a maximum of 20,000
comparisons-quite an improvement over our simple sort algorithm. In Sec-
tion 5.3 we'll discover a good lower bound for the worst-case performance of
comparison sorting algorithms.

0 Exercises

Closed Forms for Sums

1. Expand each expression into a sum of terms. Don't evaluate.
5 5 4a. (2i + 3). b. Ei3. c. E (5 - i) 3.

i1i= i=O

2. (Changing Limits of Summation). Given the following summation expres-
sion:

n

Eg(i - 1)aix2+±.

For each of the following lower limits of summation, find an equivalent sum-
mation expression that starts with that lower limit.

a. i=0. b. i=2. c. i=--1. d. i=3. e. i=-2.

288 CHAPTER 5 n ANALYSIS TECHNIQUES

3. Find a closed form for each of the following sums.

a. 3+6+9+12+... +3n.

b. 3+9+15+21+. + (6n +3).
c. 3+6+ 12 +24+... +3(2').
d. 3+(2)32 +(3) 3 3 + (4)3 4 +.-.+n3-.

4. For each of the following summations, use summation facts and known closed
forms to transform each summation into a closed form.

n n2

a. (2i+2). b. (2i-1).
i=1i1
n n

c. Z(2i+3). d. Z(4i-1).
i=1i=

i=1 i=1

n n

g. i(i+1). h. y (i2-i).
i=2

5. Solve Equation (5.3) to find a closed form for the expression Z-= 1 i
3.

Analyzing Algorithms

6. For the following algorithm, answer each question by giving a formula in
terms of n:

for i:= 1 to n do

forj := Ito i do x := x + f(x) od;
x := x + g(x)

od

a. Find the number of times the assignment statement (:=) is executed
during the running of the program.

b. Find the number of times the addition operation (+) is executed during
the running of the program.

7. For the following algorithm, answer each question by giving a formula in
terms of n:

i=1
while i < n + 1 do

i := i + 1;
for j := to i do S od

od

5.3 N COUNTING AND DISCRETE PROBABILITY 289

a. Find the number of times the statement S is executed during the run-
ning of the program.

b. Find the number of times the assignment statement (:=) is executed
during the running of the program.

Proofs and Challenges

8. For the following algorithm, answer each question by giving a formula in
terms of n:

i :=1;

while i< n + 1 do

i := i + 2;

for j := to i do S od

od

a. Find the number of times the statement S is executed during the run-
ning of the program.

b. Find the number of times the assignment statement (:=) is executed
during the running of the program.

5.3 Counting and Discrete Probability

Whenever we need to count the number of ways that some things can be arranged
or the number of subsets of things, there are some nice techniques that can help
out. That's what our discussion of permutations and combinations will be about.

Whenever we need to count the number of operations performed by an al-
gorithm, we need to consider whether the algorithm yields different results with
each execution because of factors such as the size and/or structure of the input
data. More generally, many experiments don't always yield the same results
each time they are performed. For example, if we flip a coin we can't be sure
of the outcome. This brings our discussion to probability. After introducing the
basics, we'll see how probability is used when we need to count the number of
operations performed by an algorithm in the average case.

5.3.1 Permutations (Order is Important)

In how many different ways can we arrange the elements of a set S? If S has n
elements, then there are n choices for the first element. For each of these choices
there are n - 1 choices for the second element. Continuing in this way, we obtain

290 CHAPTER 5 0 ANALYSIS TECHNIQUES

n! =n•(n -1) ... 2 • 1 different arrangements of n elements. Any arrangement
of n distinct objects is called a permutation of the objects. We'll write down the
rule for future use:

Permutations (5.4)
There are n! permutations of an n-element set.

For example, if S = {a, b, c}, then the six possible permutations of S, written
as strings, are listed as follows:

abc, acb, bac, bca, cab, cba.

Now suppose we want to count the number of permutations of r elements
chosen from an n-element set, where 1 < r < n. There are n choices for the first
element. For each of these choices there are n - 1 choices for the second element.
We continue this process r times to obtain the answer,

n (n - 1) ... (n - r + 1).

This number is denoted by the symbol P(n, r) and is read "the number of
permutations of n objects taken r at a time." We should emphasize here that
we are counting r distinct objects. So we have the formulas shown in (5.5) and
(5.6):

Permutations
The number of permutations of n objects taken r at a time is given by

P(n,r) = n(n - 1) ... (n - 1), (5.5)

which can also be written,

n!
P(n, r) - (n r)! (5.6)

Notice that P(n, 1) = n and P(n, n) = n!. If S = {a, b, c, d}, then there are
12 permutations of two elements from S, given by the formula P(4, 2) = 4!/2!

12. The permutations are listed as follows:

ab, ba, ac, ca, ad, da, be, cb, bd, db, cd, dc.

5.3 M COUNTING AND DISCRETE PROBABILITY 291

Permutations with Repeated Elements

Permutations can be thought of as arrangements of objects selected from a set
without replacement. In other words, we can't pick an element from the set more
than once. If we can pick an element more than once, then the objects are said
to be selected with replacement. In this case the number of arrangements of r
objects from an n-element set is just P.. We can state this idea in terms of
bags as follows: The number of distinct permutations of r objects taken from a
bag containing n distinct objects, each occurring r times, is n'. For example,
consider the bag B = [a, a, b, b, c, c]. Then the number of distinct permutations
of two objects chosen from B is 32, and they can be listed as follows:

aa, ab, ac, ba, bb, be, ca, cb, cc.

Let's look now at permutations of all the elements in a bag. For example,
suppose we have the bag B = [a, a, b, b, b]. We can write down the distinct
permutations of B as follows:

aabbb, ababb, abbab, abbba, baabb, babab, babba, bbaab, bbaba, bbbaa.

There are 10 strings. Let's see how to compute the number 10 from the informa-
tion we have about the bag B. One way to proceed is to place subscripts on the
elements in the bag, obtaining the five distinct elements a,, a 2 , bl, b2, b3. Then
we get 5! = 120 permutations of the five distinct elements. Now we remove all
the subscripts on the elements, and we find that there are many repeated strings
among the original 120 strings.

For example, suppose we remove the subscripts from the two strings,

albt b2 a 2 b3 and a 2 b b3 alb 2 •

Then we obtain two occurrences of the string abbab. If we wrote all occurrences

down, we would find 12 strings, all of which reduce to the string abbab when
subscripts are removed. This is because there are 2! permutations of the letters
a, and a2, and there are 3! permutations of the letters bl, b2, and b3. So there
are 2!3! = 12 distinct ways to write the string abbab when we use subscripts. Of

course, the number is the same for any string of two a's and three b's. Therefore,
the number of distinct strings of two a's and three b's is found by dividing the
total number of subscripted strings by 2!3! to obtain 5!/2!3! = 10. This argument
generalizes to obtain the following result about permutations that can contain
repeated elements.

Permutations of a Bag (5.7)
Let B be an n-element bag with k distinct elements, where each of the num-

bers ml,..., Mk denotes the number of occurrences of each element. Then
the number of permutations of the n elements of B is

n!
Ml! ... rnk!"

292 CHAPTER 5 0 ANALYSIS TECHNIQUES

Now let's look at a few examples to see how permutations (5.4)-(5.7) can be
used to solve a variety of problems. We'll start with an important result about
sorting.

5.13 Worst-Case Lower Bound for Comparison Sorting

Let's find a lower bound for the number of comparisons performed by any algo-
rithm that sorts by comparing elements in the list to be sorted. Assume that we
have a set of n distinct numbers. Since there are n! possible arrangements of
these numbers, it follows that any algorithm to sort a list of n numbers has n!
possible input arrangements. Therefore, any decision tree for a comparison sort-
ing algorithm must contain at least n! leaves, one leaf for each possible outcome
of sorting one arrangement.

We know that a binary tree of depth d has at most 2 d leaves. So the depth d
of the decision tree for any comparison sort of n items must satisfy the inequality

n! < 2 d.

We can solve this inequality for the natural number d as follows:

log 2 n! < d

[log 2 n!] < d.

In other words, [log2 n!] is a worst-case lower bound for the number of com-
parisons to sort n items. The number [log2 n!] is hard to calculate for large
values of n. We'll see in Section 5.5 that it is approximately n log2 n.

J 5.14 People in a Circle

In how many ways can 20 people be arranged in a circle if we don't count a
rotation of the circle as a different arrangement? There are 20! arrangements of
20 people in a line. We can form a circle by joining the two ends of a line. Since
there are 20 distinct rotations of the same circle of people, it follows that there
are

20!
-= 19!

20

distinct arrangements of 20 people in a circle. Another way to proceed is to put
one person in a certain fixed position of the circle. Then fill in the remaining 19
people in all possible ways to get 19! arrangements.

5.3 m COUNTING AND DISCRETE PROBABILITY 293

i5.15 Rearranging a String

How many distinct strings can be made by rearranging the letters of the word
banana? One letter is repeated twice, one letter is repeated three times, and one
letter stands by itself. So we can answer the question by finding the number of
permutations of the bag of letters [b, a, n, a, n, a]. Therefore, (5.7) gives us the
result

6!
1!2!3! = 60.

_ 5.16 Strings with Restrictions

How many distinct strings of length 10 can be constructed from the two digits
0 and 1 with the restriction that five characters must be 0 and five must be 1?
The answer is

10!
- = 252

5!5!

because we are looking for the number of permutations from a 10-element bag
with five l's and five 0's.

•-5.17 Constructing a Code

Suppose we want to build a code to represent each of 29 distinct objects with a
binary string having the same minimal length n, where each string has the same
number of 0's and l's. Somehow we need to solve an inequality like

ni!n! > 29,
k!k!

where k = n/2. We find by trial and error that n = 8. Try it.

5.3.2 Combinations (Order Is Not Important)

Suppose we want to count the number of r-element subsets in an n-element set.
For example, if S = {a, b, c, d}, then there are four 3-element subsets of S:
{ a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}. Is there a formula for the general
case? The answer is yes. An easy way to see this is to first count the number of
r-element permutations of the n elements, which is given by the formula

n!P nr) -(,-r!

294 CHAPTER 5 0 ANALYSIS TECHNIQUES

Now each r-element subset has r! distinct r-element permutations, which we
have included in our count P(n, r). How do we remove the repeated permutations
from the count? Let C(n, r) denote the number of r-element subsets of an n-
element set. Since each of the r-element subsets has r! distinct permutations, it
follows that r! • C(n, r) = P(n, r). Now divide both sides by r! to obtain the
desired formula C(n, r) P(n, r)/r!.

The expression C(n, r) is usually said to represent the number of combi-
nations of n things taken r at a time. With combinations, the order in which
the objects appear is not important. We count only the different sets of objects.

C(n, r) is often read "n choose r." Here's the formula for the record.

Combinations (5.8)
The number of combinations of n things taken r at a time is given by

C (n, r) - P (n, r) _ n!

r! r! (n - r)!'

J 5.18 Subsets of the Same Size

Let S = {a, b, c, d, e}. We'll list all the three-element subsets of S:

{a, b, c}, {a, b, d}, {a, b, e}' {a, c, d}, {a, c, ell

{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}.

There are 10 such subsets, which we can verify by the formula

C0(5, 3) = 5 0
5 3!2! - 10.

Binomial Coefficients

Notice how C(n, r) crops up in the following binomial expansion of the expression

(X + y) 4 :

(x + y) 4 = x44x3y 6x2y2 + 4xy 3 + y 4

- C (4, 0) x
4 + C (4, 1) x 3 y + C (4,2) x 2 y 2 + C (4, 3) xy 3 + C (4,4) y 4 .

A useful way to represent C(n, r) is with the binomial coefficient symbol:

5.3 E COUNTING AND DISCRETE PROBABILITY 295

Using this symbol, we can write the expansion for (x + y) 4 as follows:

(x + y) 4 x 4 + 4x 3y + 6x 2y 2 + xy 3 + y4

4) 4 (4) X3Y+ (4>)2Y2±+ (4)XY3±+ (4) Y4.

This is an instance of a well-known formula called the binomial theorem, which

can be written as follows, where n is a natural number:

Binomial Theorem (5.9)

Pascal's Triangle

The binomial coefficients for the expansion of (x + y)' can be read from the
nth row of the table in Figure 5.4. The table is called Pascal's triangle-after
the philosopher and mathematician Blaise Pascal (1623-1662). However, prior
to the time of Pascal, the triangle was known in China, India, the Middle East,
and Europe. Notice that any interior element is the sum of the two elements
above and to its left.

But how do we really know that the following statement is correct?

n 0 1 ý 2 3 4 5 6 7 8 9 10

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

Figure 5.4 Pascal's triangle.

296 CHAPTER 5 a ANALYSIS TECHNIQUES

Elements in Pascal's Triangle (5.10)

The nth row kth column entry of Pascal's triangle is ()

Proof: For convenience we will designate a position in the triangle by an ordered
pair of the form (row, column). Notice that the edge elements of the triangle are
all 1, and they occur at positions (n, 0) or (n, n). Notice also that

(n) n1 ()

So (5.10) is true when k = 0 or k = n. Next, we need to consider the interior
elements of the triangle. So let n > 1 and 0 < k < n. We want to show that the
element in position (n, k) is ('). To do this, we need the following useful result
about binomial coefficients:

To prove (5.11), just expand each of the three terms and simplify. Continuing
with the proof of (5.10), we'll use well-founded induction. To do this, we need
to define a well-founded order on something. For our purposes we will let the
something be the set of positions in the triangle. We agree that any position
in row n - 1 precedes any position in row n. In other words, if n' < n, then
(nW, kV) precedes (n, k) for any values of kV and k. Now we can use well-founded
induction. We pick position (n, k) and assume that (5.10) is true for all pairs in
row n - 1. In particular, we can assume that the elements in positions (n - 1, k)
and (n - 1, k - 1) have values

(n I) and n I

Now we use this assumption along with (5.11) to tell us that the value of the
element in position (n, k) is (n). QED.

Can you find some other interesting patterns in Pascal's triangle? There are
lots of them. For example, look down the column labeled 2 and notice that, for
each n > 2, the element in position (n, 2) is the value of the arithmetic sum 1
+ 2 + .- + (n - 1). In other words, we have the formula

(n) =~
-2)

5.3 0 COUNTING AND DISCRETE PROBABILITY 297

Combinations with Repeated Elements

Let's continue our discussion about combinations by counting bags of things
rather than sets of things. Suppose we have the set A = {a, b, c}. How many
3-element bags can we construct from the elements of A? We can list them as
follows:

[a, a, a], [a, a, b] , [a, a, c], [a, b, c], [a, b, b],

[a, c, c] , [b, b, b] , [b, b, c] , [b, c, c] , [c, c, c].

So there are ten 3-element bags constructed from the elements of {a, b, c}.
Let's see if we can find a general formula for the number of k-element bags

that can be constructed from an n-element set. For convenience, we'll assume
that the n-element set is A = {1, 2,. .. , n}. Suppose that b = (X1, x 2 , x 3 ,..., XkI
is some k-element bag with elements chosen from A, where the elements of b are
written so that x, _ x 2 < "- <- Xk. This allows us to construct the following
k-element set:

B = Xl, X2 +- 1, X3 +[2,..., Xk +- (k -1)}.

The numbers xi + (i - 1) are used to ensure that the elements of B are distinct
elements in the set C = {1, 2,..., n + (k - 1)}. So we've associated each
k-element bag b over A with a k-element subset B of C. Conversely, suppose
that {Yl, Y2, Y3,..., Yk} is some k-element subset of C, where the elements are
written so that Yi _< Y < "'" < Yk. This allows us to construct the k-element
bag

[YI, Y2 -1, Y3 -2,..., Yk - (k -1)],

whose elements come from the set A. So we've associated each k-element subset
of C with a k-element bag over A.

Therefore, the number of k-element bags over an n-element set is exactly
the same as the number of k-element subsets of a set with n + (k - 1) elements.
This gives us the following result.

Bag Combinations (5.12)
The number of k-element bags whose distinct elements are chosen from an
n-element set, where k and n are positive, is given by

(n + k-)

298 CHAPTER 5 m ANALYSIS TECHNIQUES

5.19 Selecting Coins

In how many ways can four coins be selected from a collection of pennies, nickels,
and dimes? Let S = {penny, nickel, dime}. Then we need the number of
4-element bags chosen from S. The answer is

(3+4 1) =15.

5.20 Selecting a Committee

In how many ways can five people be selected from a collection of Democrats,
Republicans, and Independents? Here we are choosing five-element bags from a
set of three characteristics {Democrat, Republican, Independent}. The answer is

(3+5-1) = (7) = 21.

5.3.3 Discrete Probability

The founders of probability theory were Blaise Pascal (1623-1662) and Pierre
Fermat (1601-1665). They developed the principles of the subject in 1654 during
a correspondence about games of chance. It started when Pascal was asked
about a gambling problem. The problem asked how the stakes of a "points"
game should be divided up between two players if they quit before either had
enough points to win.

Probability comes up whenever we ask about the chance of something hap-
pening. To answer such a question requires one to make some kind of assumption.
For example, we might ask about the average behavior of an algorithm. That
is, instead of the worst-case performance, we might be interested in the average-
case performance. This can be a bit tricky because it usually forces us to make
one or two assumptions. Some people hate to make assumptions. But it's not
so bad. Let's do an example.

Suppose we have a sorted list of the first 15 prime numbers, and we want
to know the average number of comparisons needed to find a number in the list,
using a binary search. The decision tree for a binary search of the list is pictured
in Figure 5.5.

After some thought, you might think it reasonable to add up all the path
lengths from the root to a leaf marked with an S (for successful search) and

5.3 E COUNTING AND DISCRETE PROBABILITY 299

19

7 37

3 S 13 29 S 43

2 S 5 11 S 17 23 S 31 41 S 47

A A ~A AŽA AUA AU SU U SU U SU U SU U SU U SU U SU U SU

Figure 5.5 Binary search decision tree.

divide by the number of S leaves, which is 15. In this case there are eight paths
of length 4, four paths of length 3, two paths of length 2, and one path of length
1. So we get

32+12+4+1 49
Average path length = 1= -4 3.27.15 15

This gives us the average number of comparisons needed to find a number in
the list. Or does it? Have we made any assumptions here? Yes, we assumed that
each path in the tree has the same chance of being traversed as any other path.
Of course, this might not be the case. For example, suppose that we always
wanted to look up the number 37. Then the average number of comparisons
would be two. So our calculation was made under the assumption that each of
the 15 numbers had the same chance of being picked.

Probability Terminology

Let's pause here and introduce some notions and notations for discrete prob-
ability, which gives us methods to calculate the likelihood of events that have
a finite number of outcomes. If some operation or experiment has n possible
outcomes and each outcome has the same chance of occurring, then we say that
each outcome has probability 1/n. In the preceding example we assumed that
each number had probability 1/15 of being picked. As another example, let's
consider the coin-flipping problem. If we flip a fair coin, then there are two
possible outcomes, assuming that the coin does not land on its edge. Thus the
probability of a head is 1/2, and the probability of a tail is 1/2. If we flip the
coin 1,000 times, we should expect about 500 heads and 500 tails. So probability
has something to do with expectation.

Now for some terminology. The set of all possible outcomes of an experiment
is called a sample space or probability space. The elements in a sample space are
called sample points or simply points. Further, any subset of a sample space is
called an event. For example, suppose we flip two coins and are interested in the
set of possible outcomes. Let H and T mean head and tail, respectively, and

300 CHAPTER 5 m ANALYSIS TECHNIQUES

let the string HT mean that the first coin lands H and the second coin lands T.
Then the sample space for this experiment is the set

{HH, HT, TH, TT}.

For example, the event that one coin lands as a head and the other coin lands
as a tail can be represented by the subset {HT, TH}.

To discuss probability we need to make assumptions or observations about
the probabilities of sample points. Here is the terminology.

Probability Distribution
A probability distribution on a sample space S is an assignment of probabilities
to the points of S such that the sum of all the probabilities is 1.

Let's describe a probability distribution from a more formal point of view.
Let S = {Xl, x2 ,..., x,} be a sample space. A probability distribution P on S
is a function

P: S -4 [0, 1]

such that

P(xI) + P(x 2) + + P(x,,) = 1.

For example, in the two-coin-flip experiment it makes sense to define the following
probability distribution on the sample space S = {HH, HT, TH, TT}:

1
P (HH) = P (HT) = P (TH) = P (TT) = I"

Probability of an Event

Once we have a probability distribution P defined on the points of a sample
space S, we can use P to define the probability of any event E in S.

Probability of an Event
The probability of an event E is denoted by P(E) and is defined by

P (E) = P (x).
xcE

In particular, we have P(S) = 1 and P(0) = 0. If A and B are two events,
then the following formula follows directly from the definition and the inclusion-
exclusion principle.

P(A U B) = P(A) + P(B) - P(A n B).

5.3 u COUNTING AND DISCRETE PROBABILITY 301

This formula has a very useful consequence. If E' is the complement of E in 5,
then S = E U E' and E n E' = 0. So it follows from the formula that

P(E') = 1 - P(E).

' 5.21 Complement of an Event

In our two-coin-flip example, let E be the event that at least one coin is a tail.
Then E = {HT, TH, TT}. We can calculate P(E) as follows:

P(E) P({HT, TH, TT}) = P(HT) + P(TH) + P(TT) =- + +1 + 3

But we also could observe that the complement E' is the event that both coins
are heads. So we could calulate

P(E) = 1-P(E') = 1-P(HH) = 1-1 3
4 4

Classic Example: The Birthday Problem

Suppose we ask 25 people, chosen at random, their birthday (month and day).
Would you bet that they all have different birthdays? It seems a likely bet that
no two have the same birthday since there are 365 birthdays in the year. But, in
fact, the probability that two out of 25 people have the same birthday is greater
than 1/2. Again, we're assuming some things here, which we'll get to shortly.
Let's see why this is the case. The question we want to ask is:

Given n people in a room, what is the probability that at least two of

the people have the same birthday (month and day)?

We'll neglect leap year and assume that there are 365 days in the year. So
there are 365' possible n-tuples of birthdays for n people. This set of n-tuples
is our sample space S. We'll also assume that birthdays are equally distributed
throughout the year. So for any n-tuple (bl,..., bn) of birthdays, we have
P(bi,..., b,,) = 1/365'. The event E that we are concerned with is the subset
of S consisting of all n-tuples that contain two or more equal entries. So our
question can be written as follows:

What is P(E)?

To answer the question, let's use the complement technique. That is, we'll

compute the probability of the event E' = S - E, consisting of all n-tuples that
have distinct entries. In other words, no two of the n people have the same
birthday. Then the probability that we want is P(E) = 1 - P(E'). So let's
concentrate on E'.

302 CHAPTER 5 m ANALYSIS TECHNIQUES

n P(E)

10 0.117

20 0.411

23 0.507

30 0.706

40 0.891

Figure 5.6 Birthday table.

An n-tuple is in E' exactly when all its components are distinct. The car-

dinality of E' can be found in several ways. For example, there are 365 possible
values for the first element of an n-tuple in E'. For each of these 365 values
there are 364 values for the second element of an n-tuple in E'. Thus we obtain

365.364.363... (365 n i+ 1)

n-tuples in E'. Since each n-tuple of E' is equally likely with probability 1/365-,
it follows that

365. 364. 363... (365- n + 1)
(E') 365n

Thus the probability that we desire is

365 364 363... (365- n + 1)P (E)=I- (Et)--1-n
365"

The table in Figure 5.6 gives a few calculations for different values of n. Notice
the case when n = 23. The probability is better than 0.5 that two people have
the same birthday. Try this out next time you're in a room full of people. It
always seems like magic when two people have the same birthday.

5.22 Switching Pays

Suppose there is a set of three numbers. One of the three numbers will be chosen
as the winner of a three-number lottery. We pick one of the three numbers. Later,
we are told that one of the two remaining numbers is not a winner, and we are
given the chance to keep the number that we picked or to switch and choose the
remaining number. What should we do? We should switch.

To see this, notice that once we pick a number, the probability that we did
not pick the winner is 2/3. In other words, it is more likely that one of the other

two numbers is a winner. So when we are told that one of the other numbers is
not the winner, it follows that the remaining other number has probability 2/3

5.3 m COUNTING AND DISCRETE PROBABILITY 303

of being the winner. So go ahead and switch. Try this experiment a few times
with a friend to see that in the long run it's better to switch.

Another way to see that switching is the best policy is to modify the problem
to a set of 50 numbers and a 50-number lottery. If we pick a number, then the
probability that we did not pick a winner is 49/50. Later we are told that 48 of
the remaining numbers are not winners, but we are given the chance to keep the
number we picked or switch and choose the remaining number. What should
we do? We should switch because the chance that the remaining number is the
winner is 49/50.

Conditional Probability

If we ask a question about the chance of something happening given that some-
thing else has happened, we are using conditional probability.

Conditional Probability
If A and B are events and P(B) 7# 0, then the conditional probability of A
given B is denoted by P(AIB) and defined by

P(AI) =P (A n B)
P(A'B) -(nB

P(B)

We can think of P(AIB) as the probability of the event A n B when the sam-
ple space is restricted to B once we make an appropriate adjustment to the
probability distribution.

S5.23 Conditional Probability

In a university it is known that 1% of students major in mathematics and 2%
major in computer science. Further, it is known that 0.1% of students major
in both mathematics and computer science. If a student is chosen at random
and happens to be a computer science major, what is the probability that the
student is also majoring in mathematics?

To solve the problem we can let A and B be the sets of mathematics majors
and computer science majors, respectively. Then the question asks for the value
of P(AIB). This is easily calculated because P(A) =.01, P(B) =.02, and P(A n
B) =.001. Therefore P(AIB) =.001/.02 =.05.

Suppose a sample space S is partitioned into disjoint events E,,..., E, and
B is another event such that P(B) #4 0. Then we can answer some interesting
questions about the chance that "B was caused by El" for each i. In other

304 CHAPTER 5 U ANALYSIS TECHNIQUES

words, we can calculate P(EiJB) for each i. Although this is just a conditional
probability, there is an interesting way to compute it in terms of the probabilities
P(BIEi) and P(Ei). The following formula, which is known as Bayes' theorem,
follows from the assumption that the events El,..., En form a partition in the
sample space.

PEBP (Eý) P (BIEr)
= P (E1) P (BJE 1) ±-' --+P (E.) P (BIEn)"

When using Bayes' theorem we can think of P(EiJB) as the probability that B
is caused by Ei.

5.24 Probable Cause

Suppose that the input data set for a program is partitioned into two types, one
makes up 60% of the data and the other makes up 40%. Suppose further that
inputs from the two types cause warning messages 15% of the time and 20% of
the time, respectively. If a random warning message is received, what are the
chances that it was caused by an input of each type?

To solve the problem we can use Bayes' theorem. Let E, and E 2 be the
two sets of data and let B be the set of data that causes warning messages.
Then we want to find P(EIB) and P(E2 1B). Now we are given the following
probabilities:

P(Ei) =.6, P(E 2) = 0.4, P(BJE,) =.15, P(BIE 2) =.2

So we can calculate P(Ei IB) as follows:

P (ElJB) =P (El) P (B IEI)
P(IB) P (El) P (BE) + P (E 2) P (BIE 2)

(.6) (.15) _ .09

(.6) (.15) + (.4) (.2) .17

A similar calculation gives P(E2tB) ,- .47.

Independent Events

Informally, two events A and B are independent if they don't influence each
other. If A and B don't influence each other and their probabilities are nonzero,
we would like to say that P(AIB) = P(A) and P(BIA) = P(B). This condi-
tion will follow from the definition of independence. Two events A and B are
independent if the following equation holds:

P(A n B) = P(A) • P(B).

5.3 0 COUNTING AND DISCRETE PROBABILITY 305

It's interesting to note that if A and B are independent events, then so are the
three pairs of events A and B', A' and B, and A' and B'. We'll discuss this in
the exercises.

The nice thing about independent events is that they simplify the task of
assigning probabilities and computing probabilities.

.. 5.25 Independence of Events

In the two-coin-flip example, let A be the event that the first coin is heads and
let B be the event that the two coins come up different. Then A = {HT, HH},
B = {HT, TH}, and A n B = {HT}. If each coin is fair, then A and B are
independent because P(A) = P(B) = 1/2 and P(A n B) = 1/4.

Of course many events are not independent. For example, if C is the event
that at least one coin is tails, then C = {HT, TH, TT}. It follows that A n C
= {HT} and B n C = {HT, TH}. If the coins are fair, then it follows that A
and C are dependent events and also that B and C are dependent events.

Repeated Independent Trials

Independence is often used to assign probabilities for repeated trials of the same
experiment. We'll be content here to discuss repeated trials of an experiment
with two outcomes, where the trials are independent. For example, if we flip
a coin n times, it's reasonable to assume that each flip is independent of the
other flips. To make things a bit more general, we'll assume that a coin comes
up either heads with probability p or tails with probability 1 - p. Here is the
question that we want to answer.

What is the probability that the coin comes up heads exactly k times?

To answer this question we need to consider the independence of the flips. For
example, if we let Ai be the event that the ith coin comes up heads, then
P(A 1) = p and P(A') = 1 - p. Suppose now that we ask the probability that
the first k flips come up heads and the last n - k flips come up tails. Then we
are asking about the probability of the event

A 1 n ... NAk NAk+l n ... n An.

Since each event in the intersection is independent of the other events, the prob-
ability of the intersection is the product of probabilities

pk(1 - p)n-k

We get the same answer for each arrangement of k heads and n - k tails. So
we'll have an answer to the question if we can find the number of different

306 CHAPTER 5 m ANALYSIS TECHNIQUES

arrangements of k heads and n - k tails. By (5.7) there are

n!

k! (n - k)!

such arrangements. This is also C(n, k), which we can represent by the binomial

coefficient symbol. So if a coin flip is repeated n times, then the probability of
k successes is given by the expression

This set of probabilities is called the binomial distribution. The name fits because
by the binomial theorem, the sum of the probabilities as k goes from 0 to n is
1. We should note that although we used coin flipping to introduce the ideas,
the binomial distribution applies to any experiment with two outcomes that has
repeated trials.

Expectation = Average Behavior

Let's get back to talking about averages and expectations. We all know that the
average of a bunch of numbers is the sum of the numbers divided by the number
of numbers. So what's the big deal? The deal is that we often assign numbers
to each outcome in a sample space. For example, in our beginning discussion we
assigned a path length to each of the first 15 prime numbers. We added up the
15 path lengths and divided by 15 to get the average. Makes sense, doesn't it?
But remember, we assumed that each number was equally likely to occur. This
is not always the case. So we also have to consider the probabilities assigned to
the points in the sample space.

Let's look at another example to set the stage for a definition of expectation.
Suppose we agree to flip a coin. If the coin comes up heads, we agree to pay 4

dollars; if it comes up tails, we agree to accept 5 dollars. Notice here that we have
assigned a number to each of the two possible outcomes of this experiment. What
is our expected take from this experiment? It depends on the coin. Suppose the
coin is fair. After one flip we are either 4 dollars poorer or 5 dollars richer.
Suppose we play the game 10 times. What then? Well, since the coin is fair, it
seems likely that we can expect to win five times and lose five times. So we can

expect to pay 20 dollars and receive 25 dollars. Thus our expectation from 10
flips is 5 dollars.

Suppose we knew that the coin was biased with P(head) = 2/5 and P(tail)
= 3/5. What would our expectation be? Again, we can't say much for just one
flip. But for 10 flips we can expect about four heads and six tails. Thus we can
expect to pay out 16 dollars and receive 30 dollars, for a net profit of 14 dollars.
An equation to represent our reasoning follows:

loP (head) (-4) + 10P (tail) (5) =10 - (-4) + 10 - (5) - -=14.
5 5 5

5.3 0 COUNTING AND DISCRETE PROBABILITY 307

Can we learn anything from this equation? Yes, we can. The 14 dollars
represents our take over 10 flips. What's the average profit? Just divide by 10
to get $1.40. This can be expressed by the following equation:

P (head) (-4) + P (tail) (5) = (-4) + (5) = -=1.4.
5 5 5

So we can compute the average profit per flip without using the number
of coin flips. The average profit per flip is $1.40 no matter how many flips
there are. That's what probability gives us. It's called expectation, and we'll
generalize from this example to define expectation for any sample space having
an assignment of numbers to the sample points.

Definition of Expectation

Let S be a sample space, P a probability distribution on S, and V : S --+ R an
assignment of numbers to the points of S. Suppose S = {X1, X2,..., x"}. Then
the expected value (or expectation) of V is defined by the following formula.

E(V) = V(Xi)P(Xi) + V(x 2)P(x 2) + "". + V(xn)P(x,).

So when we want the average behavior, we're really asking for the expectation.
For example, in our little coin-flip example we have S = {head, tall, P(head)
= 2/5, P(tail) = 3/5, V(head) = -4, and V(tail) = 5. So the expectation of V
is calculated by E(V) = (-4)(2/5) + 5(3/5) = 1.4.

We should note here that in probability theory the function V is called a
random variable.

Average Performance of an Algorithm

To compute the average performance of an algorithm A, we must do several
things: First, we must decide on a sample space to represent the possible inputs
of size n. Suppose our sample space is S = {I1, I2,..., Ik}. Second, we must
define a probability distribution P on S that represents our idea of how likely
it is that the inputs will occur. Third, we must count the number of operations
required by A to process each sample point. We'll denote this count by the
function V : S -* N. Lastly, we'll let AvgA(n) denote the average number of
operations to execute A as a function of input size n. Then AvgA(n) is just the
expectation of V:

AvgA(n) = E(V) = V(i)P(1) + V(1 2)P(1 2) + + V(Ik)P(Ik).

To show that an algorithm A is optimal in the average case for some problem,
we need to specify a particular sample space and probability distribution. Then
we need to show that AvgA(n) < AvgB(n) for all n > 0 and for all algorithms
B that solve the problem. The problem of finding lower bounds for the average
case is just as difficult as finding lower bounds for the worst case. So we're often
content to just compare known algorithms to find the best of the bunch.

We'll finish the section with an example showing an average-case analysis of
a simple algorithm for sequential search.

308 CHAPTER 5 m ANALYSIS TECHNIQUES

Analysis of Sequential Search

Suppose we have the following algorithm to search for an element X in an array
L, indexed from 1 to n. If X is in L, the algorithm returns the index of the
rightmost occurrence of X. The index 0 is returned if X is not in L:

i:=n;

while i > 1 and X • L[i] do

od

We'll count the average number of comparisons X 4 L[i] performed by the
algorithm. Frst we need a sample space. Suppose we let Ii denote the input
case where the rightmost occurrence of X is at the ith position of L. Let 1,+1
denote the case in which X is not in L. So the sample space is the set

{I, 12,... , In+1}.

Let V(I) denote the number of comparisons made by the algorithm when the
input has the form L Looking at the algorithm, we obtain

V(I,)=n-i+l for 1<i<n,

V (In+I) = n2.

Suppose we let q be the probability that X is in L. Thus 1 - q is the probability
that X is not in L. Let's also assume that whenever X is in L, its position is
random. This gives us the following probability distribution P over the sample
space:

P (I) =q for I <i<n,
n

P (In+) = 1 - q.

Therefore, the expected number of comparisons made by the algorithm for this
probability distribution is given by the expected value of V:

AVgA (n) = E (V) = V (I1) P (,1) +"" + V (I1n+1) P (In+l)

q-q(n +(n -1) +...-+1) +(1q) n
n

q -(n + +(1-q)n.

Let's observe a few things about the expected number of comparisons. If we
know that X is in L, then q = 1. So the expectation is (n + 1)/2 comparisons.
If we know that X is not in L, then q = 0, and the expectation is n comparisons.
If X is in L and it occurs at the first position, then the algorithm takes n
comparisons. So the worst case occurs for the two input cases I,+, and [1, and
we have WA(n) = n.

5.3 * COUNTING AND DISCRETE PROBABILITY 309

Approximations (Monte Carlo Method)

Sometimes it is not so easy to find a formula to solve a problem. In some of these
cases we can find reasonable approximations by repeating some experiment many
times and then observing the results. For example, suppose we have an irregular
shape drawn on a piece of paper and we would like to know the area of the
shape. The Monte Carlo method would have us randomly choose a large number
of points on the paper. Then the area of the shape would be pretty close to
the percentage of points that lie within the shape multiplied by the area of the
paper.

The Monte Carlo method is useful in probability not only to check a calcu-
lated answer for a problem, but to find reasonable answers to problems for which
we have no other answer. For example, a computer simulating thousands of rep-
etitions of an experiment can give a pretty good approximation to the average
outcome of the experiment.

O Exercises

Permutations and Combinations

1. Evaluate each of the following expressions.

a. P(6, 6). b. P(6, 0). c. P(6, 2).

d. P(10, 4). e. C(5, 2). f. C(10, 4).

2. Let S ={a, b, c}. Write down the objects satisfying each of the following
descriptions.

a. All permutations of the three letters in S.
b. All permutations consisting of two letters from S.
c. All combinations of the three letters in S.
d. All combinations consisting of two letters from S.
e. All bag combinations consisting of two letters from S.

3. For each part of Exercise 2, write down the formula, in terms of P or C, for
the number of objects requested.

4. Given the bag B = [a, a, b, b], write down all the bag permutations of B,
and verify with a formula that your answer is correct.

5. Find the number of ways to arrange the letters in each of the following words.
Assume all letters are lowercase.

a. Computer. b. Radar. c. States.
d. Mississippi. e. Tennessee.

6. A derangement of a string is a permutation of the letters such that each
letter changes its position. For example, a derangement of the string ABC

310 CHAPTER 5 U ANALYSIS TECHNIQUES

is BCA. But ACB is not a derangement of ABC, since A does not change
position. Write down all derangements for each of the following strings.

a. A. b. AB. c. ABC. d. ABCD.

7. Suppose we want to build a code to represent 29 objects in which each object
is represented as a binary string of length n, which consists of k O's and m
l's, and n = k + m. Find n, k, and m, where n has the smallest possible
value.

8. We wish to form a committee of seven people chosen from five Democrats,
four Republicans, and six Independents. The committee will contain two
Democrats, two Republicans, and three Independents. In how many ways
can we choose the committee?

9. Each row of Pascal's triangle (Figure 5.4) has a largest number. Find a
formula to describe which column contains the largest number in row n.

Discrete Probability

10. Suppose three fair coins are flipped. Find the probability for each of the
following events.

a. Exactly one coin is a head. b. Exactly two coins are tails.

c. At least one coin is a head. d. At most two coins are tails.

11. Suppose a pair of dice are flipped. Find the probability for each of the
following events.

a. The sum of the dots is 7.

b. The sum of the dots is even.
c. The sum of the dots is either 7 or 11.

d. The sum of the dots is at least 5.

12. A team has probability 2/3 of winning whenever it plays. Find each of the
following probabilities that the team will win.

a. Exactly 4 out of 5 games.

b. At most 4 out of 5 games.

c. Exactly 4 out of 5 games given that it has already won the first 2 games

of a 5-game series.

13. A baseball player's batting average is .250. Find each of the following prob-

abilities that he will get hits.

a. Exactly 2 hits in 4 times at bat.

b. At least one hit in 4 times at bat.

14. A computer program uses one of three procedures for each piece of input.
The procedures are used with probabilities 1/3, 1/2, and 1/6. Negative
results are detected at rates of 10%, 20%, and 30% by the three procedures,

5.3 M COUNTING AND DISCRETE PROBABILITY 311

respectively. Suppose a negative result is detected. Find the probabilities
that each of the procedures was used.

15. A commuter crosses one of three bridges, A, B, or C, to go home from

work, crossing A with probability 1/3, B with probability 1/6, and C with
probability 1/2. The commuter arrives home by 6 p.m. 75%, 60%, and 80%
of the time by crossing bridges A, B, and C, respectively. If the commuter
arrives home by 6 p.m., find the probability that bridge A was used. Also
find the probabilities for bridges B and C.

16. A student is chosen at random from a class of 80 students that has 20 honor
students, 30 athletes, and 40 that are neither honor students nor athletes.

a. What is the probability that the student selected is an athlete given
that he or she is an honors student?

b. What is the probability that the student selected is an honors student
given that he or she is an athlete?

c. Are the events "honors student" and "athlete" independent?

17. Suppose we have an algorithm that must perform 2,000 operations as follows:
The first 1,000 operations are performed by a processor with a capacity

of 100,000 operations per second. Then the second 1,000 operations are
performed by a processor with a capacity of 200,000 operations per second.
Find the average number of operations per second performed by the two
processors to execute the 2,000 operations.

18. Consider each of the following lottery problems.

a. Find the chances of winning a lottery that allows you to pick six num-

bers from the set {1, 2,..., 49}.

b. Suppose that a lottery consists of choosing a set of five numbers from
the set {1, 2,..., 49}. Suppose further that smaller prizes are given to
people with four of the five winning numbers. What is the probability
of winning a smaller prize?

c. Suppose that a lottery consists of choosing a set of six numbers from

the set {1, 2,..., 49}. Suppose further that smaller prizes are given
to people with four or five of the six winning numbers. What is the
probability of winning a smaller prize?

d. Find a formula for the probability of winning a smaller prize that goes
with choosing k of the winning m numbers from the set {1,...,

where k < m < n.

19. For each of the following problems, compute the expected value.

a. The expected number of dots that show when a die is tossed.

b. The expected score obtained by guessing all 100 questions of a true-
false exam in which a correct answer is worth 1 point and an incorrect
answer is worth -1/2 point.

312 CHAPTER 5 0 ANALYSIS TECHNIQUES

Challenges

20. Test the birthday problem on a group of people.

21. Show that if S is a sample space and A is an event, then S and A are
independent events. What about the independence of two events A and B
that are disjoint?

22. Prove that if A and B are independent events, then so are the three pairs of
events A and B', A' and B, and A' and B'.

23. Suppose an operating system must schedule the execution of n processes,

where each process consists of k separate actions that must be done in order.
Assume that any action of one process may run before or after any action
of another process. How many execution schedules are possible?

24. Count the number of strings consisting of n O's and n l's such that each

string is subject to the following restriction: As we scan a string from left
to right, the number of 0's is never greater than the number of l's. For
example, the string 110010 is OK, but the string 100110 is not. Hint: Count
the total number of strings of length 2n with n O's and n l's. Then try to
count the number that are not OK, and subtract this number from the total
number.

25. Given a nonempty finite set S with n elements, prove that there are n!

bijections from S to S.

26. (Average-Case Analysis of Binary Search).

a. Assume that we have a sorted list of 15 elements, Xi, X2,. ., X15. Cal-
culate the average number of comparisons made by a binary search
algorithm to look for a key that may or may not be in the list. Assume
that the key has probability 1/2 of being in the list and that each of
the events "key = xi" is equally likely for 1 < i < 15.

b. Generalize the problem to find a formula for the average number of
comparisons used to look for a key in a sorted list of size n = 2` 1,
where k is a natural number. Assume that the key has probability p of

being in the list and that each of the events "key = xi" is equally likely
for 1 < i < n. Test your formula with n = 15 and p = 1/2 to see that
you get the same answer as part (a).

5.4 Solving Recurrences

Many counting problems result in answers that are expressed in terms of recur-
sively defined functions. For example, any program that contains recursively
defined procedures or functions will give rise to such expressions. Many of these

5.4 m SOLVING RECURRENCES 313

expressions have closed forms that can simplify the counting process. So let's
discuss how to find closed forms for such expressions.

Definition of Recurrence Relation

Any recursively defined function f with domain N that computes numbers is
called a recurrence or a recurrence relation. When working with recurrences
we often write f, in place of f(n). For example, the following definition is a
recurrence:

r (0) = 1
r (n) = 2r (n - 1) + n

We can also write this recurrence in the following useful form:

r 1=l

rn = 2 rr?1 + n.

To solve a recurrence r we must find an expression for the general term r", that
is not recursive.

5.4.1 Solving Simple Recurrences

Let's start with some simple recurrences that can be solved without much fanfare.
The recurrences we'll be considering have the following general form, where a.
and b, denote either constants or expressions involving n but not involving r.

r0 = b0 , (5.13)

rn= anrnl + br.,

We'll look at two similar techniques for solving these recurrences.

Solving by Substitution

One way to solve recurrences of the form (5.13) is by substitution, where we start
with the definition for r, and keep substituting for occurrences of r on the right
side of the equation until we discover a pattern that allows us to skip ahead and
eventually replace the basis r0 .

314 CHAPTER 5 U ANALYSIS TECHNIQUES

We'll demonstrate the substitution technique in general terms by solving
(5.13). Note the patterns that emerge with each substitution for r.

7n = anr7n-1 + bn

= an (an-irn- 2 + bn- 1) + bn (replace rn-1 = an-irA- 2 + bn- 1)

= anan-lrn-2 + anbn-I + bn (regroup)

= anan-1 (an- 2 r,-3 + bn- 3) + anbn-1 + bn
(replace rn-2 = an-2rn-3 + bn- 2)

= anan-lan-2rn- 3 + anan-ibn- 3 + anbn-1 + bn (regroup)

= an...a 2r, + a.'" a 3b 2 + ... + a•b-- 1 + b6 (regroup)

= an... a 2 (alro + bl) + an... a 3b2 + .. + anbn-1 + bn

(replace r, = alro + bi)

= an ... a2 axro + an ... a2bz + an ... a3 b2 +... + anbn-i + bn (regroup)
= an ... a2albo + an ... a2bl + an ... a3b2 +.. + anbn-1 + bn

(replace ro = bo)

5.26 Solving by Substitution

We'll solve the following recurrence by substitution.

ro = 1,

rn = 2rn-l + n.

Notice in the following solutions that we never multiply numbers. Instead we
keep track of products to help us discover general patterns. Once we find a
pattern we emphasize it with parentheses and exponents. Each line represents a
substitution and regrouping of terms.

rn = 2rn- 1 + n

= 22 rn-2 + 2 (2 - 1) + n

= 23 rn_ 3 + 22 (n - 2) + 2 (n - 1) + n

= 2n lrl + 2n-2 (2) + 2n-2 (2) +... + 2 2 (n - 2) + 2' (n - 1) + 20 (n)
= 2nro + 2 n-1 (1)+2 n,-2 (2) +.-. +2 22 (n - 2) + 21 (n - 1) + 20 (n)

= 2 n (1) +2 n-1 (1) + 2 n-2 (2) +''"+2 22 (n -- 2) + 2' (n -- 1) + 20 (n).

5.4 m SOLVING RECURRENCES 315

Now we'll put it into closed form using (5.1), (5.2c), and (5.2d). Be sure you
can see the reason for each step. We'll start by keeping the first term where it
is and reversing the rest of the sum to get it in a nicer form.

r, = 2' (1) + n + 2 (n - 1) + 2 2 (n - 2) + -. + 2 n-2 (2) + 2`-1 (1)

= 2 n + [20 (n•) + 2' (n - 1) + 2 2 (n - 2) +÷... + 2 n-2 (2)2 n-2-1 (1)]

(group terms)
n-1

= 2n + E 2' (n-
i=0

n-1 n-1

=2n+ nZE2 EZ'i2'
i=O i=O

= 2n + n (2n - 1) - (2 - n2 n + (n - 1) 2n+1)

= 2" (+ n + n - 2n+ 2) - n -2
=3 (2 n) - n - 2.

Now check a few values of rn to make sure that the sequence of numbers for the
closed form and the recurrence are the same: 1, 3, 8, 19, 42,....

Solving by Cancellation

An alternative technique to solve recurences of the form (5.13) is by cancellation,
where we start with the general equation for rn. The term on the left side of
each succeeding equation is the same as the term that contains r on the right
side of the preceding equation. We normally write a few terms until a pattern
emerges. The last equation always contains the basis element ro on the right
side. Here is a sample.

rn = anrn-1 + bn

anrn-1 = anan-lrn-2 + anbn-1

anan-1rn-2 = anan-lan-2rn-3 + anan-lbn-2

an ... a3r2 = an ... a2rl + an ... a3b2

an ... a2rl = a. ... alro + an .. "a 2b1

Now we add up the equations and observe that, except for rn in the first equation,
all terms on the left side of the remaning equations cancel with like terms on
the right side of preceding equations. So the sum of the equations gives us the
following formula for rn, where we have replaced r0 by its basis value b0 .

rn = an'" , albo + (bn + anbn-1 + anan-ibn- 2 + ".. + an ... a 3b2 + a. a 2b,)

316 CHAPTER 5 E ANALYSIS TECHNIQUES

So we get to the same place by either substitution or cancellation. Since mistakes
are easy to make, it is nice to know that you can always check your solution
against the original recurrence by testing. You can also give an induction proof
that your solution is correct.

_ 5.27 Solving by Cancellation

We'll solve the recurrence in Example 5.26 by cancellation:

ro = 1,

rn = 2rn-i + n.

Starting with the general term, we obtain the following sequence of equations,
where the term on the left side of a new equation is always the term that contains
r from the right side of the preceding equation.

rn - 2r,_1 + n

2r,_1 22rn + 2 (n - 1)

2 2rn-2 = 2 3r,,-3 + 22 (n - 2)

2 n-2'r2 2n-lrl + 2 n-2 (2)

2 n- 1 rl 2 >ro + 2n-1 (1)

Now add up all the equations, cancel the like terms, and replace r0 by its value
to get the following equation.

r, 2 n (1) + n + 2 (n 1) + 22 (n 2) + + 2n-2 (2) + 2` (1).

Notice that, except for the ordering of terms, the solution is the same as the one
obtained by substitution in Example 5.26.

The Polynomial Problem

In Example 5.11 we found the number of arithmetic operations in a polyno-
mial of degree n. By grouping terms of the polynomial we can reduce repeated
multiplications. For example, here is the grouping when n = 3:

co + cI. + c2X2 + c3x3 = c0 + X (ci + X (C2 + X (C3))).

Notice that the expression on the left uses 9 operations while the expression on
the right uses 6. The following function will evaluate a polynomial with terms
grouped in this way, where C is the list of coefficients:

5.4 0 SOLVING RECURRENCES 317

poly(C, x) = if C = () then 0 else head(C) + x * poly(tail(C), x).

For example, we'll evaluate the expression poly(K a, b, c, d), x):

poly ((a, b, c, d), x) = a + x * poly ((b, c, d), x)

= a + x* (b + x* poly ((c,d),x))

=a + x * (b - x * (c + x * poly (Md), x)))
= a + x* (b+ x* (c + a* (d + a*poly((),x))))
= a + a' * (b + x * (c + d * 0))

So there are 6 arithmetic operations performed by poly to evaluate a polynomial
of degree 3. Let's figure out how many operations are performed to evalutate a
polynomial of degree n. Let a(n) denote the number of arithmetic operations
performed by poly(C, x) when C has length n. If n = 0, then C = () and

poly(C, X) = poly(W), X) = 0.

Therefore a(O) = 0. If n > 0, then C : (} and

poly(C, x) = head(C) + x * poly(tail(C), x).

This expression has two arithmetic operations plus the number of operations
performed by poly(tail(C), x). Since tail(C) has n - 1 elements, it follows that
poly(tail(C), x) performs a(n - 1) operations. Therefore, for n > 0 we have
a(n) = a(n - 1) + 2. So we have the following recursive definition:

a (0) =0

a (n) = a (n - 1) + 2.

Writing it in subscripted form we have

a0 = 0

an =an-1 +- 2

It's easy to solve this recurrence by cancellation:

an= an + 2

an-1 = an-2 + 2

an-2 = an-3 + 2

a2 = a, + 2

a, = a 0 + 2

Add up the equations and replace a 0 = 0 to obtain the solution

a= 2n.

This is quite a savings in the number of arithmetic operations to evaluate a
polynomial of degree n. For example, if n = 30, then poly uses only 60 operations
compared with 494 operations using the method discussed in Example 5.11.

318 CHAPTER 5 m ANALYSIS TECHNIQUES

Figure 5.7 One, two, and three ovals.

The n-Ovals Problem

Suppose we are given the following sequence of three numbers:

2, 4, 8.

What is the next number in the sequence? The problem below might make you
think about your answer.

The n-Ovals Problem
Suppose that n ovals (an oval is a closed curve that does not cross over itself)
are drawn on the plane such that no three ovals meet in a point and each
pair of ovals intersects in exactly two points. How many distinct regions of
the plane are created by n ovals?

For example, the diagrams in Figure 5.7 show the cases for one, two, and
three ovals.

If we let rn denote the number of distinct regions of the plane for n ovals,
then it's clear that the first three values are

r, = 2,

r2 = 4,

r3=8.

What is the value of r 4? Is it 16? Check it out. To find r,, consider the
following description: n - 1 ovals divide the region into r,_ 1 regions. The nth
oval will meet each of the previous n - 1 ovals in 2(n - 1) points. So the nth
oval will itself be divided into 2(n - 1) arcs. Each of these 2(n - 1) arcs splits
some region in two. Therefore, we add 2(n - 1) regions to rn-1 to obtain r,.
This gives us the following recurrence.

r, = 2,

rn = r,-I + 2 (n - 1).

5.4 m SOLVING RECURRENCES 319

We'll solve it by the substitution technique:

rn=r_1 ± 2 (n - 1)

= r- 2 + 2 (n - 2) + 2 (n - 1)

=ri + 2(1)+...+ 2(n- 2)+ 2(n-1)

= 2+ 2(1) +... +2(n- 2) +2(n- 1).

Now we can find a closed from for rn.

rn = 2 + 2 (1) + ... + 2(n - 2) + 2 (n - 1)

=2 + 2(1 + 2+.. (n- 2) + (n- 1))

n-1

=2+22 i
i=1

= 2+2(1)(n)
2

=n 2-n+2.

For example, we can use this formula to calculate r 4 = 14. Therefore, the
sequence of numbers 2, 4, 8 could very well be the first three numbers in the
following sequence for the n-ovals problem.

2, 4, 8, 14, 22, 32, 44, 62, 74, 92 ...

5.4.2 Generating Functions

For some recurrence problems we need to find new techniques. For example,
suppose we wish to find a closed form for the nth Fibonacci number Fn, which
is defined by the recurrence system

F0 =0,

F= 1,

Fn Fn-l + Fn- 2 (n > 2).

We can't use substitution or cancellation with this system because F occurs
twice on the right side of the general equation. This problem belongs to a large
class of problems that need a more powerful technique.

The technique that we present comes from the simple idea of equating the

coefficients of two polynomials. For example, suppose we have the following
equation.

a + bx + cx 2 = 4 + 7X2.

320 CHAPTER 5 m ANALYSIS TECHNIQUES

We can solve for a, b, and c by equating coefficients to yield a = 4, b = 0, and
c = 7. We'll extend this idea to expressions that have infinitely many terms of
the form anxn for each natural number n. Let's get to the definition.

Definition of Generating Function
The generating function for the infinite sequence a0 , ai, ... , an, ... is the
following infinite expression, which is also called a formal power series or an
infinite polynomial:

A (x)= ao + aix + a 2x
2 . a + + . .

00

)7-- an xn.

n=O

Two generating functions may be added by adding the corresponding coef-
ficients. Similarly, two generating functions may be multiplied by extending the
rule for multiplying regular polynomials. In other words, multiply each term of
one generating function by every term of the other generating function, and then
add up all the results. Two generating functions are equal if their corresponding
coefficients are equal.

We'll be interested in those generating functions that have closed forms. For
example, let's consider the following generating function for the infinite sequence

.Xn

n=0

This generating function is often called a geometric series, and its closed form
is given by the following formula.

Geometric Series Generating Function (5.14)

1-xZx91.
n.0

To justify equation (5.14), multiply both sides of the equation by 1 - x.

Using a Generating Function Formula

But how can we use this formula to solve recurrences? The idea, as we shall see,
is to create an equation in which A(x) is the unknown, solve for A(x), and hope
that our solution has a nice closed form. For example, if we find that

1
A (x) = -

1 - 2x'

5.4 * SOLVING RECURRENCES 321

then we can rewrite it using (5.14) in the following way.

S2 00)n 00
A(x)- I-2x 1- (2x) =(2x E2nxn"

a=0 n=0

Now we can equate coefficients to obtain the solution an = 2'. In other words,
the solution sequence is 1, 2, 4,..., 2

Finding a Generating Function Formula

How do we obtain the closed form for A(x)? It's a four-step process, and we'll
present it with an example. Suppose we want to solve the following recurrence:

a0 0, (5.15)

a, = 1,

an- 5an- 1 - 6an-2 (n > 2).

Step 1

Use the general equation in the recurrence to write an infinite polynomial with
coefficients an . We start the index of summation at 2 because the general equa-
tion in (5.15) holds for n > 2. Thus we obtain the following equation:

00 00

E anxn = 5 (5a,_ 1 - 6an-2) Xn
n=2 n72

00 00

I: 5an-lX' - 5 6an-2Xn (5.16)
n=2 n=2

n=2 n=2

We want to solve for A(x) from this equation. Therefore, we need to transform
each infinite polynomial in (5.16) into an expression containing A(x). To do this,
notice that the left-hand side of (5.16) can be written as

E anxn = A (x) - ao - aix

n=2
=A (x) - x (substitute for a0 and a,).

322 CHAPTER 5 m ANALYSIS TECHNIQUES

The first infinite polynomial on the right side of (5.16) can be written as

an+±lxn = anxn+1 (by a change of indices)
n=2 n=1

00

= X 5 anx
9

n

n=1

= x (A (x) - ao)

= xA (x).

The second infinite polynomial on the right side of (5.16) can be written as

00 00

an-2xn = 5 axn+2 (by a change of indices)
n=2 n=0

= X
2 I anxn

n--O

= x2A (x).

Thus Equation (5.16) can be rewritten in terms of A(x) as

A(x) - x = 5xA(x) - 6x 2A(x). (5.17)

Step 1 can often be done equationally by starting with the definition of A(x)
and continuing until an equation involving A(x) is obtained. For this example
the process goes as follows:

A (x) = an Xn

n=0

00

- a o + alx +- E anXn

n=2

00

SX + E an xn

n=2

= X + E (5an-1 - 6an-2) Xn

n=2

n=0 n=2

= x + 5x (A (x) - ao) - 6x 2 A (x)

= x + 5xA (x) - 6x 2A (x).

5.4 0 SOLVING RECURRENCES 323

Step 2

Solve the equation for A(x) and try to transform the result into an expression
containing closed forms of known generating functions. We solve Equation (5.17)
by isolating A(x) as follows:

A(x)(1 - 5x + 6x 2) = x.

Therefore, we can solve for A(x) and try to obtain known closed forms, which
can then be replaced by generating functions:

A (x) = x

1 - 5x + 6x2

x

(2x - 1) (3x - 1)
1 12x - 1 3x - 1 (partial fractions)

1 1

1 - 2x 1 - 3x (put into the form

Y- (2x)n + 1: (3x)n

n=O n=O
00 00

n=O n=0
CC

= S (-2 n +±3n) xn.
n=O

Step 3

Equate coefficients, and obtain the result. In other words, we equate the original
definition for A(x) and the form of A(x) obtained in Step 2:

00 cc

I:-a, xn = • (-2n+3n) X,.

n=0 n=O

These two infinite polynomials are equal if and only if the corresponding coeffi-
cients are equal. Equating the coefficients, we obtain the following closed form
for a,:

an=3n-2n for n>0. (5.18)

Step 4 (Check the answer)

To make sure that no mistakes were made in Steps 1 to 3, we should check to
see whether (5.18) is the correct answer to (5.15). Since the recurrence has two

324 CHAPTER 5 m ANALYSIS TECHNIQUES

basis cases, we'll start by verifying the special cases for n = 0 and n = 1. These
cases are verified below:

a0 = 30 - 20 = 0,

a, = 31 - 21 = 1.

Now verify that (5.18) satisfies the general case of (5.15) for n > 2. We'll start
on the right side of (5.15) and substitute (5.18) to obtain the left side of (5.15).

5a_- 6a 2 = 5 (3n-1 - 2n-1)_ -6(3n-2_ 2 n) (substitution)

= 3n - 2n (simplification)

Sane.

An Aside on Partial Fractions

Let's recall a few facts about partial fractions. Suppose we are given the following
quotient of two polynomials p(x) and q(x):

p W)
q (x)'

where the degree of p(x) is less than the degree of q(x). The first thing to do is
factor q(x) into a product of linear and/or quadratic polynomials that can't be
factored further (say, over the real numbers). Therefore, each factor of q(x) has
one of the following forms:

ax + b or cx2 + dx + c.

The partial fraction representation of

p (x)
q (x)

is a sum of terms, where each term in the sum is a quotient as follows:

Partial Fractions

1. If the linear polynomial ax + b is repeated k times as a factor of q(x),
then add the following terms to the partial fraction representation, where
A1 ,..., Ak are constants to be determined:

A 1 A2 A,.
+ 2+ +

ax + b (ax + b) (ax + b)

Continued

5.4 0 SOLVING RECURRENCES 325

2. If the quadratic polynomial cx 2 + dx + e is repeated k times as a factor of

q(x), then add the following terms to the partial fraction representation,
where Ai and Bi are constants to be determined.

Ax + B + A 2 x + B 2 Akx + Bk+ C +..+
cx 2 + dx + c (cx 2 + dx _)2 (cx 2 + dxr+ -)

' 5.28 Sample Partial Fractions

Here are a few samples of partial fractions that can be obtained from the two
rules.

x- 1 A B Czr-H+- + -
x:(x - 2) (x + 1) x x -2 x V 1

x3 - 1 A B C D E
+ ÷ + 2 F+x2(x_~2)3-• 2H- x- (x_2)2 (r_2),

x2 A Bx+C

(x -1) (x 2 + 2x + 1) X -1 H-X + 2x + 1'

x A Bx+C Dx+C- H- H-
(x-1) (X2 +H1)2 X -1 2 +1 (x2 +1)2

To determine the constants in a partial fraction representation, we can solve
simultaneous equations. Suppose there are n constants to be found. Then we
need to create n equations. To create an equation, pick some value for x, with
the restriction that the value for x does not make any denominator zero. Do this

for n distinct values for x. Then solve the resulting n equations. For example, in

Step 2 of the generating function example we wrote down the following equalities.

A(x) - 5x + 6x2

(2x - 1) (3x - 1)
1 1

2x - 1 3x - 1

The last equality is the result of partial fractions. Here's how we got it. First
we write the partial fraction representation

x A B

(2x -1)(3x-1) 2x-1 H 3x-1

326 CHAPTER 5 m ANALYSIS TECHNIQUES

Then we create two equations in A and B by letting x = 0 and x = 1.

0= -A-B

1/2= A + (1/2) B

Solving for A and B, we get A = 1 and B = -1. This yields the desired equality

x 1 1
(2x- 1)(3x - 1) 2x- 1 3x - 1"

A Final Note on Partial Fractions

If the degree of the numerator p(x) is greater than or equal to the degree of q(x),
then a simple division of p(x) by q(x) will yield an equation of the form

p(x) - I ((X)

q (x) q' (x)

where the degree of p'(x) is less than the degree of q'(x). Then we can apply
partial fractions to the quotient

p' (x)

q' (x)

More Generating Functions

There are many useful generating functions. Since our treatment is not intended
to be exhaustive, we'll settle for listing two more generating functions that have
many applications.

Two More Useful Generating Functions

(1 -)k+ + n x' for k G N. (5.19)
n=0

(l+X)r= Zr(r)'(rn+))xnx forrE-R. (5.20)
n=0

The numerator of the coefficient expression for the nth term in (5.20) contains
a product of n numbers. When n = 0, we use the convention that a vacuous
product-of zero numbers-has the value 1. Therefore the 0th term of (5.20) is
1/0! = 1. So the first few terms of (5.20) look like the following:

(1 + x)=1 + rx + r (r - 1)x 2 + r(r- 1)(r-2) x 3 +..
2 6

5.4 m SOLVING RECURRENCES 327

The Problem of Parentheses

Suppose we want to find the number of ways to parenthesize the expression

tl +t 2 +". + t,-1 +tn (5.21)

so that a parenthesized form of the expression reflects the process of adding two
terms. For example, the expression t1 + t 2 + t3 + t 4 has several different forms
as shown in the following expressions:

((tl + t2) + (t3 + t4))

(tl + (t2 + (t3 + t4)))

(ti + ((t2 + t3) + t4))

To solve the problem, we'll let b, denote the total number of possible parenthe-
sizations for an n-term expression. Notice that if 1 < k < n - 1, then we can
split the expression (5.21) into two subexpressions as follows:

tl + - - + tn-k and tn-k+l + • - • + tn. (5.22)

So there are bn-kbk ways to parenthesize the expression (5.21) if the final + is
placed between the two subexpressions (5.22). If we let k range from 1 to k - 1,
we obtain the following formula for bn when n > 2:

bn = b,-lb, + bn- 2 b2 + .. " + b2bn- 2 + bib.- 1 . (5.23)

But we need bl = 1 for (5.23) to make sense. It's OK to make this assumption
because we're concerned only about expressions that contain at least two terms.
Similarly, we can let b0 = 0. So we can write down the recurrence to describe
the solution as follows:

b0 = 0, (5.24)

bl = 1,

b, = bbo + bb-±bl + +..+b1 bn-1 + bobn (n > 2).

Notice that this system cannot be solved by substitution or cancellation. Let's
try generating functions. Let B(x) be the generating function for the sequence

b0, bl,... bn,

So B (x) = .bnxi" Now let's try to apply the four-step procedure for
generating functions. First we use the general equation in the recurrence to
introduce the partial (since n > 2) generating function

E bx = E (bnbo + bn-lb+ + +bbn- 1 + bobn) xn. (5.25)
n=2 n=2

328 CHAPTER 5 . ANALYSIS TECHNIQUES

Now the left-hand side of (5.25) can be written in terms of B(x):

00

S bnx 0 = B (x) - bix- bo
n=

2

=B(x)-x (since b0 =0andb, = 1).

Before we discuss the right hand-side of Equation (5.25), notice that we can

write the product

B (x) B•(x) = (bnxn) bnxn

\ n=O n='O0

00
E-- Cn Xn,

n=O

where co = b0 b0 and, for n > 0,

c, = b 0 b0 + b,-1 b± + + b, b,_i + b0 bn.

So the right-hand side of Equation (5.25) can be written as

00

5 (bbob + b 1 b + b. b-1 + bobn) X'

n=
2

= B (x) B (x) - bobo - (bibo + bob,) x

= B (x) B (x) (since b0 = 0).

Now Equation (5.25) can be written in simplified form as

B(x)-x=B(x)B(x) or B (x) 2 - B (x) + x = 0.

Now, thinking of B(x) as the unknown, the equation is a quadratic equation
with two solutions:

1± /1 -4x
B (x) 2

5.4 M SOLVING RECURRENCES 329

Notice that v - 4x is the closed form for generating a function obtained from
(5.20), where r = . Thus we can write

V1 - 4x = (1 + (-4x))21 2). .)

½ 1 (-1) (3) ... (2n)-3) (-2n+(_xnE 2 2 ~~~n! 2 (- nnn

n=O+ .. (2n-3)_~
n! (2n2~

n=1+ c- (_1 21) (2n... (2n- 3

n=1

Expansion of the last equality is left as an exercise. Notice that, for n > 1,
the coefficient of xn is negative in this generating function. In other words, the
nth term (n > 1) of the generating function, for 1, - 4x always has a negative
coefficient. Since we need positive values for b,, we must choose the following
solution of our quadratic equation:

11
B-x)= V1 -4x.

Putting things together, we can write our desired generating function as follows:
00111

bnx5 = B (x) - 2 2 - 4x
ni=O

I_ 1 1{+ "(_2) (2n - 2) x

2 2 E~ -n n -l1

=0+ 001(n- 2)x,
n=1n• l

Now we can finish the job by equating coefficients to obtain the following solution:

b,=ifn=0then 0 else - .

The Problem of Binary Trees

Suppose we want to find, for any natural number n, the number of structurally
distinct binary trees with n nodes. Let b,. denote this number. We can figure
out a few values by experiment. For example, since there is one empty binary
tree and one binary tree with a single node, we have b0 = 1 and b, = 1. It's also
easy to see that b2 = 2, and for n = 3 we see after a few minutes that b3 = 5.

330 CHAPTER 5 U ANALYSIS TECHNIQUES

Let's consider bn for n > 1. A tree with n nodes has a root and two subtrees
whose combined nodes total n - 1. For each k in the interval 0 < k < n - 1 there
are bk left subtrees of size k and bn-l-k distinct right subtrees of size n - 1 - k.
So for each k there are bkbn-l-k distinct binary trees with n nodes. Therefore,
the number bn of binary trees can be given by the sum of these products as
follows:

b. = bobn- 1 + bibn- 2 + + bkbn-k + + b.- 2 bi + b-lbo.

Now we can write down the recurrence to describe the solution as follows:

bo = 1,

bn = bob•-_ + b1b.- 2 + + bkbn-k + ... + bn- 2b1 + b-lbo (n > 1)

Notice that this system cannot be solved by cancellation or substitution. Let's
try generating functions. Let B(x) be the generating function for the sequence

bo, b,...., bn,

So B(x) = E=0 bnx'. Now let's try to apply the four-step procedure for
generating functions. First we use the general equation in the recurrence to
introduce the partial (since n > 1) generating function

>bnxn = y (bob- 1 + bbn-2 + ... + bn- 2 b, + bn-lbo) xn. (5.26)

n-=1 n=1

Now the left-hand side of (5.26) can be written in terms of B(x).

1- bn xn = B (x) - bo
n-1

=B(x)-I (sincebo=1).

Before we discuss the right hand-side of Equation (5.26), notice that we can
write the product

B (x) B (x) = (nbnx) bnx)

- E cn xn,

n=O

where co = bo bo and for n > 0,

cn = bobn + bib.- 1 + " + b.-lb, + b9 bo

5.4 m SOLVING RECURRENCES 331

So the right-hand side of Equation (5.26) can be written as

E (bob,-, + b1b,- 2 + + b•- 2 b1 + b 1-Ibo) xn
n=1

00Y (bobn + bib.-, + + bn_-b 1 + bnbo)x'•+1

n=O
00

= x E (bobn + bibn- 1 + "'" + bn-ibi + bnbo) xn

n=O

= xB (x) B (x)

Now Equation (5.26) can be written in simplified form as

B (x) - 1 = xB (x) B (x) or xB (x) 2 - B (x) + I = 0.

Now, thinking of B(x) as the unknown, the equation is a quadratic equation
with two solutions:

1 ± v/1- -4x
S(x) 2x

Notice that V1 -- 4x is the closed form for generating a function obtained from
(5.20), where r = 1. Thus we can write

v - 4x = (1 + (-4x))2

0 1 (1) (2)... (½ 2) (_4x)n

n=n00 1 2n-3
2--2 n! 2 (--2)n 2-xn

n=0

I o w t (-1 (1 o) (3)... (2n e- 3) f 1

S1- +12nx

n!n=1
0 0 (_ 2) (2 n _ -2) x _n=I+E n n -l 1

Notice that for n > I the coefficient of Xn is negative in this generating function.
In other words, the nth term (n > 1) of the generating function for VII -- 4x
always has a negative coefficient. Since we need positive values for bn, we must
choose the following solution of our quadratic equation:

I - v/1 -4x
B(x) -- 2x

332 CHAPTER 5 u ANALYSIS TECHNIQUES

Putting things together, we can write our desired generating function as follows:

I0 -/1- 1- 4 x1(1 1-4
Sb~x' B (x) (1- 1- x

n02x 2x

2x n n-l1

n=O

Now we can finish the job by equating coefficients to obtain

bn-=n1 (21).

• Exercises

Simple Recurrences

1. Solve each of the following recurrences by the substitution technique and the

cancellation technique. Put each answer in closed form (no ellipsis allowed).

a. a, = 0, b. a- 0, c. a0 = 1,
an al + 4. an a,, + 2n. an= 2ani + 3.

2. For each of the following definitions, find a recurrence to describe the number

of times the cons operation :: is called. Solve each recurrence.

a. cat(L, M) = if L = K) then M else head(L) :: cat(tail(L), M).
b. dist(x, L) = if L= () then K)

else (x :: head(L) :: K)) :: dist(x, tail(L)).

c. power(L) = if L= thenreturnK):: K)
else

A := power(tail(L));

B := dist(head(L), A);

C := map(::, B);

return cat(A, C)

fi

3. (Towers of Hanoi). The Towers of Hanoi puzzle was invented by Lucas in
1883. It consists of three stationary pegs with one peg containing a stack of

5.4 E SOLVING RECURRENCES 333

n disks that form a tower (each disk has a hole in the center for the peg) in
which each disk has a smaller diameter than the disk below it. The problem
is to move the tower to one of the other pegs by transferring one disk at a
time from one peg to another peg, no disk ever being placed on a smaller
disk. Find the minimum number of moves Hn to do the job.

Hint: It takes 0 moves to transfer a tower of 0 disks and 1 move to
transfer a tower of 1 disk. So H 0 = 0 and H 1 = 1. Try it out for n = 2 and
n = 3 to get the idea. Then try to find a recurrence relation for the general
term H, as follows: Move the tower consisting of the top n - 1 disks to the
nonchosen peg; then move the bottom disk to the chosen peg; then move
the tower of n - 1 disks onto the chosen peg.

4. (Diagonals in a Polygon). A diagonal in a polygon is a line from one vertex
to another nonadjacent vertex. For example, a triangle doesn't have any
diagonals because each vertex is adjacent to the other vertices. Find the
number of diagonals in an n-sided polygon, where n > 3.

5. (The n-Lines Problem). Find the number of regions in a plane that are
created by n lines, where no two lines are parallel and where no more than
two lines intersect at any point.

Generating Functions

6. Given the generating function A (x) = E=0 anxn, find a closed form for
the general term an for each of the following representations of A(x).

a. A (x) = 2 3x+12 b. A (x) = I +1 3

c. A (x) 312 F 1

7. Use generating functions to solve each of the following recurrences.

a. ao•O,

a, = 4,

a= 2an I+ 3a, 2 (n > 2).

b. a0 = 0,

ai = 1,

an= 7an- - 12an- 2 (n > 2).

c. a 0 =0,

a, = 1,

a2 = 1,

an= 2a-I + a-2 - 2an-3 (n > 3).

8. Use generating functions to solve each recurrence in Exercise 1. For those
recurrences that do not have an ao term, assume that ao = 0.

334 CHAPTER 5 a ANALYSIS TECHNIQUES

Proofs and Challenges

9. Prove in two different ways that the following equation holds for all positive
integers n, as indicated:

(1) (1)(3)... (2n- 3) 2n 2 (2n- 2).

n \n-1}

a. Use induction.

b. Transform the left side into the right side by "inserting" the missing
even numbers in the numerator.

10. Find a closed form for the nth Fibonacci number defined by the following
recurrence system.

F0 =0,

F1 = 1,

Fn F.--1 +- Fn--2 (n >_ 2).

5.5 Comparing Rates of Growth

Sometimes it makes sense to approximate the number of steps required to execute
an algorithm because of the difficulty involved in finding a closed form for an
expression or the difficulty in evaluating an expression. To approximate one
function with another function, we need some way to compare them. That's
where "rate of growth" comes in. We want to give some meaning to statements
like "f has the same growth rate as g" and "f has a lower growth rate than Y."

For our purposes we will consider functions whose domains and codomains
are subsets of the real numbers. We'll examine the asymptotic behavior of two
functions f and g by comparing f(n) and g(n) for large positive values of n (i.e.,

as n approaches infinity).

5.5.1 Big Theta

Let's begin by discussing the meaning of the statement "f has the same growth
rate as g."

A function f has the same growth rate as g (or f has the same order as g) if
we can find a number m and two positive constants c and d such that

clg(n)I <_ If (n)l < dig(n)I for all n > Tn. (5.27)

In this case we write f(n) = 0(g(n)) and say that f(n) is big theta of g(n).

5.5 0 COMPARING RATES OF GROWTH 335

It's easy to verify that the relation "has the same growth rate as" is an
equivalence relation. In other words, the following three properties hold for all
functions.

f (n) =E) (f (n)).

If f (n) =O (g (n)), then g (n) = E) (f (n)).

If f (n) =E (g(n)) and g (n) = E) (h(n)), then f (n) = E (h(n)).

If f (n) = E(g(n)) and we also know that g(n) # 0 for all n > m, then we
can divide the inequality (5.27) by g(n) to obtain

f (n)]
c_< 9' <d for all n > m.

g g(n) _

This inequality gives us a better way to think about "having the same growth
rate." It tells us that the ratio of the two functions is always within a fixed
bound beyond some point. We can always take this point of view for functions
that count the steps of algorithms because they are positive valued.

Now let's see whether we can find some functions that have the same growth
rate. To start things off, suppose f and g are proportional. This means that there
is a nonzero constant c such that f(n) = cg(n) for all n. In this case, definition
(5.27) is satisfied by letting d = c. Thus we have the following statement.

Proportionality (5.28)
If two functions f and g are proportional, then f(n) = e(g(n)).

5.29 The Log Function

Recall that log functions with different bases are proportional. In other words,
if we have two bases a > 1 and b > 1, then

loga n = (loga b) (logb n) for all n > 0.

So we can disregard the base of the log function when considering rates of growth.
In other words, we have

loga n = E) (logb n). (5.29)

It's interesting to note that two functions can have the same growth rate

without being proportional. Here's an example.

336 CHAPTER 5 m ANALYSIS TECHNIQUES

j 5.30 Polynomials of the Same Degree

Let's show that n 2 + n and n 2 have the same growth rate. The following
inequality is true for all n > 1:

In 2 < n2 + n < 2n 2 .

Therefore, n 2 + n = E(n 2).

The following theorem gives us a nice tool for showing that two functions
have the same growth rate.

Theorem (5.30)
Iflmf (n)

If _ -- c where c$ý O and c y oc, then f(n) = E (g(n)).
noo g (n)

For example, the quotient (25n 2 + n)/n 2 approaches 25 as n approaches
infinity. Therefore we can say that 25n 2 + n = E(n 2).

We should note that the limit in (5.30) is not a necessary condition for f(n)
= E(g(n)). For example, suppose we let f and g be the two functions

f (n) = if n is odd then 2 else 4,

g ()= 2.

We can write 1. g(n) < f(n) < 2 . g(n) for all n > 1. Therefore f(n) = 9(g(n)).
But the quotient f(n)/g(n) alternates between the two values 1 and 2. Therefore
the limit of the quotient does not exist. Still the limit test (5.30) will work for
the majority of functions that occur in analyzing algorithms.

Approximations can be quite useful for those of us who can't remember
formulas that we don't use all the time. For example, the first four of the
following approximations are the summation formulas from (5.2) written in terms
of E.

Some Approximations

i = e (n 2). (5.31)
i=1

n

i2 = E (n 3). (5.32)

Continued *

5.5 m COMPARING RATES OF GROWTH 337

n

If a # 1, then Eai= (an+l). (5.33)
i=O

n

If a $ 1, then Z ia= 6 (na n+
1

). (5.34)
i=O

n

Zik - e (n k1). (5.35)

Notice that (5.31) and (5.32) are special cases of (5.35).

.5.31 A Worst-Case Lower Bound for Sorting

Let's clarify a statement that we made in Example 5.13. We showed that [log2
n!] is the worst-case lower bound for comparison sorting algorithms. But log n! is
hard to calculate for even modest values of n. We stated that
Vlog2 n!] is approximately equal to n log2 n. Now we can make the following
statement:

log n! = 0 (n log n). (5.36)

To prove this statement, we'll find some bounds on log n! as follows:

logn! = logn + log(n - 1) + ... + logl

< logn + login + ..- + login (n terms)

= n log n.

logn! = logn + log(n- 1) + +logl

> log n + log (n - 1) +.. + log ([n/21) (fn/21 terms)

> log [n/21 + ... + log in/2] (Fn/21 terms)

in/2] log [n/21

Ž (n/2)log (n/2).

So we have the inequality:

(n/2) log(n/2) _< log n! < n log n.

It's easy to see (i.e., as an exercise) that if n > 4, then (1/2) log n < log (n/2).
Therefore, we have the following inequality for n > 4:

(1/4) (n log n) • (n/2) log (n/2) < log n! < n log n.

338 CHAPTER 5 * ANALYSIS TECHNIQUES

So there are nonzero constants 1/4 and 1 and the number 4 such that

(1/4) (n log n) < log n! < (1)(n log n) for all n > 4.

This tells us that log n! = E(n log n).

An important approximation to n! is Stirling's formula-named for the
mathematician James Stirling (1692-1770)--which is written as

n!= 8 (in(I)n). (5.37)

Let's see how we can use big theta to discuss the approximate performance
of algorithms. For example, the worst-case performance of the binary search
algorithm is 8(log n) because the actual value is 1 + Llog2 n]. Both the aver-
age and worst-case performances of a linear sequential search are 1(n) because
the average number of comparisons is (n + 1)/2 and the worst-case number of
comparisons is n.

For sorting algorithms that sort by comparison, the worst-case lower bound

is [log2 n!] = 1(n log n). Many sorting algorithms, like the simple sort algo-
rithm in Example 5.12, have worst-case performance of 8(n 2). The "dumbSort"
algorithm, which constructs a permutation of the given list and then checks to
see whether it is sorted, may have to construct all possible permutations before
it gets the right one. Thus dumbSort has worst-case performance of O(n!). An
algorithm called "heapsort" will sort any list of n items using at most 2n log2 n
comparisons. So heapsort is a 8(n log n) algorithm in the worst case.

5.5.2 Little Oh

Now let's discuss the meaning of the statement "f has a lower growth rate
than g."

A function f has a lower growth rate than g (or f has lower order than g) if

lim f (n) = 0. (5.38)
- g (n)

In this case we write f(n) = o (g(n)) and say that f is little oh of g.

For example, the quotient n/n 2 approaches 0 as n goes to infinity. Therefore,
n = o(n 2), and we can say that n has lower order than n 2. For another example,
if a and b are positive numbers such that a < b, then a' = o(b'). To see
this, notice that the quotient approaches 0 as n approaches infinity because
0 < a/b < 1.

5.5 m COMPARING RATES OF GROWTH 339

For those readers familiar with derivatives, the evaluation of limits can often
be accomplished by using L'H6pital's rule.

Theorem (5.39)
If lim f(n) = lim g(n) = oo or lim f(n) = lim g(n)= 0 and f and g are

n- n-oo n--o nf-c
differentiable beyond some point, then

lim f (n) .lim f '(n)

n---c g(Tn) n-..+ o 9'(n)"

___ 5.32 Different Orders

We'll show that log n = o(n). Since both n and log n approach infinity as n
approaches infinity, we can apply (5.39) to (log n)/n. Since we can write log n =
(log e)(loge n), it follows that the derivative of log n is (log e)(1/n). Therefore,
we obtain the following equations:

lim logn = lir (loge) (1/n) 0.n-cc n n-00 I

So log n has lower order than n, and we can write log n = o(n).

Let's list a hierarchy of some familiar functions according to their growth
rates, where f(n) -• g(n) means that f(n) =o(g(n)):

I --ý log n -<n --< n log n --< n2 --< n3 . 2' -..< 3' --< n! --.< n. (5.40)

This hierarchy can help us compare different algorithms. For example, we would
certainly choose an algorithm with running time e(log n) over an algorithm with
running time 0(n).

5.5.3 Big Oh and Big Omega

Now let's look at a notation that gives meaning to the statement "the growth
rate of f is bounded above by the growth rate of g." The standard notation to
describe this situation is

f(n) = O(g(n)), (5.41)

which we read as f(n) is big oh of g(n). The precise meaning of the notation
f(n) = O(g(n)) is given by the following definition.

340 CHAPTER 5 w ANALYSIS TECHNIQUES

The Meaning of Big Oh (5.42)

The notation f(n) = O(g(n)) means that there are positive numbers c and
m such that

if(n)I <•cjg(n)j for alln >m.

j 5.33 Comparing Polynomials

We'll show that n 2 = 0(n 3) and 5n 3 + 2n 2 = 0(n 3). Since n 2 < in 3 for all

n > 1, it follows that nr2 = 0(n 3). Since 5n 3 + 2n 2 < 7n 3 for all n > 1, it
follows that 5n 3 + 2n 2 = 0(n 3).

Now let's go the other way. We want a notation that gives meaning to the
statement "the growth rate of f is bounded below by the growth rate of g." The
standard notation to describe this situation is

f(n) = Q(g(n)), (5.43)

which we can read as f(n) is big omega of g(n). The precise meaning of the
notation f(n) = Q (g(n)) is given by the following definition.

The Meaning of Big Omega (5.44)
The notation f(n) = Q(g(n)) means that there are positive numbers c and
m such that

If (n)I >_ c g(n)j for all n > m.

• 5.34 Comparing Polynomials

We'll show that n3 = Q(n 2) and 3n 2 + 2n = Q(n 2). Since na3 > in 2 for all n
> 1, it follows that n3

-= Q(n 2). Since 3n 2 + 2n > in 2 for all n > 1, it follows
that 3n 2 + 2n = Q(n 2).

Let's see how we can use the terms that we've defined so far to discuss
algorithms. For example, suppose we have constructed an algorithm A to solve
some problem P. Suppose further that we've analyzed A and found that it takes
5n 2 operations in the worst case for an input of size n. This allows us to make a
few general statements. First, we can say that the worst-case performance of A

5.5 * COMPARING RATES OF GROWTH 341

is 0(n2). Second, we can say that an optimal algorithm for P, if one exists, must
have a worst-case performance of 0(n2). In other words, an optimal algorithm
for P must do no worse than our algorithm A.

Continuing with our example, suppose some good soul has computed a worst-
case theoretical lower bound of 0(n log n) operations for any algorithm that
solves P. Then we can say that an optimal algorithm, if one exists, must have a
worst-case performance of Q(n log n). In other words, an optimal algorithm for
P can do no better than the given lower bound of 9(n log n).

Before we leave our discussion of approximate optimality, let's look at some
other ways to use the symbols. The four symbols 0, o, 0, and Q can also be
used to represent terms within an expression. For example, the equation

h(n) = 4n 3 + 0(n 2)

means that h(n) equals 4n 3 plus a term of order at most n2 . When used as part
of an expression, big oh is the most popular of the four symbols because it gives
a nice way to concentrate on those terms that contribute the most muscle.

We should also note that the four symbols 0, o, 0, and Q can be formally
defined to represent sets of functions. In other words, for a function g we define
the following four sets:

9(g) is the set of functions with the same order as g;

o(g) is the set of functions with lower order than g;

0(g) is the set of functions of order bounded above by that of g;

Q(g) is the set of functions of order bounded below by that of g.

When set representations are used, we can use an expression like f(n) e E(g(n))
to mean that f has the same order as g. The set representations also give some
nice relationships. For example, we have the following relationships, where the
subset relation is proper.

0(g(n)) DO(g(n)) U o(g(n)),

9 (g(n)) = 0 (g (n)) n Q (g (n)).

o Exercises

Calculations

1. Find a place to insert the function log log n in the sequence (5.40).

2. For each each of the following functions f, find an appropriate place in the
sequence (5.40).

a. f(n) =log 1+log2+log3+... +logn.

b. f(n) =log1 +log2 +log4+ .-. +log2'.

342 CHAPTER 5 a ANALYSIS TECHNIQUES

3. For each of the following values of n, calculate the following three numbers:

the exact value of n!, Stirling's approximation (5.37) for the value of n!, and
the difference between the two values.

a. nr=5. b. n=10.

Proofs and Challenges

4. Find an example of an increasing function f such that f(n) = 0(1).

5. Prove that the binary relation on functions defined by f(n) O(g(n)) is an

equivalence relation.

6. For any constant k > 0, prove each of the following statements.

a. log (kn) = 9 (log n).

b. log (k + n) = 6 (logn).

7. Prove the following sequence of orders: n -< n log n -4 n 2 .

8. For any constant k, show that nk has lower order than 2n.

9. Prove the following sequence of orders: 2' -< n! -- n'.

10. Let f(n) =- O(h(n)) and gr(n) = O(h(n)). Prove each of the following

statements.

a. af(n) = O(h(n)) for any real number a.

b. f(n) + g(n) = O(h(n)).

11. Show that each of the following subset relations is proper.

a. O(g(n)) D E(g(n)) U o(g(n)).

b. o(g(n)) C O(g(n)) - O(g(n)).

Hint: For example, let g(n) = n and let f(n) = if n is odd then 1 else n.
Then show that f(n) e O(g(n)) - E(g(n)) U o(g(n)) for part (a) and show
that f(n) E (O(g(n)) - 0(g(n))) - o(g(n)) for part (b).

5.6 Chapter Summary

This chapter introduces some basic tools and techniques that are used to analyze

algorithms. Analysis by worst-case running time is discussed. A lower bound is
a value that can't be beat by any algorithm in a particular class. An algorithm
is optimal if its performance matches the lower bound.

Counting problems often give rise to finite sums that need closed form so-
lutions. Properties of sums together with summation notation provide us with

techniques to find closed forms for many finite sums.
Two useful things to count are permutations, in which order is important,

and combinations, in which order is not important. Pascal's triangle contains

5.6 * CHAPTER SUMMARY 343

formulas for combinations, which are the same as binomial coefficients. There
are formulas to count permutations and combinations of bags; these allow re-
peated elements. Discrete probability-with finite sample spaces-gives us the
tools to define the average-case performance of an algorithm.

Counting problems often give rise to recurrences. Some simple recurrences
can be solved by either substitution or cancellation to obtain a finite sum, which
can be then transformed into a closed form. The use of generating functions
provides a powerful technique for solving recurrences.

Often it makes sense to find approximations for functions that describe the
number of operations performed by an algorithm. The rates of growth of two
functions can be compared in various ways big theta, little oh, big oh, and big
omega.

Notes

In this chapter we've just scratched the surface of techniques for manipulating
expressions that crop up in counting things while analyzing algorithms. The
book by Knuth [1968] contains the first account of a collection of techniques for
the analysis of algorithms. The book by Graham, Knuth, and Patashnik [1989]
contains a host of techniques, formulas, anecdotes, and further references to the
literature. The book also introduces an alternative notation for working with
sums, which often makes it easier to manipulate them without having to change
the expressions for the upper and lower limits of summation. The notation is
called Iverson's convention, and it is also described in the article by Knuth [1992].

Elementary
Logic

... if it was so, it might be; and if it were so, it would be:
but as it isn't, it ain't. That's logic.

-Tweedledee in Through the Looking-Glass
by Lewis Carroll (1832-1898)

Why is it important to study logic? Two things that we continually try to
accomplish are to understand and to be understood. We attempt to understand
an argument given by someone so that we can agree with the conclusion or,
possibly, so that we can say that the reasoning does not make sense. We also
attempt to express arguments to others without making a mistake. A formal
study of logic will help improve these fundamental communication skills.

Why should a student of computer science study logic? A computer scientist
needs logical skills to argue whether a problem can be solved on a machine, to
transform logical statements from everyday language to a variety of computer
languages, to argue that a program is correct, and to argue that a program is
efficient. Computers are constructed from logic devices and are programmed in
a logical fashion. Computer scientists must be able to understand and apply
new ideas and techniques for programming, many of which require a knowledge

of the formal aspects of logic.
In this chapter we'll discuss the formal character of sentences that contain

words like "and," "or," and "not" or a phrase like "if A then B."

Section 6.1 starts our study of logic with the philosophical question "How do we
reason?" We'll discuss some common things that we all do when we reason,
and we'll introduce the general idea of a "calculus" as a thing with which to
study logic.

Section 6.2 introduces the basic notions and notations of propositional calculus.
We'll discuss the properties of tautology, contradiction, and contingency.

345

346 CHAPTER 6 0 ELEMENTARY Locic

We'll introduce the idea of equivalence, and we'll use it to find disjunctive
and conjunctive normal forms for formulas.

Section 6.3 introduces basic techniques of formal reasoning. We'll introduce
rules of inference that will allow us to write proofs in a formal manner that
still reflect the way we do informal reasoning.

Section 6.4 introduces axiomatic systems. We'll look at a specific set of three
axioms and a single rule of inference that are sufficient to prove any required
statement of the propositional calculus.

6.1 How Do We Reason?

How do we reason with each other in our daily lives? We probably state some
facts and then state a conclusion based on the facts. For example, the words
and the phrase in the following list are often used to indicate that some kind of
conclusion is being made:

therefore, thus, whence, so, ergo, hence, it follows that.

When we state a conclusion of some kind, we are applying a rule of logic called
an inference rule.

The most common rule of inference is called modus ponens, and it works
like this: Suppose A and B are two statements and we assume that A and "If A
then B" are both true. We can then infer that B is true. A typical example of
inference by modus ponens is given by the following three sentences:

If it is raining, then there are clouds in the sky.

It is raining.

Therefore, there are clouds in the sky.

We use the modus ponens inference rule without thinking about it. We
certainly learned it when we were children, probably by testing a parent. For
example, if a child receives a hug from a parent after performing some action,
it might dawn on the child that the hug follows after the action. The parent
might reinforce the situation by saying, "If you do that again, then you will be
rewarded." Parents often make statements such as: "If you touch that stove
burner, then you will burn your finger." After touching the burner, the child
probably knows a little bit more about modus ponens. A parent might say,
"If you do that again, then you are going to be punished." The normal child
probably will do it again and notice that punishment follows. Eventually, in
the child's mind, the statement "If... then... punishment" is accepted as a true
statement, and the modus ponens rule has taken root.

Another inference rule, which we also learned when we were children, is called
modus tollens, and it works like this: Suppose A and B are any two statements.
If the statement "If A then B" is true and the statement B is false, then we infer

6.1 * How Do WE REASON? 347

the falsity of statement A. A child might learn this rule initially by thinking, "If
I'm not being punished, then I must not be doing anything wrong."

Most of us are also familiar with the false reasoning exhibited by the non
sequitur, which means "It does not follow." For example, someone might make
several true statements and then conclude that some other statement is true,
even though it has nothing to do with the assumptions. The hope is that we can
recognize this kind of false reasoning so that we never use it. For example, the
following three sentences form a non sequitur:

lo is a moon of Jupiter.
Titan is a moon of Saturn.
Therefore, Earth is the third planet from the sun.

Here's another example of a non sequitur:

You squandered the money entrusted to you.
You did not keep required records.
You incurred more debt than your department is worth.
Therefore, you deserve a promotion.

So we reason by applying inference rules to sentences that we assume are
true, obtaining new sentences that we conclude are true. Each of us has our own
personal reasoning system in which the assumptions are those English sentences
that we assume are true and the inference rules are all the rules that we personally
use to convince other people that something is true. But there's a problem.

When two people disagree on what they assume to be true or on how they
reason about things, then they have problems trying to reason with each other.
Some people call this "lack of communication." Other people call it something
worse, especially when things like non sequiturs are part of a person's reasoning
system. Can common ground be found? Are there any reasoning systems that
are, or should be, contained in everyone's personal reasoning system? The answer
is yes. The study of logic helps us understand and describe the fundamental parts
of all reasoning systems.

6.1.1 What Is a Calculus?

The Romans used small beads called "calculi" to perform counting tasks. The
word "calculi" is the plural of the word "calculus." So it makes sense to think
that "calculus" has something to do with calculating. Since there are many kinds
of calculation, it shouldn't surprise us that "calculus" is used in many different
contexts. Let's give a definition.

A calculus is a language of expressions of some kind, with definite rules
for forming the expressions. There are values, or meanings, associated with the
expressions, and there are definite rules to transform one expression into another
expression having the same value.

The English language is something like a calculus, where the expressions are
sentences formed by English grammar rules. Certainly, we associate meanings

348 CHAPTER 6 * ELEMENTARY LOGIC

with English sentences. But there are no definite rules for transforming one
sentence into another. So our definition of a calculus is not quite satisfied.
Let's try again with a programming language X. We'll let the expressions be the
programs written in the X language. Is this a calculus? Well, there are certainly
rules for forming the expressions, and the expressions certainly have meaning.
Are there definite rules for transforming one X language program into another
X language program? For most modern programming languages the answer is
no. So we don't quite have a calculus. We should note that compilers transform
X language programs into Y language programs, where X and Y are different
languages. Thus a compiler does not qualify as a calculus transformation rule.

In mathematics the word "calculus" usually means the calculus of real func-
tions. For example, the two expressions

D.[f(x)g(x)] and f(x)Dxg(x) + g(x)Dxf(x)

are equivalent in this calculus. The calculus of real functions satisfies our defini-
tion of a calculus because there are definite rules for forming the expressions and
there are definite rules for transforming expressions into equivalent expressions.

We'll be studying some different kinds of "logical" calculi. In a logical calcu-
lus the expressions are defined by rules, the values of the expressions are related
to the concepts of true and false, and there are rules for transforming one ex-
pression into another. We'll start with a question.

6.1.2 How Can We Tell Whether Something Is a Proof?

When we reason with each other, we normally use informal proof techniques
from our personal reasoning systems. This brings up a few questions:

What is an informal proof?
What is necessary to call something a proof?
How can I tell whether an informal proof is correct?
Is there a proof system to learn for each subject of discussion?
Can I live my life without all this?

A formal study of logic will provide us with some answers to these questions.
We'll find general methods for reasoning that can be applied informally in many
different situations. We'll introduce a precise language for expressing arguments
formally, and we'll discuss ways to translate an informal argument into a formal
argument. This is especially important in computer science, in which formal
solutions (programs) are required for informally stated problems.

6.2 Propositional Calculus

To discuss reasoning, we need to agree on some rules and notation about the
truth of sentences. A sentence that is either true or false is called a proposition.
For example, each of the following lines contains a proposition:

6.2 n PROPOSITIONAL CALCULUS 349

P 0 -•P PvQ P^A P-4O

true true false true true true

true false false true false false

false true true true false true

false false true false false true

Figure 6.1 Truth tables.

Winter begins in June in the Southern Hemisphere.
2 + 2 =4.
If it is raining, then there are clouds in the sky.
I may or may not go to a movie tonight.
All integers are even.
There is a prime number greater than a googol.

For this discussion we'll denote propositions by the letters P, Q, and R,
possibly subscripted. Propositions can be combined to form more complicated
propositions, just the way we combine sentences, using the words "not," "and,"
"1or," and the phrase "if... then...". These combining operations are often called

connectives. We'll denote them by the following symbols and words:

- not, negation.

A and, conjunction.

V or, disjunction.

conditional, implication.

Some common ways to read the expression P --ý Q are "if P then Q," "Q
if P," "P implies Q," "P is a sufficient condition for Q," and "Q is a necessary
condition for P." P is called the antecedent, premise, or hypothesis, and Q is
called the consequent or conclusion of P -* Q.

Now that we have some symbols, we can denote propositions in symbolic

form. For example, if P denotes the proposition "It is raining" and Q denotes the
proposition "There are clouds in the sky," then P -* Q denotes the proposition
"If it is raining, then there are clouds in the sky." Similarly, - P denotes the
proposition "It is not raining."

The four logical operators are defined to reflect their usage in everyday

English. Figure 6.1 is a truth table that defines the operators for all possible
truth values of their operands.

6.2.1 Well-Formed Formulas and Semantics

Like any programming language or any natural language, whenever we deal with
symbols, at least two questions always arise. The first deals with syntax: Is

350 CHAPTER 6 n ELEMENTARY LoGic

an expression grammatically (or syntactically) correct? The second deals with
semantics: What is the meaning of an expression? Let's look at the first question
first.

A grammatically correct expression is called a well-formed formula, or wff
for short, which can be pronounced "woof." To decide whether an expression is a
wff, we need to precisely define the syntax (or grammar) rules for the formation
of wffs in our language. So let's do it.

Syntax

As with any language, we must agree on a set of symbols to use as the alphabet.
For our discussion we will use the following sets of symbols:

Truth symbols: true, false

Connectives: - , --* , A , V
Propositional variables: Uppercase letters like P, Q, and R

Punctuation symbols: (I).

Next we need to define those expressions (strings) that form the wffs of our
language. We do this by giving the following informal inductive definition for
the set of propositional wffs.

The Definition of a Wff

A wff is either a truth symbol, or a propositional variable, or the negation of
a wff, or the conjunction of two wffs, or the disjunction of two wffs, or the
implication of one wff from another, or a wff surrounded by parentheses.

For example, the following expressions are wffs:

true, false, P, - Q, P A Q, P -- Q, (P V Q) A R, P A Q ---* R.

If we need to justify that some expression is a wff, we can apply the inductive
definition. Let's look at an example.

F 6.1 Analyzing a Wff

We'll show that the expression P A Q V R is a wff. First, we know that P,
Q, and R are wffs because they are propositional variables. Therefore, Q V R
is a wff because it's a disjunction of two wffs. It follows that P A Q V R is a
wff because it's a conjunction of two wffs. We could have arrived at the same
conclusion by saying that P A Q is a wff and then stating that P A Q V R is a
wff, since it is the disjunction of two wffs.

6.2 U PROPOSITIONAL CALCULUS 351

Semantics

Can we associate a truth table with each wff? Yes we can, once we agree on
a hierarchy of precedence among the connectives. For example, P A Q V R
is a perfectly good wff. But to find a truth table, we need to agree on which
connective to evaluate first. We will define the following hierarchy of evaluation
for the connectives of the propositional calculus:

S(highest, do first)
A

V

--, (lowest, do last)

We also agree that the operations A, V, and --+ are left associative. In other
words, if the same operation occurs two or more times in succession, without
parentheses, then evaluate the operations from left to right. Be sure you can tell
the reason for each of the following lines, where each line contains a wff together
with a parenthesized wff with the same meaning:

PV Q A R means PV (QA R).

P --+ Q --• R means (P - Q) - R.
- PV Q means (P) V Q.

- P----+ P A Q V R means (P) -- ((P A Q) V R).

- - P means (- P).

Any wff has a natural syntax tree that clearly displays the hierarchy of the
connectives. For example, the syntax tree for the wff P A (Q V - R) is given
by the diagram in Figure 6.2.

Now we can say that any wff has a unique truth table. For example, suppose
we want to find the truth table for the wff

-P Q A R.

A

P V

Q --,

R

Figure 6.2 Syntax tree.

352 CHAPTER 6 m ELEMENTARY LoGic

P 0 R P OAR -P--ý QA R

true true true false true true

true true false false false true
true false true faise false true
true false false false false true
false true true true true true
false true false true false false
false false true true false false
false false false true false false

Figure 6.3 Truth table.

From the hierarchy of evaluation we know that this wff has the following paren-
thesized form:

(-7 P) -* (Q A R).

So we can construct the truth table as follows: Begin by writing down all possible
truth values for the three variables P, Q, and R. This gives us a table with eight
lines. Next, compute a column of values for -7 P. Then compute a column of
values for Q A R. Finally, use these two columns to compute the column of values
for - P -- Q A R. Figure 6.3 gives the result.

Although we've talked some about meaning, we haven't specifically defined
the meaning, or semantics, of a wff. Let's do it now. We know that any wff has
a unique truth table. So we'll associate each wff with its truth table.

The Meaning of a Wff

The meanings of the truth symbols true and false are true and false, respec-
tively. Otherwise, the meaning of a wff is its truth table.

Tautology, Contradiction, and Contingency

A wff is said to be tautology if all the truth table values for the wff are true. For
example, the wffs P V - P and P -4 P are tautologies. If all the truth table
values for a wff are false, then the wff is called a contradiction. For example, the
wff P A - P is a contradiction. If the truth table for a wff contains a true value
and a false value, then the wff is called a contingency. For example, the wff P is
a contingency.

Notational Convenience

We will often use uppercase letters to refer to arbitrary propositional wffs. For
example, if we say, "A is a wff," we mean that A represents some arbitrary wff.
We also use uppercase letters to denote specific propositional wffs. For example,

6.2 0 PROPOSITIONAL CALCULUS 353

if we want to talk about the wff P A (Q V - R) several times in a discussion,
we might let W = P A (Q V - R). Then we can refer to W instead of always
writing down the symbols P A (Q V - R).

6.2.2 Equivalence

In our normal discourse we often try to understand a sentence by rephrasing it
in some way. Of course, we always want to make sure that the two sentences
have the same meaning. This idea carries over to formal logic too, where we
want to describe the idea of equivalence between two wffs.

Definition of Equivalence

Two wffs A and B are equivalent (or logically equivalent) if they have the same
truth value for each assignment of truth values to the set of all propositional
variables occurring in the wffs. In this case we write

A =_B.

If two wffs contain the same propositional variables, then they will be equiv-
alent if and only if they have the same truth tables. For example, the wffs
SP V Q and P --* Q both contain the propositional variables P and Q. The
truth tables for the two wffs are shown in Figure 6.4. Since the tables are the
same, we have - P V Q =_ P -- Q.

Two wffs that do not share the same propositional variables can still be

equivalent. For example, the wffs - P and - P V (Q A - P) don't share
Q. Since the truth table for - P has two lines and the truth table for - P V
(Q A -' P) has four lines, the two truth tables can't be the same. But we can still
compare the truth values of the wffs for each truth assignment to the variables
occuring in both wffs. We can do this with a truth table using the variables P
and Q as shown in Figure 6.5. Since the columns agree, we know the the wffs
are equivalent. So we have - P =-_ P V (Q A -• P).

When two wffs don't have any propositional variables in common, the only
way for them to be equivalent is that they are either both tautologies or both
contraditions. Can you see why? For example, P V - P - Q -* Q _ true.

The definition of equivalence also allows us to make the following useful
formulation in terms of conditionals and tautologies.

P Q -,gva P,-*Q

true true true true
true false false false
false true true true
false false true true

Figure 6.4 Equivalent wffs.

354 CHAPTER 6 N ELEMENTARY LoGic

P a -P -,P V (QA-, P)

true true false false
true false false false

false true true true

false false true true

Figure 6.5 Equivalent wffs.

Basic Equivalences (6.1)

Negation Disjunction Conjunction Implication

-- •AsA A v true E-true A Atrue m A A -•trueFtrue

A v false E A A A false a false A -false m - A
AvA=A AAA=A true --- A s A
Av-A A-true AA--Aafalse false --> A- true

A-> A - true

Some Conversions Absorption laws

A -+ 8-- Av B A A(A v B) - A

S(A --• B) -=-A A^- B A v(A A B) s A

A -- B-A^-A B-*false A A(-A Av B) a AAB
A and v are associative. A v(-• AAB) -= AvB

A and v are commutative.

A and v distribute over each other: De Morgan's Lows

A A(B v C)=-(A A B)v(A A C) (AA B) A v-B
A v(B A C)'a(A v B)A(A v C) -(Av B) -=A A- B

Figure 6.6 Equivalences, conversions, basic laws.

Equivalence

A = B if and only if (A-- B) A (B-- A) is a tautology

if and only if A -- B and B -- A are tautologies.

Before we go much further, let's list a few basic equivalences. Figure 6.6

shows a collection of equivalences, all of which are easily verified by truth tables,

so we'll leave them as exercises.

Reasoning with Equivalences

Can we do anything with the basic equivalences? Sure. We can use them to

show that other wffs are equivalent without checking truth tables. But first we

need to observe two general properties of equivalence.

The first thing to observe is that equivalence is an "equivalence" relation. In

other words, = satisfies the reflexive, symmetric, and transitive properties. The

6.2 U PROPOSITIONAL CALCULUS 355

transitive property is the most important property for our purposes. It can be
stated as follows for any wffs W, X, and Y:

If W= X and X - Y, then W= Y.

This property allows us to write a sequence of equivalences and then conclude
that the first wff is equivalent to the last wff, just the way we do it with ordinary
equality of algebraic expressions.

The next thing to observe is the replacement rule of equivalences, which is
similar to old rule: "Substituting equals for equals doesn't change the value of
an expression."

Replacement Rule

Any subwff (i.e., a wff that is part of another wff) can be replaced by an
equivalent wff without changing the truth value of the original wff.

Can you see why this is OK for equivalences? For example, suppose we want
to simplify the wff B -+ (A V (A A B)). We might notice that one of the laws
from (6.1) gives A V (A A B) -- A. Therefore, we can apply the replacement rule
and write the following equivalence:

B -, (A V (A A B))- B , A.

Let's do an example to illustrate the process of showing that two wffs are
equivalent without checking truth tables.

.6.2 A Conditional Relationship

The following equivalence shows an interesting relationship involving the con-
nective --+.

A , (B -- C)=--B - (A , C).

We'll prove it using equivalences that we already know. Make sure you can give
the reason for each line of the proof.

Proof: A--* (B- C) A- (- B V C)

- Av-B vC)
A (•v B) V C

(-Bv-A) vC
B- ,B (Av C)

B (- A V C)

B -(A -, C). QED

356 CHAPTER 6 E ELEMENTARY Locic

This example illustrates that we can use known equivalences like (6.1) as
rules to transform wffs into other wffs that have the same meaning. This justifies
the word "calculus" in the name "propositional calculus."

Is It a Tautology, a Contradiction, or a Contingency?

Suppose our task is to find whether a wff W is a tautology, a contradiction, or a
contingency. If W contains n variables, then there are 2' different assignments
of truth values to the variables of W. Building a truth table with 2' rows can
be tedious when n is moderately large.

Are there any other ways to determine the meaning of a wff? Yes. One
way is to use equivalences to transform the wff into a wff that we recognize as
a tautology, a contradition, or a contingency. But another way, called Quine's
method, combines the substitution of variables with the use of equivalences. To
describe the method we need a definition.

Definition
If A is a variable in the wff W, then the expression W(A/true) denotes the
wEt obtained from W by replacing all occurrences of A by true. Similarly, we
define W(A/false) to be the wiE obtained from W by replacing all occurrences
of A by false.

For example, if W = (A --* B) A (A , C), then W(A/true) and W(A/false)
have the following values, where we've continued in each case with some basic
equivalences.

W (A/true) = (true -- B) A (true -- C) B A C.

W (A/false) = (false -* B) A (false -* C) true A true = true.

Now comes the key observation that allows us to use these ideas to decide the
truth value of a wEf.

Substitution Properties

1. W is a tautology iff W(A/true) and W(A/false) are tautologies.

2. W is a contradiction iff W(A/true) and W(A/false) are contradictions.

For example, in our little example we found that W(A/true) -- B A C, which
is a contingency, and W(A/false) - true, which is a tautology. Therefore, W is
a contingency.

The idea of Quine's method is to construct W(A/true) and W(A/false) and
then to simplify these wffs by using the basic equivalences. If we can't tell the
truth values, then choose another variable and apply the method to each of these
wffs. A complete example is in order.

6.2 * PROPOSITIONAL CALCULUS 357

S 6.3 Quine's Method

Suppose that we want to check the meaning of the following wff W:

[(A A B -• C) A (A -• B)] -• (A -ý C).

First we compute the two wffs W(A/true) and W(A/false) and simplify them.

W (A/true) - [(true A B - C) A (true - B)] - (true - C)

[(B -Q C) A (true - B)] - (true Q C)
-[(B -Q)A B] -, C.

W (A/false) = [(false A B -- C) A (false --- B)] -- (false -* C)

[(false -* C) A true] --4 true

-- true.

Therefore, W(A/false) is a tautology. Now we need to check the simplification
of W(A/true). Call it X. We continue the process by constructing the two wffs
X(B/true) and X(B/false):

X (B/true) [(true , C) A true] ,- C

[C A true] -- C

true.

So X(B/true) is a tautology. Now let's look at X(B/false).

X (B/false) = [(false - C) A false] - C

[true A false] - C

false -* C

true.

So X(B/false) is also a tautology. Therefore, X is a tautology and it follows
that W is a tautology.

Quine's method can also be described graphically with a binary tree. Let W
be the root. If N is any node, pick one of its variables, say V, and let the two
children of N be N(V/true) and N(V/false). Each node should be simplified as
much as possible. Then W is a tautology if all leaves are true, a contradiction
if all leaves are false, and a contingency otherwise. Let's illustrate the idea with
the wff P -- Q A P. The binary tree in Figure 6.7 shows that the wff P --* Q A P
is a contingency because Quine's method gives one false leaf and two true leaves.

358 CHAPTER 6 * ELEMENTARY LOGIC

P-4 QA P

P =true P -false

true -4 0 A true false -4 A A false

true -0 0 true

0 = true 0 = false

true false

Figure 6.7 Quine's method.

6.2.3 Truth Functions and Normal Forms
A truth function is a function whose arguments can take only the values true
or false and whose values are either true or false. So any wff defines a truth
function. For example, the function g defined by

g(P, Q) = P A Q

is a truth function. Is the converse true? In other words, is every truth function
a wff? The answer is yes. To see why this is true, we'll present a technique to
construct a wff for any truth function.

For example, suppose we define a truth function f by saying that f(P, Q)
is true exactly when P and Q have opposite truth values. Is there a wff that
has the same truth table as f? We'll introduce the technique with this example.
Figure 6.8 is the truth table for f. We'll explain the statements on the right side
of this table.

We've written the two wffs P A - Q and - P A Q on the second and third
lines of the table because the values of f are true on these lines. Each wff is a
conjunction of argument variables or their negations according to their values on
the same line, according to the following two rules:

If P is true, then put P in the conjunction.
If P is false, then put -' P in the conjunction.

Let's see why we want to follow these rules. Notice that the truth table for
P A -' Q in Figure 6.9 has exactly one true value and it occurs on the second

P Q f (P,)

true true false
true false true Create P^A Q.

false true true Create- PA 0.

false false false

Figure 6.8 A truth function.

6.2 3 PROPOSITIONAL CALCULUS 359

P 0 f(P,Q) PA-,Q -,PAQ

true true false false false

true false true true false
false true true false true
false false false false false

Figure 6.9 A truth function.

line. Similarly, the truth table for - P A Q has exactly one true value and it
occurs on the third line of the table.

Thus each of the tables for P A - Q and -ý P A Q has exactly one true value
per column, and these true values occur on the same lines as the true values for
f. Since there is one conjunctive wff for each occurrence of true in the table for
f, it follows that the table for f can be obtained by taking the disjunction of the
tables for P A Q and - P A Q. Thus we obtain the following equivalence.

f(P, Q) = (P A -7 Q) V (- P A Q).

Let's do another example to get the idea. Then we'll discuss the special
forms that we obtain by using this technique.

j. 6.4 Converting a Truth Function

Let f be the truth function defined as follows:

f(P, Q, R) - true if and only if either P = Q = false or Q = R = true.

Then f is true in exactly the following four cases:

f (false, false, true),
f(false, false, false),
f (true, true, true),
f (false, true, true).

So we can construct a wff equivalent to f by taking the disjunction of the four
wffs that correspond to these four cases. The disjunction follows.

(P A - Q A R) V (- P A Q A - R) V (P A Q A R) V (- P A Q A R).

The method we have described can be generalized to construct an equivalent
wff for any truth function having at least one true value. If a truth function

doesn't have any true values, then it is a contradiction and is equivalent to false.

360 CHAPTER 6 a ELEMENTARY LoGic

So every truth function is equivalent to some propositional wff. We'll state this
as the following theorem:

Truth Functions (6.2)
Every truth function is equivalent to a propositional wff.

Now we're going to discuss some useful forms for propositional wffs. But first
we need a little terminology. A literal is a propositional variable or its negation.
For example, P, Q, - P, and - Q are literals.

Disjunctive Normal Form

A fundamental conjunction is either a literal or a conjunction of two or more lit-
erals. For example, P and P A - Q are fundamental conjunctions. A disjunctive
normal form (DNF) is either a fundamental conjunction or a disjunction of two
or more fundamental conjunctions. For example, the following wffs are DNFs:

PV (- PAQ),

(P A Q) V (- Q A P),

(PAQ AR) V (- PAQAR).

Sometimes the trivial cases are hardest to see. For example, try to explain
why the following four wffs are DNFs: P, - P, P V - P, and -7 P A Q. The
propositions that we constructed for truth functions are DNFs.

It is often the case that a DNF is equivalent to a simpler DNF. For example,
the DNF P V (P A Q) is equivalent to the simpler DNF P by using (6.1). For
another example, consider the following DNF:

(P A Q A R) V (- P A Q A R) V (P A R).

The first fundamental conjunction is equivalent to (P A R) A Q, which we see
contains the third fundamental conjunction P A R as a subexpression. Thus the
first term of the DNF can be absorbed by (6.1) into the third term, which gives
the following simpler equivalent DNF:

(- pA Q A R) V (PAR).

For any wff W we can always construct an equivalent DNF. If W is a
contradiction, then it is equivalent to the single term DNF P A - P. If W is not
a contradiction, then we can write down its truth table and use the technique that
we used for truth functions to construct a DNF. So we can make the following
statement.

Disjunctive Normal Form (6.3)
Every wff is equivalent to a DNF.

6.2 U PROPOSITIONAL CALCULUS 361

Another way to construct a DNF for a wff is to transform it into a DNF by using
the equivalences of (6.1). In fact we'll outline a short method that will always
do the job:

First, remove all occurrences (if there are any) of the connective --- by using
the equivalence

A - B -A V B.

Next, move all negations inside to create literals by using De Morgan's equiva-
lences

- (A A B) A V B and- (A V B) A A -B.

Finally, apply the distributive equivalences to obtain a DNF. Let's look at an
example.

S6.5 A DNF Construction

We'll construct a DNF for the wff ((P A Q) --* R) A S.

((P A Q) , R) A S-- (P A Q) V R) AS

-- P V- Q v R) A S

(- PAS) V(-i QAS)v (RAS).

Suppose W is a wff having n distinct propositional variables. A DNF for
W is called a full disjunctive normal form if each fundamental conjunction has
exactly n liberals, one for each of the n variables appearing in W. For example,
the following wff is a full DNF:

(P A Q A R) V (- P A Q A R).

The wff P V (- P A Q) is a DNF but not a full DNF because the variable Q
does not occur in the first fundamental conjunction.

The truth table technique to construct a DNF for a truth function auto-
matically builds a full DNF because all of the variables in a wff occur in each
fundamental conjunction. So we can state the following result.

Full Disjunctive Normal Form (6.4)

Every wff that is not a contradiction is equivalent to a full DNF.

362 CHAPTER 6 n ELEMENTARY LOGIC

Conjunctive Normal Form
In a manner entirely analogous to the previous discussion we can define a funda-
mental disjunction to be either a literal or the disjunction of two or more literals.
A conjunctive normal form (CNF) is either a fundamental disjunction or a con-
junction of two or more fundamental disjunctions. For example, the following
wffs are CNFs:

PA(- PV Q),
(PrVQ) A -Q VP),

(PVQVR) A(- PVQVR).

Let's look at some trivial examples. Notice that the following four wffs are
CNFs: P, - P, P A - P, and - P V Q. As in the case for DNFs, some CNFs are
equivalent to simpler CNFs. For example, the CNF P A (P V Q) is equivalent
to the simpler CNF P by (6.1).

Suppose some wff W has n distinct propositional letters. A CNF for W is
called a full conjunctive normal form if each fundamental disjunction has exactly
n literals, one for each of the n variables that appear in W. For example, the
following wff is a full CNF:

(P V Q V R) A (- P V Q V R).

On the other hand, the wff P A (-' P V Q) is a CNF but not a full CNF.
It's possible to write any truth function f that is not a tautology as a full

CNF. In this case we associate a fundamental disjunction with each line of the
truth table in which f has a false value, with the property that the fundamental
disjunction is false on only that line. Let's return to our original example, in
which f(P, Q) is true exactly when P and Q have opposite truth values. Figure
6.10 shows the truth values for f along with a fundamental disjunction created
for each line with a false value.

In this case, - P is added to the disjunction if P = true, and P is added to
the disjunction if P = false. Then we take the conjunction of these disjunctions
to obtain the following conjunctive normal form of f:

f(P, Q) (- P V -i Q) A (P V Q).

P 0 f(P, Q)

true true false Create -7 P v - 0.
true false true
false true true
false false false Create Pv 0.

Figure 6.10 A truth function.

6.2 U PROPOSITIONAL CALCULUS 363

Of course, any tautology is equivalent to the single term CNF P V - P. Now
we can state the following results for CNFs, which correspond to statements
(6.3) and (6.4) for DNFs:

Conjunctive Normal Form

Every wff is equivalent to a CNF. (6.5)

Every wff that is not a tautology is equivalent to a full CNF. (6.6)

We should note that some authors use the terms "disjunctive normal form"
and "conjunctive normal form" to describe the expressions that we have called
"full disjunctive normal forms" and "full conjunctive normal forms." For exam-
ple, they do not consider P V (- P A Q) to be a DNF. We use the more general
definitions of DNF and CNF because they are useful in describing methods for
automatic reasoning and they are useful in describing methods for simplifying
digital logic circuits.

Constructing Full Normal Forms using Equivalences

We can construct full normal forms for wffs without resorting to truth table
techniques. Let's start with the full disjunctive normal form. To find a full
DNF for a wff, we first convert it to a DNF by the usual actions: eliminate
conditionals, move negations inside, and distribute A over V . For example, the
wff P A (Q -, R) can be converted to a DNF in two steps, as follows:

P A (Q - R) P A (Q V R)

(P A- Q) V (P AR).

The right side of the equivalence is a DNF. However, it's not a full DNF because
the two fundamental conjunctions don't contain all three variables. The trick to
add the extra variables can be described as follows:

To add a variable, say R, to a fundamental conjunction C without changing
the value of C, write the following equivalences:

C= CAtrue- CA (RV -R) (CA R) V (C A 1R).

Let's continue with our example. First, we'll add the letter R to the fun-
damental conjunction P A Q. Be sure to justify each step of the following
calculation:

P A - Q (P A Q) A true

(P A- Q) A (R V-i R)

(P A Q A R) V (P A - Q A - R).

364 CHAPTER 6 U ELEMENTARY LOGIC

Next, we'll add the variable Q to the fundamental conjunction P A R:

PAR R (PAR) Atrue

-(PAR) A(QV- Q)

(PARAQ) V (PARA-v Q).

Lastly, we put the two wffs together to obtain a full DNF for P A (Q -- R):

(P A - Q A R) V (P A - Q A - R) V (P A R A Q) V (P A R A Q).

j 6.6 Constructing a Full DNF

We'll construct a full DNF for the wff P --- Q. Make sure to justify each line of
the following calculation.

P ---4 Q =-gP V Q

-(P A true) V Q
=- PA(QV- Q))vQ

-(P A Q) V(P A - Q) V Q

= P A Q) V(P A Q) V (Q A true)

P-(pA Q) V(PA - Q) V (Q A (P V P))

-- P A Q) V(- P A Q) V (Q A P) V (Q A P)
-- (A AQ) Vg PA - Q) V (Q AP).

We can proceed in an entirely analogous manner to find a full CNF for a wff.
The trick in this case is to add variables to a fundamental disjunction without

changing its truth value. It goes as follows:

To add a variable, say R, to a fundamental disjunction D without changing
the value of D, write the following equivalences:

D -- D V false -- D V (R A - R) -- (D V R) A (D V - R).

For example, let's find a full CNF for the wff P A (P -- Q). To start off, we
put the wff in conjunctive normal form as follows:

P A (P - Q) -P A (- P V Q).

6.2 0 PROPOSITIONAL CALCULUS 365

The right side is not a full CNF because the variable Q does not occur in the
fundamental disjunction P. So we'll apply the trick to add the variable Q. Make
sure you can justify each step in the following calculation:

P A (P - Q) P A (- P V Q)

(P V false) A (- P V Q)

(P V (Q A - Q)) A (- P V Q)
- (P V Q) A (P V Q) A (- P V Q).

The result is a full CNF that is equivalent to the original wff. Let's do another
example.

1- 6.7 Constructing a Full CNF

We'll construct a full CNF for (P -- (Q V R)) A (P V Q). After converting the
wff to conjunctive normal form, all we need to do is add the variable R to the
fundamental disjunction P V Q. Here's the transformation:

(P -- (Q V R)) A (P V Q) P V Q V R) A (P V Q)

S(- PVQ V R) A ((P V Q)v false)

- (- PvQ VR) A ((PV Q)V (RA- R))

=(- PVQVR) A((PVQVR)A(PVQV - R))

= P V Q V R) A (P V Q V R) A (P V Q V R).

6.2.4 Complete Sets of Connectives

The four connectives in the set {- , A , V - } are used to form the wffs of
the propositional calculus. Are there other sets of connectives that will do the
same job? The answer is yes. A set of connectives is called complete if every
wff of the propositional calculus is equivalent to a wff using connectives from the
set. We've already seen that every wff has a disjunctive normal form, which uses
only the connectives - , A , and V . Therefore, {f- , A , V } is a complete set of
connectives for the propositional calculus. Recall that we don't need implication
because we have the equivalence

A - B A V B.

For a second example, consider the two connectives - and V . To show that
these connectives generate the propositional calculus, we need only show that
statements of the form A A B can be written in terms of - and V . This can be
seen by the equivalence

A A B (-A V B).

366 CHAPTER 6 n ELEMENTARY LOGIC

P 0 NAND (P,Q0)

true true false
true false true
false true true
false false true

Figure 6.11 A truth table.

Therefore, {-, V } is a complete set of connectives for the propositional calculus
because we know that {-, A , V } is a complete set. Other complete sets are
f , A } and {f- , - }. We'll leave these as exercises. Are there any single
connectives that are complete? The answer is yes, but we won't find one among
the four basic connectives. There is a connective called the NAND operator,
which is short for the "Negation of AND." We'll write NAND in functional form
NAND(P, Q), since there is no well-established symbol for it. Figure 6.11 shows
the truth table for NAND.

To see that NAND is complete, we have to show that the other connectives
can be defined in terms of it. For example, we can write negation in terms of
NAND as follows:

-• P - NAND(P, P).

We'll leave it as an exercise to show that the other connectives can be written
in terms of NAND.

Another single connective that is complete for the propositional calculus is
the NOR operator. NOR is short for the "Negation of OR." Figure 6.12 shows
the truth table for NOR.

We'll leave it as an exercise to show that NOR is a complete connective
for the propositional calculus. NAND and NOR are important because they
represent the behavior of two important building blocks for logic circuits.

P a NOR (P,Q0)

true true false
true false false
false true false

false false true

Figure 6.12 A truth table.

6.2 . PROPOSITIONAL CALCULUS 367

OM Exercises

Syntax and Symmantics

1. Write down the parenthesized version of each of the following expressions.

. -PAQ--PVR.

b. P V Q A R --* P V R - Q.
c. A--+BV- CADAE--F.

2. Remove as many parentheses as possible from each of the following wffs.

Ž,. (((P V Q) -* (- R)) V (((- Q) A R) A P)).

b. ((A -* (B V C)) -+ (A V (-, (- B)))).

3. Let A, B, and C be propositional wffs. Find a wff whose meaning is reflected
by the statement "If A then B else C."

Equivalence

4. Use truth tables to verify the equivalences in (6.1).

5. Use other equivalences to prove the equivalence

A -* B- A A B -- false.

Hint: Start with the right side.

6. Show that -* is not associative. That is, show that (A -- B) -* C is not
equivalent to A -* (B -- C).

7. Use Quine's method to show that each wff is a contingency.

i. AvB-*B.

b. (A - B) A (B ---- -* A) --- A.
c:. (A B) A (B - C) --- (C - A).

d. (A V B -- C) A A (C -- B).
,,. (A -- B) V ((C -1 B) A - C).

f. (A V B) --4 (C V A) A (- C V B).

S. Use Quine's method to show that each wff is a tautology.

;. (A -B) A (B - C)-- (A C).
b. (A V B) A (A C) A (B -* D) -- (C V D).
c. (A-- C) A (B D) A (•C V - D) --*(-, A v - B).

d. (A -* (B -+ C)) Q ((A - B) - (A - C)).

c. (- B - - A) - B A) B).

f. (A-B)-(CVA-*CVB).
g. (A C) ((B - C) - (A V B Q.

h. (A - B) -* (- (B A C) - - (C A A)).

368 CHAPTER 6 m ELEMENTARY LOGIC

9. Verify each of the following equivalences by writing an equivalence proof.
That is, start on one side and use known equivalences to get to the other
side.

a. (A--- B) A (A V B)-- B.

b. A A B - C (A C) V (B - C).
c. A A B -- C - A --•(B ----> C).

d. A V B C (A C) A (B C).

e. A BAC C (A B) A(A- C).

f. A BVC-(A- B) V(A C).

10. Show that each wff is a tautology by using equivalences to show that each
wff is equivalent to true.

a. A-,AVB.

b. A A B -- A.

c. (AVB) A-A-- B.

d. A - (B , A).
e. (A --- B) A - B --- A.

f. (A- B) A A--* B.

g. A- (B (AAAB)).

h. (A B) - ((A -- B) - A).

Normal Forms

11. Use equivalences to transform each of the following wffs into a DNF.

a. (P Q) P.
b. P --,(Q --•P).

c. QA-P--- P.

d. (P V Q) A R.

e. P---QAR.
f. (A V B) A (C ----> D).

12. Use equivalences to transform each of the following wffs into a CNF.

a. (P -Q) -P.

b. P- (Q- P).
c. Q A -P--P.

d. (P V Q) A R.

e. P- QAR.

f. (AAB) VEVF.

g. (AAB) V (CAD) V(E--F).

13. For each of the following functions, write down the full DNF and full CNF
representations.

6.3 m FORMAL REASONING 369

a. f(P, Q) = true if and only if P is true.
b. f(P, Q, R) = true if and only if either Q is true or R is false.

14. Transform each of the following wffs into a full DNF if possible.

a. (P - Q) -P.
b. Q A- P-* P.
C. P ---• (Q --- P).

d. (P V Q) A R.

e. P -- Q A R.

15. Transform each of the following wffs into a full CNF if possible.

a. (P -* Q) -* P.

b. P-(Q- P).

c. QA-P--PP.

d. P - Q A R.
e. (PV Q) AR.

Challenges

16. Show that each of the following sets of operations is a complete set of con-
nectives for the propositional calculus.

a. {f-, A }. b. {-', --- }. c. {false, -• .

d. {NAND}. e. {NOR}.

17. Show that there are no complete single binary connectives other than NAND

and NOR. Hint: Let f be the truth function for a complete binary connec-
tive. Show that f(true, true) = false and f(false, false) = true because the
negation operation must be represented in terms of f. Then consider the
remaining cases in the truth table for f

6.3 Formal Reasoning

We have seen that truth tables are sufficient to find the truth of any proposi-
tion. However, if a proposition has three or more variables and contains several
connectives, then a truth table can become quite complicated. When we use an
equivalence proof rather than truth tables to decide the equivalence of two wffs,
it seems a bit closer to the way we communicate with each other.

Although there is no need to formally reason about the truth of propositions,
it turns out that all other parts of logic need tools other than truth tables to
reason about the truth of wffs. So we'll introduce the basic ideas of a formal
reasoning system. We'll do it here because the techniques carry over to all logical
systems. A formal reasoning system must have a set of well-formed formulas

370 CHAPTER 6 . ELEMENTARY LOGIC

(wffs) to represent the statements of interest. But two other ingredients are
required, and we'll discuss them next.

6.3.1 Inference Rules

A reasoning system needs some rules to help us conclude things. An inference
rule maps one or more wffs, called premises, to a single wff, called the conclusion.
For example, the modus ponens rule maps the wffs A and A --+ B to the wff B.

If we let MP stand for modus ponens, then we can represent the rule by writing

MP(A, A -- B) = B.

In general, if R is an inference rule and R(P 1 ,..., Pk) = C, then we say
something like, "C is inferred from P1 and ... and Pk by R." A common way to
represent an inference rule is to draw a horizontal line, place the premises above
the line, and place the conclusion below the line prefixed by the symbol .'. as
follows.

P 1,". ,Pk
.. C

The symbol.-. can be read as any of the following words.

therefore, thus, whence, so, ergo, hence.

We can also say, "C is a direct consequence of P1 and ... and Pk." For example,
the modus ponens rule can be written as follows.

Modus Ponens (MP) (6.7)

A B,A
.. B

We would like our inference rules to preserve truth. In other words, if all
the premises are tautologies, then we want the conclusion to be a tautology.
So an inference rule R(P 1 ,..., Pk) = C preserves truth if the following wff is a
tautology.

P, A ". A Pk --+ C.

We should note that each of the inference rules that we discuss here preserves
truth (see the exercises in Section 6.2). For example, the modus ponens rule
preserves truth because A A (A --* B) -* B is a tautology.

Any conditional tautology can be used as the basis for an inference rule. But
some rules, like modus ponens, are more useful because they reflect the way that
we reason informally. We'll list here some other inference rules that will come in
handy when constructing proofs.

6.3 m FORMAL REASONING 371

Modus Tollens (MT) A"B, - B (6.8)

A,B
Conjunction (Conj) A A B (6.9)

AAB

Simplification (Simp) A'. A B (6.10)

.A

Addition (Add) A (6.11)

AvW,•

Disjunctive Syllogism (DS) Av B, A (6.12)
.• B

Hypothetical Syllogism (HS) A B, B -* C (6.13)

A V B,A --- C, B D
Constructive Dilemma (CD) ",C V D (6.14)

C VV- D,--,B-D

Destructive Dilemma (DD) -VD, A C, B D (6.15)
-~A v -ý B

Axioms

For any reasoning system to work, it needs some fundamental truths to start
the process. An axiom is a wff that we wish to use as a basis from which to
reason. So an axiom is usually a wff that we "know to be true" from our initial
investigations (e.g., a proposition that has been shown to be a tautology by a
truth table). When we apply logic to a particular subject, then an axiom might
also be something that we "want to be true" to start out our discussion-for
example, "Two points lie on one and only one line," for a geometry reasoning
system.

We've introduced the three ingredients that make up any formal reasoning

system:

a set of wits, a set of axioms, a set of inference rules.

A formal reasoning system is often called a formal theory. How do we reason

in such a system? Can we describe the reasoning process in some reasonable
way? What is a proof? What is a theorem? Before we answer these questions,
we should note that the formal theory that we are discussing in this section
is often called a natural deduction system because we allow a wide variety of

372 CHAPTER 6 * ELEMENTARY LOGIC

inference rules and when we know some wff is a tautology, then we can use it as
an axiom. This allows us to introduce reasoning in a formal way but still keep
the flavor of the way we reason informally. In Section 6.4 we'll discuss systems
that have just one inference rule, modus ponens, and very few axioms, but for
which reasoning can be quite difficult.

6.3.2 Formal Proof

Up to now our idea of proofs has been informal. We wrote sentences in English
mixed with symbols and expressions from some domain of discourse and we made
conclusions. Now we're going to focus on the structure of proof. So we better
agree on definitions of proof and theorem.

Definition of Proof and Theorem

A proof is a finite sequence of wffs such that each wff in the sequence is either
an axiom or can be inferred from previous wffs in the sequence. The last wff
in a proof is called a theorem.

For example, suppose the following sequence of wffs is a proof.

WI,..., Wn.

Then we can say that W, is a theorem because it is the last wff in the proof.
We can also say that W 1 is an axiom because the first wff cannot be inferred
from prior wffs in the sequence.

Conditional Proof

Most informal proofs do not satisfy this definition of proof. Instead, we usually
start from one or more premises (or hypotheses) and then proceed to a conclusion
by treating the premises just like axioms. For example, we assume that some
statement A is true and then prove that some statement B follows from A. After
such an argument we say "If A then B is true" or "From the premise A, we can
conclude B." Let's make a formal definition for this kind of proof.

Proof from Premises

A proof (or deduction) of B from a set of premises is a finite sequence of
wffs ending with B such that each wff in the sequence is either a premise, an
axiom, or can be inferred from previous wffs in the sequence. A proof of B
from an empty set of premises is a proof of B.

The nice thing about propositional calculus is that there is a result that
allows us to prove conditionals like A -- B by letting A be a premise and then

6.3 m FORMAL REASONING 373

constructing a proof of B. The result is called the conditional proof rule (CP).
It is also known as the deduction theorem.

Conditional Proof Rule (6.16)

If there is a proof of B that uses A as a premise, then there is a proof of the
conditional A --- B that does not use A as a premise.

In a more general way, if there is a proof of B that uses premises A,,..., A•,
then there is a proof of A 1 A "" A An -* B that does not use these premises.

We'll prove the CP rule later when we discuss specific axiom systems. But
we can see that the general part (the second sentence) follows easily from the
first sentence. For example, suppose we have a proof of B that uses two premises,
A 1 and A 2. Since the proof uses the premise A2 , the CP rule tells us that there
is a proof of A2 -* B that does not use A2 as a premise. But it may still use A1

as a premise. So we can use the CP rule to tell us that there is a proof of A1 -->
(A 2 --* B) that does not use the two premises A1 and A2 . Notice further (by an
exercise in Section 6.2) that A1 -- (A 2 -* B) - A1 A A2 --- B.

So the conditional proof rule is a useful tool for proving conditionals. For
example, suppose we want to prove a conditional like A1 A A A, -* B. We
can proceed as we do with informal proofs. Start the proof by listing the wffs
A,,..., An as premises. Then construct a proof whose last wff is B. Then we can

use the CP rule to conclude that there is a proof of A1 A " A A, --* B that does
not use any premises. So we conclude that A1 A ." A A, --* B is a theorem.

Consistency

Suppose we are unlucky enough to have a formal theory with a wff W such that
both W and - W can be proved as theorems. A formal theory exhibiting this bad
behavior is said to be inconsistent. We probably would agree that inconsistency
is a bad situation. A formal theory that doesn't possess this bad behavior is said
to be consistent. We certainly would like our formal theories to be consistent.
For the propositional calculus we'll get consistency if we choose our axioms to be
tautologies and we choose our inference rules to map tautologies to tautologies.
Then every theorem will have to be a tautology.

Notation for Proofs
We'll write proofs in table format, where each line is numbered and contains a
wff together with the reason it's there. For example, a proof sequence

Wi,..., Wn

374 CHAPTER 6 m ELEMENTARY Looic

will be written in the following form:

Proof: 1. W1 Reason for W 1

2. W2 Reason for W2

n. W, Reason for W,

The reason column for each line always contains a short indication of why
the wff is on the line. If the line depends on previous lines because of an inference
rule, then we'll always include the line numbers of those previous lines.

If a proof contains premises, then we'll indicate the fact that a line contains
a premise by writing the letter

P.

After such a proof reaches the conclusion, the next line will contain QED along
with the line numbers of the premises followed by CP. Here's an example to
demonstrate the structure and notation that we'll be using.

S6.8 A Proof from Premises

We'll give a proof of the following conditional wff.

(A V B) A (A V C) A-- A -• B A C.

The three premises are A V B, A V C, and A. So we'll list them as premises
to start the proof. Then we'll construct a proof of B A C.

Proof: 1. AVB P

2. AVC P

3. - A P

4. B 1, 3, DS
5. C 2, 3, DS

6. B A C 4,5, Conj

QED 1, 2, 3, 6, CP.

Subproofs

Sometimes we need to prove a conditional as part of another proof. We'll call
a proof that is part of another proof a subproof of the proof. We'll indicate a
subproof that uses premises by indenting the wffs on its lines. We'll always write
the conditional to be proved on the next line of the proof without indentation

6.3 m FORMAL REASONING 375

because it will be needed as part of the main proof. Let's do an example to show
the idea.

__ 6.9 A Subproof in a Proof

We'll give a proof of the following statement.

((A V B) -- (B A C)) - (B -- C) V D.

This wff is a conditional and the conclusion also contains a conditional. So the
proof will contain a subproof of the conditional B --* C.

Proof: 1. (A V B) - (B A C) P

2. B P Start subproof of B -- C

3. A v B 2, Add
4. B A C 1, 3, MP
5. C 4, Simp
6. B -- C 2, 5, CP Finish subproof of B -* C

7. (B -C) V D 6, Add
QED 1, 7, CP.

An Important Rule about Subproofs

If there is a proof from premises as a subproof within another proof, as indicated
by the indented lines, then these indented lines may not be used to infer some
line that occurs after the subproof is finished. The only exception to this rule is
if an indented line does not depend, either directly or indirectly, on any premise
of the subproof. In this case the indented line could actually be placed above
the subproof, with the indentation removed.

.. 6.10 A Sample Proof Structure

The following sequence of lines indicates a general proof structure for some con-
ditional statement having the form A --+ M. In the reason column for each line
we have listed the possible lines that might be used to infer the given line.

376 CHAPTER 6 m ELEMENTARY LOGIC

1. A P

2. B 1

3. C P
4. D 1,2,3

5. E P

6. F 1,2,3,4,5
7. G 1, 2, 3, 4, 5, 6

8. E -G 5, 7, CP
9. H 1, 2, 3, 4, 8

10. C -H 3, 9, CP

11. I 1,2,10

12. J P

13. K 1, 2, 10, 11, 12

14. L 1, 2, 10, 11, 12, 13

15. J -L 12, 14, CP

16. M 1, 2, 10, 11, 15

QED 1, 16, CP.

Simplifications in Proofs

We can make some simplifications in our proofs to reflect the way informal proofs
are written. If W is a theorem, then we can use it to prove other theorems. We
can put W on a line of a proof and treat it as an axiom. Or, better yet, we can
leave W out of the proof sequence but still use it as a reason for some line of
the proof.

F 6.11 Using Previous Results

Let's prove the following statement.

- (A A B) A (B V C) A (C - D) -+ (A --- D).

Proof: 1. - (A A B) P

2. BVC P

3. C- D P
4. -AV-B 1,P (AAB)= AV-B
5. A P

6.3 n FORMAL REASONING 377

Proof: 6. - B 4, 5, DS

7. C 2, 6, DS

8. D 3, 7, MP
9. A- D 5, 8, CP

QED 1, 2, 3, 9, CP.

Line 4 of the proof is OK because of the equivalence we listed in the reason
column.

Instead of writing down the specific theorem in the reason column, we'll
usually write the symbol

T

to indicate that a theorem is being used.
Some proofs are straightforward, while others can be brain busters. Remem-

ber, when you construct a proof, it may take several false starts before you come
up with a correct proof sequence. Let's do some more examples.

r 6.12 Using Previous Results

We will give a proof of the following wff:

AA((A - B) V (CA D)) -- (-B -- C).

Proof: 1. A P

2. (A-B) V (C A D) P

3. -B P
4. A A - B 1, 3, Conj

5. A AA B 4, T
6. A AVB) 5, T
7. (A , B) 6, T
8. C A D 2, 7, DS
9. C 8, Simp
10. - B ---+ C 3, 9, CP

QED 1, 2, 10. CP.

6.13 Formalizing an Argument

Let's consider the argument given by the following sentences.

The team wins or I am sad. If the team wins, then I go to a movie. If I
am sad, then my dog barks. My dog is quiet. Therefore, I go to a movie.

378 CHAPTER 6 U ELEMENTARY LOGIC

To formalize this argument, we'll make the following substitutions.

W: The team wins.

S: I am sad.

M: I go to a movie.

B: My dog barks.

Now we can symbolize the argument with the following wff:

(W V S) A (W -* M) A (S -* B) A B B -* M.

We'll show this wff is a theorem with the following proof.

Proof: 1. W V S P

2. W---M P

3. S--* B P

4. - B P

5. -S 3, 4, MT

6. W 1, 5, DS

7. M 2, 6, MP

QED 1, 2, 3, 4, 7, CP.

Indirect Proof

Suppose we want to prove a statement, but we just can't seem to find a way
to get going. We might try proof by contradiction or reductio ad absurdum. In
other words, assume that the statement to be proven is false and argue from
there until a contradiction of some kind is reached. The idea is based on the
following equivalence for any wff W:

W -- W --* false.

So to prove W it suffices to prove the conditional - W -* false. Here's the
formal description of the indirect proof rule.

Indirect Proof Rule (1P} (6.17)
To prove the wff W, construct a proof of - W --- false. In particular, to prove
A - B, construct a proof of A A - B -* false.

6.3 n FORMAL REASONING 379

Proof: The first sentence follows from the preceding discussion. The second
sentence follows from the equivalence

-, (A - B)- A A - B.

For then we have A -4 B - (A -+ B) -- false = A A - B -- false. QED.

Proof by contradiction is nice because we always get an extra premise from
which to work. For example, to prove the conditional A --* B, we take A as a
premise and we take - B as an additional premise. We also have more freedom
because all we need to do is find any kind of contradiction. You might try it
whenever there doesn't seem to be enough information from the given premises
or when you run out of ideas. You might also try it as your first method of proof.

Notation for Indirect Proofs

When we prove a wff W with the IP rule, we'll write - W as a premise on a
line along with "P for IP" to indicate the reason. If W is a conditional A -4 B,
then we'll write A as a premise on one line, and we'll write B as a "P for IP" on
another line. After the proof reaches a contradiction, the next line will contain
QED along with the line numbers of the premises followed by IP.

_ _ 6.14 An Indirect Proof

We'll give an indirect proof of the following statement from Example 6.13:

(W V S) A (W - M) A (S , B) A - B , M.

Since the statement to be proved is a conditional, we'll start the proof by writing
down the four premises followed by - M as the premise for IP.

Proof: 1. W V S P

2. W-*M P

3. S -B P

4. -B P

5. -'M P for IP

6. -'W 2, 5, MT

7. - S 3, 4, MT

8. W A - S 6, 7, Conj

9. - (W V S) 8, T

10. (WVS) A-(WVS) 1, 9, Conj

11. false 10, T

QED 1-4, 5, 11, IP.

380 CHAPTER 6 N ELEMENTARY LOGIC

Compare this proof to the earlier direct proof of the same statement. It's
a bit longer, and it uses different rules. Sometimes a longer proof can be easier
to create, using simpler steps. Just remember, there's more than one way to
proceed when trying a proof.

6.3.3 Proof Notes

When proving something, we should always try to tell the proof, the whole proof,
and nothing but the proof. Here are a few concrete suggestions that should make
life easier for beginning provers.

Don't Use Unnecessary Premises

Sometimes beginners like to put extra premises in proofs to help get to a conclu-
sion. But then they forget to give credit to these extra premises. For example,
suppose we want to prove a conditional of the form A -- C. We start the proof
by writing A as a premise. Suppose that along the way we decide to introduce
another premise, say B, and then use A and B to infer C, either directly or
indirectly. The result is not a proof of A --- C. Instead, we have given a proof of
the statement A A B -* C.

Remember: Be sure to use a premise only when it's the hypothesis of a
conditional that you want to prove. Another way to say this is: If you use a
premise to prove something, then the premise becomes part of the antecedent of
the thing you proved. Still another way to say this is:

Premises

The conjunction of all the premises that you used to prove something is
precisely the antecedent of the conditional that you proved.

Don't Apply Inference Rules to Subexpressions

Beginners sometimes use an inference rule incorrectly by applying it to a subex-
pression of a larger wff. This violates the definition of a proof, which states that
a wff in a proof either is an axiom or is inferred by previous wffs in the proof.
In other words, an inference rule can be applied only to entire wffs that appear
on previous lines of the proof. So here it is for the record:

Subexpressions

Don't apply inference rules to subexpressions of wffs.

6.3 U FORMAL REASONING 381

Let's do an example to see what we are talking about. Suppose we have the
following wff:

A A ((A -- B) V C) -, B.

This wff is not a tautology. For example, let A = true, B = false, and C = true.
The following sequence attempts to show that the wff is a theorem:

1. A P

2. (A-*B)vC P
3. B 1, 2, MP Incorrect use of MP

QED 1, 2, 3, CP.

The reason that the proof is wrong is that MP is applied to the two wffs A
on line 1 and A -, B on line 2. But A -- B does not occur on a line by itself.
Rather, it's a subexpression of (A -- B) V C. Therefore, MP cannot be used.

Failure to Find a Proof

Sometimes we can obtain valuable information about a wff by failing to find a
proof. After a few unsuccessful attempts, it may dawn on us that the thing is
not a theorem. For example, no proof exists for the following conditional wff:

(A - C) - (A v B - C).

To see that this wff is not a tautology, let A = false, C = false, and B = true.
But remember that we cannot conclude that a wff is not a tautology just

because we can't find a proof.

O Exercises

Proof Structures

1. Let W denote the wff (A --* B) --* B. It's easy to see that W is not a
tautology. Just let B = false and A = false. Now, suppose someone claims
that the following sequence of statements is a "proof" of W:

1. A- B P

2. A P

3. B 1, 2, MP

QED 1, 3, CP.

a. What is wrong with the above "proof" of W?

b. Write down the statement that the "proof" proves.

2. Let W denote the wff (A --- (B A C)) -- (A --+ B) A C. It's easy to see that

W is not a tautology. Suppose someone claims that the following sequence
of statements is a "proof" of W:

382 CHAPTER 6 m ELEMENTARY LoGic

1. A (BAC) P

2. A P

3. BA C 1,2, MP

4. B 3, Simp
5. A B 2, 4, CP

6. C 3, Simp

7. (A -B) A C 5, 6, Conj

QED 1, 7, CP.

What is wrong with this "proof" of W?

3. Find the number of premises required for a proof of each of the following
wffs. Assume that the letters stand for other wffs.

a. A (B , (C-, D)).

b. ((A , B) , C) , D.

4. Give a formalized version of the following proof.

If I am dancing, then I am happy. There is a mouse in the house or I am
happy. I am sad. Therefore, there is a mouse in the house and I am not
dancing.

Formal Proofs

5. Give formal proofs for each of the following tautologies by using the CP rule.

a. A• (B -- (A AB)).

b. A-- (- B --- (A A B)).

c. (A V B--* C) A A- C.

d. (B -ý C) -- (A A B -- A A C).

e. (AVB--- CAD) -(B--D).

f. (A V B - C) A (C- D A E) - (A - D).

g. - (A A B) A (B V C) A (C - D) - (A- D).

h. (A -* (B -- C)) -- (B -- (A- C)).
i. (A - C) (A A B --- C).

j. (A C) (A--- B V C).

6. Give formal proofs for each of the following tautologies by using the IP rule.

a. A - (B --+ A).

b. (A -* B) A (A V B) -- B.

c. - B -- (B --+ C).
d. (A -- B) ---+ (C V A --*C V B).

6.3 U FORMAL REASONING 383

e. (A B) ((A B) A).

f. (A-B) -((B- C)-*(AVB-- C)).

g. (A -- B) A (B -+ C) -+ (A --ý C). Note: This is the HS inference rule.

h. (C -- A) A (-- C -- B) -- (A V B).

7. Give formal proofs for each of the following tautologies by using the IP rule
somewhere in each proof.

a. A -- (B -- (A A B)).

b. A - (-1 B - (A A B)).

c. (A V B-- C) A A-- C.

d. (B - C) -- (A A B -+ A A C).
e. (A V B- C A D) - (B--+ D).

f. (A V B C) A (C D A E) -- (A --- D).

g. - (A A B) A (B V C) A (C , D) - (A -* D).

h. (A -* B) -* ((B -* C) -* (A V B - C)).

i. (A (B C)) (B (A - C)).

j. (A-• C)- (A /B , C).

k. (A C) (A , B V C).

8. Give a formal proof of the equivalence A A B -- C A -- (B -- C). In
other words, prove both of the following statements. Use either CP or IP.

a. (A A B , C) -* (A -- (B C)).

b. (A --+ (B --+ C)) -- (A A B -* C).

Challenges

9. Give a formal proof using the other inference rules for each of the dilemma
inference rules.

a. Constructive dilemma (CD).

b. Destructive dilemma (DD).

10. Two students came up with the following different wffs to reflect the meaning
of the statement "If A then B else C."

(A -, B) A A ,- C)

(A A B) V (A A C)

Prove that the two wffs are equivalent by finding formal proofs for the fol-
lowing two statements.

a. ((A - B) A (-A -- C)) , ((A A B) V(A A C)).

b. ((A A B)V (A A C)) - ((A -* B) A (-A C)).

384 CHAPTER 6 m ELEMENTARY LOGIC

6.4 Formal Axiom Systems

Although truth tables are sufficient to decide the truth of a propositional wff,
most of us do not reason by truth tables. Instead, we use our personal reason-
ing systems. In the proofs presented up to now we allowed the use of any of
the inference rules (6.7) to (6.13). Similarly, we allowed the use of any known
tautology as an axiom. This natural deduction system is a loose kind of formal
system for the propositional calculus.

Can we find a proof system for the propositional calculus that contains a
specific set of axioms and inference rules? If we do find such a system, how do we
know that it does the job? In fact, what is the job that we want done? Basically,
we want two things. We want our proofs to yield theorems that are tautologies,
and we want any tautology to be provable as a theorem. These properties are
converses of each other, and they have the following names.

Soundness: All proofs yield theorems that are tautologies.

Completeness: All tautologies are provable as theorems.

So if we want to reason in a theory for which our theorems are actually true,
then we must ensure that we use only inference rules that map true statements
to true statements. Of course, we must also ensure that the axioms that we
choose are true.

6.4.1 An Example Axiom System

Is there a simple formal system for which we can show that the propositional
calculus is both sound and complete? Yes, there is. In fact, there are many
of them. Each one specifies a small fixed set of axioms and inference rules.
The pioneer in this area was the mathematician Gottlob Frege (1848-1925). He
formulated the first such axiom system [1879]. We'll discuss it further in the
exercises. Later, in 1930, J. Lukasiewicz showed that Frege's system, which
has six axioms, could be replaced by the following three axioms, where A, B,
and C can represent any wff generated by propositional variables and the two
connectives - and - .

Frege-Lukasiewicz Axioms (6.18)

1. A -- (B -• A).

2. (A- (B - C)) - ((A - B) - (A - C)).

3. (-A A -- B) -ý (B -- A).

The only inference rule used is modus ponens. Although the axioms may appear
a bit strange, they can all be verified by truth tables. Also note that conjunction

6.4 U FORMAL AXIOM SYSTEMS 385

and disjunction are missing. But this is no problem, since we know that they
can be written in terms of implication and negation.

We'll use this system to prove the CP rule (i. e., the deduction theorem). But
first we must prove a result that we'll need, namely that A --* A is a theorem

provable from the axioms. Notice that the proof uses only the given axioms and
modus ponens.

Lemma 1. A -* A.

Proof: 1. (A -- ((B -- A) -* A))

- ((A-(B A)) -- (A -- A)) Axiom2
2. A ((B A) A) Axiom 1

3. (A --*(B --,A)) (A ---, A) 1, 2, MP

4. A -(B -- A) Axiom 1

5. A -A 3, 4, MP.

QED

Now we're in position to prove the CP rule, which is also called the deduction
theorem. The proof, which is due to Herbrand (1930), uses only the given axioms,
modus ponens, and Lemma 1.

Deduction Theorem (Conditional Proof Rule, CP)

If A is a premise in a proof of B, then there is a proof of A -* B that does
not use A as a premise.

Proof: Assume that A is a premise in a proof of B. We must show that there is
"a proof of A -- B that does not use A as a premise. Suppose that BI,..., B" is

"a proof of B that uses the premise A. We'll show by induction that for each k
in the interval 1 < k < n, there is a proof of A -* Bk that does not use A as a
premise. Since B = B,, the result will be proved. If k = 1, then either B1 = A

or B 1 is an axiom or a premise other than A. If B1 = A, then A --* B 1 = A --*
A, which by Lemma 1 has a proof that does not use A as a premise. If B 1 is an
axiom or a premise other than A, then the following proof of A --* B 1 does not

use A as a premise.

1. B 1 An axiom or premise other than A
2. B, --4 (A , BI1) Axiom 1

3. A --* B1 1, 2, MP.

Now assume that for each i < k there is a proof of of A --* Bi that does

not use A as a premise. We must show that there is a proof of A -* Bk that
does not use A as a premise. If Bk = A or Bk is an axiom or a premise other
than A, then we can use the same argument for the case when k = 1 to conclude

386 CHAPTER 6 m ELEMENTARY LOGIC

that there is a proof of A -- Bk that does not use A as a premise. If Bk is
not an axiom or a premise, then it is inferred by MP from two wffs in the proof
of the form Bi and Bj = B, -- Bk, where i < k and j < k. Since by i < k
and j < k, the induction hypothesis tells us that there are proofs of A -- Bi
and A --+ (Bi --* Bk), neither of which contains A as a premise. Now consider
the following proof, where lines 1 and 2 represent the proofs of A ---+ Bi and
A -* (BA -* Bk).

1. Proof of A --* Bi Induction

2. Proof of A -* (Bi - Bk) Induction

3. (A- (Bi -*Bk))-* ((A--* B)-* (A-- Bk)) Axiom2
4. (A Bi - (A -- Bk) 2, 3, MP

5. A -+Bk 1, 4, MP.

So there is a proof of A -- Bk that does not contain A as a premise. Let k = n
to obtain the desired result because B, = B. QED.

Once we have the CP rule, proofs become much easier since we can have
premises in our proofs. But still, everything that we do must be based only on
the axioms, MP, CP, and any results we prove along the way. The system is sound
because the axioms are tautologies and MP maps tautologies to a tautology. In
other words, every proof yields a theorem that is a tautology.

The remarkable thing is that this little axiom system is complete in the sense
that there is a proof within the system for every tautology of the propositional
calculus.

We'll give a few more examples to get the flavor of reasoning from a very
small set of axioms.

S6.15 Hypothetical Syllogism

We'll use CP to prove the hypothetical syllogism rule of inference.

Hypothetical Syllogism (HS) (6.19)
FRom the premises A -- B and B -* C, there is a proof of A --* C.

Proof: 1. A -B P

2. B -*C P
3. A P

4. B 1, 3, MP
5. C 2, 4, MP

6. A--* C 3,5, CP.
QED

6.4 n FORMAL AXIOM SYSTEMS 387

We can apply the CP rule to HS to say that from the premise A -- B there is
a proof of (B --4 C) -- (A --* C). One more application of the CP rule tells us
that the following wff has a proof with no premises:

(A - B) -- ((B - C) - (A -* C)).

This is just another way to represent the HS rule as a wff.

Six Sample Proofs

Now that we have CP and HS rules, it should be easier to prove statements
within the axiom system. Let's prove the following six statements.

Six Tautologies (6.20)

a. A -- (A - B).

b. -A -A A.

c. A -4- A.

d. (A -- B) -* (- B - A).

e. A -• (- B -, (A -* B)).

f. (A -- B) , ((- A -- B) , B).

In the next six examples we'll prove these six statements using only the axioms,
MP, HS, and previously proven results.

r 6.16 (a) -,A • (A--B)

Proof: 1. - A P
2. - A -- 7B - A) Axiom 1

3. -B- -A 1,2, MP

4. (-BB A) (A--B) Axiom3
5. A- B 3,4, MP

QED 1, 5, CP.

388 CHAPTER 6 U ELEMENTARY LOGIC

J 6.17 (b) -,--A--A

Proof: 1. - A P
2. •- A • (A -A) Part (a)
3. •A-• AA 1, 2, MP
4. (-A A) A (-AA) Axiom 3

5. -- A- A 3, 4, MP
6. A 1, 5, MP

QED 1, 6, CP.

S6.18 A A

Proof: 1. A -- A- A Part (b)
2. (7 • A-- A) --• (A --- A) Axiom 3
3. A - - A 1, 2, MP

QED 1, 3, CP.

S6.19 (d) (A B) -- (B - A)

Proof: 1. A -B P
2. -i- A -A Part (b)
3. - A B 1, 2, HS
4. B - B Part (c)

5. A•--B 3, 4, HS
6. A B) B A) Axiom 3
7. •B -4 A 5, 6, MP

QED 1, 7, CP.

6.4 m FORMAL AXIOM SYSTEMS 389

S6.20 (e) A-- - B---• (A -- B))

Proof: 1. A P

2. A-, B P
3. B 1, 2, MP

4. (A--B) B 2, 3, CP
5. ((A -+B) -- B/) -+(1B - (A ---- B)) Part (d)

6. - B --÷-(A -- B) 4, 5, MP
QED 1, 6, CP.

S6.21 (f) (A --+B) --+(-,A ---+ B) ---+ B)

Proof: 1. A -- B P
2. (A -•B) -(B -+7A) Part (d)

3. B B --, A 1, 2, MP

4. -A-- B P
5. B -- B 3, 4, HS
6. B - (B -- 7(A -+B)) Part (a)

7. B (B (A B)))
---+ ((ý B--- B)-+(B- (A-- B))) Axiom 2

8. (7B - B) --4 (-7 B - (A B)) 6, 7, MP
9. 7B (A-- B) 5, 8, MP

10. (7B --,•(A --+B)) --,((A -+B) -- B)) Axiom 3

11. (A - B) - B) 9, 10, MP

12. B 1, 11, MP
13. (7A --4 B) --+ B 4, 12, CP

QED 1, 13, CP.

Completeness of the Axiom System

As we mentioned earlier, it is a remarkable result that this axiom system is
complete. The interesting thing is that we now have enough tools to find a proof
of completeness.

390 CHAPTER 6 m ELEMENTARY LOGIC

Lemma 2

Let W be a wff with propositional variables P 1 ,..., P,. For any truth assign-

ment to the variables, let Qi,..., Qm be defined by letting each Qk be either
Pk or - Pk depending on whether Pk is assigned true or false, respectively.
Then from the premises Qi,..., Qm there is a proof of either W or - W
depending on whether the assignment makes W true or false, respectively.

Proof: The proof is by induction on the number n of connectives that occcur in
W. If n = 0, then W is just a propositional variable P. If P is assigned true,
then we must find a proof of P using P as its own premise.

1. P Premise
2. P--+ P Lemmal.
3. P 1, 2, MP

QED 1, 3, CP.

If P is assigned false, then we must find a proof of - P from premise - P.

1. - P Premise

2. - P -- P Lemma 1.
3. - P 1, 2, MP

QED 1, 3, CP.

So assume W is a wff with n connectives where n > 0 and assume that the
lemma is true for all wffs with less than n connectives. Now W has one of two
forms, W = - A or W = A -- B. It follows that A and B each have less than
n connectives, so by induction there are proofs from the premises Qi,..., Qm
of either A or - A and of either B or - B depending on whether they are made
true or false by the truth assignment. We'll argue for each form of W.

Let W = -7 A. If W is true, then A is false, so there is a proof from the
premises of - A = W. If W is false, then A is true, so there is a proof from the
premises of A. Now (6.20c) gives us A -- , A. So by MP there is a proof from
the premises of - - A = - W.

Let W = A -+ B. Assume W is true. Then either A is false or B is true.
If A is false, then there is a proof from the premises of - A. Now (6.20a) gives
us - A -* (A -- B). So by MP there is a proof from the premises of (A --- B)
= W. If B is true, then there is a proof from the premises of B. Now Axiom 1
gives us B -* (A -* B). So by MP there is a proof from the premises of (A --

B) = W.
Assume W is false. Then A is true and B is false. So there is a proof from

the premises of A and there is a proof from the premises of -' B. Now (6.20e)
gives us A -* (-' B -* (A -- B)). So by two applications of MP there is a

proof from the premises of (A -- B) = W. QED.

6.4 U FORMAL AXIOM SYSTEMS 391

Theorem (Completeness)

Any tautology can be proven as a theorem in the axiom system.

Proof: Let W be a tautology with propositional variables P,,..., Pm. Since
W is always true, it follows from Lemma 2 that for any truth assignment to
the propositional variables P 1 ,..., Pm that occur in W, there is a proof of W
from the premises QI,..., Qm, where each Qk is either Pk or - Pk according to
whether the truth assignment to Pk is true or false, respectively. Now if Pm. is
assigned true, then Q,= Pm and if P, is assigned false, then Qm= - Pm. So
there are two proofs of W, one with premises Q1,..., Qm-i, Pm and one with
premises Q,...-, Q,-I, - Pm. Now apply the CP rule to both proofs to obtain
the following two proofs.

A proof from premises Qi,..., Qm-1 of (Pm -- W).

A proof from premises Q1,..., Qm-1 of (- Pm --- W).

We combine the two proofs into one proof. Now (6.20f) gives us the following
statement, which we add to the proof:

(Pm- W)- ((- Pm - W) -• W).

Now with two applications of MP, we obtain W. So there is a proof of W from
premises Q1,..., Qm,-. Now use the same procedure for m - 1 more steps to
obtain a proof of W with no premises. QED.

6.4.2 Other Axiom Systems

There are many other small axiom systems for the propositional calculus that
are sound and complete. For example, Frege's original axiom system consists of
the following six axioms together with the modus ponens inference rule, where
A, B, and C can represent any wff generated by propositional variables and the
two connectives - and --

Frege's Axioms (6.21)

1. A -- (B -- A).

2. (A -(B C))Q ((A B) (A- C)).

3. (A -- (B -C C)) - (B -- (A -- C)).

4. (A - B) -- (- B -- A).

5. • A--A A.

6. A --ý A.

392 CHAPTER 6 w ELEMENTARY LOGIC

If we examine the proof of the CP rule, we see that it depends only on Axioms
1 and 2 of (6.18), which are the same as Frege's first two axioms. Also, HS is
proved with CP. So we can continue reasoning from these axioms with CP and
HS in our tool kit. We'll discuss this system in the exercises.

Another small axiom system, due to Hilbert and Ackermann [1938], consists
of the following four axioms together with the modus ponens inference rule,
where A -- B is used as an abreviation for -7 A V B, and where A, B, and C can
represent any wff generated by propositional variables and the two connectives

and V .

Hilbert-Ackermann Axioms (6.22)

1. A vA - A.

2. A - A v B.

3. A V B -- B V A.

4. (A --, B) --* (C V A -- C V B).

We'll discuss this system in the exercises too.
There are important reasons for studying small formal systems like the axiom

systems we've been discussing. Small systems are easier to test and easier to
compare with other systems because there are only a few basic operations to
worry about. For example, if we build a program to do automatic reasoning, it
may be easier to implement a small set of axioms and inference rules. This also
applies to computers with small instruction sets and to programming languages
with a small number of basic operations.

o Exercises

Axiom Systems

1. In Frege's axiom system (6.21), prove that Axiom 3 follows from Axioms 1
and 2. That is, prove the following statement from Axioms 1 and 2:

(A - (B - C)) - (B - (A - C)).

2. In Frege's axiom system, prove that (- A -* B) , (B -, A).

3. In the Hilbert-Ackermann axiom system (6.22), prove each of the following
statements. Do not use the CP rule. You can use any previous theorems in
the list to prove subsequent statements.

6.4 U FORMAL AXIOM SYSTEMS 393

a. (A -* B) - ((C -- A) -* (C -ý B)).

b. (HS) If A -* B and B -* C are theorems, then A -- C is a theorem.

c. A- A(i.e., -AVA).

d. A V A.

e. A A.
f. • A -- A.

g. mA -- (A --- B).

h. (A -- B) -- (- B -- 'A).
i. (- B •-* A) - (A B).

Logic Puzzles

4. The county jail is full. The sheriff, Anne Oakley, brings in a newly caught
criminal and decides to make some space for the criminal by letting one of
the current inmates go free. She picks prisoners A, B, and C to choose from.
She puts blindfolds on A and B because C is already blind. Next she selects
three hats from five hats hanging on the hat rack, two of which are red and
three of which are white, and places the three hats on the prisoner's heads.
She hides the remaining two hats. Then she takes the blindfolds off A and B
and tells them what she has done, including the fact that there were three
white hats and two red hats to choose from. Sheriff Oakley then says, "If
you can tell me the color of the hat you are wearing, without looking at your
own hat, then you can go free." The following things happen:

1. A says that he can't tell the color of his hat. So the sheriff has him
returned to his cell.

2. Then B says that he can't tell the color of his hat. So he is also returned
to his cell.

3. Then C, the blind prisoner, says that he knows the color of his hat. He
tells the sheriff, and she sets him free.

What color was C's hat, and how did C do his reasoning?

5. Four men and four women were nominated for two positions on the school
board. One man and one woman were elected to the positions. Suppose the
men are named A, B, C, and D and the women are named E, F, G, and H.
Further, suppose that the following four statements are true:

1. If neither A nor E won a position, then G won a position.

2. If neither A nor F won a position, then B won a position.

3. If neither B nor G won a position, then C won a position.

4. If neither C nor F won a position, then E won a position.

Who were the two people elected to the school board?

394 CHAPTER 6 m ELEMENTARY LoGic

6.5 Chapter Summary
S..

Propositional calculus is the basic building block of formal logic. Each wff repre-
sents a statement that can be checked by truth tables to determine whether it is
a tautology, a contradiction, or a contingency. There are basic equivalences (6.1)
that allow us to simplify and transform wffs into other wffs. We can use these
equivalences with Quine's method to determine whether a wff is a tautology, a
contradiction, or a contingency. We can also use the equivalences to transform
any wff into a DNF or a CNF. Any truth function has one of these forms.

Propositional calculus also provides us with formal techniques for proving
properties of wffs without using truth tables. A formal reasoning system has
wffs, axioms, and inference rules. Some useful inference rules are modus po-
nens, modus tollens, conjunction, simplification, addition, disjunctive syllogism,
hypothetical syllogism, constructive dilemma, and destructive dilemma. When
constructing proofs, remember: Don't use unnecessary premises, and don't apply
inference rules to subexpressions.

We want formal reasoning systems to be sound proofs yield theorems that
are tautologies and complete all tautologies can be proven as theorems. The
system presented in this chapter is sound and complete as long as we always use
tautologies as axioms. There are even small axiomatic systems for the proposi-
tional calculus that are sound and complete. We presented one that has three
axioms and one inference rule.

Notes

The logical symbols that we've used in this chapter are not universal. So you
should be flexible in your reading of the literature. From a historical point of
view, Whitehead and Russell [1910] introduced the symbols D , V , ., - , and
- to stand for implication, disjunction, conjunction, negation, and equivalence,

respectively. A prefix notation for the logical operations was introduced by
Lukasiewicz [1929], where the letters C, A, K, N, and E stand for implication,
disjunction, conjunction, negation, and equivalence, respectively. So in terms of
our notation we have Cpq = p -+ q, Apq = p V q, Kpq = p A q, Nq = - q, and
Epq = p -- q. This notation is called Polish notation, and its advantage is that
each expression has a unique meaning without using parentheses and precedence.
For example, (p --* q) -- r and p --• (q --- r) are represented by the expressions
CCpqr and CpCqr, respectively. The disadvantage of the notation is that it's
harder to read. For example, CCpqKsNr = (p -- q) -- (s A - r).

The fact that a wff W is a theorem is often denoted by placing a turnstile
in front of it as follows:

-W.

6.5 0 CHAPTER SUMMARY 395

So this means that there is a proof Wl,..., W, such that W, = W. Turnstiles
are also used in discussing proofs that have premises. For example, the notation

A1,)A2,.. , IAný- B

means that there is a proof of B from the premises A 1 , A 2 ,..., An.

We should again emphasize that the logic that we are studying in this book
deals with statements that are either true or false. This is sometimes called
the Law of the Excluded Middle: Every statement is either true or false. If our
logic does not assume the law of the excluded middle, then we can no longer
use indirect proof because we can't conclude that a statement is false from the
assumption that it is not true. A logic called intuitionist logic omits this law
and thus forces all proofs to be direct. Intuitionists like to construct things in a
direct manner.

Logics that assume the law of the excluded middle are called two-valued
logics. Some logics take a more general approach and consider statements that
may not be true or false. For example, a three-valued logic assigns one of three
values to each statement: 0, .5, or 1, where 0 stands for false, .5 stands for
unknown, and 1 stands for true. We can build truth tables for this logic by
defining- A = 1 - A, A V B = max(A, B), and A A B = min(A, B). We still
use the equivalence A --* B - - A V B. So we can discuss three-valued logic.

In a similar manner we can discuss n-valued logic for any natural number
n > 2, where each statement takes on one of n specific values in the range
0 to 1. Some n-valued logics assign names to the values such as "necessarily
true," "probably true," "probably false," and "necessarily false." For example,
there is a logic called modal logic that uses two extra unary operators, one to
indicate that a statement is necessarily true and one to indicate that a statement
is possibly true. So modal logic can represent a sentence like "If P is necessarily
true, then P is true."

Some logics assign values over an infinite set. For example, the term fuzzy
logic is used to describe a logic in which each statement is assigned some value
in the closed unit interval [0, 1].

All these logics have applications in computer science but they are beyond
our scope and purpose. However, it's nice to know that they all depend on a good
knowledge of two-valued logic. In this chapter we've covered the fundamental
parts of two-valued logic the properties and reasoning rules of the propositional
calculus. We'll see that these ideas occur in all the logics and applications that
we cover in the next three chapters.

Predicate
Logic

Error of opinion may be tolerated
where reason is left free to combat it.

-Thomas Jefferson (1743-1826)

We need a new logic if we want to describe arguments that deal with all cases
or with some case out of many cases. In this chapter we'll introduce the notions
and notations of first-order predicate calculus. This logic will allow us to analyze
and symbolize a wider variety of statements and arguments than can be done

with propositional logic.

P 11111111-irll , MI-~ft

Section 7.1 introduces the basic syntax and semantics of the first-order predicate
calculus. We'll discuss the properties of validity and satisfiability, and we'll
discuss the problem of deciding whether a formula is valid.

Section 7.2 introduces the fundamental equivalences of first-order predicate cal-
culus. We'll discuss the prenex normal forms, and we'll look at the problem
of formalizing English sentences.

Section 7.3 introduces the standard inference rules that allow us to do formal
reasoning in first-order predicate calculus in much the same way that we do
informal reasoning.

7.1 First-Order Predicate Calculus
The propositional calculus provides adequate tools for reasoning about propo-
sitional wffs, which are combinations of propositions. But a proposition is a
sentence taken as a whole. With this restrictive definition, propositional cal-
culus doesn't provide the tools to do everyday reasoning. For example, in the

397

398 CHAPTER 7 0 PREDICATE LOGIC

following argument it is impossible to find a formal way to test the correctness
of the inference without further analysis of each sentence:

All computer science majors own a personal computer.
Socrates does not own a personal computer.
Therefore, Socrates is not a computer science major.

To discuss such an argument, we need to break up the sentences into parts.
The words in the set {All, own, not} are important to understand the argu-
ment. Somehow we need to symbolize a sentence so that the information needed
for reasoning is characterized in some way. Therefore, we will study the inner
structure of sentences.

7.1.1 Predicates and Quantifiers

The statement "x owns a personal computer" is not a proposition because its
truth value depends on x. If we give x a value, like x = Socrates, then the
statement becomes a proposition because it has the value true or false. From a
grammar point of view, the property "owns a personal computer" is a predicate,
where a predicate is the part of a sentence that gives a property of the subject.
A predicate usually contains a verb, like "owns" in our example. The word
predicate comes from the Latin word praedicare, which means to proclaim.

From the logic point of view, a predicate is a relation, which of course we
can also think of as a property. For example, suppose we let p(x) mean "x owns
a personal computer." Then p is a predicate that describes the relation (i.e.,
property) of owning a personal computer. Sometimes it's convenient to call p(x)

a predicate, although p is the actual predicate. If we replace the variable x by
some definite value such as Socrates, then we obtain the proposition p(Socrates).
For another example, suppose that for any two natural numbers x and y we let
q(x, y) mean "x < y." Then q is the predicate that we all know of as the "less
than" relation. For example, the proposition q(1, 5) is true, and the proposition
q(8, 3) is false.

The Existential Quantifier

Let p(x) mean that x is an odd integer. Then the proposition p(9) is true, and
the proposition p(20) is false. Similarly, the following proposition is true:

p(2) V p(3) V p(4) V p(5).

We can describe this proposition by saying,

"There exists an element x in the set {2, 3, 4, 5} such that p(x) is true."

If we let D = {2, 3, 4, 5}, the statement can be shortened to

"There exists x E D such that p(x) is true."

7.1 m FIRST-ORDER PREDICATE CALCULUS 399

If we don't care where x comes from and we don't care about the meaning of
p(x), then we can still describe the preceding disjunction by saying:

"There exists an x such that p(x)."

This expression has the following symbolic representation:

3x p(x).

This expression is not a proposition because we don't have a specific set of
elements over which x can vary. So 3x p(x) does not have a truth value. The
symbol 3x is called an existential quantifier.

The Universal Quantifier

Now let's look at conjunctions rather than disjunctions. As before, we'll start
by letting p(x) mean that x is an odd integer. Suppose we have the following
proposition:

p(1) A p(3) A p(5) A p(7).

This conjunction is true and we can represent it by the following statement,
where D = {1, 3, 5, 7}.

"For every x in D, p(x) is true."

If we don't care where x comes from and we don't care about the meaning of
p(x), then we can still describe the preceding conjunction by saying:

"For every x, p(x).

This expression has the following symbolic representation:

Vx p(x).

This expression is not a proposition because we don't have a specific set of
elements over which x can vary. So Vx p(x) does not have a truth value. The
symbol Vx is called a universal quantifier.

Using Quantifiers

Let's see how the quantifiers can be used together to represent certain statements.
If p(x, y) is a predicate and we let the variables x and y vary over the set D =

{0, 1}, then the proposition

[p(O, 0) V p(O, 1)] A [p(l, 0) V p(l, 1)]

can be represented by the following quantified expression:

Vx 3y p(x, y).

400 CHAPTER 7 0 PREDICATE LOGIC

To see this, notice that the two disjunctions can be writeen as follows:

p(O, 0) V p(O, 1) = ly p(O, y) and p(l, 0) V p(l, 1) = 3y p(l, y).

So we can write the proposition as follows:

[p(O, 0) V p(O, 1)] A [p(l, 0) V p(l, 1)] =]y p(O, y) A 3y p(l, y)

=Vx y p(x, y).

Here's an alternative way to get the same result:

[p(O, 0) V p(O, 1)] A [p(l, 0) V p(1, 1)] = Vx [p(x, 0) V p(x, 1)J = Vx 3y p(x, y).

Now let's go the other way. We'll start with an expression containing differ-
ent quantifiers and try to write it as a proposition. For example, if we use the
same set of values D = {0, 1}, then the quantified expression

3y V* p(x, y)

denotes the proposition

[p(O, 0) A p(l, 0)] v [p(O, 1) A p(l, 1)]

To see this, notice that we can evaluate the quantified expression in either of two
ways as follows:

ly Vx p(x, y) = Vx p(x, 0) V Vx p(x, 1) = [p(O, 0) A p(l, 0)] V 3p(0, 1) A p(l, 1)].

3y Vx p(x, y) = Ey [p(O, y) A p(l, y)] = [p(O, 0) A p(l, 0)] V [p(O, 1) A p(l, 1)].

Of course, not every expression containing quantifiers results in a proposi-
tion. For example, if D = {0, 1}, then the expression Vx p(x, y) can be written
as follows:

Vx p(x, y) = p(0, y) A p(l, y).

To obtain a proposition, each variable of the expression must be quantified or
assigned some value in D. We'll discuss this shortly when we talk about seman-
tics.

Now let's look at two examples, which will introduce us to the important
process of formalizing English sentences with quantifiers.

i 7.1 Formalizing Sentences

We'll formalize the three sentences about Socrates that we listed at the beginning
of the section. Over the domain of all people, let C(x) mean that x is a computer
science major, and let P(x) mean that x owns a personal computer. Then
the sentence "All computer science majors own a personal computer" can be
formalized as

Vx (C(x) --* P(x)).

7.1 m FIRST-ORDER PREDICATE CALCULUS 401

The sentence "Socrates does not own a personal computer" becomes

SP(Socrates).

The sentence "Socrates is not a computer science major" becomes

SC(Socrates).

.7.2 Formalizing Sentences

Suppose we consider the following two elementary facts about the set N of natural
numbers.

1. Every natural number has a successor.

2. There is no natural number whose successor is 0.

Let's formalize these sentences. We'll begin by writing down a semiformal version
of the first sentence:

For each x G N there exists y E N such that y is the successor of x.

If we let s(x, y) mean that y is the successor of x, then the formal version of the
sentence can be written as follows:

Vx Iy s(x, y).

Now let's look at the second sentence. It can be written in a semiformal version
as follows:

There does not exist x E N such that the successor of x is 0.

The formal version of this sentence is the following sentence, where a = 0:

- x s(x, a).

These notions of quantification belong to a logic called first-order predicate
calculus. The term "first-order" refers to the fact that quantifiers can quantify
only variables that occur in predicates. In Chapter 8 we'll discuss "higher-
order" logics in which quantifiers can quantify additional things. To discuss
first-order predicate calculus, we need to give a precise description of its well-
formed formulas and their meanings. That's the task of this section.

402 CHAPTER 7 0 PREDICATE Locic

7.1.2 Well-Formed Formulas
To give a precise description of a first-order predicate calculus, we need an alpha-
bet of symbols, For this discussion we'll use several kinds of letters and symbols,
described as follows:

Individual variables: x, y, z

Individual constants: a, b, c

Function constants: f, g, h

Predicate constants: p, q, r

Connective symbols: -i , -- , A , V

Quantifier symbols: 3, V

Punctuation symbols: (,)

From time to time we will use other letters, or strings of letters, to denote
variables or constants. We'll also allow letters to be subscripted. The number
of arguments for a predicate or function will normally be clear from the context.
A predicate with no arguments is considered to be a proposition.

A term is either a variable, a constant, or a function applied to arguments
that are terms. For example, x, a, and f(x, g(b)) are terms. An atomic for-
mula (or simply atom) is a predicate applied to arguments that are terms. For
example, p(x, a) and q(y, f(c)) are atoms.

We can define the wffs the well-formed formulas of the first-order predi-
cate calculus inductively as follows:

Definition of a Wff (Well-Formed Formula)

1. Any atom is a wff.

2. If W and V are wffs and x is a variable, then the following expressions
are also wffs:

(W), - W, WVV, WA V, W-- V, 3x W, andVx W.

To write formulas without too many parentheses and still maintain a unique
meaning, we'll agree that the quantifiers have the same precedence as the nega-
tion symbol. We'll continue to use the same hierarchy of precedence for the
operators -, A, V, and -- Therefore, the hierarchy of precedence now looks
like the following:

E,]x, Vy (highest, do first)

A

V

(lowest, do last)

7.1 n FIRST-ORDER PREDICATE CALCULUS 403

If any of the quantifiers or the negation symbol appear next to each other,
then the rightmost symbol is grouped with the smallest wff to its right. Here
are a few wffs in both unparenthesized form and parenthesized form:

Unparenthesized Form Parenthesized Form
Vx - 3Y vz p (x,Y, z) Vx (- Py (Vz p (X,Y, z)))).
3x p (x) V q (x) (3x p (x)) v q (x).

Vx p (x) - q (x) (Vx p (x)) - q (x).
3x - p (x, y) --• q (x) A r (y) (3x (- p (x, y))) -• (q (x) A r (y)).
3x p (x) -• Vx q (x) V p (x) A r (x) (]x p (x)) -• ((V5 q (x)) V (p (x) A r (x))).

Scope, Bound, and Free

Now let's discuss the relationship between the quantifiers and the variables that

appear in a wff. When a quantifier occurs in a wff, it influences some occurrences
of the quantified variable. The extent of this influence is called the scope of the

quantifier, which we define as follows:

Definition of Scope

In the wff 3x W, W is the scope of the quantifier 3x.

In the wff Vx W, W is the scope of the quantifier Vx.

For example, the scope of Ix in the wff

3x p(x, y) -* q(x)

is p(x, y) because the parenthesized version of the wff is (3x p(x, y)) -+ q(x).

On the other hand, the scope of]x in the wff

Ix (p(z, y) -* q(x))

is the conditional p(x, y) -* q(x). Now let's classify the occurrences of variables
that occur in a wff.

Bound and Free Variables
An occurrence of a variable x in a wff is said to be bound if it lies within the

scope of either 3x or Vx or if it is the quantifier variable x itself. Otherwise,
an occurrence of x is said to be free in the wff.

404 CHAPTER 7 * PREDICATE LOGIC

For example, consider the following wff:

Ix p(x, y)- x-

The first two occurrences of x are bound because the scope of ix is p(x, y). The
only occurrence of y is free, and the third occurrence of x is free.

So every occurrence of a variable in a wff can be classified as either bound
or free, and this classification is determined by the scope of the quantifiers in
the wff. Now we're in a position to discuss the meaning of wffs.

7.1.3 Semantics and Interpretations

Up to this point a wff is just a string of symbols with no meaning attached. For
a wff to have a meaning, we must give an interpretation to its symbols so that
the wff can be read as a statement that is true or false. For example, suppose
we let p(x) mean "x is an even integer" and we let x be the number 236. With
this interpretation, p(x) becomes the statement "236 is an even integer," which
is true.

As another example, let's give an interpretation to the wff

Vx ly s(x, y).

We'll let s(x, y) mean that the successor of x is y, where the variables x and
y take values from the set of natural numbers N. With this interpretation the
wff becomes the statement "For every natural number x there exists a natural
number y such that the successor of x is y," which is true.

Before we proceed any further, we need to make a precise definition of the
idea of an interpretation. Here's the definition in all its detail.

Definition of Interpretation

An interpretation for a wff consists of a nonempty set D, which is called the
domain of the interpretation, together with an assignment that associates the
symbols of the wff to values in D as follows:

1. Each predicate letter is assigned to a relation over D. A predicate with
no arguments is a proposition and must be assigned a truth value.

2. Each function letter is assigned to a function over D.

3. Each free variable is assigned to a value in D. All free occurrences of a
variable x are assigned to the same value in D.

4. Each constant is assigned to a value in D. All occurrences of the same
constant are assigned to the same value in D.

7.1 m FIRST-ORDER PREDICATE CALCULUS 405

Substitutions for Free Variables

Suppose W is a wff, x is a free variable in W, and t is a term. Then the wff
obtained from W by replacing all free occurrences of x by t is denoted by the
expression

W(xlt).

The expression x/t is called a substitution. We should observe that if x is not
free in W, then x/t does not change W. In other words:

If x is not free in W, then we have W(x/t) = W.

For example, let WT Vx p(x, y). We'll calculate W(x/t) and W(y/t).

W(xlt) Vx p(x, y) = W and W(y/t) = Vx p(x, t).

-. 7.3 Substituting for a Variable

Let W = p(x, y) V 3y q(x, y). Notice that x occurs free twice in W, so for any
term t we can apply the substitution x/t to W to obtain

W(x/t) = p(t, y) V Iy q(t, y).

Since t can be any term, we can come up with many different results. For
example,

W (x/a) = p (a, y) V Ey q (a, y),

W (x, y) = p (y, y) V 3y q (y, y),

W4 (x/z) = p (z, y) V 3y q (z, y),

W (x/f (x, y, z)) = p (f (x, y, z), y) V]y q (f(x, y, z), y).

Notice that y occurs free once in W, so for any term t we can apply the substi-
tution y/t to W to obtain

W(y/t) = p(x, t) V 3yq(x, y).

We can also apply one substitution and then another. For example,

W(x/a)(y/b) = (p(a, y) V ly q(a, y))(y/b) = p(a, b) V 3y q(a, y).

Let's record some simple yet useful facts about substitutions, all of which follow
directly from the definition.

406 CHAPTER 7 * PREDICATE Locic

Properties of Substitutions (7.1)

1. x/t distributes over the connectives -, A, V, - . For example,

(-A) (x/t) = -'A (x/t).

(A A B) (xlt) = A (x/t) A B (x/t).

(A V B) (x/t) = A (x/t) V B (x/t).

(A - B) (x/t) = A (x/t) -* B (x/t).

2. If x 7ý y, then x/t distributes over Vy and ly. For example,

(VyW) (x/t) = Vy (W (x/t)).
(Pyw) (xlt) = 13Y (W (xl0)).

3. If x is not free in W, then W(x/t) = W. For example,

(VXW) (xlt) = VxW.

(3XW) (xlt) = IxW.

The Meaning of a Wff

Now we have all the ingredients to define the meaning, or semantics, of wffs in
first-order predicate calculus. Informally, the meaning of a wff with respect to an
interpretation will be either true or false depending on how the interpretation is
defined. But with quantifiers in the picture, we need to make a precise definition
of how to find the truth of a wff. Here's that definition.

The Meaning of a Wff
The meaning of a wff with respect to an interpretation with domain D is the
truth value obtained by applying the following rules:

1. If the wff has no quantifiers, then its meaning is the truth value of the
proposition obtained by applying the interpretation to the wff.

2. If the wff contains Vx W, then the meaning of Vx W is true if W(x/d) is
true for every d G D. Otherwise, the meaning of Vx W is false.

3. If the wff contains 3x W, then the meaning of Ix W is true if W(x/d) is
true for some d G D. Otherwise, the meaning of 3x W is false.

When a wff W is true (or false) with respect to an interpretation 1, we'll
often say that W is true (or false) for I.

7.1 a FIRST-ORDER PREDICATE CALCULUS 407

So the meaning of a wff without quantifiers is just the truth value of the
proposition obtained by applying the interpretation to all the free variables and
constants in the wff. The meaning of a wff containing quantifiers can be com-
puted by recursively applying the definition. We'll do an example.

.. 7.4 Applying an Interpretation

Let's consider a wff of the form Vx 3y W, where W does not contain any further
quantifiers. Suppose we have an interpretation with domain D. Then the meaning
of Vx 3y W is true if the meaning of (3y W)(x/d) is true for every d G D. Since
x 5 y, the properties of substitution tell us that

(3y W)(x/d) = 3y (W(x/d)).

So for each d C D we must find the meaning of 3y (W(x/d)). Now the meaning
of ly (W(x/d)) is true if there is some element e E D such that W(x/d)(y/e) is
true. Since our assumption is that W does not contain any further quantifiers,
the meaning of W(x/d)(y/e) is the truth value of the proposition obtained by
applying the interpretation to any remaining free variables and constants.

Notation

Whenever we want to emphasize the fact that a wff W might contain a free
variable x, we'll represent W by the expression

W(x).

When this is the case, we often write W(t) to denote the wff W(x/t).
Now let's look at some examples with concrete interpretations to see that

things are not as complicated as they might seem.

j.7.5 Converting to English

Consider the wff Vx Iy s(x, y) with the interpretation having domain D = N, and
s(x, y) means that the successor of x is y. The interpreted wff can be restated
as "Every natural number has a successor."

408 CHAPTER 7 0 PREDICATE LoGic

S7.6 A Parental Relationship

Let's consider the "isFatherOf" predicate, where isFatherOf(x, y) means "x is
the father of y." The domain of our interpretation is the set of all people now
living or who have lived. Assume also that Jim is the father of Andy. The
following wffs are given along with their interpreted values:

isFatherOf(Jim, Andy) = true,

3x isFatherOf(x, Andy) = true,

Vx isFatherOf(x, Andy) = false,

Vx 3y isFatherOf(x, y) = false,

Vy 3x isFatherOf(x, y) = true,

Ix Vy isFatherOf(x, y) = false,

3y Vx isFatherOf(x, y) = false,

3x ly isFatherOf(x, y) = true,

]y 3x isFatherOf(x, y) = true,

Vx Vy isFatherOf(x, y) = false,

Vy Vx isFatherOf(x, y) = false.

S7.7 Different Interpretations

Let's look at some different interpretations for W = 3x Vy (p(y) - q(x, y)). For
each of the following interpretations we'll let q(x, y) denote the equality relation
"atx = y.t T

a. Let the domain D = {a}, and let p(a) = true. Then W is true.

b. Let the domain D = {a}, and let p(a) = false. Then W is true.
c. Let the domain D = fa, b}, and let p(a) = p(b) = true. Then W is false.

d. Notice that W is true for any domain D for which p(d) = true for at most one
element d E D.

• 7.8 A Function Symbol

Let W = Vx (p(f(x, x), x) -- p(x, y)). One interpretation for W can be made
as follows: Let N be the domain, let p be equality, let y = 0, and let f be the
function defined by f(a, b) = (a + b) mod 3. With this interpretation, W can
be written in more familiar notation as follows:

Vx ((2x mod3= x) - x = 0).

7.1 0 FIRST-ORDER PREDICATE CALCULUS 409

A bit of checking will convince us that W is true with respect to this interpre-
tation.

J 7.9 A Function Symbol

Let W = Vx (p(f(x, x), x) -* p(x, y)). Let D = {a, b} be the domain of an
interpretation such that f(a, a) = a, f(b, b) = b, p is equality, and y = a. Then
W is false with respect to this interpretation.

Models and Countermodels

An interpretation for a wff W is called a model for W if W is true with respect
to the interpretation. Otherwise, the interpretation is a countermodel for W.
The previous two examples gave a model and a countermodel, respectively, for

the wff

W = Vx (p(f(x, x), x) - p(x, y)).

7.1.4 Validity

Can any wff be true for every possible interpretation? Although it may seem
unlikely, this property holds for many wffs. The property is important enough
to introduce some terminology. A wff is valid if it's true for all possible interpre-
tations. So a wff is valid if every interpretation is a model. Otherwise, the wff
is invalid. A wff is unsatisfiable if it's false for all possible interpretations. So a
wff is unsatisfiable if all of its interpretations are countermodels. Otherwise, it
is satisfiable. From these definitions we see that every wff satisfies exactly one
of the following pairs of properties:

valid and satisfiable,

satisfiable and invalid,

unsatisfiable and invalid.

In the propositional calculus the words tautology, contingency, and contra-
diction correspond, respectively, to the preceding three pairs of properties.

' 7.10 A Satisfiable and Invalid W'ff

The wff Ix Vy (p(y) -- q(x, y)) is satisfiable and invalid. To see that the wff is
satisfiable, notice that the wff is true with respect to the following interpretation:
The domain is the singleton {3}, and we define p(3) = true and q(3, 3) = true.

410 CHAPTER 7 U PREDICATE LOGIC

To see that the wff is invalid, notice that it is false with respect to the following
interpretation: The domain is still the singleton {3}, but now we define p(3) =

true and q(3, 3) = false.

Proving Validity

In the propositional calculus we can use truth tables to decide whether any
propositional wff is a tautology. But how can we show that a wff of the predicate
calculus is valid? We can't check the infinitely many interpretations of the wff to
see whether each one is a model. So we are forced to use some kind of reasoning
to show that a wff is valid. Here are two strategies to prove validity.

Direct approach: If the wff has the form A -- B, then assume that there is
an arbitrary interpretation for A --• B that is a model for A. Show that the
interpretation is a model for B. This proves that any interpretation for A -4 B
is a model for A -* B. So A --+ B is valid.

Indirect approach: Assume that the wff is invalid, and try to obtain a contradic-
tion. Start by assuming the existence of a countermodel for the wff. Then try
to argue toward a contradiction of some kind. For example, if the wff has the
form A - B, then a countermodel for A --+ B makes A true and B false. This
information should be used to find a contradiction.

We'll demonstrate these proof strategies in the next example. But first we'll list
a few valid conditionals to have something to talk about.

Some Valid Conditionals (7.2)

a. Vx A(x) -,]x A(x).

b. Ax (A(x) A B(x)) -- 3x A(x) A 3x B(x).

c. Vx A(x) V Vx B(x) - Vx (A(x) V B(x)).

d. Vx (A(x) --* B(x)) -- (Vx A(x) -* Vx B(x)).

e.]y Vx P(x, y) -- V x Ey P(x, y).

We should note that the converses of these wffs are invalid. We'll leave this to
the exercises. In the following example we'll use the direct approach and the
indirect approach to prove the validity of (7.2e). The proofs of (7.2a-7.2d) are
left as exercises.

7.1 U FIRST-ORDER PREDICATE CALCULUS 411

J 7.11 Proving Validity

Let W denote the following wff:

3y Vx P(x, y) -W Vx 3y P(x, y).

We'll give two proofs to show that W is valid-one direct and one indirect. In
both proofs we'll let A be the antecedent and B be the consequent of W.

Direct approach: Let M be an interpretation with domain D for W such that M
is a model for A. Then there is an element d e D such that Vx P(x, d) is true.
Therefore, P(e, d) is true for all e E D. This says that M is also a model for B.
Therefore, W is valid. QED.

Indirect approach: Assume that W is invalid. Then it has a countermodel with
domain D that makes A true and B false. Therefore, there is an element d E D
such that the wff iy P(d, y) is false. Thus P(d, e) is false for all e E D. Now we
are assuming that A is true. Therefore, there is an element c E D such that Vx
P(x, c) is true. In other words, P(b, c) is true for all b c D. In particular, this

says that P(d, c) is true. But this contradicts the fact that P(d, e) is false for
all elements e £ D. Therefore, W is valid. QED.

Closures

There are two interesting transformations that we can apply to any wff containing
free variables. One is to universally quantify each free variable, and the other is
to existentially quantify each free variable. It seems reasonable to expect that
these transformations will change the meaning of the original wff, as the following

examples show:

p(x) A -, p(y) is satisfiable, but Vx Vy (p(x) A - p(y)) is unsatisfiable.

p(x) --* p(y) is invalid, but 3x 3y (p(x) --÷ p(y)) is valid.

The interesting thing about the process is that validity is preserved if we univer-
sally quantify the free variables and unsatisfiability is preserved if we existentially
quantify the free variables. To make this more precise, we need a little terminol-
ogy.

Suppose W is a wff with free variables xj,..., xi,. The universal closure of
W is the wff

VX1 ... VXn W.

The existential closure of W is the wff

Ix, ... 3x, W.

412 CHAPTER 7 U PREDICATE LOGIC

For example, suppose W = Vx p(X, y). W has y as its only free variable. So the
universal closure of W is

Vy VX p(X, y),

and the existential closure of W is

Ey VX p(x, y).

As we have seen, the meaning of a wff may change by taking either of the
closures. But there are two properties that don't change, and we'll state them
for the record as follows:

Closure Properties (7.3)

1. A wff is valid if and only if its universal closure is valid.

2. A wff is unsatisfiable if and only if its existential closure is unsatisfiable.

Proof: We'll prove part (1) first. To start things off we'll show that if x is a free
variable in a wff W, then

W is valid if and only if Vx W is valid.

Suppose that W is valid. Let I be an interpretation with domain D for the wff
Vx W. If I is not a model for Vx W, then there is some element d E D such that
W(x/d) is false for L This being the case, we can define an interpretation J for
W by letting J be I, with the free variable x assigned to the element d C D.
Since W is valid, it follows that W(x/d) is true for J. But W(x/d) with respect
to J is the same as W(x/d) with respect to I, which is false. This contradiction
shows that I is a model for Vx W. Therefore, Vx W is valid.

Suppose Vx W is valid. Let I be an interpretation with domain D for W,
where x is assigned the value d E D. Now define an interpretation J for Vx W
by letting J be obtained from I by removing the assignment of x to d. Then J is
an interpretation for the valid wff Vx W. So W(x/e) is true for J for all elements
e G D. In particular, W(x/d) is true for J, and thus also for L Therefore, I is a
model for W. Therefore, W is valid.

The preceding two paragraphs tell us that if x is free in W, then W is valid
if and only if Vx W is valid. The proof now follows by induction on the number
n of free variables in a wff W. If n = 0, then W does not have any free variables,
so W is its own universal closure. So assume that n > 0 and assume that part
(1) is true for any wff with k free variables, where k < n. If x is a free variable,
then Vx W contains n - 1 free variables, and it follows by induction that Vx W
is valid if and only if its universal closure is valid. But the universal closure of
Vx W is the same as the universal closure of W. So it follows that W is valid if
and only if the universal closure of W is valid. This proves part (1).

7.1 n FIRST-ORDER PREDICATE CALCULUS 413

Part (2) is easy. We'll use part (1) and a sequence of iff statements. W
is unsatisfiable iff - W is valid iff the universal closure of - W is valid iff the
negation of the existential closure of W is valid iff the existential closure of W
is unsatisfiable. QED.

7.1.5 The Validity Problem

We'll end this section with a short discussion about deciding the validity of wffs.
First we need to introduce the general notion of decidability. Any problem that
can be stated as a question with a yes or no answer is called a decision problem.
Practically every problem can be stated as a decision problem, perhaps after some
work. A decision problem is called decidable if there is an algorithm that halts
with the answer to the problem. Otherwise, the problem is called undecidable.
A decision problem is called partially decidable if there is an algorithm that
halts with the answer yes if the problem has a yes answer but may not halt
if the problem has a no answer. The words solvable, unsolvable, and partially
solvable are also used to mean decidable, undecidable, and partially decidable,
respectively.

Now let's get back to logic. The validity problem for a formal theory can be
stated as follows:

Given a wff, is it valid?

The validity problem for the propositional calculus can be stated as follows:
Given a wff, is it a tautology? This problem is decidable by Quine's method.
Another algorithm would be to build a truth table for the wff and then check it.

Although the validity problem for the first-order predicate calculus is un-
decidable, it is partially decidable. There are two partial decision procedures
for the first-order predicate calculus that are of interest: natural deduction (due
to Gentzen [19351) and resolution (due to Robinson [1965]). Natural deduction
is a formal reasoning system that models the natural way we reason about the
validity of wffs by using inference rules, as we did in Chapter 6 and as we'll
discuss in Section 7.3. Resolution is a mechanical way to reason, which is not
easily adaptable to people. It is, however, adaptable to machines. Resolution is
an important ingredient in logic programming and automatic reasoning, which
we'll discuss in Chapter 9.

O Exercises

Quantified Expressions

1. Write down the proposition denoted by each of the following expressions,
where the variables take values in the domain {O, 1}.

a. Ix V y p(x, y).

b. Vy Ix p(x, y).

414 CHAPTER 7 U PREDICATE LOGIC

2. Write down a quantified expression over some domain to denote each of the
following propositions or predicates.

a. q(0) A q(1).

b. q(O) V q(1).

c. p(x, 0) A p(x, 1).

d. p(0, x) V p(1, x).

e. p(1) V p(3) V p(5) V.

f. p(2) A p(4) A p(6) A.

Syntax, Scope, Bound, and Free

3. Explain why each of the following expressions is a wff.

a. 3x p(X) - Vx p(x). b.]xVy (p(y) - q(f(x), y)).

4. Explain why the expression V y (p(y) --- q(f(x), p(x))) is not a wff.

5. For each of the following wffs, label each occurrence of the variables as either

bound or free.

a. p(x, y) V (Vy q(y) -• 3x r(X, y)).

b. Vy q(y) A - p(x, y).

c. -' q(T, y) V]X p(x, y).

6. Write down a single wff containing three variables x, y, and z, with the
following properties: x occurs twice as a bound variable; y occurs once as
a free variable; z occurs three times, once as a free variable and twice as a

bound variable.

Interpretations

7. Let B(x) mean x is a bird, let W(x) mean x is a worm, and let E(x, y)
mean x eats y. Find an English sentence to describe each of the following

statements.

a. Vx V y (B(x) A W(y) -- E(x, y)).

b. Vx V y (E(x, y) -- B(x) A W(y)).

8. Let p(x) mean that x is a person, let c(x) mean that x is a chocolate bar,
and let e(x, y) mean that x eats y. For each of the following wffs, write
down an English sentence that reflects the interpretation of the wff.

a. 3x (p(x) A Vy (c(y) -+ e(x, y))).

b. Vy (c(y) A Ix (p(x) A e(x, y))).

9. Let e(x, y) mean that x = y, let p(x, y) mean that x < y, and let d(x, y)
mean that x divides y. For each of the following statements about the natural
numbers, find a formal quantified expression.

7.1 0 FIRST-ORDER PREDICATE CALCULUS 415

a. Every natural number other than 0 has a predecessor.

b. Any two nonzero natural numbers have a common divisor.

10. Given the wff W =]x p(x) --+ V x p(x).

a. Find all possible interpretations of W over the domain D = { a}. Also

give the truth value of W over each of the interpretations.

b. Find all possible interpretations of W over the domain D = {a, b}.

Also give the truth value of W over each of the interpretations.

11. Find a model for each of the following wffs.

a. p(c) A Ix - p(x).

b. Ex p(x) - Vx p(x).

c.]y Vx p(x, y) -- Vx]y p(x, y).

(I. Vx]y p(x, y) 3 3y VX p(x, y).

e. Vx (p(x, f(x)) -- p(x, y)).

12. Find a countermodel for each of the following wffs.

a. p(c) A]x - p(x).

b. 3x p(x) --* Vx p(x).

c. Vx (p(x) V q(x)) -• Vx p(x) V Vx q(x).

d. Ix p(x) A Ex q(x) - 3x (p(x) A q(x)).

(. VX]y p(X, y) -l y VX p(X, y).
f. VX (p(x, f(x)) -* p(x, y)).

n. (Vx p(x) -+ Vx q(x)) - Vx (p(x) -- q(x)).

Validity

13. Given the wff W = Vx Vy (p(x) --* p(y)).

a. Show that W is true for any interpretation whose domain is a singleton.

b. Show that W is not valid.

14. Given the wff W = Vx p(x, x) -* Vx Vy Vz (p(x, y) V p(x, z) V p(y, z)).

a. Show that W is true for any interpretation whose domain is a singleton.

b. Show that W is true for any interpretation whose domain has two
elements.

c. Show that W is not valid.

15. Find an example of a wff that is true for any interpretation having a domain
with three or fewer elements but is not valid. Hint: Look at the structure
of the wff in Exercise 14.

16. Prove that each of the following wffs is valid. Hint: Either show that ev-

ery interpretation is a model or assume that the wff is invalid and find a
contradiction.

416 CHAPTER 7 U PREDICATE LOGIC

a. Vx (p(x) -• p(x)).
b. p(c) - * 3x p(x).
c. Vx p(X) , EIx p(X).
d. 3x (A(x) A B(x)) -+ 3x A(x) A 3x B(x).

e. Vx A(x) V Vx B(x) -* Vx (A(x) V B(x)).

f. Vx (A(x) -- B(x)) -* (3x A(x) -*3x B(x)).

g. Vx (A(x) -- B(x)) - (Vx A(x) -•x 3 B(x)).

h. Vx (A(x) - B(x)) - (Vx A(x) -- Vx B(x)).

17. Prove that each of the following wffs is unsatisfiable. Hint: Either show that
every interpretation is a countermodel or assume that the wff is satisfiable
and find a contradiction.

a. p(c) A - p(c). b. Ax (p(x) A - p(x)).

c. 3x Vy (p(x, y) A - p(x, Y)).

Further Thoughts

18. For a wff W, let c(W) denote the wff obtained from W by replacing the free
variables of W by distinct constants. Prove that W has a model if and only
if c(W) has a model.

19. Prove that any wff of the form A --+ B is valid if and only if whenever A is

valid, then B is valid.

20. Prove part (2) of (7.3) by using a proof similar to that of part (1). A wff is
unsatisfiable if and only if its existential closure is unsatisfiable.

7.2 Equivalent Formulas

In this section we'll discuss the important notion of equivalence for wffs of the
first-order predicate calculus.

7.2.1 Equivalence

Two wffs A and B are said to be equivalent if they both have the same truth
value with respect to every interpretation of both A and B. By an interpretation
of both A and B, we mean that all free variables, constants, functions, and
predicates that occur in either A or B are interpreted with respect to a single
domain. If A and B are equivalent, then we write

A -B.

We should note that any two valid wffs are equivalent because they are both
true for any interpretation. Similarly, any two unsatisfiable wffs are equivalent

7.2 U EQUIVALENT FORMULAS 417

because they are both false for any interpretation. The definition of equivalence
also allows us to make the following useful formulation in terms of conditionals
and validity.

Equivalence

A-_-B if and only if (A- B) A((Bt3 A) is valid

if and only if A -- • B and B -* A are both valid.

Instances of Propositional Wffs

To start things off, let's see how propositional equivalences give rise to predicate
calculus equivalences. A wff W is an instance of a propositional wff V if W is
obtained from V by replacing each propositional variable of V by a wff, where
all occurrences of each propositional variable in V are replaced by the same wff.
For example, the wff

Vx p(x) -- Vx p(x) V q(x)

is an instance of P -ý P V Q because Q is replaced by q(x) and both occurrences
of P are replaced by Vx p(x).

If W is an instance of a propositional wff V, then the truth value of W for
any interpretation can be obtained by assigning truth values to the propositional

variables of V. For example, suppose we define an interpretation with domain
D = {a, b} and we set p(a) = p(b) = true and q(a) = q(b) = false. For this
interpretation, the truth value of the wff Vx p(x) -- Vx p(x) V q(x) is the same
as the truth value of the propositional wff P -4 P V Q, where P = true and
Q = false.

So we can say that two wffs are equivalent if they are instances of two
equivalent propositional wffs, where both instances are obtained by using the
same replacement of propositional variables. For example, we have

Vx p(x) - q(x) - Vx p(x) V q(x)

because the left and right sides are instances of the left and right sides of the
propositional equivalence P -- Q =- P V Q, where both occurrences of P are
replaced by Vx p(x) and both occurrences of Q are replaced by q(x). We'll state
the result again for emphasis:

Two wffs are equivalent whenever they are instances of two equivalent proposi-

tional wffs, where both instances are obtained by using the same replacement
of propositional variables.

418 CHAPTER 7 E PREDICATE Locic

Equivalences involving Quantifiers

Let's see whether we can find some more equivalences to make our logical life
easier. We'll start by listing equivalences that relate the two quantifiers by
negation. For any wff W we have the following two equivalences.

Quantifiers and Negation (7.4)

-(VxW)-3x-W and -(3xW)=WVx-W.

It's easy to believe that these two equivalences are true. For example, we can
illustrate the equivalence -' (Vx W) - Ex -, W by observing that the negation of
the statement "Something is true for all possible cases" has the same meaning as
the statement "There is some case for which the something is false." Similarly,
we can illustrate the equivalence - (Ix W) - Vx - W by observing that the
negation of the statement "There is some case for which something is true" has

the same meaning as the statement "Every case of the something is false."
Another way to demonstrate these equivalences is to use De Morgan's laws.

For example, let W = p(x) and suppose that we have an interpretation with
domain D = {0, 1, 2, 3}. Then no matter what values we assign to p, we can
apply De Morgan's laws to obtain the following propositional equivalence:

- (Vx p (x)) -= (p (0) A p(1) A p(2) A p (3))

-p(O) V - p(1) V - p(2) V- p(3)

=xI -p (x).

We also get the following equivalence:

- (3x p (x)) -- (p (0) Vp (1) V p(2) V p (3))

p (0) A - p (1) A p (2) A p (3)

VX - p (x).

These examples are nice, but they don't prove (7.4). Let's give an actual
proof, using validity, of the equivalences (7.4). We'll prove the first equivalence,
S(Vx W) =]x - W, and then use it to prove the second equivalence.

Proof: Let I be an interpretation with domain D for the wffs - (Vx W) and

Ix ý W. We want to show that I is a model for one of the wffs if and only if I
is a model for the other wff. The following equivalent statements do the job:

7.2 m EQUIVALENT FORMULAS 419

I is a model for -(VxW) iff -(VxW) is true for I

iff VxW is false for I

iff W (x/d) is false for some d E D

iff - W (x/d) is true for some d E D

iff 3x - W is true for I
iff I is a model for 3x - W.

This proves the equivalence - (V x W) - 3x - W. Now, since W is arbitrary,
we can replace W by the wff - W to obtain the following equivalence:

S(VXW W)-3X W.

Now take the negation of both sides of this equivalence, and simplify the double
negations to obtain the second equivalence of (7.4):

Vx - W = - (Ex W). QED.

Now let's look at two equivalences that allow us to interchange universal
quantifiers if they are next to each other; the same holds for existential quanti-
fiers.

Interchanging Quantifers of the Same Type (7.5)

VxVyW=-VyVxW and Bx~yW-B3y]xW.

Again, this is easy to believe. For example, suppose that W = p(x, y) and we
have an interpretation with domain D = {0, 1}. Then we have the following

equivalences.

Vx Vy p(x,y) Vy p p(O,y) AVy p (1,y)

- (p (0,0) Ap(0, 1)) A (p (1,0) Ap(1, 1))

- (p (0, 0) A p (1, 0)) A (p (0, 1) A p (1, 1))

Vx p (x, 0) A Vx p (x, 1)

SVyVx p (x, y).

We also have the following equivalences.

]x 3y p (x,,y) -y p (0, y) V 3y p (1, y)

- (p(0, 0) Vp (0, 1)) V (p (1,0) Vp(1, 1))

= (p(0, 0) V p (1, 0)) V (p (0, 1) V p (1, 1))

- ip(x, 0) V Xp (X,1)

- ly Ix p (x, y).

We leave the proofs of equivalences (7.5) as exercises.

420 CHAPTER 7 * PREDICATE LOGIC

Equivalences containing Quantifiers and Connectives
It's time to start looking at some equivalences that involve quantifiers and con-
nectives. For example, the following equivalence involves both quantifiers and
the conditional connective. It shows that we can't always distribute a quantifier
over a conditional.

An Equivalence to be Careful With (7.6)

3x (p(x) -• q(x)) -- V p(x) -, 3x q(x).

7.12 Proof of an Equivalence

We'll give a proof of (7.6) consisting of two subproofs showing that each side
implies the other. First we'll prove the validity of

3x (p(x) -- q(x)) -- (Vx p(x) -,]x q(x)).

Proof: Let I be a model for Ix (p(x) --* q(x)) with domain D. Then Ix (p(x)
-- q(x)) is true for I, which means that p(d) --4 q(d) is true for some d E D.
Therefore, either p(d) = false or p(d) = q(d) = true for some d E D. If p(d)
= false, then Vx p(x) is false for I; if p(d) = q(d) = true, then Ix q(x) is true
for I. In either case we obtain Vx p(x) -]]x q(x) is true for I. Therefore, I is a
model for V x p(x) - 3x q&x). QED.

Now we'll prove the validity of

(Vx p(x) - Ix q(x)) -- 3x (p(x) -- q(x)).

Proof: Let I be a model for Vx p(x) -* 3x q(x) with domain D. Then Vx p(x)
--* 3x q(x) is true for I. Therefore, either Vx p(x) is false for I or both Vx p(x)
and 3x q(x) are true for I. If Vx p(x) is false for I, then p(d) is false for some d
c D. Therefore, p(d) -- q(d) is true. If both Vx p(x) and 3x q(x) are true for
I, then there is some c G D such that p(c) = q(c) = true. Thus p(c) - q(c)
is true. So in either case, Ix (p(x) --* q(x)) is true for L Thus I is a model for
3x(p(x) - q(x)). QED.

Of course, once we know some equivalences, we can use them to prove other
equivalences. For example, let's see how previous results can be used to prove
the following equivalences.

Distributing the Quantifiers (7.7)

a. :x (p(x) V q(x)) •x p(x) V 3x q(x).

b. Vx (p(x) A q(x)) Vx p(x) A Vx q(x).

7.2 N EQUIVALENT FORMULAS 421

Proof of (7.7a): Ix (p (x) V q (x)) I x(- p (x) -- q (x))

Vx lp (x) -3 •x q (x) (7.6)

- 9x p (x) -- 3x q (x) (7.4)

3x p (x) V Ix q (x) QED.

Proof of (7.7b): Use the fact that Vx (p(x) A q(x)) -_-:Ix (- p(x) V -' q(x)) and
then apply (7.7a). QED.

Restricted Equivalences

Some interesting and useful equivalences can occur when certain restrictions are
placed on the variables. To start things off, we'll see how to change the name of
a quantified variable in a wff without changing the meaning of the wff.

We'll illustrate the renaming problem with the following interpreted wff to
represent the fact over the integers that for every integer x there is an integer y
greater than x:

Vx 3y x < y.

Can we replace all ocurrences of the quantifier variable x with some other vari-
able? If we choose a variable different from x and y, say z, we obtain

Vz 3y z < y.

This looks perfectly fine. But if we choose y to replace x, then we obtain

Vy 3y y < y.

This looks bad. Not only has Vy lost its influence, but the statement says there
is an integer y such that y < y, which is false. So we have to be careful when
renaming quantified variables. We'll always be on solid ground if we pick a new
variable that does not occur anywhere in the wff. Here's the rule.

Renaming Rule (7.8)

If y is a new variable that does not occur in W(x), then the following equiv-
alences hold:

a. 3x W(x) 3y W(x/y).

b. Vx W(x) Vy W(x/y).

Remember that W(x/y) is obtained from W(x) by replacing all free occur-
rences of x by y.

422 CHAPTER 7 U PREDICATE LOGIC

T 7.13 Renaming Variables

We'll rename the quantified variables in the following wff so that they are all
distinct:

Vx]y (p(x, y) -- 3x q(x, y) V Vy r(x, y)).

Since there are four quantifiers using just the two variables x and y, we need two
new variables, say z and w, which don't occur in the wff. We can replace any of
the quantified wffs. So we'll start by replacing Vx by V z and each x bound to
Vx by z to obtain the following equivalent wff:

Vz ly (p(z, y) -]sr q(x, y) V Vy r(z, y)).

Notice that p(x, y) and r(x, y) have changed to p(z, y) and r(z, y) because the
scope of V x is the entire wff while the scope of 3x is just q(x, y). Now let's
replace Vy r(z, y) by Vw r(z, w) to obtain the following equivalent wff:

Vz Ey (p(z, y) - Ax q(x, y) V Vw r(z, w)).

We end up with an equivalent wff with distinct quantified variables.

Now we'll look at some restricted equivalences that allow us to move a quan-
tifier past a wff that doesn't contain a free occurrence of the quantified variable.

Equivalences with Restrictions

If x does not occur free in C, then the following equivalences hold.

Simplification (7.9)

Vx C- C and x C= C.

Disjunction (7.10)

a. Vx (C V A(x)) C V Vx A(x).

b.]x (C V A(x)) C V]x A(x).

Conjunction (7.11)

a. Vx (C A A(x)) C A Vx A(x).

b. 3x (C A A(x)) C A]x A(x).

7.2 M EQUIVALENT FORMULAS 423

Implication (7.12)

a. Vx (C -- A(x)) C - Vx A(x).

b. Ix (C -f A(x)) C ý]x A(x).

c. Vx (A(x) -- C) -•x A(x) - C.

d. 3x (A(x) -i C) Vx A(x) -* C.

Proof: We'll prove (7.10a). The important point in this proof is the assumption

that x is not free in C. This means that any substitution x/t does not change
C. In other words, C(x/t) = C for all possible terms t. We'll assume that I is
an interpretation with domain D. With these assumptions we can start.

If I is a model for Vx (C V A(x)), then (C V A(x))(x/d) is true with respect

to I for all d in D. Now write (C V A(x))(x/d) as

(C V A (x)) (x/d) = C (x/d) V A (x) (x/d) (substitution property)

= C V A (x) (x/d) (because x is not free in C).

So C V A(x)(x/d) is true for I for all d in D. Since the truth of C is not affected
by any substitution for x, it follows that either C is true for I or A(x)(x/d) is
true for I for all d in D. So either I is a model for C or I is a model for Vx A(x).
Therefore, I is a model for C V Vx A(x).

Conversely, if I is a model for C V Vx A(x), then C V Vx A(x) is true for I.
Therefore, either C is true for I or Vx A(x) is true for I. Suppose that C is true
for I. Then, since x is not free in C, we have C = C(x/d) for any d in D. So
C(x/d) is true for I for all d in D. Therefore, C(x/d) V A(x)(x/d) is also true
for I for all d in D. Subtitution gives C(x/d) V A(x)(x/d) = (C V A(x))(x/d).
So (C V A(x))(x/d) is true for I for all d in D. This means I is a model for
Vx (C V A(x)). Suppose Vx A(x) is true for I. Then A(x)(x/d) is true for I
for all d in D. So C(x/d) V A(x)(x/d) is true for I for all d in D, and thus
(C V A(x))(xr/d) is true for I for all d in D. So I is a model for C V Vx A(x).
QED.

The proof of (7.10b) is similar and we'll leave it as an exercise. Once we
have the equivalences (7.10), the other equivalences are simple consequences. For
example, we'll prove (7.11b):

Ix (C A A (x)) -'Vx (C A A (x)) (7.4)
- C v/ V Av A(x))

S(- C V Vx A (x)) (7.10a)

-- (V ' C x A(x)) (7.4)

- C A 3x A (x)

424 CHAPTER 7 0 PREDICATE LOGIC

The implication equivalences (7.12) are also easily derived from the other
equivalences. For example, we'll prove (7.12c):

Vx (A (x) -0 C) Vx(A (x) V C)

-Vx A (x) V C (7.10a)
=- I x A (x) V C (7.4)

3x A (x) - C.

Now that we have some equivalences on hand, we can use them to prove

other equivalences. In other words, we have a set of rules to transform wffs into
other wffs having the same meaning. This justifies the word "calculus" in the
name "predicate calculus."

7.2.2 Normal Forms

In the propositional calculus we know that any wff is equivalent to a wff in con-

junctive normal form and to a wff in disjunctive normal form. Let's see whether
we can do something similar with the wffs of the predicate calculus. We'll start
with a definition. A wff W is in prenex normal form if all its quantifiers are on
the left of the expression. In other words, a prenex normal form looks like the
following:

QIx1... Q,,x. M,

where each Qi is either V or], each xi is distinct, and M is a wff without
quantifiers. For example, the following wffs are in prenex normal form:

p (x),

Ix p (x),

Vx p (x, y),

Vx]y (p (x,y) - q (x)),

Vx 3 y Vz (p () V q (y) A r (x, z)).

Is any wff equivalent to some wff in prenex normal form? Yes. In fact
there's an easy algorithm to obtain the desired form. The idea is to make sure
that variables have distinct names and then apply equivalences that send all
quantifiers to the left end of the wff. Here's the algorithm:

7.2 m EQUIVALENT FORMULAS 425

Prenex Normal Form Algorithm (7.13)

Any wff W has an equivalent prenex normal form, which can be constructed
as follows:

1. Rename the variables of W so that no quantifers use the same variable
name and such that the quantified variable names are distinct from the
free variable names.

2. Move quantifiers to the left by using equivalences (7.4), (7.10), (7.11),
and (7.12).

The renaming of variables is important to the success of the algorithm. For
example, we can't replace p(x) V Vx q(x) by Vx (p(x) V q(x)) because they aren't
equivalent. But we can rename variables to obtain the following equivalence:

p(x) V Vx q(x) -p~) V Vy q(y) -Vy (p(x) V q(y)).

T7.14 Prenex Normal Form

We'll put the following wff W into prenex normal form:

A(x) A Vx (B(x) -* 3y C(x, y) V - 3y A(y)).

First notice that y is used in two quantifiers and x occurs both free and in a
quantifier. After changing names, we obtain the following equivalent wff:

A(x) A Vz (B(z) -
3 y C(z, y) V -3w A(w)).

Now each quantified variable is distinct, and the quantified variables are distinct
from the free variable x. We'll apply equivalences to move all the quantifiers to
the left:

W A (x) A Vz (B (z) 3 y C (z, y) V 3w A (w))

=Vz(A(x) A (B(z) -* 3 y C(z,y) V- 3w A(w))) (7.11)

Vz (A (x) A (B (z) - y (C (z, y) V. 3w A (w)))) (7.10)

wVz (A (x) A Ey(B (z) - C (z,y) V 3w A (w))) (7.12)

Vz 3y (A (x) A (B (z) , C (z, y) V]w A (w))) (7.11)
-Vz ly (A (x) A (B (z) C (z, y) V Vw A (w))) (7.4)

=Vz By (A (x) A (B (z) Vw (C (z, y) V -- A (w)))) (7.10)

_Vz 3y(A (x) A Vw(B (z) - C (z,y) V-' A (w))) (7.12)
=Vz Ely Vw (A (x) A (B (z) -•C (z, y) V A (w))) (7.11)

This wff is in the desired prenex normal form.

426 CHAPTER 7 * PREDICATE LOGIC

There are two special prenex normal forms that correspond to the disjunctive
normal form and the conjunctive normal form for propositional calculus. We
define a literal in the predicate calculus to be an atom or the negation of an
atom. For example, p(x) and - q(x, y) are literals. A prenex normal form is
called a prenex disjunctive normal form if it has the form

QlXl ... QýXn (C 1 V ... V Ck),

where each Ci is a conjunction of one or more literals. Similarly, a prenex normal
form is called a prenex conjunctive normal form if it has the form

Q1X1 ... QnXn (D1 A "" A Dk),

where each Di is a disjunction of one or more literals.
It's easy to construct either of these normal forms from a prenex normal

form. Just eliminate conditionals, move - inwards, and either distribute A over
V or distribute V over A . If we want to start with an arbitrary wff, then we can
put everything together in a nice little algorithm. We can save some thinking by
removing all conditionals at an early stage of the process. Then we won't have
to remember the formulas (7.12). The algorithm can be stated as follows:

Prenex Disjunctive/Conjunctive Normal Form Algorithm (7.14)

Any wff W has an equivalent prenex disjunctive/conjunctive normal form,

which can be constructed as follows:

1. Rename the variables of W so that no quantifiers use the same variable
name and such that the quantified variable names are distinct from the
free variable names.

2. Remove implications by using the equivalence A --4 B A V B.

3. Move negations to the right to form literals by using the equivalences
(7.4) and the equivalences - (A A B) A V - B, - (A V B) A

A - B, and - A- A.

4. Move quantifiers to the left by using equivalences (7.10) and (7.11).

5. To obtain the disjunctive normal form, distribute A over V . To obtain
the conjunctive normal form, distribute V over A .

Now let's do an example that uses (7.14) to transform a wff into prenex

normal form.

F 7.15 Prenex CNF and DNF

Let W be the following wff, which is the same wff from Example 7.14:

A(x) A Vx (B(x) -4]y C(x, y) V - 3y A(y)).

7.2 . EQUIVALENT FORMULAS 427

We'll use algorithm (7.14) to construct a prenex conjunctive normal form and a
prenex disjunctive normal form of W.

W = A (x) A Vx (B (x) 3]y C (x, y) V -y A (y))

A A (x) A Vz (B (z) 3-* y C (z, y) V] 3w A (w)) (rename variables)

- (x) AVz(B(z) V y C(z,y) V-]w Ad(w)) (remove --)

_ A (x) A Vz(- B (z) V 3y C (z, y) V Vw A (w)) (7.4)
--Vz (A (x) A (-• B (z) V 3y C (z, y) V Vw A (w))) (7.11)

=Vz(A(x) A y(B(z)V yC(z,y)VVw - A(w))) (7.10)

mVz 3 y (A (x) A(- B(z)VC(z,y)VVw-i A(w))) (7.11)

=Vz 3y(A(x) AVw(- B(z) VC(z,y) V- A(w))) (7.10)

Vz 3y Vw (A (x) A (B (z) V C (z, y) V A (w))) (7.11)

This wff is in prenex conjunctive normal form. We'll distribute A over V to
obtain the following prenex disjunctive normal form:

-- Vz 3y Vw ((A(x) A - B(z)) V (A(x) A C(z, y)) V (A(x) A - A(w))).

7.2.3 Formalizing English Sentences

Now that we have a few tools at hand, let's see whether we can find some heuris-
tics for formalizing English sentences. We'll look at several sentences dealing
with people and the characteristics of being a politician and being crooked. Let
p(x) denote the statement "x is a politician," and let q(x) denote the statement
"x is crooked." For each of the following sentences we've listed a formalization
with quantifiers. Before you look at each formalization, try to find one of your
own. It may be correct, even though it doesn't look like the listed answer.

"Some politician is crooked." Ix (p(x) A q(x)).

"No politician is crooked." Vx (p(x) - - q(x)).

"All politicians are crooked." Vx (p(x) -- q(x)).

"Not all politicians are crooked." Ix (p(x) A -i q(x)).

"Every politician is crooked." Vx (p(x) - q(x)).

"There is an honest politician." Ix (p (x) A - q(x)).

"No politician is honest." Vx (p(x) - q(x)).

"All politicians are honest." Vx (p(x) - - q(x)).

Can we notice anything interesting about the formalizations of these sen-
tences? Yes, we can. Notice that each formalization satisfies one of the following
two properties:

The universal quantifier Vx quantifies a conditional.

The existential quantifier ix quantifies a conjunction.

428 CHAPTER 7 * PREDICATE LOGIC

To see why this happens, let's look at the statement "Some politician is

crooked." We came up with the wff 3x (p(x) A q(x)). Someone might argue
that the answer could also be the wff 3x (p(x) - q(x)). Notice that the second
wff is true even if there are no politicians, while the first wff is false in this case,
as it should be. Another way to see the difference is to look at equivalent wffs.
From (7.6) we have the equivalence 3x (p(x) -* q(x)) - Vx p(x) - 3x q(x).
Let's see how the wff Vx p(x) -- 3x q(x) reads when applied to our example. It
says, "If everyone is a politician, then someone is crooked." This doesn't seem
to convey the same thing as our original sentence.

Another thing to notice is that people come up with different answers. For
example, the second sentence, "No politician is crooked," might also be written
as follows:

Ix (p(x) A q(x)).

It's nice to know that this answer is OK too because it's equivalent to the listed
answer, Vx (p(x) - -v q(x)). We'll prove the equivalence of the two wffs by
applying (7.4) as follows:

3 x(p (x) A q(x))--Vx• (p (x) A q(x))

--Vx (p p(x) V - q (x))

-Vx (p (x) -+ - q (x)) .

Of course, not all sentences are easy to formalize. For example, suppose we
want to formalize the following sentence:

It is not the case that not every widget has no defects.

Suppose we let w(x) mean "x is a widget" and let d(x) mean "x has a defect."
We might look at the latter portion of the sentence, which says, "every widget
has no defects." We can formalize this statement as Vx (w(x) - -7 d(x)). Now
the beginning part of the sentence says, "It is not the case that not." This is a
double negation. So the formalization of the entire sentence is

- -vx (w(x) --. d(x)),

which of course is equivalent to Vx (w(x) -- d(x)).
Let's discuss the little words "is" and "are." Their usage can lead to quite

different formalizations. For example, the three statements

"4 is 2 + 2," "x is a widget," and "widgets are defective"

have the three formalizations 4 = 2 + 2, w(x), and Vx (w(x) - d(x)). So we
have to be careful when we try to formalize English sentences.

As a final example, which we won't discuss, consider the following sentence
taken from Section 2, Article I, of the Constitution of the United States of
America.

7.2 0 EQUIVALENT FORMULAS 429

No person shall be a Representative who shall not have attained to the
Age of twenty-five Years, and been seven Years a Citizen of the United

States, and who shall not, when elected, be an Inhabitant of that State
in which he shall be chosen.

7.2.4 Summary
Here, all in one place, are some equivalences and restricted equivalences.

Equivalences

1. - Vx W(x) I-x W(x). (7.4)

2. -]x W(x) Vx - W(x). (7.4)

3. Vx V y W(x, y) Vy Vx W(x, y). (7.5)

4. 3x 3y W(x, y) 3y Ix W(x, y). (7.5)

5. 3x (A(x) -- B(x)) Vx A(x) -- Ix B(x). (7.6)

6. 3x (A(x) V B(x)) -x A(x) V Ix B(x). (7.7)

7. Vx (A(x) A B(x)) Vx A(x) A Vx B(x). (7.7)

Restricted Equivalences

The following equivalences hold if x does not occur free in the wff C:

Simplification

Vx C -= C and]x C -= C. (7.9)

Disjunction (7.10)

Vx (C V A(x)) C V Vx A(x).
Ix (C V A(x)) C V 3x A(x).

Conjunction (7.11)

Vx (C A A(x)) C A Vx A(x).
Ix (C A A(x)) C A Ix A(x).

Implication (7.12)

Vx (C -- A(x)) C • V A(x).

Ix (C -* A(x)) C - 3x A(x).
Vx (A(x) -* C) 3x A(x) - C.
3x (A(x) - C) -V- A(x) -÷ C.

430 CHAPTER 7 U PREDICATE Locic

M Exercises

Proving Equivalences with Validity

1. Prove each of the following equivalences with validity arguments (i.e., use

interpretations and models).

a. Vx (A(x) A B(x)) -Vx A(x) A Vx B(x).

b. 3x (A(x) V B(x)) 3x A(x) V 3x B(x).

c. 3x (A(x) -* B(x)) Vx A(x) -- 3x B(x).

d. Vx Vy W(x, y) Vy V x W(x, y).

e. 3x ly W(x, y) 3y 3x W(x, y).

2. Assume that x does not occur free in the wff C. With this assumption, prove
each of the following statements with a validity argument. In other words,
do not use equivalences.

a. Vx C C.

b. 3x C C.

c. 5x (C v A(x)) -- C v 3x A(x).

Proving Equivalences with Equivalence

3. Assume that x does not occur free in the wff C. With this assumption, prove
each of the following statements with an equivalence proof that uses the
equivalence listed in parentheses.

a. Vx (C - A(x)) C - Vx A(x). (use 7.1Oa)

b. Ix (C - A(x)) C -- 3x A(x). (use 7.10b)

c. 3x (A(x) , C) Vx A(x) -- C. (use 7.10b)

d. Vx (C A A(x)) C A Vx A(x). (use 7.10b)

Prenex Normal Forms

4. Use equivalences to construct a prenex conjunctive normal form for each of

the following wffs.

a. Vx (p(x) V q (x)) -* Vx p(x) V Vw q(x).

b. 3x p(x) A 3x q(x) -, Ix (p(x) A q(x)).

c. Vx Iy p(x, y) I y Vx p((X, y).

d. Vx (p(x, f(x)) -- p(x, y)).

e. Vx Vy (p(x, y) -]]z (p(x, z) A p(y, z))).
f. Vx Vy Vz (p(x, y) A p(y, z) -- p(x, z)) A Vx p(x, x)

-VX VY (p(x, y) - -• p(y, x)).

5. Use equivalences to construct a prenex disjunctive normal form for each of

the following wffs.

7.2 * EQUIVALENT FORMULAS 431

a. Vx (p(x) V q(x)) -- Vx p(x) V Vx q(x).

b. 3x p(x) A Ix q(x) -*]x (p(x) A q(x)).

c. Vx 3y p(x, y) 3]y Vx p(x, y).

d. Vx (p(x, f(x)) -- p(x, y)).

C. Vx Vy (p(x, y) -]]z (p(x, z) A p(y, z))).

f. Vx Vy Vz (p(x, y) A p(y, z) -- p(x, z)) A Vx - p(x, x)

-* Vx Vy (p(X, y) -* p(y, x)).

6. Recall that an equivalence A - B stands for the wff (A -* B) A (B -- A).

Let C be a wff that does not contain the variable x.

a. Find a countermodel to show that the following statement is invalid:
(Vx W(x) - C) -V x (W(x) = C).

b. Find a prenex normal form for the statement (Vx W(x) -_ C).

Formalizing English Sentences

7. Formalize each of the following English sentences, where the domain of dis-
course is the set of all people, where C(x) means x is a committee member,
G(x) means x is a college graduate, R(x) means x is rich, S(x) means x is
smart, O(x) means x is old, and F(x) means x is famous.

a. Every committee member is rich and famous.

b. Some committee members are old.

c. All college graduates are smart.

d. No college graduate is dumb.

(,. Not all college graduates are smart.

8. Formalize each of the following statements, where B(x) means x is a bird,
W(x) means x is a worm, and E(x, y) means x eats y.

a. Every bird eats worms.

b. Some birds eat worms.

c. Only birds eat worms.

d. Not all birds eat worms.

(,. Birds only eat worms.

f. No bird eats only worms.

g. Not only birds eat worms.

9. Formalize each argument as a wff, where P(x) means x is a person, S(x)
means x can swim, and F(x) means x is a fish.

ai. All fish can swim. John can't swim. Therefore, John is not a fish.

b. Some people can't swim. All fish can swim. Therefore, there is some
person who is not a fish.

432 CHAPTER 7 * PREDICATE LOcIC

10. Formalize each statement, where P(x) means x is a person, B(x) means x is
a bully, K(x, y) means x is kind to y, C(x) means x is a child, A(x) means
x is an animal, G(x) means x plays golf, and N(x, y) means x knows y.

a. All people except bullies are kind to children.

b. Bullies are not kind to children.
c. Bullies are not kind to themselves.
d. Not everyone plays golf.

e. Everyone knows someone who plays golf.
f. People who play golf are kind to animals.
g. People who are not kind to animals do not play golf.

Mo

7.3 Formal Proofs in Predicate Calculus

To reason formally about wffs in the predicate calculus, we need some inference
rules. It's nice to know that all the inference rules of the propositional calculus
can still be used for the predicate calculus. We just need to replace "tautology"
with "valid." In other words, if R is an inference rule for the propositional
calculus that maps tautologies to a tautology, then R also maps valid wffs to a
valid wff.

For example, let's take the modus ponens inference rule of the propositional
calculus and prove that it also works for the predicate calculus. In other words,
we'll show that modus ponens maps valid wffs to a valid wff.

Proof: Let A and A -* B be valid wffs. We need to show that B is valid.
Suppose we have an interpretation for B with domain D. We can use D to give
an interpretation to A by assigning values to all the predicates, functions, free
variables, and constants that occur in A but not B. This gives us interpretations
for A, B, and A -, B over the domain D. Since we are assuming that A and A
-- B are valid, it follows that A and A -- B are true for these interpretations
over D. Now we can apply the modus ponens rule for propositions to conclude
that B is true with respect to the given interpretation over D. Since the given
interpretation of B was arbitrary, it follows that every interpretation of B is a
model. Therefore, B is valid. QED.

We can use similar arguments to show that all inference rules of the propo-
sitional calculus are also inference rules of the predicate calculus. So we have a
built-in collection of rules to do formal reasoning in the predicate calculus. But
we need more.

Sometimes it's hard to reason about statements that contain quantifiers. The
natural approach is to remove quantifiers from statements, do some reasoning
with the unquantified statements, and then restore any needed quantifiers. We

7.3 m FORMAL PROOFS IN PREDICATE CALCULUS 433

might call this the RRR method of reasoning with quantifiers-remove, reason,
and restore. But quantifiers cannot be removed and restored at will. There are
some restrictions that govern their use. So we'll spend a little time discussing
them.

Although there are restrictions on the use of quantifiers, the nice thing is
that if we use the rules properly, we can continue to use conditional proof in
the predicate calculus. In other words, the conditional proof rule (CP) (i.e., the
deduction theorem) for propositional calculus carries over to predicate calculus.
We can also use the indirect proof rule (IP). Now let's get on to the four quantifier
rules.

7.3.1 Universal Instantiation (Ul)

Let's start by using our intuition and see how far we can get. It seems reasonable
to say that if a property holds for everything, then it holds for any particular
thing. In other words, we should be able to infer W(x) from Vx W(x). Similarly,
we should be able to infer W(c) from Vx W(x) for any constant c.

Can we infer W(t) from Vx W(x) for any term t? This seems OK too, but
there may be a problem if W(x) contains a free occurrence of x that lies within
the scope of a quantifier. For example, suppose we let

W(x) = 3y p(x, y).

Now if we let t = y, then we obtain

W(t) = W(y) = Iy p(y, y).

But we can't always infer]y p(y, y) from Vx 3y p(x, y). For example, let p(x, y)
mean "x is a child of y." Then the statement Vx Ey p(x, y) is true because every
person x is a child of some person y. But the statement ly p(y, y) is false
because no person is their own child.

Trouble arises when we try to infer W(t) from Vx W(x) in situations where
t contains an occurrence of a quantified variable and x occurs free within the
scope of that quantifier. We must restrict our inferences so that this does not
happen. To make things precise, we'll make the following definition.

Definition of Free to Replace

We say that the term t is free to replace x in W(x) if either no variable of t
occurs bound to a quantifier in W(x) or x does not occur free within the scope
of a quantifier in W(x). Equivalently we can say that a term t is free to replace x
in W(x) if both W(t) and W(x) have the same bound occurrences of variables.

j 7.16 Free to Replace

A term t is free to replace x in W(x) under any of the following conditions.

a. t = x.

434 CHAPTER 7 m PREDICATE LOGIC

b. t is a constant.

c. The variables of t do not occur in W(x).

d. The variables of t do not occur within the scope of a quantifier in W(x).

e. x does not occur free within the scope of a quantifier in W(x).

f. W(x) does not have any quantifiers.

Going the other way, we can say that a term t is not free to replace x in
W(x) if t contains a variable that is quantifed in W(x) and x occurs free within
the scope of that quantifier. We can also observe that when t is not free to
replace x in W(x), then W(t) has more bound variables than W(x), while if t is
free to replace x in W(x), then W(t) and W(x) have the same bound variables.

7.17 Not Free to Replace /
We'll examine some terms t that are not free to replace x in W(x), where W(x)
is the following wff:

W(x) = q(x) A 3y p(x, y).

We'll examine the following two terms:

t = y and t =f(x, y).

Notice that both terms contain the variable y, which is quantified in W(x) and
there is a free occurrence of x within the scope of the quantifier Ey. So each t is
not free to replace x in W(x). We can also note the difference in the number of
bound variables between W(t) and W(x). For example, for t = y we have

W(t) = W(y) = q(y) A By p(y, y).

So W(t) has one more bound occurrence of y than W(x). The same property
holds for t = f(x, y).

Now we're in a position to state the universal instantiation rule along with
the restrictions on its use.

Universal Instantiation Rule (Ul) (7.15)

VxW (x) Restriction: t is free to replace x in W (x).

.'. W (t)

Special cases where the restriction is always satisfied:

VxW(x) and VxW (x) (for any constant c).

.*. W (x) .a . w (c)

7.3 m FORMAL PROOFS IN PREDICATE CALCULUS 435

Proof: The key point in the proof comes from the observation that if t is free to
replace x in W(x), then for any interpretation, the interpretation of W(t) is the
same as the interpretation of W(d), where d is the interpreted value of t. To
state this more concisely for an interpretation I, let tI be the interpreted value
of t by I, let W(t)I be the interpretation of W(t) by I, and let W(tI)I be the
interpretation of W(tI) by 1. Now we can state the key point as an equation. If t
is free to replace x in W(x), then for any interpretation I, the following equation

holds:
W (t) I = W(ta) L

This can be proved by induction on the number of quantifiers and the number
of connectives that occur in W(x) and we'll leave it as an exercise. The UI
rule follows easily from this. Let I be an interpretation with domain D that
is a model for Vx W(x). Then W(x)I is true for all x G D. Since tU E D, it
follows that W(tI)I is true. But we have the equation W(t)l = W(tI)I, so it
also follows that W(t)I is true. So I is a model for W(t). Therefore, the wff
Vx W(x) -* W(t) is valid. QED.

_ 7.18 MeaningIs Preserved

We'll give some examples to show that W(t)I = W(tI)I holds when t is free to
replace x. Let W(x) be the following wff:

W(x) = y p(x, y, z).

Then, for any term t, we have

W(t) = 3y p(t, y, z).

Let I be an interpretation with domain D = {a, b, c} that assigns any free
occurrences of x, y, and z to a, b, and c. In each of the following examples, t is
free to replace x in W(x).

1. t = b: W(t)I = By p(b, y, z)I = ly p(b, y, c) = W(b)I = W(tI)I.

2. t=x: W(t)I =]y p(x,y,z)I 3y p(a,y,c) = 3y p(a,y,z)I =

W(a)I = W(tI)I.

3. t=z: W(t)I =Iy p(z,y,z)I =3y p(c,y,c) = 3y p(c,y,z)I=
W (c)I= w (tI) I.

4. t= f(x,z): W(t)I =Byp(f(x,z),y,z)I
= By p (f (a, c), y, c)

= 3y p(f (a, c), y, z) I

= W (f (a, c)) I = W (tI) I.

We should observe that the equations hold no matter what meaning we give to
f and p.

436 CHAPTER 7 E PREDICATE LOGIC

~ 7.19 Meaning Is Not Preserved

We'll give some examples to show that W(t)I $ W(tI)I when t is not free to
replace x in W(x). We'll use same wff from Example 7.18.

W(x) = ly p(X, y, z).

Notice that each of the following terms t is not free to replace x in W(x) because

each one contains the quantified variable y and x occurs free in the scope of the
quantifier.

t=y and t=f(x,y).

Let I be the interpretation with domain D = {1, 2, 3} that assigns any free
occurrences of x, y, and z to 1, 2, and 3, respectively. Let p(u, v, w) mean that
u, v, and w are all distinct and let f(u, v) be the maximum of u and v.

1. t=y: W (t) I =W (y)I

= 3yp(y,y,z)I

El y p (y, y, 3), which is false.

W (tI) I= W (yI) I

= W(2)I

=]yp(2,y,z)I

= 3y p (2, y, 3), which is true.

2. t= f(x,y) W(t) I= W(f (x,y)) I

= Eyp(f(x,y),y,z)I

= 3y p (f (1, y) , y, 3), which is false (try different y's).

W (tI) I = W (f (x,y)I) I

= W (f (1, 2) 1)1

= W(2)I

=]y p(2, y,z) I

= Ey p (2, y, 3), which is true.

So in each case W(t)I and W(tI)I have different truth values.

7.3 * FORMAL PROOFS IN PREDICATE CALCULUS 437

7.3.2 Existential Generalization (EG)

It seems to make sense that if a property holds for a particular thing, then the
property holds for some thing. For example, we know that 5 is a prime number,
so it makes sense to conclude that there is some prime number. In other words,
if we let p(x) mean "x is a prime number," then from p(5) we can infer]x p(x).
So far, so good. If a wff can be written in the form W(t) for some term t, can
we infer 3x W(x)?

After a little thought, this appears to be related to the UI rule in its contra-
positive form. In other words, notice the following equivalences:

W (t) , 3X W (X) - Ix W (x) -- W (t)
-X- Vxw (x) --+ w (t).

The last wff is an instance of the UI rule, which tells us that the wff is valid if t
is free to replace x in - W(x). Since W(r) and - W(x) differ only by negation,
it follows that t is free to replace x in - W(x) if and only if t is free to replace
x in W(x). Therefore, we can say that

W(t) -- Ix W(x) is valid if t is free to replace x in W(x).

So we have the appropriate restriction for removing the existential quantifier.

Existential Generalization Rule (7.16)

w (t)x W (x) Restriction: t is free to replace x in W (x)... x W (x)

Special cases where the restriction is always satisfied:

W (x) and W (c) (for any constant c)..3 +XW(x) .'.xW (x)

Usage Note

There is a kind of forward-backward reasoning to keep in mind when using the
EG rule. If we want to apply EG to a wff, then we must be able to write the
wff in the form W(t) for some term t. This means, as always, that we must
be able to write the wff in the form W(x) for some variable x such that W(t)
is obtained from W(x) by replacing all free occurrences of x by t. Once this is
done, we check to see whether t is free to replace x in W(x).

438 CHAPTER 7 0 PREDICATE LOGIC

7.20 Using the EG Rule

Let's examine the use of EG on some sample wffs. We'll put each wff into the
form W(t) for some term t, where W(t) is obtained from a wff W(x) for some
variable x, and t is free to replace x in W(x). Then we'll use EG to infer
3x W(x).

1. Vy p(c, y).

We can write Vy p(c, y) = W(c), where W(x) = Vy p(x, y). Now since c is
a constant, we can use EG to infer

3x Vy p(x, y).

For example, over the domain of natural numbers, let p(x, y) mean x < y
and let c = 0. Then from Vy (0 < y) we can use EG to infer]x Vy (x < y).

2. p(x, y, c).

We can write p(x, y, c) = W(c), where W(z) = p(x, y, z). Since c is a
constant, the EG rule can be used to infer

1z p(x, y, z).

Notice that we can also write p(x, y, c) as either W(x) or W(y) with
no substitutions. So EG can also be used to infer 3x p(x, y, c) and 3y
p(X, y, c).

3. Vy p(f(x, z), y).

We can write Vy p(f(x, z), y) = W(f(x, z)), where W(x) = Vy p(x, y).
Notice that the term f(x, z) is free to replace x in W(x). So we can use EG
to infer

3x Vy p(x, y).

We can also write Vy p(f(x, z), y) as either of the forms W(x) or W(z) with
no substitutions. Therefore, we can use EG to infer Ix V y p(f(x, z), y) and
3z Vy p(f(X, z), y).

7.3.3 Existential Instantiation (El)

It seems reasonable to say that if a property holds for some thing, then it holds
for a particular thing. This type of reasoning is used quite often in proofs that
proceed in the following way. Assume that we are proving some statement and
during the proof we have the wff

3x W(X).

7.3 * FORMAL PROOFS IN PREDICATE CALCULUS 439

We then say that W(c) holds for a particular object c. From this point the
proof proceeds with more deductions and finally reaches a conclusion that does
not contain any occurrence of the object c.

Although this may seem OK, we have to be careful about our choice of the
constant. For example, if the wff 3x p(x, b) occurs in a proof, then we can't say
that p(b, b) holds. To see this, suppose we let p(x, b) mean "x is a parent of b."
Then]x p(x, b) is true, but p(b, b) is false because b is not a parent of b. So we
can't pick a constant that is already in the wff.

But we need to restrict the choice of constant further. Suppose, for example,
that we have the following partial "attempted" proof.

1. 3x p(x) P

2. Ix q(x) P
3. p(c) 2, proposed El rule

4. q(c) 3, proposed El rule
5. p(c) A q(c) 3, 4, Conj.

This can't continue because line 5 does not follow from the premises. For ex-
ample, suppose over the domain of integers we let p(x) mean "x is odd" and
let q(x) mean "x is even." Then the premises are true because there is an odd
number and there is an even number. But line 5 says that c is even and c is
odd, which is a false statement. So we must pick a new constant distinct from
any other constant in previous lines of the proof.

There is one more restriction on the constant that we introduce. Namely, the
constant cannot appear in any conclusion. For example, suppose starting with
the premise Ix p(x) we deduce p(c) and then claim by conditional proof that
we have proven the validity of the wff Ix p(x) -- p(c). But this wff is invalid.
For example, consider the interpretation with domain {0, 1}, where we assign
the constant c = 1 and let p(O) = true and p(l) = false. Then the interpreted
wff has a true antecedent and a false consequent, which makes the interpreted
wff false. Now we're in position to state the rule with the restrictions on its use.

Existential Instantiation Rule (7.17)
If c is a new constant in the proof and c does not occur in the conclusion of
the proof, then

I x W(X)

Proof: We'll give an idea of the proof. Suppose that the El rule is used in a
proof of the wff A and the constant c does not occur in A. We'll show that the
proof of A does not need the El rule. (So there is no harm in using EI.) Let P be
the conjunction of the premises in the proof, except Ix W(x) if it happens to be

440 CHAPTER 7 M PREDICATE LOGIC

to be a premise. Therefore, the wff P A 3x W(x) A W(c) -- A is valid. So
it follows that the wff P A Ix W(x) ---# (W(c) --• A) is also valid. Let y be a

variable that does not occur in the proof. Then P A Ix W(x) -- (W(y) , A) is
also valid because any interpretation assigning y a value yields the same wff by
assigning c that value. It follows from the proof of (7.3) that Vy (P A]x W(x) ---ý
(W(y) -- A)) is valid. Since y does not occur in P A Ix W(x) or A, we have
the following equivalences.

Vy (P A]xW (x)- (W (y) A)) =P A 3x W (x) -Vy (W (y) - A) (7.12)

PA]x W(x) (ly W(y) A) (7.12)

P A Ix W (x) A Ly W (y) -* A

P A Ix W (x) -* A.

So A can be proved without the use of El. QED.

7.3.4 Universal Generalization (UG)

It seems reasonable to say that if some property holds for an arbitary thing, then
the property holds for all things. This type of reasoning is used quite often in
proofs that proceed in the following way. We prove that some property holds
for an arbitrary element x and then conclude that the property holds for all x.
Here's a more detailed description of the technique in terms of a wff W(x) over
some domain D.

We let x be an arbitrary but fixed element of the domain D. Next, we
construct a proof that W(x) is true. Then we say that since x was
arbitrary, it follows that W(x) is true for all x in D. So from a proof of
W(x), we have proved Vx W(x).

So we want to consider the possibility of generalizing a wff by attaching
a universal quantifier. In other words, we want to consider the circumstances
under which we can infer Vx W(x) from W(x). If W(x) is valid, then we can
always do it because the two wffs are equivalent. For example, we have

p W V p(x) _m VX (p x V p W)

But the concern here is for situations where W(x) has been inferred as part of
a proof. In this case we need to consider some restrictions.

Difficulty (Free Variables in a Premise)

Over the domain of natural numbers let p(x) mean that x is a prime number.
Then Vx p(x) means that every natural number x is a prime number. Since there
are natural numbers that are not prime, we can't infer Vx p(x) from p(x).

7.3 m FORMAL PROOFS IN PREDICATE CALCULUS 441

This illustrates a problem that can occur in a proof when there is a premise
containing a free variable x and we later try to generalize with respect to the
variable.

1. p(X) P

2. Vx p(x) 1, Do not use the UG rule. It doesn't work!

Restriction: Among the wffs used to infer W(x), x is not free in any premise.

Difficulty (Free Variables and El)

Another problem can occur when we try to generalize with respect to a variable
that occurs free in a wff constructed with El. For example, consider the following
attempted proof, which starts with the premise that for any natural number x
there is some natural number y greater than x.

1. Vx3y(x<y) P

2. 3y(x < y) 1, UI

3. x < c 2, EI

4. Vx (x < c) 3, Do not use the UG rule. It doesn't work.

5. 3yVx(x<y) 3, EG.

Not QED

We better not allow line 4 because the conclusion on line 5 says that there is a
natural number y greater than every natural number x, which we know to be
false.

Restriction: Among wffs used to infer W(x), x is not free in any wff inferred by
El.

Now we're finally in position to state the universal generalization rule with
its two restrictions:

Universal Generalization Rule (UG) (7.18)

W(x)
Vx W(X)

Restrictions: Among the wffs used to infer W(x), x is not free in any premise
and x is not free in any wff constructed by El.

Proof: We'll give a general outline that works if the restrictions are satisfied.
Suppose we have a proof of W(x). If we let P be the conjunction of premises in
the proof, then P - W(x) is valid. We claim that P -* Vx W(x) is valid. For
if not, then P -* Vx W(x) has some interpretation I with domain D such that
P is true with respect to I and Vx W(x) is false with respect to I. So there is
an element d C D such that W(d) is false with respect to L Now let J be the

442 CHAPTER 7 0 PREDICATE LoGic

interpretation of P --- W(x) with the same domain D and with all assignments
the same as I but with the additional assignment of the free variable x to d.
Since x is not free in P, it follows that P with respect to J is the same as P with
respect to L So P is true with respect to J. But since P -* W(x) is valid, it
follows that W(d) is true with respect to J. But x is not free in W(d). So W(d)
with respect to J is the same as W(d) with respect to 1, which contradicts
W(d) being false with respect to L Therefore, P ---+ Vx W(x) is valid. So from
W(x) we can infer Vx W(x). QED.

It's nice to know that the restrictions of the UG rule are almost always sat-
isfied. For example, if the premises in the proof don't contain any free variables

and if the proof doesn't use the El rule, then use the UG rule with abandon.

Conditional Proof Rule

Now that we've discussed the quantifier proof rules, let's take a minute to dis-
cuss the extension of the conditional proof rule from propositional calculus to
predicate calculus. Recall that it allows us to prove a conditional A -4 B with
a conditional proof of B from the premise A. The result is called the conditional
proof rule (CP). It is also known as the deduction theorem.

Conditional Proof Rule (CP) (7.19)

If A is a premise in a proof of B, then there is a proof if A -- B that does
not use A as a premise.

Proof: Let W11,... , Wn = B be a proof of B that contains A as a premise.
We'll show by induction that for each k in the interval 1 < k _< n, there is a
proof of A -- Wk that does not use A as a premise. Since B = W,, the result
will be proved. For the case k = 1, the argument is the same as that given in
the proof of the CP rule for propositional calculus. Let k > 1 and assume that
for each i < k there is a proof of A -, Wi that does not use A as a premise. If
Wk is not inferred by a quantifier rule, then the argument in the proof of the
CP rule for propositional calculus constructs a proof of A - Wk that does not
use A as a premise. The construction also guarantees that the premises needed
in the proof of A -* Wk are the premises other than A that are needed in the
original proof of Wk.

Suppose that Wk is inferred by a quantifier rule from Wi, where i < k.
First, notice that if A is not needed to prove Wi, then A is not needed to prove

Wk. So we can remove A from the given proof of Wk. Now add the valid wff
Wk ---* (A -*V WO) to the proof and then use MP to infer A -- V Wk. This gives us
a proof of A -* Wk that does not use A as a premise. Second, notice from the
proof of the El rule (7.17) that for any proof that uses El, there is an alternative
proof that does not use El. So we can assume that A is needed in the proof of

Wi and El is not used in the given proof.
If Wi infers Wk by UG, then Wk = VxWi where x is not free in any premise

needed to prove Wi. So x is not free in A. Induction gives a proof of A - Wi

7.3 n FORMAL PROOFS IN PREDICATE CALCULUS 443

that does not use A as a premise and x is not free in any premise needed to
prove A --+ Wi. So we can use UG to infer Vx (A --* Wi). Since x is not free in
A, it follows from (7.12a) that Vx (A --* Wi) --+ (A --* VxWi) is valid. Now use
MP to infer A -- VxWi. So we have a proof of A --+ Wk that does not use A as
premise.

If Wi infers Wk by UI, then there is a wff C (x) such that Wi = VxC (x) and
Wk = C (t), where t is free to replace x in C (x). The proof of the UJ rule tells
us that VxC (x) -* C (t) is valid. Induction gives a proof of A -+ VxC (x) that
does not use A as a premise. Now use HS to infer A -* C (t). So we have a proof
of A -+* Wk that does not use A as premise.

If W2 infers Wk by EG, then there is a wff C (x) such that Wk = C (t) and
Wk = 3xC (x), where t is free to replace x in C (x). The proof of the EG rule
tells us that C (t) --*]xC (x) is valid. By induction there is a proof of A --* C (t)
that does not use A as a premise. Now use HS to infer A --* ýxC (x). So we
have a proof of A -- 4 Wk that does not use A as premise. QED.

7.3.5 Examples of Formal Proofs

Finally we can get down to business and do some proofs. The following examples

show the usefulness of the four quantifier rules. Notice in most cases that we
can use the less restrictive forms of the rules.

' 7.21 Part of an Equivalence

We'll give an indirect formal proof of the following statement:

Vx - W(x)]Ix W(x).

Proof: 1. Vx - W(x) P

2. -, 3'x W(x) P for IP

3. 3x W(x) 2, T

4. W(c) 3, El

5. - W(c) 1, UI

6. W(c) A W(c) 4, 5, Conj

7. false 6, T

QED 1, 2, 7, IP.

We'll prove the converse of Vx -' W(x) --* - 3x W(x) in Example 7.30.

j 7.22 Using Hypothetical Syllogism

We'll prove the following statement:

Vx (A(x) --* B(x)) A Vx (B(x) -* C(x)) --* Vx (A(x) -* C(x)).

444 CHAPTER 7 0 PREDICATE LOGIC

Proof: 1. Vx (A(x) - B(x)) P

2. Vx (B(x) - C(x)) P
3. A(x) -- B(x) 1, U1

4. B(x) - QC(x) 2, UI

5. A(x) - C(x) 3, 4, HS

6. Vx (A(x) -- 0(x)) 5, UG
QED 1, 2, 6, CP.

F__ 7.23 Lewis Carroll's Logic

The following argument is from Symbolic Logic by Lewis Carroll.

Babies are illogical. Nobody is despised who can manage a crocodile. Il-
logical persons are despised. Therefore babies cannot manage crocodiles.

We'll formalize the argument over the domain of people. Let B(x) mean "x is a
baby," L(x) mean "x is logical," D(x) mean "x is despised," and C(x) mean "x
can manage a crocodile." Then the four sentences become

Vx (B (x) - L (x)).

Vx (C (x) -- ' D (x)).

Vx (- L (x) -D (x)).

Therefore, Vx (B (x) -4* C (x)).

Here is a formal proof that the argument is correct.

Proof: 1. Vx (B(x) -- L(x)) P
2. Vx (C(x) -* D(x)) P

3. Vx (- L(x) -- D(x)) P
4- B(x) -• - L(x) 1, UI

5- VQx) - -• D(x) 2, UI

6. - L(x) ---- D(x) 3, UI

7. B(x) P

8. L L(x) 4, 7, MP

9. D(x) 6, 8, MP

10. C(x) 5, 9, MT

11. B(x) C 0(x) 7, 10, CP

12. Vx (B(x) -- C(x)) 11, UG

QED 1, 2, 3, 12, CP.

7.3 a FORMAL PROOFS IN PREDICATE CALCULUS 445

Note that this argument holds for any interpretation. In other words, we've
shown that the wff A -, B is valid, where A and B are defined as follows:

A = Vx (B (x) -L - i(x)) A Vx (C (x) --4- D (x)) A Vx (- L (x) -- D (x)),

B = Vx(B(x) C - 0(x)).

' 7.24 Swapping Universal Quantifiers

We'll prove the following general statement about swapping universal quantifiers:
Vx Vy W -- Vy Vx W.

Proof: 1. VxVy W P

2. Vy W 1, U1

3. W 2,1UI

4. Vx W 3, UG

5. VyVx W 4, UG

QED 1, 5, CP.

The converse of the statement can be proved in the same way. Therefore, we
have a formal proof of the following equivalence in (7.5).

Vx Vy W =-Vy V x W.

' 7.25 Renaming Variables

We'll give formal proofs of the equivalences that rename variables (7.8): Let
W(x) be a wff, and let y be a variable that does not occur in W(x). Then the
following renaming equivalences hold:

3x W(x) -y W(y),

Vx W(x) Vy W(y).

First we'll prove 3x W(x) = 3 y W(y), which will require proofs of

]x W(x) -- ly W(y) and 3y W(y) -* 3x W(x).

446 CHAPTER 7 * PREDICATE LOGIC

Proof of Bx W(x) -* Iy W(y):

1. Hx W(x) P

2. W(c) 1, El

3.]y W(y) 2, EG

QED 1, 3, CP.

Proof of ly W(y) -* Ix W(x):

1. By W(y) P

2. W(c) 1, El

3. 3x W(x) 2, EG

QED 1, 3, CP.

Next, we'll prove the equivalence Vx W(x) Vy W(y) by proving the two
statements Vx W(x) --* Vy W(y) and Vy W(y) --+ Vx W(x). We'll combine the
two proofs into one proof as follows:

1. Vx W(x) P Start first proof.

2. W(y) 1, UI y is free to replace x.

3. Vy W(y) 2, UG
4. Vx W(x) -- Vy W(y) 1, 3, CP Finish first proof.

5. Vy W(y) P Start second proof.

6. W(x) 5, UI x is free to replace y.

7. Vx W(x) 6, UG

8. Vy W(y) -- Vx W(x) 5, 7, CP Finish second proof.

QED 4, 8, T.

J 7.26 Using El, Ui, and EG

We'll prove the statement

Vx p(x) A 3x q(x) -- Bx (p(x) A q(x)).

Proof: 1. Vx p(x) P

2. Bx q(x) P

3. q(c) 2, El

4. p(c) 1, UI

5. p(c) A q(c) 3, 4, Conj

6. 3x (p(x) A q(x)) 5, EG

QED 1, 2, 6, CP.

7.3 n FORMAL PROOFS IN PREDICATE CALCULUS 447

7.27 Formalizing an Argument

Consider the following three statements:

Every computer science major is a logical thinker.

John is a computer science major.

Therefore, there is some logical thinker.

We'll formalize these statements as follows: Let C(x) mean "x is a computer
science major," let L(x) mean "x is a logical thinker," and let the constant
b mean "John." Then the three statements can be written more concisely as
follows, over the domain of people:

Vx (C (x) --* L (x))

C (b)

.'. Ix L (x).

These statements can be written as the following conditional wff:

Vx (C(x) -* L(x)) A C(b) - Ix L(x).

Although we started with a specific set of English sentences, we now have a wff
of the first-order predicate calculus. We'll prove that this conditional wff is valid
as follows:

Proof: 1. Vx (C(x) L L(x)) A C(b) P

2. Vx (C(x) -* L(x)) 1, Simp

3. C(b) 1, Simp

4. C(b) -* L(b) 2, UI
5. L(b) 3, 4, MP

6.]x L(x) 5, EG

QED 1, 6, CP.

J 7.28 Formalizing an Argument

Let's consider the following argument:

All computer science majors are people.

Some computer science majors are logical thinkers.

Therefore, some people are logical thinkers.

448 CHAPTER 7 0 PREDICATE LOGIC

We'll give a formalization of this argument. Let 0(x) mean "x is a computer
science major," P(x) mean "x is a person," and L(x) mean "x is a logical
thinker." Now the statements can be represented by the following wff:

Vx (C(x) - P(x)) A 3 x (C(x) A L(x)) 3-* x (P(x) A L(x)).

We'll prove that this wff is valid as follows:

Proof: 1. Vx (C(x) -- P(x)) P

2. 3x (C(x) A L(x)) P

3. C(c) A L(c) 2, El

4. C(c) -- P(c) 1, UI

5. C(c) 3, Simp

6. P(c) 4, 5, MP

7. L(c) 3, Simp

8. P(c) A L(c) 6, 7, Conj

9. 3x (P(x) A L(x)) 8, EG

QED 1, 2, 9, CP.

' 7.29 Move Quantifiers with Care

We'll give a correct proof of the validity of the following wff:

Wx A(x) V Vx B (x) - Vx (A(x) V B(x)).

Proof: 1. Vx A(x) V Vx B(x) P

2. Vx A(x) P

3. A(x) 2, UI

4. A(x) V B(x) 3, Add

5. Vx (A(x) V B(x)) 4, UG

6. VxA(x) -* Vx (A(x) V B(x)) 2, 5, CP

7. Vx B(x) P

8. B(x) 7, UI

9. A(x) V B(x) 8, Add

10. Vx (A(x) V B(x)) 9, UG

11. Vx B(x) --* Vx (A(x) V B(x)) 7, 10, CP

12. Vx (A(x) V B(x)) 1, 6, 11, CD

QED 1, 12, CP.

7.30 An Equivalence

In Example 7.21 we gave a formal proof of the statement

Vx - W(x) - - W(x).

7.3 U FORMAL PROOFS IN PREDICATE CALCULUS 449

Now we're in a position to give a formal proof of its converse. Thus we'll have a
formal proof of the following equivalence (7.4):

Vx - W(x)- - 3x W(x).

The converse that we want to prove is the wff -• Ix W(x) -- Vx - W(x). To
prove this statement, we'll divide the proof into two parts. First, we'll prove the
statement - Ix W(x) --* -' W(x). Our proof will be indirect.

Proof: 1. - Ix W(x) P

2. W(x) P for IP

3. 3x W(x) 2, EG

4. -Ix W(x) A 3x W(x) 1, 3, Conj

5. false 4, T

QED 1, 2, 5, IP.

Now we can easily prove the statement 3x W(x) - V x W(x).

Proof: 1. - 3x W(x) P

2. - 3x W(x) - W(x) T, proved above

3. - W(x) 1, 2, MP

4. Vx - W(x) 3, UG

QED 1, 4, CP.

S7.31 An Incorrect Proof

Suppose we're given the following wwf.

3x P(x) A Ix Q(x) -, ix (P(x) A Q(x)).

This wff is not valid! For example, let D = {O, 1}, and set P(O) = Q(1) = true
and P(1) = Q(O) = false. Then Ix P(x) A ax Q(x) is true but Elx (P(x) A
Q(x)) is false. We'll give an incorrect proof sequence that claims to show that
the wff is valid.

1. 3x P(x) A]1x Q(x) P

2. 3x P(x) 1, Simp

3. P(c) 2, El

4. 3x Q(x) 1, Simp
5. Q(c) 4, El No: c already occurs in line 3.

6. P(c) A Q(c) 3, 5, Conj

7. Ix (P(x) A Q(x)) 6, EG

Not QED 1, 7, CP.

450 CHAPTER 7 0 PREDICATE LOGIC

O 7.32 Formalizing a Numerical Argument

We'll formalize the following informal proof that the sum of any two odd integers
is even. Proof: Let x and y be arbitrary odd integers. Then there exist integers
m and n such that x = 2m + 1 and y = 2n + 1. Now add x and y to obtain

x + y = 2m + 1 + 2n + 1 = 2(m + n + 1)

Therefore, x + y is an even integer. Since x and y are arbitrary integers, it
follows that the sum of any two odd intgers is even. QED.

Now we'll write a more formal version of this proof, where odd(x) means x
is odd and even(x) means x is even.

Proof: 1. odd(x) P

2. odd(y) P

3. 3z (x = 2z + 1) 1, definition of odd

4.]z (y = 2z + 1) 2, definition of odd

5. x =2m+ 1 3, EI

6. y=2n+ 1 4, EI

7. x + y = 2(m + n + 1) 5, 6, algebra

8. 3z (x + y = 2z) 7, EG

9. even(x + y) 8, definition of even

10. odd(x) A odd(y) --ý even(x + y) 1, 2, 9, CP

11. V y (odd(x) A odd(y) --* even(x + y)) 10, UG

12. Vx Vy (odd(x) A odd(y) - even(x + y)) 11, UG.

QED

Notice that lines 1 through 9 are indented to show that they form the subproof
of the statement "If x and y are odd, then x + y is even."

7.3.6 Summary of Quantifier Proof Rules

Let's begin the summary by mentioning, as we did in Chapter 6, the following
important usage note for inference rules.

Don't apply inference rules to subexpressions of wffs.

In other words, you can't apply an inference rule to just part of a wff. You have
to apply it to the whole wff and nothing but the whole wff. So when applying
the quantifier rules, remember to make sure that the wff in the numerator of the
rule matches the wff on the line that you intend to use.

Before we summarize the four quantifier proof rules, let's recall that the
phrase, "t is free to replace x in W(x)," means that either no variable of t

7.3 m FORMAL PROOFS IN PREDICATE CALCULUS 451

occurs bound to a quantifier in W(x) or x does not occur free within the scope
of a quantifier in W(x). Equivalently, we can say that a term t is free to replace x
in W(x) if both W(t) and W(x) have the same bound occurrences of variables.

Universal Instantiation Rule (UI)

Vx W(x) Restriction: t is free to replace x in W(x).

W(t)

Existential Generalization Rule (EG)

W(t) Restriction: t is free to replace x in W(x).

]x W(T)

Existential Instantiation Rule (EI)

3x W(x) Restrictions: c is a new constant in the proof and

W(c) c does not occur in the conclusion of the proof.

Universal Generalization Rule (UG)

W(x) Restrictions: Among the wffs used to infer

Vx W(x) W(x), x is not free in any premise and x is not
free in any wff constructed by El.

Special Cases Where Restrictions are Always True

Vx W(x) Vx W(x) (for any constant c)

W(x) .W. w(c)

W(x) W(c) (for any constant c)..3x w(X) I. x W(x)

• Exercises

Restrictions using Quantifiers

1. Each of the following proof segments contains an invalid use of a quantifier
proof rule. In each case, state why the proof rule cannot be used.

a. 1. x<4 P

2. Vx (x < 4) 1, UG.

452 CHAPTER 7 N PREDICATE LOGIC

b. 1. 3x (y<x) P

2. y<c 1, EI

3. Vy (y < c) 2, UG.

c. 1. Vy (y < f(y)) P

2. 3x Vy (y < x) 1, EG.

d. 1. q(x, c) P

2. 3x q(x, x) 1, EG.
e. 1. 3x p(x) P

2. 3x q(x) P

3. p(c) 1, El

4. q(c) 2, El.

f. 1. Vx •y x < y P
2. 3y y <y 1, UI.

2. Let W be the wff Vx (p(x) V q(x)) -- Vx p(x) V Vx q(x). It's easy to see
that W is not valid. For example, let p(x) mean "x is odd" and q(x) mean
"x is even" over the domain of integers. Then the antecedent is true, and
the consequent is false. Suppose someone claims that the following sequence
of statements is a "proof" of W:

1. Vx (p(x) V q(x)) P

2. p(x) V q(x) 1, UI

3. Vx p(x) V q(x) 2, UG

4. Vx p(x) V Vx q(x) 3, UG
QED 1, 4, CP.

What is wrong with this "proof" of W?

3. a. Find a countermodel to show that the following wff is not valid:

3x P(x) A Ix (P(x) -* Q(x)) -]x Q(x).

b. The following argument attempts to prove that the wff in part (a) is
valid. Find an error in the argument.

1.]x P(x) P

2. P(d) 1, El
3. 3x (P(x) -* Q(x)) P

4. P(d) -- Q(d) 3, El

5. Q(d) 2, 4, MP
6. Ix Q(x) 5, EG.

7.3 n FORMAL PROOFS IN PREDICATE CALCULUS 453

4. Explain what is wrong with the following attempted proof.

1. p(x) P
2. Vx q(x) P
3. q(x) 2, U1
4. p(x) A q(x) 1, 3, Conj
5. Vx (p(x) A q(x)) 4, UG.

QED?

5. We'll give a formal proof of the following statement.

Vx (p(x) -* q(x) V p(x)).

Proof: 1. p(X) P

2. q(x) V p(x) 1, Add

3. p(x) -- q(x) V p(x) 1, 2, CP

4. Vx (p(x) - q(x) V p(x)) 3, UG

QED.

Suppose someone argues against this proof as follows: The variable x is free
in the premise on line 1, which is used to infer line 3, so we can't use UG to
generalize the wff on line 3. What is wrong with this argument?

Direct Proofs

6. Use the CP rule to prove that each of the following wffs is valid.

a. Vx p(x) -* I p p(x).

b. V* (p(x) -- q(x)) A Ex p(x) --- 3x q(x).

c. Ix (p(x) A q(x)) -- 3x p(x) A 3x q(x).

d. Vx (p(x) -- q(x)) -((x p (x) -- Ir q(x)).

e. Vx (p(x) -- q(x)) - (Vx p(x) -- Ix q(x)).

f. Vx (p(x) -* q(x)) -- (Vx p(x) - V* q(x)).

g. ly Vx p(x, y) -• Vx 3y p(x, y).

h. 3x Vy p(x, y) A Vx (p(r, x) --- Ey q(y, x)) -- 3y Ex q(x, y).

Indirect Proofs

7. Use the IP rule to prove each that each of the following wffs is valid.

a. Vx p(x) -* 3] p(r).

b. Vx (p(r) -- q(r)) A Er p(,) -* Er q(r).

C. ly Vr p(r, y) - VX ly p(x, y).

d. Ex Vy p(r, y) A Vr (p(x, x) -- 3y q(y, x)) -* Ay Ex q(r, y).
e. Vx p(x) V Vr q(x) -- Vx (p(x) V q(x)).

454 CHAPTER 7 0 PREDICATE LoGic

Transforming English Arguments

8. Transform each informal argument into a formalized wff. Then give a formal

proof of the wff, using either CP or IP.

a. Every dog either likes people or hates cats. Rover is a dog. Rover loves
cats. Therefore, some dog likes people.

b. Every committee member is rich and famous. Some committee mem-
bers are old. Therefore, some committee members are old and famous.

c. No human beings are quadrupeds. All men are human beings. There-

fore, no man is a quadruped.

d. Every rational number is a real number. There is a rational number.
Therefore, there is a real number.

e. Some freshmen like all sophomores. No freshman likes any junior.

Therefore, no sophomore is a junior.

Equivalences

9. Give a formal proof for each of the following equivalences as follows: To
prove W _ V, prove the two statements W -- V and V --* W. Use either
CP or IP.

a. 3x Ey W(x, y)]- Ey Ax W(x, y).

b. Vx (A(x) A B(x)) -Vx A(x) A Vx B(x).

c. Ax (A(x) V B(,)) Ix A(x) V 3x B(x).

d. 3x (A(x) ---* B(x)) -x A(z) -- Ix B(x).

Challenges

10. Give a formal proof of A --+ B, where A and B are defined as follows:

A = Vx (Ey (q (x, y) A s (y)) - 3y (p (y) A r (x, y))),

B = - Ix p(x) -- x Vy (q (x,y) - - s (y)).

11. Give a formal proof of A -* B, where A and B are defined as follows:

A = 3x (r(x) A Vy (p(y) - q(x, y))) A Vx (r(x) - V y (s(y)
Sq(x, y))),

B = Vx (p(x) -+ s(x)).

12. Each of the following wffs is invalid. Nevertheless, for each wff you are to
construct a proof sequence that claims to be a proof of the wff but that fails
because of the improper use of one or more inference rules. Also indicate
which rules you use improperly and why the use is improper.

a. Hx A(x) ---* x A(x).

b. 3x A(x) A 3x B(x) -ý 3x (A(x) A B(x)).

c. Vx (A(x) V B(x)) --+ Vx A(x) V Vx B(x).

d. (Vx A(x) --+ Vx B (x)) -- Vx (A(x) -y) B(x)).
e. Vx 3y W(x, y) --+ 3y Vx W(x, y).

7.3 0 FORMAL PROOFS IN PREDICATE CALCULUS 455

13. Assume that x does not occur free in the wff C. Use either CP or IP to give
a formal proof for each of the following equivalences.

a. Vx (C A A(x)) C A Vx A(x).
b. 3x (C A A(x)) C A]x A(x).

c. Vx (C V A(x)) C V Vx A(x).
d. 9x (C V A(x)) C V 3x A(x).

e. Vx (C - A(x))- C- Vx A(x).

f. 3x (C - A(x)) C - 9x A(x).

g. Vx (A(x) -- C) 3x A(x) -- C.

h. 3x (A(x) -- C) -Vx A(x) -- C.

14. Any inference rule for the propositional calculus can be converted to an
inference rule for the predicate calculus. In other words, suppose R is an
inference rule for the propositional calculus. If the hypotheses of R are valid
wffs, then the conclusion of R is a valid wff. Prove this statement for each
of the following inference rules.

a. Modus tollens.

b. Hypothetical syllogism.

15. Let W(x) be a wff and t a term to be substituted for x in W(x).

a. Suppose t is free to replace x in W(x) and there is a variable in t that
is bound in W(x). What can you say?

b. Suppose no variable of t is bound in W(x). What can you say?

16. If the term t is free to replace x in W(x) and I is an interpretation, then
W(t)I = W(tI)I. Prove the statement by induction on the number of con-
neCtives and quantifiers.

17. Any binary relation that is irreflexive and transitive is also antisymmetric.
Here is an informal proof. Let p be a binary relation on a set A such that
p is irreflexive and transitive. Suppose, by way of contradiction, that p is
not antisymmetric. Then there are elements a, b c A such that p(a, b) and
p(b, a). Since p is transitive, it follows that p(a, a). But this contradicts the
fact that p is irreflexive. Therefore, p is antisymmetric. Give a formal proof
of the statement, where the following wffs represent the three properties:

Irreflexive: Vx - p(x, x).

Transitive: Vx Vy Vz (p(x, y) A p(y, z) -- p(x, z)).

Antisymmetric: Vx V y (p(x, y) --- p(y, x)).

456 CHAPTER 7 . PREDICATE LocIC

7.4 Chapter Summary

The first-order predicate calculus extends propositional calculus by allowing wffs
to contain predicates and quantifiers of variables. Meanings for these wffs are
defined in terms of interpretations over nonempty sets called domains. A wif is
valid if it's true for all possible interpretations. A wff is unsatisfiable if it's false
for all possible interpretations.

There are basic equivalences that allow us to simplify and transform wffs into
other wffs. We can use equivalences to transform any wff into a prenex DNF or
prenex CNF. Equivalences can also be used to compare different formalizations
of the same English sentence.

To decide whether a wff is valid, we can try to transform it into an equivalent
wff that we know to be valid. But, in general, we must rely on some type
of informal or formal reasoning. A formal reasoning system for the first-order
predicate calculus can use all the rules and proof techniques of the propositional
calculus. But we need four additional inference rules for the quantifiers: universal
instantiation, existential instantiation, universal generalization, and existential

generalization.

Notes

Now we have the basics of logic-the propositional calculus and the first-order
predicate calculus. In Section 6.4 we introduced a formal axiom system for the
propositional calculus and we observed that the system is complete, which means
that every tautology can be proven as a theorem within the system.

It's nice to know that there is a similar statement for the predicate calculus,
which is due to the logician and mathematician Kurt GOdel (1906-1978). Gbdel

showed that the first-order predicate calculus is complete. In other words, there
are formal systems for the first-order predicate calculus such that every valid wff
can be proven as a theorem. The formal system presented by Gddel [1930] used
fewer axioms and fewer inference rules than the system that we've been using in

this chapter.

Applied
Logic

Once the people begin to reason,
all is lost.

-Voltaire (1694-1778)

When we reason, we usually do it in a particular domain of discourse. For ex-
ample, we might reason about computer science, politics, mathematics, physics,
automobiles, or cooking. But these domains are usually too large to do much
reasoning. So we normally narrow our scope of thought and reason in domains
such as imperative programming languages, international trade, plane geometry,
optics, suspension systems, or pasta recipes.

No matter what the domain of discussion, we usually try to correctly ap-
ply inferences while we are reasoning. Since each of us has our own personal
reasoning system, we sometimes find it difficult to understand one another. In
an attempt to find common ground among the various ways that people reason,
we introduced the propositional calculus and first-order predicate calculus. So
we've looked at some formalizations of logic.

Can we go a step further and formalize the things that we talk about? Many
subjects can be formalized by giving some axioms that define the properties of
the objects being discussed. For example, when we reason about geometry, we
make assumptions about points and lines. When we reason about automobile
engines, we make certain assumptions about how they work. When we combine
first-order predicate calculus with the formalization of some subject, we obtain
a reasoning system called a first-order theory.

Section 8.1 shows how the fundamental notion of equality can become part of a
first-order theory.

Section 8.2 introduces a first-order theory for proving the correctness of imper-
ative programs.

457

458 CHAPTER 8 m APPLIED LOGIC

Section 8.3 introduces logics that are beyond the first order. We'll give some
examples to show how higher-order logics can be used to formalize much of
our natural discourse.

8.1 Equality

Equality is a familiar notion to most of us. For example, we might compare two
things to see whether they are equal, or we might replace a thing by an equal
thing during some calculation. In fact, equality is so familiar that we might
think that it does not need to be discussed further. But we are going to discuss
it further because different domains of discourse often use equality in different
ways. If we want to formalize some subject that uses the notion of equality, then
it should be helpful to know basic properties that are common to all equalities.

A first-order theory is called a first-order theory with equality if it contains a
two-argument predicate, say e, that captures the properties of equality required
by the theory. We usually denote e(x, y) by the familiar

x = y.

Similarly, we let x € y denote - e(x, y).
Let's examine how we use equality in our daily discourse. We always assume

that any term is equal to itself. For example, x = x and f(c) = f(c). We might
call this "syntactic equality."

Another familiar use of equality might be called "semantic equality." For
example, although the expressions 2 + 3 and 1 + 4 are not syntactically equal,
we still write 2 + 3 = 1 + 4 because they both represent the same number.

Another important use of equality is to replace equals for equals in an ex-
pression. The following examples should get the point across.

Ifx+y=2z, then (x+y)+w=2z+w.

If x = y, then f(x) = f(y).

If f(x) = f (y), then g(f (x)) = g (f (y)).
Ifx=y+z, then8<x-1 8<y+z.

Ifx=y, then p(x) Vq(w)-p(y)Vq(w).

8.1.1 Describing Equality

Let's try to describe some fundamental properties that all first-order theories
with equality should satisfy. Of course, we want equality to satisfy the basic
property that each term is equal to itself. The following axiom will suffice for
this purpose.

8.1 . EQUALITY 459

Equality Axiom (EA) (8.1)

VX (X = x).

This axiom tells us that x = x for all variables x. The axiom is sometimes called
the law of identity. But we also want to say that t = t for any term t. For
example, if a theory contains a term such as f(x), we certainly want to say that
f (x) = f(x). Do we need another axiom to tell us that each term is equal to
itself? No. All we need is a little proof sequence as follows:

1. Vx (x=x) EA
2. t=t 1, UI.

So for any term t we have t = t. Because this is such a useful result, we'll
also refer to it as EA. In other words, we have

Equality Axiom (EA) (8.2)

t = t for all terms t.

Now let's try to describe that well-known piece of folklore, equals can replace
equals. Since this idea has such a wide variety of uses, it's hard to tell where
to begin. So we'll start with a rule that describes the process of replacing some
occurrence of a term in a predicate by an equal term. In this rule, p denotes an
arbitrary predicate with one or more arguments. The letters t and u represent
arbitrary terms.

Equals-for-Equals Rule (EH) (8.3)

(t = u) A p(... t ...) p .. .

The notations ... t ... and ... u ... indicate that t and u occur in the same
argument place of p. In other words, u replaces the indicated occurrence of t.
Since (8.3) is an implication, we can use it as an inference rule in the following
equivalent form.

Equals-for-Equals Rule (EE) (8.4)

t=u, P(... t...)

460 CHAPTER 8 m APPLIED LoGIC

The EE rule is sometimes called the principle of extensionality. Let's see
what we can conclude from EE. Whenever we discuss equality of terms, we

usually want the following two properties to hold for all terms:

Symmetric: (t = u) -- (u = t).

Transitive: (t = u) A (u = v) - (t = v).

We'll use the EE rule to prove the symmetric property in the next example
and leave the transitive property as an exercise.

j 8.1 A Proof of Symmetry

We'll prove the symmetric property (t = u) -- (u = t).

Proof: 1. t = u P

2. t = t EA

3. u= t 1,2, EE

QED 1, 3, CP.

To see why the statement on line 3 follows from the EE rule, we'll let p(x, y)

mean "x = y." Then the proof can be rewritten in terms of p as follows:

Proof: 1. t = a P

2. p(t, t) EA

3. p(u, t) 1, 2, EE

QED 1, 3, CP.

Another thing we would like to conclude from EE is that equals can replace
equals in a term like f... t...). In other words, we would like the following wff
to be valid:

(t -- U) --- f . . t...) = f . , U...)

To prove that this wff is valid, we'll let p(t, u) mean "f... t...) = f(... a... .

Then the proof goes as follows:

Proof: 1. t = u P

2. p(t, t) EA

3. p(t, u) 1, 2, EE

QED 1, 3, CP.

When we're dealing with axioms for a theory, we sometimes write down more
axioms than we really need. For example, some axiom might be deducible as
a theorem from the other axioms. The practical purpose for this is to have a
listing of the useful properties all in one place. For example, to describe equality

for terms, we might write down the following five statements as axioms.

8.1 m EQUALITY 461

Equality Axioms for Terms (8.5)

In these axioms the letters t, u, and v denote arbitrary terms, f is an arbitrary
function, and p is an arbitrary predicate.

EA: t = t.

Symmetric: (t = u) --* (u = t).
Transitive: (t = u) A (u =v) - (t = v).

EE (functional form): (t=u) -- f(...t...) =f...u...

EE (predicate form): (t=u) Ap(.....t-...) p(.u...).

The EE axioms in (8.5) allow only a single occurrence of t to be replaced by
u. We may want to substitute more than one "equals for equals" at the same
time. For example, if x = a and y = b, we would like to say that f(x, y) =
f (a, b). It's nice to know that simultaneous use of equals for equals can be
deduced from the axioms. For example, we'll prove the following statement:

(x = a) A (y = b) --* f (x,y) = f (a,b).

Proof: 1. x= a P

2. y=b P

3. f(x, y) = f(a, y) 1, EE

4. f(a, y) = f(a, b) 2, EE

5. f(x, y) = f(a, b) 3, 4, Transitive

QED 1, 2, 5, CP.

This proof can be extended to substitute any number of equals for equals
simultaneously in a function or in a predicate. In other words, we could have
written the two EE axioms of (8.5) in the following form.

Multiple Replacement EE (8.6)

In these axioms the letters t, u, and v denote arbitrary terms, f is an arbitrary
function, and p is an arbitrary predicate.

EE (function): (t, = ul) A ... A (tk = Uk) -• f(tl,... , tk) = f(u,... , uk).

EE (predicate): (t, = u l) A .. A (tk = Uk) Ap(ti,... ,tk) =p(Ul, .. ,uk).

So the two axioms (8.1) and (8.3) are sufficient for us to deduce all the
axioms in (8.5) together with those of (8.6).

462 CHAPTER 8 m APPLIED LOGIC

Working with Numeric Expressions

Let's consider the set of arithmetic expressions over the domain of integers,
together with the usual arithmetic operations. The terms in this theory are
arithmetic expressions, such as

35, x, 2+8, x+y, 6x -5+ y.

Equality of terms comes into play when we write statements such as

3+6 =2+7, 4#2+3.

We have axioms to tell how the operations work. For example, we know
that the + operation is associative, and we know that x + 0 = x and x - x =
0. We can reason in such a theory by using the predicate calculus with equality.
In the next two examples we'll give an informal proof and a formal proof of the
following well-known statement:

Vx ((x + x = X) -* (x =0)).

J 8.2 An Informal Proof

First we'll do an informal equational type proof. Let x be any number such that
x + x = x. Then we have the following equations:

x = x + 0 (property of 0)

= x + (x + -x) (property of -)

= (x + x) + -x (associativity of +)
= X + -X (hypothesis x + x = x)

= 0 (property of -)

Since x was arbitary, the statement is true for all x. QED.

J 8.3 A Formal Proof

In the informal proof we used several instances of equals for equals. Now let's
look at a formal proof in all its glory.

Proof: 1. x +z =x P

2. -x = -x EA
3. (x + x) +-x= x +-x 1, 2, EE

4. x + (x + -x) = (x + x) + -x Associativity
5. x + (x + -x) = x + -x 3, 4, Transitivity

8.1 z EQUALITY 463

6. x + -x = 0 Property of-

7. x + 0 = 0 5, 6, EE

8. x = x + 0 Property of 0

9. x = 0 7, 8, Transitivity

10. (x+x=x)-* (x =0) 1,9, CP

11. Vx ((x + x = X) --* (X = o)) 10, UG.

QED

Let's explain the two uses of EE. For line 3, let f(u, v) = u + v. Then the wff
on line 3 results from lines 1 and 2 together with the following instance of EE in
functional form:

(X + X = X) -* f(X + X, - X) f(X, - X).

For line 7, let p(u, v) denote the statement "u + v = v." Then the wff on line 7
results from lines 5 and 6 together with the following instance of EE in predicate
form:

(x + - x = 0) A p(x, x + - x) -, p(x, 0).

Partial Order Theories

A partial order theory is a first-order theory with equality that also contains an
ordering predicate that is antisymmetric and transitive. If the ordering predicate
is reflexive, we denote it by <. If it is irreflexive, we denote it by <.

For example, the antisymmetric and transitive properties for < can be writ-

ten as follows, where x, y, and z are arbitrary elements.

Antisymmetric: (x < y) A (y < x) -- (x = y).

Transitive: (x < y) A (y < z) -- (x < z).

We can use equality to define either one of the relations < and < in terms

of the other in the following way.

x <y means (x<y)A(x • y),

x<y means (x<y)V(x=y).

We can do formal reasoning in such a first-order theory in much the same
way that we reason informally.

F f 8.4 An Obvious Statement

Most of us use the following statement without even thinking:

(z < y) -* (X < y).

464 CHAPTER 8 . APPLIED LOGIC

Here are two different proofs of the statement.

Proof: 1. x < y P

2. (x < y) A (x y y) 1, T (definition)

3. x_< y 2, Simp

4. (x < y)-* (x < y) 1, 3, CP.

QED

Proof: 1. x < y P

2. (x < y) V (x = y) 1, Addition

3. x < y 2, T (definition)

4. (x < y) -* (x < y) 1, 3, CP.

QED

8.1.2 Extending Equals for Equals

The EE rule for replacing equals for equals in a predicate can be extended to
other wffs. For example, we can use the EE rule to prove the following more
general statement about wffs without quantifiers.

EE for Wffs with no Quantifiers (8.7)

If W(x) has no quantifiers, then the following wff is valid:

(t = u) A W(t) - W(u).

We assume that W(t) is obtained from W(x) by replacing one or more oc-
currences of x by t and that W(u) is obtained from W(t) by replacing one
or more occurrences of t by u.

For example, if W(x) = p(x, y) A q(x, x), then we might have W(t) =
p(t, y) A q(x, t), where only two of the three occurrences of x are replaced by t.
In this case we might have W(u) = p(u, y) A q(x, t), where only one occurrence
of t is replaced by u. In other words, the following wff is valid:

(t = u) A p(t, y) A q(x, t) - p(u, y) A q(x, t).

What about wffs that contain quantifiers? Even when a wff has quantifiers,
we can use the EE rule if we are careful not to introduce new bound occurrences
of variables. Here is the full-blown version of EE.

8.1 * EQUALITY 465

EE for Wffs with Quantifiers (8.8)
If W(x) is a wff and t and u are terms that are free to replace x in W(x),
then the following wff is valid:

(t = u) A W(t) - W(u).

We assume that W(t) is obtained from W(x) by replacing one or more oc-
currences of x by t and that W(u) is obtained from W(t) by replacing one
or more occurrences of t by u.

For example, suppose W(x) = 3y p(x, y). Then for any terms t and u that
do not contain occurrences of y, the following wff is valid:

(t = u) A 3y p(t, y) -- 3y p(u, y).

The exercises contain some samples to show how EE for predicates (8.3) can
be used to prove some simple extensions of EE to more general wffs.

O Exercises

Equals for Equals

1. Use the EE rule to prove the double replacement rule:

(s = v) A (t = w) A p(s, t) -* p(v, w).

2. Show that the transitive property (t = u) A (u = v) --* (t = v) can be
deduced from the other axioms for equality (8.5).

3. Give a formal proof of the following statement about the integers:

(c = a') A (i < b) A - (i < b) -, (c = ab).

4. Use the equality axioms (8.5) to prove each of the following versions of EE,
where p and q are predicates, t and u are terms, and x, y, and z are variables.

a,. (t u))A ý p(... t...)- -• p(... u...).
b. (t = u) A p(... t ...) A q(... t ...) -, p(... u ...) A q(... u

(,,. (t = u) A @(p(... t ...) V q(... t ...)) --- p (... u ...) v q(... u ...)
d. (x=y) A zp(... x ...)-- 3zp(... y...).

(,. (x =y) A Vz p(... x ...) -Vz p(... y ...).

5. Prove the validity of the wff Vx 3y (x = y).

466 CHAPTER 8 w APPLIED LOGIC

6. Prove each of the following equivalences.

a. p(x) 3y ((x = y) A p(y)).

b. p(x) Vy ((x = y) -* p(y)).

Formalizing English Sentences

7. Formalize the definition for each statement about the integers.

a. odd(x) means x is odd.

b. even(x) means x is even.

c. div(a, b) means a divides b.

d. r=amodb.

e. d = gcd(a, b).

8. Formalize each of the following statements.

a. There is at most one x such that A(x) is true.

b. There are exactly two x and y such that that A(x) and A(y) are true.

c. There are at most two x and y such that A(x) and A(y) are true.

9. Students were asked to formalize the statement "There is a unique x such
that A(x) is true." The following wffs were given as answers.

a. Ix (A(x) A Vy (A(y) -+ (x = y))).

b. 3x A(x) A Vx Vy (A(x) A A(y) --+ (x = y)).

Prove that wffs (a) and (b) are equivalent. Hint: Do two indirect proofs
showing that each statement implies the other.

8.2 Program Correctness

An important and difficult problem of computer science can be stated as

"Prove that a program is correct." (8.9)

This takes some discussion. One major question to ask before we can prove

that a program is correct is "What is the program supposed to do?" If we
can state in English what a program is supposed to do, and English is the
programming language, then the statement of the problem may itself be a proof

of its correctness.
Normally, a problem is stated in some language X, and its solution is given in

some language Y. For example, the statement of the problem might use English
mixed with some symbolic notation, while the solution might be in a program-
ming language. How do we prove correctness in cases like this? Often the answer
depends on the programming language. As an example, we'll look at a formal
theory for proving the correctness of imperative programs.

8.2 U PROGRAM CORRECTNESS 467

8.2.1 Imperative Program Correctness

An imperative program consists of a sequence of statements that represent com-
mands. The most important statement is the assignment statement. Other
statements are used for control, such as looping and taking alternate paths. To
prove things about such programs, we need a formal theory consisting of wffs,

axioms, and inference rules.
Suppose we want to prove that a program does some particular thing. We

must represent the thing that we want to prove in terms of a precondition P,
which states what is supposed to be true before the program starts, and a post-
condition Q, which states what is supposed to be true after the program halts.
If S denotes the program, then we will describe this informal situation with the
following wff, which is called a Hoare triple:

{P} S {Q}.

The letters P and Q denote logical statements that describe properties of
the variables that occur in S. P is called a precondition for S, and Q is called
a postcondition for S. We assume that P and Q are wffs from a first-order
theory with equality that depends on the program S. For example, if the program
manipulates numbers, then the first-order theory must include the numerical
operations and properties that are required to describe the problem at hand. If
the program processes strings, then the first-order theory must include the string

operations.
For example, suppose S is the single assignment statement x := x + 1. Then

the following expression is a wff in our logic:

{x > 4} x := x + 1 {x > 5}.

To have a logic for program correctness, we must have a meaning assigned to
each wff of the form {P} S {Q}. In other words, we need to assign a truth value
to each wff of the form {P} S {Q}.

The Meaning of {P} S {Q}

The meaning of {P} S { Q} is the truth value of the following statement:

If P is true before S is executed and the execution of S terminates,

then Q is true after the execution of S.

If {P} S { Q} is true, we say S is correct with respect to precondition P
and postcondition Q. Strictly speaking, we should say that S is partially
correct because the truth of {P} S {Q} is based on the assumption that
S terminates. If we also know that S terminates, then we say S is totally
correct. We'll discuss termination at the end of the section.

468 CHAPTER 8 m APPLIED LoGic

Sometimes it's easy to observe whether {P} S { Q} is true. For example,
from our knowledge of the assignment statement, most of us will agree that the
following wff is true:

{x > 4} x := x + 1 {x > 5}.

On the other hand, most of us will also agree that the following wff is false:

{x > 4} x := x + I {x > 6}.

But we need some proof methods to verify our intuition. A formal theory for
proving the correctness of programs needs some axioms and some inference rules.
So let's start.

The Assignment Axiom

The axioms depend on the types of assignments allowed by the assignment state-
ment. The inference rules depend on the control structures of the language. So
we had better agree on a language before we go any further in our discussion. To
keep things simple, we'll assume that the assignment statement has the following
form, where x is a variable and t is a term:

x := t.

So the only thing we can do is assign a value to a variable. This effectively
restricts the language so that it cannot use other structures, such as arrays and
records. In other words, we can't make assignments like a[ij := t or a.b := t.

Since our assignment statement is restricted to the form x := t, we need only
one axiom. It's called the assignment axiom, and we'll motivate the discovery of
the axiom by an example. Suppose we're told that the following wff is correct:

{P} x := 4 {y > x}.

In other words, if P is true before the execution of the assignment statement,
then after its execution the statement y > x is true. What should P be? From our
knowledge of the assignment statement we might guess that P has the following
definition:

P= (y > 4).

This is about the most general statement we can make. Notice that P can be
obtained from the postcondition y > x by replacing x by 4. The assignment
axiom generalizes this idea in the following way.

Assignment Axiom (AA) (8.10)

{Q(x/t)} x := t {Q}.

The notation Q(x/t) denotes the wff obtained from Q by replacing all free
occurrences of x by t. The axiom is often called the "backwards" assignment
axiom because the precondition is constructed from the postcondition.

8.2 n PROGRAM CORRECTNESS 469

Let's see how the assignment axiom works in a backwards manner. When
using AA, always start by writing down the form of (8.10) with an empty pre-
condition as follows:

{ } x := t {Q}.

Now the task is to construct the precondition by replacing all free occurrences
of x in Q by t.

For example, suppose we know that x < 5 is the postcondition for the as-
signment statement x := x + 1. We start by writing down the following partially

completed version of AA:

{ }x:=x+l{x<5}.

Then we use AA to construct the precondition. In this case we replace the x by

x + 1 in the postcondition x < 5. This gives us the precondition x + 1 < 5, and
we can write down the completed instance of the assignment axiom:

{x -- 1 < 5} x := x + 1 {x < 5}.

The Consequence Rule

It happens quite often that the precondition constructed by AA doesn't quite
match what we're looking for. For example, most of us will agree that the
following wff is correct.

{x < 3} x := x + 1 {x < 5}.

But we've already seen that AA applied to this assignment statement gives

{x - 1 < 5} x := x + 1 {x < 5}.

Since the two preconditions don't match, we have some more work to do. In this
case we know that for any number x we have (x < 3) -* (x + 1 < 5).

Let's see why this is enough to prove that {x < 3} x := x + 1 {x < 5} is
correct. If x < 3 is true before the execution of x := x + 1, then we also know
that x + 1 < 5 is true before execution of x := x + 1. Now AA tells us that x
< 5 is true after execution of x := x + 1. So {x < 3} x := x + 1 {x < 5} is
correct.

This kind of argument happens so often that we have an inference rule to
describe the situation for any program S. It's called the consequence rule:

Consequence Rules (8.11)

P--*Rand {R}S{Q} and {P} S {T} and T - Q,

S.. {P} s{} .*. {P}S{Q}

470 CHAPTER 8 m APPLIED Locic

Notice that each consequence rule requires two proofs: a proof of correctness
and a proof of an implication. Let's do an example.

8.5 Using the Assignment Axiom and the Consequence Rule

We'll prove the correctness of the following wff:

{x < 5} x := x + 1 {x < 7}.

To start things off, we'll apply (8.10) to the assignment statement and the post-
condition to obtain the following wff:

{x + 1 < 7} x := x + 1 {x < 7}.

This isn't what we want. We got the precondition x + 1 < 7, but we need the
precondition x < 5. Let's see whether we can apply (8.11) to the problem. In

other words, let's see whether we can prove the following statement:

(x < 5) -, (x + 1 < 7).

This statement is certainly true, and we'll include its proof in the following formal
proof of correctness of the original wff.

Proof: 1. {x+1<7}x:=x+I{x<7} AA

2. x<5 P

3. x+l<6 2, T

4. 6<7 T

5. x + 1 < 7 3, 4, Transitive

6. (x <5) , (x+ 1<7) 2,5, CP

QED 1, 6, Consequence.

Although assignment statements are the core of imperative programming,
we can't do much programming without control structures. So let's look at a
few fundamental control structures together with their corresponding inference
rules.

The Composition Rule

The most basic control structure is the composition of two statements S and

S2, which we denote by S1; S 2 . This means execute S1 and then execute S2.
The composition rule can be used to prove the correctness of the composition of
two statements.

8.2 m PROGRAM CORRECTNESS 471

Composition Rule (8.12)

{P}S 1 {R} and {R}S 2 {Q}
.{P S1; S2 {Q}

The composition rule extends naturally to any number of program state-
ments in a sequence. For example, suppose we prove that the following three
wffs are correct.

{P} S {R}, {R} S 2 {T}, {T} S3 {Q}.

Then we can infer that {P} Sl; S2; S3 {Q} is correct.

For (8.12) to work, we need an intermediate condition R to place between
the two statements. Intermediate conditions often appear naturally during a

proof, as the next example shows.

j 8.6 Using the Composition Rule

We'll show the correctness of the following wff:

{(x > 2) A (y > 3)} x := x + 1; y := y + x {y > 6}.

This wff matches the bottom of the composition inference rule (8.12). Since the
program statements are assignments, we can use the AA rule to move backward
from the postcondition to find an intermediate condition to place between the two

assignments. Then we can use AA again to move backward from the intermediate
condition. Here's the proof.

Proof: First we'll use AA to work backward from the postcondition through the

second assignment statement:

1. {y+x>6}y:=y+x{y>6} AA

Now we can take the new precondition and use AA to work backward from it
through the first assignment statement:

2. {y+x+l>6}x:=x+l{y+x>6} AA

Now we can use the composition rule (8.12) together with lines 1 and 2 to obtain

line 3 as follows:

3. {y+x+ Il>6}x:=x+ 1;y:=y+x{y >6} 1, 2, Comp

At this point the precondition on line 3 does not match the precondition for the
wff that we are trying to prove correct. Let's try to apply the consequence rule
(8.11) to the situation.

472 CHAPTER 8 * APPLIED LOGIC

4. (x >2) A (y >3) P

5. x > 2 4, Simp

6. y > 3 4, Simp

7. x+y>2+y 5, T

8. 2 + y> 2 +3 6, T

9. x + y > 2 + 3 7, 8, Transitive

10. x + y+I>6 9, T

11. (x>2) A(y>3)--*(x+y+1>6) 4,10, CP

Now we're in position to apply the consequence rule to lines 3 and 11:

12. {(x > 2) A (y > 3)} x := x + 1; y := y + x {y > 6}
3, 11, Consequence.

QED

The If-Then Rule

The statement if C then S means that S is executed if C is true and S is
bypassed if C is false. For statements of this form we have the following if-then
rule of inference.

If-Then Rule (8.13)

{PAC}S{Q} andPA-C--Q

. {P}if C then S{Q}

The two wffs in the hypothesis of (8.13) are of different type. The logical wff

P A - C -- Q needs a proof from the predicate calculus. This wff is necessary
in the hypothesis of (8.13) because if C is false, then S does not execute. But
we still need Q to be true after C has been determined to be false during the
execution of the if-then statement. Let's do an example.

J 8.7 Using the if-Then Rule

We'll show that the following wff is correct:

{true} if x < 0 then x := -x {x > 0}.

Proof: Since the wff fits the pattern of (8.13), all we need to do is prove the

following two statements:

1. {true A (x < 0)} x := -x {x > 0}.
2. trueA - (X < 0) - (X >_0).

8.2 U PROGRAM CORRECTNESS 473

The proofs are easy. We'll combine them into one formal proof:

Proof: 1. {-x>O0}x:= -x{x>0} AA

2. true A (x < 0) P

3. x < 0 2, Simp

4. -x>0 3, T

5. -x > 0 4, Add

6. trueA(x <0)- (-x_>0) 2,5, CP

7. {true A (x < 0)} x := -x {x > 0} 1, 6, Consequence

8. true A - (x < 0) P

9. - (x < 0) 8, Simp
10. x > 0 9, T

11. true A - (x < 0) --* (x > 0) 8, 10, CP

QED 7, 11, If-then.

The If-Then-Else Rule

The statement if C then S1 else S2 means that S1 is executed if C is true and
S2 is executed if C is false. For statements of this form we have the following
if-then-else rule of inference.

If-Then-Else Rule (8.14)

{PAC}S 1,{Q} and {PA- C}S2 {Q}

{P} if C then S else S 2 {Q}

_ 8.8 Using the If-Then-Else Rule

Suppose we're given the following wff, where even(x) means that x is an even
integer:

{true} if even(x) then y := x else y := x + 1 {even(y)}.

We'll give a formal proof that this wff is correct. The wff matches the bottom
of rule (8.14). Therefore, the wff will be correct by (8.14) if we can show that
the following two wffs are correct:

1. {true A even(x)} y := x {even(y)}.

2. {true A odd(x)} y := x + 1 {even(y)}.

474 CHAPTER 8 m APPLIED LOGIC

To make the proof formal, we need to give formal descriptions of even(x) and
odd(x). This is easy to do over the domain of integers.

even(x) = 3k (x = 2k),

odd (x) = 3k (x = 2k + 1).

To avoid clutter, we'll use even(x) and odd(x) in place of the formal expressions.
If you want to see why a particular line holds, you might make the substitution
for even or odd and then see whether the statement makes sense. We'll combine
the two proofs into the following formal proof:

Proof: 1. {even(x)} y := x {even(y)} AA

2. true A even(x) P

3. even(x) 2, Simp

4. true A even(x) -- even(x) 2, 3, CP

5. {true A even(x)} y := x {even(y)} 1, 4, Consequence

6. {even(x + 1)} y := x + 1 {even(y)} AA

7. true A odd(x) P

8. odd(x) 7, Simp

9. even(x + 1) 8, T

10. true A odd(x) --, even(x + 1) 7, 9, CP

11. {true A odd(x)} y := x + 1 {even(y)} 6, 10, Consequence

QED 5, 11, If-then-else.

The While Rule

The last inference rule that we will consider is the while rule. The statement
while C do S means that S is executed if C is true, and if C is still true
after S has executed, then the process is started over again. Since the body
S may execute more than once, there must be a close connection between the

precondition and postcondition for S. This can be seen by the appearance of P
in all preconditions and postconditions of the rule.

While Rule (8.15)

{PAC}S{P}

.. {P} while C do S{PA-C}"

The wff P is called a loop invariant because it must be true before and
after each execution of the body S. Loop invariants can be tough to find in

8.2 0 PROGRAM CORRECTNESS 475

programs with no documentation. On the other hand, in writing a program, a
loop invariant can be a helpful tool for specifying the actions of while loops.

To illustrate the idea of working with while loops, we'll work our way through

an example that will force us to discover a loop invariant in order to prove the
correctness of a wff. Suppose we want to prove the correctness of the following
program to compute the power ab of two natural numbers a and b, where a >
0 and b > 0:

{(a > 0) A (b > 0)}

i =0;

p =1;

while i < b do

p:= p * a;

i :=+ 1

od

{p = ab}

The program consists of three statements. So we can represent the program

and its precondition and postcondition in the following form:

{(a > 0) A (b > 0)} S1; S 2 ; S 3 {p = ab}.

In this form, S and S2 are the first two assignment statements, and S3 repre-
sents the while statement. The composition rule (8.12) tells us that we can prove
that the wff is correct if we can find proofs of the following three statements for
some wffs P and Q.

{(a > 0) A (b > 0)} S {Q},

{Q} S2 {P},

{P} S3 {p = ab}.

Where do P and Q come from? If we know P, then we can use AA to work
backward through S 2 to find Q. But how do we find P? Since S3 is a while
statement, P should be a loop invariant. So we need to do a little work.

From (8.15) we know that a loop invariant P for the while statement S 3

must satisfy the following form:

{P} while i < b do p := p * a; i := i + 1 od {P A (i < b)}.

Let's try some possibilities for P. Suppose we set P A - (i < b) equivalent to the
program's postcondition p = ab and try to solve for P. This won't work because
p = ab does not contain the letter i. So we need to be more flexible in our
thinking. Since we have the consequence rule, all we really need is an invariant
P such that P A - (i < b) implies p = ab.

476 CHAPTER 8 s APPLIED LOGIC

After staring at the program, we might notice that the equation p = a' holds
both before and after the execution of the two assignment statements in the body
of the while statement. It's also easy to see that the inequality i < b holds before
and after the execution of the body. So let's try the following definition for P:

(p = a') A (i < b).

This P has more promise. Notice that P A - (i < b) implies i = b, which gives us
the desired postcondition p = ab. Next, by working backward from P through
the two assignment statements, we wind up with the statement

(1 = a°) A (0 < b).

This statement can certainly be derived from the precondition (a > 0) A
(b > 0). So P does OK from the start of the program down to the beginning of
the while loop. All that remains is to prove the following statement:

{P} while i < b do p := p * a; i := i + 1 od {P A - (i < b)}.

By (8.15), all we need to prove is the following statement:

{P A (i < b)} p := p * a; i := i + 1 {P}.

This can be done easily, working backward from P through the two assignment
statements. We'll put everything together in the following example.

8.9 Using the While Rule

We'll prove the correctness of the following program to compute the power ab

of two natural numbers a and b, where a > 0 and b > 0:

{(a > 0) A (b > 0)}

i := 0;

p := 1;

while i < b do

p:= p * a;

i:=i+1

od

{ p = ab}

We'll use the loop invariant P = (p = a') A (i < b) for the while statement. To
keep things straight, we'll insert {P} as the precondition for the while loop and

{P A - (i < b)} as the postcondition for the while loop as follows:

8.2 E PROGRAM CORRECTNESS 477

{(a > 0) A (b > 0)}

i :=0;

p:= 1;
{P}= {(p=a')A(i<b)}

while i < b do

p:= p * a;

i +1

od

{P A -C}= {(p = a') A (i < b) A (i < b)}

{p = ab}

We'll start by proving that P A - C -* (p = ab).

1. (p= a) A (i< b) A- (i< b) P

2. p= a 1, Simp

3. (i < b) A - (i < b) 1, Simp

4. i=b 3, T

5. p= ab 2, 4, EE
6. (p =a') A (i <_ b) A - (i < b) - (p = a b) 1, 5, CP

Next, we'll prove the correctness of {P} while i < b do S {P A -' (i < b)}.
The while inference rule tells us to prove the correctness of {P A (i < b)} S {P}.

7. {(p =a'+') A (i + 1_< b)}

i:=i+ 1{(p= a') A (i < b)} AA

8. {(p* a-= a+ 1) A (i + 1 < b)}
p := p* a {(p = a'+') A (i + 1 < b)} AA

9. (p= a) A (i_< b) A (i < b) P

10. p= a 9, Simp

11. i < b 9, Simp

12. b < i + 1 PforIP

13. (i < b) A (b < i + 1) 11, 12, Conj

14. false 13, T (for integers i and b)

15. i + 1 < b 12, 14, IP

16. a =a EA
17. p *a =ai+l 10, 16, EE

18. (p •a =a'+ 1) A (i + I < b) 15, 17, Conj

19. PA (i < b)- (p* a a+ 1) A (i+ 1_< b) 9, 18, CP

20. {P A (i < b)} p := p *a; i :=i + 1 {P} 7, 8, 19, Comp, Conseq

21. {P} while i < b do p :=p *a;

i: = i + lod{PA- (i < b) 20, While

478 CHAPTER 8 n APPLIED LOGIC

Now let's work on the two assignment statements that begin the program. So
we'll prove the correctness of {(a > 0) A (b > 0)} i := 0; p := 1 {P}.

22. {(1= a) A (i < b)} p := 1{(p= a') A (i < b)} AA

23. {(1 = a) A (0< b)} i :=0 {(1= a) A (i < b)} AA

24. (a > 0) A (b_> 0) P

25. a > 0 24, Simp

26. b > 0 24, Simp

27. 1= a 25, T

28. (1 = a°) A (0 < b) 26, 27, Conj

29. (a >0) A (b >0)-- ,(1 = a°) A (0 < b) 24, 28, CP

30. {(a > 0) A (b > 0)} i:= 0; p := 1 } 22, 23, 29, Comp,

Conseq

The proof is finished by using the Composition and Consequence rules:

QED 30, 21, 6, Comp,

Conseq.

8.2.2 Array Assignment

Since arrays are fundamental structures in imperative languages, we'll modify
our theory so that we can handle assignment statements like a[i] := t. In other
words, we want to be able to construct a precondition for the following partial
wff:

{ } a[i] := t {Q}.

What do we do? We might try to work backward, as with AA, and replace
all occurrences of a[i] in Q by t. Let's try it and see what happens. Let Q(a[i]/t)
denote the wff obtained from Q by replacing all occurrences of a[i] by t. We'll
call the following statement the "attempted" array assignment axiom:

Attempted AAA: (8.16)

{Q (a [i] /t)} a [i] := t{Q}.

Since we're calling (8.16) the Attempted AAA, let's see whether we can find

something wrong with it. For example, suppose we have the following wff, where
the letter i is a variable:

{true} a[i] := 4 {a[i] = 4}.

8.2 0 PROGRAM CORRECTNESS 479

This wff is clearly correct, and we can prove it with (8.16).

1. {4 = 4} a[i] := 4 {a[i] = 4} Attempted AAA

2. true --* (4 = 4) T
QED 1, 2, Consequence.

At this point, things seem OK. But let's try another example. Suppose we
have the following wff, where i and j are variables:

{(i = j) A (a[i] = 3)} a[i] := 4 {aýi] = 4}.

This wff is also clearly correct because a[i] and aD[j] both represent the same
indexed array variable. Let's try to prove that the wff is correct by using (8.16).
The first line of the proof looks like

1. {a[j] = 4} a[i] := 4 {a[] = 4} Attempted AAA

Since the precondition on line 1 is not the precondition of the wff, we need to
use the consequence rule, which states that we must prove the following wff:

(i = j) A (a[i] = 3) -- (a[j] = 4).

But this wff is invalid because a single array element can't have two distinct
values.

So we now have an example of an array assignment statement that we "know"
is correct, but we don't have the proper tools to prove that the following wff is
correct:

{(i = j) A (a[i] = 3)} a[i] := 4 {a[j] = 4}.

What went wrong? Well, since the expression a[i] does not appear in the post-
condition {a[j] = 4}, the attempted AAA (8.16) just gives us back the postcon-
dition as the precondition. This stops us in our tracks because we are now forced
to prove an invalid conditional wff.

The problem is that (8.16) does not address the possibility that i and j might
be equal. So we need a more sophisticated assignment axiom for arrays. Let's
start again and try to incorporate the preceding remarks. We want an axiom to
fill in the precondition of the following partial wff:

{ } a[i] := t {Q}.

Of course, we need to replace all occurrences of a[i] in Q by t. But we also need
to replace all occurrences of a[j] in Q, where j is any arithmetic expression, by
an expression that allows the possibility that j = i. We can do this by replacing
each occurrence of a[j] in Q by the following if-then-else statement:

"if j = i then t else a[j]."

480 CHAPTER 8 0 APPLIED LoGIc

For example, if the equation a[j] = s occurs in Q, then the precondition will
contain the following equation:

(ifj = i then t else a[j]) = s.

When an equation contains an if-then-else statement, we can write it with-
out if-then-else as a conjunction of two wffs. For example, the following two
statements are equivalent for terms s, t, and u:

(if C then t else u) = s,

(C - (t = s)) A (- C -- (u = s)).

So when we use the if-then-else form in a wff, we are still within the bounds of
a first-order theory with equality.

For example, if aUj] = s occurs in the postcondition for the array assignment
a[i] := t, then the precondition for the assignment should replace a[j] = s with
either one of the following two equivalent statements:

(if j= i then t else a [j]) = s,

((j =i) -- (t = s)) A ((j 7 i) -* (a[j] = s)).

Now let's put things together and state the correct axiom for array assign-
ment.

Array Assignment Axiom (AAA) (8.17)

{P} a[i] := t {Q},

where P is constructed from Q by the following rules:

1. Replace all occurrences of a[i] in Q by t.

2. Replace all occurrences of a D] in Q by

"ifi = i then t else a[j]".

Note: i and j may be any arithmetic expressions that do not contain a.

It is very important that the index expressions i and j don't contain the
array name. For example, a[a[k]J is not OK, but a[k + 1] is OK. To see why we
can't use arrays within arrays when applying AAA, consider the following wff:

{(a[1] = 2) A (a[2] = 2)} a[a[2]] := 1 {a[a[2]] = 1}.

This wff is false because the assignment statement sets a[2] = 1, which makes
the postcondition into the equation a[1] = 1, contradicting the fact that a[l] =
2. But we can use AAA to improperly "prove" that the wff is correct, as the
following sequence shows.

8.2 0 PROGRAM CORRECTNESS 481

1. {1 = 1} a[a[2]] := 1 {a[a[2]] = 11 AAA attempt with a[a[...]]

2. (a[l] = 2) A (a[2] = 2) -- (1 1=) T

Not QED 1, 2, Conseq.

The exclusion of arrays within arrays is not a real handicap because an

assignment statement like a[a[i]] t can be rewritten as the following sequence
of two assignment statements:

j := a[i]; aDl] := t.

Similarly, a logical statement like a[a[i]] = t appearing in a precondition or
postcondition can be rewritten as

]x ((x = a[i]) A (a[x] = t)).

Now let's see whether we can use (8.17) to prove the correctness of the wff
that we could not prove before.

• 8.10 Using the Array Assignment Axiom

We want to prove the correctness of the following wff:

{(i = j) A (a[i] = 3)} a[i] := 4 {a[j] = 4}.

This wff represents a simple reassignment of an array element, where the
index of the array element is represented by two variable names. We'll include
all the details of the consequence part of the proof, which uses the conjunction
form of an if-then-else equation.

Proof: 1. {(if j = i then 4 else aDj]) = 4}

a[i]: = 4 {a[j] = 4} AAA

2. (i = j) A (a[i] = 3) P

3. i = j 2, Simp

4. j = i 3, Symmetry

5. 4 = 4 EA

6. (j = i) - (4 = 4) 5, T (trivial)

7. (i # i) -- (a[j] = 4) 4, T (vacuous)

8. ((j =i)- (4= 4)) A ((j # i) (a[j =4)) 6, 7, Conj

9. (ifj = i then 4 else a]) =4 8, T

10. (i = j) A (a[i] = 3) --* ((ifj = i then 4

else aDl]) = 4) 2, 9, CP

QED 1, 10, Conseq.

482 CHAPTER 8 a APPLIED LoGic

8.2.3 Termination

Program correctness as we have been discussing it does not consider whether
loops terminate. In other words, the correctness of the wff {P} S { Q} includes
the assumption that S halts. That's why this kind of correctness is called partial
correctness. For total correctness we can't assume that loops terminate. We
must prove that they terminate.

Introductory Example
For example, suppose we're presented with the following while loop, and the only

information we know is that the variables take integer values:

while x $ y do (8.18)

x := x - 1;

y := y + 1;

od

We don't have enough information to be able to tell for certain whether the
loop terminates. For example, if we initialize x = 4 and y = 5, then the loop will
run forever. In fact, the loop will run forever whenever x < y. If we initialize

x = 6 and y = 3, the loop will also run forever. After a little study and thought,
we can see that the loop will terminate if initially we have x > y and x - y is
an even number.

This example shows that the precondition (i.e., the loop invariant) must

contain enough information to decide whether the loop terminates. We're going
to discuss a general method for proving termination of a loop. But first we need
to discuss a few preliminary ideas.

The State of a Computation

The state of a computation at some point is a tuple that represents the values

of the variables at that point in the computation. For example, the tuple (x, y)
denotes an arbitrary state of program (8.18). For our purposes the only time a
state will change is when an assignment statement is executed.

For example, let the initial state of a computation for (8.18) be (10, 6). For
this state the loop condition is true because 10 # 6. After the execution of the

first assignment statement, the state becomes (9, 6). Then after the execution of
the second assignment statement, the state becomes (9, 7). So the state changes
from (10, 6) to (9, 7) after one iteration of the loop. For this state the loop

condition is true because 9 7 7. So a second iteration of the loop can begin. We
can see that the state changes from (9, 7) to (8, 8) after the second iteration of
the loop. For this state the loop condition is 8 4 8, which is false, so the loop
terminates.

8.2 m PROGRAM CORRECTNESS 483

The Termination Condition

Program (8.18) terminates for the initial state (10, 6) because with each iteration
of the loop the value x - y gets smaller, eventually equaling zero. In other words,
x - y takes on the sequence of values 4, 2, 0. This is the key point in showing loop
termination. There must be some decreasing sequence of numbers that stops at
some point. In more general terms, the numbers must form a decreasing sequence
in some well-founded set. For example, in (8.18) the well-founded set is the set
N of natural numbers.

To show loop termination, we need to find a well-founded set (W, -<) together
with a way to associate the state of the ith iteration of the loop with an element
xi E W such that the elements form a decreasing sequence

X1 >- X2 >- X3 -.. •

Since W is well-founded, the sequence must stop. Thus the loop must halt.
Let's put things together and describe the general process to prove termi-

nation of a program while C do S with respect to a loop invariant P: We'll
assume that we already know, or we have already proven, that the body S ter-
minates. This reflects the normal process of working from the inside out when
doing termination proofs. Here's the termination condition.

Termination Condition (8.19)

The program while C do S terminates with respect to the loop invariant P

if the following conditions are met, where s is the program state before the
execution of S and t is the program state after the execution of S.

1. Find a well-founded set (W, -<0 .

2. Find an expression f in terms of the program variables.

3. Prove that if P and C are true for state s, then

f (s),f (t) e W and f (s) >- f (t).

Proof: Notice that (8.19) requires that f(s), f(t) c W. The reason for this is

that f is an expression that may very well not even be defined for certain states
or it may be defined but not a member of W. So we must check that f(s) and
f (t) are defined and members of W are in good standing. Then the statement
f(s) >- f(t) will ensure that the loop terminates. So assume we have met all the

conditions of (8.19). Let si represent the state prior to the ith execution of S.
Then Si+l represents the state after the ith execution of S. Therefore, we have
the following decreasing sequence of elements in W:

f(si) >- f (s2) >- f(s3) >- '".

Since W is a well-founded set, this sequence must stop because all descending
chains must be finite. Therefore the loop terminates. QED.

484 CHAPTER 8 m APPLIED LoGic

S8.11 A Termination Proof

Let's show that the following program terminates with respect to the loop in-
variant P = (x > y) A even(x - y) where all variables take integer values:

while x 5 y do

x X - 1;

y :=y + 1;

od

We'll leave the correctness proof with respect to P as an exercise. For a well-
founded set we'll choose N with the usual ordering, and for the program variables
(x, y) we'll define

f(x, y) = x - y.

If s = (x, y) is the state before the execution of the loop's body and t is the
state after execution of the loop's body, then

t= (x- 1, y + 1).

So the expressions f(s) and f(t) become

f(s) =f (x,y) = x- y,

f(t)=f(x-1,y + 1) = (x-1)-(y+1)=x-y-2.

To prove that program terminates with respect to P, we must prove the following

statement.

If P and C are true for state s, then f(s), f(t) c N and f(s) > f(t).

So assume that P and C are true for state s. This means that the following two
statements are true.

(x_> y) Aeven(x -y) and (x € y).

Since x > y and x 4 y, it follows that x > y, so x - y > 0. Therefore, f (s) G N.

Since x - y is even and positive, it follows that x - y - 2 > 0. So f(t) e N.
Finally, since x - y > x - y - 2, it follows that f(s) > f(t). Therefore, the
program terminates with respect to P.

r 8.12 A Termination Proof

Let's look at a popular example of termination that needs a well-founded set
other than the natural numbers. Suppose we have the following while loop where

8.2 0 PROGRAM CORRECTNESS 485

integer(x) means x is an integer and random() is a random number generator
that returns a natural number.

{integer (x) }
while x € 0 do

if x < 0 thenx= random()else x :=x - fi

od

{integer (x) A x = 0}

After some study it becomes clear that the program terminates because if x is
initially a negative integer, then it is assigned a random natural number. So after
at most one iteration of the loop, x is a natural number. Subsequent iterations
decrement x to zero, which terminates the loop.

To prove termination from a formal point of view we need to find a well-
founded set W and an expresion f such that f (s) >- f (t) where s represents x
at the beginning the loop body (s = x) and t represents x at the end of the loop
body (either t is a random natural number or t = x - 1). Since we don't know
in advance whether x is negative, we don't know how many times the loop will
execute because it depends on the random natural number that is generated. So
we can't define W = N and f(x) = x because f(x) may not be in N.

But we can get the job done with the well-founded set W = N x N with the
lexicographic ordering. Then we can define

f(x) = if x < 0 then (-x, 0) else (0, x).

Notice, for example, that

f (0)-- f (1) - f (2) 4 . -f (-I) --<f(-2)-- f (-3)-. .

Thus we have f(s), f(t) G W and f(s) >- f(t). Therefore, (8.19) tells us that
the loop terminates.

As a final remark to this short discussion, we should remember the funda-
mental requirement that programs with loops need loop invariants that contain
enough restrictions to ensure that the loops terminate.

Note

Hopefully, this introduction has given you the flavor of proving properties of
programs. There are many mechanical aspects to the process. For example, the
backwards application of the AA and AAA rules is a simple substitution problem
that can be automated. We've omitted many important results. For example,
if the programming language has other control structures, such as for-loops and
repeat-loops, then new inference rules must be constructed. The original papers

486 CHAPTER 8 * APPLIED LOGIC

in these areas are by Hoare [1969] and Floyd [1967]. A good place to start reading
more about this subject is the survey paper by Apt [1981].

Different languages usually require different formal theories to handle the
program correctness problem. For example, declarative languages, in which pro-
grams can consist of recursive definitions, require methods of inductive proof in
their formal theories for proving program correctness.

O Exercises

Assignment Statements

1. Prove that the following wff is correct over the domain of integers:

{true A even(x)} y := x + 1 {odd(y)}.

2. Prove that each of the following wffs is correct. Assume that the domain is
the set of integers.

a. {(a>0)A(b>0)1x a;y:bfx+y>O0
b. {a > b} x := -a; y:= -b {x < y}.

3. Both of the following wffs claim to correctly perform the swapping process.
The first one uses a temporary variable. The second does not. Prove that
each wff is correct. Assume that the domain is the real numbers.

a. {x < y} temp := x; x :=y; y := temp {y < x}.

b. {x<y}y:=y+x;x:=y-x;y:=y -x{y<x}.

If-Then and If-Then-Else Statements

4. Prove that each of the following wffs is correct. Assume that the domain is
the set of integers.

a. {x < 10} if x > 5thenx :=4 {x < 5}.

b. {true} if x $ y then x := y {x = y}.

c. {true} if x < y then x := y {x > y}.

d. {true} if x > y then x := y + 1; y := x + 1 fi {x < y}.

5. Prove that each of the following wffs is correct. Assume that the domain is
the set of integers.

a. {true} if x < y then max := y else max := x {(max > x) A
(max > y)}.

b. {true} ifx < ytheny := y-lelsex:= x; y := yfi{x < y}.

6. Show that each of the following wffs is not correct over the domain of inte-
gers.

a. {x < 5} ifx > 2thenx :=5 {x =5}.

b. {true} if x < y then y := y - x {y > 0}.

8.2 M PROGRAM CORRECTNESS 487

While Statements

7. Prove that the following wff is correct, where x and y are integers:

{x>yA even(x-y)}

while x 7 y do

x :=x - 1;

y :-y+ 1;

od

{x>yA even(x-y)A(xz=y)}.

•. Prove that each of the following wffs is correct.

t. The program computes the floor of a nonnegative real number x. Hint:

Let the loop invariant be (i < x).

{x > 0}

i:=0;

whilei<x-1 doi:=i+l od

{i = floor (x)}.

b. The program computes the floor of a negative real number x. Hint: Let
the loop invariant be (x < i + 1).

{x < 0}

i := -1;

while x < i do i := i - 1 od

{i = floor (x)}.

c. The program computes the floor of an arbitrary real number x, where

the statements S 1 and S 2 are the two programs from parts (a) and (b).

{true} if x > 0 then S1 else S 2 {i = floor(x)}.

9. Given a natural number n, the following program computes the sum of the
first n natural numbers. Prove that the wff is correct. Hint: Let the loop

488 CHAPTER 8 * APPLIED LOGIC

invariant be (s = i(i + 1)/2) A (i < n).

{n > 01
i:=0;

s := 0;

while i < n do

ii+1;

s:=s+i

od

{s = n (n + 1) /2}.

10. The following program implements the division algorithm for natural num-
bers. It computes the quotient and the remainder of the division of a natural
number by a positive natural number. Prove that the wff is correct. Hint:
Let the loop invariant be (a = yb + x) A (0 < x).

{(a > 0) A (b > 0)}

x := a;

y =0;

while b < x do

x := x - b;

y y + 1

od;

r x;

q :=y

{(a=qb+r) A(0 <r < b)}.

11. (Greatest Common Divisor). The following program claims to find the great-
est common divisor gcd(a, b) of two positive integers a and b. Prove that
the wff is correct.

{(a > 0) A (b > 0)}

x := a;

y :=b;

while x 7 y do

if x>ythenx:=x-yelse y:=y-x

od;

great := x

{gcd (a, b) = great}.

8.2 n PROGRAM CORRECTNESS 489

Hints: Use gcd(a, b) = gcd(x, y) as the loop invariant. You may use the
following useful fact derived from (2.2) for any integers w and z:
gcd(w, z) = gcd(w - z, z).

12. Write a program to compute the ceiling of an arbitrary real number. Give
the program a precondition and a postcondition, and prove that the resulting
wff is correct. Hint: Look at Exercise 8.

Array Assignment

13. For each of the following partial wffs, fill in the precondition that results by
applying the array assignment axiom (8.17).

a. {I} a[i - 1] := 24 {aj] = 24}.

b. { } a[i] := 16 {(a[i] = 16) A (a[j + 1] = 33)}.

c. { } a[i + 1] := 25; aj - 1] := 12 {(a[i] = 12) A (a[j] = 25)}.

14. Prove that each of the following wffs is correct.

a. {(i = j + 1) A (a[j] = 39)} a[i - 1] := 24 {a[j] = 24}.

b. {even(a[i]) A (i = j + 1)} a[j] := a[i] + 1 {odd(a[i 1])j.

c. {(i = j - 1) A (a[i] = 25) A (aj] = 12)}

a[i + 1] := 25; a[j - 1] := 12

{(a[i] = 12) A (a"] = 25)}.

15. The following wffs are not correct. For each wff, apply the array assignment
axiom to the postcondition and assignment statements to obtain a condition
Q. Show that the precondition does not imply Q.

a. {even(a[i])} a[i + 1] := a[i] + 1 {even(a[i + 1])}.

b. {a[2] = 2} i := a[2; a[i] 1 {(a[i] = 1) A (i = a[2])}.
c. {Vj ((1 < j 5) - (a] =23))} i:= 3; a[i] :=355

{Vj ((1 < j <5) -* (a[j] = 23))}.

d. {(a[1] = 2) A (a[2] = 2)} a[a[2]] := 1 {3x ((x a[2]) A (a[x] = 1))j.

Termination

16. Prove that each of the following loops terminates with respect to the given
loop invariant P, where int(x) means x is an integer and even(x) means x is
even. Hint: In each case use the well-founded set N with the usual ordering.

a. while i < x do i :=i + od with P = int(i) A int(x) A (i < x).
b. while i < x do x :=x - od with P = int(i) A int(x) A (i < x).

c. while even(x) A (x $ 0) do x := x/2 od with P = int(x).

17. Given the following while loop:

while x 7 y do if x < y then y := y - x else x := x - y od.

490 CHAPTER 8 n APPLIED LoGIc

Let P = pos(x) A pos(y) be the loop invariant, where pos(z) means z is
a positive integer. Prove that the loop terminates for each of the following
choices of f and well-founded set W.

a. f(x,y)=x+yand W=N.

b. f(x, y) = max(x, y) and W = N.

c. f(x, y) = (x, y) and W = N x N with the lexicographic ordering.

18. Exercise 17 demonstrates that the following loop terminates for the loop
invariant P = pos(x) A pos(y), where pos(z) means z is a positive integer:

while x # y do if x < y then y := y - x else x := x - y od.

Show that if we let W = N with the usual ordering, then each of the following
choices for f cannot be used to prove termination of the loop.

a. f(x, y) = Ix -y.

b. f(x, y) = min(x, y).

Challenges

19. Prove the total correctness of the following program to compute a mod b,
where a and b are natural numbers with b > 0. Hint: Let the loop invariant
be]x (a = xb + r) A (0 < r).

{(a > 0) A (b > 0)}

r := a;

while r > b do r:= r - b od

{r = amodb}.

20. Let member(a, L) be the test for membership of a in list L. Prove the total
correctness of the following program to compute member(a, L). Hint: Let
the loop invariant be "member(a, x) = member(a, L)".

{true}

x := L;

whilex#() anda# head(L) do x:= tail(x) od;

r := (X m b ())
{r = member (a, L)}

8.3 m HIGHER-ORDER LOGICS 491

8.3 Higher-Order Logics

In first-order predicate calculus the only things that can be quantified are indi-

vidual variables, and the only things that can be arguments for predicates are
terms (i.e., constants, variables, or functional expressions with terms as argu-
ments). If we loosen up a little and allow our wffs to quantify other things like
predicates or functions, or if we allow our predicates to take arguments that are
predicates or functions, then we move to a higher-order logic.

Is higher-order logic necessary? The purpose of this section is to convince
you that the answer is yes. After some examples we'll give a general definition
that will allow us to discuss nth-order logic for any natural number n.

Some Introductory Examples

We often need higher-order logic to express simple statements about the things
that interest us. We'll do a few examples to demonstrate.

j8.13 Formalizing a Statement

Let's try to formalize the following statement:

"There is a function that is larger than the log function."

This statement asserts the existence of a function. So if we want to formalize
the statement, we'll need to use higher-order logic to quantify a function. We
might formalize the statement as

3f Vx (f(x) > log x).

This wff is an instance of the following more general wff, where > is an instance

of p and log is an instance of g.

]f Vx p(f(x), g(x)).

j 8.14 Equality

Let's formalize the notion of equality. Suppose we agree to say that x and y are
identical if all their properties are the same. We'll signify this by writing x = y.
Can we express this thought in formal logic? Sure. If P is some property, then
we can think of P as a predicate, and we'll agree that P(x) means that x has
property P. Then we can define x = y as the following higher-order wff:

VP ((P(x) -* P(y)) A (P(y) -- P(x))).

This wff is higher-order because the predicate P is quantified.

492 CHAPTER 8 m APPLIED LOGIC

~ 8.15 Mathematical Induction

Suppose that we want to formalize the following version of the principle of math-
ematical induction:

For any predicate P, if P(O) is true and if for all natural numbers n,
P(n) implies P(n + 1), then P(n) is true for all n.

We can represent the statement with the following higher-order wff:

VP (P(O) A Vn(P(n) -• P(n + 1)) -- Vn P(n)).

This wff is an instance of the following more general higher-order wff, where
c = 0 and s(n) = n+ 1:

VP (P(c) A Vn(P(rn) - P(s(n))) - Vn P(n)).

Now that we have some examples, let's get down to business and discuss
higher-order logic in a general setting that allows us to classify the different
orders of logic.

8.3.1 Classifying Higher-Order Logics

To classify higher-order logics, we need to make an assumption about the rela-
tionship between predicates and sets.

Identifying Sets with Predicates

We'll assume that predicates are sets and that sets are predicates. Let's see why
we can think of predicates and sets as the same thing. For example, if P is a
predicate with one argument, we can think of P as a set in which x E P if and
only if P(x) is true. Similarly, if S is a set of 3-tuples, we can think of S as a
predicate in which S(x, y, z) is true if and only if (x, y, z) E S.

The relationship between sets and predicates allows us to look at some wffs
in a new light. For example, consider the following wff:

Vx (A(x) -* B(x)).

In addition to the usual reading of this wff as "For every x, if A(x) is true, then
B(x) is true," we can now read it in terms of sets by saying, "For every x, if
x e A, then x c B." In other words, we have a wff that represents the statement
"A is a subset of B."

Definition of Higher-Order Logic

The identification of predicates and sets puts us in position to define higher-order
logics.

8.3 U HIGHER-ORDER LOGICS 493

Higher-Order Logic and Higher-Order Wff

A logic is called higher-order if it allows sets to be quantified or if it allows
sets to be elements of other sets.

A wff that quantifies a set or has a set as an argument to a predicate is called
a higher-order wff.

For example, the following two wffs are higher-order wffs:

IS S(x) The set S is quantified.

S(x) A T(S) The set S is an element of the set T.

Functions are Sets

Let's see how functions fit into the picture. Recall that a function can be thought
of as a set of 2-tuples. For example, if f (x) = 3x for all x E N, then we can think
of f as the set

f = {(x, 3x) I x c N}.

So whenever a wff contains a quantified function name, the wff is actually quan-
tifying a set and thus is a higher-order wff by our definition. Similarly, if a
wff contains a function name as an argument to a predicate, then the wff is
higher-order. For example, the following two wffs are higher-order wffs:

If Vx p(f(x), g(x)) The function f is a set and is quantified.

p(f(x)) A q(f) The function f is a set and is an element of the set q.

Since we can think of a function as a set and we are identifying sets with

predicates, we can also think of a function as a predicate. For example, let f be
the function

f = {(x, 3x) I x E N}.

We can think of f as a predicate with two arguments. In other words, we can
write the wff f(x, 3x) and let it mean "x is mapped by f to 3x," which of course
we usually write as f(x) = 3U.

Classifying Orders of Logic

Now let's see whether we can classify the different orders of logic. We'll start
with the two logics that we know best. A propositional calculus is called a zero-
order logic and a first-order predicate calculus is called a first-order logic. We
want to continue the process by classifying the higher-order logics as second-
order, third-order, and so on. To do this, we need to attach an order to each
predicate and each quantifier that occurs in a wff. We'll start with the order of

a predicate.

494 CHAPTER 8 U APPLIED LOGIC

The Order of a Predicate
A predicate has order 1 if all its arguments are terms (i.e., constants, indi-
vidual variables, or function values). Otherwise, the predicate has order n +
1, where n is the highest order among its arguments that are not terms.

For example, for each of the following wffs we've given the order of its pred-
icates (i.e., sets):

S(x) A T(S) S has order 1, and T has order 2.

p(f(x)) A q(f) p has order 1, f has order 1, and q has order 2.

The reason that the function f has order 1 is that any function, when thought
of as a predicate, takes only terms for arguments. Thus any function name has
order 1. Remember to distinguish between f(x) and f; f(x) is a term, and f is
a function (i.e., a set or a predicate).

We can also relate the order of a predicate to the level of nesting of its
arguments, where we think of a predicate as a set. For example, if a wff contains
the three statements S(x), T(S), and P(T), then we have x e S, S G T, and T
c P. The orders of S, T, and P are 1, 2, and 3. So the order of a predicate (or

set) is the maximum number of times the symbol G is used to get from the set
down to its most basic elements.

Now we'll define the order of a quantifier as follows:

The Order of a Quantifier
A quantifer has order 1 if it quantifies an individual variable. Otherwise,
the quantifier has order n + 1, where n is the order of the predicate being
quantified.

For example, let's find the orders of the quantifiers in the wff that follows.
Try your luck before you read the answers.

Vx IS IT If (S(x, f(x)) A T(S)).

The quantifier Vx has order 1 because x is an individual variable.]S has order

2 because S has order 1. 3 T has order 3 because T has order 2. If has order 2
because f is a function name, and all function names have order 1.

Now we can make a simple definition for the order of a wff.

The Order of a Wff
The order of a wff is the highest order of any of its predicates and quantifiers.

8.3 m HIGHER-ORDER LOGICS 495

-. 8.16 Orders of Wffs

Here are a few sample wffs and their orders.

First-Order Wffs

S(x) S has order 1.

Vx S(x) Both S and Vx have order 1.

Second-Order Wffs

S(x) A T(S) S has order 1, and T has order 2.

]S S(x) S has order 1, and]S has order 2.

IS (S(x) A T(S)) S has order 1, and BS and T have order 2.

P(x, f, f(x)) P has order 2 because f has order 1.

Third-Order Wffs

S(x) A T(S) A P(T) S, T, and P have orders 1, 2, and 3.

VT (S(x) A T(S)) S, T, VT have orders 1, 2, and 3.

IT (S(x) A T(S) A P(T)) S, T, P, and 3T have orders 1, 2, 3, and 3.

Now we can make the definition of a nth-order logic.

The Order of a Logic
An nth-order logic is a logic whose wffs have order n or less.

Let's do some examples that transform sentences into higher-order wffs.

.. 8.17 Subsets

Suppose we want to represent the following statement in formal logic.

"There is a set of natural numbers that doesn't contain 4."

Since the statement asserts the existence of a set, we'll need an existential quan-
tifier. The set must be a subset of the natural numbers, and it must not contain
the number 4. Putting these ideas together, we can write a mixed version (in-
formal and formal) as follows:

IS (S is a subset of N and - S(4)).

Let's see whether we can finish the formalization. We've seen that the general
statement "A is a subset of B" can be formalized as follows:

Vx (A(x) - B(x)).

496 CHAPTER 8 * APPLIED LOGIC

Therefore, we can write the following formal version of our statement:

3S (Vx (S(x) -- N(x)) A S(4)).

This wff is second-order because S has order 1, so IS has order 2.

8.18 Cities, Streets, and Addresses

Suppose we think of a city as a set of streets and a street as a set of house
addresses. We'll try to formalize the following statement:

"There is a city with a street named Main, and
there is an address 1140 on Main Street."

Suppose C is a variable representing a city and S is a variable representing a
street. If x is a name, then we'll let N(S, x) mean that the name of S is x. A
third-order logic formalization of the sentence can be written as follows:

BC 3S (C(S) A N(S, Main) A S(1140)).

This wff is third-order because S has order 1, so C has order 2 and I C has
order 3.

8.3.2 Semantics

How do we attach a meaning to a higher-order wff? The answer is that we
construct an interpretation for the wff. We start out by specifying a domain D
of individuals that we use to give meaning to the constants, the free variables, and
the functions and predicates that are not quantified. The quantified individual
variables, functions, and predicates are allowed to vary over all possible meanings
in terms of D.

Let's try to make the idea of an interpretation clear with some examples.

j 8.19 A Second-Order Interpretation

We'll give an interpretation for the following second-order wff:

BS 3T Vx (S(x) -- T(x)).

Suppose we let the domain be D = {a, b}. We observe that S and T are
predicates of order 1, and they are both quantified. So S and T can vary over all
possible single-argument predicates over D. For example, the following list shows
the four possible predicate definitions for S together with the corresponding set
definitions for S:

8.3 w HIGHER-ORDER LOGICS 497

Predicate Definitions for S Set Definitions for S

S (a) and S (b) are both true. S = {a, b}.

S (a) is true and S (b) is false. S = {a}.

S (a) is false and S (b) is true. S = {b}.

S (a) and S (b) are both false. S = 0.

We can see from this list that there are as many possibilities for S as there are
subsets of D. A similar statement holds for T. Now it's easy to see that our
example wff is true for our interpretation. For example, if we choose S = {a, b}
and T = 0, then S is always true and T is always false. Thus

S(a) -* T(a) and S(b) -- T(b) are both true.

Therefore, IS IT Vx (S(x) - -* T(x)) is true for the interpretation.

-. • 8.20 A Second-Order Interpretation

We'll give an interpretation for the following second-order wff:

IS Vx By S(x, y).

Let D = {a, b}. Since S takes two arguments, it has 16 possible definitions, one
corresponding to each subset of 2-tuples over D. For example, if S = {(a, a),
(b, a)}, then S(a, a) and S(b, a) are both true, and S(a, b) and S(b, b) are both
false. Thus the wff]S Vx 3y S(x, y) is true for our interpretation.

8.21 A Third-Order Interpretation

We'll give an interpretation for the following third-order wff:

3T Vx (T(S) -, S(x)).

We'll let D = {a, b}. Since S is not quantified, it is a normal predicate and we
must give it a meaning. Suppose we let S(a) be true and S(b) be false. This
is represented by S = {a}. Now T is an order 2 predicate because it takes an
order 1 predicate as its argument. T is also quantified, so it is allowed to vary
over all possible predicates that take arguments like S.

From the viewpoint of sets, the arguments to T can be any of the four
subsets of D. Therefore, T can vary over any of the 16 subsets of {0, {a}, {b},
{a, b}}. For example, one possible value for T is T = {0, {b}). If we think of
T as a predicate, this means that T(0) and T({b}) are both true, while T({a})
and T({a, b}) are both false. This value of T makes the wffVx (T(S) -* S(x))
true. Thus the wff IT Vx (T(S) -* S(x)) is true for our interpretation.

498 CHAPTER 8 m APPLIED LOGIC

As we have shown in the examples, we can give interpretations to higher-

order wffs. This means that we can also use the following familiar terms in our
discussions about higher-order wffs.

model, countermodel, valid, invalid, satisfiable, and unsatisfiable.

What about formal reasoning with higher-order wffs? That's next.

8.3.3 Higher-Order Reasoning

Gddel proved a remarkable result in 1931. He proved that if a formal system is
powerful enough to describe all the arithmetic formulas of the natural numbers
and the system is consistent, then it is not complete. In other words, there is
a valid wff that can't be proven as a theorem in the system. Even if additional
axioms were added to make the wff provable, then there would exist a new valid
wif that is not provable in the larger system. A very readable account of O6del's
proof is given by Nagel and Newman [1958].

The formulas of arithmetic can be described in a first-order theory with
equality, so it follows from G6del's result that first-order theories with equality
are not complete. Similarly, we can represent the idea of equality with second-

order predicate calculus. So it follows that second-order predicate calculus is not
complete.

What does it really mean when we have a logic that is not complete? It
means that we might have to leave the formalism of the logic to prove that some
wffs are valid. In other words, we may need to argue informally-using only our
wits and imaginations to prove some logical statements. In some sense this is
nice because it justifies our existence as reasoning beings. Since most theories

cannot be captured by using only first-order logic, there will always be enough
creative work for us to do-perhaps aided by computers.

Even though higher-order logic does not give us completeness, we can still

do formal reasoning to prove the validity of many higher-order wigs.

Formal Proofs

Before we give some formal proofs, we need to say something about inference
rules for quantifiers in higher-order logic. We'll use the same rules that we

used for first-order logic, but we'll apply them to higher-order wigs when the
need arises. Basically, the rules are a reflection of our natural discourse. To
keep things clear, when we use an uppercase letter like P as a variable, we'll

sometimes use the lowercase letter p to represent an instantiation of P. Here is
an example to demonstrate the ideas.

8.3 m HIGHER-ORDER LoGics 499

S8.22 A Valid Second-Order Wff

We'll give an informal proof and a formal proof that the following second-order
wff is valid:

]P VQ Vx (Q(x) -- P(X)).

Proof: Let I be an interpretation with domain D. Then the wff has the following
meaning with respect to I: There is a subset P of D such that for every subset
Q of D it follows that x C Q implies x C P. This statement is true because we
can choose P to be D. So I is a model for the wff. Since I was an arbitrary
interpretation, it follows that the wff is valid. QED.

In the formal proof, we'll use El to instantiate Q to a particular value rep-
resented by lowercase q. Also, since P is universally quantified, we can use UI to
instantiate P to any predicate. We'll instantiate P to true, so that P(x) becomes
true(x), which means that true(x) true.

Proof: 1. -7 EP VQ Vx (Q(x) -* P(x)) P for IP

2. VP]Q Ix (Q(x) A P(x)) 1, T

3. IQ 3x (Q(x) A -• true(x)) 2, UI (instantiate P to true)

4.]x (q(x) A - true(x)) 3, EI

5. q(c) A -' true(c) 4, El

6. q(c) A false 5, T

7. false 6, T

QED 1, 6, IP.

We'll finish the section by making a short visit with geometry.

A Euclidean Geometry Example

Let's see how higher-order logic comes into play when we discuss elementary ge-
ometry. From an informal viewpoint, the wffs of Euclidean geometry are English

sentences. For example, the following four statements describe part of Hilbert's
axioms for Euclidean plane geometry.

1. On any two distinct points there is always a line.

2. On any two distinct points there is not more than one line.

3. Every line has at least two distinct points.

4. There are at least three points not on the same line.

500 CHAPTER 8 * APPLIED LOGIC

Can we formalize these axioms? Let's assume that a line is a set of points. So
two lines are equal if they have the same set of points We'll also assume that
arbitrary points are denoted by the variables x, y, and z and indivdual points
by the constants a, b, and c. We'll denote arbitrary lines by the variables L, M,
and N and we'll denote individual lines by the constants 1, m, and n. We'll let
the predicate L(x) denote the fact that x is a point on line L or, equivalently, L
is a line on the point x. Now we can write the four axioms as second-order wffs
as follows:

1. Vx Vy ((x # y) - IL (L(x) A L(y))).

2. Vx Vy ((x # y) - VL VM (L(x) A L(y) A M(x) A M(y) , (L = M))).

3. VL 3x]y ((x 5 y) A L(x) A L(y)).

4. Ix 3y 3z ((x 4 y) A (x # z) A (y 7 z) A VL (L(x) A L(y) -* L(z))).

In the following examples, we'll prove that there are at least two distinct
lines. In the first example, we'll give an informal proof of the statement. In the
second example, we'll formalize the statement and give a formal proof.

r _ 8.23 An Informal Theorem and Proof

Let's prove the following theorem.

There are at least two distinct lines.

Proof: Axiom 4 tells us that there are three distinct points a, b, and c not on
the same line. By Axiom 1 there is a line I on a and b, and again by Axiom 1
there is a line m on a and c. By Axiom 4, c is not on line 1. Therefore, it follows
that 1 # m. QED.

___ 8.24 A Formal Theorem and Proof

Now we'll formalize the theorem from Example 8.23 and give a formal proof. A
formalized version of the theorem can be written as

3L 3M Ix (- L(x) A M(x)).

8.3 n HIGHER-ORDER LOGICS 501

Proof:

1. Ix y]z ((x• y) A (x z) A(y#z)

A VL (L(x) A L(y) -+ L(z))) Axiom 4
2. (a :ý b) A (a 7ý c) A (b c) A VL (L(a) A L(b) • •L(c)) 1,E1, ET, El

3. Vx Vy ((x 5 y) ---* EL (L(x) A L(y))) Axiom 1
4. (a # b) - EIL (L(a) A L(b)) 3, U1, UI
5. a y b 2, Simp

6. HL (L(a) A L(b)) 4, 5, MP

7. 1(a) A l(b) 6, El

8. (a # c) -* EL (L(a) A L(c)) 3, UI, UI

9. a y c 2, Simp

10. EL (L(a) A L(c)) 8, 9, MP

11. me(a) A m(c) 10, El
12. VL (L(a) A L(b) -- L(c)) 2, Simp

13. 1(a) A 1(b) - 1-- 1(c) 12, UI

14. - 1(c) 7,13, MP

15. mr(c) 11, Simp

16. - 1(c) A re(c) 14, 15, Conj
17. 3x (- 1(x) A mr(x)) 16, EG

18. EM Ex (- I(x) A M(x)) 17, EG

19. EL 3M 3x (-, L(x) A M(x)). 18, EG

QED.

A few more Euclidean geometry problems (both informal and formal) are
included in the exercises.

0 Exercises

Orders of Logic

1. State the minimal order of logic needed to describe each of the following
wffs.

a. Vx (Q(x) --+ P(Q)).
b. Ex Vg Elp (q(c, g(x)) A p(g(x))).

c. A(B) A B(C) A C(D) A D(E) A E(F).

d. EP (A(B) A B(C) A C(D) A P(A)).

502 CHAPTER 8 m APPLIED LOGIC

e. S(x) A T(S, x) -* U(T, S, x).

f. Vx (S(x) A T(S, x) -* U(T, S, x)).

g. Vx 3S (S(x) A T(S, x) -* U(T, S, x)).

h. Vx 3S 3T (S(x) A T(S, x) - U(T, S, x)).

i. Vx 3S 3T 3U (S(x) A T(S, x) --* U(T, S, x)).

Formalizing English Sentences

2. Formalize each of the following sentences as a wff in second-order logic.

a. There are sets A and B such that A n B = 0.

b. There is a set S with two subsets A and B such that S = A U B.

3. Formalize each of the following sentences as a wff in an appropriate higher-
order logic. Also figure out the order of the logic that you use in each case.

a. Every state has a city named Springfield.

b. There is a nation with a state that has a county named Washington.

c. A house has a room with a bookshelf containing a book by Thoreau.

d. There is a continent with a nation containing a state with a county
named Lincoln, which contains a city named Central City that has a
street named Broadway.

e. Some set has a partition consisting of two subsets.

4. Formalize the basis of mathematical induction: If S is a subset of N and

0 e S and x G S implies succ(x) e S, then S = N.

5. If R is a relation, let B(R) mean that R is a binary relation. Formalize the
following statement about relations: Every binary relation that is irreflexive

and transitive is antisymmetric.

Validity

6. Show that the following wff is satisfiable and invalid:

3x 3y (p(x, y) -* VQ (Q(x) -* . Q(y))-

7. Show that each of the following wffs is valid with an informal validity argu-
ment.

a. VS 3x S(x) • Ex VS S(x).

b. Vx 3S S(x) 3 ES Vx S(x).

c. 3S Vx S(x) Vx 3S S(X).

d. 3x VS S(r) -• VS 3x S(x).

8. Give an informal proof and a formal proof that the following second-order

wff is valid:

VP EQ Vx (Q(x) - P(x)).

8.4 m CHAPTER SUMMARY 503

More Geometry

9. Use the facts from the Euclidean geometry example to give an informal proof
for each of the following statements. You may use any of these statements
to prove a subsequent statement.

a. For each line there is a point not on the line.
b. Two lines cannot intersect in more than one point.

c. Through each point there exist at least two lines.
d. Not all lines pass through the same point.

10. Formalize each of the following statements as a wff in second-order logic, us-
ing the variable names from the Euclidean geometry example. Then provide
a formal proof for each wff.

a. Not all points lie on the same line.

b. Two lines cannot intersect in more than one point.
c. Through each point there exist at least two lines.
d. Not all lines pass through the same point.

8.4 Chapter Summary

A first-order theory is a formal treatment of some subject that uses first-order
predicate calculus. We often need the idea of equality when applying logic in
a formal manner to a particular subject. Equality can be added to first-order
logic in such a way that the following familiar notion is included: Equals can
replace--be substituted for-equals.

We can prove elementary statements about imperative programs within a
first-order theory where each program is bounded by two conditions a precon-
dition and a postcondition. The theory uses only one axiom the assignment
axiom. Some useful inference rules are the consequence rule and the rules for
composition, if-then, if-then-else, and while statements. The theory can be ex-
tended by adding axioms and inference rules for items that are normally found
in imperative languages, such as arrays and other loop forms. We can prove
termination conditions that imply the termination of while loops.

When formalizing a subject, we often need higher forms of logic to express
statements. Higher-order logic extends first-order logic by allowing objects other
than variables such as predicates and function names-to be quantified and to
be arguments in predicates. We can classify the order of a logic if we make
the association that a predicate is a set. Even though higher-order logics are
not complete, we can still reason formally within these logics just as we do in
propositional logic and first-order logic.

Computational
Logic

Let us not dream that reason can ever be popular.
Passions, emotions, may be made popular, but
reason remains ever the property of the few.

-Johann Wolfgang von Goethe (1749-1832)

Can reasoning be automated? The answer is yes, for some logics. In this chapter
we'll discuss how to automate the reasoning process for first-order logic. We
might start by automating the "natural deduction" proof techniques that we in-
troduced in Chapters 6, 7, and 8. A problem with this approach is that there are
many inference rules that can be applied in many different ways. In this chapter
we'll look at a more mechanical way to perform deduction. We'll introduce a
single inference rule, called resolution, that can be applied automatically by a
computer. We'll also see that the resolution rule is used for the execution of
logic programs.

.1 i ..Ii(l I!, I -[

Section 9.1 introduces the resolution inference rule. To understand the rule,
we'll need to discuss clauses, clausal forms, substitution, and unification.
We'll see how the rule can be applied in a mechanical fashion to prove the-
orems.

Section 9.2 introduces logic programming and shows how resolution is applied to
perform the computation of a logic program. We'll also give some elementary

techniques for constructing logic programs.

9.1 Automatic Reasoning

Let's look at the mechanical side of logic. We're going to introduce an inference
rule that can be applied automatically. As fate would have it, the rule must

505

506 CHAPTER 9 0 COMPUTATIONAL LOGIC

be applied while trying to prove that a wff is unsatisfiable. This is not really
a problem, because we know that a wff is valid if and only if its negation is
unsatisfiable. In other words, if we want to prove that the wff W is valid, then
we can do so by trying to prove that - W is unsatisfiable. For example, if we
want to prove the validity of the conditional A --- B, then we can try to prove
the unsatisfiability of its negation A A - B.

The new inference rule, which is called the resolution rule, can be applied
over and over again in an attempt to show unsatisfiability. We can't present the
resolution rule yet because it can be applied only to wffs that are written in a
special form, called clausal form. So let's get to it.

9.1.1 Clauses and Clausal Forms

We need to introduce a little terminology before we can describe a clausal form.
Recall that a literal is either an atom or the negation of an atom. For example,
p(x) and - q(x, b) are literals. To distinguish whether a literal has a negation
sign, we may use the terms positive literal and negative literal. p(x) is a positive
literal, and - q(x, b) is a negative literal.

A clause is a disjunction of zero or more literals. For example, the following
wffs are clauses:

p (x),

q (x, b),

p(a) Vp(b),

p(x) V - q(a,y) Vp(a).

The clause that is a disjunction of zero literals is called the empty clause, and
it's denoted by the following special box symbol:

Fl.

The empty clause is assigned the value false. We'll soon see why this makes sense
when we discuss resolution.

A clausal form is the universal closure of a conjunction of clauses. In other
words, a clausal form is a prenex conjunctive normal form, in which all quantifiers
are universal and there are no free variables. For ease of notation we'll often
represent a clausal form by the set consisting of its clauses. For example, if
S = {C1,... ,C,}, where each Ci is a clause, and if xl,... ,xm are the free
variables in the clauses of S, then S denotes the following clausal form:

Vxl ... Vx, 1(C 1 A ... A Ca).

For example, the following list shows five wffs in clausal form together with
their corresponding sets of clauses:

9.1 m AUTOMATIC REASONING 507

Wffs in Clausal Form Sets of Clauses

Vx p (x) {p (x)}

Vx - q (x, b) {- q(x,b)}

Vx Vy (p (x) A- q (y, b)) {p (x) - q (y,b)}

Vx Vy (p (y, f (x)) A (q (y) V - q (a))) {p (y, f (x)), q (y) V - q (a)}

(p (a) V p (b)) A q (a, b) {p (a) V p (b), q (a, b)}

Notice that the last clausal form does not need quantifiers because it doesn't
have any variables. In other words, it's a proposition. In fact, for propositions a
clausal form is just a conjunctive normal form (CNF).

When we talk about an interpretation for a set S of clauses, we mean an
interpretation for the clausal form that S denotes. Thus we can use the words
"valid," "invalid," "satisfiable," and "unsatisfiable" to describe S because these
words have meaning for the clausal form that S denotes.

It's easy to see that some wffs are not equivalent to any clausal form. For
example, let's consider the following wff:

Vx]y p(x, y).

This wff is not a clausal form, and it isn't equivalent to any clausal form because
it has an existential quantifier. Since clausal forms are the things that resolution
needs to work on, it's nice to know that we can associate a clausal form with
each wff in such a way that the clausal form is unsatisfiable if and only if the wff
is unsatisfiable. Let's see how to find such a clausal form for each wff.

Constructing Clausal Forms

To construct a clausal form for a wff, we can start by constructing a prenex
conjunctive normal form for the wff. If there are no free variables and all the
quantifiers are universal, then we have a clausal form. Otherwise, we need to
get rid of the free variables and the existential quantifiers and still retain enough
information to be able to detect whether the original wff is unsatisfiable. Luckily,
there's a way to do this. The technique is due to the mathematician Thoralf
Skolem (1887-1963), and it appears in his paper [1928].

Let's introduce Skolem's idea by considering the following example wff:

VX Ey p(X, y).
In this case the quantifier ly is inside the scope of the quantifier Vx. So it may
be that y depends on x. For example, if we let p(x, y) mean "x has a successor
y," then y certainly depends on x. If we're going to remove the quantifier 3y
from Vx]y p(x, y), then we'd better leave some information about the fact that
y may depend on x. Skolem's idea was to use a new function symbol, say f, and
replace each occurrence of y within the scope of 3y by the term f(x). After

performing this operation, we obtain the following wff, which is now in clausal
form:

Vx p(x, f(x)).

508 CHAPTER 9 0 COMPUTATIONAL LoGIc

We can describe the general method for eliminating existential quantifiers
as follows:

Skolem's Rule (9.1)
Let]x W(x) be a wff or part of a larger wff. If 3x is not inside the scope of
a universal quantifier, then pick a new constant c, and

replace Elx W(x) by W(c).

If Ix is inside the scope of universal quantifiers Vxl, ... , Vx,, then pick a new
function symbol f, and

replace 3x W(x) by W(f(x, ... ,)).

The constants and functions introduced by the rule are called Skolem func-
tions.

' 9.1 Applying Skolem's Rule

Let's apply Skolem's rule to the following wff:

EIx Vy Vz Iu Vv]w p(x, y, z, u, v, w).

Since the wff contains three existential quantifiers, we'll use (9.1) to create three
Skolem functions to replace the existentially quantified variables as follows:

Replace x by b because Ix is not in the scope of a universal quantifier.

Replace u by f(y, z) because lIu is in the scope of Vy and Vz.

Replace w by g(y, z, v) because]w is in the scope of Vy, Vz, and Vv.

Now we can apply (9.1) to eliminate the existential quantifiers by making the
above replacements to obtain the following clausal form:

Vy Vz Vv p(b, y, z, f(y, z), v, g(y, z, v)).

Now we have the ingredients necessary to construct clausal forms with the
property that a wff and its clausal form are either both unsatisfiable or both
satisfiable.

9.1 u AUTOMATIC REASONING 509

Skolem's Algorithm (9.2)
Given a wff W, there exists a clausal form such that W and the clausal form
are either both unsatisfiable or both satisfiable. In other words, W has a
model if and only if the clausal form has a model. The clausal form can be
constructed from W by the following steps:

1. Construct the prenex conjunctive normal form of W.

2. Replace all occurrences of each free variable by a new constant.

3. Use Skolem's rule (9.1) to eliminate the existential quantifiers.

Proof: We already know that any wff is equivalent to its prenex conjunctive
normal form, and we also know that any wff W with free variables has a model
if and only if the wff obtained from W by replacing each occurrence of a free
variable by a new constant has a model. So we may assume that W is already
in prenex conjunctive normal form with no free variables.

Let s(W) denote the clausal form constructed from W by Skolem's algo-
rithm. We must show that W has a model if and only if s(W) has a model.
One direction is easy because s(W) -- W is valid. To see this, start with the
premise s(W) and use UI to remove all universal quantifiers. Then use EG and
UG to restore the quantifiers of W in proper order. So if s(W) has a model,
then W has a model. We'll prove the converse by induction on the number n of
existential quantifiers in W.

If n = 0, then W = s(W), so any model for W is also a model for s(W).
Now assume that n > 0 and assume that, for any wff A of the same form with
less than n existential quantifiers, if A has a model, then s(A) has a model. Since
n > 0, let ly be the leftmost existential quantifier in W. There may be universal
quantifiers to the left of 3y in the prenex form. So, for some natural number k,
we can write W in the form

W = Vxl ... Vzx ly C(xl, ... , xk, y).

Now apply Skolem's rule to W by replacing y by f(xI, ... , xk) to obtain the wff

A = Vxs... Vxk C(X1, ... , Xk, f(Xr, ... , Xk)).

Suppose that W has a model I with domain D. Then for all dl, ... , dk G D
there exists e E D such that C(dl, . .. , dk, e) is true with respect to I. Let J be
the interpretation for A obtained from I by defining f(d 1 , ... , dk) = e whenever
C(dl, ... , dk, e) is true with respect to L It follows that J is a model for A.
So if W has a model, then A has a model. Now A has fewer than n existential
quantifiers. Induction tells us that if A has a model, then s(A) has a model. So
if W has a model, then s(A) has a model. But since A is obtained from W by
applying Skolem's rule, it follows that s(A) = s(W). So if W has a model, then
s(W) has a model. QED.

510 CHAPTER 9 0 COMPUTATIONAL LowIC

Before we do some examples, let's make a couple of remarks about the steps
of the algorithm. Step 2 could be replaced by the statement "Take the existential
closure." But then Step 3 would remove these same quantifiers by replacing each
of the newly quantified variables with a new constant name. So we saved time
and did it all in one step. Step 2 can be done at any time during the process.
We need Step 2 because we know that a wff and its existential closure are either
both unsatisfiable or both satisfiable.

Step 3 can be applied during Step 1 after all implications have been elim-
inated and after all negations have been pushed to the right, but before all
quantifiers have been pushed to the left. Often this will reduce the number of
variables in the Skolem function. Another way to simplify the Skolem function is
to push all quantifiers to the right as far as possible before applying Skolem's rule.

' 9.2 Applying Skolem's Algorithm

Suppose W is the following wff:

W = Vx - p(x) A Vy 3z q(y, z).

First we'll apply (9.2) as stated. In other words, we calculate the prenex form
of W by moving the quantifiers to the left to obtain

Vx Vy 3z (- p(x) A q(y, z)).

Then we apply Skolem's rule (9.1), which says that we replace z by f(x, y) to
obtain the following clausal form for W.

Vx Vy (- p(x) A q(y, f(x, y))).

Now we'll start again with W, but we'll apply (9.1) during Step 1 after all
implications have been eliminated and after all negations have been pushed to the
right. There is nothing to do in this regard. So, before we move the quantifiers
to the left, we'll apply (9.1). In this case the quantifier 3z is only within the
scope of Vy, so we replace z by f(y) to obtain

Vx - p(x) A Vy q(y, f(y)).

Now finish constructing the prenex form by moving the universal quantifiers to
the left to obtain the following clausal form for W:

Vx Vy (- p(x) A q(y, f(y))).

So we get a simpler clausal form for W in this case.

' 9.3 A Simple Clausal Form

Suppose we have a wff with no variables (i.e., a propositional wff). For example,
let W be the wff

(p(a) -- q) A ((q A s(b)) -* r).

9.1 0 AUTOMATIC REASONING 511

To find the clausal form for W, we need only apply equivalences from proposi-
tional calculus to find a CNF as follows:

(p (a) -- q) A ((q A s (b)) -- r) -- (7p (a) V q) A (9(q A s (b)) V r)

- (- p(a) vq) A ((- q V- s(b)) V r)

- (- p (a) V q) A (- q V s (b) V r).

.9.4 Finding a Clausal Form

We'll use (9.2) to find a clausal form for the following wff.

Ey Vx (p(x) -* q(x, y)) A Vx 3y (q(x, x) A s(y) -- r(x)).

The first step is to find the prenex conjunctive normal form. Since there are two
quantifiers with the same name, we'll do some renaming to obtain the following
wff:

3y Vx (p(x) -- q(x, y)) A Vw 3z ((q(w, w) A s(z)) -* r(w)).

Next, we eliminate the conditionals to obtain the following wff:

]y Vx (- p(x) V q(x, y)) A Vw]z (-' (q(w, w) A s(z)) V r(w)).

Now, push negation to the right to obtain the following wff:

]y Vx (- p(x) V q(x, y)) A Vw 3z (- q(w, w) V - s(z) V r(w)).

Next, we'll apply Skolem's rule (9.1) to eliminate the existential quantifiers and
obtain the following wff:

Vx (-• p(x) V q(x, a)) A Vw (-' q(w, w) V - s(f(w)) V r(w)).

Lastly, we push the universal quantifiers to the left and obtain the desired clausal
form:

Vx Vw ((-' p(x) V q(x, a)) A (-' q(w, w) V - s(f(w)) V r(w))).

S 9.5 Finding a Clausal Form

We'll construct a clausal form for the following wff:

Vx (p(x) -- ly Vz ((p(w) V q(x, y)) -, Vw r(x, w))).

The free variable w is also used in the quantifier Vw, and the quantifier Vz is
superfluous. So we'll do some renaming, and we'll remove Vz to obtain the
following wff:

vx (p(x) -* 3y ((p(w) V q(x, y)) -* Vz r(x, z))).

512 CHAPTER 9 E COMPUTATIONAL LOGIC

We remove the conditionals in the usual way to obtain the following wff:

Vx (- p(x) V 3y (- (p(w) V q(x, y)) V Vz r(x, z))).

Next, we move negation inward to obtain the following wff:

Vx (-i p(x) V Ey ((- p(w) A - q(x, y)) V Vz r(x, z))).

Now we can apply Skolem's rule (9.1) to eliminate 3y and replace the free variable
w by b to get the following wff:

Vx (-' p(x) V ((-• p(b) A - q(x, f(x))) V Vz r(x, z))).

Next, we push the universal quantifier Vz to the left, obtaining the following wff:

Vx Vz (-7 p(x) V ((- p(b) A - q(x, f(x))) V r(x, z))).

Lastly, we distribute V over A to obtain the following clausal form:

Vw Vz ((- p (x) V - p(b) V r-(x, z)) A (- p(x) V q(x, f(x)) V r(x, z))).

So we can transform any wff into a wff in clausal form in which the two
wffs are either both unsatisfiable or both satisfiable. Since the resolution rule
tests clausal forms for unsatisfiability, we're a step closer to describing the idea
of resolution. Before we introduce the general idea of resolution, we're going to
pause and discuss resolution for the simple case of propositions.

9.1.2 Resolution for Propositions

It's easy to see how resolution works for propositional clauses (i.e., clauses with
no variables). The resolution inference rule works something like a cancellation
process. It takes two clauses and constructs a new clause from them by deleting
all occurrences of a positive literal p from one clause and all occurrences of -7 p
from the other clause. For example, suppose we are given the following two
propositional clauses:

p V q,

-p V rV- p.

We obtain a new clause by first eliminating p from the first clause and eliminating
the two occurrences of -' p from the second clause. Then we take the disjunction
of the leftover clauses to form the new clause:

q V r.

9.1 a AUTOMATIC REASONING 513

Let's write down the resolution rule in a more general way. Suppose we have
two propositional clauses of the following forms:

pVA,

p V B.

Let A - p denote the disjunction obtained from A by deleting all occurrences
of p. Similarly, let B - - p denote the disjunction obtained from B by deleting
all occurrences of - p. The resolution rule allows us to infer the propositional
clause

(A - p) V (B - p).

Here's the rule.

Resolution Rule for Propositions (9.3)

pvA, -pvB
..(A -p) V (B - - p)"

Although the rule may look strange, it's a good rule. That is, it maps
tautologies to a tautology. To see this, we can suppose that (p V A) A (- p V B)
= true. If p is true, then the equation reduces to B = true. Since - p is false,
we can remove all occurrences of - p from B and still have B - - p = true.
Therefore, (A - p) V (B - - p) = true. We obtain the same result if p is false.
So the inference rule does its job.

A proof by resolution is a refutation that uses only the resolution rule. So
we can define a resolution proof as a sequence of clauses, ending with the empty
clause, in which each clause in the sequence either is a premise or is inferred
by the resolution rule from two preceding clauses in the sequence. Notice that
the empty clause is obtained from (9.3) when A either is empty or contains only
copies of p and when B either is empty or contains only copies of -' p. For
example, the simplest version of (9.3) can be stated as follows:

Ap p
.0z

In other words, we obtain the well-known tautology p A - p - false.
For example, let's prove that the following clausal form is unsatisfiable:

(- p V q) A (p V q) A (- q V p) A (- p V - q).

In other words, we'll prove that the following set of clauses is unsatisfiable:

f- p V q, p V q, -' q V p, -• p V -• q}.

514 CHAPTER 9 U COMPUTATIONAL LOGIC

The following resolution proof does the job:

Proof: 1. -p V q P

2. pVq P
3. q qVp P

4. ppV -q P
5. q V q 1, 2, Resolution

6. p 3, 5, Resolution
7. - p 4, 5, Resolution

8. E] 6, 7, Resolution.
QED

Now let's get back on our original track, which is to describe the resolution
rule for clauses of the first-order predicate calculus.

9.1 .3 Substitution and Unification

When we discuss the resolution inference rule for clauses that contain variables,
we'll see that a certain kind of matching is required. For example, suppose we
are given the following two clauses:

p (x, y) V q (y),
r (z) V - q (b).

The matching that we will discuss allows us to replace all occurrences of the
variable y by the constant b, thus obtaining the following two clauses:

p(x,b) V q(b),
r (z) V -q (b).

Notice that one clause contains q(b) and the other contains its negation -' q(b).
Resolution will allow us to cancel them and construct the disjunction of the
remaining parts, which is the clause p(x, b) V r(z).

We need to spend a little time to discuss the process of replacing variables
by terms. If x is a variable and t is a term, then the expression x/t is called a
binding of x to t and can be read as "x gets t" or "x is bound to t" or "x has
value t" or "x is replaced by t." For example, three typical bindings are written
as follows:

x/a, y/z, w/f (b,v).

Definition of Substitution

A substitution is a finite set of bindings {x1 /ti, ... , xn/t,}, where variables
X1, ... , xn are all distinct and xi , ti for each i. We use lowercase Greek letters

9.1 m AUTOMATIC REASONING 515

to denote substitutions. The empty substitution, which is just the empty set, is
denoted by the Greek letter c.

What do we do with substitutions? We apply them to expressions, an ex-
pression being a finite string of symbols. Let E be an expression, and let 0 be
the following substitution:

0 = {xl/tl, ... , Xn/t}.

Then the instance of E by 0, denoted EO, is the expression obtained from E by
simultaneously replacing all occurrences of the variables xI, ... , xn in E by the
terms t1 , ... , tn, respectively. We say that EO is obtained from E by applying
the substitution 0 to the expression E. For example, if E = p(x, y, f(x)) and
0 = {x/a, y/f (b)}, then EO has the following form:

EO = p(x, y, f(x)){x/a, y/f (b)} = p(a, f(b), f(a)).

If S is a set of expressions, then the instance of S by 0, denoted SO, is the
set of all instances of expressions in S by 0. For example, if S = {p(x, y),
q(a, y)} and 0 = {x/a, y/f (b)}, then SO has the following form:

SO = {p(x, y), q(a, y)}{x/a, y/f (b)} = {p(a, f(b)), q(a, f(b)}.

Now let's see how we can combine two substitutions 0 and oa into a single
substitution that has the same effect as applying 0 and then applying a to any
expression.

Compostion of Substitutions

The composition of two substitutions 0 and o is the substitution denoted by
Qoa that satisfies the following property for any expression E:

E(OQ) = (EQO)a.

Although we have described the composition in terms of how it acts on
all expressions, we can compute OQa without any reference to an expression as
follows:

Computing the Composition (9.4)
Given the two substitutions 0 = {xI/tI, ... , Xn/tn} and a = {y//si,
y,/sm}. The composition 0O is constructed as follows:

1. Apply a to the denominators of 0 to get {xl/tia,..., Xn/tna}.

2. Delete any bindings of the form xi/xi from the set on line 1.

3. Delete any yi/si from a if yi is a variable in {x 1 , ... , xn.

4. Oa is the union of the sets constructed on lines 2 and 3.

516 CHAPTER 9 U COMPUTATIONAL LOGIC

The process looks complicated, but it's really quite simple. It's just a for-
malization of the following construction: For each distinct variable v occurring
in the numerators of 0 and a, apply 0 and then a to v, obtaining the expression
(v9)o. The composition 90 consists of all bindings v/(vO)a such that v 7 (v0)a.

It's also nice to know that we can always check whether we constructed a
composition correctly. Just make up an example atom containing the distinct
variables in the numerators of 0 and a, say, p(vl, ... , Vk), and then check to
make sure the following equation holds:

((p(vl, ... , Vk)O)o) = P(v, Vk) (Oo).

__ 9.6 Finding a Composition

Let 0 = {x/f (y), y/z} and a = {x/a, y/b, z/y}. To find the composition 00,
we first apply o to the denominators of 0 to form the following set:

{x/f(y)a, y/za} = {x/f (b), y/y}.

Now remove the binding y/y to obtain {x/f (b)}. Next, delete the bindings x/a
and y/b from a to obtain {z/y}. Finally, compute 9a as the union of these two
sets 8a = {x/f (b), z/y}.

Let's check to see whether the answer is correct. For our example atom we'll
pick p(X, y, z) because x, y, and z are the distinct variables occurring in the
numerators of 9 and a. We'll make the following two calculations to see whether
we get the same answer.

((p (x, y, z) 0) a)= p (f (y), z, z) a = p (f (b), y, y),

p (x, y, z) (0a) =p (f (b), y, y).

Three simple, but useful, properties of composition are listed next. The
proofs are left as exercises.

Properties of Composition (9.5)
For any substitutions 0 and o and any expression E the following

statements hold.

1. E(Oa) = (E9)a.

2. EE = E.

3. OE = EO = 0.

9.1 u AUTOMATIC REASONING 517

A substitution 0 is called a unifier of a finite set S of literals if SO is a
singleton set. For example, if we let S = {p(x, b), p(a, y)}, then the substitution
0 = fx/a, y/b} is a unifier of S because

SO = {p(a, b)},

which is a singleton set.
Some sets of literals don't have a unifier, while other sets have infinitely

many unifiers. The range of possibilities can be shown by the following four
simple examples.

1. {p(x), q(y)} doesn't have a unifier.

2. {p(x), - p(x)} doesn't have a unifier.

3. {p(x), p(a)} has a unifier. Any unifer must contain the binding x<a and
yield the singleton {p(a)}. e.g., {x/a} and {x/a, y/z} are unifiers of the
set.

4. {p(x), p(y)} has infinitely many unifiers that can yield different singletons.
e.g., {x/y}, {y/x}, and {x/t, y/t} for any term t are all unifers of the set.

Among the unifiers of a set there is always at least one unifier that can be
used to construct every other unifier. To be specific, a unifier 0 for S is called
a most general unifier (mgu) for S if for every unifier a of S there exists a
substitution a such that a = 9cr. In other words, an mgu for S is a factor of
every other unifier of S. Let's look at an example.

.S 9.7 A Most General Unifier

As we have noted, the set S = {p(x), p(y)} has infinitely many unifiers that we
can describe as follows:

{x/y}, {y/x}, and {x/t, y/t} for any term t.

The unifier {x/y} is an mgu for S because we can write the other unifiers in
terms of {x/y} as follows: {y/z} = {x/y}{y/x}, and {x/t, y/t} = {x/y}{y/t}
for any term t. Similarly, {y/x} is an mgu for S.

Unification Algorithms

We want to find a way to construct an mgu for any set of literals. Before we do
this, we need a little terminology to describe the set of terms that cause two or
more literals in a set to be distinct.

518 CHAPTER 9 0 COMPUTATIONAL LOGIC

If S is a set of literals, then the disagreement set of S is constructed in the
following way.

1. Find the longest common substring that starts at the left end of each
literal of S.

2. The disagreement set of S is the set of all the terms that occur in the
literals of S that are immediately to the right of the longest common
substring.

For example, we'll construct the disagreement set for the following set of
three literals.

S = {p((x, f(x), y), p(x, y, z), p (x, f(a), b)}.

The longest common substring for the literals in S is the string

"p (x"

of length four. The terms in the literals of S that occur immediately to the right
of this string are f(x), y, and f(a). Thus the disagreement set of S is

{f(x), y, f(a)}.

Now we have the tools to describe a very important algorithm by Robinson
[1965]. The algorithm computes, for a set of atoms, a most general unifier, if
one exists.

Unification Algorithm (Robinson) (9.6)

Input: A finite set S of atoms.

Output: Either a most general unifier for S or a statement that S is not

unifiable.

1. Set k =0and00 = E , and go to Step 2.

2. Calculate S0 k. If it's a singleton set, then stop (Ok is the mgu for S).
Otherwise, let Dk be the disagreement set of SOk, and go to Step 3.

3. If Dk contains a variable v and a term t, such that v does not occur in t,
then calculate the composition 0 k+1 = Ok{v/t}, set k := k + 1, and go
to Step 2. Otherwise, stop (S is not unifiable).

The composition Ok{v/t} in Step 3 is easy to compute for two reasons.
The variable v doesn't occur in t, and v will never occur in the numerator of

Ok. Therefore, the middle two steps of the composition construction (9.4) don't

9.1 m AUTOMATIC REASONING 519

change anything. In other words, the composition Ok{V/t} is constructed by
applying {v/t} to each denominator of Ok and then adding the binding v/t to
the result.

S9.8 Finding a Most General Unifier

Let's try the algorithm on the set S = {p(x, f(y)), p(g(y), z)}. We'll list each
step of the algorithm as we go.

1. Set 00 = c.

2. SOO = Sc = S is not a singleton. Do = {x, g(y)}.

3. Variable x doesn't occur in term g(y) of Do.

Put 01 = 00 {x/g(y)} = {x/g(y)}.

2. SO1 = {p(g(y), f(y)), p(g(y), z)} is not a singleton. D1 = {f(y), z}.

3. Variable z does not occur in term f(y) of D1 .

Put 02 = 01 {z/f (y)} = {x/g(y), z/f (y)}.

2. S0 2 = {p(g(y), f(y))} is a singleton. Therefore, the algorithm terminates
with the mgu {x/g(y), z/f (y)} for the set S.

S9.9 No Most General Unifier

Let's trace the algorithm on the set S = {p(x), p(g(x))}. We'll list each step of
the algorithm as we go:

1. Set 00 =c.

2. SOO = Sc = S, which is not a singleton. Do = {x, g(x)}.

3. The only choices for a variable and a term in Do are x and g(x). But the
variable x occurs in g(x). So the algorithm stops, and S is not unifiable.

This makes sense too. For example, if we were to apply the substitution {x/g(x)}
to S, we would obtain the set {p(g(x)), p(g(g(x)))}, which in turn gives us the
same disagreement set {x, g(x)}. So the process would go on forever. Notice
that a change of variables makes a big difference. For example, if we change the
second atom in S to p(g(y)), then the algorithm unifies the set {p(x), p(g(y))},
obtaining the mgu {x/g(y)}.

520 CHAPTER 9 U COMPUTATIONAL LoGic

The following alternative algorithm for unification is due to Martelli and
Montanari [1982]. It can be used on pairs of atoms.

Unification Algorithm (Martelli-Montanari) (9.7)

Input: A singleton set {A = B} where A and B are atoms or terms.

Output: Either a most general unifier of A and B or a statement that they
are not unifiable.

Perform the following nondeterministic actions until no action can be
performed or a halt with failure occurs. If there is no failure then the output
is a set of equations of the form {xI = t1 , ... , xn = t,,} and the mgu is
{xl/tl, ... , x./tn}. Note: f and g represent function or predicate symbols.

Equation Action
1. f(s8,...,Sn)= f(tl,... ,tn). Replace the equation with the equa-

tions S1 = t, • ... , Sn tn.

2. f(sj,... ,Sm) = g(tl,... ,tm) Halt with failure.
and either f # g or m $ n.

3. x = x Delete the equation.
4. t = x and t is not a variable. Replace t = x with x = t.

5. x = t, x does not occur in t, Apply the substitution {x/t} to all
and x occurs in another equa- other equations.
tion.

6. x = t, t is not a variable, and Halt with failure.
x occurs in t.

j 9.10 Finding a Most General Unifier

Let's try the algorithm on the two atoms p(x, f(x)) and p(y, f(b)). We'll list
each set of equations generated by the algorithm together with the reason for
each step.

{p (x, f (x)) = p (y, f (b))} Input
{x = y, f (x) = f (b)} Equation (1)

{x = y, f (y) = f (b)} Equation (5)

{x = y, y = b} Equation (1)
{x = b, y = b} Equation (5)

Therefore, the mgu is {x/b, y/b}.

9.1 0 AUTOMATIC REASONING 521

9.1.4 Resolution: The General Case

Now we've got the tools to discuss resolution of clauses that contain variables.
Let's look at a simple example to help us see how unification comes into play.
Suppose we're given the following two clauses:

p(x,a) V-- q(x),
- p(b,y) V - q(a).

We want to cancel p(x, a) from the first clause and - p(b, y) from the second
clause. But they won't cancel until we unify the two atoms p(x, a) and p(b, y).
An mgu for these two atoms is {x/b, y/a}. If we apply this unifier to the original
two clauses, we obtain the following two clauses:

p(b,a) V- q(b),

Sp(b,a) V -' q (a).

Now we can cancel p(b, a) from the first clause and - p(b, a) from the second
clause and take the disjunction of what's left to obtain the following clause:

- q(b) V - q(a).

That's the way the resolution inference rule works when variables are present.
Now let's give a detailed description of the rule.

The Resolution Inference Rule

The resolution inference rule takes two clauses and constructs a new clause. But
the rule can be applied only to clauses that possess the following two properties.

Two Requirements for Resolution

1. The two clauses have no variables in common.

2. There are one or more atoms, L 1, ... , Lk, in one of the clauses and one
or more literals, -ý M 1 , ... , - M, in the other clause such that the set
{L 1, ... , Lk, M 1, ... , M, } is unifiable.

The first property can always be satisfied by renaming variables. For exam-
ple, the variable x is used in both of the following clauses:

q(b,x) Vp(x), -q(x,a) Vp(y).

We can replace x in the second clause with a new variable z to obtain the
following two clauses that satisfy the first property:

q(b,x)Vp(x), -q(z,a)Vp(y).

522 CHAPTER 9 M COMPUTATIONAL LOGIC

Suppose we have two clauses that satisfy properties 1 and 2. Then they can
be written in the following form, where C and D represent the other parts of

each clause:

LlV...VLkVC and -M 1 V...V -MVD.

Since the clauses satisfy the second property, we know that there is an mgu
0 that unifies the set of atoms {L 1, , Lk, M 1, ... , M I}. In other words,
there is a unique atom N such that N LiO = MjO for any i and j. To be
specific, we'll set

N = L 10.

Now we're ready to do our cancelling. Let CO - N denote the clause obtained
from CO by deleting all occurrences of the atom N. Similarly, let DO - - N

denote the clause obtained from DO by deleting all occurrences of the atom - N.
The clause that we construct is the disjunction of any literals that are left after
the cancellation:

(CO - N) V (DO -N).

Summing all this up, we can state the resolution inference rule as follows:

Resolution Rule (R) (9.8)

Llv...vLkVC, -M 1 V...V - ,,MvD

.'. (CO- N) V (DO- - N)

The clause constructed in the denominator of (9.8) is called a resolvant of the
two clauses in the numerator. Let's describe how to use (9.8) to find a resolvant

of the two clauses.

1. Check the two clauses for distinct variables (rename if necessary).

2. Find an mgu 0 for the set of atoms {L1, ... , Lk, M 1, ... , MO}.

3. Apply 0 to both clauses C and D.

4. Set N = L1O.

5. Remove all occurrences of N from CO.

6. Remove all occurrences of - N from DO.

7. Form the disjunction of the clauses in Steps 5 and 6. This is the resolvant.

9.1 m AUTOMATIC REASONING 523

Let's do some examples to get the look and feel of resolution before we forget
everything.

_ _ 9.11 Resolving Two Clauses

We'll try to find a resolvant of the following two clauses:

q(b,x) Vp(x) V q(b,a),

Sq(y,a) Vp (y).

We'll cancel the atom q(b, x) in the first clause with the literal - q(y, a) in the
second clause. So we'll write the first clause in the form L V C, where L and C
have the following values:

L=q(b,x) and C=p(x)Vq(b,a).

The second clause can be written in the form - M V D, where M and D have
the following values:

M=q(y,a) and D=p(y).

Now L and M, namely q(b, x) and q(y, a), can be unified by the mgu 0 = {y/b,
x/a}. We can apply 0 to either atom to obtain the common value N = LO =
MO = q(b, a). Now we can apply (9.8) to find the resolvant of the two clauses.
First, compute the clauses CO and DO:

CO = (p (x) V q (b, a)) {y/b,x/a} = p (a) V q (b, a),

DO = p (y) {y/b, x/a} = p (b).

Next we'll remove all occurrences of N = q(b, a) from CO and remove all occur-
rences of - N =- q(b, a) from DO:

CO - N = p (a) V q (b, a) - q (b, a) = p (a),

DO--i N = p(b) - - q (b,a) = p(b).

Lastly, we'll take the disjunction of the remaining clauses to obtain the desired
resolvant p(a) V p(b).

• 9.12 Resolving Two Clauses

In this example we'll consider cancelling two literals from one of the clauses.
Suppose we have the following two clauses.

p(f(x))Vp(y)V - q(x),

Sp (z) V q (w).

524 CHAPTER 9 0 COMPUTATIONAL LOGIC

We'll pick the disjunction p(f (x)) V p(y) from the first clause to cancel with the
literal - p(z) in the second clause. So we need to unify the set of atoms {p(f(x)),
p(y), p(z)}. An mgu for this set is 0 = {y/f (x), z/f(x)}. The common value
N obtained by applying 0 to any of the atoms in the set is N = p(f(x)). To see
how the cancellation takes place, we'll apply 0 to both of the original clauses to
obtain the clauses

p (f (x)) V p (f (x)) V - q (x),

-p (f (x)) V q (w).

We'll cancel p(f(x)) V p(f(x)) from the first clause and - p(f(x)) from the
second clause, with no other deletions possible. Thus the resolvant of the original
two clauses is the disjunction of the remaining parts of the preceding two clauses:

q(x) V q(w).

What's so great about finding resolvants? Two things are great. One great
thing is that the process is mechanical it can be programmed. The other great
thing is that the process preserves unsatisfiability. In other words, we have the

following result.

Theorem (9.9)
Let G be a resolvant of the clauses E and F. Then {E, F} is unsatisfiable if

and only if {E, F, G} is unsatisfiable.

Now we're almost in position to describe how to prove that a set of clauses
is unsatisfiable. Let S be a set of clauses where after possibly renaming some
variables distinct clauses of S have disjoint sets of variables. We define the
resolution of S, denoted by R(S), to be the set

R(S) = S U { G I G is a resolvant of a pair of clauses iii S}.

We can conclude from (9.9) that S is unsatisfiable if and only if R(S) is unsat-
isfiable. Similarly, R(S) is unsatisfiable if and only if R(R(S)) is unsatisfiable.
We can continue on in this way. To simplify the notation, we'll define R°(S) =

S and R n+(S) = R(R.(S)) for n > 0. So for any n we can say that

S is unsatisfiable if and only if Rn(S) is unsatisfiable.

Let's look at some examples to demonstrate the calculation of the sequence
of sets S, R(S), R'(S),....

j 9.13 A Refutation

Suppose we start with the following set of clauses:

S = {p(x), p(a)}.

9.1 * AUTOMATIC REASONING 525

To compute R(S), we must add to S all possible resolvants of pairs of clauses.

There is only one pair of clauses in S, and the resolvant of p(x) and - p(a) is
the empty clause. Thus R(S) is the following set.

R(S) = {p(x), -p(a),[]}.

Now let's compute R(R(S)). The only two clauses in R(S) that can be resolved
are p(x) and - p(a). Since their resolvant is already in R(S), there's nothing
new to add. So the process stops, and we have R(R(S)) = R(S).

.. 9.14 A Refutation

Consider the following set of three clauses.

S = {p(x), q(y) V - p(y), - q(a)}.

Let's compute R(S). There are two pairs of clauses in S that have resolvants.
The two clauses p(x) and q(y) V - p(y) resolve to q(y). The clauses q(y) V
-p(y) and - q(a) resolve to - p(a). Thus R(S) is the following set:

R(S) = {p(x), q(y) V -i p(y), - q(a), q(y), -• p(a)}.

Now let's compute R(R(S)). The two clauses p(x) and - p(a) resolve to the
empty clause, and nothing new is added by resolving any other pairs from R(S).
Thus R(R(S)) is the following set:

R(R(S)) = {p(x) ,q(y) V - p(y),- q(a) ,q(y), - p(a),El}.

It's easy to see that we can't get anything new by resolving pairs of clauses in

R(R(S)). Thus we have R3 (S) = R 2 (S).

These two examples have something very important in common. In each
case the set S is unsatisfiable, and the empty clause occurs in Rn(S) for some
n. This is no coincidence. The following result of Robinson [1965] allows us to
test for the unsatisfiability of a set of clauses by looking for the empty clause in
the sequence S, R(S), R 2 (S),....

Resolution Theorem (9.10)
A finite set S of clauses is unsatisfiable if and only if E G Rn(S) for some
n > 0.

The theorem provides us with an algorithm to prove that a wff is unsatisfi-
able. Let S be the set of clauses that make up the clausal form of the wff. Start

526 CHAPTER 9 U COMPUTATIONAL LoGic

by calculating all the resolvants of pairs of clauses from S. The new resolvants
are added to S to form the larger set of clauses R(S). If the empty clause has
been calculated, then we are done. Otherwise, calculate resolvants of pairs of
clauses in the set R(S). Continue the process until we find a pair of clauses whose
resolvant is the empty clause.

If we get to a point at which no new clauses are being created and we have
not found the empty clause, then the process stops, and we conclude that the
wff that we started with is satisfiable.

9.1.5 Theorem Proving with Resolution

Recall that a resolution proof is a sequence of clauses that ends with the empty
clause, in which each clause either is a premise or can be inferred from two
preceding clauses by the resolution rule. Recall also that a resolution proof is a
proof of unsatisfiability. Since we normally want to prove that some wff is valid,
we must first take the negation of the wff, then find a clausal form, and then
attempt to do a resolution proof. We'll summarize the steps.

Steps to Prove that W is Valid

1. Form the negation - W. For example, if W is a conditional of the form
A A B A C -- D, then- W has the form A A B A C A D.

2. Use Skolemn's algorithm (9.2) to convert line 1 into clausal form.

3. Take the clauses from line 2 as premises in the proof.

4. Apply the resolution rule (9.8) to derive the empty clause.

9.15 Binary Relations

We'll prove that if a binary relation is irreflexive and transitive, then it is an-
tisymmetric. If p denotes a binary relation, then the three properties can be
represented as follows.

Irreflexive: Vx - p(x, x).

Transitive: Vx Vy Vz (p(x, y) A p(y, z) - p(x, z)).

Antisymmetric: Vx Vy (p(x, y) - - p(y, x)).

So we must prove that the wff W is valid, where

W = Irreflexive A Transitive --* Antisymmetric.

To use resolution, we must prove that - W is unsatisfiable, where

SW = Irreflexive A Transitive A - Antisymmetric.

9.1 s AUTOMATIC REASONING 527

Notice that - Antisymmetric has the following form:

- Antisymmetric = - Vx Vy (p(x, y) - -- p(y, x)) =-]x Ey (p(x, y) A p(y, x)).

First we put - W into clausal form. The following table shows the clauses in
the clausal forms for Irreflexive, Transitive, and - Antisymmetric.

Wff Clauses

Vx - p(x,x) -ý p(x,x)
VxVyVz(p(x,y)Ap(y,z) -*p(x,z)) - p(u,v)V--p(v,w)Vp(u,w)

3x 3y (p (x, y) A p (y, x)) p (a, b) and p (b, a)

To do a resolution proof, we start with the four clauses as premises. Our goal is
to construct resolvants to obtain the empty clause. Each resolution step includes
the most general unifier used for that application of resolution.

Proof: 1. - p(x, x) P
2. - p(u, v) V - p(v, w) V p(u, w) P

3. p(a, b) P
4. p(b, a) P

5. - p(x, v) V - p(v, x) 1, 2, R, {u/x, w/x}
6. - p(b, a) 3, 5, R, {x/a, v/b}
7. E 4, 6, R, { }.

QED

So we have a refutation. Thus we can conclude that the properties of irreflexive
and transitive imply antisymmetry.

F . 9.16 The Family Tree Problem

Suppose we let p stand for the isParentOf relation and let g stand for the is-
GrandParentOf relation. Then we can define g in terms of p by the following
wff, which we'll call G:

G = Vx Vy Vz (p(x, z) A p(z, y) -* g(x, y)).

In other words, if x is a parent of z and z is a parent of y, then we conclude
that x is a grandparent of y. Suppose we have the following facts about parents,
where the letters a, b, c, d, and e denote the names of people:

p(a, b), p(c, b), p(b, d), p(a, e).

Now, suppose someone claims that g(a, d) is implied by the given facts. Let P
denote the conjunction of parent facts.

P = p(a, b) A p(c, b) A p(b, d) A p(a, e).

528 CHAPTER 9 0 COMPUTATIONAL LOGIC

So the claim is that the wff W is valid, where

W = P A G -- g(a, d).

To prove the claim using resolution, we must prove that - W is unsatisfiable.
We can observe that - W has the following form:

SW = (P A G - g(a, d)) - P A G A - g(a, d).

We need to put -, W into clausal form. Since P is a conjunction of atoms, it
is already in clausal form. So we need only work on G, which will be in clausal
form if we replace the conditional. The result is the clause

Sp(x, z) V - p(z, y) V g(x, y).

So the clausal form of -, W consists of the following six clauses.

p(a, b), p(c, b), p(b, d), p(a, e), - p(x, z) V - p(z, y) V g(x, y), and - g(a, d).

To do a resolution proof, we start with the six clauses as premises. Our goal is
to construct resolvants to obtain the empty clause. Each resolution step includes
the most general unifier used for that application of resolution.

Proof: 1. p(a, b) P
2. p(c, b) P
3. p(b, d) P
4. p(a, e) P
5. - p(x, z) V -• p(z, y) V g(x, y) P

6. g•g(a, d) P
7. p(a, z) V - p(z, d) 5, 6, R, {x/a, y/d}

8. p(b, d) 1, 7, R, {z/b}
9. El 3, 8, R,{}.

QED

So we have a refutation. Therefore, we can conclude that g(a, d) is implied from
the given facts.

J 9.17 Diagonals of a Trapezoid

We'll give a resolution proof that the alternate interior angles formed by a diag-
onal of a trapezoid are equal. This problem is from Chang and Lee [1973]. Let
t(x, y, u, v) mean that x, y, u, and v are the four corner points of a trapezoid in
clockwise order. Let p(x, y, u, v) mean that edges xy and uv are parallel lines.
Let e(x, y, z, U, v, w) mean that angle xyz is equal to angle uvw. We'll assume
the following two axioms about trapezoids.

9.1 s AUTOMATIC REASONING 529

Axiom 1: Vx Vy Vu Vv (t(x, y, u, v) -- p(x, y, u, v)).

Axiom 2: Vx Vy Vu Vv (p(x, y, u, v) -- e(x, y, v, u, v, y)).

To prove: t(a, b, c, d) -* e(a, b, d, c, d, b).

To prepare for a resolution proof, we need to write each axiom in its clausal
form. This gives us the following two clauses:

Axiom 1: - t(x y, u, v) V p(x, y, u, v).

Axiom 2: -p(X Y, U, v) V e(x, Y, V, N, v, y).

Next, we need to negate the statement to be proved and put the result in clausal
form, which gives us the following two clauses:

t (a,b,c,d),
Ce(ab,d,c,d,b).

To do a resolution proof, we start with the four clauses as premises. Our goal is
to construct resolvants to obtain the empty clause. Each resolution step includes
the most general unifier used for that application of resolution.

Proof: 1. t(x y, U, v) V p(X, y, u, v) P
2. -p(x, y, u,v) V e(x, y, v, u,v, y) P

3. t(a, b, c, d) P
4. e•e(a, b, d, c, d, b) P
5. - p(a, b, c, d) 2, 4, R, {x/a, y/b, v/d, u/c}
6. t•(a, b, c, d) 1, 5, R, {x/a, y/b, u/c, v/d}
7. D] 3, 6, R, { }.

QED

9.1.6 Remarks

In the example proofs we didn't follow a specific strategy to help us choose which
clauses to resolve. Strategies are important because they may help reduce the
searching required to find a proof. Although a general discussion of strategy is
beyond our scope, we'll present a strategy in the next section for the special case
of logic programming.

The unification algorithm (9.6) is the original version given by Robinson
[1965]. Other researchers have found algorithms that can be implemented more
efficiently. For example, the paper by Paterson and Wegman [1978] presents a
linear algorithm for unification.

530 CHAPTER 9 a COMPUTATIONAL LoGic

There are also other versions of the resolution inference rule. One approach
uses two simple rules, called binary resolution and factoring, which can be used
together to do the same job as resolution. Another inference rule, called paramod-
ulation, is used when the equality predicate is present to take advantage of sub-
stituting equals for equals. An excellent introduction to automatic reasoning is
contained in the book by Wos, Overbeek, Lusk, and Boyle [1984].

Another subject that we haven't discussed is automatic reasoning in higher-
order logic. In higher-order logic it's undecidable whether a set of atoms can be
unified. Still there are many interesting results about higher-order unification
and there are automatic reasoning systems for some higher-order logics. For
example, in second-order monadic logic (monadic logic restricts predicates to
at most one argument) there is an algorithm to decide whether two atoms can
be unified. For example, if F is a variable that represents a function, then the
two atoms F(a) and a can be unified by letting F be the constant function that
returns the value a or by letting F be the identity function. The paper by Snyder
and Gallier [1989] contains many results on higher-order unification.

Automatic theorem-proving techniques are an important and interesting part
of computer science, with applications to almost every area of endeavor. Proba-
bly the most successful applications of automatic theorem proving will be inter-
active in nature, with the proof system acting as an assistant to the person using
it. Typical tasks involve such things as finding ways to represent problems and
information to be processed by an automatic theorem prover, finding algorithms
that make proper choices in performing resolution, and finding algorithms to
efficiently perform unification. We'll look at the programming side of theorem
proving in the next section.

O Exercises

Constructing Clausal Forms

1. Use Skolem's algorithm, if necessary, to transform each of the following wffs
into a clausal form.

a. (AAB) V CVD.

b. (AAB) V (CAD) V (E-F).

c.]y Vx (p(x, y) q(x)).

d. 3y Vx p(x, y) - q(x).

e. Vx Vy (p(x, y) V]z q(x, y, z)).
f. Vx ly Ez [(- p(x, y) A q&r, z)) V r(x, y, z)].

Resolution with Propositions

2. What is the resolvant of the propositional clause p V - p with itself? What
is the resolvant of p V - p V q with itself?

9.1 m AUTOMATIC REASONING 531

3. Find a resolution proof to show that each of the following sets of propositional

clauses is unsatisfiable.

a. {A v B, A, - B v C, C}.

b. {p V q, p V r, - r V p,-- q}.

c. {A V B, A V - C, - A V C, A V - B, C V - B, - C V B}.

Substitutions and Unification

4. Compute the composition Oa of each of the following pairs of substitutions.

d. 9 = {x/y}, a, = {y/z}.
b. 0 {x/y}, o = {y/x, x/a}.

c. 0 = {x/y, y/a}. oa = {y/x}.

d. 0 = {x/f (z), y/a}, ar {z/b}.

e. 0 = {x/y, y/f (z)}, a = {y/f (a), z/b}.

5. Use Robinson's unification algorithm to find a most general unifier for each

of the following sets of atoms.

a. {p(x, f(y, a), y), p(f(a, b), v, z)}.

b. {q(x, f(x)), q(f(x), x)}.

c. {p(f(x, g(y)), y), p(f(g(a), z), b)}.

d. {p(x, f(x), y), p(x, y, z), p(w, f(a), b)}.

6. Use the Martelli-Montanari unification algorithm to find a most general uni-
fier for each of the following sets of atoms.

a. {p(x, f(y, a), y), p(f(a, b), v, z)}.

b. {q(x, f(x)), q(f(x), x)}.

c. {p(f(x, g(y)), y), p(f(g(a), z), b)}.

Resolution in First-Order Logic

7. What is the resolvant of the clause p(x) V ý p(f(a)) with itself? What is
the resolvant of p(x) V - p(f(a)) V q(x) with itself?

8. Use resolution to show that each of the following sets of clauses is unsatisfi-
able.

a. {p(x), q(y, a) V - p(a), - q(a, a)}.

b. {p(u, v), q(w, z), -• p(y, f(x, y)) V - p(f(x, y), f(x, y)) V
q(x, f(x, y))}.

f. {p(a) V p(x), - p(a) V -p p(y)}.

d. {p(x) V p(f(a)), - p(y) V - p(f(z))}.
e. {q(x) V q(a), - p(y) V - p(g(a)) V -i q(a), p(z) V p(g(w)) V - q(w)}.

532 CHAPTER 9 0 COMPUTATIONAL LOGIC

Proving Theorems

9. Prove that each of the following propositional statements is a tautology by

using resolution to prove that its negation is a contradiction.

a. (AVB)A-A--B.

b. (p - q) A (q - r) - (p-* r).

c. (p V q) A (q - r)A (r- -- s (p vs).

d. [(A A B -• C) A (A -• B)] , (A - C).

10. Prove that each of the following statements is valid by using resolution to
prove that its negation is unsatisfiable.

a. Wx p(x) I x p(x).

b. Vx (p(x) -- q(x)) A Ix p(x) - Ix q(x).

c. 3y Vx p(x, y) -- Vx ly p(x, y).

d. 3x Vy p(x, y) A Vx (p(x, x) - 3y q(y, x)) -- 3y Ix q(x, y).

e. Vx p(x) V Vx q(x) -- Vx (p(x) V q(x)).

Challenges

11. Let E be any expression, A and B two sets of expressions, and 0, C,1 a
any substitutions. Prove each of the following statements about composing
substitutions.

a. E(Ou) = (EO)a.

b. EE = E.

c. Oc = 0 = O0.

d. (Ou)a = O(oa).

e. (A U B)O = AO U BO.

12. Translate each of the following arguments into first-order predicate calculus.
Then use resolution to prove that the resulting wffs are valid by proving that
the negations are unsatisfiable.

a. All computer science majors are people. Some computer science majors
are logical thinkers. Therefore, some people are logical thinkers.

b. Babies are illogical. Nobody is despised who can manage a crocodile.
Illogical persons are despised. Therefore, babies cannot manage croc-
odiles.

13. Translate each of the following arguments into first-order predicate calculus.
Then use resolution to prove that the resulting wffs are valid by proving the
negations are unsatisfiable.

a. Every dog either likes people or hates cats. Rover is a dog. Rover loves
cats. Therefore, some dog likes people.

b. Every committee member is rich and famous. Some committee mem-
bers are old. Therefore, some committee members are old and famous.

9.2 m LOGIC PROGRAMMING 533

c. No human beings are quadrupeds. All men are human beings. There-
fore, no man is a quadruped.

d. Every rational number is a real number. There is a rational number.
Therefore, there is a real number.

e. Some freshmen like all sophomores. No freshman likes any junior.
Therefore, no sophomore is a junior.

14. In the proof of Skolem's algorithm it was shown that s(W) -- W is valid,
where s(W) is the clausal form of W. Show that the converse is false by
considering the following wff:

W = Vx Iy (p(x, y) V - p(y, y)).

a. Show that W is valid.

b. Find the clausal form of W and show that it is invalid.

15. It was noted after Skolem's algorithm that Skolem's rule could not be used to
remove existential quantifiers until after all implications were eliminated and

all negations were moved inward. To confirm this, do each of the following
exercises, where W is the following wff and C is any wff that does not contain
x or y:

W = (Ix p(x) -* C) A 3y (p(y) A - C).

a. Show that W is unsatisfiable.

b. Remove the two existential quantifiers from W with Skolem's rule (9.1).
Show that the resulting wff is satisfiable.

c. Eliminate -* from W and then apply (9.1) to the wff obtained. Show
that the resulting wff is satisfiable.

d. Apply Skolem's algorithm correctly to W and show that the resulting
clausal form is unsatisfiable.

9.2 Logic Programming

In this section we'll see how logic programming is related to logic. To start

things off we'll give a gentle introduction to the Prolog language with a discussion
about family trees. Then we'll see how resolution comes into the picture as a
computation device for logic programs. Finally, we'll study a few basic techniques
of logic programming.

534 CHAPTER 9 0 COMPUTATIONAL LOGIC

a b c

d I e h

k

Figure 9.1 A family.

9.2.1 Family Trees
We'll start with a set of parent-child relations. If we let p(x, y) mean "x is a
parent of y," then we should start with some parent-child facts. For example,
suppose the graph in Figure 9.1 represents a set of parent-child relations, where
each node represents the root of a partial family tree with children directly below
it and parents directly above it.

For example, d and e are the children of a. We can represent this tree with
6 parent-child facts as follows, where in Prolog each fact ends with a period:

p(a,d).

p(a,e).

p(b,h).

p (c, h).

p (e, k).

p(h,k).

Finding the Parents of a Person

Suppose that we want to find the parents of k. In Prolog we can find them
by typing the following goal or query in response to the interactive prompt 1?-,
where the uppercase letter X stands for a variable.

I?- p(X, k).

The computation will search the program facts trying to match p(X, k) with
some fact in the program. In this case, the goal matches p(e, k) and the system
responds with

X=e ?

At this point, we either stop the computation or ask it to continue. If we stop
it, then most systems simply answer yes, indicating that an answer was found.

9.2 m LOGIC PROGRAMMING 535

If we continue, then the system will search for another match for the goal atom
p(X, k). In this case, the goal matches p(h, k) and the system responds with

X=h?

If we ask it to continue, it will search for another match. But there are none, so
the system answers no. So we conclude that e and h are the parents of k.

Finding the Grandparents of a Person

Now suppose we want to find some grandparent relations. To do this we can let
g(x, y) mean "x is a grandparent of y." From our knowledge of family relations
we know that x is a grandparent of y if there is some z such that x is a parent
of z and z is a parent of y. So we can define the isGrandParentOf relation g in
terms of the isParentOf relation:

g(x, y) if p(x, z) and p(z, y).

In Prolog, we represent this relationship as the following expression, where the
variables start with uppercase letters:

g(X, Y) :- p(X, Z), p(Z, Y).

With the addition of this clause, the Prolog program now looks like the following
collection of statements.

p(a,d).

p(a,e).

p(b,h).

p (c, h).

p(e,k)

p(h,k).

g (X, Y) : -p (X, Z), p (Z, Y).

Suppose that we want to find the grandparents of k. We can find them by typing
the following goal or query.

I?- g(U, k).

The system will search the program statements trying to match g(U, k) with a
fact or the left part of a clause. In this case, it matches g(X, Y) with the unifer

{ U/X, Y/k}. Now this unifier is applied to the antecedents p(X, Z) and p(Z,
Y) to obtain the two new goals

p(X, Z), p(Z, k).

These atoms have to be unified with some facts before the answer yes can be
returned. So the system searches for two facts to match the two atoms. One
such match to be found is the pair

p(a, e), p(e, k).

536 CHAPTER 9 N COMPUTATIONAL LOGIC

with the unifier {X/a, Z/e}. Then the composition of the two unifiers is applied
to U:

U {U/X, Y/k} {X/a, Z/e} = X {X/a, Z/e} = a.

So the system responds with

U=a?

If we continue, the system will find a match for the pair p(b, h), p(h, k) with the
unifier {X/b, Z/h}. So the computation responds with

U=b?

If we continue, the system will find a match for the pair p(c, h), p(h, k) with the
unifier {X/c, Z/h}. So the computation responds with

U=c?

If we continue the computation, the system will return the answer no because
there are no other grandparents listed for k.

Of course we're only touching the surface of the kind of information that
we can extract from the parent-child relations. For example, we might want to
know answers to questions regarding ancestors, descendants, cousins, and so on.
We'll see later that it is an easy matter to define rules to allow us to answer
many such questions.

Now that we have a little knowledge of Prolog, in the next few paragraphs
we'll define what a logic program is, and we'll show how logic program compu-
tations are performed.

9.2.2 Definition of a Logic Program

A logic program is a set of clauses, where each clause has exactly one positive
literal (i.e., an atom) and zero or more negative literals. Such clauses have one
of the following two forms, where A, B 1 , ... , B,, are atoms:

A (one positive and no negative literals)

A V - B1 V ... V - B, (one positive and some negative literals).

Notice how we can use equivalences to write a clause as a conditional:

Av -B 1V-.. V-B, =AV-(B 1 A... AB,)=B 1 A-...AB, A.

Such a clause is denoted by writing it backwards as the following expression,
where the conjunctions are replaced by commas.

A ,- B1, ... , B,.

We can read this clause as "A is true if B 1 , ... , B, are all true." The atom A
on the left side of the arrow is called the head of tile clause and the atoms on
the right form the body of the clause. A clause consisting of a single atom A can
be read as "A is true." Such a clause is called a fact or a unit clause. It is a
clause without a body.

9.2 E LOGIC PROGRAMMING 537

Goals or Queries

Since a logic program is a set of clauses, we can ask whether anything can be
inferred from the program by letting the clauses be premises. In fact, to execute
a logic program we must give it a goal or query, which is a clause of the following
form, where B 1, ... , B, are atoms.

- B1, ... ,I Bn.

It is a clause without a head. We can read the goal as "Are B 1 , ... , Bn inferred
by the program?"

We should note that the clauses in logic programs are often called Horn
clauses.

_ 9.1 8 The Result of an Exectution

Let P be the logic program consisting of the following three clauses:

q (a).

r (a).

p (x) - q (x) ,r (x).

Suppose we execute P with the following goal or query:

+- p(a).

We can read the query as "Is p(a) true?" or "Is p(a) inferred from P?" The
answer is yes. We can argue informally. The two program facts tell us that q(a)
and r(a) are both true. The program clause tells us that p(x) is true if q(x)
and r(x) are both true. So we infer that p(a) is true by modus ponens. In what
follows we'll see how the answer follows from resolution.

9.2.3 Resolution and Logic Programming

Let's see why things are set up to use resolution. First of all, a logic program
is a set of clauses, so it is already in the proper form for using resolution. To
execute a logic program we need a goal. So suppose P is a logic program and
we execute P with the following goal:

- B1, ... , B..

For this discussion we'll denote the existential closure of B 1 A ... A B, by

3(BI A ... A B,).

With this notation, we read the goal <-- B 1, ... , B, as

"Is](B 1 A ... A B,) inferred by the program P?"

538 CHAPTER 9 U COMPUTATIONAL LoGIc

In other words, the goal asks if there a proof of](B 1 A ... A B,) using the
clauses of P as premises. Equivalently, the goal asks if there is a proof that the
set P U {-](B 1 A ... A Bn)} is unsatisfiable.

Now we're getting somewhere because resolution is used to prove unsatisfi-
ablity. Now let's notice that -](B 1 A ... A Bn) can be written in the following
form:

- 3(S1 A ... A Br,) -- V- (B1 A ... A Br,) =-- V(- B1 V ... V - B,,).

Now, as luck would have it, the wff V(- B1 V ... V - B,) is none other than a
clause, where V denotes universal closure. So the goal <- B 1, ... , Bn becomes
the following statement about a set of clauses:

"Is there a proof that the set P U {V(- B1 V ... V - B,)} is unsatisfiable?"

As with the other clauses, we'll delete V from the notation for the clause. So the
goal <- B 1, ... , Br, becomes the following statement about a set of clauses.

"Is there a proof that the set P U {(- B1 V ... V - B,)} is unsatisfiable?"

Now the goal +- B 1, ... , B,, is just notation for the clause (- B1 V ... V - B,).

So the statement can be phrased strictly in terms of logic program notation as

"Is there a proof that the set P U {+- B 1, ... , B,I} is unsatisfiable?"

Answers to Goals

When we give a goal to a logic program, we usually want more than just the
answer yes or no to the goal question. If the answer is yes, we may want to
know the values of any variables that appear in the goal. The nice thing about
resolution is that the unifiers constructed during the proof provide values for the
variables. So we really can read the goal question as "Is there a substitution 0
for the variables of B 1 , ... , B,. such that (B1 A ... A B,.)O is inferred by the
program P?"

Let's look at an example to see how the notation for logic program clauses
makes it easy to find answers to goal questions.

_ 9.19 Answering a Goal Question

Let P be the following logic program.

q (a).
p (f (x)) -- q (x) .

Suppose also that we have the following goal question:

<- p(y).

9.2 U LoGic PROGRAMMING 539

This means that we want an answer to the question, "Is there a substitution 0
such that p(y)O is inferred from P?" Let's give the answer first and then see how
we got it. The answer is yes. Letting 0 = {y/f (a)}, we can evaluate p(y)0 as
follows:

p(y)O = p(y){y/f(a)} = p(f(a)).

We claim that p(f (a)) is inferred from P. Let's give a resolution proof showing
that P U {- p(y)} is unsatisfiable. First we'll write the two program clauses
and the goal clause in the clausal form needed for resolution. Then we'll write
them as premises and start the process of finding a refutation using resolution.

Proof: 1. q(a) P (program clause q(a))

2. p(f(x)) V -' q(x) P (program clause p(f(x)) -- q(x))

3. -p(y) P (goal clause -- p(y))
4. - q(x) 2, 3, R, {y/f (x)}
5. El 1, 4, R, fx/al.

QED

Therefore, by the resolution theorem, P U {- p(y)} is unsatisfiable. So the
answer to the goal question is yes. But what value of y does the job? We can
find it by applying the composition of the mgu's to y as follows:

y {y/f (x)} {/xa} = f(x) {x/a} = f(a).

Therefore, p(f (a)) is a logical consequence of program P.

SLD-Resolution

There are three advantages to the notation used for logic programs.

1. The notation is easy to write down because we don't have to use the symbols
- , A , and V .

2. The notation allows us to interpret a program in two different ways. For
example, suppose we have the clause A <- B 1 , ... , Bn. This clause has the
usual logical interpretation "A is true if B 1, ... , B, are all true." The clause
also has the procedural interpretation "A is a procedure that is executed by
executing the procedures B 1, ... , Bn in the order they are written." Most
logic programming systems allow this procedural interpretation.

3. The notation makes it easy to apply the resolution rule. We'll discuss this
next.

540 CHAPTER 9 U COMPUTATIONAL LoGic

Whenever we apply the resolution rule, we have to do a lot of choosing. We
have to choose two clauses to resolve, and we have to choose literals to "cancel"
from each clause. Since there are many choices, it's easy to understand why we
can come up with many different proof sequences. When resolution is used with
logic program clauses, we can specialize the rule.

The specialized rule always picks one clause to be the most recent line of
the proof, which is always a goal clause. Start the proof by picking the initial
goal. Select the leftmost atom in the goal clause as the literal to "cancel."
For the second clause, pick a program clause whose head unifies with the atom
selected from the goal clause. The resolvant of these two clauses is created by
first replacing the leftmost atom in the goal clause by the body atoms of the
program clause and then applying the unifier to the resulting goal. Here is a
formal description of the rule, which is called the SLD-resolution rule: 1

SLD-Resolution Rule (9.11)
To resolve the goal <-- B 1 , ... , Bk with the clause A <- A 1 , ... , A,, perform
the following steps:

1. Unify B 1 and A and obtain most general unifier 0.

2. Replace Bj by the body atoms A 1 , ... , A,.

3. Apply 0 to the result to obtain the resolvant

S(A,, ... , A,, B 2 , ... , Bk)o.

Constructing a Logic Program Proof

To construct a logic program proof, we start by listing each program clause as a
premise. Then we write the goal clause as a premise. Now we use (9.11) repeat-
edly to add new resolvants to the proof, each new resolvant being constructed
from the goal on the previous line together with some program clause. We can
summarize the application of (9.11) with the following four-step procedure:

1. Pick the goal clause on the last line of the partial proof, and select its leftmost
atom, say B 1 .

2. Find a program clause whose head unifies with B 1 , say by 0. Be sure the
two clauses have distinct sets of variables (rename if necessary).

3. Replace B 1 in the goal clause with the body of the program clause.

4. Apply 0 to the goal constructed on line 3 to get the resolvant, which is placed

on a new line of the proof.

iSLD-resolution means selective linear resolution of definite clauses. In our case we always
"select" the leftmost atom of the goal clause.

9.2 m LOGIC PROGRAMMING 541

The Family Tree Revisited

We'll introduce the use of the SLD-resolution rule by revisiting family tree rela-
tions. Suppose we are given the following logic program, where p means isPar-
entOf and g means isGrandparentOf.

p (a, b).

p(d,b) .

p (b, c).
g (X, Y) - p (X, Z),p (z, Y).

We'll execute the program by giving it the following goal question:

<-- g(w, c).

Since there is a variable w in this goal, we can read the goal as the question

"Is there a grandparent for c?"

The resolution proof starts by letting the program clauses and the goal clause
be premises. For this example we have the following five lines:

Proof: 1. p(a, b) P
2. p(d, b) P

3. p(b, c) P
4. yg(x, y) - p(x, z), p(z, y) P

5. +- g(w, c) P Initial goal

The proof starts by resolving the initial goal on line 5 with some program
clause. The atom g(w, c) from the initial goal unifies with g(x, y), the head of
the program clause on line 4, by the mgu

91 = {w/X, y/c}.

Therefore, we can use (9.11) to resolve the two clauses on lines 4 and 5. So we
replace the goal atom g(w, c) on line 5 with the body of the clause on line 4 and
then apply the mgu 01 to the result to obtain the following resolvant.

p(x, z), p(z, c).

Let's compare what we've just done for logic program clauses using (9.11) to
the case for first-order clauses using (9.8). The following two lines are copies of
lines 4 and 5 in which we've included the clausal notation for each logic program
clause:

Logic Program Notation Clausal Notation

4. 9(x, y) - p(x, z), p(z, y) g(x, y) V -' p(x, z) V - p(z, y)

5. - g(w, c) - g(w, c)

542 CHAPTER 9 E COMPUTATIONAL LOGIC

We apply (9.11) to the logic program notation clauses, and we apply (9.8) to the
clauses in clausal notation. This gives the following resolvant.

Logic Program Notation Clausal Notation

<p(x, z), p(z, c) - p(x, z) V - p(z, c)

So we get the same answer with either method.
Now let's continue the proof. We'll write down the new resolvant on line 6

of our proof, in which we've added the mgu to the reason column:

6. - p(x, z), p(z, c) 4, 5, R, 01 = {w/x, y/c}

To continue the proof according to (9.11), we must choose this new goal on
line 6 for one of the clauses, and we must choose its leftmost atom p(x, z) for
"cancellation." For the second clause we'll choose the clause on line 1 because
its head p(a, b) unifies with our chosen atom by the mgu

02 = {x/a, z/b}.

To apply (9.11), we must replace p(x, z) on line 6 by the body of the clause on
line 1 and then apply 02 to the result. Since the clause on line 1 does not have a
body, we simply delete p(x, z) from line 6 and apply 02 to the result, obtaining
the resolvant +- p(b, c). So we have a new goal:

+- p(b, c).

Let's compute this result in terms of both (9.11) and (9.8). The clauses on
lines 1 and 6 take the following forms, in which we've added the regular clausal
notation for each clause.

Logic Program Notation Clausal Notation

1. p(a, b) p(a, b)

6. , p(x, z), p(z, c) p(x, z) V - p(z, c)

After applying (9.11) and (9.8) to the respective notations on lines 1 and 6, we
obtain the following resolvant:

Logic Program Notation Clausal Notation

+- p(b, c) ý p(b, c)

So we can continue the proof by writing down the new resolvant on line 7.

7. 4- p(b, c) 1, 6, R, 02 = {x/a, z/b}

To continue the proof using (9.11), we must choose the goal on line 7 together
with its only atom p(b, c). It unifies with the head p(b, c) of the clause on line
3 by the empty unifier

03={}.

9.2 N LOGIC PROGRAMMING 543

Since there is only one atom in the goal clause of line 7 and there is no body in
the clause on line 3, it follows that the resolvant of the clauses on these two lines
is just the empty clause. So our proof is completed by writing this information
on line 8.

8. El 3, 7, R, 03 ={}.

QED

To finish things off, we'll collect the eight steps of the proof and rewrite them

as a single unit:

Proof: 1. p(a, b) P

2. p(d, b) P

3. p(b, c) P

4. g(x, y) •- p(x, z), p(z, y) P

5. -- g(w, c) P Initial goal

6. - p(x, z), p(z, c) 4, 5, R, 01 = {w/x, y/c}

7. ,- p(b, c) 1, 6, R, 02 = fx/a, z1/b}

8. EL 3, 7, R, 03 = { }.
QED

Since El was obtained, we have a refutation. So the answer is yes to the goal

*- g(w, c).

In other words, "Yes, there is a grandparent w of c." But we want to know
more. We want to know the value of w that gives a yes answer. We can recover
the value by composing the three unifiers 01, 02, and 03 and then applying the
result to w:

W0 10 203 = a.

So the goal question "Is there a grandparent w of c?" is answered:

Yes,
w = a.

What about other possibilities? By looking at the facts, we notice for this
example that d is also a grandparent of c. Can this answer be computed? Sure.
Keep the first six lines of the proof as they are. Then resolve the goal on line 6
with the clause on line 2. The goal atom p(x, z) on line 6 unifies with the head
p(d, b) from line 1 by mgu

02 = {x/d, z/b}.

This 02 is different from the previous 02. So we get a new line 7 and the same
line 8 to obtain the following alternative refutation.

544 CHAPTER 9 N COMPUTATIONAL LOGIC

7. - p(b, c) 2, 6, R, 02 = {x/d, z/b}
8. t] 3,7, R, 03 ={}.

QED

With this proof we obtain the following new value for w:

w0 10 2 03 = d.

So the goal question "Is there a grandparent w of c?" can also be answered:

Yes,
w = d.

We can observe from the facts that a and d are the only grandparents of c, and
we've come up with refutations to calculate them. So it's time to see whether a
computation can actually come up with both answers.

Computation Trees

Now that we have an example under our belts, let's look again at the general
picture. The preceding proof had two possible yes answers. We would like to
find a way to represent all possible answers (i.e., proof sequences) for a goal. For
our purposes a tree will do the job.

A computation tree for a goal is an ordered tree whose root is the goal. The
children of any parent node are all the possible goals (i.e., resolvants) that can
be obtained by resolving the parent goal with a program clause. We agree to
order the children of each node from left to right in terms of the top-to-bottom
ordering of the program clauses that are used with the parent to create the
children. Each parent-child branch is labeled with the mgu obtained to create
the child. A leaf may be the empty clause or a goal. If the empty clause occurs
as a leaf, we write "yes" together with the values of any variables that occur in
the original goal at the root of the tree. If a goal occurs as a leaf, this means
that it can't be resolved with any program clause, so we write "failure." The
computation tree will always show all possible answers for the given goal at its
root.

For example, the computation tree for the goal g(w, c) with respect to our
example program can be pictured as shown in Figure 9.2. Notice that the tree
contains all possible answers to the goal question.

A logic programming system needs a strategy to search the computation
tree for a leaf with a yes answer. The strategy used by most Prolog systems is
the depth-first search strategy, which starts by traversing the tree down to the
leftmost leaf. If the leaf is the empty clause, then the yes answer is reported. If
the leaf is a failure leaf, then the search returns to the parent of the leaf. At this
point a depth-first search is started at the next child to the right. If there is no
next child, then the search returns to the parent of the parent, and a depth-first
search starts with its next child to the right, and so on. If this process eventually

9.2 U Locic PROGRAMMING 545

*-g(w,c)
SWIX, y/c

÷-p(x,z), p(z, c)

x/a, zlb / z x/b, zlc

÷-p(b, c) ÷-p(b, c) ÷-p(c, c)

I failure

EL Il
yes yes

w=a w=d

Figure 9.2 Computation tree.

returns to the root of the tree and there are no more paths to search, then failure
is reported.

It might be desirable for a logic programming system to attempt to find
all possible answers to a goal question. One strategy for attempting to find all
possible answers is called backtracking. For example, with depth-first search we
perform backtracking by continuing the depth-first search process from the point
at which the last yes answer was found. In other words, when a yes answer is
found, the system reports the answer and then continues just as though a failure
leaf was encountered.

In the next few examples we'll construct some computation trees and dis-
cuss the problems that can arise in trying to find all possible answers to a goal
question.

S9.20 Many Possible Answers

Let's consider the following two-clause program:

p (a).
p (succ Wx) - (P).

Suppose we give the following goal to the program:

S-p(x).

This goal will resolve with either one of the program clauses. So the root of the
computation tree has two children. One child, the empty clause, results from
the resolution of goal <- p(x) with the fact p(a). The other child results from
the resolution of goal -- p(x) with the clause p(succ(x)) -- p(x).

But before this happens, we need to change variables. We'll replace x by x,

in the program clause to obtain p(succ(xi)) ,- p(x1). Now resolving the goal
+- p(x) with this clause produces the goal <-- p(x1), which becomes the second

child of the root.

546 CHAPTER 9 0 COMPUTATIONAL LOGIC

*--p(x)
x/a ,,xl succ(x1)

[] <---p(Xl)

yes x// -'la x /su cc (x2)
x= 0

E5 Ep(X2)
yes

x = succ(a) x2/a

yes
x = succ (suc (a))

Figure 9.3 Infinitely many answers.

The process starts all over again with the goal <- p(xi). To keep track of

variable names, we'll replace x by X2 in the second program clause. Then resolve
the goal +- p(xi) with p(succ(x 2)) `- p(x2) to obtain the goal *- p(x 2). This
process continues forever.

The computation tree for this example is shown in Figure 9.3. It is an infinite
tree that continues the indicated pattern forever. If we use the depth-first search
rule, the first answer is "yes, x = a." If we force backtracking, the next answer
we'll get is "yes, x = succ(a)." If we force backtracking again, we'll get the
answer "yes, x = succ(succ(a))." Continuing in this way, we can generate the
following infinite sequence of possible values for x:

a, succ(a), succ(succ(a)),..., succk(a),..

JE 9.21 Two Possible Answers

Consider the following three-clause program, in which the third clause has more
than one atom in its body.

q (a).

p (a).

p (f (x)) - p (x), q (x).

Figure 9.4 shows a few levels of the computation tree for the goal -- p(x). Notice
that as we travel down the rightmost path from the root, the number of goal
atoms at each node is increased by one for each new level.

9.2 0 LoGIc PROGRAMMING 547

*-p(x)

El <--p(x,), q(x,)

yes
x= (Xl/ x 2)

<-- q(o) p-P(x2), q(x2), q(f(x2))

x21a '•• x2 1f(x)

Eq --q(a), q(f(a))
yes

x = f(a)

*-q(f(a))

failure

Figure 9.4 Only two answers.

Using the depth-first search rule, we obtain the answer "yes, x = a." Back-
tracking works one time to give the answer "yes, x = f(a)." If we force back-
tracking again, then the computation takes an infinite walk down the tree, failing
at each leaf.

9.22 How to Miss Many Answers

Suppose we're given the following three-clause program.

p (f Wx) - p (X).

p (a).

p (b) .

We'll start with the goal

+-p(x).

The computation tree will be a ternary tree because there are three "p" clauses
that match each goal. Figure 9.5 shows the first few levels of the tree. The tree
is infinite, and there are infinitely many yes answers to the goal question. The
infinite sequence of possible values for x is

a, b, f(a), f(b), f(f(a)), f(f(b)),... , fk(a), fk(b),....

548 CHAPTER 9 0 COMPUTATIONAL LoGic

<-p(x)

xlf(x,) x/b

<-- p(xl) 11 11
yes yes

X/f1f(] = /a x = x=b

---P(X2) 1 1E
yes yes

X21fx3 X2Ib x= fOa) x = f(b)

-P (X3) El El
*yes yes

x= f(f(a)) x= f(f(b))

Figure 9.5 Many answers to miss.

Notice that if we used the depth-first search strategy, then the computation
would take an infinite walk down the left branch of the tree. So although there
are infinitely many answers, the depth-first search strategy won't find even one
of them.

In the preceding example, depth-first search did not find any answers to the
goal +- p(x). Suppose we reordered the three program clauses as follows:

p (a).

p (b).

p(f (x)) p(x).

The computation tree corresponding to these three clauses can be searched in a
depth-first fashion with backtracking to generate all the answers to the goal <--
p(x). Suppose we write the three clauses in the following order:

p (a).

p(f (x)) p(x).

p (b).

The computation tree for these three clauses, when searched with depth-first and
backtracking, will yield some, but not all, of the possible answers.

So when a logic programming language uses depth-first search, two problems
can occur when the computation tree for a goal is infinite:

1. The yes answers found may depend on the order of the clauses.

2. Backtracking might not find all possible yes answers to a goal.

9.2 a Locic PROGRAMMING 549

Many logic programming systems use the depth-first search strategy because

it's efficient to implement and because it reflects the procedural interpretation
of a clause. For example, the clause A *- B, C represents a procedure named A
that is executed by first calling procedure B and then calling procedure C.

Another search strategy is called breadth-first search. It looks for a yes

answer by examining all the children of the root. Then it looks at all nodes at
the next level of the tree, and so on. This strategy will find all possible answers
to a goal question.

Some implementation strategies for searching the computation tree use
breadth-first search with a twist. All children of a node are searched in par-
allel. A search at a particular node is started only when the goal atom has not
already occurred at a higher level in the tree. If the goal atom matches a goal at
a higher level in the tree, then the process waits for the answer to the other goal.
When it receives the answer, then it continues with its search. This technique
requires a table containing previous goal atoms and answers. It has proved useful
in detecting certain kinds of loops that give rise to infinite computation trees.

In some cases the search process won't take an infinite walk. An introduction to
these ideas is given in Warren [1992].

9.2.4 Logic Programming Techniques

Let's spend some time discussing a few elementary techniques to construct logic
programs. First we'll see how to construct logic programs that process relations.
Then we'll discuss logic programs that process functions. The clauses in our

examples are ordered to take advantage of the depth-first search strategy. This
strategy is used by most Prolog systems.

A Technique for Relations

Logic programming allows us to easily process many relations because relations
are just predicates. For example, suppose that we want to write the isAncestorOf
relation in terms of the isParentOf relation, where an ancestor is either a parent,
or a grandparent, or a great-grandparent, and so on. The next example discusses
a technique for solving this type of problem.

_ 9.23 Acyclic Transitive Closure

The isAncestorOf relation is the transitive closure of the isParentOf relation. In
general terms, suppose we're given a binary relation r whose graph is acyclic
(i.e., there are no cycles) and we need to compute the transitive closure of r.
If we let tc denote the transitive closure of r, the following two-clause program
does the job:

tc (x, y) -r (x, y)
tc (x1 y) -- r (X, Z), tc (z,y).

550 CHAPTER 9 0 COMPUTATIONAL LOGIC

For example, suppose r is the isParentOf relation. Then tc is the isAncestorOf
relation. The first clause can be read as "x is an ancestor of y if x is a parent of
y," and the second clause can be read as "x is an ancestor of y if x is a parent
of z and z is an ancestor of y."

A Technique for Computing Functions

Now let's see whether we can find a technique to construct logic programs to
compute functions. Actually, it's pretty easy. The major thing to remember in
translating a function definition to a logic definition is that a functional equation
like

f(x) = y

can be represented by a predicate expression such as

pf(x, y).

The predicate name "pf" can remind us that we have a "predicate for f." The
predicate expression pf(r, y) can still be read as "f of x is y."

Now let's discuss a technique to construct a logic program for a recursively
defined function. If f is defined recursively, then there is at least one part of the
definition that defines f(x) in terms of some f(y). In other words, some part of
the definition of f has the following form, where E(f(y)) denotes an expression
containing f (y):

f(x) = E(f(y)).

Using our technique to create a predicate for this functional equation, we get the
following expression:

pf(x, E(f(y))).

But we aren't done yet because the recursive definition of f causes f(y) to
occur as an argument in the predicate. Since we're trying to compute f by the
predicate pf, we need to get rid of f(y). The solution is to replace f(y) by a
new variable z. We can represent this replacement by writing down the following

version of the expression:

pf(x, E(z)) where z = f(y).

Now we have a functional equation z = f(y), which we can replace by pf(y, z).
So we obtain the following expression:

pf(x, E(z)) where pf(y, z).

The transformation to a logic program is now simple: Replace the word
"where" by the symbol <-- to obtain a logic program clause as follows:

pf(x, E(z)) -- pf(y, z)-

9.2 E LOGIC PROGRAMMING 551

Thus we have a general technique to transform a functional equation into a
logic program. Here are the steps, all in one place:

f (x) = E (f (y)) The given functional equation.

pf(x, E (f (y))) Create a predicate expression.

pf(x, E (z)) where z f (y) Let z = f (y).
pf(x, E (z)) where pf(y, z) Create a predicate expression.

pf(x, E (z)) •- pf(y, z) Create a clause.

Of course, there may be more work to do depending on the complexity of
the expression E(z). Let's do some examples to help get the look and feel of this
process.

r-9.24 The Factorial Function

Suppose we want to write a logic program to compute the factorial function.
Letting f(x) = x!, we have the following recursive definition of f:

f (0) =1

f (x) = x * f (x - 1).

To implement f as a logic program, we'll let "fact" be the predicate to compute
f. Then the two equations of the recursive definition become the following two
predicate expressions:

fact (0, 1)

fact (x,x* f (x - 1)).

The second statement contains the argument f(x - 1), which we'll replace by a
new variable y to obtain the following version of the two expressions:

fact (0, 1)

fact(x,x*y) where y =f (x- 1).

Now we can change the functional equation y = f(x - 1) into a predicate ex-
pression to obtain the following version:

fact (0, 1)

fact (x, x * y) where fact (x - 1, y).

Therefore, the desired logic program has the following two clauses:

fact (0, 1)

fact (x, x * y) ,- fact (x - 1, y).

552 CHAPTER 9 * COMPUTATIONAL LoGic

9.25 The Length Function

Suppose we want to write a logic program to compute the length of a list. Let's
start with the following recursively defined function L that does the job.

L (())= 0

L (x :: y) = L (y) + 1.

We can start by writing down two predicate expressions to represent these two
functional equations. We'll use the predicate name "length" as follows:

length((0)

length (x :: y, L (y) + 1).

The second expression contains an occurrence of the function L, which we're
trying to define. So we'll replace L(y) by a new variable z to obtain the following
version:

length((0)

length (x ::y, z + 1) where z = L (y).

Now replace the functional equation z = L(y) by the predicate expression length(y,
z) to obtain the following version:

length ((O)

length (x :: y, z + 1) where length (y, z).

Lastly, convert the expressions to the following logic program clauses:

length ((), 0).

length (x :: y, z + 1) <-- length (y, z).

9.26 Deleting an Element

Suppose we want to delete the first occurrence of an element from a list. A
recursively defined function to do the job can be written as follows:

delete (x,L) = if L = () then ()

else if head (L) = x then tail (L)

else head (L) :: delete (x, tail (L)).

9.2 m LOGIC PROGRAMMING 553

We'll construct a logic program to compute this function. It's much easier to
write a logic program for a function described as a set of equations. So we'll
write the function as the following three equations:

delete (x,()) = ()

delete (x, x :: T) ý T

delete (x, y:: T) y :: delete (x, T).

First we'll convert each equation to a predicate expression using the predicate
named "remove" as follows:

remove (x,),))

remove (x, x :: T, T)

remove (x, y :: T, y :: delete (x, T)).

Since the functional value delete(x, T) occurs in the third expression, we'll re-
place it by a new variable U to obtain the following version:

remove (x, (), ())

remove (x, x :: T, T)

remove (x, y :: T, y :: U) where U = delete (x, T).

Now replace the functional equation U = delete(x, T) by the predicate expression
remove(x, T, U) as follows:

remove (x, (), ())

remove (x, x :: T, T)

remove (x, y :: T, y :: U) where remove (x, T, U).

Now transform these three expressions into a three-clause logic program.

remove (x,), ()).

remove (x, x :: T, T).

remove (x, y :: T, y :: U) - remove (x, T, U).

ON Exercises

Family Trees

1. Suppose you are given an isParentOf relation. Find a definition for each of
the following relations.

a. isChildOf.

b. isGrandchildOf.

c. isGreatGrandparentOf.

554 CHAPTER 9 * COMPUTATIONAL LOGIC

2. Suppose you are given an isParentOf relation. Try to find a definition for
each of the following relations. Hint: You might want to consider some kind
of test for equality.

a. isSiblingOf.

b. isCousinOf.

c. isSecondCousinOf.

d. isFirstCousinOnceRemovedOf.

Computation by SLD-Resolution

3. Suppose we're given the following logic program:

p(a,b).

p (a,c).

p(b,d) .

p (c, e).

a. Find a resolution proof for the goal g(a, w).

b. Draw a picture of the computation tree for the goal g(a, w).

4. Suppose we're given the following logic program:

p (a).
P (g (X)) - P (X).-
p (b).

a. Draw at least three levels of the computation tree for the goal p(x).

b. What are the possible yes answers for the goal p(x)?

c. Describe the values of x that are generated by backtracking with the
depth-first search strategy for the goal p(X).

5. The following logic program claims to test an integer to see whether it is a
natural number, where pred(x, y) means that the predecessor of x is y:

isNat (0).

isNat (x) g-- isNat (y), pred (x, y).

a. What happens when the goal is isNat(2)?
b. What happens when the goal is isNat(1)?

Logic Programming

6. Let r denote a binary relation. Write logic programs to compute each of the
following relations.

a. The symmetric closure of r.

b. The reflexive closure of r.

9.3 n CHAPTER SUMMARY 555

7. Translate each of the following functional definitions into a logic program.
Hint: First, translate the if-then-else definitions into equational definitions.

a. The function f computes the nth Fibonacci number:

f(n) =if n =0then0elseif n = 1 then 1 elsef(n- 1) +f(n-2).

b. The function "cat" computes the concatenation of two lists:

cat(x, y) = if x = () then y else head(x) :: cat(tail(x), y).

c. The function "nodes" computes the number of nodes in a binary tree:

nodes(t) = if t = () then 0 else 1 + nodes(left(t)) + nodes(right(t)).

8. Find a logic program to implement each of the following functions, where
the variables represent elements or lists.

a. equalLists(x, y) tests whether the lists x and y are equal.

b. member(x, y) tests whether x is an element of the list y.
c. all(x, y) is the list obtained from y by removing all occurrences of x.

d. makeSet(x) is the list obtained from x by deleting repeated elements.
e. subset (x, y) tests whether x, considered as a set, is a subset of y.
f. equalSets(x, y) tests whether x and y, considered as sets, are equal.

g. subBag(x, y) tests whether x, considered as a bag, is a subbag of y.
h. equalBags(x, y) tests whether the bags x and y are equal.

Challenges

9. Suppose we have a schedule of classes with each entry having the form
class(i, s, t, p), which means that class i section s meets at time t in place
p. Find a logic program to compute the possible schedules available for a
given list of classes.

10. Write a logic program to test whether a propositional wff is a tautology.
Assume that the wffs use the four operators in the set {f-, A, V, --*}. Hint:
Use the method of Quine together with the fact that if A is a wff containing
a propsitional variable p, then A is a tautology iff A(p/true) and A(p/false)
are both tautologies. To assist in finding the propositional variables, assume
that the predicate atom(x) means that x is a propositional variable.

9.3 Chapter Summary
S..
The major component of automatic reasoning for the first-order predicate calcu-
lus is the resolution inference rule. Resolution proofs work by showing that a wff
is unsatisfiable. So to prove that a wff is valid, we can use resolution to show that
its negation is unsatisfiable. Resolution requires wffs to be represented as sets
of clauses, which can be constructed by Skolem's algorithm. Before each step of

556 CHAPTER 9 * COMPUTATIONAL LoGIc

a resolution proof involving predicates, the unification algorithm must calculate
a substitution a most general unifier that will unify a set of atoms. The pro-
cess of applying the resolution rule can be programmed to perform automatic
reasoning.

Logic programs consist of clauses that have one positive literal and zero or
more negative literals. A logic program goal is a clause consisting of one or
more negative literals. Logic program goals are computed by a modification of
resolution called SLD-resolution. Each goal of a logic program has an associated
computation tree that can be searched in a variety of ways. The depth-first search
strategy is used by most logic programming languages. Elementary techniques
for logic programming include the implementation of relations and recursively
defined functions.

Algebraic
Structures and
Techniques

Algebraic rules of procedure were proclaimed as if

they were divine revelations....

-From The History of Mathematics

by David M. Burton

The word "algebra" comes from the word "al-jabr" in the title of the textbook
Hisdb al-jabr w'al-muqdbala, which was written around 820 by the mathematician
and astronomer al-Khowhrizmi. The title translates roughly to "calculations
by restoration and reduction," where restoration-al-jabr--refers to adding or
subtracting a number on both sides of an equation, and reduction refers to
simplification. We should also note that the word "algorithm" has been traced
back to al-Khowdrizmi because people used his name-mispronounced--when
referring to a method of calculating with Hindu numerals that was contained in
another of his books.

Having studied high school algebra, most of us probably agree that algebra
has something to do with equations and simplification. In high school algebra we

simplified a lot. In fact, we were often given the one word command "simplify"
in the exercises. So we tried to somehow manipulate a given expression into one
that was simpler than the given one, although this direction was a bit vague,
and there always seemed to be a question about what "simplify" meant. We
also tried to describe word problems in terms of algebraic equations and then to
apply our simplification methods to extract solutions. Everything we did dealt
with numbers and expressions for numbers.

In this chapter we'll clarify and broaden the idea of an algebra. The chapter
introduces the notions and notations of algebra with special emphasis on the
techniques and applications of algebra in computer science.

557

558 CHAPTER 10 . ALGEBRAIC STRUCTURES AND TECHNIQUES

Section 10.1 introduces the idea of an algebra. We'll see that high school algebra
is just one kind of algebra.

Section 10.2 introduces Boolean algebra. We'll discuss some techniques to sim-
plify Boolean expressions, and we'll see how to construct digital circuits.

Section 10.3 introduces the idea of an abstract data type as an algebra. As
examples, we'll discuss some properties of the natural numbers, lists, strings,
stacks, queues, binary trees, and priority queues.

Section 10.4 introduces relational algebras and functional algebras. We'll see
how these ideas are applied to databases and functional programming.

Section 10.5 introduces a collection of algebraic ideas that are useful for com-
putational problems. We'll introduce congruences and see how some results
are applied in cryptology. We'll also introduce subalgebras and morphisms.

10.1 What Is an Algebra?

Before we say just what an algebra is, let's see how an algebra is used in the
problem-solving process. An important part of problem solving is the process of
transforming informal word problems into formal things like equations, expres-
sions, or algorithms. Another important part of problem solving is the process of
transforming these formal things into solutions by solving equations, simplifying
expressions, or implementing algorithms. For example, in high school algebra we
tried to describe certain word problems in terms of algebraic equations, and then
we tried to solve the equations. An algebra should provide tools and techniques
to help us describe informal problems in formal terms and to help us solve the
resulting formal problems.

The Description Problem

How can we describe something to another person in such a way that the person

understands exactly what we mean? One way is to use examples. But sometimes
examples may not be enough for a proper understanding. It is often useful at
some point to try to describe an object by describing some properties that it
possesses. So we state the following general problem:

The Description Problem
Describe an object.

10.1 * WHAT IS AN ALGEBRA? 559

Whatever form a description takes, it should be communicated in a clear and
concise manner so that examples or instances of the object can be easily checked
for correctness. Try to describe one of the following things to a friend:

A car.
The left side of a person.
The number zero.
The concept of area.

Most likely, you'll notice that the description of an object often depends on the
knowledge level of the audience.

We need some tools to help us describe properties of the things we are
talking about, so we can check not only the correctness of examples, but also
the correctness of the descriptions. Algebras provide us with natural notations
that can help us give precise descriptions for many things, particularly those
structures and ideas that are used in computer science.

High School Algebra

A natural example of an algebra that we all know and love is the algebra of
numbers. We learned about it in school, and we probably had different ideas
about what it was. First, we learned about arithmetic of the natural numbers
N, using the operation of addition. We came eventually to believe things like

7+12=19, 3+5=5+3, and 4-+ (6+2)=(4+6)+2.

Soon we learned about multiplication, negative numbers, and the integers Z. It
seemed that certain numbers like 0 and 1 had special properties such as

14+0= 14, 1.47=47, and 0=9+ (-9).

Somewhere along the line, we learned about division, the rational numbers Q,
and the fact that we could not divide by zero.

Then came the big leap. We learned to denote numbers by symbols like the
letters x and y and by expressions like x2 + y. We spent much time transforming
one expression into another, such as x2 + 4x + 4 = (x + 2)(x + 2). All this had
something to do with algebra, perhaps because that was the name of the class.

There are two main ingredients to the algebra that we studied in high school.
The first is a set of numbers to work with, such as the real numbers R. The
second is a set of operations on the numbers, such as - and +. We learned
about the general properties of the operations, such as x + y = y + x and
x + 0 = x. And we learned to use these properties to simplify expressions and
solve equations.

Now we are in position to discuss algebra from a more general point of
view. We will see that high school algebra is just one of many different kinds of
algebras.

560 CHAPTER 10 n ALGEBRAIC STRUCTURES AND TECHNIQUES

10.1.1 Definition of an Algebra
An algebra is a structure consisting of one or more sets together with one or
more operations on the sets. The sets are often called carriers of the algebra.
This is a very general definition. If this is the definition of an algebra, how can
it help us solve problems? As we will see, the utility of an algebra comes from
knowing how to use the operations.

For example, high school algebra is an algebra with the single carrier R,
or maybe Q. The operators of the algebra are +, -, -, and +. The constants
0 and 1 are also important to consider because they have special properties.
Note that a constant can be thought of as a nullary operation (having arity
zero). Many familiar properties hold among the operations, such as the fact
that multiplication distributes over addition: a • (b + c) = a - b + a • c; and
the fact that we can cancel: If a 7 0, then a • b = a • c implies b = c.

Algebraic Expressions

An algebraic expression is a string of symbols used to represent an element
in a carrier of an algebra. For example, 3, 8 + z, and x2 + y are algebraic
expressions in high school algebra. But x + y + is not an algebraic expression.
The set of algebraic expressions is a language. The symbols in the alphabet
are the operators and constants from the algebra together with variable names
and grouping symbols, like parentheses and commas. The language of algebraic
expressions over an algebra can be defined inductively as follows:

Algebraic Expressions

1. Constants and variables are algebraic expressions.

2. An operator applied to its arguments is an algebraic expression if the
arguments are algebraic expressions.

For example, suppose x and y are variables and c is a constant. If g is a ternary
operator, then the following five strings are algebraic expressions:

x, y, c, g(x, y, c), g(x, g(c, y, X), x).

Different algebraic expressions often mean the same thing. For example, the
equation 2x = x + x makes sense to us because we look beyond the two strings
2x and x + x, which are not equal strings. Instead, we look at the possible values
of the two expressions and conclude that they always have the same value, no
matter what value x has. Two algebraic expressions are equivalent if they always
evaluate to the same element in a carrier of the algebra. So the expressions 2x
and x + x are equivalent in high school algebra. We can make the idea of
equivalence precise by giving an inductive definition. Assume that C is a carrier
of an algebra.

10.1 . WHAT IS AN ALGEBRA? 561

Equivalent Algebraic Expressions

1. Any element in C is equivalent to itself.

2. Suppose E and E' are two algebraic expressions and x is a variable such
that E(x/b) and E'(x/b) are equivalent for all elements b in C. Then E
is equivalent to E'.

For example, the two expressions (x + 2)2 and X2 + 4x + 4 are equivalent in
high school algebra. But x + y is not equivalent to 5x because we can let x = 1
and y = 2, which makes x + y = 3 and 5x = 5.

Describing an Algebra

The set of operators in an algebra is called the signature of the algebra. When
describing an algebra, we need to decide which operators to put in the signature.
For example, we may wish to list only the primitive operators (the constructors)
that are used to build all other operators. On the other hand, we might want to
list all the operators that we know about.

Let's look at a convenient way to denote an algebra. We'll list the carrier or
carriers first, followed by a semicolon. The operators in the signature are listed
next. For example, this notation is used to denote the following algebras.

(N; succ, 0) (N; +,., 0, 1)
(N;+ 0) - Z; +.-,0, 1)

(N;., 1) , 0, 1
(N; succ, +, 0) (IR; +, , -,0, 1)

The constants 0 and 1 are listed as operations to emphasize the fact that they
have special properties, such as x + 0 = x and x • 1 = x.

It may also be convenient to use a picture to describe an algebra. The
diagram in Figure 10.1 represents the algebra (N; +, 0).

The circle represents the carrier N, of natural numbers. The two arrows
coming out of N represent two arguments to the + operator. The arrow from
+ to N indicates that the result of + is an element of N. The fact that there
are no arrows pointing at 0 means that 0 is a constant (an operator with no
arguments), and the arrow from 0 to N means that 0 is an element of N.

Figure 10.1 An algebra.

562 CHAPTER 10 n ALGEBRAIC STRUCTURES AND TECHNIQUES

10.1.2 Concrete Versus Abstract

An algebra is called concrete if its carriers are specific sets of elements so that
its operators are defined by rules applied to the carrier elements. High school
algebra is a concrete algebra. In fact, all the examples that we have seen so far
are concrete algebras.

An algebra is called abstract if it is not concrete. In other words, its carriers
don't have any specific set interpretation. Thus its operators cannot be defined in
terms of rules applied to the carrier elements because we don't have a description
of them. Therefore the general properties of the operators in an abstract algebra
must be given by axioms. An abstract algebra is a powerful description tool
because it represents all the concrete algebras that satisfy its axioms.

So when we talk about an abstract algebra, we are really talking about all
possible examples of the algebra. Is this a useful activity? Sure. Many times
we are overwhelmed with important concepts, but we aren't given any tools to
make sense of them. Abstraction can help to classify things and thus make sense

of things that act in similar ways.
If an algebra is abstract, then we must be more explicit when trying to

describe it. For example, suppose we write down the following algebra:

(S; s, a).

All we know at this point is that S is a carrier and there are two operators s and
a. We don't even know the arity of s or a.

Suppose we're told that a is a constant of S and s is a unary operator on S.
Now we know something, but not very much, about the algebra. We can use the
operators s and a to construct the following algebraic expressions for elements
of S:

a, s(a), s(s(a)), ... , sn(a),.

This is the most we can say about the elements of S. There might be other

elements in S, but we have no way of knowing it. The elements of S that we know
about can be represented by all possible algebraic expressions made up from the
operator symbols in the signature together with left and right parentheses.

S10.1 Induction Algebra

An algebra (S; s, a) is called an induction algebra if s is a unary operator on S

and a is a constant of S such that

S = {a, s(a), s(s(a)), ... , sn(a), ...

The word "induction" is used because of the natural ordering on the carrier that
can be used in inductive proofs.

10.1 . WHAT Is AN ALGEBRA? 563

The algebra (N; succ, 0) is a concrete example of an induction algebra, where
succ(x) = x + 1. The algebraic expressions for the elements are

0, succ(0), succ(succ(0)), ... , succn(0), ... ,

where succ(0) = 1, succ(succ(0)) = 2, and so on. So every natural number is
represented by one of the algebraic expressions.

There are many concrete examples of induction algebras. For example, let
A = {2, 1, 0, -1, -2, -3, ... }. Then the algebra (A; pred, 2) is an induction
algebra, where pred(x) = x - 1. The expressions for the elements are

2, pred(2), pred(pred(2)), ... , predn(2), ... ,

where we have pred(2) = 1, pred(pred(2)) = 0, and so on. So every number in
A is represented by one of the algebraic expressions.

Axioms for Abstractions

Interesting things can happen when we add axioms to an abstract algebra. For
example, the algebra (S; s, a) changes its character when we add the single axiom
s6 (x) = x for all x E S. In this case we can say that the algebraic expressions
define a finite set of elements, which can be represented by the following six
expressions:

a, s(a), s2 (a), s3 (a), s4 (a), s5(a).

A complete definition of an abstract algebra can be given by listing the
carriers, operations, and axioms. For example, the abstract algebra that we've
just been discussing can be defined as follows.

Carrier: S

Operations: a G S
s:S•

Axiom: s6 (x) = x.

We'll always assume that the variable x is universally quantified over S.

.. 10.2 A Finite Algebra

The algebra (N6 ; SUCC 6 , 0), where succ6(x) = (x + 1) mod 6, is a concrete
example of the abstract algebra (S; s, a) with axiom s6 (x) = x. To see this,
observe that the algebraic expressions for the carrier elements are

0, succ 6 (0), succo(succ6(0)), ... , succ- (x).

But we have succ 6 (x) = (x + 1) mod 6. So the preceding algebraic expressions
evaluate to an infinite repetition of six numbers in N6.

0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,

564 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

In other words, we have succ 6(x) = x for all x E N6 , which has the same form
as the axiom in the abstract algebra.

10.1.3 Working in Algebras

The goal of the next paragraphs is to get familiar with some elementary prop-
erties of algebraic operations. We'll see more examples of algebras and we'll
observe whether they have any of the properties we've discussed.

Properties of the Operations

Let's look at some fundamental properties that may be associated with a binary

operation. If o is a binary operator on a set C, then an element z E C is called
a zero for o if the following condition holds:

zox=xoz=z for allx E C.

For example, the number 0 is a zero for the multiply operation over the real
numbers because 0 • x = x - 0 = 0 for all real numbers x.

Continuing with the same binary operator o and carrier C, we call an element
u E C an identity, or unit, for o if the following condition holds:

uox=xou=x for allx E C.

For example, the number 1 is an identity for the multiply operation over the real
numbers because 1 • x = x • 1 = x for all numbers x. Similarly, the number 0 is
an identity for the addition operation over real numbers because 0 + x = x + 0
= x for all numbers x.

Suppose u is an identity element for o, and x E C. An element y in C is
called an inverse of x if the following equation holds:

x o y = y o x = u.

For example, in the algebra ($;., 1) the number 1 is an identity element. We
also know that if x ? 0, then

1 1
X X

In other words, all nonzero rational numbers have inverses.
Each of the following examples presents an algebra together with some ob-

servations about its operators.

10.1 * WHAT IS AN ALGEBRA? 565

j 10.3 Algebra of Sets

Let S be a set. Then the power set of S is the carrier for an algebra described
as follows:

(power (S); U, n, o, S).

Notice that if A G power(S), then A U 0 = A, and A n S =A. So 0 is an identity
for U, and S is an identity for n . Similarly, A n 0 = 0, and A U S = S. Thus
0 is a zero for n, and S is a zero for U . This algebra has many well-known
properties. For example, A U A = A and A n A = A for any A E power(S). We
also know that 0 and U are commutative and associative and that they distribute
over each other.

j 10.4 A Finite Algebra

Let N,, denote the set {0, 1, ... , - 1}, and let "max" be the function that
returns the maximum of its two arguments. Consider the following algebra with
carrier Nn :

(Nn.; max, 0, n - 1).

Notice that max is commutative and associative. Notice also that for any x E NM
it follows that max(x, 0) = max(0, x) = x. So 0 is an identity for max. It's also
easy to see that for any x E N7 ,

max(x, n - 1) = max(n - 1, x) = n - 1.

So n - 1 is a zero for the operator max.

S10.5 An Algebra of Functions

Let S be a set, and let F be the set of all functions of type S -+ S. If we
let o denote the operation of composition of functions, then F is the carrier of
an algebra (F; o, id). The function "id" denotes the identity function. In other
words, we have the equation id o f = f o id = f for all functions f in F. Therefore,
id is an identity for o.

Notice that we used the equality symbol "=" in the above examples without
explicitly defining it as a relation. The first example uses equality of sets, the
second uses equality of numbers, and the third uses equality of functions. In our
discussions we will usually assume an implicit equality theory on each carrier of
an algebra. But, as we have said before, equality relations are operations that
may need to be implemented when needed as part of a programming activity.

566 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

a a b cd

b b c da
C c d ab
d d ab c

Figure 10.2 Binary operation table.

Operation Tables

Any binary operation on a finite set can be represented by a table, called an
operation table. For example, if o is a binary operation on the set {a, b, c, d},
then the operation table for o might look like Figure 10.2, where the elements of
the set are used as row labels and column labels.

If x is a row label and y is a column label, then the element in the table
at row x and column y represents the element x o y. For example, we have
c o d = b.

We can often find out many things about a binary operation by observing
its operation table. For example, notice in Figure 10.2 that the row labeled a
and the column labeled a are copies of the row label and column label sequence
a b c d. This tells us that a is an identity for o. It's also easy to see that o is
commutative and that each element has an inverse. Does o have a zero? It's
easy to see that the answer is no. Is o associative? The answer is yes, but it's
not very easy to check. We'll leave these problems as exercises.

It's also easy to see that there cannot be more than one identity for a binary
operation. Can you see why from Figure 10.2? We'll prove the following general
fact about identities for any binary operation.

Uniqueness of an Identity (10.1)
Any binary operation has at most one identity.

Proof: Let o be a binary operation on a set S. To show that o has at most one
identity, we'll assume that u and e are identities for o. Then we'll show that u
= e. Remember, since u and e are identities, we know that u o x = x o u = x
and e o x = x o e = x for all x in S. Thus we have the following equality:

e = e 0 u (u is an identity for o)

= u (e is an identity for o). QED

Algebras with One Binary Operation

Some algebras are used so frequently that they have been given names. For
example, any algebra of the form (A; o), where o is a binary operation, is called

10.1 * WHAT IS AN ALGEBRA? 567

a groupoid. If we know that the binary operation is associative, then the algebra
is called a semigroup. If we know that the binary operation is associative and
also has an identity, then the algebra is called a monoid. If we know that the
binary operation is associative, has an identity, and each element has an inverse,
then the algebra is called a group. So these words are used to denote certain
properties of the binary operation. Here's a synopsis.

Groupoid: o is a binary operation.
Semigroup: o is an associative binary operation.
Monoid: o is an associative binary operation with an identity.

Group: o is an associative binary operation with an identity and
every element has an inverse.

It's clear from the listing of properties that a group is a monoid, which is a
semigroup, which is a groupoid. But things don't go the other way. For example,
the algebra in Example 10.5 is a monoid but not a group, since not every function
has an inverse.

We can have some fun with these names. For example, we can describe a
group as a monoid with inverses, and we can describe a monoid as a semigroup
with identity. When an algebra contains an operation that satisfies some special
property beyond the axioms of the algebra, we often modify the name of the
algebra with the name of the property. For example, the algebra (Z; +, 0) is a
group. But we know that the operation + is commutative. Therefore, we can
call the algebra a "commutative" group.

Now let's discuss a few elementary results. To get our feet wet, we'll prove
the following simple property that holds in any monoid.

Uniqueness of Inverses (10.2)
In a monoid, if an element has an inverse, the inverse is unique.

Proof: Let (M; o, u) be a monoid. We will show that if an element x in M
has an inverse, then the inverse is unique. In other words, if y and z are both
inverses of x, then y = z. We can prove this result as follows:

y = y 0 u (u is the identity for o)

= y 0 (x 0 z) (z is an inverse of x)

= (y o x) o z (o is associative)

= u 0 z (y is an inverse of x)

= z (u is the identity for o). QED

568 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

If we have a group, then we know that every element has an inverse. Thus we
can conclude from (10.2) that every element x in a group has a unique inverse,
which is usually denoted by writing the symbol

X-1.

j 10.6 Working with Groups

We can use the elementary properties of a group to obtain other properties. For
example, let (G; o, e) be a group. This means that we know that o is associative,
e is an identity, and every element of G has an inverse. We'll prove two properties
as examples. The first property is stated as follows:

If x o x = x holds for some element x G G, then x = e. (10.3)

Proof: x = x o e (e is an identity for o)

= x o (x o x- 1) (x- 1 is the inverse of x)

= (x o x) 0 x- 1 (o is associative)

= X 0 X-1 (x o x = x is the hypothesis)

= e (X- 1 is the inverse of x). QED

A second property of groups is cancellation on the left. This property can be
stated as follows:

Ifxo y=xoztheny=z (10.4)

Proof: y = e o y (e is an identity)

= (x- 1 o x) o y (x- 1 is the inverse of x)

= X-a o (x o y) (o is associative)

= x 1 o (x o z) (hypothesis)
= (x- 1 o x) o z (o is associative)

= C a z (x- 1 is the inverse of x)
= z (e is an identity). QED

Algebras with Several Operations

A natural example of an algebra with two binary operations is the integers
together with the usual operations of addition and multiplication. We can denote
this algebra by the structure (Z; +,.-, 0, 1). This algebra is a concrete example
of an algebra called a ring, which we'll now define. A ring is an algebra with the
structure

(A; +,-, 0, 1),

10.1 0 WHAT IS AN ALGEBRA? 569

+5 0 1 2 3 4 "s 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0

1 1 2 3 4 0 1 0 1 2 3 4

2 23 40 1 2 0 2 4 1 3

3 3 40 1 2 3 03 1 42

4 4 0 1 2 3 4 0 4 3 2 1

Figure 10.3 Mod 5 addition and multiplication tables.

where (A; +, 0) is a commutative group, (A; ., 1) is a monoid, and the operation
distributes over + from the left and the right. This means that

a.(b+c)=a. b+a.c and (b+c).a=b.a+c.a.

Check to see that (Z; +, ., 0, 1) is indeed a ring.
If (A; +, ., 0, 1) is a ring with the additional property that (A - {0}; , 1)

is a commutative group, then it's called a field. The ring (Z; +, ., 0, 1) is not a
field because, for example, 3 does not have an inverse for multiplication. On the
other hand, if we replace Z by 0, the rational numbers, then (Q; +, , 0, 1) is a
field. For example, 3 has inverse 1/3 in Q - {0}.

For another example of a field, let N5 = {0, 1, 2, 3, 4} and let +5 and '5 be
addition mod 5 and multiplication mod 5, respectively. Then (N5 ; +5, "5, 0, 1)
is a field. Figure 10.3 shows the operation tables for +5 and -5- We'll leave the
verification of the field properties as an exercise.

The next examples show some algebras that might be familiar to you.

S10.7 Polynomial Algebras

Let R[x] denote the set of all polynomials over x with real numbers as coefficients.

It's a natural process to add and multiply two polynomials. So we have an
algebra (R[x]; +, ., 0, 1), where + and • represent addition and multiplication
of polynomials and 0 and 1 represent themselves. This algebra is a ring. Why
isn't it a field?

.10.8 Matrix Algebras

Suppose we let M•(R) denote the set of all n by n matrices with elements in
R. We can add two matrices A and B by letting Aij + Bij be the element in
the ith row and jth column of the sum. We can multiply A and B by letting

k=1 AikBkj be the element in the ith row and jth column of the product.
Thus we have an algebra (Mn(R); +, ", 0, 1), where + and • represent matrix
addition and multiplication, 0 represents the matrix with all entries zero, and 1

570 CHAPTER 10 U ALGEBRAIC STRUCTURES AND TECHNIQUES

represents the matrix with l's along the main diagonal and 0's elsewhere. This
algebra is a ring. Why isn't it a field?

j 10.9 Vector Algebras

The algebra of n-dimensional vectors, with real numbers as components, can
be described by listing two carriers JR and R'. We can multiply a vector
(x 1 , ... , Xn) G IR' by number b c JR to obtain a new vector by multiplying
each component of the vector by b, obtaining

(bxl, ... , bx•).

If we let • denote this operation, then we have

b (xi, ... , x,) = (bxi, ... , bxn).

We can add vectors by adding corresponding components. For example,

(X 1 , .-. , Xn) + (Yi, ... , Yn) = (X 1 + Yi, .. , Xn + Yn).

Thus we have an algebra (R, R; -I , +) of n-dimensional vectors. Notice that
the algebra has two carriers, JR and Rn . This is because they are both necessary
to define the • operation, which has type JR x]R n - R'n.

S10.10 Power Series Algebras

If we extend polynomials over x to allow infinitely many terms, then we obtain
what are called power series (we also know them as generating functions). Let-
ting R[[x]] denote the set of power series with real numbers as coefficients, we
obtain the algebra (R[[x]]; +, -, 0, 1), where + and • represent addition and
multiplication of power series and 0 and 1 represent themselves. This algebra is
a ring. Why isn't it a field?

= Exercises

Algebraic Properties

1. Let m and n be two integers with m < n. Let A = {m, + 1,...,n},
and let "min" be the function that returns the smaller of its two arguments.
Does min have a zero? Identity? Inverses? If so, describe them.

10.1 0 WHAT IS AN ALGEBRA? 571

2. Let A = {true, false}. For each of the following binary operations on A,
answer the three questions: Does the operation have a zero? Does the
operation have an identity? What about inverses?

a. Conditional, --+.

b. Conjunction, A.
c. Disjunction, V.

3. Given the algebra (S; f, a), where f is a unary operation and a is a constant
of S and f 5 (x) = f 3 (x) for all x E S, find a finite set of algebraic expressions
that will represent the distinct elements of S.

4. Given a binary operation on a finite set in table form, for each of the following
parts, describe an easy way to detect whether the binary operation has the
listed property.

a. There is a zero.

b. The operation is commutative.

c. Inverses exist for each element of the set (assume that there is an iden-
tity).

5. Let A = {a, b, c, d}, and let o be a binary operation on A. For each of
the following problems, write down a table for o that satisfies the given
properties.

a. a is an identity for o, but no other element of A has an inverse.

b. a is an identity for o, and every element of A has an inverse.

c. a is a zero for o, and o is not associative.

d. a is an identity, and exactly two elements have inverses.
e. a is an identity for o, and o is commutative but not associative.

6. Let A - {a, b}. For each of the following problems, find an operation table
satisfying the given condition for a binary operation o on A.

a. (A; o) is a group.

b. (A; o) is a monoid but not a group.
c. (A; o) is a semigroup but not a monoid.

d. (A; o) is a groupoid but not a semigroup.

7. Write an algorithm to check a binary operation table for associativity.

Challenges

8. Given the algebra (S; f, g, a), where f and g are unary operations and a is
a constant of S, suppose that f(f(x)) = g(x) and g(g(x)) = x for all x E S.

572 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

a. Show that f(g(x)) = g(f(x)) for all x G S.

b. Show that f(f(f(f(x)))) = x for all x E S.

c. Find a finite set of algebraic expressions to represent the distinct ele-
ments of S.

9. Prove each of the following facts about a group (G; o, e).

a. Cancellation on the right: If y o x = z o x, then y = z.

b. The inverse of x o y is y- 1 o x- 1. In other words, (x o y)-'=
Y-1 0 x-1.

10. Let N 5 = {0, 1, 2, 3, 4}, and let +5 and "5 be the two operations of addition
mod 5 and multiplication mod 5, respectively. Show that (N6 ; +5, "5, 0, 1)
is a field.

10.2 Boolean Algebra

Do the techniques of set theory and the techniques of logic have anything in
common? Let's do an example to see that the answer is yes. When working with
sets, we know that the following equation holds for all sets A, B, and C:

A U (B n C) = (A U B) n (A U C).

When working with propositions, we know that the following equivalence holds
for all propositions A, B, and C:

A V (B A C) -(A V B) A (A V C).

Certainly these two examples have a similar pattern. As we'll see shortly, sets
and logic have a lot in common. They can both be described as concrete examples
of a Boolean algebra. The name "Boolean" comes from the mathematician
George Boole (1815-1864), who studied relationships between set theory and
logic. Let's get to the definition.

Definition of Boolean Algebra

A Boolean algebra is an algebra with the structure (B; +, -, -, 0, 1), where the
following properties hold.

10.2 m BOOLEAN ALGEBRA 573

Defining Properties of a Boolean Algebra

1. (B; +, O) and (B; -, 1) are commutative monoids. In other words, the
following properties hold for all x, y, z E B:

(x+y)+z=x+(y+z), (xr.y).z=x(Y-z),

x+y=y+x, x.y=y.x,

x+0=x, x-1=x.

2. The operations + and • distribute over each other. In other words, the
following properties hold for all x, y, z C B:

x.(y+z)=(x.y)+(x.z) and x+(y.z)=(x+y).(x+z).

3. x + T = 1 and x • T = 0 for all elements x E B. The element T is called
the complement of x or the negation of x.

We often drop the dot and write xy in place of x - y. We'll also reduce the need
for parentheses by agreeing to the following precedence hierarchy:

highest (do it first),

+ lowest (do it last).

For example, the expression a + b- means the same thing as (a + (b (h))).

10. 11 Sets

Suppose B = power(S) for some set S. Then B is the carrier of a Boolean
algebra if we let union and intersection act as the operations + and , let X' be
the complement of X, let 0 act as 0, and let S act as 1. For example, the two
properties in part 3 of the definition are represented by the following equations,
where X is any subset of S:

XUX'=S and XnX'=0.

J 10.12 Logic

Suppose we let B be the set of all propositional wffs of the propositional calculus.
Then B is the carrier of a Boolean algebra if we let disjunction and conjunction
act as the operations + and -, let - X be the complement of X, let false act

574 CHAPTER 10 U ALGEBRAIC STRUCTURES AND TECHNIQUES

as 0, let true act as 1, and let logical equivalence act as equality. For example,
the two properties in part 3 of the definition are represented by the following
equivalences, where X is any proposition:

X V-•X-true and X A-X--false.

We can also obtain a very simple Boolean algebra by using just the carrier
{false, true} together with the operations V, A, and

S10.13 Divisors

Let n be a product of distinct prime numbers. For example, n could be 30
because 30 = 2.3.5, but n cannot be 12 because 12 = 2.2.3, which is not a
product of distinct primes. Let B, be the set of positive divisors of n. Then
Bn is the carrier of a Boolean algebra if we let "least common multiple" and
"greatest common divisor" be the operations + and ., respectively. Let n/x be
the complement of x, let 1 act as the zero, and let n act as the one.

With these definitions, all the properties of a Boolean algebra are satisfied.
For example, the two properties in part 3 of the definition are represented by
the following equations, where x G Bn:

lcm(x, n/v) = n and gcd(x, n/x) = 1.

For an example, let n = 10 = 2.5. Then B 10 = {1, 2, 5, 10}, 1 is the zero, and
10 is the one. Thus, for example, the complement of 2 is 5, lcm(2, 5) = 10 (the
one), and gcd(2, 5) = 1 (the zero).

Notice what happens if we let n = 12. We get B 12 {1, 2, 3, 4, 6, 12}.
The reason B 1 2 does not yield a Boolean algebra with our definition is because
2 and its complement 6 don't satisfy the properties in part 3 of the definition.
Notice that lcm(2, 6) = 6, which is not the one, and gcd(2, 6) = 2, which is not
the zero.

10.2.1 Simplifying Boolean Expressions

A fundamental problem of Boolean algebra, with applications to such areas as
logic design and theorem-proving systems, is to simplify Boolean expressions so
that they contain a small number of operations. Let's see how the axioms of
Boolean algebra can help us obtain some useful simplification properties.

For example, in the Boolean algebra of propositions we have P A P = P for
any proposition P. Similarly, in the Boolean algebra of sets we have S n S =
S for any set S. Can we generalize these properties to all Boolean algebras? In
other words, can we say bb = b for every element b in the carrier of a Boolean

10.2 0 BOOLEAN ALGEBRA 575

algebra? The answer is yes. Let's prove it with equational reasoning. Be sure
you can provide a reason for each step of the following proof:

b = b. 1 = b. (b + b) = b- b + b. b = b. b + 0 = b b.

A related statement is b + b = b for all elements b. Can you provide the proof?
We'll state these two properties for the record.

Idempotent Properties (10.5)

b. b=b and b+-b=b.

A nice property of Boolean algebras is that results come in pairs. This is
because the axioms come in pairs. In other words, (B; +, 0) and (B; ., 1) are
both commutative monoids; + and - distribute over each other; and b + b = 1
and b b = 0 for all elements b E B. The duality principle states that whenever
a result A is true for a Boolean algebra, then a dual result A' is also true, where
A' is obtained from the A by simultaneously replacing all occurrences of • by +,
all occurrences of + by ., all occurrences of 1 by 0, and all occurrences of 0 by
1. A proof for the result A' can be obtained by making these same changes in
the proof of A.

There are lots of properties that we can discover. For example, if S is a set,
then o n A = 0 for any subset A of S. This is an instance of a general property
that holds for any Boolean algebra: 0 •b 0 for every element b. This follows
readily from (10.5) as follows:

0 -b = (b. b) . b =b(b.- b) b = 0.

Again, there is a dual result: 1 + b 1 for every b. Can you prove this result?
We'll also state these two properties for the record:

Zero and One Properties (10.6)

0. b=0 and 1+b=1.

Let's do an example to see how we can put our new knowledge to use in sim-
plifying a Boolean expression. Suppose the function f is defined over a Boolean
algebra by

f (x, y, z) = x + yz + zTy + Yxz.

To evaluate f, we need to perform three + operations, five - operations, and
two - operations. Can we do any better? Sure we can. We can simplify the

576 CHAPTER 10 a ALGEBRAIC STRUCTURES AND TECHNIQUES

expression for f (x, y, z) as follows-make sure you can state a reason for each
line:

f (x, y, z) = x + yz + z-y + Vxz

= x +yz (1 +T) + xz

= x + yzl + Yxz

= x(1 + z) +yz

= xl + yz

= x + yz.

So f can be evaluated with only one + operation and one - operation.
To simplify Boolean expressions, it's important to have a good knowledge

of Boolean algebra together with some luck and ingenuity. We'll give a few
more general properties that are very useful simplification tools. The following
properties can be used to simplify an expression by reducing the number of

operations by two. We'll leave the proofs as exercises.

Absorption Laws (10.7)

a+ab=a and a(a+b) =a.

a+ tb=a+b and a(•+b) =ab.

In a Boolean algebra, complements are unique in the following sense: If
an element acts like a complement of some element, then it is in fact the only
complement of the element. Using symbols, we can state the result as follows:

Uniqueness of the Complement (10.8)

If a + b 1 and ab = 0, then b =.

Proof: To prove this statement, we write the following equations:

b= bl
b b(a+ -)

= ba + ba-

= 0 + b- (since ab = 0)

= a + U-

= (a+b)a

=1Td (since a + b=1)

d •QED.

10.2 U BOOLEAN ALGEBRA 577

Complements are quite useful in Boolean algebra. As a consequence of the
uniqueness of complements (10.8), we have the following property:

Involution Law (10.9)

= a.

Proof: Notice that d + a = 1 and Ja = 0. Therefore, a acts like the complement
of Z. Thus a is indeed equal to the complement of i. That is, a = a. QED.

Recall from the propositional calculus that we have the following logical
equivalence -' (p A q) =- - p V -' q. This is an example of one of De Morgan's
laws, which have the following forms in Boolean algebra.

De Morgan's Laws (10.10)

a +Tb = ab and ab = a + b.

Proof: We'll prove the first of the two laws and leave the second as an exercise.
We'll use (10.8) to show that a + b = ab. In other words, we'll show that ab acts
like the complement of a + b. Then we'll use (10.8) to conclude the result. First,
we'll show that (a + b) + ab = 1 as follows:

(a + b) + a = (a + b + a) (a + b +)
= (a + + -b) (a+ b+)

-- (l+b)(a+1)

=1.1
=1.

Next we'll show that (a + b) • ab = 0 as follows:

(a + b) • ab = aab + bab

= aab + abb

= 06 + aO

=0+0

=0.

Thus ab acts like a complement of a + b. So we can apply (10.8) to conclude
that ab is the complement of a + b. In other words, a + b = ab. QED.

578 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

In the propositional calculus we can find a disjunctive normal form (DNF)
and a conjunctive normal form (CNF) for any wff. These ideas carry over to
any Boolean algebra, where + corresponds to disjunction and • corresponds to
conjunction. So we can make the following statement:

Any Boolean expression has a DNF and a CNF.

j 10.14 DNF and CNF Constructions

We'll construct a DNF and CNF for the expression

a + b + c.

The following transformations do the job:

aT-b+ c =ab + c (DNF)

=a+ c) (L + c) (CNF).

10.2.2 Digital Circuits

Now let's see what Boolean algebra has to do with digital circuits. A digital
circuit (also called a logic circuit) is an electronic representation of a function
whose input values are either high or low voltages and whose output value is
either a high or low voltage. Digital circuits are used to represent and process
information in digital computers. The high- and low-voltage values are normally
represented by the two digits 1 and 0.

The basic electronic components used to build digital circuits are called

gates. The three basic "logic" gates are the AND gate, the OR gate, and the
NOT gate. These gates work just like the corresponding logical operations, where
1 means true and 0 means false. So we can represent digital circuits as Boolean
expressions with values in the Boolean algebra whose carrier is {0, 1}, where 0
means false, 1 means true, and the operations +,., and - stand for V, A, and
9, respectively.

The three logic gates are represented graphically as shown in Figure 10.4,

where the inputs are on the left and the outputs are on the right.

Arithmetic Circuits

These gates can be combined in various ways to form digital circuits to do all
basic arithmetic operations. For example, suppose we want to add two binary
digits x and y. The first thing to notice is that the result has a summand digit
and a carry digit. We'll consider two functions, "carry" and "summand." Let's
look at the carry function first. Notice that carry(x, y) = 1 if and only if x = 1
and y = 1. Thus we can define the carry function as follows:

carry(x, y) = xy.

10.2 U BOOLEAN ALGEBRA 579

Y xy Y x+ -•)-

AND gate OR gate NOT gate
(inverter)

Figure 10.4 Logical gates.

x

y

y + x-7

Figure 10.5 Summand circuit.

A circuit to implement the carry function consists of the simple AND gate shown
in Figure 10.4.

Now let's look at the summand. It's clear that summand(x, y) = 1 if and
only if either x = 0 and y = 1 or x = I and y = 0. Thus we can define the
summand function as follows:

summand (x, y) = Ty + x-.

A circuit to implement the summand function is shown in Figure 10.5.
We can combine the two circuits for the carry and the summand into one

circuit that gives both outputs. The circuit is shown in Figure 10.6. Such a cir-
cuit is called a half-adder, and it's a fundamental building block in all arithmetic
circuits.

F 10.15 A Simple Half-Adder

Let's see whether we can simplify the circuit for a half-adder. The preceding
circuit for a half-adder has six gates. But we can do better. First, notice that
the expression for the summand, Ty + xF has five operations: two negations, two

xY

Tgr+ .d

Figure 10.6 Half-adder circuit.

580 CHAPTER 10 0 ALGEBRAIC STRUCTURES AND TECHNIQUES

x .- (X + y) Gwy)
Y

Figure 10.7 Simpler half-adder circuit.

conjunctions, and one disjunction. Let's rewrite it as follows (be sure to fill in
the reasons for each step).

Ty + X= (TY + X) (TY + •)

= (x+y)•.

This latter expression has four operations: two conjunctions, one disjunction,

and one negation. Also, note that the expression xy is computed before the
negation is applied. Therefore, we can also use this expression for the carry. So
we have a simpler version of the half-adder, as shown in Figure 10.7.

Constructing a Full Adder

We'll describe a circuit to add two binary numbers. For example, supppose we
want to add the two binary numbers 1 0 1 1 and 1 1 1 0. The school method
can be pictured as follows:

1 1 0 +- (carry bits)

1 0 1 1

1 1 1 0
1 0 0 1

So if we want to add two binary numbers, then we can start by using a
half-adder on the two rightmost digits of each number. After that, we must be
able to handle the addition of three binary digits: two binary digits and a carry
from the preceding addition. A digital circuit to accomplish this latter feat is

called a full adder.
We can build a full adder by using half-adders as components. Let's see how

it goes. First, to get the big picture, we will denote a half-adder by a box with
two input lines and two output lines, as shown in Figure 10.8.

To get an idea about the kind of circuit we need, let's look at a table of
values for the outputs sum and carry. Figure 10.9 shows the values of sum and

carry that are obtained by adding three binary digits.
Let's use Figure 10.9 to find DNFs for the sum and carry functions in terms

of x, y, and z. Notice that the value of the sum is 1 in four places, on lines 2,

10.2 * BOOLEAN ALGEBRA 581

Inputs

Half-
Carry adder

Summand

Figure 10.8 Half adder.

x y z Sum Carry

0 0 0 0 0

0 0 1 1 0

0 10 1 0

0 1 1 0 1

1 00 1 0

1 0 1 0 1

1 1 0 0 1

Figure 10.9 Adding three binary digits.

3, 5, and 8 of the table. So the DNF for the sum function will consist of the
disjunction of four terms, with each conjunction constructed from the values of x,
y, and z on the four lines. Similarly, the value of the carry is 1 in four places, on
lines 4, 6, 7, and 8. So the DNF for the carry function depends on conjunctions
that depend on these latter four lines. We obtain the following forms for sum
and carry.

sum (x, y, z) = •yz + Tyz + xy + xyz

= T (Yz + yf) + x (Y + yz).

carry (x, y, z) = Tyz + xyz + xy• + xyz

= yz + x (Yz + yft).

At this point we could build a circuit for sum and carry. But let's study the
expressions that we obtained. Notice first that the expression

Vz + yf

occurs in both the sum formula and the carry formula. Recall also that this
is the expression for the summand output of the half-adder. It can be shown
that the expression W-5 + yz, in the sum function, is equal to the negation of the

582 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

x y z

Half-
adder

Half-
adder

Carry Sum

Figure 10.10 Pull adder.

expression Y7z + y7 (the proof is left as an exercise). In other words, if we let
e = iz + yi, then we can write the sum in the following form:

sum (X, y, z) = Te + Xz.

This shows us that sum(x, y, z) is just the summand output of a half-adder. So
we can let y and z be inputs to a half-adder and then feed the summand output
along with x into another half-adder to obtain the desired sum(x, y, z). Before
we draw the diagram, we need to look at the carry function. We have written

carry in the following form:

carry (x, y, z) = yz + x(YZ +)

Notice that the term yz is the carry output of a half-adder with input values
y and z. Further, the term x (yz + y•) is the carry output of a half-adder with
inputs x and -9z + y-, where yz + yz is the output of the half-adder with inputs
y and z. So we can draw a picture of the circuit for a full adder as shown in
Figure 10.10.

Minimization

As we've seen in the previous two examples, we can get simpler digital circuits if
we spend some time simplifying the corresponding Boolean expressions. Often
a digital circuit must be built with the minimum number of components, where
the components correspond to DNFs or CNFs.

This brings up the question of finding a minimal DNF for a Boolean expres-
sion. Here the word "minimal" is usually defined to mean the fewest number of
fundamental conjunctions in a DNF, and if two DNFs have the same number
of fundamental conjunctions, then the one with the fewest literals is minimal.

10.2 U BOOLEAN ALGEBRA 583

The term minimal CNF is defined analogously. It's not always easy to find a
minimal DNF for a Boolean expression.

F 10.16 AMinimalDNF

The Boolean expression yz + yx is a minimal DNF for the expression

Yyz + xyz + xyz.

We can show that these two expressions are equivalent as follows:

Tyz + xyz + xyf = (Y + x) yz + xy•

= yz + xyf

= y (z + Xf)

=y (z + x)
= yz + yx.

But it takes some work to see that yz + xy is a minimal DNF. First we need to
argue that there is no equivalent DNF with just a single fundamental conjunction.
Then we need to argue that there is no equivalent DNF with two fundamental
conjunctions with fewer than four literals.

There are formal methods that can be applied to the problem of finding
minimal DNFs and minimal CNFs. We'll leave them to more specialized texts.

P Exercises

The Axioms

1. Let S be a set and B = power(S). Suppose someone claims that B is a
Boolean algebra with the following definitions for the operators.

+ is union,
is difference,

- is complement with respect to S,

0 is S,
1 is 0.

Is the result a Boolean algebra? Why or why not?

584 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

Boolean Expressions

2. Prove each of the following four absorption laws (10.7).

a. x+xy=x. b. x(x+y)=x.

c. x+Yy=x+y. d. x(Y+y)=xy.

3. Let e = yz + yf. Prove that = Y- + yz.

4. Use Boolean algebra properties to prove each of the following equalities.

a. Y+-Y+xyz=:+±+z.

b. Y+V+xyz=x+V+xyz.

5. Simplify each of the following Boolean expressions.

a. x + xy b. xy Y + xyY.

c. Yxyz+ xz+xz. d. xy+x-9+ y.

e. x (y + yz) + ±z + yz. f. x + yz + Yy + Yxz.

g. x+yz±+y++xz. h. x+y(x+y).
i. (x + y) + xy. j. (X + y) (Y + X) (Y + y).

k. xy + x + y. 1. (x + y) xy.

6. For each part of Exercise 2, draw two logic circuits. One circuit should
implement the expression on the left side of the equality. The other circuit

should implement the expression on the right side of the equality. Each
circuit should use the same number of gates as there are operations in the
expression.

7. Write down the dual of each of the following Boolean expressions.

a. x+1. b. x(y+z). c. xy+xz.

d. xy + z. e. y + z. f. zVY+xzY.

8. Show that, in a Boolean algebra, 1 + b = 1 for every element b.

9. Show that, in a Boolean algebra, a + b = - + b for all elements a and b.

Challenges

10. Let B be the carrier of a Boolean algebra. Suppose B is a finite set, and
suppose 0 7 1. Show that the cardinality of B is an even number.

11. A Boolean algebra can be made into a partially ordered set by letting a -< b
mean a = ab.

a. Show that -- is reflexive, antisymmetric, and transitive.

b. Show that a -< b if and only if b = a + b.

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 585

12. A Boolean algebra, when considered as a poset-as in Exercise 11--is also
a lattice. Prove that glb(a, b) = ab and lub(a, b) = a + b.

13. In Example 10.3 we considered the set B, of positive divisors of n together
with the operations of lcm, gcd, n/x, where n is one and 1 is zero. Prove
that this algebra is not Boolean if a prime p occurs more than once as a
factor of n. Hint: Consider the complement of p.

10.3 Abstract Data Types as Algebras

Programming problems involve data objects that are processed by a computer.
To process data objects, we need operations to act on them. So algebra enters
the programming picture. In computer science, an abstract data type consists of
one or more sets of data objects together with one or more operations on the sets
and some axioms to describe the operations. In other words, an abstract data
type is an algebra. There is, however, a restriction on the carriers of abstract
data types. A carrier must be able to be constructed in some way that will allow
the data objects and the operations to be implemented on a computer.

Programming languages normally contain some built-in abstract data types.
But it's not possible for a programming language to contain all possible ways
to represent and operate on data objects. Therefore, programmers must often
design and implement new abstract data types. The axioms of an abstract data
type can be used by a programmer to check whether an implementation is correct.
In other words, the implemented operations can be checked to see whether they
satisfy the axioms.

An abstract data type allows us to program with its data objects and op-
erations without having to worry about implementation details. For example,
suppose we need to create an abstract data type for processing polynomials. We
might agree to use the expression add(p, q) to represent the sum of two poly-
nomials p and q. To implement the abstract data type, we might represent a
polynomial as an array of coefficients and then implement the add operation by
adding corresponding array components. Of course, there are other interesting
and useful ways to represent polynomials and their addition. But no matter
what implementation is used, the statement add(p, q) always means the same
thing. So we've abstracted away the implementation details.

In this section we'll introduce some of the basic abstract data types of com-
puter science.

10.3.1 Natural Numbers

In Chapter 3 we discussed the problem of trying to describe the natural num-
bers to a robot. Let's revisit the problem by trying to describe the natural

586 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

numbers to ourselves from an algebraic point of view. We can start by trying
out the following inductive definition:

1. 0 E N.

2. There is a function s : N --+ N called "successor" with the following property:
If x E N, then s(x) G N.

Does this inductive definition adequately describe the natural numbers? It de-

pends on what we mean by "successor." For example, if s(O) = 0, then the set
{0} satisfies the definition. So the property s(O) = 0 must be ruled out. Let's
try the additional axiom:

3. s(x) # 0 for all x E N.

Now {0} doesn't satisfy the three axioms. But if we assume that s(s(0)) = SO),
then the set {0, s(O)} satisfies them. The problem here is that s sends two
elements to the same place. We can eliminate this problem if we require s to be
injective (one to one):

4. If s(x) = s(y), then x = y.

This gives us the set of natural numbers in the form 0, s(0), s(s(0)), ... , where
we set s(0) = 1, s(s(0)) = 2, and so on.

Historically, the first description of the natural numbers using axioms 1-4
was given by Peano. He also included a fifth axiom to describe the principle of
mathematical induction:

5. If q(x) is a property of x such that: q(0) is true, and q(x) implies q(s(x));
then q(x) is true for all x G N.

Let's stop for a minute to write down an algebraic description of the natural
numbers in terms of the first four rules:

Carrier: N.

Operations: 0 c N,
s: N -N.

Axioms: s (x) 5 0,
If s (x) = s (y), then x = y.

An algebra is useful as an abstract data type if we can define useful oper-
ations on the type in terms of its primitive operations. For example, can we
define addition of natural numbers in this algebra? Sure. We can define the
"plus" operation using only the successor operation as follows:

plus (0, y) = y,

plus (s (x), y) = s (plus (x, y))

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 587

For example, plus(2, 1) is computed by first writing 2 = s(s(O)) and 1 = s(0).
Then we can apply the definition recursively as follows:

plus (2, 1) = plus (s (s (0)), s (0))

= s (plus (s (0), s (0)))

= s (s (plus (0, s (0))))

=s(S (s (0)))

=3.

An alternative definition for the plus operation can be given as

plus (0, y) = y,

plus (8 (x), y) = plus (x, s (y)).

For example, using this definition, we can evaluate plus(2, 2) as follows:

plus (2, 2) = plus (1, 3) = plus (0, 4) = 4.

Now that we have the plus operation, we can use it to define the multiplica-
tion operation as follows:

mult (0, y) = 0,

mult (s (x), y) = plus (mult (x, y), y).

For example, we'll evaluate mult(3, 4) as follows--assuming that plus does its
job properly:

mult (3, 4) = plus (mult (2, 4), 4)

= plus (plus (mult (1, 4), 4), 4)

= plus (plus (plus (mult (0, 4), 4), 4), 4)
= plus (plus (plus (0, 4), 4), 4)

= plus (plus (4, 4), 4)

= plus (8,4) = 12.

Let's see whether we can write the definitions for plus and mult in if-then-
else form. To do so, we need the idea of a predecessor. Letting p(x) denote the
"predecessor" of x, we can write the definition of plus in either of the following
ways:

plus (x, y) = if x = 0 then y else s (plus (p (x), y))

or

plus (x, y) =if x =0 then y else plus (p (x), s (y)).

588 CHAPTER 10 E ALGEBRAIC STRUCTURES AND TECHNIQUES

We'll leave it as an exercise to prove that these two definitions are equivalent.
We can write the definition of mult as follows:

mult(x, y) = if x = 0 then 0 else plus(mult(p(x), y), y).

We can define the predecessor operation in terms of successor using the
equation p(s(x)) = x. Since we're dealing only with natural numbers, we should
either make p(O) undefined or else define it so that it won't cause trouble. The
usual definition is to say that p(0) = 0. It's interesting to note that we can't write
an if-then-else definition for the predecessor using only the successor operation.
So in some sense, the predecessor is a primitive operation too. So we'll add the
definition of p to our algebra. We also need a test for zero to handle the test "x
= 0" that occurs in if-then-else definitions.

To describe the algebra that includes these notions, we'll need another carrier
to contain the true and false results that are returned by the test for zero. Letting
Boolean = {true, false} and replacing s and p by the more descriptive names
"succ" and "pred," we obtain the following algebra to represent the abstract
data type of natural numbers:

Abstract Data Type of Natural Numbers (10.11)

Carriers: N, Boolean.

Operations: 0 E N,

isZero: N -* Boolean,

succ : N -* N,

pred : N - N.

Axioms: isZero(0) = true,

isZero(succ(x)) = false,

pred(0) = 0,

pred(succ(x)) = x.

Notice that we've made some replacements. The old axiom succ(x) # 0 has
been replaced by the new axiom, isZero(succ(x)) = false, which expresses the
same idea. Also, the old axiom "If succ(x) = succ(y), then x = y" has been
replaced by the new axiom pred(succ(x)) = x. To see this, notice that succ(x) =
succ(y) implies that pred(succ(x)) = pred(succ(y)). Therefore, we can conclude
that x = y because x = pred(succ(x)) = pred(succ(y)) = y.

For example, we can rewrite the plus function in terms of the primitives of
this algebra as

plus(x, y) = if isZero(x) then y else suce(plus(pred(x), y)).

We can also write the mult function in terms of the primitives of (10.11) together
with the plus function as follows:

mult(x, y) = if isZero(x) then 0 else plus(mult(pred(x), y), y).

10.3 N ABSTRACT DATA TYPES AS ALGEBRAS 589

j, 10.17 Less-Than

Let's define the "less" relation on natural numbers using only the primitives
of the algebra (10.11). To get an idea of how we might proceed, consider the
following evaluation of the expression less(2, 4):

less(2, 4) = less(l, 3) = less(0, 2) = true.

We simply replace each argument by its predecessor until one of the arguments
is zero. Therefore, less can be computed from a recursive definition such as the
following:

less (0, 0) = false,

less (succ (x), 0) = false,

less (0, succ (y)) = true,

less (succ (x), succ (y)) = less (x, y).

Using the if-then-else form, we obtain the following definition:

less (x, y) = if isZero (y) then false

else if isZero (x) then true

else less (pred (x), pred (y)).

The following paragraphs describe several fundamental algebras of computer
science. As we have said, they are also called abstract data types. The need for
abstraction can be seen by considering questions like the following: What do lists
and stacks have in common? How can we be sure that a queue is implemented
correctly? How can we be sure that any data structure is implemented correctly?
The answers to these questions depend on how we define the structures that we
are talking about, without regard to any particular implementation.

10.3.2 Lists and Strings

Lists

Recall that the set of lists over a set A can be defined inductively by using the
empty list, (), and the cons operation (with infix form ::) as constructors. If
we denote the set of all lists over A by lists(A), we have the following inductive
definition:

Basis: () E lists(A).

Induction: If x G A and L E lists(A), then cons(x, L) c lists(A).

590 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

The algebra of lists can be defined by the constructors () and cons together
with the primitive operations isEmptyL, head, and tail. With these operations
we can describe the list abstract data type as the following algebra of lists over A:

Abstract Data Type of Lists

Carriers: lists(A), A, Boolean.

Operations: () E lists(A),

isEmptyL : lists(A)-* Boolean,

cons: A x lists(A) -- lists(A),

head : lists(A)-* A,

tail : lists(A) -- lists(A).

Axioms: isEmptyL(()) true,

isEmptyL(cons(x, L)) = false,

head(cons(x, L)) = x,

tail(cons(x, L)) = L.

Can all desired list functions be written in terms of the "primitive" oper-
ations of this algebra? The answer probably depends on the definition of "de-
sired." For example, we saw in Chapter 3 that the following functions can be
written in terms of the operations of the list algebra.

length: lists(A) --> N Finds length of a list.

member: Ax lists(A) -+ Boolean Tests membership in a list.
last: lists(A) -, A Finds last element of a list.

concatenate: lists(A) x lists(A) - lists(A)

putLast: Ax lists(A) --+ lists(A) Puts element at right end.

Let's look at a couple of these functions to see whether we can implement
them. Assume that all the operations in the signature of the list algebra are
implemented. Then a definition for "length" can be written as follows:

length (L) = if isEmptyL (L) then 0

else 1 + length(tail (L)).

In this case the algebra (N; +, 0) must also be implemented for the length
function to work properly.

Similarly, suppose we define "member" as follows:

member (a, L) = if isEmptyL (L) then false

else if a = head (L) then true

else member (a, tail (L)).

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 591

In this case the predicate "a = head(L)" must be computed. Thus an equality
relation must be implemented for the carrier A.

As these two examples have shown, although we can define list functions in
terms of the algebra of lists, we often need other algebras, such as (N; +, 0), or
other relations, such as equality on A.

Strings

Strings may look different than lists, but these structures have a lot in common.
For example, they both have length, and their constructions are similar. For
example, the set of all strings over an alphabet A can be defined inductively
from the empty string, A, and the append operation to attach a letter to a string
(which we'll denote by .). Letting A* denote the set of all strings over A, we
have the following inductive definition:

Basis: A E A*.

Induction: Ifx E A and s E A*, thenx. s E A*.

The algebra of strings can be defined by the constructors A and append together
with the primitive operations isEmptyS, headS, and tailS. With these operations
we can describe the string abstract data type as the following algebra of strings
over A:

Abstract Data Type of Strings

Carriers: A, A*, Boolean.

Operations: A E A*,

isEmptyS : A* - Boolean,

: A x A* A*,

headS : A* -- A,

tailS : A* -- A*.

Axioms: isEmptyS(A) = true,

isEmptyS(a • s) = false,

headS(a , s) - a,

tailS(a • s) = s.

When working with strings, we want to be able to combine strings, compare
strings, and so on. We can define functions to accomplish these things using
the string algebra. For example, let's write a definition for the "cat" function to

592 CHAPTER 10 . ALGEBRAIC STRUCTURES AND TECHNIQUES

combine two strings. For example, cat(cb, aba) = cbaba. Cat has type A* x A*
-* A* and can be defined as follows:

cat (s, t) = if isEmptyS (s) then t

else headS (s)- cat (tailS (s) , t).

10.3.3 Stacks and Queues

Stacks

A stack is a structure satisfying the LIFO property of last in, first out. In
other words, the last element input is the first element output. The main stack
operations are push, which pushes a new element onto a stack; pop, which removes
the top element from a stack; and top, which examines the top element of a stack.
We also need an indication of when a stack is empty.

Let's describe the stack abstract data type as an algebra. For any set A,
let Stks[A] denote the set of stacks whose elements are from A. We'll include
error messages in our description for those cases in which the operators are not
defined. Here's the algebra.

Abstract Data Type of Stacks

Carriers: A, Stks[A], Boolean, Errors.

Operations: emptyStk E Stks[A],

isEmptyStk : Stks[A] -* Boolean,

push: A x Stks[A] -- Stks[A],

pop: Stks[A] -* Stks[A] U Errors,

top : Stks[A] -- A U Errors.

Axioms: isEmptyStk(emptyStk) = true,

isEmptyStk(push(a, s)) - false,

pop(push(a, s)) s,

pop(emptyStk) - stackError,

top(push(a, s)) a,

top(emptyStk) valueError.

Notice the similarity between the stack algebra and the list algebra. In fact,
we can implement the stack algebra as a list algebra by assigning the following

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 593

meanings to the stack symbols:

Stks [A] = lists (A),

emptyStk = (),

isEmptyStk = isEmptyL,

push = cons,

pop = tail,

top = head.

To prove that this implementation is correct, we need to show that the
axioms of a stack are true for the above assignment. They are all trivial. For
example, the proof of the third axiom is a one-liner:

pop(push(a, s)) = tail(cons(a, s)) = s. QED

.10. 18 Evaluating a Postfix Expression

Let's look at the general approach to evaluate an arithmetic expression repre-

sented in postfix notation. For example, the postfix expression abc+ - can be
evaluated by pushing a, b, and c onto a stack. Then b and c are popped, and

the value b + c is pushed onto the stack. Finally, a and b + c are popped, and
the value a - (b + c) is pushed. We'll assume that all operators are binary and
that there is a function "val," which takes an operator and two operands and
returns the value of the operator applied to the two operands.

The general algorithm for evaluating a postfix expression can be given as

follows, where the initial call has the form post(L, K)) and L is the list represen-
tation of the postfix expression:

post (() , stk) = top(stk)

post (x :: t, stk) = if x is an argument then

post (t, push (x, stk))

else {x is an operator}

post (t, eval (x, stk)),

where eval is defined by the equation

eval(op, push(a, push(b, stk))) = push(val(b, op, a), stk).

594 CHAPTER 10 . ALGEBRAIC STRUCTURES AND TECHNIQUES

For example, we'll evaluate the expression post((2, 5, +), ()).

post ((2, 5,+),)) =post ((5, +), (2))

post ((±), (5, 2))

post ((), eval (+, (5, 2)))

= top (eval (+, (5, 2)))

= top (push (val (2, +, 5), ()))
-val (2, +, 5)

=7.

Queues

A queue is a structure satisfying the FIFO property of first in, first out. In other
words, the first element input is the first element output. So a queue is a fair
waiting line. The main operations on a queue involve adding a new element,
examining the front element, and deleting the front element.

To describe the queue abstract data type as an algebra, we'll let A be a set
and Q[A] be the set of queues over A. Here's the algebra.

Abstract Data Type of Queues

Carriers: A, Q[A], Boolean.

Operations: emptyQ E Q[A],

isEmptyQ : Q[A] - Boolean,

addQ: A x Q[A] -Q[A],

frontQ : Q[A] -* A,

delQ: Q[AJ -- Q[A].

Axioms: isEmptyQ(emptyQ) = true,

isEmptyQ(addQ(a, q)) = false,

frontQ(addQ(a, q)) =-if isEmptyQ(q) then a

else frontQ(q),

delQ(addQ(a, q)) =if isEmptyQ(q) then q

else addQ(a, delQ(q)).

Although we haven't stated it in the axioms, an error will occur if either frontQ
or delQ is applied to an empty queue.

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 595

Suppose we represent a queue as a list. For example, the list (a, b) represents
a queue with a at the front and b at the rear. If we add a new item c to this
queue, we obtain the queue (a, b, c). So addQ(c, (a, b)) = (a, b, c). Thus addQ
can be implemented as the putLast function. The implementation of a queue
algebra as a list algebra can be given as follows:

Q [A] = lists (A)
emptyQ = (),

isEmptyQ = isEmptyL,

frontQ = head,

delQ = tail,

addQ = putLast.

The proof of correctness of this implementation is more interesting (not
trivial) because two queue axioms include conditionals, and putLast is written
in terms of the list primitives. For example, we'll prove the correctness of the
third axiom for the algebra of queues, leaving the proof of the fourth axiom as
an exercise. Since the third axiom is an if-then-else statement, we'll consider two
cases:

Case 1: Assume that q = emptyQ. In this case the axiom becomes

frontQ(addQ(a, emptyQ)) = head(putLast(a, emptyQ))

= head(a:: emptyQ)

= a.

Case 2: Assume that q 7 emptyQ. In this case the axiom becomes

frontQ(addQ(a, q)) = head (putLast (a, q))

= head (head (q) :: putLast (a, tail (q)))

= head (q)

= frontQ (q).

' 10.19 The Append Function

Let's use the queue algebra to define the append function, apQ, which joins two
queues together. It can be written in terms of the primitive operations of a queue
algebra as follows:

apQ (x, y) = if isEmptyQ (y) then x

else apQ (addQ (frontQ (y) , x) , delQ (y)).

596 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

For example, suppose x = (a, b) and y = (c, d) are two queues, where a is the
front of x and c is the front of y. We'll evaluate the expression apQ(x, y).

apQ (x, y) = apQ ((a, b), ,c, d))

= apQ ((a, b, c), (d))

= apQ((a,b,c,d) ,()

= (a, b, c, d).

J 10.20 Decimal to Binary

Let's convert a natural number to a binary number and represent the output
as a queue of binary digits. Let bin(n) represent the queue of binary digits
representing n. For example, we should have bin(4) = (1, 0, 0), assuming that
the front of the queue is the head of the list. Let's get to the definition.

If n = 0 or n = 1, we should return the queue (n), which is constructed
by addQ(n, emptyQ). If n is not 0 or 1, then we should return the queue
addQ(n mod 2, bin(floor(n/2))). In other words, we can define bin as follows:

bin(n) = if n = 0 or n = 1 then

addQ (n, emptyQ)

else

addQ (n mod 2, bin (floor (n/2))).

We leave it as an exercise to check that bin works. For example, try to evaluate
the expression bin(4) to see whether you get the list (1, 0, 0).

10.3.4 Binary Trees and Priority Queues

Binary Trees

Let B [A] denote the set of binary trees over a set A. The main operations on
binary trees involve constructing a tree, picking the root, and picking the left and
right subtrees. If a E A and 1, r c B[A], let tree(l, a, r) denote the tree whose
root is a, whose left subtree is 1, and whose right subtree is r. We can describe
the binary tree abstract data type as the following algebra of binary trees:

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 597

Abstract Data Type of Binary Trees

Carriers: A, B[A], Boolean.

Operations: emptyTree e B[A],

isEmptyTree : B[A] - Boolean,

root : B[A] , A,

tree: B[A] x A x B[A] --- B[A],

left : B[A] -B[A],

right: B[A] -+ B[A].

Axioms: isEmptyTree(emptyTree) = true,

isEmptyTree(tree(l, a, r)) = false,

left(tree(l, a, r)) = 1,

right(tree(l, a, r)) =r,

root(tree(l, a, r)) a.

Although we haven't stated it in the axioms, an error will occur if the func-
tions left, right, and root are applied to the empty tree. Next, we'll give a few
examples to show how useful functions can be constructed from the basic tree
operations.

J 10.21 Nodes and Depth

We'll look at two typical functions, "count" and "depth." Count returns the
number of nodes in a binary tree. Its type is B[A] -* N, and its definition
follows:

count (t) = if isEmptyTree (t) then 0

else 1 + count (left (t)) + count (right (t)).

Depth returns the length of the longest path from the root to the leaves of a
binary tree. Assume that an empty binary tree has depth -1. Its type is B[A]
-Z 2, and its definition follows:

depth (t) = if isEmptyTree (t) then -1

else 1 + max (depth (left (t)), depth (right (t))).

598 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

F 10.22 Inorder Traversal

Suppose we want to write a function "inorder" to perform an inorder traversal
of a binary tree and place the nodes in a queue. So we want to define a function
of type B[A] - Q[A]. For example, we might use the following definition:

inorder (t) = if isEmptyTree (t) then emptyQ

else apQ (addQ (root (t) , inorder (left (t))), inorder (right (t))).

We'll leave the preorder and postorder traversals as exercises.

Priority Queues

A priority queue is a structure satisfying the BIFO property: best in, first out.
For example, a stack is a priority queue if we let Best = Last. Similarly, a queue
is a priority queue if we let Best = First. The main operations of a priority queue
involve adding a new element, accessing the best element, and deleting the best
element.

Let P[A] denote the set of priority queues over A. If a G A and p E P[A],
then insert(a, p) denotes the priority queue obtained by adding a to p. We can
describe the priority queue abstract data type as the following algebra:

Carriers: A, P[A], Boolean.

Operations: emptyP G P[A],

isEmptyP : P[A] ---* Boolean,

better : A x A --+ Boolean,

best : P[A] -* A,

insert : A x P[A] - P[A],

delBest : P[A] -- P[A].
We'll note here that we are assuming that the function "better" is a binary

relation on A. Now for the axioms:

Axioms: isEmptyP(emptyP) = true,

isEmptyP(insert(a, p)) = false,

best(insert(a, p)) = if isEmptyP(p) then a

else if better(a, best(p)) then a

else best(p),

delBest(insert(a, p)) = if isEmptyP(p) then emptyP

else if better(a, best(p)) then p

else insert(a, delBest(p)).

10.3 m ABSTRACT DATA TYPES AS ALGEBRAS 599

We should note that the operations best and delBest are defined only on
nonempty priority queues. Priority queues can be implemented in many different
ways, depending on the definitions of "better" and "best" for the set A.

To show the power of priority queues, we'll write a sorting function that
sorts the elements of a priority queue into a sorted list. The initial call to sort
the priority queue p is sort(p, ()). The definition can be written as follows:

sort (p, L) = if isEmptyP (p) then L

else sort (delBest (p), best (p) :: L).

0 Exercises

Natural Numbers

1. The monus operation on natural numbers is like subtraction, except that it
always gives a natural number as a result. An informal definition of monus
can be written as follows:

monus(x, y) = if x > y then x - y else 0.

Write down a recursive definition of monus that uses only the primitive
operations isZero, succ, and pred.

2. The exponentiation function is defined by exp(a, b) = ab. Write down a
recursive definition of exp that uses primitive operations or functions that

are defined in terms of the primitive operations on the natural numbers.
Note: Assume that exp(0, 0) = 0.

Lists

3. Use the algebra of lists to write a definition of the function "reverse" to
reverse the elements of a list. For example, reverse((x, y, z)) = (z, y, x).

4. Use lists to describe an implementation of the algebra of strings over some
alphabet.

5. Write an algebraic specification for general lists over a set A (where the
elements of a list may also be lists).

6. Use the algebra of lists to write a definition for the "flatten" function that
takes a general list over a set A and returns the list of its elements from A.
For example, flatten(((a, b), c, d)) = (a, b, c, d). Hint: Assume that there

is a function isAtom to check whether its argument is an atom (not a list).
Also assume that the other list operations work on general lists.

7. Evaluate the expression post((4, 5, -, 2, +), ()) by unfolding the definition

in Example 10.18.

600 CHAPTER 10 w ALGEBRAIC STRUCTURES AND TECHNIQUES

8. Evaluate the expression bin(4) by unfolding the definition in Example 10.20.

Binary Trees

9. Write down a definition for the function "preorder," which performs a pre-
order traversal of a binary tree and places the node values in a queue.

10. Write down a definition for the function "postorder," which performs a pos-
torder traversal of a binary tree and places the node values in a queue.

Stacks and Queues

11. Find a descriptive name for the "mystery" function f, which has the type
A x Stks[A] -- Stks[A] and is defined by the following equations:

f (a, emptyStk) = emptyStk,

f (a, push (a,s)) = f (a, s),

f (a, push (b, s)) = push (b, f (a, s)) if a 7ý b.

12. Find a descriptive name for the "mystery" function f, which has type
Q[A] -+ Q[A] and is defined as follows:

f (q) = if isEmptyQ (q) then q

else addQ (frontQ (q), f (delQ (q))).

13. A deque, pronounced "deck," is a double-ended queue in which insertions and
deletions can be made at either end of the deque. Write down an algebraic
specification for deques over a set A.

14. For the list implementation of a queue, prove the correctness of the following
axiom:

delQ (addQ (a, q)) = if isEmptyQ (q) then q

else addQ (a, delQ (q)).

15. Implement a queue by using the operations of a deque. Prove the correctness

of your implementation.

16. Suppose the "better" function used in a priority queue has the following type
definition:

better : A x A --* A.

How would the axioms change? Do we need any new operations?

10.4 m COMPUTATIONAL ALGEBRAS 601

Proofs and Challenges

17. Consider the following two definitions for adding natural numbers, where p

and s denote the predecessor and successor operations.

plus (x, y) if x - 0 then y else s (plus (p (x), y)),

add (x, y) = if x = 0 then y else add (p (x), s (y)).

a. Use induction to prove that plus(x, s(y)) = s(plus(x, y)) for all x,

y E N.

b. Use induction to prove that plus(x, y) = add(x, y) for all x, y E N.
Hint: Part (a) can be useful.

18. Use induction to prove the following property over a queue algebra, where
apQ is the append function defined in Example 10.19.

apQ(x, addQ(a, y)) = addQ(a, apQ(x, y)).

Hint: To simplify notation, let x:a denote addQ(a, x). Then the equation
becomes apQ(x, y:a) = apQ(x, y):a.

19. Use induction to prove the following property over a queue algebra, where
apQ is the append function defined in Example 10.19.

apQ(x, apQ(y, z)) = apQ(apQ(x, y), z).

Hint: Exercise 18 may be helpful. No

10.4 Computational Algebras

In this section we present some important examples of algebras that are useful
in the computation process. First we'll look at relational algebra as a tool for
representing relational databases. Then we'll discuss functional algebra as a tool
not only for programming, but for reasoning about programs.

10.4.1 Relational Algebras

Relations can be combined in various ways to build new relations that solve
problems. An algebra is called a relational algebra if its carrier is a set of rela-
tions. We'll discuss three useful operations on relations: select, project, and join.
Each of these operations builds a new relation by selecting certain tuples, by
eliminating certain attributes, or by combining attributes of two relations. We'll
motivate the definitions with some examples.

602 CHAPTER 10 E ALGEBRAIC STRUCTURES AND TECHNIQUES

Rooms

Place [Seats [Boarditype Computer

CH171 80 Chalk No
HH101 1250 No Yes
SC2 11 j35 White Yes
CH301 190 Chalk Yes

Figure 10.11 Classoomis in a school.

Let Rooms be the relation with attributes {Place, Seats, Boardtype, Com-
puter} to describe classrooms in a college. For example, Figure 10.11 shows a
few sample entries for Rooms.

Notice that Rooms can be represented as a relation consisting of a set of

4-tuples as follows:

Rooms ={ (CH171, 80, Chalk, No),

(HH101, 250, No, Yes),

(SC211, 35, White, Yes),

(CH301, 90, Chalk, Yes),

The Select Operation

The select operation on a relation forms a new relation that is a subset of the
relation consisting of those tuples that have a common value in one of the at-
tributes.

For example, suppose that we want to construct the relation A of tuples that
represent all the rooms with chalk boards. In other words, we want to select from
Rooms those tuples that have Boardtype equal to Chalk. We'll represent this
by the notation

A = select(Rooms, Boardtype, Chalk).

The value of this expression is

A = {(CH171, 80, Chalk, No), (CH301, 90, Chalk, Yes),...

J 10.23 Selecting Tuples

Suppose we want to construct the relation B of tuples that represent the rooms
with chalk boards and computers. In this case we can select the tuples from the
relation A.

B = select(A, Computer, Yes)

= select (select(Rooms, Boardtype, Chalk), Computer, Yes)

= {(CH301, 90, Chalk, Yes), ... }.

10.4 m COMPUTATIONAL ALGEBRAS 603

The Project Operation
The project operation on a relation forms a new relation consisting of tuples
indexed by a subset of the attributes of the relation.

For example, suppose that we want to construct the relation Size of tuples
with only the two attributes Place and Seats. In other words, we want to restrict
ourselves to the first and second columns of the table for Rooms. We'll represent
this by the notation

Size = project(Rooms, {Place, Seats}).

The value of this expression is

Size = {(CH171, 80), (HH101, 250), (SC211, 35), (CH301, 90), ...

.10.24 Specific Properties

Here are a few more questions that ask for specific properties about the Rooms
relation.

1. What rooms have chalk boards?

project(select (Rooms, Boardtype, Chalk), {Place})

= {(CH171), (CH301), ... }.

2. How large are the rooms with computers?

project (select (Rooms, Computer, Yes), {Place, Seats})

= {(HH1O1, 250), (SC211, 35), (CH301, 90), ... 1.
3. What kind of board is in SC211?

project (select(Rooms, Place, SC211), {Boardtype})

= {(White)}.

The Join Operation

The join operation on two relations forms a new relation consisting of tuples
that are indexed by the union of the attributes of the two relations. The new
tuples in the join are constructed from pairs of tuples whose values agree on the
common attributes of the two relations.

For example, let Channel and Program be two relations with attributes
{Station, Satellite, Cable} and {Station, Type}, respectively, that describe in-
formation about television networks. Figure 10.12 shows a few sample entries
for the two relations.

Suppose we want to join the two relations into a single relation called TV
with attributes Station, Satellite, Cable, and Type. We'll represent this opera-
tion by the notation

TV = join(Channel, Program).

604 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

Channel Program

Station I Satelllite Cable Station Type

AMC 130 48 AMC Movie
CNN 200 96 CNN News

TCM 132 54 TCM Movie
ESPN 140 32 ESPN Sports

Figure 10.12 TV channels and programs.

j 10.25 TV Questions

Now we can answer some TV questions. For example, what are the cable movie

channels? One solution is to select the tuples in TV that have Movie as the Type
attribute. Then project onto the Cable attribute:

project (select (TV, Type, Movie), {Cable})

The expression evaluates to the channel numbers {(48), (54), ... }.
For another example, what type of programming is on satellite channel 140?

One solution is to select the tuples in TV that have 140 as the Satellite attribute.
Then project onto the Type attribute:

project(select(TV, Satellite, 140), {Type}).

The expression evaluates to {(Sports)}.

___ 10.26 Class Schedules

Let Schedule be the class schedule with attributes {Dept, Course, Section, Credit,
Time, Day, Place, Teacher}. Figure 10.13 shows a few sample entries.

Each entry of the table can be represented as a tuple. For example, the first
row of Schedule can be represented as the tuple

(CS, 252, 1, 4, 1600 1750, TTh, CH171, Hein).

Schedule
Dept Course Section Credit Time Day Place Teacher

CS 252 1 4 1600-1750 T, h CH171 Hein

CS 252 2 4 1200-1350 MW SC211 Jones

Mth 201 1 4 1000-1150 TTh CH301 Appleby

Mth 256 1 4 1400-1550 MW NH356 Ames

EE 300 1 4 0800-0950 TTh SC211 Brand

Figure 10.13 A class schedule.

10.4 0 COMPUTATIONAL ALGEBRAS 605

Here are some sample questions and answers.

1. What is the mathematics schedule?

select(Schedule, Dept, Mth).

2. What mathematics classes meet TTh?

select(select(Schedule, Dept, Mth), Day, TTh)

= {(Mth, 201, 1, 4, 1000-1150, TTh, NH325, Appleby), ...

3. What are the times and days that CS 252 is taught? If we want the set

{(1600-1750, TTh), (1200-1350, MW)},

then we can use the following expression:

project(select(select(Schedule, Dept, CS), Course, 252), {Time, Day})

= {(1600-1750, TTh), (1200-1350, MW)}.

4. What classes are in rooms with computers?

project(join(Rooms, Schedule), {Dept, Course, Section})

{(CS, 252, 2), (Mth, 201, 1), (EE, 300, 1),...

Formal Definitions of Select, Project, and Join

Let R be a relation, A an attribute of R, and a a possible value of A. The
relation consisting of all tuples in R with attribute A having value a is denoted
by select(R, A, a) and is defined as follows:

Select Operation

select(R, A, a) = {t I t c R and t(A) = a}.

For example, using the Rooms relation in Figure 10.11 we have

select(Rooms, Boardtype, Chalk)

= {t I t c Rooms and t(Boardtype) = Chalk}.

= {(CH171, 80, Chalk, No), (CH301, 90, Chalk, Yes),

If A and a are fixed, then select(R, A, a) is sometimes denoted by selectA a(R).
If X is a subset of the set of attributes of the relation R, then the project

operation of R on X is denoted project(R, X) and consists of all tuples indexed

606 CHAPTER 10 n ALGEBRAIC STRUCTURES AND TECHNIQUES

by X constructed from the tuples of R. In formal terms we have the following
definition:

Project Operation
project(R, X) s I there exists t E R such that

s(A) = t(A) for all A E X}.

For example, using the Rooms relation in Figure 10.11 we have

project(Rooms, {Place, Seats})

= {s I there exists t C Rooms such that

s(Place) = t(Place) and s(Seats) = t(Seats)}

= {(CH171, 80), (HH101, 250), (SC211, 35), (CH301, 90),

If X is fixed, then project(R, X) is sometimes denoted by projects (R).
Let R and S be two relations with attribute sets I and J, respectively. The

join of R and S is the set of all tuples over the attribute set I U J that are
constructed from R and S by "joining" those tuples with equal values on the
common attribute set I nl J. We denote the join of R and S by join(R, S). Here's
the formal definition:

Join Operation

join (R, S) = {t Ithere exist r E R and s E S such that

t(A) =r(A) for allAEIand

t(B)=s(B) for allBEJ}.

There are two special cases. Let R and S be two relations with attribute
sets I and J. If I n J = 0, then join(R, S) is obtained by concatenating all pairs
of tuples in R x S. For example, if we have tuples (a, b) e R and (c, d, e) E S,
then (a, b, c, d, e) G join(R, S). If I = J, then join(R, S) = R nl S.

A Relational Algebra

Now we have the ingredients of a relational algebra. The carrier is the set of
all possible relations, and the three operations are select, project, and join. We
should remark that join(R, S) is often denoted by R x S. The properties of

10.4 E COMPUTATIONAL ALGEBRAS 607

this relational algebra are too numerous to mention here. But we'll list a few
properties that can be readily verified from the definitions.

selectA=a (selectB~b (R)) = selectB=b (selectA=a (R)),

RxR=R,

(R tS) >iT = R (S T),

projects (selectA~a (R)) - selectA=, (projectx (R)) (where A E X)

If R and S have the same set of attributes, then the select operation has
some nice properties when combined with the set operations: U, n, and -. For
example, we have the following properties:

selectA=a (R U S) = selectA=a (R) U seleCtA=a (S),

selectA=,a (R n S) = selectA=a (R) n selectA=, (S),

selectA=a (R - S) = selectA~a (R) - selectA~a (S) .

There are many other useful operations on relations, some of which can be
defined in terms of the ones we have discussed. Relational algebra provides a set
of tools for constructing, maintaining, and accessing databases.

10.4.2 Functional Algebras

From a programming point of view, a functional algebra consists of functions
together with operations to combine functions in order to process data objects.
Let's look at a particular functional algebra that is both a programming language
and an algebra for reasoning about programs.

FP: A Functional Algebra

The correctness problem for programs can sometimes be solved by showing
that the program under consideration is equivalent to another program that
we "know" is correct. Methods for showing equivalence depend very much on
the programming language. The FP language was introduced by Backus [1978].
FP stands for functional programming, and it is a fundamental example of a
programming language that allows us to reason about programs in the program-
ming language itself. To do this, we need a set of rules that allow us to do some
reasoning. In this case the rules are axioms in the algebra of FP programs.

FP functions are defined on a set of objects that include atoms (numbers,
and strings of characters), and lists. To apply an FP function f to an object x,
we write down f:x instead of the familiar f(x). To compose two FP functions
f and g, we write f (Q g instead of the familiar f o g. Suppose we have the
following definition for an if-then-else function:

f(x) = if a(x) then b(x) else c(x).

608 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

We would make f into an FP function by writing

f = a - b; c.

We evaluate f:x just like the evaluation of an if-then-else statement:

f:x = (a -+ b; c):x = a:x -* b:x; c:x.

A function can be defined as a tuple of functions. For example, the following
expression defines f as a 3-tuple of functions:

f = [g, h, k].

In this case f:x = (g:x, h:x, k:x). A constant function has the form
f = - c, where f:x = c for all objects x.

Our objective is to get the flavor of the language to see its algebraic nature.
So we'll describe some operations and axioms of an algebra of FP programs.
We'll limit the operations to those that will be useful in the examples and exer-
cises. We'll also include a few axioms to show some useful relationships between
composition, tupling, and if-then-else.

Operations to construct new functions:

@ composition (e.g., f Q g),

-- if-then-else (e.g., p -- a; b),

tuple of functions (e.g., [f, g, h]),

constant (e.g., '-, 2).

Primitive operations:

id the identity function,

hd, tl head and tail,

apndl, apndr cons and consR,

1, 2, ... selectors (e.g., 2:(a, b, c) =b),

and, or, not Boolean operations,

null test for empty list,

atom test for an atom,

) empty list,

? undefined symbol,

eq test for equality of two atoms,

<, >, +, -, *, / arithmetic relations and operations.

Axioms:

f L (a-- b ; c) =a---- f © b ; f L c,

(a -* b ; c) 0 d = a Q d -4 b © d ; c @ d,
[f l , . . A l f n a g --- f 1 0 g , . - , f • Ld g ,

f @d [..., (a - b ;c), . . .] = a --* f (Q [. . ., b, ..];f (Q [.. c,. .]

10.4 U COMPUTATIONAL ALGEBRAS 609

Now we'll give some examples of FP program definitions. In the last example
we'll use FP algebra to prove the equivalence of two FP programs.

S10.27 Testing for Zero

Let eqO be the function that tests its argument for zero. An FP definition for
eqO can be written as follows, where eq tests equality of atoms.

eqO = eq © [id, - 0].

For example, we'll evaluate the expression eqO : 3 as follows:

eqO: 3 eq © [id, - 01 : 3 = eq: (id: 3, 0- : 3) = eq: (3, O) = false.

F-- 10.28 Subtracting 1

Let sub1 be the function that subtracts 1 from its argument. An FP definition
for subl can be written as follows, where - is subtraction.

subl = - © [id, - 1].

For example, we'll evaluate the expression subl : 4 as follows:

subl : 4 =-@La[id, - 1)]: 4=- (id : 4, - 1 : 4) - (4, 1) = 3.

• 10.29 Length of a List

Let "length" be the function that calculates the length of a list. An informal
if-then-else definition of length can be written as follows.

length(x) = if x = () then 0 else 1 + length(tail(x)).

The corresponding FP definition can be written as follows, where null tests for
the empty list and tl computes the tail of a list:

length = null --, - 0; + L [- 1, length 0 tl].

610 CHAPTER 10 0 ALGEBRAIC STRUCTURES AND TECHNIQUES

For example, we'll evaluate the expression length : (a).

length : (a) = (null ---* 0; + A[- 1, length A tl]): (a)

= null: (a) -- - 0: (a); + U H 1,lengthqtl] : (a)

= false -4 0; + : (1, length: ())
= +: (1, length: ())

= +: (1, (null -- O; +@ [- 1, length 4 tl]): ())
= +: (1, true 0- ; +A [-, 1, length A tlj)
= +: (1,0)

10.30 An Equivalence Proof

An FP program to compute n! can be constructed directly from the following
recursive definition.

fact(x) = if x = 0 then 1 else x * fact(x - 1).

The FP version of fact is

fact = eqO -- 1; * @ [id, fact © sub1].

An alternative FP program to compute n! can be defined as follows.

newfact = g © [- 1, id],

where g is the FP program defined by

g = eq0 @ 2 -* 1; g Q [*, subl 0 2].

Notice that g is iterative because it has a tail-recursive form (i.e., it has the
form g = a -- b; g A d), which can be replaced by a loop. Therefore, newfact
is also iterative. So newfact may be more efficient than fact. To prove the two
programs are equivalent, we'll need the following relation involving g:

* A [a, g A [b, c]] = g (0 [* A [a, b], c], (10.12)

where a, b , and c are functions that return natural numbers. We'll leave the
proof of (10.12) as an exercise. Now we can prove that newfact = fact.

Proof: If the input to either function is 0, then eqO is true, which gives us the
base case fact:O = newfact:0. Now we'll make the induction assumption that
fact A subl = newfact A subl and show that newfact = fact. Starting with
newfact, we have the following sequence of algebraic equations:

10.4 0 COMPUTATIONAL ALGEBRAS 611

newfact = g 9 [-1, id] (definition)

= (eqO Q 2 -4 1; g © [*, subi Q 2]) Q [-1, id] (definition)

= eqO 4 id --- -1; g © [* 4 [-1, id], subi 4 id] (FP algebra)

= eqO -+ ,1; g ([* Q [-•1, id], subl] (FP algebra)

eqO -* •1; * © [id, g A [-I1, sub1]] (10.12)

eqO -- ,1; * U [id, newfact U subi] (FP algebra)

eqO -* ,-1; * @ [id, fact @ subi] (induction)

= fact (definition). QED

So newfact is correct if we assume that fact is correct. This is a plausible assump-
tion because fact is just a translation of the definition of the factorial function.

O Exercises

Relational Algebra

1. Given the following relations R and S with attribute sets {A, B, C, D} and
{B, C, D, E}, respectively.

R S
A IBIcID B Ic D1E

1 a # M a # M X

2 a * N b * N Y
1 b #1M a # M z

3 a % IN b j% M w

Compute each of the following relations.

a. select(R,B,a).

b. project(R, {B, D}).

c. join(R, S).

d. project(R, {B, C, D}) U project(S, {B, C, D}).

e. project(R, {B, D}) n project(S, {B, D}).

2. Give an example of two relations R and S that have the same set of attributes

{A, B} and such that join(R, S) # 0 and join(R, S) # R U S.

3. Find a relational algebra expression for each of the following questions about

the example relations in Figures 10.11, 10.12, and 10.13.

612 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

a. Construct a relation consisting of cable channel stations. The expres-
sion should evaluate to {(AMC, 48), (CNN, 96), ...}.

b. What are the names of the movie channel stations? The expression
should evaluate to {(AMC), (TCM), ... }.

c. Which rooms with computers have white boards too? The expresssion

should evaluate to {(SC211), ... }.

d. How many seats are in CH301? The expression should evalutate to
{(90)}.

e. What information exists about ESPN? The expression should evaluate
to {(ESPN, 140, 32, Sports)}.

f. Is there a computer in the room where CS 252 Section 1 is taught? The
expression should evaluate to { (Yes) }.

4. Use the definitions for the operators select and join to prove each of the

following listed properties.

a. selectA=a (selectB=b (R)) = selectB=b (selectA=a (R)).

b. RDR=R.
c. (RxS)xtT= Rt(Sm•T).

5. Let R be a relation, X a set of attributes of R, and A an attribute in X.
Prove the following relationship between project and select.

projectx (selectA=a (R)) = selectA=, projectsx (R)).

Functional Algebra

6. Write an FP function to implement each of the following definitions.

a. f(n) = ((0, 0), (1, 1), ... , (n, n)).
b. f ((X1, ... , Xn) , (YI,-., Yn)) = ((XI, YI),-. (Xn, yn)).

7. Prove each of the following FP equations.

a. + @ [1, 2] = + L [2, 1] = +.

b. 1Cd-(a,b) =-a and 2@0-(a,b)=-b.

8. Prove the following FP equation (10.12) from Example 10.30.

* @ [a, g 0 [b, c]] = g 0 [* L [a, b], c],

where a, b, and c are any functions that return natural numbers and g has
the following definition.

g = eqO L 2 -- 1; g 0 [*, subl U 2].

10.5 . OTHER ALGEBRAIC IDEAS 613

9. The following FP function is a translation of the recursive definition for the

nth Fibonacci number, where sub2 is the FP function to subtract 2:

slow = eqO - - 0; eql --* ' 1; + © [slow @ subl, slow 0 sub2].

The following FP function claims to compute the nth Fibonacci number by
iteration:

fast = IQg, where g=eq0---* (0, 1); [2,+1 AgAsubl.

Prove that slow and fast are equivalent FP functions.

10.5 Other Algebraic Ideas

In this section we introduce some general algebraic tools that are used to solve
some computational problems. We'll introduce congruence mod n as a compu-

tational tool and after studying some simple properties we'll see how they apply
to computations in cryptology.

We'll also give a short description of some tools and techniques for con-
structing new algebras from existing algebras. We'll describe subalgebras, which
have applications to defining new abstract data types from existing ones. Then
we'll describe morphisms, which are used to transform one object into another
without destroying certain properties.

10.5.1 Congruence

We're going to examine a useful property that sometimes occurs when an equiv-

alence relation interacts with algebraic operations in a certain way. We'll use
the familiar mod function that we discussed in Chapter 2.

Recall that if x is an integer and n is a positive integer, then x mod n denotes
the remainder upon division of x by n. We can define an equivalence relation on

the integers by relating two numbers x and y if the following equation holds:

x mod n = y mod n.

For example, if n = 4, then the integers are partitioned into the following
four equivalence classes, where [k] = {x I x mod 4 = k mod 4}.

[0] = { . -8, -4, 0,4, 8,....}

[1] .. 7, -3,1, 5,9,....}
[2] .. 6, -2, 2, o, 10,... }
[3] --- { . -5,- 1, 3, 7, 11,...}.

614 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

We'll soon see that we can consider such classes to be elements of an algebra.
Before we do this we'll introduce a notational convenience. Since the equation x
mod n = y mod n is used repeatedly when dealing with numbers, the following
notation has been developed.

x-- y (mod n).

We say that x is congruent to y mod n. Remember, it still just means the same
old thing that x - y is divisible by n.

Now, we can notice two very interesting arithmetic properties of the mod
function and how it interacts with addition and multiplication.

Two Properties of the Mod Function. (10.13)
If a =--- b (rood n) and c =- d (mod n), then

a + c-_- b + d (mod n) and ac -- bd (mod n).

Proof: The hypotheses tell us that there are integers k and I such that

a= b+kn and c=d+ln.

Adding the two equations, we get

a + c = b + d + (k + l)n.

so that a + c b + d (mod n). Now multiply the two equations to get

ac = bd + (bl + kd + kln)n,

which gives ac bd (mod n). QED.

The two properties (10.13) are an example of operations that interact with
an equivalence relation in a special way, which we'll now describe. Suppose - is
an equivalence relation on a set A. An n-ary operation f on A is said to preserve
Sif it satisfies the following property:

If a, - bl, ... , a, - b•, then f(a,, ... , a,) - f(b, ... , bn).

For example, (10.13) says that the mod n relation is preserved by addition and

multiplication.
When an equivalence relation on the carrier of an algebra is preserved by

each operation of the algebra, then the relation is called a congruence relation
on the algebra, and the expression x - y is called a congruence. For example,
the mod n relation is a congruence relation on the algebra (Z; +, .).

10.5 U OTHER ALGEBRAIC IDEAS 615

A Finite Algebra: The Integers Mod n

The two properties (10.13) allow us to think of the equivalence classes

[0], [1], ... , [n - 1]

as the elements of an algebra where we can add and multiply them with the
following definition:

[a] + [b] = [a + b] and [a].[b] = [a.b].

We should note that these definitions make sense. In other words, if [a] = [c]
and [b] = [d], then we must show that [a + b] = [c + d] and [a.b] = [c.d]. Since
[a] = [c] and [b] = [d], it follows that a - c (mod n) and b = d (mod n). So
(10.13) tells us that a + b - c + d (mod n) and a-b =- c-d (mod n) In other
words, [a + b] = [c + d] and [a.b] = [c.d]. So addition and multiplication of
equivalence classes are indeed valid operations.

. . 10.31 A Finite Algebra

The mod 4 equivalence relation partitions the integers into the four classes [01,
[1], [2], and [3]. These four classes are elements of an algebra. Here are a few
sample calculations.

[2] + [3] = [2 + 3] = [5] = [1],

[2] - [3] = [2 -3] = [6] = [2],

[0] + [3] = [0 + 3] = [3],
[11.- [2] = [1.-2] = [2].

We'll leave it as an exercise to write the addition and multiplication tables.

Fermat's Little Theorem

We'll use the previous results to prove an old and quite useful result about
numbers that is due to Fermat and is often called Fermat's little theorem.

Fermat's Little Theorem

If p is prime and a is not divisible by p, then aP- -- 1 (mod p).

Proof: Let [0], [1], ... , [p - 1] denote the equivalence classes that partition the
integers with respect to the mod p relation. Since a is not divisible by p, it

616 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

follows that [a] • [0] because (0] is the set of all multiples of p (i.e., the set of
all integers divisible by p). Now look at the sequence of classes

[1-a], [2.a], . .. , [(p - 1).a]

We can observe that each of these classes is not [0]. For example, if we had
[i • a] = [0], this would imply that i.a is divisible by p. But p is relatively prime
to a, so by (2.2d) it would have to divide i. But i < p, so i can't be divided
by p. Therefore, [i.a] h [0]. We can also observe that the classes are distinct.
For example, if [i-a] = [j-a], then we would have i-a mod p = j-a mod p. Since
gcd(a, p) = 1, it follows by (2.4d) that i mod p = j mod p, which tells us that
[i] = D1].

Since the classes [1.a], [2.a], ... , [(p - 1).a] are all distinct and not equal to
[0], they must be an arrangement of the sets [1], [2], ... , [p - 1]. So the product
of the classes [1], [2], ... , [p - 1] must be equal to the product of the classes
[1-a], [2-a], ... , [(p - 1).a]. In other words we have the following equality:

[1-a].[2-a.a] [(p - 1).a] = [1].[2]- .. .- [p - 1].

Since [x.y] = [x].[y], we can rewrite this equation to obtain

[1.a.2.a . (p - 1).a] = [1.2 ... (p - 1)].

Put all the a's together to obtain the following equation.

[aP0-.1.2 (p - 1)] = [1.2. (p - 1)]

This class equation means that

aP-1.1.2 . (p - 1) mod p = 1.2. (p - 1) mod p.

Since each of the numbers 1, 2, . . ., p - 1 is relatively prime to p, it follows from
(2.4d) that they can each be cancelled from the equation to obtain the following
equation:

aP- 1 mod p = 1 mod p = 1.

In other words, we have ap- 1 -1 (mod p), which is the desired result. QED.

10.5.2 Cryptology: The RSA Algorithm

In cryptology a public-key cryptosystem is a system for encrypting and decrypting
messages in which the public is aware of the key that is needed to encrypt
messages sent to the receiver. But the receiver is the only one who knows the
private key needed to decrypt a message.

The first working system to accomplish this task is called the RSA algorithm,

named after its founders Ronald Rivest, Adi Shamir, and Leonard Adleman
[1978].

We'll describe the general idea of how the algorithm is used. Then we'll dis-
cuss the implementation and why it works. The algorithm works in the following
way, where the message to be sent is a number. (This is no problem because any
text can be transformed into a number in many ways.)

10.5 n OTHER ALGEBRAIC IDEAS 617

1. The receiver constructs a public encryption key, which is a pair of numbers
(e, n), and makes it available to the public. The receiver also constructs a
private decryption key d that no one else knows.

2. Any person with the public key (e, n) can send a message a to the receiver
if 0 < a < n. The sender encrypts a to a number c with the following
calculation.

c = ae mod n.

The sender then sends c to the receiver.

3. The receiver upon receiving c makes the following calculation to decrypt c,
where d is the private key and n is taken from the public key (e, n).

cd mod n.

This value is the desired message a.

The Details of the Keys

To construct the keys, choose two large distinct prime numbers p and q and let
n = pq. Then choose a positive integer d that is relatively prime to the product
(p - 1)(q - 1). Then let e be a positive integer that satisfies the equation
ed mod ((p - 1)(q - 1)) = 1.

If the keys are constructed in this way, then the system works. In other
words, we have the following theorem.

RSA Theorem

If 0 < a < n and c = a' mod n, then cd modn = a.

The proof depends on Fermat's little theorem. We'll give it in stages, beginning
with two lemmas.

Lemma 1: aed mod p = a mod p and aed mod q = a mod q.

Proof: The numbers e and d were chosen so that ed mod (p - 1)(q - 1) = 1. So
we can write ed = 1 + (p - 1)(q - 1)k for some integer k. We'll start with the

following equations:

aed modp = a+(p-1)(q-l)k modp

(a1 modp) (a(p1)(q1)k modp) modp (2.4c)

- (a mod p) (aP-1 mod p)(q-1)k mod p (2.4c)

618 CHAPTER 10 a ALGEBRAIC STRUCTURES AND TECHNIQUES

Now we consider two cases. If gcd(a, p) = 1, then we can apply Fermat's little
theorem to obtain ap- 1 mod p = 1. So the equations continue as follows:

= (amodp) (I)(q-1)k modp

= a modp.

If gcd(a, p) $ 1, then, since p is prime, it must be the case that gcd(a, p) =

p so that p divides a. In this case a mod p = 0 and thus also aed mod p = 0.
So in either case, we obtain the desired result aed mod p = a mod p. A similar
argument shows that aed mod q = a mod q. QED.

Lemma 2: aed mod n = a for 0 < a < n.

Proof: By Lemma 1 we know that aed mod p = a mod p. So p divides aed - a.
In other words, aed - a = pk for some integer k. But Lemma 1 also tells us that
aed mod q = a mod q. So q divides aed - a = pk. Since p and q are distinct
primes, we have gcd(p, q) = 1. So q divides k. It follows that k = q1 for some
integer 1. Thus aed - a = pql and it follows that pq divides aed - a. Therefore,
aed mod pq = a mod pq = a because a < n = pq. QED.

Proof of RSA Theorem:

The proof of the RSA Theorem is now a simple obsevation based on Lemma 2.
Let c = a' mod n. We must show that cd mod n = a. The following sequence
of equations does the job.

cd mod n = (ae mod n)d mod n

= (aed mod n)

= a. QED.

Practical Use of the RSA Algorithm

The practical use of the RSA algorithm is based on several pieces of mathematical
knowledge. The security of the system is based on the fact that factoring large
numbers is a very hard problem. If n is chosen to be the product of two very
large prime numbers, then it will be very hard for someone to factor n to find the
two prime numbers. So it will be very hard to construct the private decryption
key d from the public encryption key (e, n).

The speed of the system is based on the fact that it is very easy to encrypt
and decrypt numbers. This follows from some basic results about the mod
function. For example, the RSA paper [1978] includes a simple algorithm to
calculate a' mod n that requires at most 2.1og2 e multiplications and 2.1og2 e
divisions. The calculation of cd mod n is similar. The paper also discusses fast
methods to construct the keys in the first place: to find large prime numbers p
and q; to construct the product (p - 1)(q - 1); to choose d; and to compute e.

It's time to do some examples.

10.5 0 OTHER ALGEBRAIC IDEAS 619

1 10.32 Generating the Keys

We'll construct keys for a simple example to see the construction method. Let
p = 13 and q = 17. Then n = pq = 221 and (p - 1)(q - 1) = 12.16 = 192. For

the private key we'll choose d = 19, which is a prime number larger than either
p or q, so we know it is relatively prime to (p - 1)(q - 1) = 192. To construct e,
we must satisfy the equation ed mod ((p - 1)(q - 1)) = 1, which becomes 19e
mod 221 = 1. Since gcd(19, 221) = 1, we can use Euclid's algorithm in reverse
to find two numbers e and s such that 1 = 19e + 221s. For example, to compute
gcd(19, 221) we proceed as follows, where each equation has the form a = b.q + r
with 0 < r < I b1:

221 = 19.11 + 12

19 = 12-1 + 7

12 =7. 1 + 5

7=5.1+2

5=2.2+1

The gcd is the last nonzero remainder, in this case 1. So we start with the
remainder 1 in the fifth equation and work backwards eliminating the remainders
2, 5, 7, and 12.

1=5-2.2

=5 -(7-5).2
=5.3-7.2

(12 - 7) . 3 - 7. 2

=12.3-7.5

= 12 .3 - (19 - 12). 5
=12.8-19.5

(221 - 19.11). 8 - 19 .5

= 221 . 8 + 19. (-93).

Therefore, 1 = 19.(- 93) mod 221. But we can't choose e to be - 93 because e
must be positive. This is no problem because we can add any multiple of 221
to - 93. For example, let e = 221 - 93 = 128. We'll verify that this value of e
works.

de mod 221 = 19 • 128 mod 221

= 19. (221 - 93) mod 221

= ((19 . 221 mod 221) + (19. (-93) mod 221)) mod 221

= (0 + 1) mod 221

=1.

Therefore, the public key is (e, n) = (128, 221) and the private key d is 19.

620 CHAPTER 10 U ALGEBRAIC STRUCTURES AND TECHNIQUES

_ 10.33 Sending and Receiving a Message

We'll use the RSA algorithm to encrypt and decrypt a message. But first we
need to agree on a way to represent the letters in the message. To keep things
simple we'll identify the uppercase letters A, B, .. . , Z with the integers 1, 2, ... ,
26 and the blank space with 0. So each symbol can be represented by a 2-digit
number. In other words, A = 01, B = 02, ... , Z = 26, and blank = 00.

To keep numbers a reasonable size, we'll break each message into a sequence
of two-letter blocks. For example, to send the message HELLO WORLD we'll
break it up into the following six 2-letter blocks.

HE = 0805, LL = 1212, 0 = 1500, WO = 2315, RL = 1812, D = 0400.

The largest number for any two letter block is ZZ = 2626. So we'll have to
construct a public key (e, n), where n > 2626. We'll let n = 2773 = 47-59, which
is the smallest product of two primes that is greater then 2626. For this choice
of n, an example in the RSA paper [1978] chose d = 157 and then computed e

17. We'll use these values too.
For example, to encrypt a number x, we must calulate

x17 mod 2773.

For example, we'll use (2.4c) to encrypt the first block HE = 0805 as follows:

80517 mod 2773 = [(805)((((805)2)2)2)2] mod 2773

= [(805)(((8052 mod 2773)2)2)2] mod 2773

= [(805)(((1916)2)2)2] mod 2773

= [(805)((19162 mod 2773)2)2] mod 2773

= [(805)((2377)2)2] mod 2773
= [(805)(23772 mod 2773)2] mod 2773

= [(805)(1528)2] mod 2773
= [(805)(15282 mod 2773)] mod 2773

= [(805)(2691)] mod 2773

= 542.

After encrypting all six blocks, we obtain the following six little messages to be
sent out.

HE = 0542, LL = 2345, 0 = 2417, WO = 2639, RL = 2056, D = 0017.

We'll leave it as an exercise to decrypt this sequence of numbers into the original
message. For example, 0542157 mod 2773 = 0805.

10.5 m OTHER ALGEBRAIC IDEAS 621

10.5.3 Subalgebras

Programmers often need to create new data types to represent information.
Sometimes a new data type can use the same operations of an existing type.
For example, suppose we have an integer type available to us but we need to
detect an error condition whenever a negative integer is encountered. One way
to solve the problem is to define a new type for the natural numbers that uses
some of the operations of the integer type.

For example, we can still use +, *, mod, and div (integer divide) because
N is "closed" with respect to these operations. In other words, these operations
return values in N if their arguments are in N. On the other hand, we can't use
the subtraction operation because N isn't closed with respect to it (e.g., 3 - 4
ý N). We say that our new type "inherits" the operations +, *, mod, and div
from the existing integer type. In algebraic terms we've created a new algebra

(N; +, *, mod, div),

which is a "subalgebra" of (Z; +, m, mod, div).
Let's describe the general idea of a subalgebra. Let A be the carrier of an

algebra, and let B be a subset of A. We say that B is closed with respect to an
operation if the operation returns a value in B whenever its arguments are from
B. The diagram in Figure 10.14 gives a graphical picture showing B is closed
with respect to the binary operation o.

Definition of Subalgebra

If A is the carrier of an algebra and B is a subset of A that is closed with respect
to all the operations of A, then B is the carrier of an algebra called a subalgebra
of the algebra of A. In other words, if (A; £1) is an algebra, where 0 is the set of
operations, and if B is a subset of A that is closed with respect to all operations
in Q, then (B; Q) is an algebra, called a subalgebra of (A; Q).

Figure 10.14 B is closed with respect to o.

622 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

• 10.34 Some Sample Subalgebras

Here are three examples of subalgebras.

1. (N; +, *, mod, div) is a subalgebra of (Z; +, *, mod, div).

2. Let Qt = {+, -, , 0, 1}. Then we have a sequence of subalgebras, where each
one is a subalgebra of the next: (Z; Q), (Q; Q2), (lR; Q2).

3. Consider the algebra (Ns; +s, 0), where +s means addition mod 8. The set
{0, 2, 4, 6} forms the carrier of a subalgebra. But {0, 3, 6} is not the carrier
of a subalgebra because 3 +s 6 = 1 and I ý {0, 3, 6}.

Combining Subalgebras

We can combine subalgebras by forming the intersection of the carriers. For
example, consider the algebra (N12 ; +12, 0), where +12 means addition mod 12.
Two subalgebras of this algebra have carriers {0, 2, 4, 6, 8, 10} and {0, 3, 6, 9}.
The intersection of these two carriers is the set {0, 6}, which forms the carrier
of another subalgebra of (N12 ; +12, 0). This is no fluke. It follows because the
carrier of each subalgebra is closed with respect to the operations. So it follows
that the intersection of carriers is also closed.

Generating a Subalgebra

One way to generate a new subalgebra is to take any subset you like-say, S-
from the carrier of an algebra. If the operations of the algebra are closed with
respect to S, then we have a new subalgebra. If not, then keep applying the
operations of the algebra to elements of S. If an operation gives a result x and
x ý S, then enlarge S by adding x to form the bigger set S U {x}. Each time a
bigger set is constructed, the process must start over again until the set is closed
under the operations of the algebra. The resulting subalgebra has the smallest
carrier that contains S.

10.35 Smallest Subalgebra

We'll start with the algebra (N12 ; +12, 0) and try to find the smallest subalgebra
whose carrier contains the subset {4, 10} of N12. Notice that this set is not closed
under the operation +12 because 4 +12 4 = 8, and 8 V {4, 10}. So we'll add
the number 8 to get the new subset {4, 8, 10}. Still there are problems because
4 +12 8 = 0, and 8 +12 10 = 6. So we'll add 0 and 6 to our set to obtain the
subset {0, 4, 6, 8, 10}. We aren't done yet, because 6 +12 8 = 2. After adding
2, we obtain the set {0, 2, 4, 6, 8, 10}, which is closed under the operation of
+12 and contains the constant 0.

10.5 * OTHER ALGEBRAIC IDEAS 623

Therefore, the algebra {{O, 2, 4, 6, 8, 10}; +12, 0) is the smallest subalgebra
of (N12 ; +12, 0) that contains the set {4, 10}.

10.5.4 Morphisms
This little discussion is about some tools and techniques that can be used to
compare two different entities for common properties. For example, if A is an
alphabet, then we know that a string over A is different from a list over A. In
other words, we know that A* and lists(A) contain different kinds of objects.
But we also know that A* and lists(A) have a lot in common. For example, we
know that the operations on A* are similar to the operations on lists(A). We
know that the algebra of strings and the algebra of lists both have an empty
object and that they construct new objects in a similar way. In fact, we know
that strings can be represented by lists.

On the other hand, we know that A* is quite different from the set of binary
trees over A. For example, the construction of a string is not at all like the
construction of a binary tree.

We would like to be able to decide whether two different entities are alike
in some way. When two things are alike, we are often more familiar with one
of the things. So we can apply our knowledge about the familiar one and learn
something about the unfamiliar one. This is a bit vague. So let's start off with
a general problem of computer science:

The Transformation Problem
Transform an object into another object with some particular property.

This is a very general statement. So let's look at a few interpretations. For
example, we may want the transformed object to be "simpler" than the original
object. This usually means that the new object has the same meaning as the
given object but uses fewer symbols. For example, the expression x + 1 might
be a simplification of (x2 + x)/x, and the FP program f ((true --* c; d) can
be simplified to f © c.

We may want the transformed object to act as the meaning of the given
object. For example, we usually think of the meaning of the expression 3 + 4 as
its value, which is 7. On the other hand, the meaning of the expression x + 1 is
x + 1 if we don't know the value of x.

Whenever a light bulb goes on in our brain and we finally understand the
meaning of some idea or object, we usually make statements like "Oh yes, I see
it now" or "Yes, I understand." These statements usually mean that we have
made a connection between the thing we're trying to understand and some other
thing that is already familiar to us. So there is a transformation (i.e., a function)
from the new idea to a familiar old idea.

624 CHAPTER 10 U ALGEBRAIC STRUCTURES AND TECHNIQUES

Introductory Example: Sematics of Numerals

Suppose we want to describe the meaning of the base 10 numerals (i.e., nonempty
strings of decimal digits) or the base 2 numerals (i.e., nonempty strings of bi-
nary digits). Let mten denote the meaning function for base 10 numerals, and let
mtwo denote the meaning function for base 2 numerals. If we can agree on any-
thing, we most probably will agree that mten(16) = mtwo(10000) and mten(14)
= mtwo(1110). Further, if we let mrom denote the meaning function for Ro-
man numerals, then we most probably also agree that mrom(XII) mten(12) =

mtwo(ll00).

For this example we'll use the set N of natural numbers to represent the
meanings of the numerals. For base 10 and base 2 numerals there may be some
confusion because, for example, the string 25 denotes a base 10 numeral and it
also represents the natural number that we call 25. Given that this confusion
exists, we have

Mten(25) = mtwo(11001) = mrom(XXV) = 25.

So we can write down three functions from the three kinds of numerals (the
syntax) to natural numbers (the semantics):

mten DecimalNumerals --+ N,

mtwo: BinaryNumerals - N,
mrom : RomanNumerals -* N.

Can we give definitions of these functions? Sure. For example, a natural defini-
tion for mten can be given as follows: If dkdk-l ... d, do is a base 10 numeral,
then

mten(dkdk-1 ... dido) = lOkdk + Ok-ldk-1 + "" + 10dl+ do.

Preserving Operations

What properties, if any, should a semantics function possess? Certain operations
defined on numerals should be, in some sense, "preserved" by the semantics
function. For example, suppose we let +bi denote the usual binary addition
defined on binary numerals. We would like to say that the meaning of the binary
sum of two binary numerals is the same as the result obtained by adding the
two individual meanings in the algebra (N; +). In other words, for any binary
numerals x and y, the following equation holds:

Mtw(X "+bi Y) = Mtwo(X) + mtwo(Y).

The idea of a function preserving an operation can be defined in a general
way. Let f : A --* A' be a function between the carriers of two algebras. Suppose
w is an n-ary operation on A. We say that f preserves the operation w if there

10.5 m OTHER ALGEBRAIC IDEAS 625

a o b =c

f(o) o' f(b) = f(c) Yes, if f preserves-.

Figure 10.15 Preserving a binary operation.

is a corresponding operation w' on A' such that, for every xj, ... , x, G A, the
following equality holds:

f(w (Xi, ... , Xn)) = wV(f(Xi), ... ,)).

Of course, if w is a binary operation, then we can write the above equation
in its infix form as follows:

f(x w y) = f(x) W' f(y).

For example, the binary numeral meaning function mtwo preserves +bi- We can
write the equation using the prefix form of +bi as follows:

mtw.(+bi(X, y)) = + (mtwo (X), mtwo(y)).

Here's the thing to remember about an operation that is preserved by a
function f : A -* A': You can apply the operation to arguments in A and then
use f to map the result to A', or you can use f to map each argument from A
to A' and then apply the corresponding operation on A' to these arguments. In
either case you get the same result.

Figure 10.15 illustrates this property for two binary operators o and o. In
other words, if a o b = c in A, then f(a o b) = f(c) = f(a) o' f(b) in A'.

Definition of Morphism

We say that f : A -- A' is a morphism (also called a homomorphism) if every
operation in the algebra of A is preserved by f. If a morphism is injective,
then it's called a monomorphism. If a morphism is surjective, then it's called
an epimorphism. If a morphism is bijective, then it's called an isomorphism.
If there is an isomorphism between two algebras, we say that the algebras are
isomorphic. Two isomorphic algebras are very much alike, and, hopefully, one

of them is easier to understand.
For example, mtwo is a morphism from (BinaryNumerals; +bi) to (N; +).

In fact, we can say that mtw,, is an epimorphism because it's surjective. Notice

626 CHAPTER 10 * ALGEBRAIC STRUCTURES AND TECHNIQUES

that distinct binary numerals like 011 and 11 both represent the number 3.
Therefore, mttw is not injective, so it is not a monomorphism, and thus it is not

an isomorphism.

J 10.36 A Morphism

Suppose we define f : Z -- Q by f (n) = 2n. Notice that

f(n + m) = 2"+- = 2n 2- = f(n) • f(m).

So f is a morphism from the algebra (Z; +) to the algebra (Q; .). Notice that
f(0) = 20 = 1. So f is a morphism from the algebra (Z; +, 0) to the algebra
(Q;., 1). Notice that f(-n) = 2-n (2n)-' = f(n)-1. Therefore, f is a
morphism from the algebra (Z; +, -, 0) to the algebra (Q; , -1, 1). It's easy to see
that f is injective and that f is not surjective. Therefore, f is a monomorphism,
but it is neither an epimorphism nor an isomorphism.

10.37 The Mod Function

Let m > 1 be a natural number, and let the function f : N -÷ N, be defined by
f(x) = x mod m. We'll show that f is a morphism from (N, +, -, 0, 1) to the
algebra (Nm, +m, -m, 0, 1). For f to be a morphism we must have f(0) = 0,
f(1) = 1, and for all x, y c N:

f(x + y) = f(x) +m f(y) and f(x.y) = f(x) m. f(y).

It's clear that f(0) = 0 and f(1) = 1. The other equations are just restatements

of the congruences (10.13).

S10.38 Strings and Lists

For any alphabet A we can define a function f : A* -* lists(A) by mapping any
string to the list consisting of all letters in the string. For example, f(A) = (),
f(a) = (a), and f(aba) = (a, b, a). We can give a formal definition of f as
follows:

f (A) =

f(a-t) =a:: f(t) for every a C A and tC A*.

For example, if a G A, then f(a) = f(a - A) = a :: f(A) = a :: () = (a). It's
easy to see that f is bijective because any two distinct strings get mapped to
two distinct lists and that any list is the image of some string.

10.5 n OTHER ALGEBRAIC IDEAS 627

We'll show that f preserves the concatenation of strings. Let "cat" denote
both the concatenation of strings and the concatenation of lists. Then we must
verify that f(cat(s, t)) = cat(f (s), f(t)) for any two strings s and t. We'll do it
by induction on the length of s. If s = A, then we have

f(cat(A, t)) = f(t) = cat((), f(t)) = cat(f (A), f(t)).

Now assume that s has length n > 0 and f(cat(u, t)) = cat(f(u), f(t)) for all
strings u of length less than n. Since the length of s is greater than 0, we can
write s = a • x for some a E A and x E A*. Then we have

f (cat (a . x, t)) = f (a . cat (x, t)) (definition of string cat)

= a :: f (cat (x, t)) (definition of f)
= a :: cat (f (x)W f (t)) (induction assumption)

= cat (a :: f (x), f (t)) (definition of list cat)

= cat (f (a . x), f (t)) (definition of f).

Therefore, f preserves concatenation. Thus f is a morphism from the algebra
(A*; cat, A) to the algebra (lists(A); cat, ()). Since f is also a bijection, it
follows that the two algebras are isomorphic.

Constructing Morphisms

Now let's consider the problem of constructing a morphism. We'll demonstrate
the ideas with an example. Suppose we need a function f : N8 --+ N8 with
the property that f (1) = 3 and also f must be a morphism from the algebra
(Ns; +s, 0) to itself, where +s is the operation of addition mod 8. We'll finish
the definition of f. For f to be a morphism it must preserve +s and 0. So we
must set f(0) = 0. What value should we assign to f(2)? Notice that we can
write 2 = 1 +s 1. Since f(1) = 3 and f must preserve the operation +8, we can
obtain the value f(2) as follows:

f(2) = f(1 +8 1) =f(1) +/s f(1) = 3 +8 3 = 6.

Now we can compute f(3) = f(1 +8 2) = f(1) +8 f(2) = 3 +8 6 = 1. Continuing,
we get the following values: f(4) = 4, f(5) = 7, f(6) = 2, and f(7) = 5. So the
two facts f(0) = 0 and f(1) = 3 are sufficient to define f

But does this definition of f result in a morphism? We must be sure that
f(x +8 Y) = f(x) +8 f(Y) for all x, y - N8 . For example, is f(3 +s 6) = f(3)
+s f(6)? We can check it out easily by computing the left- and right-hand sides
of the equation:

f(3+ 8 6) =f(1) =3 and f(3) +sf(6)=1-+8 2=3.

Do we have to check the function for all possible pairs (x, y)? No. Our method
for defining f was to force the following equation to be true:

(1 +s "' +8 1) = f(1) +8 "" +8 f(1).

628 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

Since any number in N8 is a sun of l's, we are assured that f is a morphism.
Let's write this out for an example:

f (3 +s 4) = f (l+s 1+8 1 +8 1 +8 1+8 1 +s 1)

= f (1) +s f (1) +s f (1) +s f (1) +s f (1) +s f (1) +s f (1)

= [f (1) +8 f (1) +s f (1)] +s [f (1) +8 f (1) +s f (1) +8 f (1)]

=f(l+sl+s 1)+8f(1+81+81+sl)

= f (3) +s f (4).

The above discussion might convince you that once we pick f(1), then we
know f(x) for all x. But if the codomain is a different carrier, then things can
break down. For example, suppose we want to define a morphism f from the
algebra (N 3; +3, 0) to the algebra (N6 ; +6, 0). Then we must have f(0) = 0.
Now, suppose we try to set f(1) = 3. Then we must have f(2) = 0.

f(2) = f(1 +3 1) f(1) +6 f(1) = 3 +6 3 = 0.

Is this definition off a morphism? The answer is No! Notice that f(1 +3 2)
f(1) +6 f(2), because f(1 +3 2) = f(0) = 0 and f(1) +6 f(2) = 3 +6 0 = 3. So
morphisms are not as numerous as one might think.

F 10.39 Language Morphisms

If A and B are alphabets, then a function f : A* -+ B* is called a language
morphism if f(A) = A and f(uv) = f(u)f(v) for any strings u, v E A*. In other
words, a language morphism from A* to B* is a morphism from the algebra
(A*; cat, A) to the algebra (B*; cat, A). Since concatenation must be preserved,
a language morphism is completely determined by defining the values f (a) for

each a E A.
For example, let A = B = {a, b} and define f : {a, b}* -- {a, b}* by setting

f(a) = b and f(b) = ab. Then we can make statements like

f(bab) = f(b)f(a)f(b) = abbab and f(b 2) = (ab)2 .

Language morphisms can be used to transform one language into another lan-
guage with a similar grammar. For example, the grammar

S - aSb I A

defines the language {a'bVI n e N}. Sincef(anbn) = b'(ab)' for n E N, the set
{anb' I n G N} is transformed byf into the set {b n(ab)nJ n E N}. This language
can be generated by the grammar S -- f(a)Sf(b) I f(A), which becomes S -•

bSabi A.

10.5 * OTHER ALGEBRAIC IDEAS 629

' 10.40 Casting Out by Nines, Threes, etc.

An old technique for finding some answers and checking errors in some arithmetic
operations is called "casting out by nines." We want to study the technique and
see why it works (so it's not magic). Is 44,820 divisible by 9? Is 43.768 + 9579 =
41593? We can use casting out by nines to answer yes to the first question and

no to the second question. How does the idea work? It's a consequence of the
following result:

Casting Out by Nines (10.14)

If K is a natural number with decimal representation d, ... do, then

K mod 9 = (d, mod 9) +9 -- +9 (do mod 9).

Proof: For the two algebras N; +,.-, 0, 1) and (N9 ; +9, -9, 0, 1), the function
f: N --* N9 defined by f(x) = x mod 9 is a morphism. We can also observe
that f(10) = 1, and in fact f(10') = 1 for any natural number n. Now, since
d... do is the decimal representation of K, we can write

K = dn'10- +"" +di'10+d 0 .

Now apply f to both sides of the equation to get the desired result.

f (K) = f(dn. 10n +.-. -+ d. 10+ do)
= f (d.) -9 f (10n) +9" - 9 f (di)'.9 f (10) +9 f (do)

= f (d.) .9 1÷+9...- +9 f (di) "9 1 +9 f (do)

= f(d.)+ 9 " -+ 9 f (dl)+gf (do). QED

Casting out by nines works because 10 mod 9 = 1. Therefore, casting out by
threes also works because 10 mod 3 = 1. In general, for a base B number system,
casting out by the predecessor of B works if we have the equation

B mod pred(B) = 1.

For example, in octal, casting out by sevens works. (Do any other numbers work
in octal?) But in binary, casting out by ones does not work because 2 mod 1 = 0.

J Exercises

Congruences

1. The equivalence relation x = y (mod 4) partitions the integers into the four
equivalence classes [0], [1], [2], [3]. Construct the addition and multiplication

tables for these classes.

630 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

2. (Chinese Remainder Theorem). Given n congruences

x - a, (mod mi), ... , x -- an (mod m,),

where gcd(mi, mj) = 1 for each i ý4 j. The following algorithm finds a
unique solution x such that 0 < x < m, where m = mIm...rn.

1. For each i find bi such that (m/mi)bi = 1 (mod mi).

2. Set x = (m/mi)blal + ... + (m/mn)ban.

3. If x is not in the proper range, then add or subtract a multiple of m.

Find the unique solution to each of the following sets of congruences.

a. x 8 (mod 13) b. x 34 (mod9) c. x 17 (mod6)

x 3 (mod 8). x 23 (mod 10). x 15 (mod 11).

d. x I (mod2) e. x 3 (mod2) f. x 12 (mod3)

x 2 (mod 3). x 1 (mod 5). x m4 (mod 7).

x I1 (mod 5). x 0 (mod 7). x 15 (mod 11).

3. Prove the following statement about integers: If x < 0, then there is some
y > 0 such that y - x (mod n).

4. (A Pigeonhole Proof). An interesting result about integers states that if
gcd(a, n) = 1, then there is an integer k in the range 1 < k < n such that
ak - 1 (mod n). A proof of this fact starts out as follows: Consider the set
of n + 1 numbers

a, a2 , a3 , ... , n+ .

Calculate the set of remainders of these numbers upon division by n. In
other words, we have the set of numbers

a mod n, a 2 mod n, a 3 mod n, ... , an'l mod n.

These n + 1 numbers are all in the range 0 to n - 1. By the pigeonhole
principle two of the numbers must be identical. So for some i < j we have
a i mod n = a3 mod n-in other words, a' =- aJ (mod n). This means that

n divides a1 - a' = ai(aj-i - 1). Finish the proof by using properties of
mod and gcd.

Cryptology

5. For each of the following cases, verify that n and d satisfy the requirements
of the RSA algorithm and construct an encryption key e.

a. p = 5, q = 7, n = 35, d = 11.

b. p = 7, q = 11, n = 77, d = 13.

c. p =47, q=59, n =2773, d= 101.

10.5 * OTHER ALGEBRAIC IDEAS 631

6. Given the value n = 47.59 = 2773 from Example 10.33.

a. Verify that 17 is a valid choice for the encrypting key e.

b. Verify that 157 is a valid choice for the decrypting key d.

c. Verify the values of the encrypted numbers for HELLO WORLD.

d. Decrypt the encrypted numbers to verify that they are the original six
numbers for HELLO WORLD. Hint: The decryption key 157 can be

written 157 = 1 + 4 + 8 + 16 + 128. So for any number x we have
x 157 mod 2773 = (x.x 4 .xS.x16 .x 12s) mod 2773.

Subalgebras

7. For each of the following sets, state whether the set is the carrier of a sub-
algebra of the algebra (N9; +9, 0).

a. {0, 3, 6}. b. {1, 4, 5}. c. {0, 2, 4, 6, 8}.

8. Given the algebra (N1 2; ,+12, 0), find the carriers of the subalgebras generated

by each of the following sets.

a. {6}. b. {3}. c. {5}.

Morphisms

9. Find the three morphisms that exist from the algebra (N 3; +3, 0) to the
algebra (N6 ; +6, 0).

10. Let A be an alphabet and f : A* --* N be defined by f(x) = length(x). Show
that f is a morphism from the algebra (A*; cat, A) to (N; +, 0), where cat
denotes the concatenation of strings.

11. Give an example to show that the absolute value function abs : Z -* N
defined by abs(x) = Jxj is not a morphism from the algebra (Z; +) to the
algebra (N; +).

12. Let's assume that we know that the operation +, is associative over Nn.
Let o be the binary operation over {a, b, c} defined by the following table:

o a b c

a c a b

b a b c

C b c a

Show that o is associative by finding an isomorphism of the two algebras
({a, b, c}; o) and (N3 ; +3).

632 CHAPTER 10 m ALGEBRAIC STRUCTURES AND TECHNIQUES

13. Given the language morphism f {a, b}* - {a, b}* defined by f(a) = b
and f(b) = ab, compute the value of each of the following expressions.

a. f({b'a I n & N}). b. f({ban I n E N}).

c. f-l({bfa I n e N}). d. f-l({ba n I n G N}).
e. /-l({ab+llI n G N}).

10.6 Chapter Summary

An algebra consists of one or more sets, called carriers, together with opera-
tions on the sets. An algebra is useful for solving problems when we have a
good knowledge of its operations. We can use the properties of the operations
to transform algebraic expressions into equivalent simpler expressions. In high
school algebra the carrier is the set of real numbers, and the operations are
addition, multiplication, and so on.

An abstract algebra is described by giving a set of axioms to describe the
properties of its operations. An abstract algebra is useful when it has lots of
concrete examples. Two especially useful concrete examples of Boolean algebra
are the algebra of sets and the algebra of propositions. Some important proper-
ties of Boolean algebra operations are the idempotent properties, the absorption
laws, the involution law, and De Morgan's laws. Digital circuits are modeled by
Boolean algebraic expressions. Thus Boolean algebra can be used to simplify a
digital circuit by simplifying the corresponding algebraic expression.

The abstract data types of computer science can be described as algebras.
When an abstract data type is described as an algebra, its operations can be
implemented and then checked for correctness against the axioms. Some funda-
mental abstract data types are the natural numbers, lists, strings, stacks, queues,
binary trees, and priority queues.

Two algebras that are useful as computational tools are relational algebras
for databases and functional algebras for reasoning about functional programs.

Many other algebraic ideas are quite useful for computational problems.
Congruences are useful for describing properties of numbers and there are direct
applications to cryptology. Subalgebras can be used to define new abstract
data types. Morphisms allow us to transform one algebra into another- often
simpler- algebra and still preserve the meaning of the operations. Language
morphisms can be used to generate new languages along with their grammars.

This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

-Winston Churchill (1874- 1965)

Answers to

Selected Exercises

Chapter 1

Section 1.1

1. Consider the four statements "if 1 = I then 2 = 2," "if 1 = 1 then 2 = 3,"
"if 1 = 0 then 2 = 2," and "if 1 = 0 then 2 = 3." The second statement is the
only one that is false.

3. a. 47 is a prime between 45 and 54. c. The statement is true. e. The
statment is false. For example, the numbers 2 and 5 have the desired form: 2 =
3(0) + 2 and 5 = 3(1) + 2. But the product 2(5) = 10 can't be written as 10 =
3k + 2 because the equation does not have an integer solution for k.

4. a. Let x and y be any two even integers. Then they can be written in the
form x = 2m and y = 2n for some integers m and n. Therefore, the sum x + y
can be written as x + y = 2m + 2n = 2(m + n), which is an even integer.
c. Let x and y be any odd integers. Then they can be written x = 2m + 1 and
y = 2n + 1 for some integers mn and n. Therefore, we have x - y = 2m + 1
2n - 1 = 2(m n), which is an even integer.

6. a. Let x £ 3m + 4, and let y = 3n + 4 for some integers m and n. Then
xy= (3m + 4)(3n + 4) = 9rnn + 127n + 12n + 16 =3(3mn + 4m + 4n + 4)
+ 4, which has the desired form. c. Let x = 7m + 8, and let y = 7n + 8 for
some integers m and n. Then xy = (7m + 8)(7n + 8) = 49ran + 56m + 56n +
64 = 7(7mn + 8m + 8n + 8) + 8, which has the desired form.

7. a. Let d I (da + b). Then da + b = dk for some intger k. Solving the
equation for b gives b = d(k a), which says that d I b.
c. Let d I a and d I b. Then there are integers k and j such that a = dk and b
= dj. So for any integers x and y we have ax + by = dkx + djy = d(kx + jy),
which says that dI (ax + by).

633

634 ANSWERS TO SELECTED EXERCISES

8. a. First we'll prove the statement "If x is even then x2 is even." If x is even,
then x = 2n for some integer n. Therefore, x 2 = (2n)(2n)= 2(2n 2), which is
even. Next we'll prove the statement "If x2 is even then x is even," by proving
the contrapositive "If x is odd, then x2 is odd." So if x is odd, then x = 2n +
1 for some integer n. Thus x2 = (2n + 1)(2n + 1) = 4n 2 + 4n + 1 = 2(2n 2 +
2n) + 1, which is an odd integer. So the iff statement is proven.
c. x2 + 6x + 9 is even iff (x + 3)2 is even iff (x + 3) is even iff x is odd.

Section 1.2

1. a. {1, 2, 3, 4, 5, 6, 7}. c. {3, 5, 7, 11, 13, 17, 19}.
e. M, I, S, P, R, V, E.

2. a. Ix I x GMand 1 < x < 31}.
c. {x I x = nr2 and n E N and 1 < n < 8} or {x2 I x E N and 1 < x < 8}.

3. a. True. c. False. e. True. g. True.

5. For example, let A = {x} and B = {x, {x}}.

6. a. {0, {x}, {y}, {z}, {w}, {x, y}, {x, z}, {x, w}, {y, z}, {y, w}, {z, w}, {x,
y, z}, {x, y, w}, {x, z, w}, {y, z, w}, {fx, y, z, w}}. c. {0}. e. {0, {{a}}, {f0},
{{a}, 0}}.

7. a. {a, b, c}.

c. {a, {a}}.

8. a. A U B = {1, 5, 8, 9, 11, 13, 14, 17, 20, 21,...}.

9. No. A counterexample is A = {a} and B = {b}.

10. a. A0 = Z - {0}, A1 = {0}, A2 = Z - {-2, -1, 0, 1, 2}, A3 = {-2, -1, 0, 1,
2}, A- 2 = Z and A- 3 = 0. C. Z. e. Z. g. 0. i. 0.

11. a. A 0 = N - {0}, A 1 = {l}, A 2 = {1, 2}, A 3 = {1, 3}, A 4 = {1, 2, 4}, A 5

= {1, 5}, A 6 = {1, 2, 3, 6}, A7 = {1, 7}, and Aloo = {1, 2, 4, 5, 10, 20, 25, 50,
1001.
c. {1}. e. {1}.

13. a. A n B - C.
c. B D C.

14. 1 A I+ B I+ IC + I D -A n B I A n C A n D B n C
-IBnD [-I C nDI+IAnBn C + AOBnDJ+ An CAD[
+IBn CnDD -An Bn CAD I.

16. a. 82.
c. 23.

17. At most 20 drivers were smoking, talking, and tuning the radio.

19. a. Ix, y, z], [x, y]. c. [a, a, a, b, b, c], [a, a, b].
e. [x, x, a, a, [a, a], [a, a]], [x, x].

21. Let A and B be bags, and let m and n be the number of times x occurs in
A and B, respectively. If m > n, then put m - n occurrences of x in A - B, and
if m < n, then do not put any occurrences of x in A - B.

ANSWERS TO SELECTED EXERCISES 635

22. a. x G A U 0 iff x E A or x E 0 iff x E A. Therefore, A U =A.
c. x E A U A iff x A orx E A iff x - A. Therefore, A U A = A.

23. a. Since there are no elements in 0, there can be no elements in both A
and 0. Therefore, A n 0 = 0.

c. x G A n (B n C) iff x A and x E B n C iff x A and x E B and x G C
iff x E A n B andx E C iff x E (A n B) n C. Therefore, A n (B n C) =(A n
B) n C. e. First prove that A C B implies A n B = A. Assume that A C B. If
x E A n B, then x G A and x G B, and it follows that x E A. Thus A n B C
A. If x c A, then x G B (by assumption), and it follows that x E A n B. So A
C A n B. Therefore, A n B = A. Next prove that A n B = A implies A C B.
Assume that A n B = A. Let x c A. Then x G A n B, which says x G A and x
c B. So x E B. Therefore, we have A c B. So the iff statement has been proven.

24. Let S C power(A n B). Then S C A A B, which says that S C A and S C
B. Therefore, S G power(A) and S G power(B), which says that S c power(A) n
power(B). This proves that power(A n B) C power(A) n power(B). The other
containment is similar.

26. a. Let x G A n (B U A). Then x G A, so we have A n (B U A) c A. For the
other containment, let x E A. Then x c B U A. Therefore, x E A n (B U A),
which says that A C A n (B U A). This proves the equality by set containment.
We can also prove the equality by using a property of intersection (1.6e) applied
to the two sets A and B U A. Thus (1.6e) becomes A C B U A if and only if
A n (B U A) = A. Since we know that A C B U A is always true, the equality
follows.

27. Assume that (A n B) U C A n (B U C). If x E C, then x E (A A B) U
C = A n (B U C), which says that x E A. Thus C C A. Assume that C c A.
If x G (A n B) U C, then x G A n B or x C C. In either case it follows that x
E A n (B U C) because C C A. Thus (A n B) U C C A n (B U C). The other
containment is similar. Therefore, (A n B) U C = A n (B U C).

28. a. Counterexample: A = {a}, B = {b}.
c. Counterexample: A = (a}, B f {b}, C f {b}.

29. a. x E (A')' iff x U and x A' iff x U - A iff x c A.
c. x G A n A' means that x C A and x E U - A. This says that x G A and
x V A, which can't happen. Therefore, A n A' = 0. To see that A U A' = U,
observe that any element of U must be either in A or not in A. e. x C (A n B)'
iff x A A B iff x � A or x ý B iff x C A'or x E B' iffx EC A' U B'. Therefore,
(A n B)'-= A'U B'. g. A U (A' n B) = (A U A') n (A U B) = U n (A U B)
= A U B.

Section 1.3

1. (x, x, X), (x, X, 0) (X, y, r), (y, x, x), (X, y, y), (y, X, y), (y, y, x), (y, y, y).

2. a. {(a, a), (a, b), (b, a), (b, b), (c, a), (c, b)}. c. {()}.
e. {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.

636 ANSWERS TO SELECTED EXERCISES

3. K), a a), , b), a,a),a,, b ,a), (, b).
4. a. head((a)) = a and tail((a)) = ().
c. head(((a, b), c)) = (a, b) and tail(f(a, b), c)) = (c).

5. a. (24, 60, (2, 3, 4, 6, 12)).
c. (14, 15, ()).
8. a. LM = {bba, ab, a, abbbba, abbab, abba, bbba, bab, ba}.
c. L° = {A}. e. L 2 = LL = {A, abb, b, abbabb, abbb, babb, bb}.

9. a. L = {b, ba}.

c. L = {a, b}.
e. {A, ba}.

10. a. x = uvw, where u, w E L and v E M.
c. x =Aor x = ul...u,, where Uk G LU M.e. x =Aorx c Lorx CMor
x = (s,... s,)(ul ... u,), where sk G L and uk E M.

11. a. {a, b}* n {b, c}* = {b}*
c. {a, b, c}* - {a}* is the set of strings over {a, b, c} that contain at least one
b or at least one c.

12. a. {(1, 12), (2, 12), (3, 12), (4, 12), (6, 12), (12, 12)}.
c. {(2, 1, 1), (3, 1, 2), (3, 2, 1)}.
e. U = {(a, 1), (a, 2), (b, 1), (b, 2)}.

13. a. {z I (Michigan, y, z) e Borders for some y}.
c. {x I (x, None, None) E Borders for some x}.
e. {(x, z) (x, Canada, z) E Borders}.

14. a. 2(53) -2(43) = 122. c. 1(2)(44) = 512.

15. Let U be the set of n-tuples over A. In other words, U = A'. Let S be the
subset of U whose n-tuples do not contain any occurrences of letters from the
set B. So S = (A - B) n . Then U - S is the set of n-tuples over A that contain
at least one occurrence of an element from B. We have I U - S = I U I - I S
= I An I - I (A B)"I =IAI I A - B 17 = I A I' (I A I I B I)T'-

16. a. (x, y) e (A U B) x C iff x C A U B and y C C iff (x A or x C B)
and y E C iff (x, y) C A x C or (x, y) E B x C iff (x, y) c (A x C) U (B x
C). Therefore, (A U B) x C = (A x C) U (B x C).
c. Prove that (A n B) x C = (A x C) n (B x C). (x, y) c (A n B) x C iff x
C A n B and y C C iff (x E A and x E B) and y c C iff (x, y) C (A x C) n
(B x C), which proves the statement.

17. a. The statement is true because sA = As = s for any string s.

c. x C L(M U N)
iff x = yz, where y E L and z E M U N
iff x = yz, where y C L and (z C M or z C N)
iff x = yz, where yz C LM or yz E LN
iff x C LM or x C LN

iff x c LM U LN.
Therefore, L(M U N) = LM U LN. The second equality is proved the same way.

ANSWERS TO SELECTED EXERCISES 637

18. a. The statement is true because A' = {A} for any language A.
c. First we'll prove L* = L*L*. Since L* = L*{A}, we have L* = L*{A} c
L*L*. So L* C L*L*. If x C L*L*, then x = yz, where y, z c L*. So y c Lm

and z C L' for some numbers m and n. Therefore, x = yz e L'+' c L*. Thus

L*L* C L*. So we have the equality L* = L*L*.
Next we'll prove the equality L* (L*)*. L* is a subset of (L*)* by

definition. If x E (L*)*, then there is a number n such that x c (L*)n. So x
is a concatenation of n strings, each one from L*. So x is a concatenation of n
strings, each from some power of L. Therefore, x C L*. Thus (L*)* C L*. So we
have the equality L* = (L*)*.

19. a. Notice that (3, 7) = {{3}, {3, 7}} and (7, 3) {{7}, {7, 3}} and that
the two sets cannot be equal. c. ({a}, b) {{a}, {b}} {{b}, {a}} = ({b}, a).

20. a. From Exercise 19 we have (x, y) S = {{x}, {x, y}}. Therefore,

(x, y, z) = {{s }, {S, z}} = {{{{x}, {x, y}}}, {{{}, {x, y}}, z}}.

c. (a, b, a) = {{a}, fa, b}, {a, b, a}} = {{a}, {a, b}, {a, b}} = {{a}, {a, b}}
= {{a}, {a, a}, {a, a, b}} = (a, a, b).

21. a. If a is a 3 by 4 matrix, then the address polynomial for the column-major
location of a[i, j) is B + 3M(j - 1) + M(i - 1).
c. If a is a 3-dimensional array of size 1 by m by n stored as an 1-tuple of m by n
matrices, each in row-major form, then the address polynomial for the location
of a[i, j, k] is B + mnM(i - 1) + nM(j - 1) + M(k - 1).

Section 1.4

2.

4. a. C.

,0Q bO 1 2 3

5. a. The four possible strings arefdg e b a c, fdgb e a c, fg d e b a c, and
fgdbeac.
b. The three possible strings are f g e d b a c, f d c g b a c, and f d b a c e g.

7. a. One answer is a b c d e f.
b. One answer is a b c e d f.

638 ANSWERS TO SELECTED EXERCISES

9.

K

b\ r x

c d s tI
11. Here are two answers:

b a 2 b

2

2c > 2 c d

e f C 4 f

13. The graph is connected and either none or two vertices have odd degree.

Chapter 2

Section 2.1
1. a. There is one function of type {a, b} -- {1}; it maps both a and b to 1.
c. There are four functions of type {a, b} -f {1, 2}: one maps both a and b to
1; one maps both a and b to 2; one maps a to 1 and b to 2; and one maps a to
2 and b to 1.

2. a. 0. c. Ix Ix=4k + 3 where k E N}.
e. 0.

3. a. -5.
c. 4.

4. a. 3.
C. 1.

5. gcd(296, 872) = 8 = (-53) 296 + 18 • 872.

6. a. 3.
c. 3.

7. a. f(0) 0.
c. f({2, 5}) = {4}.
e. f({1, 2, 3}) = {0, 2, 4}.

8. a. floor(x) = if x > 0 then trunc(x) else if x = trunc(x) then x else
trunc(x - 1).

ANSWERS TO SELECTED EXERCISES 639

9. When x is negative, f(x, y) can be different than x mod y. For example,
f(-16, 3) = -1 and -16 mod 3 = 2.

11. a. 4.
c. -3.

12. a. If x E A U B then x G A or x G B. So XAUB (x) = 1 and either XA(X)

1 or xB(X) = 1. If XA(X) = XB(X) = 1, the equation becomes I = 1I + - 1(1),
which is true. If XA(X) = 1 and XB(X) = 0, the equation becomes 1 = 1 + 0 -
1(0), which is true. If x 9 A U B, then x ý A and x ý B. So XAuB(X) = XA(X)

= XB(x) = 0 and the equation becomes 0 = 0 + 0 - 0(0), which is true.
C. XA-B(X) = XA(X)(1 XB(X)).

13. a. A. c. {0}.
14. a. If x is an integer, then [xJ = x and [x + 1- = x + 1, which makes
the desired equality true. If x is not an integer, then there is an integer n such
that n < x < n + 1. Therefore, [xJ = n and Lx + 1j = n + 1, which makes the
desired equality true.
c. If x E Z, then certainly [x] = [xJ. If fx] = Lxj, then [xj < x < fx] = Lxj,
which says that x = Ixj = [xj. Therefore, x E Z.

15. a. lOgb 1 = 0 means b° = 1, which is true.
C. logb (bx) = x means V = bV, which is true.
e. Let r = logb(xy) and s = logb x, and proceed as in part (d) to show that r
= ys. g. Let r = loga x, s = log,, b, and t = logb x. Proceed as in (d) to show
that r = st.

16. a. The equalities follow because gcd(a, b) is the largest common divisor of
a and b.
c. Since gcd(d, a) = 1, we can use (2.1c) to find integers m and n such that 1
=md + na. Multiply the equation by b to obtain b-- bmd + bna = bmd +
abn. Since d divides both terms on the right side, d also divides the left side.
Therefore, dI b.

18. a. We'll prove both containments with iff statements: x E f(E U F) iff x
f(y), where y G E U F iff x f(y), where y c E or y G F iff x f(E) orx x
f(F) iff x E f(E) U f(F).
c. Consider the function f : {a, b, c} -, {1, 2, 3}, defined by f(a) = f(b) 1
and f(c) = 2. Then {a} nf {b, c}= 0, which gives f({a} n {b, c}) = f(0) = 0.
But we have f({a}) n f({b, c}) = {1}. So f({a}n {b, c}) 7# f({a}) n f({b, c}).

19. a. We'll prove both containments at once: x c f-'(G U H) iff f(x) E G
U H iff f(x) E G or f(x) G H iff x E f-l(G) or x E f-l(H) iff x c f-I(G) U
f-'(H).
c. If x G E, then f(x) G f(E), which says that x G f -(f(E)). This proves the
containment.
e. Consider the function f : {a, b, c} --+ {1, 2, 3}, defined by f(a) = f(b) = 1
and f(c) = 2. Let E = {a}. Then f- 1 (f(E)) = f-1(f({a})) = f-1({1}) = fa,
b}. So E is a proper subset of f -(f(E)). For the other example, let G = {2,
3}. Then f(f-1 (G)) = f({c}) = {2}. So f(f -(G)) is a proper subset of G.

640 ANSWERS TO SELECTED EXERCISES

20. a. By (2.4a) it suffices to show that n divides (x + y) - ((x mod n) +
(y mod n)). By the definition of mod we have x mod n = x - nql and y mod
n= y - nq2. So (x + y) - ((x mod n) + (y mod n)) = (x + y) - ((x - nql) +
(x - nq 2)) = n(qi - q2)- So n divides (x + y) - ((x mod n) + (y mod n)). The
result follows from part (a).
c. Since gcd(a, n) = 1, it follows from (2.2c) that there are integers x and V
such that 1 = ax + ny. Now we have the sequence of equations

1 mod n (ax + ny) mod n

= ((ax mod n) + (ny mod n)) mod n (by (a))

= ((ax mod n) + ((n mod n)(y mod n) mod n)) mod n (by (b))

= ((ax mod n) + 0) mod n

= ax mod n.

21. Let a = dq + r, where 0 < r < d. Solve for r to obtain r = a - dq. Now
use the fact that d = ax + by to substitute for d to obtain

r = a - dq

= a - (ax + by)q

= a(1 - xq) + b(-yq)

which, if r > 0, has the form of a number in S. But d is the smallest number
in S and 0 < r < d. So if r > 0, then it would be a number in S smaller than
the smallest number, a contradiction. Therefore, r = 0 and consequently d a.
Similarly, we have dJb. QED.

Section 2.2

1. a. 4. c. 2. e. ((4, 0), (4, 1), (4, 2), (4, 3)). g. ((+, (0, 0)), (+, (1, 1)),
(+, (2, 2))).

2. a. f(g(x)) = ceiling(x), g(f(x)) = (2)ceiling(x/2), f(g(1)) = 1, and g(f(1))
= 0.

c. f(g(x)) = gcd(x mod 5, 10), g(f(x)) = gcd(x, 10) mod 5, f(g(5)) = 10, and
g(f(5)) = 5.

3. a. f(g(x, y)). c. f(g(x, g(y, z))).

4. a. 27 <x <28.

5. One solution is max4(w, X, y, z) = max(max(max(w, x), y), z).

6. floor(log 2 (x)) + 1.

7. a. (0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4).

8. a. f(n) = map(+, pairs(seq(n), seq(n))).

9. a. f(n, k) = map(+, dist(n, seq(k))).
c. f(n, m) = map(+, dist(n, seq(m - n)))

e. f(n) = pairs(seq(n), g(n)), where g(n) is the solution to part (d).

ANSWERS TO SELECTED EXERCISES 641

g. f(g, n) = pairs(seq(n), map(g, seq(n))).
i. f(g, h, (xi, ... , Xn)) = pairs(map(g, (x, .. . , xn)), map(h, (x4, ... ,

10. f(n) = map(+, dist(1, seq(n - 1)).

11. a. The ceiling returns an integer, and the floor of an integer is itself.
c. Any x is in 2' < x < 2 '+1 for some integer n. Therefore, 2' < floor(x) <
2'+1. Take the log to get n _< log 2 (x) < n + 1 and n < log2 (floor(x)) < n + 1.
So floor(log 2 (x)) = n = floor (log2 (floor (x))).

Section 2.3

1. The fatherOf function is not injective because some fathers have more than
one child. For example, if John and Mary have the same father, then
fatherOf(John) = fatherOf(Mary). The fatherOf function is not surjective be-
cause there are people who are not fathers. For example, Mary is not a father.
So fatherOf(x) 5 Mary for all people x
2. a. f : C -, B, where f(1) = x, f(2) = y.
c. f : A - B, where f(a) = x, f(b) = y, f(c) = z.

3. a. Eight functions; no injections, six surjections, no bijections, and two with
none of the properties.
c. 27 functions; six satisfy the three properties (injective, surjective, and bijec-
tive), 21 with none of the properties.

4. a. If f (x) = f(y), then 2x = 2y, which upon dividing by 2 yields x = y. So f
is injective. f is not surjective because the range of f is the set of even natural
numbers, which is not equal to the codomain N. e.g., no x maps to 1.
c. If y E N, then f(2y) = floor(2y/2) = floor(y) = y. So f is surjective. f is not
injective because, for example, f(0) =f(1) = 0.
e. Let f(x) = f(y). If x is odd and y is even, then x - 1 = y + 1, which
implies x = y + 2. This tells us that x and y are either both even or both odd,
a contradiction. We get a similar contradiction if x is even and y is odd. If x
and y are both even, then x + 1 = y + 1, which impies x = y. If x and y are
both odd, then x - 1 = y - 1, which implies that x = y. So f is injective. Let y
e N. If y is odd, then y - 1 is even and f(y - 1) = y - 1 + 1 = y. If y is even,
then y + 1 is odd and f(y + 1) = y + 1 - 1 = y. So f is surjective. Therefore,
f is bijective.

5. a. Surjective. c. Surjective. e. Injective. g. Surjective. i. Surjective.

6. a. Let f(x) = f(y). Then (b- a)x + a = (b- a)y + a. Subtract a from
both sides and divide the resulting equation by (b - a) to obtain x = y. So f
is injective. To show f is surjective, let y E (a, b) and solve the equation f(x)
= y for x to obtain (b - a)x + a = y, which gives x = (y - a)/(b - a). It
follows that f((y - a)/(b - a)) = y and since a < y < b, we have 0 < (y -a)/

(b - a) < 1. Thus f is surjective. Therefore, f is a bijection.
c. Let f(x) = f(y). Then 1/(2x - 1) - 1 = 1/(2y - 1) - 1, which by elementary
algebra implies that x = y. Therefore, f is an injection. To show f is surjective,
let y > 0 and then find some x such that f(x) = y. Solve the equation f(x) = y
to get x = (2 + y)/(2y + 2). It follows that f((2 + y)/(2y + 2)) = y, and since

642 ANSWERS TO SELECTED EXERCISES

y > 0, it follows that 1/2 < (2 + y)/(2y + 2) < 1. To see this, we can obtain
a contradiction if (2 + y)/(2y + 2) < 1/2 or if (2 + y)/(2y + 2) > 1. So f is
surjective. Therefore, f is a bijection.
e. f is a bijection because it is defined in terms of the bijections given in parts
(c) and (d). To see this, let f(x) - f(y). If this value is positive, then x = y by
part (c). If the value is negative, then x = y by part (d). If f(x) = f(y) = 0,
then x = y = 1/2 by the definition off. So f is injective. To show f is surjective,
let y e R and find some x G (0, 1) such that f(x) = y. Again, take the three
cases. If y > 0, then part (c) gives an element x E (1/2, 1) such that f(x) = y.
If y < 0, then part (d) gives an element x G (0, 1/2) such that f(x) = y. If y =

0, then f(1/2) = y. So f is surjective. Therefore, f is a bijection.

7. a. 15.
c. Any nonempty string over {a, b, c} has one of nine possible patterns of
beginning, ending letters. So any set of 10 such strings will contain two strings
with the same beginning ending pairs.

8. a. Since there are 10 decimal digits, we can be assured that any set of 11
numbers will contain two numbers that use a common digit in their representa-
tions.
c. Of the ten numbers listed, at least nine are in the range from 1 to 8. (It
could happen that some Xk = 8, so that Xk + 1= 9 is not in the set.) So the
pigeonhole principle tells us that two of the nine numbers are equal. Since the
two lists are each distinct, it follows that xi = xj + 1 for some i and j.

9. a. Not bijective because gcd(2, 6) z 1. The fixed point is 0.
c. Bijective and f-' = f. The fixed points are 0 and 3.
e. Bijective and f-l(x) = (4x + 2) mod 7. The fixed point is 4.
g. Bijective and f-'(x) = (9x + 1) mod 16. There are no fixed points.

10. a. {a I gcd(a, 26) = 1} = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}.

11. a. one, two, six, four, five, nine, three, seven, eight.
c. Only one, two, and three can be placed in the table: one, blank, blank, two,
blank, blank, three, blank, blank.

12. a. Wednesday, Monday, Friday, Tuesday, Sunday, Thursday, Saturday.
c. Wednesday, Monday, Sunday, Tuesday, Friday, Thursday, Saturday.

13. a. March, April, January, February, July, August, May, June.
c. March, May, January, February, August, July, April, June.

15. a. Let f and g be injective, and assume that g o f(x) = g o f(y) for some
y e A. Since g is injective, it follows that f(x) = f(y), and it follows that x =

y because f is injective. Therefore, g o f is injective.
c. If f and g are bijective, then they are both injective and surjective. So by
parts (a) and (b) the composition g o f is injective and surjective, hence bijective.

16. Let x G A and let f(g(x)) = y. Apply g to both sides to obtain g(f(g(x))
= g(y). Since g(f(x)) = x for all x, it follows that g(f(g(x))) = g(4). So g(x)
= g(y). Since g is bijective, hence injective, it follows that x = y. Therefore,

ANSWERS TO SELECTED EXERCISES 643

f q(x)) = x.

17. a. If g o f is surjective, then for each element z E C there exists an element
x £ A such that z = (g o f)(x) = g(f(x)). So it follows that f(x) is an element
of B such that z = g(f(x)). Therefore, g is surjective if g o f is surjective.

18. a. Let f be surjective, and let b G B and c E C. Then there exists an element
a e A such that f(a) = (b, c). But f(a) = (g(a), h(a)). Therefore, b = g(a)
and c h(a). So g and h are surjective. Now let A = {1, 2, 3}, B = {4, 5},
and C = {6, 7}. The set B x C has four elements, and A has three elements.
So there can be no surjection from A to B x C.

19. Let g = gcd(a, n). Let x be an integer such that ax mod n = b mod n.
Then n divides (ax - b). So there is an integer q such that ax - b nq, or b =
a - nq. Since g divides a and g divides n, it follows from (1.1b) that g divides
b. For the converse, suppose that g divides b. Then we can write b = gk for
some integer k. Since g = gcd(a, n) it follows from (2.2c) that g = as + nt for
some integers s and t. Multiply this equation by k to obtain b = gk = ask +
ntk. Apply mod n to both sides to obtain b mod n = ask mod n. Therefore, x
= sk is a solution to the equation ax mod n = b mod n.

21. If we show that g is a bijection and f(g(x)) = g(f(x)) = x for all x c Nn,
then it follows that g = f- 1 . Since 1 = ak + nm, it follows that gcd(k, n) = 1.
So g is a bijection by the first part of (2.6). We have the following sequence of
equations.

f(g(x)) = (ag(x) + b) mod n
= (a((kx + c) mod n) + b) mod n
= (a(kx + c + nq) + b) mod n (for some integer q)

= (akx + ac + b) mod n (by (2.4))

= (akx + f(c)) mod n

= (akx + O) mod n (f(c) = O)

= (akx) mod n

= ((1 - nm)x) mod n (1 = ak +nm)

= (x - nmx) mod n

= x mod n

- X.

Note also that if we let g(f(x)) = y, then we can apply f to both sides to get
f(g(f(x))) = f(y). But f(g(f(x))) = f(x) because we just showed that f(g(x))
= x for all x G N,. So f(x) = f(y), from which we conclude that x = y because
f is injective. Therefore, g(f(x)) = x for all x C Nn. So g = f- 1 . QED.

Section 2.4

1. a. Let A be the set. The smallest number in A is 2(0) + 5 = 5 and the largest
number in A is 2(46) + 5 = 97. So the function f : {0, 1, ... , 46} -- A defined
by mapping f(x) = 2x + 5 is a bijection. Therefore, I A I = 47.

644 ANSWERS TO SELECTED EXERCISES

c. The function f : {0, 1, ... , 15} -- {2, 5, 8, 11, 14, 17, ... , 44, 47} defined by
f(k) = 2 + 3k is a bijection. So the cardinality of the set is 16.

2. a. Let Even be the set of even natural numbers. For example, the function
f : N -* Even defined by f(k) = 2k is a bijection. So Even is countable.
c. Let S be the set of strings over {a}. So S = {a}* = {A, a, aa, aaa, ... }. The
mapping from N to S that maps each n to the string of length n is a bijection.
So S is countable.
e. For example, the function f : Z- N defined f(x) = 2x - 1 when x > 0 and
f(x) = -2x when x < 0 is a bijection. So Z is countable.
g. Let E be the set of even integers. For example, the function f : N --* E
defined f(x) = x- 1 when x is odd and f(x) = +(1 2) when x is even is a
bijection. So E is countable.

3. a. Let S be the set of strings over {a, b} that have odd length. For each
number n let S, be the set of all strings over {a, b} that have length 2n + 1.
For example, So ={a, b} and S1 = {aaa, aab, aba, baa, bbb, bba, bab, abb}. It
follows that S = So U S1 U ... U Sn U Since each set S, is finite, hence

countable, it follows from (2.10) that the union is countable.
c. Let B be the set of all binary trees over {a, b}. For each natural number n
let Sn be the set of all binary trees over {a, b} that have n nodes. It follows that
B = So U S1 U ... U S, U Since each set Sn is finite, hence countable, it
follows from (2.10) that the union is countable.

4. a. Let gr(n) = hello if / n(n) = world, and let g(n) = world if f, (n) = hello.
Then the sequence (g(0), g(1), ... , gr(n), ...) is not in the given set.
c. Let g(n) 2 if an, = 4, and let g(n) = 6 if a.n z 4. Then the sequence
(g(0), g(1), ... , g(n), ...) is not in the given set.

5. We can represent each subset S of N as a sequence of l's and 0's where 1
in the kth position means that k E S and 0 means k ý S. For example, N is
represented by (1, 1, 1, ...) and the empty set by (0, 0, 0, ...). So each set
S, can be represented by an infinite sequence of 0's and l's. But now (2.12)
applies to say that there is some sequence of l's and 0's that is not listed. This
contradicts the statement that all subsets of N are listed.

7. a. Let S be a subset of the countable set A. Then the mapping from S to
A that sends every element to itself is an injection. So IS I < I A I . Since A
is countable, there is an injection from A to N by countable property (b). Since
a composition of injections is an injection, we have an injection from S to N.
Therefore, IS I <IN 1.

8. a. For each natural number k, let Sk be the set of strings of length n over
the alphabet {ao, a,, ... , ak}. It follows that A,, = So U S U ... U S,, U
Since each set Sn is finite, hence countable, it follows from (2.10) that the union
is countable.

9. For each n. let F,, be the collection of subsets of {0, 1, ... , n}. In other
words, F, = power({0, 1, ... , n}). Since any finite subset S of N has a largest

ANSWERS TO SELECTED EXERCISES 645

element n, it follows that S is in the collection F,. So Finite(N) = F0 U F1 U
... U F,, U Each set F,, is countable because it is finite. So (2.10) tells us
that the union is countable.

Chapter 3

Section 3.1

1. a. 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025.

2. a. Basis: 1 G S; Induction: If x E S, then x + 2 G S.
c. Basis: -3 E S; Induction: If x E S, then x + 2 C S.
e. Basis: 1 C S; Induction: If x C S, then (T7 + 1)2 C S.

3. a. Basis: 4, 3 G S. Induction: If x C S, then x + 3 E S.

4. a. Basis: 0, 1 G S; Induction: If x E S, then x + 4 e S.
c. Basis: 2 C S; Induction: If x E S, then x + 5 C S.

5. 4 3 U {3} = 2 U {2} U {3} = 1 U {1} U {2} U {3} = 0 U {0} U {1} U {2}
U {3} = 0 U {0} U {1} U {2} U {3} = {0, 1, 2, 3}.

6. a. Basis: b E S. Induction: If x G S, then axc E S.
c. Basis: a G S. Induction: If x G S, then aax E S.
e. Basis: b E S. Induction: If x E S, then ax, xc E S.
g. Basis: b E S. Induction: If x C S, then ax, xb E S.
i. Basis: a, b C S. Induction: If x C S, then ax, xb C S.
k. Basis: A E S. Induction: If x E S, then abx, bax, axb, bxa C S.

7. a. Basis: A E S. Induction: If x E S, then axa, bxb E S.
c. Basis: A, a, b C S. Induction: If x E S, then axa, bxb c S.

8. Basis: a, b, c, x, y, z E T. Induction: If t E T, then f(t), g(t) E T.

9. a. (a), (b, a), (b, b, a) , (b, b, b, a), (b, b, b, b, a).

10. a. Basis: (a) c S. Induction: If L C S, then a :: L C S.
c. Basis: (a, b), (b, a) E S. Induction: If L C S, then head(L) :: L C S.
e. Basis: () E S. Induction: If L C S and a, b E {0, 1, 2}, then a :: b :: L C S.
g. Basis: (a) C S. Induction: If L C S, then a :: a :: L C S.
i. Basis: (a) E S for all a E A. Induction: If L C S and a, b C A,
thena:: b:: LE S.

11. a. Basis: (a) C S. Induction: If L C S, then consR(L, b) E S.
c. Basis: (C- S. Induction: If L C S, then put the following four lists in
S: cons(a, cons(b, L)), cons(b, cons(a, L)), cons(a, consR(L, b)), and
cons(b, consR(L, a)).

13. Each nonleaf node has a leaf as the left child and a tree with the same
property as the right child.

15. Basis: tree((), a, E)) C B. Induction: If T E B, then
tree(T, a, tree(() , a,))), tree(tree((), a, ()), a, T) C B.

16. a. B = {(x, y) x x, y E N and x > y}.

646 ANSWERS TO SELECTED EXERCISES

17. a. Basis: (0, 0) E S.

Induction: If (x, y) E S and x = y, then (x, y + 1), (x + 1, y + 1) E S.

18. a. Basis: ((), K)) E S. Induction: If (x, y) E S and a - A, then (a :: x, y),

(x, a :: y) c S.
c. Basis: (0, ()) E S. Induction: If (x, L) E S and m G N, then (x, m :: L),
(x + 1, L) E S.

19. Basis: () c E and (a) E 0 for all a E A. Induction:
If S, T G E and a c A, then tree(S, a, T) E 0.
If S, T G 0 and a G A, then tree(S, a, T) G 0.
If S E E and T E 0 and a c A, then tree(S, a, T), tree(T, a, S) in E.

20. Basis: (a, g(a)) E A.
Induction: If (x, y) G A and y < f(x), then (x, y + 1) c A.
If (x, y) E A and x < b, then (x + 1, g(x + 1)) E A.

Section 3.2

1. We'll evaluate the leftmost term in each expression.
fib(4) = fib(3) + fib(2) = fib(2) + fib(l) + fib(2) = fib(l) + fib(0) + fib(l) +
fib(2) = 1 + fib(0) + fib(l) + fib(2) = 1 + 0 + fib(l) + fib(2) = 1 + 0 + 1 +
fib(2) = 1 + 0 + 1 + fib(1) + fib(0) =1 + 0 + + 1 + fib(0) = + 0 + 1 + 1

+ 0 = 3.

3. For (3.9): makeTree((), (3,2,4)) =makeTree(insert(3,)),(2,4))
= makeTree(insert (2, insert (3, ())), (4))
= makeTree(insert(4, insert(2, insert(3, K)))K)
= insert(4, insert(2, insert(3, ()))).

For (3.10): makeTree((), (3,2,4) = insert(3, makeTree((K, K2,4)))
= insert(3, insert(2, makeTree((K), (4))))
= insert(3, insert(2, insert(4, makeTree((), K))))
= insert(3, insert(2, insert(4, K)))).

4. a. f(0) = 0 and f(n) = f(n - 1) + 2n.
c. f(1, n) = gcd(1, n) and f(k, n) = f(k - 1, n) + gcd(k, n).

e. f(0, k) = 0 and f(n, k) = f(n - 1, k) + nk.

5. a. f(A) = A and f(ax) = f(x)a and f(bx) = f(x)b.
c. f(x, y) = if x = A then true

else if x = as and y = at or x = bs and y bt then f(s, t)

else false.
e. f(x) =if x = A or x = a or x = b then true

else if x = asa or x = bsb then f(s)
else false.

6. a. f(0) = (0) and f(n) = 2n :: f(n - 1).
c. f(x, K)) = 0 and f(x, h :: t) h + xf(x, t).

e. f(a, (K) = K) and f(a, h :: t) = (h + a) :: f(a, t).
g. f(0) = ((0, 0)) and f(n) = (0, n) :: g(1, f(n - 1)), where g adds I to the first
component of each ordered pair in a list of ordered pairs. (See part (f).)

i. f(g, h, ()) = () and f(g, h, k :: t) = (g(k), h(k)) :: f(g, h, t).

ANSWERS TO SELECTED EXERCISES 647

7. a. f(0) = (0) and f(n + 1) = cat(f (n), (n + 1)).
c. f(0) = (1) and f(n) = cat(f(n - 1), (2n + 1)).
e. f(0, k) = (0) and f(n, k) = cat(f(n - 1, k), (nk)).
g. f(n, n) (n) and f(n, m) = cat(f (n, m - 1), (m)).

8. insert(f, (a, b)) = f(a, b),
insert(f, cons(h, t)) = f(a, insert(f, t)).

10. a. last((x)) = X,
last(cons(h, t)) = last(t).

12. Let rem(L) denote the list obtained from L by removing repetitions of ele-
ments and keeping the rightmost occurrence of each element.

rem(L)=ifL= () then ()

else cat(rem(removeAll(last (L), front (L))), last (L) :: ()).

14. a. In(T): if T 7 0) then In(left(T)); print(root(T)); In(right(T)) fl.

15. a. Equational form: leaves(()) = 0,
leaves(tree((), a, ())) = 1,
leaves(tree(l, a, r)) = leaves(l) + leaves(r).

If-then form: leaves(t) = if t =)) then 0
else if left(t) = right(t) = () then 1
else leaves(left(t)) + leaves(right(t)).

c. Equational form:
postOrd(()) = ()
postOrd(tree(L, r, R)) = cat(postOrd(L), cat(postOrd(R), (r))).

If-then form:
postOrd(T) = if T =) then ()

else cat (postOrd(left(T)), cat(postOrd(right(T)), (root(T)))).

16. a. f(K)) = () and f((L, r, R)) = r + f(L) + f(R).
c. f(K)) =) and f((L, r, R) = if p(r) then r :: cat(f (L), f(R))
else cat(f (L), f(R)).

18. a. f(k,)) =) and f(k, x :: t) = Xk :: f(k, t).

19. a. isMember(x, L) = if L =) then false
else if x = head(L) then true
else isMember(x, tail(L)).

c. areEqual(K, L) = if isSubset(K, L) then isSubset(L, K) else false.
e. intersect(K, L) = if K = () then K)

else if isMember(head(K), L) then
head(K) :: intersect(tail(K), L)

else intersect(tail(K), L).

20. 1, 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 8, 9.

648 ANSWERS TO SELECTED EXERCISES

22. Assume that the product of the empty list () with any list is () . Then
define product as follows:

product(A,B) =ifA= () orB=() then ()
else concatenate the four lists

((head (A), head (B))),

product((head (A)), tail (B)),

product (tail (A), (head (B))), and

product (tail (A), tail (B)).

23. a. 1, 2.5, 2.05. c. 3, 2.166..., 2.0064...
e. 1, 5, 3.4.

24. a. Square(x :: s) = 2 :: Square(s).
c. Prod(n, s) = if n = 0 then 1 else head(s)*Prod(n - 1, tail(s)).
e. Skip(x, k) = x :: Skip(x + k, k).
g. ListOf(n, s) = if n 0 then () else head(s) :: ListOf(n - 1, tail(s)).

25. a. head(Primes) = head(sieve(inst(2))) = head(sieve(2 :: ints(3))) =

head(2 :: sieve(remove(2, ints(3)))) = 2
c. remove(2, ints(0))) = remove(2, 0 :: ints(1)) = remove(2, ints(1))
= remove(2, 1 :: ints(2)) = 1 :: remove(2, ints(2)) = 1 :: remove(2, 2 :: ints(3))
= 1 :: remove(2, ints(3)) = 1 :: remove(2, 3 :: ints(4))
= 1 :: 3 :: remove(2, ints(4)).

26. f(x) = if x < 10 then 1 else x - 10.

Section 3.3

1. a. S -- DS, D -- 7, S -, DS, S -* DS, D --4 8, D --4 0, S -* D , D -* 1.
c. S => DS =ý DDS =• DDDS =• DDDD = DDD1 =t DDO1 =ý D801 = 7801.

2. a. Leftmost: S => S[S] r: [S] #- [] . Rightmost: S = S[S] t S[] = []
c. Leftmost: S ==> SIS] => SIS] IS] •. IS] [A] = [] [S] [A [I .
Rightmost: S => S[S] = 5[] S S[S] [] =t> 53] z 3] [] I

3. a. S -ý bb bbS.
c. S - A abS.
e. S - ab abS.
g. S - b bbS.
i. S - aBc and B - A bB.

4. a. S , AB and A -, A I aA and B -* A bB.
c. S - AB and A - a aA and B - A bB.

e. S - AB and A -- a aA and B - b bB.

5. a. S -- A aSa I bSb cSc.
c. S- A I B and A -* A I aaA and B -- b I bbB.

e. S - aAB ABb and A -* A I aA and B --+ A I bB.

6. a. 0 - B1 andB--A O B0B1.

ANSWERS TO SELECTED EXERCISES 649

c.o - Dl I D31 D51 D71 D9 and D -* A I DO I DI I D2 I D31 D41 D5 I D6
I D7 D81 D9.

7. a. S -* D S + S I (S), and D denotes a decimal numeral.

8. a. S -- a b c I x I y I z If(S) I g(S).

9. a. S -- a b c I x I y I z I f(S) I 9(S, S).

11. a. The string ababa has two parse trees.
c. The string aa has two parse trees.
e. The string [] [] has two parse trees.

13. a. S - a IabS.
c. S-- a aS.
e. S -- S[SJ A.

14. a. S -* A I AB and A -, Aa I a and B -* Bb I b.

15. a. Basis: A E L(G). Induction: If w c L(G), then put aaw G L(G).

Chapter 4

Section 4.1

1. a. Reflexive, symmetric, transitive. c. Reflexive, symmetric, transitive.
e. Reflexive, symmetric, transitive. g. Irreflexive, transitive. i. Reflexive.

2. a. Symmetric. c. Reflexive, antisymmetric, and transitive.
e. Symmetric.
3. a. The irreflexive follows because (x, x) ý 0 for any x. The symmetric, anti-
symmetric, and transitive properties are conditional statements that are always
true because their hypotheses are false.
b. A x A is reflexive, symmetric, and transitive because it contains all possible
pairs. If A = {a}, then A x A = {(a, a)}, which is also antisymmetric.

4. a. {(a, a), (b, b), (c, c), (a, b), (b, c)}.
c. {(a, b)}.
e. {(a, a), (b, b), (c, c), (a, b)}.
g. {(a, a), (b, b), (c, c)}.

5. a. isGrandchildOf. c. isNephewOf.

6. isFatherOf o isBrotherOf.

7. a. Let R = {(a, b), (b, a)}. Then R is irreflexive, and R2 = {(a, a), (b, b)},
which is not irreflexive.

8. a. {(x, y) I x < y - 1}.

9. a. N x N.
c. {(x, y) I Y € o} - {(O, 1)}.

11. r((0) = {(a, a) I a E A}, which is basic equality over A.

12. a. 0.
c. {(a, b), (b, a), (b, c), (c, b)}.

650 ANSWERS TO SELECTED EXERCISES

13. a. 0. c. {(a, b), (b, a), (a, a), (b, b)}.

15. a. isAncestorOf. c. greaterThan.

16. a. 1 2 3 4

1 0 20 c• 5

2 oc 0 10 0c

3 o0 o0 0 10

4 0c 10 5 0

b. 1 2 3 4 1 2 3 4

1 0 15 10 5 1 0 4 4 0

2 0c 0 10 20 2 0 0 0 3

3 oo 20 0 10 3 0 4 0 0

4 o 10 5 0 4 0 0 0 0

17. Let "path" be the function to compute the list of edges on a shortest path
from i to j. We'll use the "cat" function to concatenate two lists:
path(i, j) = if Pij = 0 then ((i, j)) else cat(path(i, Pij), path(Pij, j)).

19. Let M be the adjacency matrix for R. a. Check to see if Mij = I for all i.
c. Check to see that "Mii = Mik = 1 implies Mik = 1" for all i, j, and k.
e. For all i and j check Mij . If Miy = 1, then set Mji = 1.

20. a. Let R be reflexive. Then a R a and a R a for all a, which implies that
a R2 a for all a. Therefore, R 2 is reflexive.
c. Let R be transitive, and let a Rf2 b and b R 2 c. Then a R x and x R b, and b
R y and y R c for some x and y. Since R is transitive, it follows that a R b and
b R c. Therefore, a Rf2 c. Thus R 2 is transitive.

21. Since less is transitive we have t(less) = less. It follows that st(less) =

s(less) = {(m, n) I m $ n}. But ts(less) = t({(m, n) I m : n}) = N x N.

22. a. (x, y) c R o (S o T) iff (x, w) G R and (w, y) c S o T for some w iff
(x, w) c R and (w, z) c S and (z, y) E T for some w and z iff (x, z) E R o S
and (z, y) G T for some z iff (x, y) E (R o S) o T.
c. If (x, y) G R o (S n T), then (x, w) E R and (w, y) E S n T for some w.
Thus (x, y) G R o S and (x, y) c R o T, which implies that (x, y) c R o S n R
o T.

24. a. If R is reflexive, then it contains the set {(a, a) I a c A}. Since s(R) and
t(R) contain R as a subset, it follows that they each contain {(a, a) I a c A}.
c. Suppose R is transitive. Let (a, b), (b, c) G r(R). If a = b or b = c, then
certainly (a, c) E r(R). So suppose a : b and b # c. Then (a, b), (b, c) G R.
Since R is transitive, it follows that (a, c) E R, which of course also says that
(a, c) E r(R). Therefore, r(R) is transitive.

25. a. A proof by containment goes as follows: If (a, b) E rt(R), then either
a = b or there is a sequence of elements a = x1, X2, ... , x. = b such that
(xi, xi+,) e R for 1 < i < n. Since R C r(R), we also have (xi, xi+,) c r(R)

ANSWERS TO SELECTED EXERCISES 651

for 1 < i < n, which says that (a, b) E tr(R). For the other containment, let
(a, b) E tr(R). If a = b, then (a, b) E rt(R). If a = b, then there is a sequence
of elements a = xl, x 2, ... , x, = b such that (xi, xi+,) C r(R) for 1 < i < n.

If xi = xi+,, then we can remove xi from the sequence. So we can assume that
xi 5 xj+1 for 1 < i < n. Therefore, (xi,xi+,) E R for 1 < i < n, which says
that (a, b) G t(R), and thus also (a, b) c rt(R).
c. If (a, b) E st(R), then either (a, b) E t(R) or (b, a) E t(R). Without loss of
generality we can assume that (a, b) E t(R). Then there is a sequence of elements
a = xi, x 2 , ... , xn = b such that (Xi, xi+1) E R for 1 < i < n. Since R C s(R),
we also have (xi, xi+l) E s(R) for 1 < i < n, which says that (a, b) E ts(R) (the
symmetry also puts (b, a) E ts(R)).

Section 4.2

1. a. Any point x is the same distance from the point as x. So - is reflexive. If x
and y are equidistant from the point, then y and x are too. So - is symmetric.
If x and y are equidistant from the point and y and z are equidistant from
the point, then x, y, and z are equidistant from the point. Thus x and z are
equidistant from the point. So - is transitive.
c. x + x is even for all natural numbers x. So - is reflexive. If x + y is even,
then y + x is even. So - is symmetric. Let x + y be even and let y + z be even.
Then x + y = 2m and y + z = 2n for some integers m and n. Solve for x and
z to obtain x = 2m - y and z = 2n - y. Add the two equations to obtain the
equation x + z = 2(m + n - y). Therefore, x + z is even. So - is transitive.
e. xx > 0 for all nonzero x. So - is reflexive. If xy > 0, then yx > 0. So
is symmetric. Let xy > 0 and yz > 0. Then either x and y are both positive
or both negative. The same is true for y and z. So if y is positive, then x and
z must be positive and if y is negative, then x and z must be negative. So in
either case, we have xz > 0. So - is transitive.

2. a. The relation is not reflexive because a + a is always even. It is not transitive
because, for example, 3 + 4 is odd and 4 + 5 is odd, but 3 + 5 is not odd.
c. Not transitive. For example, 2 - 7 < 5 and 17 - 12 I < 5, but 2 - 12 >
5.
e. Not reflexive: (10, 10) V R. Not symmetric: (11, 10) c R, but (10, 11) V R.

3. a. [0] = N.
c. [2n] = {2n, 2n + 1} for each n E N.
e. [4n] = {4n, 4n + 1, 4n + 2, 4n + 3} for each n E N.
g. [0] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and [x] = {x} for x > 12.

4. a. [x] = {x, -x} for x c Z.

5. a. Six classes [0], [1], [2], [31, [4], [5], where [n] = {6k + n I k E N}.
c. Twelve classes [0], [1], [2], ... , [11], where [In] = {12k + n I k C N}.

6. a. Two classes {rot, roto, root} and {tot, toot, toto, too, to, otto}.

7. a. The weight is 7. One answer is {{a, c}, {e, c}, {c, d}, {b, d}, {d, f}}.

652 ANSWERS TO SELECTED EXERCISES

9. Let x G A. Since E and F are reflexive, we have (x, x) G E and (x, x) C F,
so it follows that (x, x) G E Q F. Thus E n F is reflexive. Let (x, y) E E n F.
Then (x, y) E E and (x, y) C F. Since E and F are symmetric, we have (y, x) C
E and (y, x) E F. So (y, x) G E n F. Thus E n F is symmetric. Let (x, y), (y,
z) E E n F. Then (x, y), (y, z) C E and (x, y), (y, z) E F. Since E and F are
transitive it follows that (x, z) E E and (x, z) C F. So (x, z) E E n F. Thus E
O F is transitive, and hence an equivalence relation on A.

11. tsr(R) = trs(R) = rts(R) and str(R) = srt(R) - rst(R).

13. The function s : A -+ P defined by s(a) = [a] is a surjection because every
element in P has the form [a] for some a E A. The function i : P -- B defined
by i([a]) = f(a) is an injection because if i([a]) = i([b]), then f(a) = f(b). But
this says that [a] = [b], which implies that i is injective. To see that f = i o s,
notice that (i o s)(a) = i(s(a)) = i([a]) = f(a).

Section 4.3

1. a. False.
c. True.

2. a. No.
c. Yes.
e. No.

3. a. b. c.
c {a, b, c}

d {a, b} {a, c} {b, c} (a,G) (a, b) (b, a> (b, b)

{a} {b} {c}

0 (

5. The glb of two elements is their greatest common divisor, and the lub is their
least common multiple.

7. a. No tree has fewer than zero nodes. Therefore, every descending chain of
trees is finite if the order is by the number of nodes.
c. No list has length less than zero. Therefore, every descending chain of lists is
finite if the order is by the length of the list.

9. Yes.

11. An element i is a source if the ith column is full of 0's. When a source i is
output, set the elements in the ith row to 0.

13. Suppose A is well-founded and S is a nonempty subset of A. If S does not
have a minimal element, then there is an infinite descending chain of elements
in S, which contradicts the assumption that A is well-founded. For the converse,

ANSWERS TO SELECTED EXERCISES 653

suppose that every nonempty subset of A has a minimal element. So any de-
scending chain of elements from A is a nonempty subset of A that must have
a minimal element. Thus the descending chain must be finite. Therefore, A is
well-founded.

14. a. Yes.
c. No. For example, -2 < 1, but f(-2) > f(1).
e. Yes.
g. No.

Section 4.4

1. 2900.

2. a. The equation is true if n = 1. So assume that the equation is true for n,
and prove that it's true for n + 1. Starting on the left-hand side, we get

1 + 3 +... + (2n- 1) + (2 (n + 1) - 1) =(1 + 3 +... + (2n- 1))

+ (2 (a + 1) - 1)

a 2 + (2 (n + 1) - 1)

=n2 + 2n + 1 = (n + 1)2.

c. The equation is true for n = 1. So assume that the equation is true for n,
and prove that it's true for n + 1. Starting on the left-hand side, we get

3+7 + 11 + ... + (4n-1) + [4(n + 1) -lj= (3+7+11+...+(4n-1))
+ [4 (n + 1) - 1]

= n(2n + 1) + 4 (n + 1) - 1

=2n2 +n+4n+3

= 2n 2 + 5n + 3

= (n + 1) (2n + 3)

= (n + 1) (2 (n + 1) + 1).

e. The equation is true for n = 0. So assume that the equation is true for n,
and prove that it's true for n + 1. Starting on the left-hand side, we get

1 + 5+9 -.+± + (4n+ 1) + [4(n + 1) + 1] = 1 + 5+9 +-.. + (4n+ 1)

+ [4 (n + 1) + 1]

= (n + 1) (2n + 1) + 4 (n + 1) + 1

= 2n 2 + 3n + 1 +4n + 5

= 2n 2 + 7n + 6

= (2n + 3) (a + 2)

= (2 (n + 1) + 1) ((n + 1) + 1).

654 ANSWERS TO SELECTED EXERCISES

g. The equation is true for n = 1. So assume that the equation is true for n,
and prove that it's true for n + 1. Starting with the left side of the equation for
n + 1, we get

12 +222+..-+(n+ 1) 2 = (12+22+...+n2) +(n+1)
2

n(n)(2n+) (+1)2
6

(n + 1) ((n + 1) + 1) (2 (n + 1) + 1)

6

i. The equation is true for n = 2. So assume that the equation is true for n, and
prove that it's true for n + 1. Starting on the left-hand side, we get

2+6+12+...

+ [(n+l1)2-(n+l1)] 2 +6 +12 +..+(n 2- n)

+ [() + 1)2 (n+ 1)]

n (n + 1)(n- 1) + 3 [(n + 1)2 -(n + 1)]

33

r(n + 1) [n(n - 1) + 3 (n + 1) - 31
3

(n + 1) [n2 + 2 3]

3
(n + 1) [(n2 + 2n 1)-]

3
(n + 1) [(n + 1)2 1]

3

3. a. For n 1 the equation becomes 0 = 1 - 1. Assume that the equation is
true for n. Then the case for n + 1 goes as follows:

Fo + F1 + "" + ±F + Fn+l = (Fo + F1 + .. + F,) + F+ 1

= Fn+2 - 1 + Fn+I = Fn+3 - L

c. For (m, n) = (0, 0) the equation becomes 0 = 0 + 0. Assume that the
equation is true for all (i, j) -< (m, n). Then the case for (m, n) goes as follows:

Fmn+n Fm+n-i + Fm+n-2

= (Fm.+lFnil + FmFn) + (Fm+lFn- 2 + FmFn-I)

= Fm+l (Fn- 1 + Fn- 2) + Fm. (Fn + Fý- 1)

= F,+iFn + FmFn+i.

ANSWERS TO SELECTED EXERCISES 655

4. a. For n = 0 the equation becomes 2 = 3 - 1. Assume that the equation is
true for n. Then the case for n + 1 goes as follows:

L0 + L, + ..- + L, + Ln+l = (Lo + L 1 .. + Ln) + Ln+

= Ln+2 - 1 + Ln+l = Ln+ 3 - 1.

5. Let P(m, n) denote the equation. Induct on the variable n. For any m we
have sum(m + 0) = sum(m) = sum(m) + sum(0) + m0. So P(m, 0) is true for
arbitrary m. Now assume that P(m, n) is true, and prove that P(m, n + 1) is
true. Starting on the left-hand side we get

sum (m+ (n 1)) = sum ((m+ 1)

= sum (m + n) + m + n - 1
sum(m) + sum(n) +mn + m + n + 1

= sum (m) + sum(n + 1) + m (n + 1).

Therefore, P(m, n + 1) is true. Therefore, P(m, n) is true for all m and n.

7. Since L is transitive and R C L, it follows that t(R) C L. For the other
direction, let (x, y) E L. In other words, x < y. Therefore, there is some natural
number k > 1 such that y = x + k. We'll induct on k. If k = 1 then we have
(X, y) = (x, x + 1) G R. So (x, y) E t(R). Now assume that (x, x + k) E t(R)
and prove (x, x + k + 1) E t(R). Since (x, x + k) E t(R) and (x + k, x + k +
1) G R C t(R), it follows by the transitivity of t(R) that (x, x + k + 1) E t(R).
Therefore, (x, y) G t(R). Therefore, L C t(R). So we have t(R) = L.

9. For lists K and L, let K -< L mean the length of K is less than than the
length of L. This forms a well-founded ordering on lists. Let P(L) denote the
statement "f(L) is the length of L." Notice that f(()) = 0. Therefore, P(())
is true. Now let L 4 () and assume P(K) is true for all lists K -< L. In other
words, we are assuming "f(K) is the length of K" for all K --< L. We must show
P(L) is true. Since L 5 (} , we have f(L) = 1 + f (tail(L)). Since tail(L) -- L,
our induction assumption applies and we have P(tail(L)) is true. In other words,
f(tail(L)) is the length of tail(L). Thus f(L) is 1 plus the length of tail(L), which
of course is the length of L.

10. a. Let T be a binary tree. We know that an empty tree has no nodes.
Since g(()) = 0, we know that the function is correct when T = () . For the
induction part we need a well-founded ordering on binary trees. For example,
let t -• s mean that t is a subtree of s. Now assume that T is a nonempty binary
tree, and also assume that the function is correct for all subtrees of T. Since T
is nonempty, it has the form T = tree(L, x, R). We know that the number of
nodes in T is equal to the number of nodes in L plus those in R plus 1. The
function g, when given argument T, returns 1 + g(L) + g(R). Since L and R are
subtrees of T, it follows by assumption that g(L) and g(R) represent the number
of nodes in L and R, respectively. Thus g(T) is the number of nodes in T.

11. a. If L = (x), then forward(L) = {print(head(L)); forward(tail(L))} =

{print(x); forward(())} = {print(x)}. We'll use the well-founded ordering based

656 ANSWERS TO SELECTED EXERCISES

on the length of lists. Let L be a list with n elements, where n > 1, and
assume that forward is correct for all lists with fewer than n elements. Then
forward(L) = {print(head(L)); forward(tail(L))}. Since tail(L) has fewer than
n elements, forward(tail(L)) correctly prints out the elements of tail(L) in the
order listed. Since print(head(L)) is executed before forward(tail(L)), it follows
that forward(L) is correct.

12. a. We can use well-founded induction, where L -< M if length(L) < length(M).
Since an empty list is sorted and sort(()) = () ,it follows that the function
is correct for the basis case (). For the induction case, assume that sort(L) is
sorted for all lists L of length n, and show that sort(x :: L) is sorted. By defini-
tion, we have sort(x :: L) = insert(x, sort(L)). The induction assumption implies
that sort(L) is sorted. Therefore, insert(x, sort(L)) is sorted by the assumption
in the problem. Thus sort(x :: L)) is sorted.

13. Let's define the following order on pairs of positive integers: (a, b) -< (c, d)
iff a < c and b < d, or a < c and b < d. This is a well-founded ordering with
least element (1, 1). For the base case we have g(1, 1) = 1. So g is correct in
this case because ged(l, 1) = 1. For the induction case, assume (x, y) is a pair
of positive integers and assume g(r', y') = gcd(x', y') for all (x', y') -< (x, y). If
x = y then of course g(x, y) = x= gcd(x, y). So assume x < y. Then g(x,
y) = g(x, y - x). Since (x, y -- x) -• (x, y) the induction assumption says that
g(x, y - x) = gcd(x, y - x). Since gcd(x, y) = gcd(x, y - x) (by (2.1b)), it follows
that g(x, y) = gcd(x, y). The argument is similar if y < x.

15. We'll induct on the list variable. So we need a well-founded ordering on lists.
For lists L and M, let L -< M mean length(L) < length(M). Let P(x, L) be the
statement, "delete(x, L) returns L with the first occurrence of x deleted." We
need to show that P(x, L) is true for all lists L. The single minimal element is

). The definition of delete gives delete(x, ()) = (). This makes sense because
is the result of deleting x from () . Therefore, the base case P(x, ()) is true.

For the induction case, let K be a nonempty list and assume P(x, L) is true for
all L -< K. We need to show P(x, K) is true. There are two cases. The first
case is x = head(K). Then delete(x, K) = tail(K), which is clearly the result
of removing the first occurrrence of x from K. Therefore, P(x, K) is true. Now
assume x 7, head(K). Then the definition of delete gives

delete(x, K) = head(K) :: delete(x, tail(K)).

Since tail(K) -< K, the induction assumption says that P(x, tail(K)) is true.
Therefore, P(x, K) is true because the first element of delete(x, K) is not equal
to x. Therefore, (4.28) applies to say delete(x, L) is true for all lists L.

17. If a = b, then the equation holds. So assume a :A b. The equation holds for
L = { } . Assume L = x :: M and assume the equation holds for all lists having
length less than that of L. Then the left side of the equation becomes r(a, r(b,
x :: M). If x = b, then the expression becomes r(a, r(b, b :: M)). But r(b, b
:: M) = r(b, M). Therefore, the left side becomes r(a, r(b, M)). The induction
assumption then allows us to write this expression as r(b, r(a, M)). Now look

ANSWERS TO SELECTED EXERCISES 657

at the right side of the equation. We have r(b, r(a, x :: M)). Still assuming
x = b, we write r(b, r(a, b :: M)) = r(b, b :: r(a, M)) = r(b, r(a, M)). Thus

the equation holds if x = b. A similar argument tells us that the equation holds
if x = a. Lastly, assume x # a and x z b. Then we can write r(a, r(b, x :: M))
= r(a, x :: r(b, M)) = x :: r(a, r(b, M)). Now apply the induction assumption
to the last expression to get x :: r(b, r(a, M)). But we can reach this expression

if we start on the right side: r(b, r(a, x :: M)) = r(b, x :: r(a, M)) = x
r(b, r(a, M)). Thus the equation is true for any list.

19. a. If L = () , then isMember(a, L) = false, which is correct. Now assume
that L has length n and that isMember(a, K) is correct for all lists K of length
less than n. If a = head(L), then isMember(a, L) = true, which is correct. So
assume that a 4 head(L). It follows that a E L iff a G tail(L). Since a $ head(L),
it follows that isMember(a, L) = isMember(a, tail(L)). Since tail(L) has fewer
than n elements, the induction assumption says that isMember(a, tail(L)) is
correct. Therefore, isMember(a, L) is correct for any list L.

20. If x = () , then the definition of cat implies that cat(() , cat(y, z)) = cat(y,
z) = cat(cat(() , y), z). Now assume that the statement is true for x, and prove
the statement for a :: x:

cat(a :: x, cat(y, z)) = a :: cat(x, cat(y, z)) (definition)

= a :: cat(cat(x, y) , z) (induction)

= cat(a :: cat(x, y)), z) (definition)

= cat(cat(a :: x, y) , z) (defintion).

So the statement is true for a :: x under the assumption that it is true for x. It
follows by structural induction that the statement is true for all x, y, and z.

22. Let W be a well-founded set, and let S be a nonempty subset of W. We'll
assume condition 2 of (4.27): Whenever an element x in W has the property
that all its predecessors are elements in S, then x also is an element in S. We
want to prove condition 1 of (4.27): S contains all the minimal elements of W.
Suppose, by way of contradiction, that there is some minimal element x G W
such that x V S. Then all predecessors of x are in S because there aren't any
predecessors of x. Condition 2 of (4.27) now forces us to conclude that x E S, a
contradiction. Therefore, condition 1 of (4.27) follows from condition 2 of (4.27).

24. a. If we can show that f(n, 0, 1) = f(k, F•_k, Fk,-+1) for all 0 < k < n,
then for k = 0 we have f(n, 0, 1) = f(0, F•, F,+,) = F,, by the definition of
f. To prove that f(n, 0, 1) = f(k, F,,-k, F,-k+l) for all 0 < k < n, we'll fix n
and induct on the variable k as it ranges from n down to 0. So the basis case is
k = n. In this case we have

f(n, 0, 1) = f(n, Fo, F 1) = f(k, F.-k, Fn-k+1).

For the induction case, assume that f(n, 0, 1) = f(k, Fn-k, F,-k+1) for some
k such that 0 < k < n, and prove that

f(n, 0, 1) = f(k - 1, F,-k+l, Fn-k+2).

658 ANSWERS TO SELECTED EXERCISES

We have the following equations:

f (n, 0, 1) = f (k, Fn-k, F.-k+l) (induction assumption)

= f (k - 1, F.-k+l, F-k + F-k+l) (definition off)

= f (k - 1, Fn-k+l, Fn-k+2). (definition of Fn-k+2).

Therefore, f(n, 0, 1) = f(k, Fn-k, Fn-k+l) for all 0 < k < n.

25. Both formulas give d(2) = 1. For the induction part let n > 2 and assume
that d(k) = kd(k - 1) + (-1)k for k < n. Show that d(n) = nd(n - 1) + (-1)n.
Using the original formula we have

d (n) (n - 1) (d (n - 1) + d (n - 2))

= nd(n- 1) - d (n- 1) + nd (n - 2) - d (n- 2)

Now use the hypothesis to replace the second occurrence of d(n - 1) to obtain

= nd(n- 1)- [(n- 1)d(n- 2) + (-)n-II +nd(n- 2) -d(n- 2)

=nd (n - 1) - nd (n - 2) + d (n - 2) - (-1)n-1 + nd (n - 2) - d (n - 2)

= nd (n - 1) - (-1)n1 = nd (n - 1) + (-1)n.

Chapter 5

Section 5.1

1. In the following tree, move to the left child of (a, b) whenever a > b.

(x1, x2)

(x1, x3) (x2, x3)

(x1, x4) (x3, x4) (x 2, x4) (x 3, x4)

X1 X4 X3 X4 X2 X4 X3 X4

2. a. 7.
c. 4.

3. There are 61 possible outcomes. So there must be at least 61 leaves on any
tree that solves the problem. If h is the height of a ternary decision tree, then
the tree has at most 3 h leaves. Therefore, 61 < 3 h. Take the log to conclude
that h > ceiling(log 3 (61)) = 4. So 4 is a reasonable lower bound.

Section 5.2

1. a. 2(1) + 3 + 2(2) + 3 + 2(3) + 3 + 2(4) + 3 + 2(5) + 3.
c. 5(30) + 4(31) + 3(32) + 2(33) + 1(34).

ANSWERS TO SELECTED EXERCISES 659

n-1

2. a. E g (i) a~i+xi+2.
i=O

n-2

c. g (i + 1) ai+2xi+3.

n-3
e. 1: g (i +• 2) ai+3X1+4

i=--2
n n 3 n + 1

3. a.)3i=31i-3 (n+1)2
i=1 i=1

C. 3 = = 3 (2 n+1 1).

i=0 i=O

4. a. n 2 + 3n.
c. n2 + 4n.
e. 2n 2 .

n (n + 1) (n + 2)
g. 9. 3

5. (1/4)n 2 (n + 1)2.

6. a. n 2 + 3n.

7. a. 2 + 3 +.. + (n+ 1) = (1/2)(n + 1)(n +2)-1.

8. a. 3 + 5 +... + (2k + 3), where k = ceiling(n/2) - 1. This sum has the value
(k + 1)(k + 3) = (k + 2)2 - 1 = (ceiling(n/2) + 1)2 - 1.

Section 5.3

1. a. 720.
c. 30.
e. 10.

2. a. abc, acb, bac, bca, cab, cba. c. {a, b, c}.
e. [a, a], [a, b], [a, c], [b, b], [b, c], [c, c].

3. a. P(3, 3).
c. C(3, 3).
e. C(3 + 2 - 1, 2).

4. The number of bag permutations of B is 4!/(2!2!) 6. They can be listed
as follows: aabb, abab, abba, bbaa, baba, baab.

5. a. 8! = 40,320.
c. 6!/(2!2!1!1!) = 180.
e. 9!/(4!2!2!1!) = 3780.

6. a. There are none.
c. BCA, CAB.

7. n = 7, k = 3, and m = 4.

9. Either floor(n/2) + 1 or ceiling(n/2) + 1.

660 ANSWERS TO SELECTED EXERCISES

10. There are eight possible outcomes when three coins are tossed.
a. 0.375.
c. 0.875.

11. There are 36 possible outcomes.

a. 0.1666...
c. 0.222...

12. a. 80/243.
c. 4/9.

13. a. 0.21.

15. 1/3, 2/15, 8/15.

16. a. 1/2.
c. no.

18. a. 1C(49, 6), since order is not important.
c. [C (6,5) C (43, 1) + C (6,4) C (43,2)]IC (49,6). To obtain the answer, notice
that there are C (49, 6) 6-element subsets of a 49-element set. Now suppose
that {a, b, c, d, e, f} is the winning set of numbers. First, we'll count all the 6-
element sets that contain exactly five winners. To do this, notice that there are
C (6, 5) 5-element subsets of {a, b, c, d, e, f}. To each of these 5-element subsets
we add a non-winner from the set {1,... , 49} - {a, b, c, d, e, f}. Since there are 43
(= C (43, 1)) non-winners, it follows that there are C (6, 5) C (43, 1) sets of 6 num-
bers that contain exactly five winners. Next, we'll count the 6-element sets that
contain exactly four winners. To do this, notice that there are C (6, 4) 4-element
subsets of {a, b, c, d, e, f}. To each of these 4-element subsets we add two non-
winners from the set {1,... , 49} - {a, b, c, e, f}. Since there are C (43, 2) possible
pairs of non-winners, it follows that there are C (6,4) C (43, 2) sets of six numbers
that contain exactly four winners. So the probability of choosing either four or
five of the six winning numbers is given by [C (6, 5) C (43, 1) + C (6, 4) C (43, 2)] /
C (49, 6).
19. a. 3.5.

21. Since A is a subset S we have A n S = A. So P(A n S) = P(A) = P(A)P(S).
Thus S and A are independent. If A n B = 0 , then the only way for A and B
to be independent is if A = B = 0 .

23. There are nk actions to schedule. Since the k actions of each process must
be done in order, we can represent each process as a bag consisting of k identical
elements. Assume that the bags are disjoint from each other. Then the union
B of the n bags contains nk elements, and each bag permuation of B is one

schedule. Therefore, there are as many schedules as there are bag permutations
of B. That number is (nk)!/(k!)T .

25. Let I S I = n. If n = 1, then there is just one bijection, the identity mapping
on S. Let n > 1 and assume there are k! bijections between any two sets with k
elements when k < n. Pick some element x E S. Any bijection of S must map x
to one of its n elements y. The remaining elements in S - {x} must be mapped
to S - {y}. These sets each have n - 1 elements. The induction assumption tells

ANSWERS TO SELECTED EXERCISES 661

us there are (n - 1)! bijections from S - {x} to S - {y}. Therefore, there are
n(n - 1)! = n! bijections from S to S.

26. a. 109/30 (or about 3.63).
b. (p/n)[(n + 1) log2 (n + 1) - n] + (1 - p)log2 (n + 1).

Section 5.4

1. a. 4(n - 1).
c. 2n +2 -3.

2. a. Let a, be the number of cons operations when L has length n. Then ao =

0 and an = 1 + a,-,, which has solution a, = n. c. Let an be the number of
cons operations when L has length n. Then ao = 1, and a, =an- 1 + 5 • 2
which has solution a, = 5 - 2n - 4.

3. The recurrence is given by H0 = 0 and Hn = 2H,-7 1 + 1. The solution is
H, = 2n- 1.

5. Let r,. be the number of regions created by n lines. Then r0 1 since a
plane with no lines is one region. It's easy to see that r, = 2, r 2 4, r3 = 7,
and r4 = 11. After some thought, we see that when there are n - 1 lines in the
plane and we add one more line, it intersects each of the existing n - 1 lines and
splits up n existing regions. So rn = r•- 1 + n. This recurrence can be solved
by substitution or cancellation to get rn = (1/2)(n 2 + n + 2).

6. a. an = -1/(2n+l) -2(3)n

c. an = (-1/2)(3/2)n - n - 1.

7. a. a?. = 3n + (--1)n+l.
c. a? = (1/3)(2n - (-1)n).

8. a. A(x) = 4/(1 - x) 2 - 8/(1 - x) + 4, which yields an = 4(n - 1).
c. A(x) = -3/(1 - x) + 4/(1 - 2x), which yields an = 2'±2 -3.
9. a. If n = 1, then the equation evaluates to 2 = 2. Assume that the equation
holds for n, and show that it holds for n + 1. Starting with the left side for the
n + I case we have

(1) (1) (3) (5)... (2n - 3) (2n - 1) 2n+1

(n + 1)!
(1) (1) (3) (5)... (2n- 3) 2nn- 12
=n!n+I

2 (2n-2) 2n-1 2 2 (2(n+1)-2
n n-1 -n+-1 n+-- I n+1-1

which is the right side for the n + 1 case.

10. Letting F(x) be the generating function for Fn, we get F(x) = x/(1 - x -
x2). The denominator factors into 1 - x -x = (1 - a x)(1 - flx), where

1 (1 /5OCx l (1l+ vf5) and (I =5-

662 ANSWERS TO SELECTED EXERCISES

Now use partial fractions to obtain

F (x)1)v15 ax I •O

This yields the closed formula F, = 5 (,n - 3n).

Section 5.5

1. 1 -< log log n -< log n.

2. a. f(n) = 0(n log n). Notice that f(n) = log(1 • 2 n) = log(n!). Now
use (5.37) to approximate n! and take the log of Stirlings's formula to obtain
6(n log n).

3. a. 5! = 120; Stirling • 118.02; diff = 1.98.

4. Let f(n) = (n - 1)/n. Then f is increasing, and for all n > 2 we have the
inequality (1/2) 1 < f(n) < 1 - 1. Therefore, f(n) = e(1).
5. (Reflexive) Since I f (n)I <_ If (n)I , 1 If (n)1, it follows that f(n) =

1 (f (n)) for every functon f. (Symmetric) If f (n) = e (g (n)), then there are
positive constants, c, d, and a number m such that c Ig (n)I • If (n)I -< d Ig (n)I
for all n > m. It follows that (1/d) f (n)l < Ig (n)l < (1/c) If (n)l for all
n > m. Thus g (n) = 0 (f (n)). (Transitive) Assume that f (n) = 0 (g (n))
and g (n) = 6 (h (n)). Then there are positive constants c, d, and a number m
such that c Ig (n)I < If (n)I < dIg (n)I for n > m. Similarly, there are positive
constants a, b, and a number k such that and alh(n)l <_ Ig(n)l < blh(n)I for
n > k. It follows that (ca) Ih (n)I < If (n)I < (bd) Ih (n)I for n > max {m, k}.
This says that f (n) =0 (h (n)).

6. a. The quotient log (kn)/log n approaches 1 as n approaches infinity.

8. Take limits.
9. In each case, replace n! by its Stirling's approximation (5.37). Then take
limits.

10. a. Since f(n) = O(h(n)), there are positive constants c and m such that I
f(n) I <- c I g(n) I for all n > m. If a = 0 then af(n) = 0 for all n. So af(n)
=O(h(n)). If a , 0, then multiply both sides of the inequality by I a I to obtain
I af(n) I < (c I a I) I g(n) I for all n > m. Thus af(n) =O(h(n)).

Chapter 6

Section 6.2

1. a. ((-n P) A Q) -, (P V R).
c. (A -* (B V (((-a C) A D) A E))) -- F.

2. a. (P V Q -+-R) V -Q A R A P.

3. (A --+ B) A (A A---+ C) or (A A B) V (- A A C).

ANSWERS TO SELECTED EXERCISES 663

5. A A B -* false (A A -B) V false -- (A A B)-n A V B
A V B =A - B.

7. a. If B = true, then the wff is true. If B = false and A = true, the wff is
false.
c. If A is true, then the wff is true. If A = false and C true, the wff is false.
e. If B = true, then the wff is true. If B = false, A = C = true, the wff is false.

8. a. If C = true, A --* C is true, so the wff is trivially true too. If C = false,
then the wff becomes (A --+ B) A (B --+ false) --* (A -* false), which is equivalent
to (A --+ B) A - B - -+ A. If A = false, then the wff is trivially true. If A -
true, the wff becomes

(true -- B) A - B -* false - B A - B - false =- false -* false -= true.

c. If A = false or B = false, then the consequent is true, so the statement is
trivially true. If A = B = true, then the wff becomes

(true -* C) A (true - D) A (- C V - D) -* false
CA D A (- CV -D) - false.

If C = true, then the wff becomes

true A D A (false V -' D) -* false -- D A - D --* false -- false -- false = true.

If C = false, then the wff becomes

false A D A (true V - D) --+ false = false -* false -- true.

e. If B is true, then the wff is trivially true. If B is false, then the wff becomes

(true -* A) -- ((true -4 A) -, false) -= -A -- (A -+ false)
- - A - A =true.

g. If C is true, then the wff is trivially true. If C is false, then the wff becomes
(A --* false) -* ((B -* false) -- (A V B -- false)) -_-- A -* (- B -, (A V B)).
If A is true, then the wff is vacuously true. If A if false, then the wff becomes

true -4 (-- B , - (false V B)) = -- B - ' (false V B) - B - -i B - true.

9. a. (A ý B) A (A V B) (-• A V B) A (A V B) (- A A A) V B
=--false V B- B.
c. A A B -- C _= (A A B) V C - A v -B) v C A V (- B V C)

=- A V (B -- C) =- A -* (B -* C).
e. A B A C -= A V (B A C) (- A V B) A (- A V C)
- (A B) A (A - C).

10. a. A--+ A V B_= AV AV B-trueV B =-true.
c. (AVB)A- A-- B= - ((AVB)A-A)VB -- (AVB)VAVB -

(-A A -B)V(AVB)--(-A V A V B)A(-BV A V B)=-(true V-B)A
(true V A)=-true A true =true.

664 ANSWERS TO SELECTED EXERCISES

e. (A -- B) A - B -+- A =(- A V B) A B --- A =- ((- A V B) A-
B)V A (AA-B) V (B V- A) =(A V B V A) A (B V B V - A)
- (true V B) A (true V -• A) =- true A true =- true.
g. A -+ (B , (A A B)) = A V (- B V (A A B))- A V - B) V (A A B)
-- (AA B) V (AA B) =true.

11. a. (P A -Q) V P or P. c. Q V P. e. P V (Q A R).

12. a. P A (- Q V P) or P. c. Q V P. e. (-P V Q) A (- P V R).
g. (A V C V E V F) A (B V C V E V F) A (A V D V E V F)
A (B V D V E V F).

13. a. Full DNF: (P A Q) V (P A -ý Q). Full CNF: (P V - Q) A (P V Q).

14. a. (P A Q) V (P A - Q).
c. (P A Q) V(P A -Q)V (-P A Q)V(- P A-Q).
e. (PA Q A R) V (-' P A Q A R) V (-1 P A Q A R)
V(-PAQA-R) V(-PA-QA-R).

15. a. (P V Q) A (P V - Q). c. - V P. e. (P V Q V R) A (P V Q V -R)
A (PV-- Q V R) A (- P V Q V R) A (-ý P V - Q V R).

16. a. A V B (-' A A - B). So (-•, A} is complete because {-', V} is
complete.
c. - A A -+ false. So {false, -+} is a complete set because {, -- } is complete.
e. - A NOR(A, A), and AV B -- - NOR(A, B) = NOR(NOR(A, B), NOR(A,
B)). Therefore, NOR is complete because {-, V} is a complete set of connectives.

Section 6.3

1. a. Line 2 is incorrect, since no part of W requires us to prove something of
the form A-+ X.

2. Line 6 is not correct because it uses line 3, which is in a previous subproof.
Only lines 1 and 5 can be used to infer something on line 6.
3. a. Three premises: A is the premise for the proof of the conditional, whose
conclusion is B -* (C --* D). B is the premise for the conditional proof whose
conclusion is C -- D. Finally, C is the premise for the proof of C -* D.

4. Let D mean "I am dancing," H mean "I am happy," and M mean "There is
a mouse in the house." Then a proof can be written as follows:

1. D--- H P

2. MVH P

3. - H P

4. M 2, 3, DS
5. - D 1, 3, MT

6. MA-• D 4, 5, Conj
QED 1, 2, 3, 6, CP.

ANSWERS TO SELECTED EXERCISES 665

5. a. 1. A P
2. B P

3. AAB 1,2, Conj
4. B--+AAB 2, 3, CP

QED 1, 4, CP.

c. 1. AVB---+ C P

2. A P
3. A v B 2, Add

4. C 1, 3, MP
QED 1, 2, 4, CP.

e. 1. AVB-ýCAD P

2. B P

3. A v B 2, Add

4. C A D 1, 3, MP
5. D 4, Simp

6. B-*D 2, 5, CP
QED 1, 6, CP.

g. 1. - (AAB) P
2. BVC P
3. C---+ D P

4. A P
5. -AV- B 1, T

6. -'B 4, 5, DS
7. C 2, 6, DS

8. D 3, 7, MP
9. A-+D 4, 8, CP

QED 1, 2, 3, 9, CP.

i. 1. A-+ C P
2. AAB P
3. A 2, Simp
4. C 1, 3, MP
5. AAB - C 2,4, CP

QED 1, 5, CP.

666 ANSWERS TO SELECTED EXERCISES

6. a. 1. A P
2. -'(B - A) P for IP
3. - B(-BVA) 2, T

4. BA-A 3, T
5. - A 4, Simp
6. AA -A 1,5, Conj

QED 1, 2, 6, IP.

c. 1. -B P
2. -(B -, C) P for IP
3. - (BVC) 2, T

4. BA -C 3, T
5. B 4, Simp

6. - B A B 1, 5, Conj

QED 1, 2, 6, IP.

1. A---- B P
2. -i((A - - B) --*-A) PforIP
3. (-AV B) AA 2, T
4. A 3, Simp
5. - AV -B 3, Simp

6. - B 4, 5, DS
7. - A 1, 6, MT

8. A A - A 4, 7, Conj
QED 1, 2, 8, IP.

g. 1. A-* B P
2. B- C P
3. - (A--* C) PforIP
4. AA C 3, T
5. A 4, Simp

6. - C 4, Simp
7. B 1, 5, MP

8. C 2, 7, MP
9. C A C 6, 8, Conj

QED 1, 2, 3, 9, IP.

ANSWERS TO SELECTED EXERCISES 667

7. For some proofs we'll use IP in a subproof.

a. 1. A P
2. - (B , (A A B)) P for IP

3. BA - (AAB) 2, T

4. B 3, Simp

5. - (A A B) 3, Simp

6. AAV -B 5, T

7. -'B 1, 6, DS

8. BA -B 4, 7, Conj

9. false 8, T

QED 1, 2, 9, IP.

c. 1. AVB-ýC P

2. A P

3. - C PforIP
4. - (A V B) 1, 3, MT

5. -AAA-B 4, T

6. - A 5, Simp

7. AA -A 2,6, Conj

QED 1, 2, 3, 7, IP.

e. 1. AVB - CAD P

2. - (B -- D) P for IP

3. B A- D 2, T

4. B 3, Simp

5. A V B 4, Add

6. C A D 1, 5, MP

7. - D 3, Simp

8. D 6, Simp

9. D A - D 7, 8, Conj

QED 1, 2, 9, IP.

668 ANSWERS TO SELECTED EXERCISES

g. 1. -(AAB) P
2. BVC P

3. C--+ D P

4. - (A -- D) PforIP
5. AA D 4, T

6. - D 5, Simp

7. - C 3, 6, MT

8. B 2, 7, DS
9. B --- A 1, T

10. - A 8, 9, MP

11. A 5, Simp

12. A A -A 10, 11, Conj

QED 1, 2, 3, 4, 12, IP.

i. 1. A - (B -- C) P

2. B P

3. A P

4. - C P for IP

5. B --+ C 1, 3, MP

6. C 2, 5, MP

7. CA - C 4, 6, Conj

8. A- C 3, 4, 7, IP
9. B , (A, C) 2, 8, CP

QED 1, 9, CP.

k. 1. A-+ C P

2. A P

3. -(B V C) P for IP

4. BBA -C 3, T

5. C 1, 2, MP

6. - C 4, Simp

7. C A - C 5, 6, Conj

8. A--- BVC 2, 3, 7, IP

QED 1, 8, CP.

ANSWERS TO SELECTED EXERCISES 669

8. a. 1. (A A B) -C P

2. A P

3. B P
4. AAB 2, 3, Conj

5. C 1, 4, MP

6. B -C 3, 5, CP

7. A--<(B---,C) 2, 6, CP

QED 1, 7, CP.

9. a. 1. AvB P

2. A C P

3. B-D P

4. -'(CV D) PforIP

5. C CA -D 4, T

6. -C 5, Simp

7. -A 2, 6, MT

8. B 1, 7, DS

9. D 3, 8, MP

10. - D 5, Simp

11. D A D 9, 10, Conj

QED 1, 2, 3, 4, 11, IP.

10. a. 1. A-- B P

2. -A--*C P

3. A P

4. B 1, 3, MP

5. A A B 3, 4, Conj

6. A- A AB 3, 5, CP

7. - A P

8. C 2, 7, MP

9. A A C 7, 8, Conj
10. - A AA C 7, 9, CP

11. AA A T

12. (AAB)V(-AAC) 6, 10,11, CD
QED 1, 2, 12, CP.

670 ANSWERS TO SELECTED EXERCISES

Section 6.4

1. 1. A -(B -C) Premise
2. (A-- (B-- C)) -- ((A - B) -- (A-- Q) Axiom 2

3. (A -+B) -+(A --- C) 1, 2, MP

4. B Premise

5. B -(A -* B) Axiom 1
6. A- B 4, 5, MP

7. A-* C 3, 6, MP

8. B -- (A -* C) 4, 7, CP
QED 1, 8, CP.

3. a. 1. (A--- B) --- ((C V A)--(C VB)) Axiom 4

2. (A -- B) - ((C - A) -- (C -- B)) 1, Definition of

QED.

c. 1. A--+AVA Axiom2

2. AVA--A Axiomi

3. A --* A 1, 2, HS (i.e., Part (b))

QED.
e. 1. -•AV-- A Part (d)

2. A - - -, A 1, Definition of--

QED.
g. 1. -A- (-•AVB) Axiom.2

2. - A -- (A -+ B) 1, definition of--

QED.
i. 1. - B3- B Part (e)

2. (--B -*B)
-+((- A V - -B) • -A V B)) Axiom 4

3. (-A V -B)-(A V B) 1, 2, MP

4. (-- B V - A)-(- A V - -- B) Axiom 3
5. (-• B V -• A) • •A V B) 3, 4, HS (i.e., Part (b))

6. - B -- 1A) --* (A -+ý B) 5, Definition of--

QED.

5. We give a couple hints to aid the reasoning process. Hint: Let each name,
like A, mean that A won a position. Then transform each statement into a wff
of the propositional calculus. Create a wff to describe the problem, and find
an assignment of truth values to make the wff true. Hint: Make a table of
possibilities with rows A, B, C, and D, and columns E, F, G, and H. Place a
check in an entry if the row name and column name were not elected to the
board.

ANSWERS TO SELECTED EXERCISES 671

Chapter 7

Section 7.1

1. a. [p(O, 0) A p(O, 1)] V [p(l, 0) A p(l, 1)] .

2. a. Vx q(x), where x E {0, 11.
c. V y p(x, y), where y C {0, 1}.
e. 3x p(x), where x is an odd natural number.

3. a. x is a term. Therefore, p(x) is a wff, and it follows that 3x p(x) and Vx
p(x) are wffs. Thus 3x p(x) -- Vx p(x) is a wff.

4. It is illegal to have an atom, p(x) in this case, as an argument to a predicate.

5. a. The three occurrences of x, left to right, are free, bound, and bound. The
four occurrences of y, left to right, are free, bound, bound, and free.
c. The three occurrences of x, left to right, are free, bound, and bound. Both
occurrences of y are free.

6. Vx p(x, y, Z) -* B z q(z).
7. a. Every bird eats every worm.

8. a. There is someone who eats every chocolate bar.
9. a. Vx (- e(x, a) --* By p(y, x)), where a = 0.

10. a. One interpretation has p(a) = true, in which case both Vx p(x) and 3x
p(x) are true. Therefore, W is true. The other interpretation has p(a) = false,
in which case both Vx p(x) and Ix p(x) are false. Therefore, W is true.

11. a. Let the domain be the set {a, b}, and assign p(a) = true and p(b) =

false. Finally, assign the constant c = a.
c and d. Let p(x, y) = false for all elements x and y in any domain. Then the
antecedent is false for both parts (c) and (d). Therefore, both wffs are true for
this interpretation. e. Let D = {a}, f(a) = a, y = a, and let p denote equality.

12. a. Let the domain be {a}, and let p(a) = true and c = a.
c. Let D = N, let p(x) mean "x is odd," and let q(x) mean "x is even." Then
the antecedent is true, but the consequent is false.
e. Let D =N, and let p(x, y) mean "y = x + 1." Then the antecedent Vx By
p(x, y) is true and the consequent By Vx p(x, y) is false for this interpretation.
g. Let D = {a, b}, p(a) = true, p(b) = false, q(a) = false, and q(b) = true.
Then Vx p(x) is false, so the antecedent is true. But p(a) --- q(a) is false, so the
consequent is false.

13. a. If the domain is {a}, then either p(a) = true or p(a) = false. In either
case, W is true.

14. a. Let {a} be the domain of the interpretation. If p(a, a) = false, then W
is true, since the antecedent is false. If p(a, a) = true, the W is true, since the
consequent is true.
c. Let {a, b, c} be the domain. Let p(a, a) = p(b, b) = p(c, c) = true and p(a,
b) = p(a, c) = p(b, c) = false. This assignment makes W false. Therefore, W
is invalid.

672 ANSWERS TO SELECTED EXERCISES

15. Vx p(x, x) --ý
Vx Vy Vz Vw (p(x, y) V p(x, z) V p(X, w) V p(y, z) V p(y, w) V p(z, w)).

16. a. For any domain D and any element d c D, p(d) --* p(d) is true. Therefore,

any interpretation is a model.
c. If the wff is invalid, then there is some interpretation making the wff false.
This says that Vx p(x) is true and 3x p(x) is false. This is a contradiction because
we can't have p(x) true for all x in a domain while at the same time having p(x)
false for some x in the domain.
e. If the wff is not valid, then there is an interpretation with domain D for which
the antecedent is true and the consequent is false. So A(d) and B(d) are false
for some element d c D. Therefore, Vx A(x) and Vx B(x) are false, contrary to
assumption.
g and h. If the antecedent is true for a domain D, then A(d) --* B(d) is true for
all d C D. If A(d) is true for all d E D, then B(d) is also true for all d c D by
MP. Thus the consequent is true for D.

17. a. Suppose the wff is satisfiable. Then there is an interpretation that assigns

c a value in its domain such that p(c) A - p(c) = true. Of course, this is
impossible. Therefore, the wff is unsatisfiable.
c. Suppose the wff is satisfiable. Then there is an interpretation making 3x Vy
(p(x, y) A -, p(x, y)) true. This says that there is an element d in the domain
such that Vy (p(d, y) A -, p(d, y)) is true. This says that p(d, y) A -' p(d, y) is
true for all y in the domain, which is impossible.

19. Assume that A --+ B is valid and A is also valid. Let I be an interpretation
for B with domain D. Extend I to an interpretation J for A by using D to
interpret all predicates, functions, free variables and constants that occur in A
but not in B. So J is an interpretation for A -* B, A, and B. Since we are
assuming that A -* B and A are valid, it follows that A -* B and A are true
with respect to J. Therefore, B is true with respect to J. But J and I are the
same interpretation on B. So B is true with respect to L Therefore, I is a model
for B. Since I was arbitrary, it follows that B is valid. Now we go the other
direction. Assume that if A is valid, then B is valid. Let I be an interpretation
for A -- B. Then I is also an interpretation for A and for B. Since A and B are
valid, it follows that A and B are true with respect to L Therefore, A -+ B is
true with respect to L Therefore, I is a model for A -- B. Since I was arbitrary,
it follows that A -• B is valid.

Section 7.2

1. a. The left side is true for domain D iff A(d) A B(d) is true for all d C D iff

A(d) and B(d) are both true for all d C D iff the right side is true for D.
c. Assume that the left side is true for domain D. Then A(d) -- B(d) is true for
some d c D. If A(d) is true, then B(d) is true by MP. So 3x B(x) is true for D.
If A(d) is false, then V x A(x) is false. So in either case the right side is true for
D. Now assume the right side is true for D. If Vx A(x) is true, then Ix B(x) is

ANSWERS TO SELECTED EXERCISES 673

also true. This means that A(d) is true for all d E D and B(d) is true for some
d E D. Thus A(d) - B(d) is true for some d e D, which says that the left side
is true for D. If Vx A(x) is false, then A(d) is false for some d c D. So A(d) --

B(d) is true. Thus the left side is true for D.
e. Bx By W(x, y) is true for D iff W(d, e) is true for some elements d, e E D
iff]y I x W(x, y) is true for D.
2. The assumption that x is not free in C means that any substitution x/t does
not change C. In other words, C(x/t) = C for all possible terms t. We'll assume
that I is an interpretation with domain D.
a. If I is a model for Vx C, then C(x/d) is true for I for all d in D. Since
C(x/d) = C, it follows that C is true for I. Therefore, I is a model for C. If I is
a model for C, then C is true for L Since C = C(x/d) for all d in D, it follows
that C(x/d) is true for I for all d in D. Therefore, I is a model for V x C.
c. If I is a model for 3x (C V A(x)), then (C V A(x))(x/d) is true for I for
some d in D. But we have (C V A(x))(x/d) = C(x/d) V A(x)(x/d) = C V
A(x)(x/d) because x is not free in C. So C V A(x)(x/d) is true for I. Since C
is not affected by any substitution for x, it follows that either C is true for I or
A(x)(x/d) is true for I. So either I is a model for C or I is a model for 3x A(x).
Therefore, I is a model for C V 3x A(x).

Conversely, if I is a model for C V 3x A(x), then C V Bx A(x) is true for I.
So either C is true for I or 3x A(x) is true for I. Suppose C is true for I. Since
C = C(x/d) for any d in D, it is true for some d in D. So C(x/d) V A(x)(x/d)
is true for I for some d in D. Subtitution gives C(x/d) V A(x)(x/d) = (C V
A(x))(x/d). So (C V A(x))(x/d) is true for I for some d in D. Thus I is a
model for B x (C V A(x)). Suppose that Ix A(x) is true for I, then A(x)(x/d)
is true for I for some d in D. So C(x/d) V A(x)(x/d) is true for I and thus (C
V A(x))(x/d) is true for I. So I is a model for Bx (C V A(x)).

3. a. Vx (C -- A(x)) = Vx (- C V A(x)) - - C V V x A(x) = C - Vx A(x).
c. Ix (A(x) - C) =- 3x (-T A(x) V C) B- I x A(x) V C V x A(x) V C

-- Vx A(x) - C.

4. a. BI V y Vz ((- p(x) V p(y) V q(z)) A (-n q(x) V p(y) V q(z))).
c. Bi Vy]z Vw (- p(x, y) V p(w, z)).
e. Vx Vy]z ((- p(x, y) V p(x, z)) A (- p(x, y) V p(y, z))).

5. a. Bx V y Vz ((- p(x) A - q(x)) V p(y) V q(z)).
c. Ix Vy Bz Vw (-• p(X, y) V p(w, z)).
e. Vx Vy Bz (- p(x, y) V (p(x, z) A p(y, z))).

6. a. Let D be the domain {a, b}. Assume that C is false, W(a) is true,
and W(b) is false. Then (Vx W(x) - C) is true, but Vx (W(x) = C) is false.
Therefore, the statement is false.

7. a. Vx (C(x) -, R(x) A F(x)).
c. Vw (G(x) -- S(x)).
e. 3x (G(x) A - S(x)).

8. a. Vx (B () -* By (W(y) A E(x, y)).

674 ANSWERS TO SELECTED EXERCISES

C. Vx Vy (W(x) A E(y, x) -• B(y)).
e. Vx Vy (B(x) A E(x, y) - W(y)).
g. 3x (- B(z) A 3y (W(y) A E(x, y))).

9. a. Vx (F(x) -- S(x)) A S(John) -* - F(John).

10. a. Vx (P(x) A - B(x) - Vy (C(y) --+ K(x, y))).c. vx (B(x) - -+ KIx, x)).
e. Vx (P(x) -+ 3y (P(y) A N(x, y) A G(y))).
g. Vx Vy (P(x) A A(y) A -, K(x, y) - G- G(x)).

Section 7.3

1. a. Line 2 is wrong because x is free in line 1, which is a premise.So line 1

can't be used with the UG rule to generalize x.
c. Line 2 is wrong because f(y) is not free to replace x. That is, the substitution
of f(y) for x yields a new bound occurrence of y. Therefore, EG can't generalize
to x from f(y).
e. Line 4 is wrong because c already occurs in the proof on line 3.

2. Lines 3 and 4 are errors; they apply UG to a subexpression of a larger wff.

3. a. Let D = N, let P(x) = "x + x = x," and Q(x) = "x + 1 = x." Then
P(O) is true, and P(1) -- Q(1) is also true. Therefore, the antecedent of the
wff is true. But Q(x) is false for all x in N. Therefore, the consequent is false.
Therefore, the interpretation is a countermodel, and the wff is invalid.

5. This reasoning is wrong because it assumes that CP is an inference rule. But
CP is a proof rule, not an inference rule. So UG can be applied to line 3.

6. a. 1. Vx p(x) P

2. p(x) 1, UI

3. 3x p(x) 2, EG

QED 1, 3, CP.

c. 1. 3x (p(x) A q(x)) P

2. p(c) A q(c) 1, El

3. p(c) 2, Simp

4. 3x p(x) 3, EG

5. q(c) 2, Simp

6. 3x q(x) 5, EG

7. 3x p(x) A 3x q(x) 4, 6, Conj

QED 1, 7, CP.

ANSWERS TO SELECTED EXERCISES 675

e. 1. Vx (p(x) -- q(x)) P
2. Vx p(X) P

3. p(x) 2, UI
4. p(x) - q(x) 1, UI

5. q(x) 3, 4, MP
6. 3x q(x) 5, EG

7. Vx p(x) -ý Ix q(x) 2, 6, CP

QED 1, 7, CP.

g. 1. 3y Vx p(x, y) P

2. Vx p(x, c) 1, El

3. p(x, c) 2, UI
4. ly p(x, y) 3, EG
5. Vx ly p(x, y) 4, UG

QED 1, 5, CP.

7. a. 1. Vx p(x) P
2. - Ix p(x) P for IP

3. Vx - p(x) 2, T

4. p(x) 1, UI
5. - p(x) 3, UI

6. p(x) A -, p(x) 4, 5, Conj
7. false 6, T

QED 1, 2, 7, IP.

c. 1. 3y Vx p(x, y) P

2. - Vx 3y p(x, y) P for IP

3. 3x Vy - p(x, y) 2, T

4. Vx p(x, c) 1, EI

5. Vy -, p(d, y) 3, El
6. p(d, c) 4, UI

7. - p(d, c) 5, UI
8. p(d, c) A - p(d, c) 6, 7, Conj

QED 1, 2, 8, IP.

676 ANSWERS TO SELECTED EXERCISES

e. 1. Vx p(x) V Vx q(x) P

2. - Vx (p(x) V q(x)) P for IP

3.]x (- p(x) A - q(x)) 2, T
4. - p(c) A ý q(c) 3, ElI

5. - p(c) 4, Simp

6. - Vx p(x) 5, UI (contrapositive)

7. - q(c) 4, Simp

8. - Vx q(x) 7, U1 (contrapositive)

9. - Vx p(x) A ý Vx q(x) 6, 7, Conj

10. - (Vx p(x) V Vx q(x)) 9, T

11. false 1, 10, Conj, T

QED 1, 2, 11, IP.

8. a. Let D(x) mean that x is a dog, L(x) mean that x likes people, H(x) mean
that x hates cats, and a = Rover. Then the argument can be formalized as

Vx (D(x) -- L(x) V H(x)) A D(a) A - H(a) -- Ix (D(x) A L(x)).

Proof: 1. Vx (D(x) , L(x) V H(x)) P

2. D(a) P

3. - H(a) P

4. D(a) -- L(a) V H(a) 1, UI

5. L(a) V H(a) 2, 4, MP

6. L(a) 3, 5, DS

7. D(a) A L(a) 2, 6, Conj

8. Ix (D(x) A L(x)) 7, EG

QED 1, 2, 3, 8, CP.

c. Let H(x) mean that x is a human being, Q(x) mean that x is a quadruped,

and M(x) mean that x is a man. Then the argument can be formalized as

Vx (H(x) - - Q(x)) A Vx (M(x) --4 H(x)) -* Vx (M(x) Q - Q(x)).

Proof: 1. Vx (H(x) - Q (x)) P

2. Vx (M(x) H (x)) P
3. H (x) --+ Q (x) 1, U1

4. M(x) - H(x) 2, UI
5. M (x) - Q Q(x) 3, 4, HS

6. Vx (M(x) - Q(x)) 5, UG

QED 1, 2, 6, CP.

ANSWERS TO SELECTED EXERCISES 677

e. Let F(x) mean that x is a freshman, S(x) mean that x is a sophomore, J(x)
mean that x is a junior, and L(x, y) mean that x likes y. Then the argument
can be formalized as A -- B, where

A = Ix (F (x) A Vy (S (y) -* L (x, y))) A Vx (F (x) -- Vy (J (y) -• . L (x, y)))

B =Vx(S(x) -- J(x)).

Proof: 1. Ix (F(x) A Vy (S(y) -- L(x, y))) P

2. Vx (F(x) - Vy (J(y) -- L(x, y))) P

3. F(c) A Vy (S(y) - L(c, y)) 1, El

4. Vy (S(y) -- L(c, y)) 3, Simp

5. S(x) -* L(c, x) 4, UI

6. S(x) P
7. L(c, x) 5, 6, MP

8. F(c) -- Vy (J(y) -- L(c, y)) 2, UI
9. F(c) 3, Simp

10. Vy (J(y) -- L(c, y)) 8, 9, MP

11. J(x) -* ý L(c, x) 10, UI

12. - J (x) 7, 11, MT
13. S(x) , - J(x) 6, 12, CP

14. Vx (S(x) -- J(x)) 13, UG

QED 1, 2, 14, CP.

9. First prove that the left side implies the right side, then the converse.

a. 1. 3x]y W(x, y) P

2. 1y W(c, y) 1, El
3. W(c, d) 2, El
4. Ix W(x, d) 3, EG
5. ly Ix W(x, y) 4, EG

QED 1, 5, CP.

1.]y Ix W(x, y) P

2. 3x W(x, d) 1, El
3. W(c, d) 2, El
4. ly W(c, y) 3, EG

5. Ix ly W(x, y) 4, EG
QED 1, 5, CP.

678 ANSWERS TO SELECTED EXERCISES

c. 1. 3x (A(x) V B(x)) P
2. - (]x A(x) V]x B(x)) P for IP

3. Vx- -A(X)AVx- B(x) 2, T

4. Vx - A(x) 3, Simp

5. A(c) V B(c) 1, El

6. -• A(c) 4, UI

7. B(c) 5, 6, DS

8. Vx -, B(x) 3, Simp

9. - B(c) 8, U1

10. B(c) A - B(c) 7, 9, Conj

QED 1, 2, 10, IP.

1. lxA(x) V ýxB(x) P
2. - 3x (A(x) V B(x)) P for IP
3. Vx (•A(x) A -1 B(x)) 2, T

4. V x A(x) A Vx - B(x) 3, T Part (b)

5. Vx - A(x) 4, Simp

6. - 3x A(x) 5, T

7. 3x B(x) 1, 6, DS

8. Vx - B(x) 4, Simp
9. -• 3x B(x) 5, T

10. 3x B(x) A -•]x B(x) 7, 9, Conj

QED 1, 2, 10, IP.

10. 1. Vx (3y (q(x, y) A s(y)) -- 3y (p(y) A r(x, y))) P

2. - (-Ax p(x) --* Vx Vy (q(x, y) -- s(y))) P for IP
3. - 3x p(x) A - V x Vy (q(x, y) 8- (y)) 2, T
4. - 3x p(x) 3, Simp

5. - Vx Vy (q(x, y) -- s(y)) 3, Simp

6. 3x ly (q(x, y) A s(y)) 5, T

7. 3y (q(c, y) A s(y)) 6, El

8. 3y (q(c, y) A s(y)) -- Ay (p(y) A r(c, y)) 1, UI

9. :y (p(y) A r(c, y)) 7, 8, MP

10. p(d) A r(c, d) 9, El

11. p(d) 10, Simp
12. Ix p(x) 11, EG

13. false 4, 12, Conj, T

QED 1, 2, 13, IP.

ANSWERS TO SELECTED EXERCISES 679

12. a. 1. 3 x A(x) P
2. A(x) 1, El (wrong to use a variable)

3. Vx A(x) 2, UG.

c. 1. Vx (A(x) V B(x)) P

2. -ý (Vx A(x) V Vx B(x)) P for IP
3. 3x -i A(x) A 3x - B(x) 2, T

4. Ix - A(x) 3, Simp

5. Ix - B(x) 4, Simp

6. - A(c) 4, El
7. - B(c) 5, El (wrong to use an existing constant)

8. A(c) V B(c) 1, UI
9. B(c) 6, 8, DS

10. false 7, 9, Conj, T.

e. 1. Vx 3y W(x, y) P
2. 3 y W(x, y) 1, UI

3. W(x, c) 2, EI

4. Vx W(x, c) 3, UG (wrong because x is subscripted)
5.]y Vx W(x, y) 4, EG (may be wrong if W(x, c) contains bound y).

13. a. Similar to proof of Exercise 9b.
c. Use IP in both directions.
e. Similar to part (c). g. Similar to part (c).

14. a. Let - B and A --* B be valid wffs. Consider an arbitrary interpretation
of these two wffs with domain D. Then - B and A --* B are true for D. Thus we
can apply MT to conclude that - A is true for D. Since the interpretation was
arbitrary, it follows that - A is valid.

15. a. The variable x is not free within the scope of a quantifier in W(x).

680 ANSWERS TO SELECTED EXERCISES

17. Proof: 1. Vx -i p(x, x) P

2. Vx Vy Vz (p(x, y) A p(y, z) -- p(x, z)) P

3. - Vx V y (p(x, y) --- p(y, x)) P for IP

4. 3x 3y (p(x, y) A p(y, x)) 3, T

5. 3y (p(a, y) A p(y, a)) 4, El
6. p(a, b) A p(b, a)) 5, El

7. Vy Vz (p(a, y) A p(y, z) -- p(a, z)) 2, UI

8. Vz (p(a, b) A p(b, z) -• p(a, z)) 7, U1

9. p(a, b) A p(b, a) -- p(a, a)) 8, UI

10. p(a, a) 6, 9, MP

11. - p(a, a) 1, UI

12. p(a, a) A -, p (a, a) 10, 11, Conj
13. false 12, T

QED 1, 2, 3, 12, IP.

Chapter 8

Section 8.1

1. 1. s=v P

2. t-w P

3. p(s, t) P

4. p(v, t) 1, 3, EE

5. p(v, w) 2, 4, EE

QED 1, 2, 3, 5, CP.

3. 1. c= ai P

2. i<b P

3. - (i < b) P

4. (i < b) V (i = b) 2, T

5. i =b 3, 4, DS

6. c = ab 1, 5, EE

QED 1, 2, 3, 6, CP.

4. a. 1. t=u P
2. - p(... t ...) P

3. p(... u ...) P for IP

4. u = t 1, Symmetric

5. p(... t...) 3,4, EE

6. false 2, 5, Conj, T

QED 1, 2, 3, 6, IP.

ANSWERS TO SELECTED EXERCISES 681

C. 1. t=u P
2. p(... t ...) V q(... t ...) P

3. -i(p(... u...) V q(... u...)) P for IP

4. -Pp(... u...)A-iq(... u...) 3, T

5. -p(... u ...) 4, Simp

6. -'q(... u...) 4, Simp

7. u = t 1, Symmetric

8. -q p(... t ...) 5, 7, EE from part (a)
9. -• q(... t ...) 6, 7, EE from part (a)

10. - p(... t ...) A - q(... t ...) 8, 9, Conj
11. -• (A(... t ...) v q(... t ...) 10, T

12. false 2, 11, Conj, T

QED 1, 2, 3, 12, IP.

e. 1. x=y P

2. Vz p(... x ...) P

3. p(... x...) 2, UI
4. p(... y...) 1,3, EE

5. Vzp(... y...) 4, UG
QED 1, 2, 5, CP.

5. 1. -Vx 3y (x = y) PforIP

2. 3xVy (x#y) 1, T

3. Vy (c # y) 2, EI

4. c # c 3, UI

5. c = c EA

6. false 4, 5, Conj, T

QED 1, 6, IP.

6. a. Proof of p(x) -E ly ((x = y) A p(y)):

1. p(x) P

2. - 3 y ((x =y) A p(y)) P for IP

3. Vy ((x 7 y) V - p(y)) 2, T

4. (x • x) V - p(x) 3, UI

5. x #x 1,4, DS

6. x = x EA

7. false 5, 6, Conj, T

QED 1, 2, 7, IP.

682 ANSWERS TO SELECTED EXERCISES

Proof of 3y ((x = y) A p(y)) , p(x):

1. 3y ((x = y) Ap(y)) P

2. (x = c) A p(c) 1, EI

3. p(x) 2, EE
QED 1, 3, CP.

7. a. odd(x) = 3z (x = 2z + 1).
c. div(a, b) = (a 5 0) A 3x (b = ax).
e. div(d, a) A div(d, b) A Vz (div(z, a) A div(z, b) -- (z < d)).

8. a. Possible answers include either of the following two equivalent wffs.

Vx Vy (A(x) A A(y) - (x = y)),
- 3x A(x) V 3x (A(x) A Vy (A(y) -+ (x y))).

c. One possible answer is Vx Vy Vz (A(x) A A(y) A A(z) - (x = y) V (x = z) V
(y = z)). Another answer has the form: None V Exactly One V Exactly Two.

9. a. Proof that (a) implies (b).

1. •z (A(x) A Vy (A(y) -* (x = y))) P

2. Vx - A(x) V 3x 3y (A(x) A A(y) A (x y)) P for IP

3. A(c) A Vy (A(y) - (c = y)) 1, El

4. A(c) 3, Simp

5. Ix A(x) 5, EG
6. - Vx -• A(x) 5, T

7. Ix 3 y (A(x) A A(y) A (x # y)) 2, 6, DS

8. A(a) A A(b) A (a # b) 7, EI, EI

9. Vy (A(y) -* (c = y)) 3, Simp

10. A(a) - (c =a) 9, UI

11. A(a) 8, Simp

12. c = a 10, 11, MP

13. A(b) -*•(c = b) 9, UI

14. A(b) 8, Simp

15. c = b 13, 14, MP

16. a = b 12, Symmetry, 15, Transitive

17. a z b 8, Simp

18. false 16, 17, Conj, T

QED 1, 2, 18, IP.

ANSWERS TO SELECTED EXERCISES 683

Section 8.2

1. 1. {odd(x + 1)} y := x + 1 {odd(y)} AA
2. true A even(x) P
3. even(x) 2, Simp

4. odd(x + 1) 3, T

5. true A even(x) -* odd(x + 1) 2, 4, CP
6. {true A even(x)} y := x + 1 {odd(y)} 1, 5, Consequence

QED.

2. a. 1. {x + b > O} y :=b {x + y > 0} AA
2. {a + b > 0} x :=a {x + b > AA

3. (a>0) A (b>0)--* (a+ b>0) T

4. {(a>0) A (b>0)}x:= a {x + b>0} 2, 3, Consequence

QED 1, 4, Composition.

3. Use the composition rule (8.12) applied to a sequence of three statements.
a. 1. {temp < x} y:= temp {y < x } AA

2. {temp < y} x :=y {temp < x} AA

3. {x < y} temp :=x {temp < y} AA
QED 3, 2, 1, Composition.

4. a. First, prove the correctness of the wff {(x < 10) A (x > 5)} x
4 {fx < 5}:

1. {4 < 5} x :=4{Ix <5} AA
2. (x < 10) A (x > 5)- (4 < 5) T
3. {(x < 10) A (x > 5)} x := 4 {I < 5} 1, 2, Consequence

QED.

Second, prove that (x < 10) A - (x > 5) - (x < 5). This is a valid wff because
of the equivalence - (x > 5) - x < 5. Thus the original wff is correct, by the
if-then rule.
c. First, prove {true A (x < y)} x y {x > y}:

1. {y > y} x := y {x y} AA
2. trueA(X< y)-(y> y) T
3. {true A (x < y)} x := y {x > y} 1, 2, Consequence

QED.

Second, prove that true A - (x < y) -* (x > y). This is a valid wff because of
the equivalence true A - (z < y) (x < y) -- (x > y). Thus the original wff
is correct, by the if-then rule.

5. a. Use the if-then-else rule. Thus we must prove the two statements

{true A (x < y)} max :=y {(max > x) A (max > y)}
{true A (x > y)} max := x {(max > x) A (max > y)}.

684 ANSWERS TO SELECTED EXERCISES

For example, the first statement can be proved as follows:

1. {(y > x) A (y > y)} max := y

{(max > x) A (max > y)} AA

2. true A (x < y) P

3. x < y 2, Simp

4. x < y 3, Add

5. y>y T

6. (y > x) A (y > y) 4, 5, Conj

7. true A (x < y) - (y > x) A (y > y) 2, 6, CP

8. {true A (x < y)} max := y

{(max > x) A (max > y)} 1, 7, Consequence

QED.

6. a. The wff is incorrect if x = 1.
7. Since the wff fits the form of the while rule, we need to prove the following

statement:

{(x > y) A even(x - y) A (x - y)}x := x - 1;y := y + I{(x > y) A even(x - y)}.

Proof:
1. {(x > y + 1) A even (x - y --)}

y := y + 1 {(x > y) A even (x- y)} AA

2. {(x- > y+1) Aeven(x- 1 -y- 1)}

X := x- I{(x > y + 1) Aeven(x- y- 1)} AA

3. (x > y) A even(x - y) A (x # y) P

4. x>_y+2 3, T

5. x-1_>y + 4, T

6. even(x -1-- y -1) 3, T

7. (x--l>y+l)Aeven(x-1-y-1) 5, 6, Conj

8. (x > y) A even(x - y) A (x # y)
-- (x-1 >y+1) Aeven(x--1-y-1) 3, 7, CP

QED 1, 2, 8,

Consequence,

Composition.
Now the result follows from the while rule.

8. a. The postcondition i = floor(x) is equivalent to (i < x) A (x < i + 1). This

statement has the form Q A - C, where C is the condition of the while loop and
Q is the suggested loop invariant. To show that the while loop is correct with
respect to Q, show that { Q A C} i := i + 1 { Q} is correct. Once this is done,

show that {x > 0} i := 0 {Q} is correct.

ANSWERS TO SELECTED EXERCISES 685

c. The given wff fits the form of the if-then-else rule. Therefore, we need to
prove the following two wffs:

{true A (x > 0)} S {i = floor(x)} and {true A (x < 0)} S 2 {i = floor(x)}.

These two wffs are equivalent to the two wffs of parts (a) and (b). Therefore,
the given wff is correct.

9. Let Q be the suggested loop invariant. Then the postcondition is equivalent
to Q A - C, where C is the while loop condition. Therefore, the program can
be proven correct by proving the validity of the following two wffs:

{Q A C} i := i + 1; s := s + i {Q} and In > O} i := 0; s:= 0; {Q}.

11. Letting Q denote the loop invariant, the while loop can be proved correct
with respect to Q by proving the following wff:

{Q A (x • y)} if x > y then x := x - y else y : y -x {Q}.

The parts of the program before and after the while loop can be proved correct
by proving the following two wffs:

{(a > 0) A (b > 0)} x := a; y := b {Q},
{Q A -• (x 5 y)} great x {gcd(a, b) = great}.

13. a. {(ifj i - 1 then 24 elseal]) = 24
c. We obtain the precondition

{((if i = j - 1 then 12 else (if i =i + 1 then 25 else a[i])) = 12)

A ((ifj = j - 1 then 12 else (if j = i + 1 then 25 else a[j])) = 25)}.

Since it is impossible to have i = i + 1 and j j - 1, the precondition can be
simplified to

{((if i = j - 1 then 12 else a[i]) = 12) A ((ifj = i + 1 then 25 else a[j]) = 25)}.

14. a. 1. {(ifj = i- Ithen 24 else a~]) = 24}

a[i - 1] := 24 {a~j] = 24} AAA
2. (i=j + 1) A (a] =39) P
3. i=j + 1 2, Simp

4. 24 =24 T

5. (i = j + 1) -- (24 = 24) T (true conclusion)

6. (i 4 j + 1) -- (a[j] = 24) 3, T (false premise)

7. (ifj = i -1 then 24 else a[j]) = 24 5, 6, Conj, T

8. (i=j + 1) A (aD"] =39) -
((ifj = i - then 24 else a[j]) = 24) 2, 7, CP

QED 1, 8, Consequence.

686 ANSWERS TO SELECTED EXERCISES

c. 1. {((ifi =j - 1 then 12 else a[i]) = 12) A

((if]j j - 1 then 12 else all]) = 25)}

a[- 1] 12

{(a[i] = 12) A (a.j1 = 25)} AAA

2. {((if i = j - 1 then 12 else a[i]) = 12) A (aýl] = 25)}

a(" - 1] := 12

{(a[i] = 12) A (a[j] = 25)} 1, T

3. {((if i = j - I then 12 else

(if i = i + 1 then 25 else a[i])) = 12)

A ((ifj = i + 1 then 25 else aU']) = 25)}

a[i + 1] := 25

{((if i = j - 1 then 12 else a[i]) = 12) A (af]]) = 25)} AAA
4. {((if i = j - 1 then 12 else a[i]) = 12)

A ((if j = i + 1 then 25 else aDl]) = 25)}

a[i + 1] := 25

{((if i = j - 1 then 12 else a[i]) = 12) A (aDl]) = 25)} 3, T

5. (i = j - 1) A (a[i] = 25) A (a[j] = 12) P

6. i =j- 1 2, Simp

7. ((if i = j - 1 then 12 else a[i]) = 12)

A ((ifj = i + 1 then 25 else aDl]) = 25) 6, T

8. (i = j - 1) A (a[i] = 25) A (al] =12)

--* ((if i =j - 1 then 12 else a[i]) = 12)

A ((ifj =i + 1 then 25 else aj]) = 25) 5, 7, CP

QED 2, 4,

Consequence,

Composition.

15. a. After applying AAA to the postcondition and assignment, we obtain the
condition even(a[i] + 1). It is clear that the precondition even(a[i]) does not
imply even(a[i] + 1). c. After applying AAA twice to the postcondition and
two assignments, we obtain the condition

Vj ((1 < j _< 5) -- (ifj = 3 then 355 else a[.j]) = 23).

This wff is the conjunction of five propositions, one for each j, where 1 < j < 5.
For j = 3 we obtain the proposition

((1 < 3 < 5) -* (if 3 = 3 then 355 else a[3]) = 23),

which is equivalent to the false statement (1 < 3 < 5) --* (355 = 23). Therefore,
the given precondition cannot imply the obtained condition.

ANSWERS TO SELECTED EXERCISES 687

16. a. Define f(i, x) = x - i. If s = (i, x), then after the execution of the
loop body the state will be t = (i + 1, x). Thus f(s) = x - i and f(t) =
x - i - 1. To prove termination, assume P and C are true and prove that f(s),
f(t) e N and f (s) > f(t). So assume int(i) A (int(x)) A i < x and i < x. It
follows that i and x are integers and i < x. So x - i is a positive integer and
x - i - 1 is a nonnegative integer. In other words, both x - i and x - i - 1 are
natural numbers, which tells us that f(s), f(t) G N. Since subtraction by 1 yields

a smaller number we have x - i > x - i - 1, so that f(s) > f(t). Therefore, the
loop terminates.
c. Define f(x) - x 1. If s = x, then after the execution of the loop body the
state will be t = x/2. So f(s) = I x I and f(t) = I x/2 I . To prove termination,
assume P and C are true and prove that f(s), f(t) E N and f(s) > f(t). So
assume int(x) and even(x) A x 4 0. It follows that x is a nonzero even integer.
Since x is even, it is divisible by 2. So x/2 is still an integer. Thus I x I and
I x/2 I are both natural numbers, so we have f(s), fx is nonzero it follows that

I x I > I x/2 I , so that f(s) > f(t). Therefore, the loop terminates.

17. a. We are given that f(x, y) = x + y and W = N. To prove termination,
assume P and C are true and prove that f(s), f(t) E N and f(s) > f(t). So
assume pos(x) A pos(y) and x 7 y. If s = (x, y), then the state after the
execution of the loop body will depend on whether x < y. If x < y, then t =
(x, y - x), which gives f(t) = x. Otherwise, if x > y, then t = (x - y, y), which
gives f(t) = y. Since x and y are positive integers, it follows that both x + y
and x are natural numbers and x + y > x and x + y > y. So in either case (i.e.,
x < y or x > y) we have f(s), f(t) E N and f(s) > f(t). Therefore, the loop
terminates.
c. We are given that f (x, y) = (x, y) and W = N x N with the lexicographic
ordering. To prove termination, assume P and C are true and prove that f(s),
f(t) E N and f(s) > f(t). So assume pos(x) A pos(y) and x 3 y. If s = (x, y),
then the state t after the execution of the loop body has two possible values. If
x < y, then t = (x, y - x), so it follows that f(s), f(t) E W and we also have

f(s) = f(x, y) = (x, y) >- (x, y - x) = f(x, y - x) = f(t).

If x > y, then t = (x - y, y), so it follows that f(s), f(t) - W and we also have

f(s) =f(x, y) = (x, y) >- (x -y, y) = f(x- y, y) = f(t).

Therefore, the loop terminates.

18. a. The definition f(x, y) = x- y I cannot be used because there are state
values s and t such that f(s) < f(t), which is contrary to the need in (8.19)
for f(s) > f(t). For example, if s = (x, y) = (10, 13), then f(s) = 3. But after
the body of the loop executes, we have t = (x, y - x) = (10, 3), which gives
f(t) = 7.

19. Let P be the loop invariant, P = 3x (a = xb + r) A (0 < r). The
postcondition r = a mod b means that r is the remainder obtained on divsion

688 ANSWERS TO SELECTED EXERCISES

of a by b, where 0 < r < b. This is exactly the condition P A (r > b) which is
needed for the end of the while loop. So the proof of partial correctness follows

by composition from the correctness of the following two statements.

1. {(a > 0) A (b > 0)} r a {P}.

2. {P} while r > b do r r - b od {P A (r > b)}.

Proof of Statement 1.
1. { 3x (a=xb+ a) A (0< a)} r:= a{P} AA

2. (a_>0) A (b >0) P

3. a=(0)b+a T
4. 3x (a =xb + a) 3, EG

5. a > 0 2, Simp

6. 1x (a =xb + a) A (0 < a) 4, 5, Conj

7. (a > O) A (b > O)-- 3x (a = xb + a) A (O < a) 2,6, CP

8. {(a > 0) A (b > 0)} r := a {P} 1, 7, Consequence

QED.

Proof of Statement 2.
1. {]x (a=xb+ r- b) A (0 < r- b)} r :=rb{P} AA

2. 3x (a=xb + r) A (0 < a) A (r > b) P

3. 3x (a = xb + r) 2, Simp

4. a= qb + r 3, El

5. a = (q + 1)b + r- b 4, T

6.]x (a = xb + r- b) 5, EG

7. r > b 2, Simp

8. 0<_r-b 7, T

9. Ix (a = xb + r- b) A (0 < r- b) 6, 8, Conj

10. 3x (a=xb + r) A (0 < a) A (r > b)

--* 3x (a = xb + r- b) A (0 < r-b) 2, 9, CP

11. {P A r > b} r := r -b {P } 1,10,

Consequence

12. {P} while r > b do r := r - bod {P A (r > b)} 11, While-rule

QED.

Proof of Termination.

Let W = N with the usual ordering and let f(a, b, r) = r. If s = (a, b, r),
then the state t after the execution of the loop body is t = (a, b, r b). To
prove termination, assume P and C are true and prove that f(s), f(t) E N and
f(s) > f(t). So assume]x (a = xb + r) A (0 <_ r) and (r > b). It follows that
r > 0 and also r - b > 0, so we have f(s), f(t) E N. Since b > 0, it follows that
f(s) > f(t). Therefore, the loop terminates.

ANSWERS TO SELECTED EXERCISES 689

Section 8.3

1. a. Second. c. Fifth. e. Third. g. Third. i. Fourth.

2. a. 3A 3 B Vx - (A(x) A B(x)).

3. a. Let S be state and C be city. Then VS 3C (S(C) A (C = Springfield)).
The wff is second order.
c. Let H, R, S, B, and A mean house, room, shelf, book, and author. Then I H
3R IS 3B (H(R) A R(S) A S(B) A A(B, Thoreau)). The wff is fourth order.
e. The statement can be expressed as follows:
3S]A]B (Vx (A(x) V B(x) -- S(x)) A Vx (S(x) --ý A(x) V B(x)) A
Vx - (A(x) A B(x))). The wff is second order.

5. VR (B(R) --+ (Vx -, R(x, x) A V x Vy Vz (R(x, y) A R(y, z) -- R(x, z))
-* Vx Vy (R(x, y) --+ R(y, x)))).

7. Think of S(x) as x E S. a. For any domain D the antecedent is false because
S can be the empty set. Thus the wff is true for all domains.
c. For any domain D the consequent is true because S can be chosen as D. Thus
the wff is true for all domains.

8. Informal proof: Let I be an interpretation with domain D. Then wff has the
following meaning with respect to . For every subset P of D there is a subset Q
of D such that x E Q implies x E P. This statement is true because we can choose
Q to be P. So I is a model for the wff. Since I was an arbitrary interpretation,
it follows that the wff is valid. QED.

In the formal proof, we'll represent instantiations of the variables P and Q
with lower-case p and q.

Formal proof:
1. -, VP 3 Q Vx (Q(x) - P(x)) P for IP

2. BP VQ Ix (Q(x) A -ý P(x)) 1, T
3. VQ 3x (Q(x) A - p(x)) 2, El
4. Bx (p(x) A - p(x)) 3, UI

5. p(c) A - p(c) 4, El

6. false 5, T
QED 1, 6, IP.

9. a. Assume that the statement is false. Then there is some line L containing
every point. Now Axiom 4 says that there are three distinct points not on the
same line. This is a contradiction. Thus the statement is true.
c. Let w be a point. By Axiom 4 there is another point x such that x = w. By
Axiom 1 there is a line L on x and w. By part (a) there is a point z not on L.
By Axiom 1 there is a line M on w and z. Since z is on M and z is not on L, it
follows that L $ M.

10. Here are some sample formalizations.
a. VL Bx - L(x).

690 ANSWERS TO SELECTED EXERCISES

Proof: 1. - VL E x -• L(x) P for IP

2. 3LVx L(x) 1, T

3. Vx 1(x) 2, El

4. Axiom 3

5. 1(a) A 1(b) 1 - 1(c) 4, El, El, El, Simp, UI

6. 1(a) A 1(b) 3, UI, Ul, Conj

7. - 1(c) 5, 6, MP

8. 1(c) 3, U1

9. false 7, 8, Conj, T

QED 1, 9, IP.

c. Vx IL 3M (L (x) A M (x) A 9y (-•L (y) A M (y))).

Proof:
1. - (Vx IL3M (L (x) A M(x) A Ey(-•L(y) AM (y)))) P for Ie

2. 3x VL Vi (-(Li(x) A M (x)) V Vy (L(y) V-•i (y))) 1, T

3. VL VM (-' (L (a) A M (a)) V Vy (L (y) V -'M (y))) 2, El, UI, UI

4. (b 5 c) A (b • d) A (c 7 d)

A VL (L (b) A L (c) -, -•L (d)) Axiom 4, El, El, El

5. a = b P for IP

6. b: c 4, Simp

7. a5c 5, 6, EE

8. (a : c) -* IL (L (a) A L (c)) Axiom 1, UI, UI

9. 3L (L (a) A L (c)) 7, 8, MP

10. l (a) A l (c) 9, El

11. b • d 4, Simp

12. a 7 d 5, 11, EE

13. (a 5 d)- 3L (L (a) A L (d)) Axiom 1, UI, UI

14. 3L (L (a) A L (d)) 12, 13, MP

15. m (a) A m (d) 14, El
16. - (1 (a) A m (a)) V Vy (1 (y) V --m (y)) 3, UI, UI

17. 1 (a) A m (a) 10, 15, Simp, Conj

18. Vy (1 (y) V -'m (y)) 16, 17, DS

19. l (d) V -m (d) 18, UI

20. 1(d) 15, Simp, 19, DS

21. VL (L (b) A L (c) - -L (d)) 4, Simp

22. 1 (b) A l(c) -+ l (d) 21, UI

23. l(b) A l(c) 5, 10, EE

24. -l (d) 22, 23, MP

25. false 20, 24, Conj, T

ANSWERS TO SELECTED EXERCISES 691

26. a 4 b 5, 25, IP

27. ahc T (like a = b)

28. a7 4d T (like a 54 b)

29. (a 5 b) -B 3L (L(a) A L(b)) Axiom 1, UI, UI

30. L (L (a) A L (b)) 26, 29, MP

31. 1 (a) A 1 (b) 30, El

32. (a 4 c) -- EL (L (a) A L (c)) Axiom 1, UI, UI

33. 1L (L (a) A L (c)) 27, 32, MP

34. me(a) A me(c) 33, El

35. (a ? d) ---> L (L(a) A L(d)) Axiom 1, UI, UI

36. 3L (L (a) A L (d)) 28, 35, MP

37. n(a) An(d) 36, El

38. l (a) A m (a) 31, Simp, 34, Simp, Conj

39. - (I(a) Am(a)) VVy(l(y) V- m(y)) 3, UI, UI

40. Vy (1(y) V - m (y)) 38, 39, DS

41. l(c) V - rm(c) 40, UI

42. 1(c) 34, Simp, 41, DS

43. 1 (a) A n (a) 31, Simp, 37, Simp, Conj
44. - (1l(a) A n (a)) V Vy (1(y) v - n (y)) 3, U1, U1

45. Vy (1 (y) V - n (y)) 43, 44, DS
46. 1l(d) V - n (d) 45, UI

47. 1(d) 37, Simp, 46, DS

48. 1 (b) A 1 (c) 31, Simp, 42, Conj

49. VL (L (b) A L (c) -*-L (d)) 4, Simp

50. 1 (b) A 1 (c) - 1 -(d) 49, UI

51. - l(d) 48, 50, MP

52. false 47, 51, Conj, T

QED 1, 32, IP.

692 ANSWERS TO SELECTED EXERCISES

Chapter 9

Section 9.1

1. a. (A V C V D) A (B V C V D).
c. Vx (- p(x, c) V q(x)).
e. Vx Vy (p(x, y) V q(x, y, f(x, y))).

2. p V p and p V p V q V q.

3. a. 1. AVB P

2. -•A P

3. -BBVC P

4. -C P

5. B 1, 2, R

6. - B 3,4, R

7. ED 5, 6, R.

c. 1. AVB P

2. AV C P

3. AVC P

4. VAV B P

5. CV-B P

6. - CVB P

7. B V C 1, 3, R

8. B V B 6,7, R

9. - A 4,8, R
10. -• C 2, 9, R

11. - B 5, 10, R

12. A 1, 11, R

13. El 9, 12, R.

4. a. {y/x}. c. {y/a}. e. {x/f(a), y/f(b), z/b}.

5. a. {x/f(a, b), v/f(y, a), z/y} or {x/f(a, b), v/f(z, a), y/z}.
c. {x/g(a), z/g(b), y/b}.

6. a. {x/f (a, b), v/f (z, a), y/z}. c. {x/g(a), z/g(b), y/b}.

7. Make sure the clauses to be resolved have distinct sets of variables. The
answers are p(x) V - p(f(a)) and p(x) V - p(f(a)) V q(x) V q(f(a)).

8. a. 1. p(x) P

2. q(y, a) V - p(a) P

3. q•q(a, a) P

4. p(a) 2, 3, R, {y/a}

5. El 1, 4, R, {x/a}.

QED

ANSWERS TO SELECTED EXERCISES 693

c. 1. p(a) V p(x) P

2. - p(a) V - p(y) P

3. E 1, 2, R, {x/a, y/a}.

QED
e. Number the clauses 1, 2, and 3. Resolve 2 with 3 by unifying all four of the p
atoms to obtain the clause - q(a) V - q(a). Resolve this clause with 1 to obtain
the empty clause.
9. a. After negating the statement and putting the result in clausal form, we
obtain the following proof:

1. AVB P

2. -A P

3. -. B P

4. B 1, 2, R

5. E 3, 4, R. QED
c. After negating the statement and putting the result in clausal form, we obtain
the following proof:

1. pVq P

2. -qqVr P

3. -rV s P

4. -p P

5. -s P

6. -r 3,5, R

7. -q 2, 6, R

8. q 1, 4, R

9. EZ 7, 8, R. QED

10. a. After negating the statement and putting the result in clausal form, we
obtain the following proof:

1. p(x) P

2. - p(y) P

3. El 1, 2, R, {x/y}. QED
c. After negating the statement and putting the result in clausal form, we obtain

the following proof:

1. p(x, a) P

2. - p(b, y) P

3. El 1, 2, R, {x/b, y/a}. QED

694 ANSWERS TO SELECTED EXERCISES

e. After negating the statement and putting the result in clausal form, we obtain
the following proof:

1. p(x) V q(y) P

2. - p(a) P

3. q•q(a) P

4. q(y) 1, 2, R, {x/a}

5. El 3, 4, R, {y/a}. QED

11. a. We need to show that x(Oa) = (xO)u for each variable x in E. First,
suppose x/t E 0 for some term t. If x = ta, then x(Oo) = x because the binding
x/to has been removed from 0O. But since x/t C 0, it follows that xO = t. Now
apply a to both sides to obtain (xO)a = ta = x. Therefore, x(Ou) = x = (xO)a.
If x 6 ta, then x(Oa) = to, = (xO)or. Second, suppose that x/t E a and x does
not occur as a numerator of 0 . Then x(Oo) = t = xoa = (x9)a. Lastly, if x does
not occur as a numerator of either or or 0, then the substitutions have no effect
on x. Thus x(Oa) = x = (xO)o,.
c. If x/t G 0, then x/t = x/tE , so it follows from the definition of composi-
tion that 0 = OE. For any variable x we have x(EO) = (xE)0 = xO. Therefore,
0E = E0 = 9.
e. (A U B)O = {EO I EE A U B} = {EOI E c A} u {EOI E C B} = AO U BO.

12. a. In first-order predicate calculus the argument can be written as

Vx (C(x) -- P(x)) A 3x (C(x) A L(x)) -* 3 x (P(x) A L(x)),

where C(x) means that x is a computer science major, P(x) means that x is a
person, and L(x) means that x is a logical thinker. After negating the wff and
transforming the result into clausal form, we obtain the proof:

1. - C(x) V P(X) P

2. C(a) P

3. L(a) P

4. - P(z) V - L(z) P

5. - P(a) 3, 4, R, {z/a}

6. -, C(a) 1, 5, R, {x/a}

7. LI 2,6, R,{}. QED

13. a. Let D(x) mean that x is a dog, L(x) mean that x likes people, H(x)
mean that x hates cats, and a = Rover. Then the argument can be formalized

as follows:

Vx (D(x) -- L(x) V H(x)) A D(a) A - H(a) -* Ix (D(x) A L(x)).

ANSWERS TO SELECTED EXERCISES 695

After negating the wff and transforming the result into clausal form, we obtain
the proof:

1. - D(x) V L(x) V H(x) P

2. D(a) P
3. - H(a) P

4. D•D(y) V - L(y) P

5. L(a) V H(a) 1, 2, R, {x/a}

6. L(a) 3, 5, R, {f}
7. - D(a) 4, 6, R, {y/a}

8. E 2,7, R,{}. QED

c. Let H(x) mean that x is a human being, Q(x) mean that x is a quadruped,
and M(x) mean that x is a man. Then the argument can be formalized as

Vx (H(x) --+ - Q(x)) A Vx (M(x) --* H(x)) -- Vx (M(x) -- - Q(x)).

After negating the wff and transforming the result into clausal form, we obtain
the proof:

1. - H(x) V - Q(x) P
2. - M(y) V H(y) P

3. M(a) P
4. Q(a) P

5. H(a) 2, 3, R, {y/a}
6. - Q(a) 1, 5, R, {x/a}

7. [] 4,6, R,{}. QED

e. Let F(x) mean that x is a freshman, S(x) mean that x is a sophomore, J(x)
mean that x is a junior, and L(x, y) mean that x likes y. Then the argument
can be formalized as A --, B, where

A = Ix (F(x) A Vy (S(y) -- L(x, y))) A Vx (F(x) -- Vy (J(y) -- L(x, y)))

and B = Vx (S(x) -* J(x)). After negating the wff and transforming the
result into clausal form, we obtain the proof:

1. F(a) P
2. - S(x) V L(a, x) P
3. - F(y) V -J(z) V - L(y, z) P

4. S(b) P
5. J(b) P

6. - J(z) V - L(a, z) 1, 3, R, {y/a}
7. -, L(a, b) 5, 6, R, {z/b}
8. - S(b) 2, 7, R, {fx/b}
9. El 4,8, R,{}. QED

696 ANSWERS TO SELECTED EXERCISES

14. a. Here is an indirect proof that W is valid.

Proof: 1. -- x Iy (p(x, y) V - p(y, y)) P for IP

2. Ax Vy (-, p(x, y) A p(y, y)) 1, T

3. Vy (- p(c, y) A p(c, c)) 2, El

4. - p(c, c) A p(c, c) 3, UI

5. false 4, T

QED 1, 5, IP.

15. a. Let I be an interpretation for W. If C is true for 1, then 3y (p(y) A

C) is false, so W is false. If C is false for I, then W becomes (]x p(x) ---+ false)
A 3 y (p(y) A -' false) =- -- x p(x) A Ey p(y), which is false. Therefore, W is
false for . Since I was arbitrary, W is unsatisfiable.
c. After eliminating -* from W, we apply Skolem's rule to obtain the wff (-'

p(a) V C) A (p(b) A -, C). Define an interpretation for this wff by letting C
false, p(a) = false, and p(b) = true. This interpretation makes the wff true. So
it is satisfiable.

Section 9.2

1. a. isChildOf(x, y) <-- isParentOf(y, x).
c. isGreatGrandParentOf(x, y)

-- isParentOf(x, w), isParentOf(w, z), isParentOf(z, y).

2. a. The following definition will work if x 7/ y:

isSiblingOf(x, y) -- isParentOf(z, x), isParentOf(z, y).

c. Let s denote isSecondCousinOf. One possible definition is

s(x, y) +- isParentOf(z, x), isParentOf(w, y), isCousinOf(z, w).

3. a. 1. p(a, b) P

2. p(a, c) P

3. p(b, d) P

4. p(c, e) P

5. g(x, y) - p(x, z), p(z, y) P

6. •- g(a, w) P initial goal

7. - p(a, z), p(z, y) 5, 6, R, 01 = {x/a, w/y}.

8. +- p(b, y) 1, 7, R, 02 = {z/b}
9. El 3, 8, R, 03 = {y/d}. QED

ANSWERS TO SELECTED EXERCISES 697

b.

4-g(a, w)
x/a, w/y

--p(a,z), p(z, y)
z/b z/C

*-p(b, y) -p(c, y)

y/d Y/e
El El

yes yes
w=d w=e

4. a.

,-p(x)

El lx) El
yes yes

X=a x = b
XIa x1lb

X1/g(x2)

<-PlX2 El
yes yes

x= g(a) x= g(b)
x21a x 2•b

X2/g(X3)

El *-pfx3) El
yes yes

x = g(g(a)) x = g(g(b))

c. {g'(a) I n E N}.

5. a. The program returns the answer yes.
6. a. The symmetric closure s can be defined by the two clause program:

s (x, y) •-r (x, y)

s (x, y) -r (y, x)

7. a. fib(O, 0).
fib(l, 1).
fib(x, y + z) -- fib(x - 1, y), fib(x - 2, z).

c. pnodes(() , 0).
pnodes((L, a, R) , 1 + x + y) -- pnodes(L, x), pnodes(R, y).

698 ANSWERS TO SELECTED EXERCISES

8. a. equalLists((), ()).
equalLists(x ::t, x :: s) +- equalLists(t, s).

c. anl(x, (), <)).
all (x, x : t, u) +-all (x, t, u)

all(x, y t, y :: u) +- all(x, t, u).
e. subset((), y).

subset(x :: t, y) +- member(x, y), subset(t, y).
g. Using the "remove" predicate from Example 9.26, which removes one occur-
rence of an element from a list, the program to test for a subbag can be written
as follows:

subBag((), y).

subBag(x :: t, y) ý- member(x, y), remove(x, y, w), subBag(t, w).

9. Let the predicate schedule(L, S) mean that S is a schedule for the list of
classes L. For example, if L = (englishl02, math200), then S is a list of 4-tuples
of the form (name, section, time, place). For the example, S might look like the
following:

((english102, 2, 3pm, ivy238), (math200, 1, 10am, briar315))

Assume that the available classes are listed as facts of the following form:

class(name, section, time, place).

The following solution will yield one schedule of classes that might contain time
conflicts. All schedules can be found by backtracking. If a class cannot be found,
a note is made to that effect.

schedule((),()).
schedule(x :: y, S) <- class(x, Sect, Time, Place),

schedule(y, T),
cat(((x, Sect, Time, Place)), T, S).

schedule(x :: y, (unfillable)).

10. Let letters(A, L) mean that L is the list of propositional letters that occur
in the wff A. Let replace(p, true, A, B) mean B = A(p/true). Then we can
start the process for a wff A with the goal - tautology(A, Answer), where A is
a tautology if Answer = true. The initial definitions might go like the following,
where uppercase letters denote variables:

tautology(A, Answer) - letters(A, L), evaluate(A, L, Answer).

evaluate(A, (), Answer) , value(A, Answer).
evaluate(A, H:: T, Answer) *- replace(H, true, A, B),

replace(H, false, A, C),
evaluate(B A C, Answer).

ANSWERS TO SELECTED EXERCISES 699

When "value" is called, A is a proposition containing only true and false terms.
The definition for the "replace" predicate might include some clauses like the
following:

replace(X, true, X, true).

replace(X, true, - X, false).
replace(X, true, - A, - B) *- replace(X, true, A, B).

replace(X, true, A A X, B) •- replace(X, true, A, B).

replace(X, true, X A A, B) -- replace(X, true, A, B).

replace(X, true, A A B, C A D) *- replace(X, true, A, C),

replace(X, true, B, D).

Continue by writing the clauses for the false case and for the other operators
V and --* . The first few clauses for the "value" predicate might include some
clauses like the following:

value(true, true).

value(false, false).

value(-i true, false).

value(-- false, true).

value(-i X, Y) -- value(X, A), value (- A, Y).

value(false A X, false).

value(X A false, false).

value(true A X, Y) -- value(X, Y).

value(X A true, Y) -- value(X, Y).

value(X A Y, Z) *- value(X, U), value(Y, V), value(U A V, Z).

Continue by writing the clauses to find the value of expressions containing the

operators V and -*. The predicate to construct the list of propositional letters
in a wff might start off something like the following:

letters(X, (X)) *- atom(X).

letters(X A Y, Z) +- letters(X, U), letters(Y, V), cat(U, V, Z).

Continue by writing the clauses for the other operations.

Chapter 10

Section 10.1

1. The zero is m because min(x, m) = min(m, x) = m for all x E A. The identity

is n because min(x, n) = min(n, x) = x for all x E A. If x, y E A and min(x, y)
= n, then x and y are inverses of each other. Since n is the largest element of
A, it follows that n is the only element with an inverse.

2. a. No; no; no. c. True; false; false is its own inverse.

700 ANSWERS TO SELECTED EXERCISES

3. S = {a, f(a), f 2 (a), f 3 (a), f'(a)}.

4. a. An element z is a zero if both row z and column z contain only the element
z. c. If x is an identity, then an element y has a right and left inverse w if x

occurs in row y column w and also in row w column y of the table.

5. a. o a b c d

a a b c d

b b c d d

c c d b b

d d a b c

Notice that d o b = a, but b o d 5 a. So b and d have one-sided inverses but
not inverses (two-sided).

c. 0 a b c d

a a a a a

b a c d b

c a d a b

d a a b c

Notice that (b o b) o c = c o c a and b o (b o c) b o d= b. Therefore, o
is not associative.

e. o a b c d

a a b c d
b b a a a

c c a a a

d d a a a

Notice that (b o b) o c= a o c= c and b6o (b c) = b o a b. Therefore, o is

not associative.

6. a. a a b c. a a b
a a b a b b

b b a b b b

7. Suppose the elements of table T are numbers 1, ... , n. Check the equation
T(i, T(j, k)) T(T(i, j), k) for all values of i, j, and k between 1 and n.

8. a. f(g(x)) = g(g(g(x))) = g(f(x)).
c. For example, a, f(a), g(a), f(g(a)).

9. a. y = y o e = y o (X 0 X-') = (y a x) 0 X` = (z a x) x =

zo (x 0 x- 1) = z o e = z.

Section 10.2

1. No. Notice that A B ? B • A because A - B : B - A. Similarly, 0 is not
an identity for +, and 1 is not an identity for•

2. a. x + x y = x(l + y) = x 1 = x.

ANSWERS TO SELECTED EXERCISES 701

C. x±+y = (x +) (x +y) 1(X+ y)=x+y.

3. -e = z + yz = yzzyT = (y + T) (V + z) = V- + yz.

4. a. T + • + xyz = yj + (xy) z = y+ z = + + z.

5. a. x + y.
C. -(x + z).

e. x y + z.
g. x + y.
i. 1.
k. x + y.

6. a.

y x+ xy
x

y Y+

7. a. xO.
c. (x + y)(x + z).
e. y (x + z).

9. Show that a + 6 acts like the complement of ab. In other words, show that

(ab) + (- + b) = l and (ab) (-d + -) = 0.

The result then follows from (10.8). For the first equation we have

(ab) + (d+b) (a+-+L) (b+U+ +iL) (I+-) = (1)(1) = 1.

For the second equation we have

(ab) (-d + b) = abi- + abb = 0 + 0 = 0.

11. a. Since x = xx, we have x --< x. So -<is reflexive. If x -< y and y __ x, then
x = xy and y yx. Therefore, x = xy yx = y. Thus -< is antisymmetric. If

x _ y and y • z, then x = xy and y = yz. Therefore, x xy = x(yz) = (xy)z
= xz. So x -_ z. Thus -< is transitive.

13. Since p occurs more than once in the factorization of n, it follows that n/p
still contains at least one factor of p. For example, if n = p 2 q, then n/p = pq. So
lcm(p, n/p) = n/p, which is not equal to n (the unit of the algebra). Similarly,

gcd(p, n/p) = p, which is not 1 (the zero of the algebra). So properties of part
3 of the definition of a Boolean algebra fail to hold.

702 ANSWERS TO SELECTED EXERCISES

Section 10.3

1. monus(x, 0) = x, monus(0, y) = 0, monus(s(x), s(y)) = monus(x, y), where
s(x) denotes the successor of x.

3. reverse(L) = if isEmptyL(L) then L
else cat (reverse (tail(L)), (head(L))).

5. Let genlists(A) denote the set of general lists over A. The operations for
general lists are similar to those for lists. The main difference is that the cons
function and the head function have the following types to reflect the general
nature of elements in a list.

cons: A U genlists(A) x genlists(A) -- genlists(A),

head: genlists(A) --+ genlists(A) U A.

The axioms are identical to those for lists.

7. post((4, 5, -, 2, +), ()) = post((5, -, 2, +), (4)) = post((-, 2, +), (5, 4))
= post((2, +), eval(-, (5, 4))) = post((2, +), (-1)) = post((+), (2, -1)))
post((), eval(+, (2, -1))) = post((), (1)) = 1.

9. In equational form we have preorder(emptyTree) = emptyQ, and
preorder(tree(L, x, R)) = apQ(addQ(x, emptyQ), apQ(preorder(L), preorder(R))).

11. Remove (all occurrences of an element from a stack).

13. Let D be the set of deques over the set A. Then the carriers should be A,
D, and Boolean. The operators can be defined as

emptyD E D,

isEmptyD: D --- Boolean,

addLeft: A x D --* D,
addRight: D x A --+ D,

left: D -- A,

right: D -+ A,

deleLeft: D --+ D,

deleRight: D -* D.

ANSWERS TO SELECTED EXERCISES 703

-Vith axiomS:

isEmptyD(emptyD) = true,
isEmptyD(addLeft(a, d)) = isEmptyD(addRight(d, a)) = false,

left(addLeft(a, d)) = right(addRight(d, a)) = a,

left(addRight(d, a)) = if isEmptyD(d) then a

else left(d),

right(addLeft(a, d)) = if isEmptyD(d) then a
else right(d),

deleLeft(addLeft(a, d))= deleRight(addRight(d, a))= d,

deleLeft(addRight(d, a)) = if isEmptyD(d) then emptyD

else addRight(deleLeft(d), a),

deleRight(addLeft(a, d)) = if isEmptyD(d) then emptyD
else addLeft(a, deleRight(d)).

15. Let Q[A] = D[A],

emptyQ = emptyD,

isEmptyQ = isEmptyD,

frontQ = left,

deleQ = deleLeft,
addQ(a, q) = addRight(q, a).

Then the axioms are proved as follows:

isEmptyQ(emptyQ) = isEmptyD(emptyD) = true.

isEmptyQ(addQ(a, q)) = isEmptyD(addRight(q, a)) = false.

frontQ(addQ(a, q)) = left(addRight(q, a))

= if isEmptyD(q) then a else left(q)

= if isEmptyQ(q) then a else frontQ(q).

delQ(addQ(a, q)) = deleLeft(addRight(q, a))

= if isEmptyD(q) then emptyD

else addRight(deleLeft(q), a)

= if isEmptyQ(q) then emptyQ

else addQ(a, deleQ(q)).

17. a. Let P(x) denote the statement "plus(x, s(y)) = s(plus(x, y)) for all y

E N." Certainly P(O) is true because plus(O, s(y)) = s(y) = s(plus(0, y)). So

assume that P(x) is true, and prove that P(s(x)) is true. We can evaluate each

expression in the statement of P(s(x)) as follows:

plus(s(x), s(y)) = s(plus(p(s(x)), s(y))) (by definition of plus)

= s(plus(x, s(y))) (since p(s(x)) = x)

= s(s(plus(x, y))) (by induction),

704 ANSWERS TO SELECTED EXERCISES

and

s(plus(s(x), y)) = s(s(plus(p(s(x)), y))) (by definition of plus)

= s(s(plus(x, y))) (since p(s(x)) = x).

Both expressions are equal. So P(s(x)) is true.

18. Induction will be with respect to the length of y. We'll use the notation
y a for addQ(a, y). For the basis case we have the following equations, where
y = emptyQ:

apQ(x, emptyQ : a)
= apQ(x: front(emptyQ: a), delQ(emptyQ: a)) (def. of apQ)
= apQ(x a, emptyQ) (simplify)

= x: a (simplify)
= apQ(x a, emptyQ)) (def. of apQ).

For the induction case, assume that the equation is true for all queues y having
length n, and show that the equation is true for the queue y b, having length
n + 1. Starting with the left side of the equation, we have

apQ(x, y: b: a)
= apQ(x: front(y: b:a), delQ(y: b: a)) (def of apQ)
= apQ(x:front(y: b), delQ(y: b: a)) (front(y: b: a) front(y: b))
= apQ(x: front(y:b), delQ(y: b): a) (delQ(y: b: a) delQ(y: b): a)
= apQ(x : front(y: b), delQ(y : b)): a (induction)
= apQ(x, y: b): a (def of apQ).

Section 10.4

1. a. {(1, a, #, M), (2, a, *, N), (3, a, %, N)}.
c. {(1, a, #, M, x), (1, a, #, M, z)}.
e. {(a, M), (b, M)}.

2. For example, if we let R {(1, a), (2, b)} and S = {(1, a)}, then join(R, S)
= {(1, a)} and R U S = {(1, a), (2, b)}

3. a. project(Channel, {Station, Cable}).
c. project (select (select (Rooms, Computer, Yes), BoardType, White), {Place}).
e. select(join(Channel, Program), Station, ESPN).

4. a. t E selectA=a(selectB=b(R)) iff t E selectB~b(R) and t(A) = a iff t
c R and t(B) = b and t(A) = a iff t E seleCtA=a(R) and t(B) = b iff t E
selectB=b (selectA =(R)).
c. Let 1, J, and K be the attribute sets for R, S, and T, respectively. Use the
definition of join to show that u E (R tx S) x T iff there exist r E R and s E
S and t E T such that u(a) = r(a) for all a E I and u(a) = s(a) for all a E J
and u(a) = t(a) for all a E K iff u E R x (S m T).

ANSWERS TO SELECTED EXERCISES 705

5. s c projectx(selectA=a(R)) iff there exists t E selectA_-a(R) such that s(B)
= t(B) for all B E X iff there exists t e R such that t(A) = a and s(B) = t(B)
for all B e X iff s G projectx(R) and s(A) = a iff s E selectA=a(projectx(R)).

6. a. Let f = seqPairs, where
seqPairs = eqO - -' ((0, 0)); apndr U [seqPairs @ subl, [id, id]].

7. a. For any pair of numbers (m, n), all three expressions compute the value
of the expression m + n.
8. If c returns 0, then * @ [a, g q [b, c]] * @ [a, b] = g A [* 9 [a, b], c], which
proves the basis case. Now assume that c returns a positive number and (10.12)
holds for subi A c. We'll prove that (10.12) holds for c as follows, starting with
the left side:

4 * [a, g @ [b, c]] @ [a, (eqO U 2 - 1; g @ [*, subl 0 21) A [b, c]] (def of g)

=* [a, g [*9 [b, c], subl L c]] (eqO A c = false)

g g [* 9 [a, * U [b, c]], subi 0 c] (induction).

Now look at the right side:

g L [* @ [a, b], c] = g [*, subl © 2] © [* A [a, b], c] (def of g)
= g [.@ [* [a, b] , c] , subl Qc].

It follows that the two sides are equal because multiplication is associative:

* L [a,*L [b,c]] = A , [*A [a,b],c].

Section 10.5

1. + [0] [1] [2] [3] [01 [1] [2] [31

[0] [0] [1] [2] [3] [0] [0] [0] [0] [0]
[1] [1] [2] [3] [0] (1] [0] (1] [2] [3]

[21 [2] [3] [0] [1) [2] [0] [2] [0] [2]
[3] [3] [0] [1] [2] [3] [0] [3] [2] [1]

2. a. x = 99. c. x = 59. e. 21.

3. Add multiples of n to x until the sum is positive. In other words, there is
some k such that x + kn > 0. Set y = x + kn. It follows that y = x (mod n).

5. a. e = 11 works. c. e = 317 works.

7. a. Yes.
c. No. 4+9 6 = 1 ý {0, 2, 4, 6, 8}.

8. a. {0, 6}.
C. N12.

9. The three morphisms are f, g, and h, where: f is the zero function; g(0) = 0,
g(1) = 2, g(2) = 4; h(0) = 0, h(1) = 4, h(2) = 2.

706 ANSWERS TO SELECTED EXERCISES

11. Notice that abs(1 + (-1)) = abs(O) = 0, but that abs(1) + abs(-1) +1
1 = 2. So in general abs(x + y) # abs(x) + abs(y).

13. a. {(ab)nb I n E N}. c. 0 . e. {ban I n c N}.

Bibliography

In addition to the books and papers specifically referenced in this book, we also
include some general references.

Andrews, P. B., An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof Academic Press, New York, 1986.

Appel, K., and W. Haken, Every planar map is four colorable. Bulletin of the
American Mathematical Society 82 (1976), 711-712.

Appel, K., and W. Haken, The solution of the four-color-map problem. Scientific
American 237 (1977), 108 121.

Apt, K. R., Ten years of Hoare's logic: A survey-Part 1. ACM Transactions
on Programming Languages and Systems 3 (1981), 431 483.

Backus, J., Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the ACM
21 (1978), 613-641.

Chang, C., and R. C. Lee, Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

Cichelli, R. J., Minimal perfect hash functions made simple. Communications
of the ACM 23 (1980), 17-19.

Coppersmith, D., and S. Winograd, Matrix multiplication via arithmetic pro-
gressions. Proceedings of 19th Annual ACM Symposium on the Theory of
Computing (1987), 1 6.

Delong, H., A Profile of Mathematical Logic. Addison-Wesley, Reading, MA,
1970.

Floyd, R. W., Algorithm 97: Shortest path. Communications of the ACM 5
(1962), 345.

Floyd, R. W., Assigning meanings to programs. Proceedings AMS Symposium
Applied Mathematics, 19, AMS, Providence, RI, 1967, pp. 19-31.

707

708 BIBLIOGRAPHY

Frege, G., Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinen Denkens. Halle, 1879.

Galler, B. A., and M. J. Fischer, An improved equivalence algorithm. Commu-
nications of the ACM 7 (1964), 301-303.

Gentzen, G., Untersuchungen uber das logische Schliessen. Mathematische Zeit-
schrift 39 (1935), 176-210, 405-431; English translation: Investigation into
logical deduction, The Collected Papers of Gerhard Gentzen, ed. M. E.
Szabo. North-Holland, Amsterdam, 1969, pp. 68-131.

G6del, K., Die Vollstd.ndigkeit der Axiome des logischen Funktionenkalkiils.
Monatshefte fuir Mathematic und Physik 37 (1930), 349-360.

G6del, K., Uber formal unentscheidbare Sdtze der Principia Mathematica und
verwandter Systeme I. Monatshefte fiur Mathematic und Physik 38 (1931),
173-198.

Graham, R. L., D. E. Knuth, and 0. Patashnik, Concrete Mathematics. Addison-
Wesley, Reading, MA, 1989.

Halmos, P. R., Naive Set Theory. Van Nostrand, New York, 1960.

Hamilton, A. G., Logic for Mathematicians. Cambridge University Press, New
York, 1978.

Hilbert, D., and W. Ackermann, Principles of Mathematical Logic. (1938).
Translated by Lewis M. Hammond, George G. Leckie, and F. Steinhardt.
Edited by Robert E. Luce. Chelsea, New York, 1950.

Hoare, C.A.R., An axiomatic basis for computer programming. Communications
of the ACM 12 (1969), 576-583.

Kleene, S. C., Introduction to Metamathematics. Van Nostrand, New York, 1952.

Kleene, S. C., Mathematical Logic. John Wiley, New York, 1967.

Knuth, D. E., On the translation of languages from left to right. Information
and Control 8 (1965), 607-639.

Knuth, D. E., Two notes on notation. The American Mathematical Monthly 99
(1992), 403-422.

Kruskal, J. B., Jr., On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7
(1956), 48-50.

Lukasiewicz, J., Elementary Logiki Matematycznej. PWN (Polish Scientific Pub-
lishers), 1929; translated as Elements of Mathematical Logic, Pergamon,
Elmsford, NY, 1963.

Mallows, C. L., Conway's challenge sequence. The American Mathematical
Monthly 98 (1991), 5-20.

Martelli, A., and U. Montanari, An efficient unification algorithm. ACM Trans-
actions on Programming Languages and Systems 4 (1982), 258-282.

BIBLIOGRAPHY 709

Mendelson, E., Introduction to Mathematical Logic. Van Nostrand, New York,
1964.

Nagel, E., and J. R. Newman, GSdel's Proof New York University Press, New

York, 1958.

Pan, V., Strassen's algorithm is not optimal. Proceedings of 19th Annual IEEE

Symposium on the Foundations of Computer Science (1978), 166-176.

Paterson, M. S., and M. N. Wegman, Linear Unification. Journal of Computer
and Systems Sciences 16 (1978), 158-167.

Paulson, L. C., Logic and Computation. Cambridge University Press, New York,

1987.

Prim, R. C., Shortest connection networks and some generalizations. Bell System

Technical Journal 36 (1957), 1389-1401.

Rivest, R. L., A. Shamir, and L. Adleman, A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM 21

(1978), 120-126.

Robinson, J. A., A machine-oriented logic based on the resolution principle.
Journal of the ACM 12 (1965), 23-41.

Sch6ning, U., Logic for Computer Scientists. Birkhauser, Boston, 1989.

Skolem, T., Uber de mathematische logik. Norsk Matematisk Tidsskrift 10
(1928), 125-142. Translated in ed. Jean van Heijenoort. From Frege to
Godel: A Source Book in Mathematical Logic 1879-1931, Harvard Univer-
sity Press, Cambridge, MA, 1967, pp. 508-524.

Snyder, W., and J. Gallier, Higher-order unification revisited: Complete sets of
transformations. Journal of Symbolic Computation 8 (1989), 101-140.

Stanat, D. F., and D. F. McAllister, Discrete Mathematics in Computer Science.

Prentice-Hall, Englewood Cliffs, NJ, 1977.

Strassen, V., Gaussian elimination is not optimal. Numerische Mathematik 13
(1969), 354-356.

Suppes, P., Introduction to Logic. Van Nostrand, New York, 1957.

Warren, D. S., Memoing for logic programs. Communications of the ACM 35
(1992), 93-111.

Warshall, S., A theorem on Boolean matrices, Journal of the ACM 9 (1962),
11-12.

Whitehead, A. N., and B. Russell, Principia Mathematica. Cambridge University
Press, New York, 1910.

Wos, L., R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning: Introduction
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1984.

Greek
Alphabet

A ce alpha

B fl beta

F gamma

A delta

E E epsilon

Z zeta

H eta

e 0 theta

It iota

K r kappa

A A lambda

M P mu

N v nu

xi

0 o omicron

H1 ý- pi

P p rho

E a sigma

T T tau

Y v upsilon

4I) 0 phi

X x chi

V), psi

w omega

711

Greek
Alphabet

A a alpha

B /3 beta

F gamma

A 6 delta

E epsilon

Z zeta

H 7 eta

E) theta

I iota

K K kappa

A A lambda

M i mu

N v nu
E • xi

0 o omicron

H 7r pi

P p rho

E o sigma

T T tau

Y v upsilon

4 0 phi

X x chi

V) psi

w omega

711

Symbol
Glossary

Each symbol or expression is listed with a short definition and the page number
where it first occurs. The list is ordered by page number.

dI n d divides n with no remainder 6

x C S x is an element of S 13

x ý S x is not an element of S 13

... ellipsis 14

20 the empty set 14

N natural numbers 15

z integers 15

Q rational numbers 15

R real numbers 15

{x I P} set of all x satisfying property P 16

A C B A is a subset of B 16

A ýt B A is not a subset of B 16

AU B AunionB 19

A n B A intersection B 21

A B difference: elements in A but not B 22

A E B symmetric difference: (A- B) U (B A) 23

A' complement of A 23

713

714 SYMBOL GLOSSARY

JAI cardinality of A 26

[a, b, b, a] bag, or multiset, of four elements 29

(x, y, x) tuple of three elements 35

empty tuple 36

A x B Cartesian product {(a, b) Ia E A and b E B} 36

(x, y, X) list of three elements 39

empty list 39

cons(x, t) list with head x and tail t 40

lists(A) set of all lists over A 40

A empty string 41

181 length of string s 41

A* set of all strings over alphabet A 42

LM product of languages L and M 43

L' product of language L with itself n times 44

L* closure of language L 44

L+ positive closure of language L 44

R(a, b, c) (a, b, c) is in the relation R 47

x R y R(x, y) or x is related by R to y 47

f : A -* B function type: f has domain A and codomain B 74

f(C) image of C under f 76

f-'(D) pre-image of D under f 76

[xj floor of x: largest integer < x 79

[Ix ceiling of x: smallest integer > x 79

gcd(a, b) greatest common divisor of a and b 80

a mod b remainder upon division of a by b 82

N" the set {0, 1, ... , n- 1} 83

XB characteristic function for subset B 89

SYMBOL GLOSSARY 715

fog composition of functions f and g 91

f-I inverse of bijective function f 103

x :: t list with head x and tail t 135

tree(L, x, R) binary tree with root x and subtrees L and R 138

Sai sum of the numbers ai 150

I ai product of the numbers ai 150

n! n factorial: n.(n - 1)... 1 150

A - a grammar production 174

A -*a 1/ grammar productions A -* a and A -f3 177

A a A derives a in one step 178

A +a A derives a in one or more steps 178

A * a A derives a in zero or more steps 178

L(G) language of grammar G 178

R o S composition of binary relations R and S 195

r(R) reflexive closure of R 199

Rc converse of relation R 200

s(R) symmetric closure of R 200

t(R) transitive closure of R 200

R+ transitive closure of R 203

R* reflexive transitive closure of R 203

[x] equivalence class of things equivalent to x 218

tsr(R) smallest equivalence relation containing R 225

(A, -<) irreflexive partially ordered set 235

(A, -<) reflexive partially ordered set 235

x y x-<yorx=y 235

x -< y x is less than y or x is a predecessor of y 236

WA worst-case function for algorithm A 275

716 SYMBOL GLOSSARY

P(n, r) number of permutations of n things taken r at a time 290

C(n, r) number of combinations of n things taken r at a time 294

(Ir") binomial coefficient symbol 294

P(A) probability of event A 300

((f) big theta: same growth rate as f 334

o(f) little oh: lower growth rate than f 338

0(f) big oh: growth rate bounded above by that of f 339

W(f big omega: growth rate bounded below by that of f 340

SP logical negation of P 349

P A Q logical conjunction of P and Q 349

P V Q logical disjunction of P and Q 349

P -- Q logical conditional: P implies Q 349

P Q logical equivalence of P and Q 349

therefore 370

H-W turnstile to denote W is a theorem 394

E x existential quantifier: there is an x 399

Vx universal quantifier: for all x 399

W(x/t) wff obtained from W by replacing free x's by t 405

x/t binding of the variable x to the term t 405

W(X) W contains a free variable x 407

{P} S {Q} S has precondition P and postcondition Q 467

EZ empty clause: a contradiction 506

{W/t, y/s} substitution containing two bindings 514

c empty substitution 515

EO instance of E: substitution 0 applied to E 515

00, composition of substitutions 0 and (T 515

CO - N remove all occurrences of N from clause CO 522

SYMBOL GLOSSARY 717

R(S) resolution of clauses in the set S 524

C <-- A, B logic program clause: C if A and B 536

SA logic program goal: is A true? 537

(A; s, a) algebra with carrier A and operations s and a 561

T complement of Boolean algebra variable x 573
x

y AND gate 579

X- . x+y OR gate 579

X NOT gate 579

R m S join of relations R and S 606

x = y (mod n) congruence mod n: x mod n = y mod n 614

Index

AA. See Assignment axiom regular expressions

AAA. See Array assignment axiom relational, 606

Absorption laws ring, 568

Boolean algebra, 576 semigroup, 567

logic, 354 signature of, 561

sets, 24 subalgebra of, 621

Abstract algebra, 562 Algebraic expression, 560

Abstract data type, 585-599 Algorithm, 557

binary trees, 596 Alphabet, 41

lists, 589 Ambiguous grammar, 186

natural numbers, 585 Ancestor, 63

priority queues, 598 And. See Conjunction

queues, 594 AND gate, 578

stacks, 592 Antecedent, 349

strings, 591 Appel, K., 57

Accumulating parameter, 271 Applying a substitution, 515

Ackermann, W., 392 Apt, K. R., 486

Ackermann's function, 270 Arithmetic progression, 256

Acyclic graph, 59 Arity, 75

Add. See Addition rule Array assignment axiom, 480

Addition rule, 371 Artin, Emil, 244

Adjacency matrix, 204 Ascending chain, 236

Adjacent vertices, 56 Assignment axiom, 468

Adleman, L., 616 Asymptotic behavior, 334

al-KhowArizmi, 557 Atom. See Atomic formula

Algebra, 558-629 Atomic formula, 402

abstract, 562 Attribute, 47

abstract data type, 585 Average case

Boolean, 572 analysis, 307

carrier of, 560 binary search, 312

concrete, 562 optimal, 307

definition of, 560 sequential search, 308

expression, 560 Axiom, 371

field, 569 Axiom systems, 384

functional, 607
group, 567 Backtracking, 545
groupiod, 567 Backus, J., 607
induction, 562 Bag, 29-30

moniod, 567 combinations, 297

morphism, 625 intersection, 29

of matrices, 569 permutations, 291

of polynomials, 569 subbag, 29

of power series, 570 sum, 29

of vectors, 570 union, 29

719

720 INDEX

Bayes' theorem, 304 Branch, 63
Best operation, 598 Breadth-first search strategy, 549
Better operation, 598, 600 Breadth-first traversal, 62
BIFO property, 598 Burke, Edmund, 193
Big oh, 339 Burton, David M., 557
Big omega, 340
Big theta, 334 Calculus, 347
Bijection, 102 Cantor, Georg, 30, 122
Binary function, 75 Cardinality, 26, 115
Binary relation, 46, 194-251 Carrier, 560

antisymmetric, 194 Carroll, Lewis, 345, 444
closure, 199 Cartesian product, 36
composition, 195 Casting out by nines, 629
converse, 200 CD. See Constructive dilemma
equivalence, 214 Ceiling function, 79
irreflexive, 194 Chain, 235
linear order, 234 Chang, C., 528
partial order, 234 Characteristic function, 89
reflexive, 194 Children, 63
reflexive closure, 199 Chinese remainder theorem, 630
symmetric, 194 Chromatic number, 57
symmetric closure, 200 Churchill, Winston, 632
total order, 234 Cichelli, R. J., 111
transitive, 194 Clausal form, 506
transitive closure, 200 Clause, 506

Binary resolution, 530 Closed, 621
Binary search, 278 Closed form, 281
Binary search tree, 67 Closure
Binary tree, 66, 138, 159-162, 596 existential, 411

computer representation, 67 inductive definition, 128, 265
inorder traversal, 162 language, 44
left subtree, 66 of binary relation, 199
postorder traversal, 162 positive, 44
preorder traversal, 161 properties, 45

right subtree, 66 reflexive, 199
Binding, 514 symmetric, 200
Binomial coefficient, 294 transitive, 200
Binomial distribution, 306 universal, 411
Binomial theorem, 295 CNF. See Conjunctive normal form
Body of clause, 536 Codomain, 75
Boole, George, 572 Collection, 13
Boolean algebra, 572-583 Collision, 110

absorption laws, 576 Coloring a graph, 56
axioms, 573 Combinations, 293
complement, 573 Comparable, 234
De Morgan's laws, 577 Comparison sorting, 292
digital circuits, 578-582 Complement
duality principle, 575 Boolean algebra, 573
idempotent properties, 575 properties, 25
involution, 577 set, 23
minimal CNF, 583 Complete graph, 57
minimal DNF, 582 Completeness, 384, 389
negation, 573 Component, 35
simplifying expressions, 574 Composition

Bound variable, 403 of binary relations, 195
Boyle, J., 530 of functions, 91

INDEX 721

of statements, 470 product rule, 49
of substitutions, 515 tuples, 49

Composition rule, 470, 778 union rule, 26
Computation tree, 544 CP. See Conditional proof rule

Concatenation of lists, 157 Cryptology, 106, 616

Concatenation of strings, 591 Cycle, 59

Conclusion, 3, 349
Concrete algebra, 562 DD. See Destructive dilemma
Conditional, 349 De Morgan's laws

Conditional probability, 303 Boolean algebra, 577

Conditional proof, 7, 372 logic, 354

Conditional proof rule, 373, 385, 442 sets, 25
Conditional statement, 3, 349 Decidable, 413

Congruence, 614 Decision problem, 413

Congruence relation, 614 Decision tree, 277
Conj. See Conjunction rule Deduction theorem, 373, 385, 442
Conjunction, 3, 349 Degree of a vertex, 57

Conjunction rule, 371 Delete function, 552
Conjunctive normal form, 362 Depth, 63

Connected, 60 Depth-first search strategy, 544
Connectives, 349 Depth-first traversal, 62

and, 349 Deque, 600
complete set of, 365 Derangement, 271, 309
implies, 349 Derivation, 175, 177

not, 349 Derivation tree, 173

or, 349 Descartes, Ren6, 36
Cons, 40, 134 Descendant, 63

Consequence rule, 469 Descending chain, 235
Consequent, 349 Description problem, 558
Consistent, 373 Destructive dilemma, 371

ConsRight, 156 Destructors, 134

Constructive dilemma, 371 Diagonalization, 119
Constructor, 129 Dictionary order, 245

Consume, 643 Difference

Contingency, 352 counting rule, 28
Continuum hypothesis, 124 of sets, 22
Contradiction, 9, 352 symmetric, 23

Contrapositive, 4 Digital circuit, 578-583

Converse, 4 AND gate, 578
Converse of binary relation, 200 full adder, 580
Converting decimal to binary, 85 half-adder, 579

Conway's challenge sequence, 171 logic gate, 578
Coppersmith, D., 276, 916 NOT gate, 578

Correct program, 467 OR gate, 578
Countability, 115-124 Digraph. See Directed graph

Countable, 116 Direct proof, 7
Counterexample, 7 Directed graph, 57
Countermodel, 409 Directed multigraph, 57

Counting, 26-28, 49-51, 289-298 Disagreement set, 518

bag combinations, 297 Discrete probability, 299. See also
bag permutations, 291 Probability
combinations, 293 Disjoint sets, 21
difference rule, 28 Disjunction, 3, 349
finite sets, 26-28 Disjunctive normal form, 360

inclusion exclusion principle, 26 Dist. See Distribute function

permutations, 289 Distribute function, 92, 155

722 INDEX

Divides, 6, 80, 234 Existential quantifier, 398
Divisible, 6 Expectation, 307
Division algorithm, 81 Expected value, 307
DNF. See Disjunctive normal form Expression, 515, 560
Domain, 75, 404 Extensionality, principle of, 460
Doyle, Arthur Conan, 1
Duality principle, 575 Factorial function, 150, 610

Factoring, 530
EA. See Equality axiom Family tree, 527, 534
Edge, 56 Fermat, P., 298, 615
EE. See Equals for equals Fermat's little theorem, 615
EG. See Existential generalization Fibonacci, Leonardo, 149
El. See Existential instantiation Fibonacci numbers, 149, 168, 172, 267,
Element, 13, 35 271, 319, 334
Ellipsis, 14 Field, 569
Embedding, 100 FIFO property, 594
Empty Finite set, 15

clause, 506 Finite sums, 282
list, 39 First-order logic, 493
relation, 47 First-order predicate calculus, 401,
set, 14 397-451
string, 41 atomic formula, atom, 402
substitution, 515 equivalence, 416
tuple, 36 existential quantifier, 398

Epimorphism, 625 formal proofs, 443
Equal invalid, 409

bags, 29 literal, 426
functions, 78 meaning, semantics, 406
sets, 14 predicate, 398
tuples, 36 renaming rule, 421, 445

Equality, 458-465 restricted equivalences, 422
axiom, 459 satisfiable, 409
axioms for terms, 461 term, 402
problem, 213 universal quantifier, 399
relation, 47 unsatisfiable, 409

Equals for equals, 459 valid, 409
Equipotent, 115 well-formed formula, 402
Equivalence First-order theory, 457

algebraic expressions, 561 First-order theory with equality, 458
class, 218 Fixed point, 89
logic, 4 Flatten function, 599
predicate calculus, 416 Floor function, 79
propositional calculus, 353 Floyd, R. W., 206, 486
relation, 214 Floyd's algorithm, 207

Eratosthenes, 167 Follow set, 727
Euclidean geometry, 499 Formal power series, 320
Euclid's algorithm, 82 Formal reasoning system, 371
Euler, L., 61 Formal theory, 371
Euler circuit, 61 Formalizing English sentences, 427
Euler path, 61 Four-color theorem, 57
Even integers, 6 FP (functional programming
Event, 299 language), 607
Excluded middle, law of, 395 algebra, 607
Existential closure, 411 axioms, 608
Existential generalization, 437 operations, 608
Existential instantiation, 438 Franklin, Benjamin, 273

INDEX 723

Free to replace, 433, 450 Galler, B. A., 226
Free tree, 63 Gallier, J., 530

Free variable, 403 Gate, 578
Frege, G., 384 Gauss, Karl Friedrich, 256
Full adder, 580 Gcd. See Greatest common divisor

Full conjunctive normal form, 362 Generating function, 320
Full disjunctive normal form, 361 Gentzen, G., 413

Function, 74-111 Geometric progression, 258

Ackermann's, 270 Geometric series, 320
argument of, 75 Glb. See Greatest lower bound

arity of, 75 Gbdel, K., 456, 498
bijective, 102 Goethe, Johann Wolfgang von, 505

ceiling, 79 Graham, R. L., 343
characteristic, 89 Grammar, 173-188

codomain of, 75 ambiguous, 186
composition, 91 combining rules, 182
cons, 40, 134 derivation, 175, 177
consRight, 156 four parts, 176
definition by cases, 78 language of, 178

definition of, 74 leftmost derivation, 178
distribute, 92, 155 nonterminals, 176
domain of, 75 parse or derivation tree, 173
equality, 78 production, 174

floor, 79 recursive, 179
gcd, 80 recursive production, 179

generating, 320 rightmost derivation, 178
hash, 109 rule or production, 174

higher-order, 96 sentential form, 177
identity, 92 start symbol, 174, 176

if-then-else, 78 terminals, 176
image of, 76 Graph, 55-63
injective, 100 acyclic, 59
inverse, 103 breadth-first traversal, 61

log, 85 chromatic number, 57
map, 96, 158 complete, 57
max, 93 connected, 60
mod, 82 depth-first traversal, 62

one-to-one, 100 directed, digraph, 57
one-to-one and onto, 102 edge, 56
onto, 100 multigraph, 57
pairs, 92, 155 n-colorable, 57
partial, 87 path, 59
pre-image, 76 planar, 57
range of, 75 spanning tree, 68

recursively defined, 145 subgraph, 59
sequence, 92 traversal, 61

surjective, 100 vertex, node, 55
total, 87 weighted, 58
type, 75 Greatest common divisor, 30, 80, 269
value of, 75 Greatest element, 237

Function constants, 402 Greatest lower bound, 238

Functional algebra, 607 Group, 567

Fundamental conjunction, 360 Groupoid, 567
Fundamental disjunction, 362 Growth rate, 334-341
Fuzzy logic, 395 big oh, 339

724 INDEX

Growth rate (continued) cartesian product, 140
big omega, 340 language of a grammar, 180
big theta, 334 lists, 134
little oh, 338 numbers, 129
lower order, 338 strings, 132
same order, 334 Inductive proof, 253-267

Inductive set, 128
Haken, W., 57, 915 Inference rule, 346, 370
Half-adder, 579 addition, 371
Halmos, P. R., 251 binary resolution, 530
Hash function, 109 conjunction, 371
Hasse, Helmut, 236 constructive dilemma, 371
Hasse diagram, 236 destructive dilemma, 371
Head of clause, 536 disjunctive syllogism, 371
Head of list, 39, 134 existential generalization,
Height, 63 437
Higher-order function, 96 existential instantiation, 439
Higher-order logic, 493, 491-501 factoring, 530

reasoning, 498 hypothetical syllogism, 371
semantics, 496 modus ponens, 346, 370
unification, 530 modus tollens, 346, 371
wff, 493 paramodulation, 530

Hilbert, D., 392, 499 resolution, 506, 513, 522
Hishb al-jabr w'al-muqý,bala, 557 simplification, 371
Hoare, C.A.R., 486 universal generalization, 441
Hoare triple, 467 universal instantiation, 434
Homomorphism, 625 Infinite polynomial, 320
Hypothesis, 3, 349 Infinite sequence, 77, 165

Infinite set, 15
Idempotent, 575 continuum hypothesis, 124
Identifier, 185, 644 countable, 116
Identity element, 564 diagonalization, 119
Identity function, 92 uncountable, 117
If and only if, 10 Infix expression, 47, 75
If-then rule, 78, 472 Informal proof, 2, 348
If-then-else function, 78 Inherit, 621
If-then-else rule, 473 Injection, 100
Iff. See If and only if Inorder traversal, 162, 598
Image, 76 Insert
Immediate predecessor, 236 for binary functions, 169
Immediate successor, 236 into binary search tree, 160, 264,
Implication, 349 269
Implies, 3 into priority queue, 598
Incidence matrix, 204 into sorted list, 158, 268
Inclusion exclusion principle, 26 Instance
Inconsistent, 373 of a set, 515

Indegree, 57 of a wff, 417
Independent events, 304 of an expression, 515
Indirect left recursion, 723 Integers, 5, 15

Indirect proof, 8, 378 divides relation, 6
Indirect proof rule, 378 divisibility properties, 6
Individual constants, 402 divisor, 6
Individual variables, 402 even, 6
Induction algebra, 562 odd, 6
Inductive definition, 128 prime number, 6

binary trees, 138 Interpretation, 404

INDEX 725

Intersection cons, 40, 134
bags, 29 head, 39, 134
properties, 21 length, 39
sets, 21 tail, 39, 134

Invalid, 409 Literal, 360, 426, 506
Inverse element, 564 Little oh, 338
Inverse function, 103 Log function, 85
Involution law, 577 Logarithm. See Log function
IP. See Indirect proof rule Logic, 2-12, 345-556
Irreflexive partial order, 235 absorption laws, 354
Isomorphic, 625 antecedent, 349
Isomorphism, 625 conclusion, 3, 349
Iverson's convention, 343 conditional, 3, 349

conjunction, 3, 349
Jefferson, Thomas, 397 consequent, 349
Join operation, 603, 606 contrapositive, 4

converse, 4
Key, 109 DeMorgan's laws, 354
Knuth, D. E., 343 disjunction, 3, 349
Kdnigsberg bridges, 60 equivalence, 4, 353, 416
Kruskal, J. B., Jr., 228 first-order, 493
Kruskal's algorithm, 228 first-order predicate calculus, 401

fuzzy, 395
L'H6pital's rule, 339 higher-order, 493
Language, 42, 42-46 hypothesis, 3, 349

closure, 44 implication, 349
morphism, 628 implies, 3
of a grammar, 178 modal, 395
parse, 173 monadic, 530
positive closure, 44 n-valued, 395
product, 43 NAND operator, 366

Lattice, 238, 252, 585 necessary condition, 3
Law of identity, 459 negation, 2, 349
Lazy evaluation, 166 NOR operator, 366
Lcm. See Least common multiple nth-order, 495
Leaf, 63 partial order theory, 463
Least common multiple, 30 premise, 349
Least element, 237 proposition, 348
Least upper bound, 238 sufficient condition, 3
Lee, R. C., 528 three-valued, 395
Left subtree, 66 trivially true, 4
Leftmost derivation, 178 truth table, 2, 349
Leibniz, Gottfried Wilhelm von, 73 two-valued, 395
Length vacuously true, 4

list, 39, 154, 590 zero-order, 493
path, 59 Logic circuit. See Digital circuit
string, 41 Logic gate, 578
tuple, 36 Logic program, 536

Less relation, 589 Logic programming, 533-553
Lexicographic order, 244 backtracking, 545
LIFO property, 592 breadth-first search strategy, 549
Linear order, 234 computation tree, 544
Linear probing, 110 depth-first search strategy, 544
Linearly ordered set, 234 SLD-resolution, 540
List, 39-41, 134-137, 153-159, 589-591 techniques, 549-553

computer representation, 40 Loop, 57

726 INDEX

Loop invariant, 474 Necessary condition, 3
Lower bound, 238 Negation, 2, 349, 573
Lub. See Least upper bound Negative literal, 506
Lucas, Eýdouard, 267, 332 Newman, J. R., 498

Lucas numbers, 267, 271 Newton-Raphson method, 172
Lukasiewicz, J., 384, 394 Node, 55, 63
Lusk, E., 530 Noether, Emmy, 244

Non sequitur, 347
Mallows, C. L., 171 Nonterminals, 176
Map function, 96, 158 Normal form
Mapping. See Function conjunctive, 362
Martelli, A., 520, 917 disjunctive, 360
Mathematical induction, 255, 260, 492 full conjunctive, 362
Matrix, 38 full disjunctive, 361
Matrix algebra, 569 fundamental conjunction, 360
Matrix multiplication, 276 fundamental disjunction, 362
Max function, 93 prenex, 424
Maximal element, 237 prenex conjunctive, 426
Meaning of a wff, 352, 406 prenex disjunctive, 426

Member, 13, 35, 590 Not. See Negation
Minimal CNF, 583 NOT gate, 578
Minimal DNF, 582 nth-order logic, 495
Minimal element, 237 Null set, 14
Minimal spanning tree, 68 Numeral, 43

Minimum condition, 244 binary, 43
Mod function, 82 decimal, 43
Modal logic, 395 Roman, 43

Model, 409
Modus ponens, 346, 370 Object, 13, 35
Modus tollens, 346, 371 Odd integers, 6
Monadic logic, 530 One-to-one correspondence, 102
Monoid, 567 One-to-one function, 100
Monomorphism, 625 Onto function, 100

Monotonic, 253 Operation table, 566
Montanari, U., 520 Operator. See Function

Monte Carlo method, 309 Optimal algorithm
Monus operation, 599 average case, 307
Morphism, 625, 623-629 problem, 274

epimorphism, 625 worst case, 275
homomorphism, 625 Or. See Disjunction
isomorphism, 625 OR gate, 578
language, 628 Order
monomorphism, 625 lower than, 338

MP. See Modus ponens of a logic, 495
MT. See Modus tollens of a predicate, 494

Multigraph, 57 of a quantifier, 494
Multiset, 29 of a wff, 494

same as, 334

n-colorable graph, 57 Order relation, 232-251
n-ovals problem, 318 Ordered pair, 36
n-tuple, 36 Ordered tree, 64
n-valued logic, 395 Ordered triple, 36
Nagel, E., 498 Ordinal numbers, 250-251
Natural deduction, 371,384, 413 finite, 250

Natural numbers, 15, 129-131, 146-150, infinite, 250
585-589 limit, 251

INDEX 727

Outdegree, 57 Permutations, 289-293
Overbeek, R., 530, 919 of a bag, 291

with replacement, 291
P (premise), 374 without replacement, 291
Pairs. See Pairs function Pigeonhole principle, 105, 179, 630
Pairs function, 92, 155 Planar graph, 57
Palindrome, 143, 186 Plus operation, 586
Pan, V., 276 Polish notation, 394
Parallel computation, 233 Polynomial algebra, 569
Paramodulation, 530 Pop operation, 592
Parent, 63 Poset. See Partially ordered set
Parse, 173 Poset diagram, 236
Parse tree, 173 Positive literal, 506
Partial correctness, 467 Postcondition, 467
Partial fraction, 324 Postfix evaluation, 593
Partial function, 87 Postorder traversal, 162, 600
Partial order, 234, 233-251 Power series algebra, 570

ascending chain, 236 Power set, 17
chain, 235 Power set problem, 164
descending chain, 235 Pre-image, 76
greatest element, 237 Precedence hierarchy, 351, 402
greatest lower bound, 238 Precondition, 467
Hasse diagram, 236 Predecessor, 236, 587
immediate predecessor, 236 Predicate, 398
immediate successor, 236 Predicate constants, 402
irreflexive, 235 Prefix expression, 47
least element, 237 Prefix of a string, 245
least upper bound, 238 Premise, 349
lower bound, 238 Prenex
maximal element, 237 conjunctive normal form, 426
minimal element, 237 disjunctive normal form, 426
minimum condition, 244 disjunctive/conjunctive normal
poset diagram, 236 form algorithm, 426
predecessor, 236 normal form, 424
reflexive, 235 normal form algorithm, 425
set, poset, 234 Preorder traversal, 161, 600
sorting problem, 239 Preserve a relation, 614
successor, 236 Preserve an operation, 624
topological sorting problem, 240 Prim, R. C., 68
upper bound, 238 Prim's algorithm, 68

Partial order theory, 463 Prime number, 6
Partially correct program, 467 Priority queue, 598
Partially decidable, 413 Probability, 298-309
Partially ordered set, 234 Bayes' theorem, 304
Partially solvable, 413 binomial distribution, 306
Partition, 219-225 conditional, 303

coarser, 222 discrete, 299
finer, 222 distribution, 300
refinement, 222 event, 299

Pascal, Blaise, iii, 295 expectation, 307
Pascal's triangle, 295 expected value, 307
Patashnik, 0., 343 independent events, 304
Paterson, M. S., 529 Monte Carlo method, 309
Path, 59 of an event, 300
Path problems, 204-209 random variable, 307
Peano, Giuseppe, 131, 586 sample point, 299

728 INDEX

Probability (continued) Proposition, 348
sample space, 299 Propositional calculus, 348-366
space, 299 contingency, 352

Procedure, 145 contradiction, 352
Product equivalence, 353

Cartesian 36, 140-141 normal forms, 358-365
language, 43 proposition, 348
notation, 150 Quine's method, 356

Production, 174 replacement rule, 355
indirectly recursive, 179 semantics, 351
recursive, 179 syntax, 350

Program correctness, 466-486 tautology, 352
array assignment axiom, 480 well-formed formula (wff),
assignment axiom, 468 350
composition rule, 471 Propositional variables, 350
consequence rule, 469 Public-key cryptosystem, 616
Hoare triple, 467 Push operation, 592, 700
if-then rule, 472
if-then-else rule, 473 QED, v
loop invariant, 474 Quantifier
partially correct, 467, 482 existential, 398
postcondition, 467 order of, 494
precondition, 467 scope, 403
state of computation, 482 symbols, 402
termination, 483 universal, 399
totally correct, 467, 482 Queue, 594
while rule, 474 Quine's method, 356

Program testing, 221
Progression R. See Resolution

arithmetic, 256 Random variable, 307
geometric, 258 Range, 75
sum of arithmetic, 257 Rational numbers, 15
sum of geometric, 258 Real numbers, 15

Project operation, 603, 606 Recurrences, 312-332
Proof, 2-12, 253-267, 369-381, 432-451 cancellation, 315

by contradiction, 9, 378 generating functions, 319-332

by exhaustive checking, 7 substitution, 313
conditional, 7, 372 Recursive grammar, 179
conditional proof rule, 373, 442 Recursive production, 179
contrapositive, 8 Recursively defined function, 145
direct, 7 Recursively defined procedure, 62,
formal proof, 372 145
from premises, 372 Recursively enumerable language,
if and only if, 10 805
indirect, 8 Reductio ad absurdum, 378
inductive, 253-267 Refinement, 222
informal, 2, 348 Reflexive, 194
inirect, 8 Reflexive closure, 199

mathematical induction, 253-259 Reflexive partial order, 235
reduction ad absurdum, 378 Refutation, 9
refutation, 9 Relation, 46-48, 194-251
resolution, 512, 521 binary, 46
structural induction, 262 congruence, 614
subproof, 374 empty, 47
well-founded induction, 259-261 equality, 47

Proper subset, 16 ternary, 46

INDEX 729

unary, 46 infinite, 15
universal, 47 null, 14

Relational algebra, 601-607 power set, 17
join, 603, 606 proper subset, 16
project, 603, 606 Russell's paradox, 30
select, 602, 605 singleton, 14

Relational database, 47, 601, 607 subset, 16
Relative complement, 22 uncountable, 117
Relatively prime, 80 universe of discourse, 23
Renaming rule, 421, 445 Set operations, 18-25
Repeated element problem, 163 complement, 23
Replacement rule, 355 difference, 22
Resolution, 413, 512-514, 521-530 intersection, 21

for a set of clauses, 524 relative complement, 22
proof, 513 symmetric difference, 23
requirements, 521 union, 19
rule for propositions, 513 Shamir, A., 616
rule for the general case, 522 Shortest distance algorithm, 208
theorem, 525 Shortest path algorithm, 208

Resolvant, 522 Sieve of Eratosthenes, 167
Right subtree, 66 Signature, 561
Ring, 568 Simp. See Simplification rule
Robinson, J. A., 413, 518, 525, 529 Simple sort, 286
Root, 63 Simplification rule, 371
Rooted tree, 63 Singleton, 14
RRR (remove, reason, restore), 433 Sink, 57
RSA algorithm, 616-620 Skolem, T., 507
RST. See Equivalence relation Skolem functions, 508
Ruskin, John, 127 Skolem's algorithm, 509
Russell, B., 30, 394 Skolem's rule, 508
Russell's paradox, 30 SLD-resolution rule, 540

Snyder, W., 530
Sample point, 299 Solvable, 413
Sample space, 299 Sorting a priority queue, 599
Satisfiable, 409 Sorting problem, 239
Scope, 403 Soundness, 384
Select operation, 602, 605 Source, 57
Semantics (meaning) Spanning tree, 68

higher-order logic, 496 Square root, 172
propositional wffs, 352 Stack, 592
quantified wfFs, 406 Standard order, 245

Semigroup, 567 Start symbol, 174, 176
Sentential form, 177, 718 State of a computation, 482
Seq. See Sequence function Stirling, James, 338
Sequence, 36 Stirling's formula, 338
Sequence function, 92 Stockmeyer, L. J., 815
Set, 13-31 Strassen, V., 276

cardinality, 26 String, 41-46, 132-133, 591-592
Cartesian product, 36, 140 alphabet, 41
countable, 116 concatenation, 42
De Morgan's laws, 25 empty, 41
disjoint, 21 language, 42
empty, 14 length, 41
equality, 14 Structural induction, 262
finite, 15 Subalgebra, 621
inductive definition, 128 Subbag, 29

730 INDEX

Subgraph, 59 root, 63
Subproof, 374 rooted tree, 63
Subset, 16 spanning tree, 68
Substitution, 514 subtree, 64
Subtree, 64 unordered, 64
Succ. See Successor function unrooted tree, 63
Successor, 236 Trivially true, 4
Successor function, 129 Truth function, 358
Sufficient condition, 3 Truth symbols, 350
Sum of bags, 29 Truth table, 2, 349
Summation facts, 282 Tuple, 35-39
Summation notation, 150 as a set, 54
Surjection, 101 empty, 36
Symmetric, 194 equality, 36
Symmetric closure, 200 length, 36
Symmetric difference, 23 n-tuple, 36

Two-valued logic, 395
T (theorem), 377 Type of a function, 75
Tail of list, 39, 134 Types, 30
Tautology, 352
Term, 402 UG. See Universal generalization
Terminals, 176 UI. See Universal instantiation
Termination condition, 483 Unary relation, 46
Testing a program, 221 Uncountable, 117
Theorem, 372 Undecidable, 413
Thoreau, Henry David, 502 Unfolding, 147
Three-valued logic, 395 Unification algorithm, 518, 520
Time-oriented task, 233, 238, 251 Unifier, 517
Top operation, 592 Union
Topologically sorted, 240 bag, 29
Total correctness, 506 counting rule, 26
Total function, 87 properties, 19
Total order, 234 set, 19
Totally correct program, 467 Unit clause, 536
Totally ordered set, 234 Unit element, 564
Towers of Hanoi, 332 Universal closure, 411
Transformation. See Function Universal generalization, 441
Transformation problem, 623 Universal instantiation, 434
Transitive, 194 Universal quantifier, 399
Transitive closure, 200 Universal relation, 47
Tree, 63-70 Universe of discourse, 23

ancestor, 63 Unordered tree, 64
binary search tree, 67 Unrooted tree, 63
binary tree, 66 Unsatisfiable, 409
branch, 63 Unsolvable, 413, 795
child, 63 Upper bound, 238
computer representation, 65
descendant, 63 Vacuously true, 4
free tree, 63 Valid, 409
height, depth, 63 Validity problem, 413
leaf, 63 Vector, 36
minimal spanning tree, 68 Venn diagram, 17
node, 63 Venn, John, 17
ordered, 64 Vertex, 55
parent, 63 degree, 57
parse, derivation,173 indegree, 57

INDEX 731

outdegree, 57
sink, 57
source, 57

Voltaire, 457

Warren, D. S., 549
Warshall, S., 205
Warshall's algorithm, 205
Wegman, M. N., 529
Weight, 58
Weighted graph, 58
Well-formed formula

first-order predicate calculus, 402
higher-order logic, 493
propositional calculus, 350

Well-founded induction, 259-261
Well-founded order, 242
Well-founded set, 242
Well-ordered set, 244
Wff. See Well-formed formula
While rule, 474
Whitehead, A. N., 30, 394
Winograd, S., 276
Worst case

analysis, 274
function, 275
input, 274
lower bound, 275
optimal, 275

Woes, L., 530

Zero element, 564

Zero-order logic, 493

Discrete* Mathematics
SSE C O N D E D I T I O N

James L. Hein
This introduction to discrete mathematics
prepares future computer scientists engineers,
and mnathematicians for success by providing
extensive and concentrated coverage of logic,
functions, algorithmic analysis, and algebraic
structures. Discrete Matbemawtics, Second Edition
illustrates the relationships between key
concepts through its thematic organization
and provides a seamless transition between
subjects. Distinct for the depth with which it
covers logic, this text emphasizes problem
solving and the application of theory as it
carefully guides the reader from basic to more
complex topics. Discrete Mathematics is an ideal
resource for discovering the fundamentals of
discrete math.

RFeatures
*•Includes over 1,500 exercises, with proofs and

challenges. Answers are provided for over half of
"the exercises.

* Each section contains updated material, and the
addition of new subject headings makes it easy to
identify topics.

*Algorithms- are- prese-nted in a variety o4 ways, to
accommodate a multitude of learning styles.C:

. .ISBN 0-7637 2210-3

...ws..n.d]3'attlett Pubfi!I[III 90000
40all Pii "Dr

lit- -w~b~O 91787 722104--

