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Preface

Today an increasing proportion of the applications of mathematics involves dis-
crete rather than continuous models. The main reason for this trend is the integra-
tion of the computer into more and more of modem society. This book is intended
for a one-semester introductory course in discrete mathematics.

Prerequisites Even though a course taught from this book requires few for-
mal mathematical prerequisites, students are assumed to have the mathematical
maturity ordinarily obtained by taking at least two years of high school mathe-
matics, including problem-solving and algorithmic skills, and the ability to think
abstractly.

Approach This book has a strong algorithmic emphasis that serves to unify the
material. Algorithms are presented in English so that knowledge of a particular
programming language is not required.

Choice of Topics The choice of topics is based upon the recommendations of
various professional organizations, including those of the MAA's Panel on Dis-
crete Mathematics in the First Two Years, the NCTM's Principles and Standards
for School Mathematics, and the CBMS 's recommendations for the mathematical
education of teachers.

Flexibility Although designed for a one-semester course, the book contains
more material than can be covered in either one semester or two quarters. Con-
sequently, instructors will have considerable freedom to choose topics tailored to
the particular needs and interests of their students. Users of previous editions have
reported considerable success in courses ranging from freshman-level courses for
computer science students to upper-level courses for mathematics majors. The
present edition continues to allow instructors the flexibility to devise a course that
is appropriate for a variety of different types of students.

Changes in the Fourth Edition At the suggestion of several users of the third
edition, additional historical comments have been added; these are included at
the end of each chapter. In addition, Chapters 3 and 4 have been rewritten so as
to give the breadth-first search algorithm a more prominent role. (It now appears
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iv Preface

in Section 3.3 and is used in Sections 3.4 and 4.2.) Many examples in Chapters 3
and 4 have also been rewritten to be more useful to instructors who do not wish
to discuss the details of the formal presentations of the algorithms. These ex-
amples now precede the algorithms and better reveal how the algorithms work
without requiring discussion of the formal algorithms themselves. The previ-
ously separate sections on sparning trees and minimal and maximal spanning
trees have been combined into a new Section 4.2, and the introductory material
on matrices has been removed from Chapter 3 and placed in a new appendix
(Appendix B). Another new appendix (Appendix C) describes the looping and
branching structures used in the book's algorithms. Additional changes to the
exposition have also been made Throughout the book to improve the clarity of the
writing.

Exercises The exercise sets in this book have been designed for flexibility.
Many straightforward computational and algorithmic exercises are included after
each section. These exercises give students hands-on practice with the concepts
and algorithms of discrete mathematics and are especially important for students
whose mathematical backgrounds are weak. Other exercises extend the material
in the text or introduce new concepts not treated there. Exercise numbers in
color indicate the more challenging problems. An instructor should choose those
exercises appropriate to his or her course and students. Answers to odd-numbered
computational exercises appear at the end of the book. At the end of each chapter,
a set of Supplementary Exercises is provided. These reprise the most important
concepts and techniques of the chapter and also explore new ideas not covered
elsewhere.

ChapterIndependence The sequence of chapters allows considerable flexibil-
ity in teaching a course from this' book. The following diagram shows the logical
dependence of the chapters. The dashed line indicates that only the initial sec-
tions of Chapter 3 are needed fer Chapter 5. Although this book assumes only
the familiarity with logic and proof ordinarily gained in high-school geometry, an
appendix (Appendix A) is provided for those who prefer a more formal treatment.
If this appendix is covered, it may be taught at any time as an independent unit
or in combination with Chapter St.

(1) An Introduction to [Appendix: An
Combinatorial Problems Introduction to
and Techniques Logic and Proof]

(2) Seis, Relations, and Functions

(3) Graphs (7) Counting (8) Recurrence (9) Combinatorial
Techniques Relations and Circuits and

Generating Functions Finite State
Machines

(4) Trees (5) Matching (6) Network Flows
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Chapters 1 and 2 are introductory in nature. Chapter 1, which should be
covered fairly quickly, gives a sampling of the sort of discrete problems the course
treats. Some questions are raised that will not be answered until later in the book.
Section 1.4 contains a discussion of complexity that some instructors may want
to omit or delay until students have had more experience with algorithms. An
instructor may wish to cover only the illustrative algorithms in this section that
are most relevant to his or her students.

Chapter 2 reviews various basic topics, including sets, relations, functions,
and mathematical induction. It can be taught more or less rapidly depending on
the mathematical backgrounds of the students and the level of the course. It should
be possible for students with good mathematics backgrounds to be able to read
much of Chapter 2 on their own. The remaining chapters are, as the diagram
shows, independent except that Chapters 4 and 6 depend on Chapter 3, and the
beginning concepts of Chapter 3 are needed in Chapter 5.

Possible Courses A course emphasizing graph theory and its applications would
cover most of Chapters 3-6, while a course with less graph theory would omit
Chapters 5 and 6 and concentrate on Chapters 7-9. Two sample three-semester-
hour courses along these lines are indicated below.

First Course Second Course

Chapter Hours Chapter Hours

1 4 1 (skip 1.4) 3

2 6 2 6

3 6 3 6

4 7 4 6

5 6 7 8

6 4 8 5

7 8 Appendix 3

9 4

Courses of various levels of sophistication can be taught from this book. For
example, the topic of computational complexity is of great importance, and so
attention is given to the complexity of many algorithms in this text. Yet it is a
difficult topic, and the detail with which it is treated should correspond to the
intended level of the course and the preparation of students.

Computer Projects Each chapter ends with a set of computer projects related
to its content, algorithmic and otherwise. These are purposely stated in general
terms, so as to be appropriate to students using various computing systems and
languages.

Supplements A Student's Solution Manual, available for purchase by students,
provides detailed, worked-out solutions to the odd-numbered exercises. To
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order, use ISBN 0-201-75483-:. An Instructor's Answer Manual, containing
answers to all even-numbered computational exercises, is also available. (ISBN
0-201-75482-7).
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To the Student

This book is concerned with the discrete, that is, finite processes and sets of
elements that can be listed. This contrasts with calculus, which has to do with
infinite processes and intervals of real numbers.

Although discrete mathematics has been around for a long time, it has enjoyed
a recent rapid expansion, paralleling the growth in the importance of computers.
A digital computer is a complicated, but essentially finite, machine. At any given
time it can be described by a large, but finite, sequence of Os and Is, corresponding
to the internal states of its electronic components. Thus discrete mathematics is
essential in understanding computers and how they can be applied.

An important part of discrete mathematics has to do with algorithms, which
are explicit instructions for performing certain computations. You first learned
algorithms in elementary school, for arithmetic is full of them. For example, there
is the long division algorithm, which might cause an elementary school student
to write down something like the following tableau.

32
13)425

39
35
26

9

Internally, the student is applying certain memorized procedures: There are three
13s in 42, 3 times 13 is 39, 42 minus 39 is 3, bring down the 5, etc. These
procedures comprise the algorithm.

Another example of an algorithm is a computer program. Suppose a small
business wants to identify all customers who owe it more than $100 and have
been delinquent in payments for at least 3 months. Even though the company's
computer files contain this information, it constitutes only a small portion of their
data. Thus a program must be written to sift out exactly what the company wants
to know. This program consists of a precise set of instructions to the computer,
covering all possibilities, that causes it to isolate the desired list of customers.

Our two examples of algorithms are similar in that the entity executing the
algorithm does not have to understand why it works. Students in elementary
school generally do not know why the long division algorithm gives the correct
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Xiv To the Student

answer, only what the proper steps are. Of course, a computer doesn't understand
anything; it just follows orders (and if its orders are incorrect, so that the program
is wrong, the computer will dutifully produce the wrong answer).

If you are taking a course using this book, however, you are no longer in
elementary school and you are a human being, not a computer. Thus you will be
expected to know not only how :ur algorithms work, but why.

We will investigate some algorithms you probably have never seen before.
For example, suppose you are p inning to drive from Miami, Florida, to Seattle,
Washington. Even if you stick to the interstate highways, there are hundreds of
ways to go. Which way is the shortest? You might get out a map and, after playing
around, find a route you though'n was shortest, but could you be sure?

There is an algorithm that you could apply to this problem that would give you
the correct answer. Better yet, you could program the algorithm into a computer,
and let it find the shortest route. That algorithm is explained in this book.

We will be interested not only in the how and why of algorithms, but also
in the how long. Computer time can be expensive, so before we give a computer
a job to do we may want an estimate of how long it will take. Sometimes the
surprising answer is that the comT putation will take so long as to make a computer
solution impractical, even if we use the largest and fastest existing machines. It is
a popular but incorrect idea that computers can do any computation. No computer
can take the data from the wo -dIs weather stations and use it to predict future
weather accurately more than a few days in advance. The fact that no one knows
how to do certain computations e fficiently can actually be useful. For example, if
n is the product of two primes of about 150 decimal digits, then to factor n takes
hundreds of years (even using l'e best methods and computers known), and this
is the basis of an important system of cryptography.

You have probably already heard a number of times that mathematics is not a
spectator sport, and that the only way to learn mathematics is by doing it. There is
an important reason we are repeating this advice here. IT'S TRUE! Moreover, it's
the best thing we know to tell you. You can't learn to play the guitar or shoot free
throws just by watching someone else do these things, and you can't learn discrete
mathematics just by reading this book or attending lectures. The mind must be in
gear and active. When reading a mathematics book, you should always have
paper and pencil handy to work out examples and the details of computations.
When attending a mathematics lecture, it is best if you have read the material
already. Then you can concentrate on seeing if your understanding of the content
agrees with that of the professor, and you can ask questions about any difficult
points.

Of course, one of the best ways to be active in learning mathematics is by
doing exercises. There are many of these in this book. Some are purely com-
putational, others test understanding of concepts, and some require constructing
proofs. Answers to odd-numbered computational exercises are in the back of the
book, but don't look before you have determined your own answer. If your work
consistently gives the same answer as in the back of the book, then you can have
confidence that you are on the :-i ght track.
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Some exercises are harder than others. The more time you spend on such
exercises, the more you learn. There is a common notion (reinforced by some
courses) that if you can't figure out how to do a problem in five minutes you
should go on to the next problem. This attitude becomes less and less relevant the
more skillful you become. Very few accomplishments of any importance can be
done in five minutes.

Many students do not realize the importance of learning the technical lan-
guage of what they are studying. It is traditional in mathematics to assign special
meaning to short, common words such as set,function, relation, graph, tree, net-
work. These words have precise definitions that you must learn. Otherwise, how
can you understand what you read in this book, or what your professor is saying?
These technical words are necessary for efficient communication. How would
you like to explain a baseball game to someone if you were not allowed to use the
particular language of that sport? Every time you wanted to say that a pitch was a
ball, you would have to say that it was a pitch that was not in the strike zone and
that the batter didn't swing at it. For that matter, strike zone is a technical term
that would also need an explanation in each instance. Communication on such a
basis would be almost impossible.

Finally, proper terminology is necessary to share information in a useful way
with others. Mathematics is a human endeavor, and human cooperation depends
on communication. In the real world, it is seldom sufficient simply to figure
something out. You must be able to explain it to other people, and to convince
them that your solution is correct.

We hope your study of discrete mathematics is successful, and that you get
from it techniques and attitudes that you will find useful in many contexts.



An Introduction to
Combinatorial Problems
and Techniques
1.1 The Time to Complete a Project

1.2 A Matching Problem
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1.4 Algorithms and Their Efficiency

Combinatorial Analysis is an area of mathematics concerned with solving
problems for which the number of possibilities is finite (though possibly quite
large). These problems may be broken into three main categories: determin-
ing existence, counting, and optimization. Sometimes it is not clear whether a
certain problem has a solution or not. This is a question of existence. In other
cases, solutions are known to exist, but we want to know how many there are.
This is a counting problem. Or we may desire a solution that is "best" in some
sense. This is an optimization problem. We will give a simple example of each
type.

Four married couples play mixed doubles tennis on two courts each Sunday night.
They play for two hours, but switch partners and opponents after each half-hour
period. Does a schedule exist so that each man plays with and against each woman
exactly once, and plays against each other man at least once?

A six-person investment club decides to rotate the positions of president and
treasurer each year. How many years can pass before they will have to repeat the
same people in the same offices?

An employer has three employees, Pat, Quentin, and Robin, who are paid $6,
$7, and $8 per hour, respectively. The employer has three jobs to assign. The
following table shows how much time each employee requires to do each job.

1



2 Chapter I An Introduction to Combinatorial Problems and T'chniques

Pat Quentin Robin

Job 1 7.5 hr 6 hr 6.5 hr

Job 2 8 hr 8.5 hr 7 hr

Job 3 5 hr 6.5 hr 5.5 hr

How should the employer assign one job to each person to get the work done as
cheaply as possible?

Often the solution we develop for a combinatorial problem will involve an
algorithm, that is, an explicit step-by-step procedure for solving the problem.
Many algorithms lend themselv s well to implementation by a computer, and the
importance of combinatorial mathematics has increased because of the wide use
of these machines. However, even with a large computer, solving a combinatorial
problem by simply running through all possible cases is often impossible. More
sophisticated methods of attack are needed. In this chapter we will present more
complicated examples of combinatorial problems and some analysis of how they
might be solved.

1.1 + THE TIME TO COMPLETE A PROJECT

A large department store is having a Fourth of July sale (which will actually
start July 2), and plans to send out an eight-page advertisement for it. This
advertisement must be mailed out at least 10 days before July 2 to be effec-
tive, but various tasks must be done and decisions made first. The department
managers decide which items in stock to put on sale, and buyers decide what
merchandise should be brought in for the sale. Then a management commit-
tee decides which items tc put in the advertisement and sets their sale
prices.

The art department prepare s pictures of the sale items, and a writer provides
copy describing them. Then the final design of the advertisement, integrating
words and pictures, is put together.

A mailing list for the advertisement is compiled from several sources, de-
pending on the items put on sale. Then the mailing labels are printed. After the
advertisement itself is printed, labels are attached, and the finished product, sorted
by zip code, is taken to the post office.

Of course, all these operations take time. Unfortunately, it is already June 2,
so only 30 days are available far the whole operation, including delivery. There
is some concern whether the advertisements can be gotten out in time, and so
estimates are made for the number of days needed for each task, based on past
experience. These times are l sted in the table below.
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Task Time in Days

Choose items (department managers) 3

Choose items (buyers) 2

Choose and price items for ad 2

Prepare art 4

Prepare copy 3

Design advertisement 2

Compile mailing list 3

Print labels I

Print advertisement 5

Affix labels 2

Deliver advertisements 10

If the time needed for all the jobs is added up, we get 37 days, which is more
than is available. Some tasks can be done simultaneously, however. For example,
the department managers and the buyers can be working on what they want to put
on sale at the same time. On the other hand, many tasks cannot even be started
until others are completed. For example, the mailing list cannot be compiled until
it is decided exactly what items will be advertised.

In order to examine which jobs need be done before which other jobs, we
label them A, B. . . , K and list after each job any job which must immediately
precede it.

Task Preceding Tasks

A Choose items (department managers) None

B Choose items (buyer) None

C Choose and price items for ad A, B

D Prepare art C

E Prepare copy C

F Design advertisement D, E

* Compile mailing list C

H Print labels G

I Print advertisement F

J Affix labels H, I

K Deliver advertisements J

For example, the letters A and B are listed after task C because the items to
be advertised and their prices cannot be decided until the department managers
and buyers decide what they want to put on sale. Likewise, the letter C is listed
after task D because the art cannot be prepared until the items to be advertised are
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decided. Notice that tasks A and B must also precede the preparation of the art,
but this information is omitted because it is implied by what is given. That is,
since A and B must precede C, and since C must precede D, logically A and B
must go before D also, so this need not be said explicitly.

Let us assume that workers are available to start on each task as soon as it
is possible to do so. Even so, it is not clear whether the advertisement can be
prepared in time, although we have all the relevant information. Here we have a
problem of existence. Does a schedule exist that will allow the advertisement to
be sent out in time for the sale?

Sometimes a body of information can be understood more easily if it is presented
in graphical form. Let us repres nt each task by a point, and draw an arrow from
one point to another if the task represented by the first point must immediately
precede the task represented byt the second. For example, tasks A and B must
precede task C, and C must precede D, so we start as in Figure 1.1.

Ae.

D

Be

FIGURE 1.1

Continuing in this way produces the diagram of Figure 1.2(a). Note that the
appearance of the diagram is not uniquely determined. For example, Figure 1.2(b)
is consistent with the same information.

(a) (b)

FIGURE 1.2

If we agree that all arrows go from left to right, we can omit the arrowheads,
which we will do from now on.

This picture makes the whole project seem somewhat more comprehensible,
but we must still take into account the time needed to do each task. Let us introduce
these times into our diagram in Figure 1.3 by replacing each point with a circle
containing the time in days needed for the corresponding task.
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A G H

FIGURE 1.3

Now we will determine the smallest number of days after the start of the
whole project in which each task can be finished. For example, task A can be
started at once, so it will be done after 3 days. We will write the number 3 by the
corresponding circle to indicate this. Likewise, we write a 2 by circle B.

How we treat task C is the key to the whole algorithm we will develop. This
task cannot be started until both A and B are done. This will be after 3 days,
since that is the time needed for A. Then task C will take 2 days. Thus, 5 days are
needed until C can be completed, and this is the number we write by the circle
for C. So far our diagram looks as in Figure 1.4.

A3 G H

FIGURE 1.4

We carry on in the same fashion. Notice that if more than one line comes
into a point from the left, then we add to the time for that point the maximum of
all the incoming times to determine when it can first be completed. For example,
it will take 9 days until D is finished and 8 days until E is finished. Since task F
must wait for both of these, it will not be done for

(maximum of 8 and 9) + 2 = 11 days.

The reader should check the numbers on the completed diagram in Figure 1.5.

A3 G8 H9

C5

2

FIGURE 1.5



6 Chapter I An Introduction to Combinatorial Problems and Techniques

We see that the advertisement can be produced and delivered in 28 days, in
time for the sale!

( i ifu V0 ad SAgigt Ana{esisL~iQ

The method just described is c ailed PERT, which stands for Program Evaluation
and Review Technique. The PERT method (in a somewhat more complicated
form) was developed in 1958 for the U.S. Navy Polaris submarine and missile
project, although similar techniques were invented at about the same time at the
E.I. du Pont de Nemours chem ical company and in England, France, and Germany.
Its usefulness in scheduling and estimating completion times for large projects,
involving hundreds of steps an(d subcontracts, is obvious, and in various forms it
has become a standard industrial technique. Any large library will contain dozens
of books on the subject (look. wander PERT, Critical Path Analysis, or Network
Analysis).

More information may be gleaned from the diagram we have just created.
Let us work backward, starting from task K, and see what makes the project take
all of 28 days. Clearly it takes 28 days to finish K because it is 18 days until J is
completed. Tasks H and I lead into J, but it is the 16 days needed to finish I that is
important. Of course, task [ camnot be completed before F is finished. So far we
have traced a path back from K to F as shown in color in Figure 1.6.

A3 G8 H9

C~' D

B2 2 - Fl 116 J18 K28

\E8/

FIGURE 1.6

In the same way, we work back from F to D (since the reason it takes 11 days
to finish F is that it cannot be started until the 9 days it takes to complete D),
then C, and finally A. The paw A-C-D-F-I-J-K (which is in color in Figure 1.7)
is called a critical path. The method of identifying the path is called the critical
path method.

A3 G8 H9

3CS D1

B2 a - 1Fi 116 Ji8 K28

FES /

FIGURE 1.7
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A critical path is important because the tasks on it are those that determine
the total project time. If this time is to be reduced, then some task on a critical
path must be done faster. For example, if the mailing list is compiled in 2 days
instead of 3, it will still take 28 days to prepare and deliver the advertisement,
since compiling the list (task G) is not on a critical path. Shortening the printing
time (task I) by a day, however, would reduce the total time to 27 days; I is on the
critical path. (Note, however, that changing the time for one task may change the
critical path, altering whether or not the other tasks are on it.)

A d d;. ta, u!(,0.XA'K Exm n A

The following table gives the steps necessary in building a house, the number of
days needed for each step, and the immediately preceding steps.

Task Time in Days Preceding Steps

A Site preparation 4 None

B Foundation 6 A
C Drains and services 3 A
D Framing 10 B

E Roof 5 D
F Windows 2 E

G Plumbing 4 C, E
H Electrical work 3 E
I Insulation 2 G, H
J Shell 6 F
K Drywall 5 1, J
L Cleanup and paint 3 K

M Floors and trim 4 L
N Inspection 10 I

We prepare the diagram in Figure 1.8 showing times and precedences. Work-
ing first from left to right, then from right to left, we find the total times to
complete each task, and determine the critical path, which is marked with color
in Figure 1.9. The only decision to be made in finding it comes in working back
from K, where the 33 days needed to complete J is what is important. We see
that a total of 45 days are needed to build the house, and the critical path is
A-B-D-E-F-J-K-L-M.

A B D E F J K L M

C G I/ N

FIGURE 1.8

A4 B lO D20 E25 F27 J33 K38 L41 M45

\ \\H28

C7 G2 It N4
3 2 1 1

FIGURE 1.9



8 Chapter I An Introduction to Combinatorial Problems and Techniques

The technique of represen i-ig a problem by a diagram of points, with lines be-
tween some of them, is useful in many other situations and will be used throughout
this book. The formal study off iuch diagrams will begin in Chapter 3.

EXERCISES 1.1

In Exercises 1-8 use the PERT method to determine the total project time and all the critical paths.

1. A B D F G

CI E

3. A C E

G

B \D F

5. A D H K

7. A C D G I

B F H j

.8s .3 .6 .

2. B D

A EG

C/ F

4. B E G H

AC F

D

9 5}

6. A C E G

B /D FOH

8. B E

An H
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In Exercises 9-16 a table is given telling the time needed for each of a number of tasks and which tasks must
immediately precede them. Make a PERT diagram for each problem, and determine the project time and critical
path.

10.9.

11

Task Time Preceding Tasks

A 5 None

B 2 A

C 3 B

D 6 A

E I B,D

F 8 B,D

G 4 C,E,F

Task Time Preceding Tasks

A 3 None

B 5 None

C 4 A,B

D 2 A,B

E 6 C,D

F 7 C,D

G 8 E,F

Task Time Preceding Tasks

A 3.3 None

B 2.1 None

C 4.6 None

D 7.2 None

E 6.1 None

F 4.1 A,B

G 1.3 B,C

H 2.0 F,G

1 8.5 D,E,G

J 6.2 E,H

14.

Task Time Preceding Tasks

A 5 None

B 6 A

C 7 A

D 10 B

E 8 B,C

F 7 C

G 6 D,E,F

Task Time Preceding Tasks

A 10 None

B 12 None

C 15 None

D 6 A,C

E 3 A,B

F 5 B,C

G 7 D,F

H 6 D,E

I 9 E,F

Task Time Preceding Tasks

A 6 None

B 9 A,D

C 10 B,I

D 8 None

E 9 B

F 13 I

G 5 C,E,F

H 9 None

1 6 D,H

12.

13
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15. 16.
Task Time Preceding Tasks

A .05 None

B .09 A

C .10 A, F

D .07 B, C

E .02 None

F .04 E

G .11 E

H .09 F,G

I .06 D, H

Task Time Preceding Tasks

A 11 None

B 13 None

C 12 None

D 14 None

E 8 A,C,D

F 6 A,B,D

G 10 A,B,C

H 5 B,C,D

1 9 E,F,H

J 7 F,G,H

17. A small purse manufacturer has a single machine that makes the metal parts of a purse. This takes 2 minutes.
Another single machine makes the cloth parts in 3 minutes. Then it takes a worker 4 minutes to sew the cloth
and metal parts together. Only one worker has the ski! I to do this. How long will it take to make 6 purses?

18. What is the answer to the previous problem if the wotker can do the sewing in 2 minutes?
19. A survey is to be made of grocery shoppers in Los An geles, Omaha, and Miami. First, a preliminary telephone

survey is made in each city to identify consumers in certain economic and ethnic groups willing to cooperate,
and also to determine what supermarket characteristics they deem important. This will take 5 days in Los
Angeles, 4 days in Miami, and 3 days in Omaha. After the telephone survey in each city, a list of shoppers to
be visited in person is prepared for that city. This takes 6 days for Miami and 4 days each for Omaha and Los
Angeles. After all three telephone surveys are made, a standard questionnaire is prepared. This takes 3 days.
When the list of consumers to be visited has been prepared and the questionnaire is ready, the questionnaire is
administered in each city. This takes 5 days in Los Angeles and Miami and 6 days in Omaha. How long will it
take until all three cities are surveyed?

1.2 + A MATCHING PROBLEM

fhe;%11 ProblemWBip

An airline flying out of New York has seven long flights on its Monday morning
schedule: Los Angeles, Seattle, London, Frankfort, Paris, Madrid, and Dublin.
Fortunately, seven capable pilots are available: Alfors, Timmack, Jelinek, Tang,
Washington, Rupp, and Ramirez. There is a complication, however. Pilots are
allowed to request particular destinations, and these requests are to be honored if
possible. The pilots requesting each city are listed below.

Los Angeles: Timmack, Jelinek, Rupp
Seattle: Alfors, Timmack Tang, Washington
London: Timmack, Tang, Washington
Frankfort: Alfors, Tang, Rupp, Ramirez
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Paris: Jelinek, Washington, Rupp
Madrid: Jelinek, Ramirez
Dublin: Timmack, Rupp, Ramirez

This information could also be represented by a diagram (Figure 1.10(a)),
where we draw a black line between a city and a pilot if the former is on the
pilot's request list.

Los Angeles

Seattle

London

Frankfort

Paris

Madrid

Dublin

Alfors

Timmack

Jelinek

Tang

Washington

Rupp

Ramirez

(a)

Los Angeles v - Alfors

Seattle * * Timmack

London * * Jelinek

frankfort * Tang

Paris * Washington

Madrid * * Rupp

Dublin e - Ramirez

(b)

FIGURE 1.10

The person assigning the flights would like to please all the pilots if this can
be done, and if not, would like to accommodate as many as possible. This may
be thought of as an optimization problem. We desire a matching of pilots with
flights such that the number of pilots who get flights they have requested is as
large as possible.

Let us start with a very crude attack on our matching problem. We could simply
list all possible ways of assigning one pilot to each flight, and count for each the

l1
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number of pilots who are assigned to flights they requested. For example, one
matching would be to take the flights and pilots in the order they were listed.

Flight Pilot Requested?

Los Angeles Alfors No

Seattle Timmack Yes

London Jelinek No

Frankfort Tang Yes

Paris Washington Yes

Madrid Rupp No

Dublin Ramirez Yes

This matching is indicated by he colored lines in Figure 1.10(b). Here four of
the pilots would get flights they want, but perhaps a different matching would do
even better.

If we agree always to list the flights in the same order, say that of our original
list, then an assignment will be determined by some arrangement of the seven
pilots' names. For example, the arrangement

Timmack, Alfors, Jelinek, Tang, Washington, Rupp, Ramirez

would send Timmack to Los Angeles and Alfors to Seattle, while assigning the
same pilots to the other flights is previously. Likewise, the arrangement

Ramirez, Rupp, Washington, Tang, Jelinek, Timmack, Alfors

would send Ramirez to Los Angeles, Rupp to Seattle, etc. The reader should
check that this matching will accommodate only three pilots' wishes.

Several questions come lo mind concerning our plan for solving this
problem.

(1) How much work will this be? In particular, how many arrangements will
we have to check?

(2) How can we generate all possible arrangements so that we are sure we have
not missed any?

The second question is somewhat special, and we will not answer it until
Chapter 7, but the first quest cn is easier. (Note that it is a counting problem.)
In order to make the count., we will invoke a simple principle that will be useful
many times in this book.

Pi''D XD 4C Consider a procedure that is composed of a se-

quence of k steps. Suppose that the first step can be performed in nI ways, and
for each of these the second ste 3 can be performed in n2 ways, and, in general, no
matter how the preceding steps are performed, the ith step can be performed in
ni ways (i = 2, 3, . .. , k). Then the number of different ways in which the entire
procedure can be performed is n I n2 ... . nk
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Example 1.1

A certain Japanese car is available in 6 colors, with 3 different engines and either
a manual or automatic transmission. What is the total number of ways the car can
be ordered?

We can apply the multiplication principle with k = 3, n1 = 6, n2 = 3, and
n3 = 2. The number of ways is (6)(3)(2) = 36. +

Now we return to the problem of counting the number of ways the 7 flights
can be assigned. Let us start with the Los Angeles flight. There are 7 pilots who
can be assigned to it. We pick one, and turn to the Seattle flight. Now only 6 pilots
are left. Choosing one of these leaves 5 from which to pick for the London flight.
We can continue in this manner all the way to the Dublin flight, at which time
only I pilot will be left. Thus, the total number of matchings we can devise will
be7 .6. 5 4 3 .2 1.

The same argument will work whenever we have the same number of flights
and available pilots, producing

n(n - 1)(n-2)... 3.2.1

possible matchings if there are n flights and n pilots.

The reader is probably aware that there is a shorter notation for a product of the
type we just developed. If n is any nonnegative integer, we define n factorial,
which is denoted by n!, as follows:

O! = l, l! = l, 2! = 1 2, and,ingeneral, n! = 1- 2... (n -)n.

Notice that if n > 1, then n! is just the product of the integers from 1 to n.
By a permutation of a set of objects, we mean any ordering of those objects.

For example, the penrmutations of the letters a, b, and c are:

abc, acb, bac, bca, cab, cba.

The analysis of the number of matchings when there are n flights and n pilots can
be modified to prove the following result.

Theorem 1.1 There are exactly n! permutations of a set of n objects.

There is a generalization of the idea of apermutation that often arises. Suppose
in the flight assignment problem the flights to Madrid and Dublin are cancelled
because of bad weather. Now 7 pilots are available for the 5 remaining flights.
There are 7 ways to choose a pilot for the Los Angeles flight, then 6 pilots to
choose from for the Seattle flight, etc. Since only 5 pilots need be chosen, there
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are a total of

7 6 5 4 .3

possible ways to make the assignments. (Notice that this product has 5 factors.)
The same argument works in general.

Theorem 1.2 The number of ways an ordered list of r objects can be chosen without repetition
from n objects is

n~nnn(n -- 1)(n - r + 1)=(n )

Proof: The first object can be chosen in n ways, the second in n -1 ways,
etc. Since it is easy to check that the product on the left has r factors, by the
multiplication principle it counts the total number of arrangements. As for the
second expression, note that

n(n-) ... (n -r- )

n(n - 1).. - r + l)(n - r)(n - r - 1)... 2 1
(ae-r)(n- r - 1) ... 2l

n!
(n -r)!

' Example 1.2

The junior class at Taylor High School is to elect a president, vice-president, and
secretary from among its 30 members. How many different choices are possible?

We are to choose an ordered list of 3 officers from 30 students. The number
of possibilities is

30 29 28 = 24,360. v

The number of ordered lists of r objects which can be chosen without repe-
tition from n objects is denoted by P(n, r). These lists are called permutations
of n objects, taken r at a time. For example, we have just seen that P (30, 3) -

24,360, and, in general, according to the last theorem,

P (n, r) = -r)
(n-)

hae Pracfica..|Rfil, a,@ OpU" l Ou,{ 4giot7l,7 ii the Ai.r inle ProhWl;,etnp9

We were going to run through all the ways of assigning a pilot to each of the 7
flights to see which would please the most pilots. We now know the number of
possible assignments is 7! = 'i040. This number is large enough to discourage
us from trying this method by hand. If a computer were available, however, the
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method would look more promising. We would need a way to tell the computer
how to generate these 5040 permutations, that is, an algorithm. This would amount
to an explicit answer to question (2) asked earlier.

Of course, 7 flights and 7 pilots are really unrealistically small numbers. For
example, at O'Hare field in Chicago an average of more than 1100 airplanes take
off every day. Let us consider a small airline with 20 flights and 20 pilots to assign
to them, and consider the practicality of running through all possible assignments.
The number of these is 20!, which we calculate on a hand calculator to be about
2.4. 1018. This is a number of 19 digits, and a computer is apparently required.
Let us suppose our computer can generate one million assignments per second
and check for each of them how many pilots get their requested flights. How long
would it take to run through them all?

The answer is not hard to calculate. Doing 2.4. 1018 calculations at 1,000,000
per second would take

2.4. 1018= 2.4. 1012 seconds,
1,000,000

2.4 1012
or 60 = 4 -10 minutes,

4~ 1010
or 60 6.7. 108 hours,

60

6.7 108
or 24 2.8 0 days,

2.8. i07
or 2.8 1 7.6. 104 years.

365

The calculation would take about 76,000 years, just for 20 flights and 20 pilots.
The point of this calculation is that even with a computer you sometimes

have to be clever. In Chapter 5 we will explain a much more efficient way to solve
our matching problem. This method will allow a person to handle 7 flights and
7 pilots in a few minutes, and a computer to deal with hundreds of flights and
pilots in a reasonable time.

EXERCISES 1.2

In Exercises 1-16 calculate the number shown.
8! 7!

1. 5! 2. 6! 3. ! 4. -
3! 4!

8. 2! 6. 9! 7. P(7,4) 8. P(8,4)
2! 6! 3! 6!

9. P(10, 7) 10. P(1l,9) 11. 4(9 ) 12. (I0, 2)
5! 3! 5!

13. P(6, 6) 14. P(7, 7) 15. P(8, 3) 16. P (9, 5)
P (3, 3 ) P (5, 5)
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17. A baseball manager has decided who his 9 starting hitters are to be, but not the order in which they will bat.
How many possibilities are there?

18. A president, vice president, and treasurer are to be chosen from a club with 7 members. In how many ways can
this be done?

19. A music company executive must decide the order in which to present 6 selections on a compact disk. How
many choices does she have?

20. A Halloween makeup kit contains 3 different moustaches, 2 different sets of eyebrows, 4 different noses, and
a set of ears. (It is not necessary to use any moustache, etc.) How many disguises using at least one of these
items are possible?

21. A man has 5 sport coats, 4 pairs of slacks, 6 shirts, and [ tie. How many combinations of these can he wear, if
he must wear at least slacks and a shirt?

22. Different prizes for first place, second place, and third pl ice are to be awarded to 3 of the 12 finalists in a beauty
contest. How many ways is this possible?

23. Seven actresses have auditioned for the parts of the three daughters of King Lear: Goneril, Regan, and Cordelia.
In how many ways can the roles be filled?

24. A farmer with 7 cows likes to milk them in a different order each morning. How many days can he do this
without repeating?

25. A busy summer resort motel has 5 empty rooms and 3 1 ravelers who want rooms. In how many ways can the
motel manager assign a room of his or her own to each guest?

26. An Alaskan doctor visits each of 5 isolated settlements by plane once a month. He can use either of two planes,
but once he starts out he visits all 5 settlements in some order before returning home. How many possibilities
are there?

27. A tennis coach must pick her top 6 varsity and top 6 junior varsity players in order from among 9 varsity and
11 junior varsity players. In how many ways is this possible?

28. A dinner special for 4 at a Chinese restaurant allows one shrimp dish (from 3), one beef dish (from 5), one
chicken dish (from 4), and one pork dish (from 4). Each diner can also choose either soup or an egg roll. How
many different orders might be sent to the kitchen?

29. How many ways can 6 keys be placed on a circular key ring? Both sides of the ring are the same, and there is
no way to tell which is the "first" key on the ring.

30. Show that if n > 1, then P(n, 2) = n2 _ n.

31. Show that if n > 0, then P(n, n- 1) = n!.

32. Show that if 0 < 2r < n, then P(n r) , r)
P (n, r)

1.3 c A KNAPSACK PROBLEM

A U.S. shuttle is to be sent to a space station in orbit around the earth, and
700 kilograms of its payload are allotted to experiments designed by scientists.
Researchers from around the country apply for the inclusion of their experiments.
They must specify the weight of the equipment they want taken into orbit. A
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panel of reviewers then decides which proposals are reasonable. These proposals
are then rated from 1 (the lowest score) to 10 (the highest) on their potential
importance to science. The ratings are listed below.

Experiment Weight in Kilograms Rating

I Cloud patterns 36 5

2 Speed of light 264 9

3 Solar power 188 6

4 Binary stars 203 8

5 Relativity 104 8

6 Seed viability 7 6

7 Sun spots 92 2

8 Mice tumors 65 8

9 Weightless vines 25 3

10 Space dust 170 6

11 Cosmic rays 80 7

12 Yeast fermentation 22 4

It is decided to choose experiments so that the total of all their ratings is as
large as possible. Since there is also the limitation that the total weight cannot
exceed 700 kilograms, it is not clear how to do this. If we just start down the list,
for example, experiments 1, 2, 3, and 4 have a total weight of 691 kilograms.
Now we cannot take experiment 5, since its 104 kilograms would put us over
the 700-kilogram limit. We could include experiment 6, however, which would
bring us up to 698 kilograms. The following table shows how we might go down
the list this way, keeping a running total of the weight and putting in whichever
experiments do not put us over 700 kilograms.

Weight

36

264

188

203

104

7

Include?

Yes

Yes

Yes

Yes

No

Yes

Total Weight

36

300

488

691

691

698

Rating

5

9

6

8

6

92 No 698 -

65

25

170

80

No

No

No

No

698

698

698

698

22 No 698

Experiment

2

3

4

5

6

7

8

9

10

11

12
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Note that the ratings total of thz experiments chosen this way is

5 -9 + 6 + 8 + 6 = 34.

The question is whether we can do better than this. Since we just took the
experiments as they came, without paying any attention to their ratings, it seems
likely that we can. Perhaps it would be better to start with the experiments with
the highest rating and include as many of them as we can, then go on to those
with the next highest rating, and so on. If two experiments have the same rating,
we would naturally choose the lighter one first. The following table shows how
such a tactic would work.

Experiment Razing Weight Include? Total Weight

2 " 264 Yes 264

8 8 65 Yes 329

5 8 104 Yes 433

4 8 203 Yes 636

11 80 No 636

6 0 7 Yes 643

10 6 170 No 643

3 6 188 No 643

1 36 Yes 679

12 22 No 679

9 25 No 679

7 92 No 679

Using this method, we choose experiments 2, 8, 5, 4, 6, and 1, giving a rating
total of

9 + 8 + 8 + 8 + 6 + 5 = 44.

This is 10 better than our previous total, but perhaps it can be improved further.
Another idea would be to start with the experiment of smallest weight (number

6), then include the next lightest (number 12), and so on, continuing until we reach
the 700-kilogram limit. The reader should check that this would mean including
experiments 6, 12, 9, 1, 8, 11. '7, 5, and 10 for a rating total of 49, which is still
better.

Yet another idea would be to compute a rating points-per-kilogram ratio for
each experiment, and to include, whenever possible, the experiments for which
this ratio is highest. We will illustrate this idea with a case where only three
experiments are submitted, with the limit of 700 kilograms still in effect.
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Experiment Weight Rating Ratio

8
1 390 8 9 -. 0205

6
2 350 6 3 - .0171

5
3 340 5 -. 0147

3 4 0-

Using our new scheme, we would choose experiment 1, since it has the highest
ratio, and then not be able to include either of the other two. The total rating would
be 8. But this is not as good as choosing experiments 2 and 3 for a rating total of
11. The ratio method does not assure us of the best selection either. It turns out
that if this method is applied to our original 12 experiments, it yields a subset of
9 experiments with a total rating of 51. (See Exercise 19.) Even this is not the
optimal subset, however.

We could play around with this problem, taking experiments out and putting
experiments in, and perhaps find a collection of experiments with a higher rating
total than 51. Even then, it would be hard for us to be sure we could not do even
better somehow. Notice that this is another optimization problem. We want to find
a selection of experiments from the 12 given whose total weight is no more than
700 kilograms and whose rating total is as large as possible.

As in the case of the matching problem of the previous section, we will turn
to the tedious method of trying all the possibilities. Getting a computer to do
the calculations, even if there are many experiments, might be a practical way to
attack the problem. Since the experiments are numbered from 1 to 12, we will
save time by simply using the numbers. We will introduce some language (with
which the reader is probably already familiar) in order to state the problem in a
compact way.

We need the idea of a set. Although we cannot give a definition of a set in
terms of simpler ideas, we think of a set as a collection of objects of some sort
such that, given any object, we can tell whether that object is in the set or not. If
the object x is in the set S, we write x C S, and if not, we write x § S.

Example 1.3

Let P be the set of all presidents of the United States. Then

George Washington E P.

but

Benjamin Franklin V P.
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If U is the set of all integers from 1 to 12, then

5 e U, but 15U. 4U

If a set has only a finite number of objects, one way to define it is simply to
list them all between curly braces. For example, the set U of the example could
also be defined by

U = I1,2,3,4,5,6,7,8,9, 10, 11, 121.

If the set has more elements than we care to list, we may use three dots to indicate
some elements. For example, we could also write

U := {1,2,3,..., 11, 12}.

Another way to express a set is to enclose inside curly braces a variable standing
for a typical element of the sei:, followed by a colon, followed by a description
of what condition or conditions the variable must satisfy in order to be in the set.
For example,

U = {x: x is an integer and 0 < x < 131,

and

P = {x: x is a president of the U.S.}.

The latter expression is read "the set of all x such that x is a president of the
United States." In these two ex amples the use of x for the variable is arbitrary;
any other letter having no previous meaning could be used just as well.

Let A and B be sets. We say that A is a subset of B, and write

A C B.

if every element of A is also in B. In this case, we also say that A is contained
in B and that B contains A. Aln equivalent notation is

B D A.

+ Example 1.4

If U is the set defined above ani

=1, 2,3,4,61,

then T C U. Likewise, if

C = {Lincoln, A. Johnson, Grant),

then C C P, where, as before, P is the set of all American presidents. On the
other hand, P C C is false. +
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If A is a finite set, we will denote by IA I the number of elements in A. For
example, if C, T, U, and P are as defined above, we have ICI = 3, ITI = 5,
jUI = 12, and (in 2001) IPI = 42. (Although George W. Bush is often listed as
the forty-third president of the United States, this number is achieved by count-
ing Grover Cleveland twice, because Benjamin Harrison was president between
Cleveland's two terms. But an element is either in a set or is not; it cannot be in
the set more than once.) The empty set is the set that has no elements at all. We
denote it by 0. Thus, if A is a set, then A = 0 if and only if IA I = 0.

We say that two sets are equal if every element in the first is also in the second
and, conversely, every element in the second is also in the first. Thus A = B if
and only ifA C B andB C A.

Armed with the language of sets, we return to the question of selecting experi-
ments. The set of all experiments corresponds to the set

U = {1,2,..., 11, 121,

and each selection corresponds to some subset of U. For example, the choice of
experiments 1, 2, 3, 4, and 6 corresponds to the subset

T = {1, 2,3,4, 6}.

This happens to be the selection of our first attempt to solve the problem, with a
rating total of 34.

Of course, some subsets of U are unacceptable because their total weight
exceeds 700 kilograms. An example of such a subset is

{2, 3, 4, 10},

with a total weight of 825 kilograms.
We could simply go through all the subsets of U, computing for each its

total weight. If this does not exceed 700, then we will add up the ratings of the
corresponding experiments. Eventually we will find which subset (or subsets) has
the maximal rating total.

As in the last section, two questions arise:

(1) How many subsets are there? (Another counting problem.)
(2) How can we list all the subsets without missing any?

We will start with problem (1), saving problem (2) for Section 1.4. Let us
start with some smaller sets to get the idea.

Set Subsets Number of Subsets

11) 0,111 2
(1,21 0,1tl,{21,{1,21 4
11,2,31 0,1l),(2),{1,2},{3),f1,3),12,31,{1,2,3} 8
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We see that a set with 1 element has 2 subsets, a set with 2 elements has
4 subsets, and a set with 3 elements has 8 subsets. This suggests the following
theorem, which will be proved in Section 2.7.

Theorem 1.3 A set with n elements has exactly 2n subsets.

The set U has 12 elements. and so by the theorem it has exactly 212 = 4096
subsets. This is more than we would like to run through by hand, but it would
be easy enough for a computer. In fact, as n gets large, the quantity 2n does not
grow as fast as the quantity n! that arose in the previous section. For example, 220
is only about a million. Our hypothetical computer that could check one million
subsets per second could run through the possible selections from 20 experiments
in about a second, which is considerably less than the 76,000 years we found it
would take to check the 20! ways of assigning 20 pilots to 20 flights. Even so,
2n can get unreasonably large Thor modest values of n. For example, 250 is about
1.13. 1015, and our computer would take about 36 years to run through this
number of subsets.

Our problem of choosing experiments is an example of the knapsack prob-
lem. The name comes from the idea of a hiker who has only so much room in his
knapsack, and must choose which items-food, first aid kit, water, tools, etc.-to
include. Each item takes up a c ertain amount of space and has a certain value to
the hiker, and the idea is to choose items that fit with the greatest total value.

In contrast to the matching problem of the previous section, there is no ef-
ficient way known to solve the knapsack problem. What exactly is meant by an
"efficient way" will be made clearer when complexity theory is discussed in the
next section.

EXERCISES 1.3 101

In Exercises 1-14 let A = {1, 2), B = {2, 3, 41, C == {'', D = {x: x is an odd positive integer) and E = {3, 4).
Tell whether each statement is true or false.

1. ACB 2. CCA 3. 2cA 4. BCD
5. 106 E D 6. C E B 7. A C A 8. B = {C, E)
9. 2 E {C, El 10. I C, E}I = 2 1I. 112, 3, 4, 3, 2}1 = 5 12. 1{0, 0)1 = I

13. 0EA 14. 0C{C, EI

In Exercises 15-18 the given sets represent a selection of space shuttle experiments from among the 12 given in the
text. Determine whether each selection is acceptable (i.e., not over 700 kilograms). If it is, then find the total rating.

15. {2,3,9,10, 121 16. [2,3,9, 10, 11) 17. 12,4,6,7,9, 11} 18. 12,3,4,6,91

19. Suppose that the rating/kilogram ratio is computed fbr each of the 12 proposed space shuttle experiments.
Experiments are chosen by including those with the highest ratio that do not push the total weight over 700
kilograms. What set of experiments does this produce, and what is their total rating?
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20. List the subsets of { 1, 2, 3, 4). How many are there?

21. How many subsets does {Sunday, Monday, ... , Saturday) have?
22. How many subsets does (Dopey, Happy,..., Docl have?

23. How many subsets does {Chico, Harpo, Groucho, Zeppo, Gummol have?
24. How many subsets does {13,14,...,22} have?

25. Suppose m and n are positive integers with m < n. How many elements does {m, m + 1, n I have?
26. How many subsets does {2, 4, 8,..., 2561 have?
27. A draw poker player may discard some of his 5 cards and be dealt new ones. The rules say he cannot discard

all 5. How many sets of cards can be discarded?
28. Suppose in the previous problem no more than 3 cards may be discarded. How many choices does a player have?
29. How long would it take a computer that can check one million subsets per second to run through the subsets

of a set of 40 elements?

30. Find a subset of the 12 experiments with a total weight of 700 kilograms and a total rating of 49.

1.4 + ALGORITHMS AND THEIR EFFICIENCY

In previous sections we developed algorithms for solving certain practical combi-
natorial problems. We also saw that in some cases solving a problem of reasonable
size, even using a high-speed computer, can take an unreasonable amount of
time. Obviously, an algorithm is not practical if its use will cost more than we are
prepared to pay, or if it will provide a solution too late to be of value. In this section
we will examine in more detail the construction and efficiency of algorithms.

We assume a digital computer will handle the actual implementation of the
algorithms we develop. This means a precise set of instructions (a "program")
must be prepared telling the computer what to do. When an algorithm is presented
to human beings, it is explained in an informal way, with examples and references
to familiar techniques. (Think of how the operation of long division is explained
to children in grade school.) Telling a computer how to do something requires a
more organized and precise presentation.

Most computer programs are written in some specific higher-level computer
language, such as FORTRAN, BASIC, COBOL, or C. In this book we will not
write our algorithms in any particular computer language, but rather use English
in a form that is sufficiently organized and precise that a program could easily
be written from it. Usually this will mean a numbered sequence of steps, with
precise instructions on how to proceed from one step to the next. See Appendix
C for an explanation of the technical terms in our algorithms.

Of course a big, complicated problem will require a big, complicated solution,
no matter how good an algorithm we find for it. For the problem of choosing an
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optimal set of experiments to place in a space shuttle, introduced in Section 1.3,
choosing from among 12 submitted experiments requires looking at about 4000
subsets, while if there are 20 experiments, then there are about 1,000,000 subsets,
250 times as many. A reasonable measure of the "size" of the problem in this
example would be n, the number of experiments. For each type of problem we
may be able to identify some number n that measures the amount of information
upon which a solution must be based. Admittedly, choosing the quantity to be
labeled n is often somewhat arbitrary. The precise choice may not be important,
however, for the purpose of comparing two algorithms that do the same job, so
long as n represents the same quantity in both algorithms.

We will also try to measure the amount of work done in computing a solution
to a problem. Of course this will depend on n, and for a desirable algorithm it will
not grow too quickly as n gets larger. We need some unit in which to measure
the size of an algorithmic solution. In the space shuttle problem, for example,
we saw that a set of n experiments has 2n subsets that need to be checked.
"Checking" a subset itself involves certain computations, however. The weights
of the experiments in the subset must be added to see if the 700-kilogram limit is
exceeded. If not, then the rating, of the subset must be added and compared with
the previous best total. How much work this will be for a particular subset will
also depend on the number of experiments in it.

We will take the conventio al course of measuring the size of an algorithm by
counting the total number of elementary operations it involves, where an elemen-
tary operation is defined as the addition, subtraction, multiplication, division, or
comparison of two numbers. For example, adding up the k numbers a,, a2 , ... , ak
involves k - 1 additions, as we :ompute

al + a2, (a, + a2) .. a3, .... . (a, + + ak-1) + ak

We will call the total number of elementary operations required the complexity
of the algorithm.

There are two disadvantages to measuring the complexity of an algorithm
this way.

(1) This method essentially tries to measure the time it will take to implement
an algorithm, assuming that each elementary operation takes the same time.
But computers are also limited by their memory. An algorithm may require
storage of more data than a given computer can hold. Or additional slower
memory may have to be used, thereby slowing down the process. In any
case, computer storage itself has a monetary value that our simple counting
of elementary operations dces not take into account.

(2) It may be that not all operations take the same amount of computer time;
for example, division may take longer than addition. Also the time an ele-
mentary operation takes may depend on the size of the numbers involved;
computations with larger numbers take longer. Just the assignment of a value



1.4 Algorithms and Their Efficiency 25

to a variable also takes computer time, time which we are not taking into
account.

In spite of the criticisms that can be made of our proposed method of mea-
suring the complexity of an algorithm, we will use it for simplicity and to avoid
considering the internal operations of particular computers.

We will consider some examples of algorithms and their complexity. Let us
start with the problem of evaluating x", where x is some number and n is a
positive integer. To break this down into elementary operations, we could com-
pute x2 = x x, then x3 

= (X 2 )X, . . .,until we get to x4. Since computing x2

takes 1 multiplication, computing x3 takes 2 multiplications, etc., a total of n - 1
multiplications is necessary. An algorithm for this process might be as follows.

Algorithm for Evaluating x'

Given a real number x and a positive integer n, this algorithm computes P = x .

Step I (initialization)
Set P = x and k = 1

Step 2 (next power)
while k < n

(a) Replace P with Px.
(b) Replace k with k + 1.

endwhile
Step 3 (output P = xn)

Print P.

Notice that step 2 entails n - 1 multiplications and n - 1 additions. There
are also n comparisons, since we only exit step 2 when k = n. Thus we see
that computing x' with this algorithm involves a total of 3n - 2 elementary
operations.

Since our method of estimating the number of operations in an algorithm
involves various inaccuracies anyway, usually we are not interested in an exact
count. Knowing that computing xn takes about 3n operations, or even a number
of operations that is less than some constant multiple of n, may satisfy us. We
are mainly interested in avoiding, when possible, an algorithm whose number of
operations grows very quickly as n gets large.

Later in this book we will often write algorithms in a less formal way that
may make impractical an exact count of the elementary operations involved. For
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example, in the last algorithm, instead of incrementing k by 1 at each step and then
comparing its new value to thai of n, we might simply have said something such
as "for k = I to n -1 replace jO by Px." High level computer languages usually
allow loops to be defined by some such language. If the number of operations
required for each value of k does not exceed some constant C, then the complexity
of the algorithm does not exceed Cn. (We could actually take C = 3 for the
algorithm just presented.) Ofte:i knowing the precise value of C is not important
to us. We will indicate why tins is true later in this section, after we have more
examples of algorithms.

Now we will give an example of two algorithms with the same purpose, one
of which is more efficient than the other. By a polynomial of degree n in x we
mean an expression of the form

P(x) = aX" +an- 1xn-l + + ax + ao,

where an, an-, ... , a are constants and an # 0. Thus, a polynomial in x is a
sum of terms, each of which is either a constant or else a constant times a positive
integral power of x. We will consider two algorithms for computing the value of
a polynomial. The first one, w& hich may seem the more natural, will start with ao,
then add a1x to that, then add Cf2x2 to that, etc.

.... .. ..... ..... ...... .... . D:,. m ....... .m. .. . D ... D. m e D.

Polynomial Evaluation Algorithm

Thisalgorithmcomputes P(x) anx'n + an -Xn-1 + * + ao,giventhenonnegative
integer n and real numbers a, co, a . , a,.

Step I (initialization)
Set S = ao andk = 1.

Step 2 (add next term)
while k < n

(a) Replace S with S + akxk.

(b) Replace k with ic + 1.
endwhile

Step 3 (output P(x) = S)
Print S.

In this algorithm we will check whether k < n in step 2 a total of n + 1
times, with k = 1, 2, ... , n 4- 1. For a particular value of k < n this will entail
1 comparison, 2 additions (in computing the new values of S and k), and 1
multiplication (multiplying a,, by xk), a total of 4 operations. But this assumes
we know what xk is. We just saw that this number takes 3k - 2 operations to
compute. Thus, for a given value of k < n we will use 4 + (3k - 2) = 3k + 2
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operations. Letting k = 1, 2,. .. ,n accounts for a total of

5 + 8+ll1+- + (3n +2)

operations.
It will be proved in Section 2.6 that the value of this sum is 1(3n 2 + 7n).

The extra comparison when k = n + 1 gives a total of 1(3n ±7n) + I opera-2
tions.

Notice that here the complexity of our algorithm is itself a polynomial in n,
namely l.5n 2 + 3.5n + 1. For a given polynomial in n of degree k, say akn k +

k-l
ak-In + . + ao, the term aknk will exceed the sum of all the other terms in
absolute value if n is sufficiently large. Thus, if the complexity of an algorithm is
a polynomial in n, we are interested mainly in the degree of that polynomial. Even
the coefficient of the highest power of n appearing is of secondary importance.
That the complexity of the algorithm just presented is a polynomial with n 2 as its
highest power of n (instead of n or n , for example) is more interesting to us than
the fact that the coefficient of n2 is 1.5.

We will say that an algorithm has order at most fln), where f (n) is some
nonnegative expression in n, in case the complexity of the algorithm does not ex-
ceed Cf (n) for some constant C. Recall that the polynomial evaluation algorithm
has complexity 1.5n 2 ± 3.5n + 1. It is not hard to see that 3.5n ± 1 < 4.5n 2 for
all positive integers n. Then

1.5n 2 + 3.5n + I <c 1.5n 2 + 4.5n 2 = 6n 2

for all positive integers n. Thus, (taking C = 6) we see that the polynomial eval-
uation algorithm has order at most n2. A similar proof shows that in general an
algorithm whose complexity is no more than a polynomial of degree k has order
no inore than n k

Now we will present a more efficient algorithm for polynomial evaluation. It
was first published in 1819 by W.G. Homer, an English schoolmaster. The idea
behind it is illustrated by the following computation with n =3:

a3X3 + a2X2 + aix +ao =x(a3 X2 ±+a2 X +a,)+ ao
=x(x(a3X + a2) + a,) + ao = x(x(x(a3 ) + a2) + ai) ± ao.

Horner's Polynomial Evaluat-ion Algorithm

This algorithm computes P(x) =a~x' + a,-1xn-i + .. + ao, given the nonnegative
integer n and real numbers x, ao, a,, . .. ,a,.

Step I (initialization) Set S = an and k = 1.
Step 2 (compute next expression)

while k <c n
(a) Replace S with xS + a,-k-
(b) Replace k with k ± 1.

endwhile
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Step 3 (output P(x) = S)
Print S.

The following table shows how this algorithm works for n = 3, P(x)
5x 3 -2x 2 -+3x +4(soa, = .5,a2 = -2,a, = 3,andao =4),andx = 2.

S k

Start: a3 = 5 t

xS-+-a2 =2(5)+(-2)=8 2

xS+a =2(8)+3= 19 3

xS+tao =2(19) + 4=42 4

We check whether k < n in step 2 for k = 1, 2, ... , n + 1, a total of n + 1
times, and each time except the last requires just 1 comparison, 1 multiplication,
2 additions, and 1 subtraction. Thus, the algorithm evaluates a polynomial of
degree n using just 5n + I operations, as opposed to 1(3n2 + 7n) + 1 for our
first version. If n were 10, the second algorithm would take 51 operations while
the first would take 186; and For larger values of n the difference would be even
more marked. In broader terms, Homer's polynomial evaluation algorithm is
superior to the previous polynomial evaluation algorithm because it has order no
more than n, while we could only say that the first algorithm had order no more
than n2 .

The algorithms we have presented so far are simple enough that we can
compute their complexities exactly. Often, however, the exact number of opera-
tions necessary may not depend only on n. An algorithm to sort n numbers into
numerical order, for example, nay entail more or fewer steps depending on how
the numbers are arranged initially. Here we might count the number of operations
in the worst possible case. The actual number of operations will then be less than
or equal to this number.

Later we may present more complicated algorithms in an informal way.
An exact analysis of their complexity would entail a more detailed description
revealing each elementary operation, akin to an actual program in some computer
language. In this case the statement that the algorithm has order no more than f (n)
is to be interpreted as saying that a computer implementation exists for which the
number of elementary operations does not exceed Cf (n) for some constant C.

Now we will consider an algorithm for generating subsets of a set, as our solu-
tion of the space shuttle problem requires. If a set S consists of the n elements
Xi, X2, .X . , xn, a compact way of representing a subset of S is as a string of Os and
Is, where the kth entry in the string is 1 if xk E S and 0 otherwise. If n = 3, for
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example, the 8 = 23 strings and the subsets to which they correspond are shown
below.

000 0
001 {X3}

010 {X2}

0l1 {X 2 , X31

100 (xil

101 {XI, X3}

110 {XI, X21

111 {XI, X2 , X3)

By examining this list we see how these digits might be generated in the order
given. We look for the rightmost 0, change it to a 1, and then change any digits
still further to the right to Os. If we let

ala2 ... .an

be a given string with n Os and is, the following algorithm generates the next
string.

Next Subset Algorithm

Given a positive integer n and the string a1 a2 ... a, of Os and Is corresponding to a
subset of a set with n elements, this algorithm computes the string corresponding to
the next subset.

Step I (initialization)
Set k = n.

Step 2 (look for rightmost 0)
while k > I and ak = 1

Replace k with k -1.
endwhile

Step 3 (if there is a zero, form the next string)
if k> 1

Step 3.1 (change the rightmost 0 to 1)
Replace ak with 1.

Step 3.2 (change succeeding is to Os)
for i = k + I to n

Replace aj with 0.
endfor

Step 3.3 (output)
Print al a2 ... a,

otherwise
Step 3.4 (no successor)

Print "This string contains all 1 s."
endif
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In this algorithm step 2 finds the rightmost string digit ak that is 0. (If all
digits are 1, k reaches 0 and we stop at step 3.4.) Then ak is changed to 1 in step
3. 1, and the digits to its right are changed to Os in step 3.2. The actual number of
arithmetic operations required will depend on the string a, a2 . . . an we start with,
although since the replacements in steps 2 and 3 each can be repeated at most
n times, the number of operations will be no more than some constant multiple
of n.

Let us consider how this algorithm might be applied to the space shuttle
problem. We will restrict out attention to deciding whether the subset we have
generated has a total weight of less than 700 kilograms. Let Wi be the weight of
the ith experiment. Then we need to compute

aoTV, +a 2 W2 + +anWn

and see if this exceeds 700 or not. If we are including experiment i when ai is 1
and excluding it when ai is 0, then this sum gives the total weight of the included
experiments. The reader should check that the sum may be computed using n
multiplications and n - 1 additions, for a total of 2n - 1 operations, not counting
any comparisons or index changes.

Since for n experiments there are 2' subsets of experiments, and since gen-
erating and checking each subset takes a multiple of n operations, the complex-
ity of this method of finding the best choice of experiments is Cn * 2', where
C is some constant. This is an expression that gets large quite quickly as n in-
creases. The following table shows how long a computer that executes one million
operations per second would take to do n * 2' operations for various values of
n. For comparison purposes we also show how long 1000n 2 operations would
take.

n: 10 20 30 40 50

n2" operations 0.01 sec 21 sec 9 hr 1.4 years 1785 years

1000n 2 operations 0.1 sec 0.4 sec 0.9 sec 1.6 sec 2.5 sec

This table indicates that simply increasing computer speed may not make an
algorithm practical, even for modest values of n. If, for example, our computer
were capable of one billion operations per second instead of one million (making
it 1000 times faster), performing n2' operations for n = 50 would still require
1.785 years.

In general, an algorithm Cis considered "good" if its complexity is no more
than some polynomial in n. Of course, in practice, a nonpolynomial complexity
may be acceptable if only smal values of n arise.

Expressions depending on n increase at different rates as n gets large. In
general, expressions with n as the exponent of a number greater than 1 grow
faster than any polynomial in a, and n! grows even faster. On the other hand,
although log2 n (to be explained in Section 2.5) increases without bound as n
increases, it grows more slowly than any positive power of n. The mathematical
comparison of these expressions entails analytic techniques not appropriate for
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this course, but we offer the following table to give an idea of how fast various
expressions grow. The time given is that for a computer executing one million
operations per second to run through f (n) operations.

n: 10 20 30 40 50 60

f(n)

log 2 n .0000033 S .0000043 S .0000049 S .0000053 S .0000056 S .0000059 S

nI12 .0000032 S .0000045 S .0000055 S .0000063 S .0000071 S .0000077 S

n .00001 S .00002 S .00003 S .00004 S .00005 S .00006 S

n2 .0001 S .0004 S .0009 S .0016 S .0025 S .0036 S

n2 + iOn .0002 S .0006 S .0012 S .0020 S .003 S .0042 S

nlo 2.8 H 119 D 19 Y 333 Y 3097 Y 19174 Y

2" .001 S I S 18M 13 D 36 Y 36559 Y

n! 3.6 S 77147 Y 8.4. 1018 Y 2.6*10
3 4

Y 9.6 10
50

Y 2.6. 1068 Y

Now we will give an algorithm for sorting a list of items possessing a natural order,
such as scores in a golf tournament (where the order is numerical) or names in
a list (where the order is alphabetical). The most widely known such algorithm,
called the bubble sort, is so called because of the similarity between its actions
and the movement of a bubble to the surface in a glass of water. The smaller
items "bubble" to the beginning of the list. To keep the discussion simple, we will
assume that the items a,, a2, . .. , an in the list are real numbers.

We first consider the last two items in the list, a,-, and an, exchanging their
values if an is less than a,- . We next consider the values in the n - 2 and n - I
positions. Again, we exchange them if the n - 1 item is less than the n -2 item.
This process of comparing two adjacent items continues until the comparison,
and possible exchange, of the values in the first two positions.

At this point, the smallest value in the list has been brought to the first position.
We now start over again, this time operating on the smaller list consisting of the
elements in the second through the nth positions. This will bring the smallest of
the items in the second through the nth positions into the second position in the
list. This process continues until all of the elements in the original list have been
arranged in nondecreasing order.

Bubble Sort Algorithm

This algorithm places the numbers in the list a,, a2, . . an in nondecreasing order.

Step I (set beginning of sublist)
for j = I to n - I
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Step 1.] (find smallest element of sublist)
fork = n-I to j by -1

Step 1.1.1 (interchange if necessary)
if ak+ I < ak

Interchar ge the values of ak and ak+1,
endif

endfor
endfor

Step 2 (output list in nondecreasing order)
Print a,, a2 , . a,.

X Example 1.5

We will use the bubble sort to order the list 7, 6, 14, 2. The following chart shows
the positions of the numbers irn the list as step 1.1.1 of the algorithm is performed.
The circled numbers are those being compared.

a, 6e2 a3  a4 i k

7 6 14 2 1 3

7 () 14 2

& Q 6 14 1

2 7 a 2 3
2 (; 6 14 2

2 (, 7 3 3

2 0 7 14

Thus, 6 comparisons are required to sort the given list into nondecreasing
order. +

To measure how efficient the bubble sort is, we will count the number of
comparisons required to get the n items in order. Notice that each compari-
son is accompanied by a bounded number of other operations, so that the com-
plexity of the algorithm will not exceed some constant times the number of
comparisons.

The first pass through the list requires n - 1 comparisons; this moves the
smallest element to the front A-- the list. The second pass, using the items in the
second through last positions, requires n -2 comparisons. This pattern continues
until the final pass, which corrlFares only the items in the last two positions of the
altered list. In all, there are

(n - 1) + (n -- 2) + (n - 3) + ... + 3 + 2 + I
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comparisons. By a formula in the next chapter, the above expression has the value

n2nThus, the bubble sort algorithm has order at most n.

EXERCISES 1.4

In Exercises 1-6 tell whether the given expression is a polynomial in x or not, and if so give its degree.

1. 5X2 -3x +- 2. 16 3. x -- 1
2 X

4. 2' + 3x 2x 2 7x±1 6. 2x +3x 1/ 2 +4

In Exercises 7-10 compute the various values S takes on when the polynomial evaluation algorithm is used to
compute P (x). Then do the same thing using Horner's polynomial evaluation algorithm.

7.P(x)=5x+3, x=2 8. P(x)-=3x2 +2x -1, x= 5
9.P(x)=-x 3 +2X 2 +5x-7, x-2 10. P(x)-=2x3 +5X 2 -4, x-=3

In Exercises 11-14 tell what next string will be produced by the next subset algorithm.

11. 110101 12. 110111 13. 001101 14. 001001

In Exercises 15-18 make a table listing the values of k, j, and a,, a2 ,.. ,an after each step when the next subset
algorithm is applied to the given string.

15. 101 16. I11 17. 1101 18. 1110

In Exercises 19-22 illustrate as in Example 1.5 the use of the bubble sort algorithm to sort each given list of
numbers.

19. 13, 56, 87, 42 20. 23, 5, 17, 12 21. 6, 33, 20, 200, 9 22. 88, 2, 75, 10, 48

In Exercises 23-26 estimate how long a computer doing one million operations per second would take to do Y' and
lOOn3 operations.

23. n =20 24. n =30 25. n =40 26. n-=50

In Exercises 27 30 tell how many elementary operations the given algorithm uses. (It depends on n.)

27. Algorithm for evaluating n!

Step]I Set k=Oand P =1.
Step 2 while k < n

(a) Replace k with k + 1.
(b) Replace P with k P.

endwhile
Step 3 Print P.
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28. Algorithm for computing the sum of an arithmetic progression of n terms with first term a and common
difference d

Step]I Set S-=a, k =1,and t =a.
Step 2 while k < n

(a) Replace t with t± d.
(b) Reptace S with S + t.-
(c) Replace k with k ± 1.

endwhile
Step 3 Print S.

29. Algorithm for computing the sum of a geometric progression of n terms with first term a and common ratio r

Step]I SetS =a, P =ar, and k= 1.
Step 2 while k < n

(a) Replace S with S + P.
(b) Replace P with Pr.
(c) Replace k with k + 1.

endwhile
Step 3 Print S.

30. Algorithm for computing F~, the nth Fibonacci number (defined in Section 2.6)

Step]I Set a = 1, b 1, lc = 2, and k =1.

Step 2 while k < n
(a) Replace c with a + b.
(b) Replace a with b.
(c) Replace b with c.

(d) Replace k with k + 1.
endwhile

Step 3 Print b.

The polynomial evaluation algorithm is inefficient because it computes x k anew for each value of k. The
following revision corrects this.
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Revised Polynomial Evaluation Algorithm

This algorithm computes P(x) = a~x' + a,-Ix"-' + . + ao, given the nonnegative integer n and real
numbers x, ao, a1,. .. ,a,.
Step I (initialization) Set S = a0, y = 1, and k =1.

Step 2 (add next term)
while k < n

(a) Replace y with xy.

(b) Replace S with S + yak.
(c) Replace k with k + 1.

endwhile
Step 3 (output P(x) = )

Print S.

In Exercises 31-32 compute the various values S takes on when the revised polynomial evaluation algorithm is
used to compute P (x), where P (x) and x are as in the given exercise.

31. Exercise 9 32. Exercise 10

33. Show that the complexity of the revised polynomial evaluation algorithm is 5n ± 1.

HISTORICAL NOTES

Chapter 1 features the organizing aspects of algorithms. From PERT charts to matching and
knapsack problems, the emphasis is on thinking about orderly procedures for confronting
and solving problems. Algorithms have been part of mathematics since its beginning.
The contents of the Rhind papyrus (c. 1650 B.C.) and the many cuneiform tablets of the
Babylonians (c. 1750 B.C.) give evidence of the attempt to generalize the solutions to
problems into computational formulas [73, 74] 1* Such formulas are forms of algorithms.

The Greeks provided directions on how to perform various geometric constructions
and analyze elementary problems in number theory. Perhaps the most famous among
the latter are Eratosthenes' sieve for developing a listing of the first n primes, Euclid's
algorithm for finding the greatest common divisor for a pair of positive integers, and
Diophantus' methods for finding solutions to algebraic equations. It was with the pub-
lication of the Liber Abaci of Leonardo of Pisa (Fibonacci) in 1202 that Europeans had
their first organized exposure to Arabic numerals and algorithms for operating with them
[79- 79- R51.

Leonardo of Pisa Fibonacci stated his algorithms by referring to the quantities held by the first person
(Fibonacci) and second person and giving a verbal explanation of how to craft an answer for the

situation at hand. While the Greeks had used letters to refer to points in earlier times,
it was not until the work of Franqois Vi~te (1540-1603) that algorithms for algebraic
operations began to appear in more modem symbolic forms.

'Numbers in brackets refer to References for the Historical Notes on pages 574-575.
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The very name "algorithm" has a historical trail of its own. One of the earliest texts,
if not the first, dealing with the arithmetic of the Hindu-Arabic numerals was written
in Arabic by Mohammad ibn-Musa al-Khwarizmi (c. 783-850). His book was entitled
Al-jabr wa' I muqbalah. Although he original text has been lost and we have only portions
that were transcribed in Latin i t the 11 00s, the author and text had a large influence
on what we say and do today. The word "algorithm" is an Anglicized version of al-
Khwarizmi's name, and the title of his book has given way to our present day word
"algebra." Al-Khwarizmi's name, in the form "algorithmicians," was used in the Middle
Ages to separate calculating by H lindu-Arabic algorithms from the work of the "abacists"
who calculated with counting tables and abacus-related methods based on the Roman
numerals [73, 74, 85].

Forms of the word "algcrithn'" disappeared from common usage after the Middle
Ages, to reappear around 1850 as a result of a reanalysis of the work of al-Khwarizmi.
Since 1900, the notion of carefully specifying steps in carrying out a procedure has grown
in importance as mathematicians a Id computer scientists have struggled to understand the
efficiency of various procedures.

Augusta Ada Byron (1815-1.352), the Countess of Lovelace, was one of the first to
see the importance that algorithms could play in the development of computing devices.
The only child of the English poe t Lord Byron, Ada Byron had the great opportunity
to be tutored by Augustus De Morgan (1806-1871) and to work with Charles Babbage
(1791-1871), the inventor of the first automated computing machine. While the machine
never worked flawlessly, the ideas behind it were as much the work of Byron as they were

Augusta Ada Byron the work of Babbage. Her work in describing the programming of Babbage's Analytical
Engine to carry out computation and derivations has been memorialized through the
naming of the programming language ADA in her honor [83].

The program evaluation and review technique and critical path method, as mentioned
earlier, were first developed and used by the U.S. Navy and Westinghouse engineers in
1958 to organize the building of the first nuclear powered submarines. The process was
essentially discovered simultaneously by chemical engineers at du Pont, and by operations
researchers in England, France, and Germany. As graph theoretic methods became better
known, mathematical scientists around the world began to represent and study problems
regarding orderings via graph theoretic representations.

SUPPLEMENTARY EXERCISES

1. Use the PERT method to determine the total project tim e and critical path for the following diagram.

C H
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2. The table below tells the time needed for a number of tasks and which tasks precede them. Make a PERT
diagram, and determine the project time and critical path.

Task Time Preceding Tasks

A 3 None

B 5 None

C 2 A

D 4 A,B

E 6 A,B

F 6 C,D,E

G 3 D,E

H 3 F,G

I 2 F,G

3. In manufacturing a certain toy, Machine 1 makes part A in 3 minutes, Machine 2 makes part B in 5 minutes,
Machine 3 makes the box in 2 minutes, Machine 4 assembles the two parts in 2 minutes, and Machine 5 puts
an assembled toy into a box in 1 minute. How long will it take to make and box 5 toys?

8!
4. Calculate -

5. Calculate P(11, 6).

6. A baseball team has 2 catchers, 4 starting pitchers, and 5 relief pitchers. A catcher, starting pitcher, and relief
pitcher must be chosen for an all-star game. In how many ways can this be done?

7. A basketball team has 3 centers, 4 guards, and 4 forwards. A most-valuable player, captain, and most-improved
player are to be chosen from the team. If all three players are to be different, in how many ways can this be
done?

8. A student honor society has 10 juniors and 13 seniors. According to its bylaws, the president and treasurer
must be seniors, and the vice-president and secretary must be juniors. In how many ways can the four offices
be filled by four different students?

Let A = {l, 3, 5J, B = {2, 6, 10}, and C = {x: x is an integer and 0 < x < 10). In Exercises 9-16 tell whether
each statement is true or false.

9. B C C 10. AC C 11. 6 C B 12. A E C

13. {l} C A 14. 6 E C 15. 0 C B 16. 1{011 E A

17. What is I{X: X C {2, 4, 6, 8, 10}I?

18. In Cincinnati, chili consists of spaghetti topped by any (or none) of meat sauce, cheese, chopped onions, and
beans. In how many ways can chili be ordered?

19. Five students decide to send a delegation to a professor to ask her to delay a test. The delegation is to have a
spokesperson, and perhaps some accompanying members. In how many ways can it be chosen?

In Exercises 20-23 tell whether each expression is a polynomial in x, and, if so, give its degree.

20. 2x + 3 +4x-1 21. x °° - 3 22. log2 10 23. 3x].5 + 1.5x3

24. Let P(x) = 3x3 + 4x -5. Compute the various values S takes on when the polynomial evaluation algorithm
is used to compute P(x) for x = 3.

25. Repeat the previous problem using Homer's polynomial evaluation algorithm.



38 Chapter I An Introduction to Combinatorial Problens and Techniques

26. Let S = {1, 2, 3, 41. Find the ordered sequence of all subsets of S as produced by the next subset algorithm,
starting with 0.

27. Illustrate the use of the bubble sort algorithm to sort the following list of numbers as in Example 1.5: 44, 5, 13,
11, 35.

28. How long would it take a computer to do 25! operation:; if it can do one billion operations per second?

29. Apply the following algorithm to n 18. What is the value of s when the algorithm stops?

Step I Setd= I ands =0.
Step 2 while d < n

n.
Step 2.1 if -is an integer

d
Replace s with s + d.

endif
Step 2.2 Replace d with d + 1.

endwhile

30. Apply the following algorithm to n = 100. What is the value of s when the algorithm stops?

Step I Set s =n.
Step 2 repeat

Step 2.1 Set t =s.
Step 2.2 while s is even

5
Replace s with -

2
endwhile

Step 2.3 Replace s with 3s + 1.
until s =t

31. Determine how many elementary operations the following algorithm for finding the sum of the first n squares
uses. (The answer depends on n.)

Step I SetS= 1 and k 1.
Step 2 while k < n

(a) Replace S with S + k . k.
(b) Replace k with k + 1.

endwhile
Step 3 Print S.

32. Determine how many elementary operations the following algorithm for finding P(n, r) uses. (The answer may
depend on n or r.)

Step I Set k = and Q =n.
Step 2 while k < r
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(a) Replace Q with (n - k)Q.
(b) Replace k with k + 1.

endwhile
Step 3 Print Q.

33. Write a formal algorithm for performing PERT to determine the project time and critical path for a project.
Assume that the input data is given in tabular form as in Exercise 2 above.

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given n, compute n factorial.

2. Given n and r, with 0 < r < n, compute P(n, r).

3. Use the algorithm for evaluating Xn to compute x", given a real number x and a positive integer n.

4. Use the polynomial evaluation algorithm to evaluate

P(x) = 35x 4  17x 3 + 5x2 + 41x -29,

given a real number x. Have the program call the program of the previous problem. Time the program in
evaluating P(x) forx = 1, 2, . .. 100.

5. Using Homer's polynomial evaluation algorithm, evaluate P (x) for any real number x, where P (x) is as in the
previous exercise. Time the program in evaluating P(x) for x = 1, 2, ... , 100.

6. Given a string of twelve Os and Is, use the next subset algorithm to compute the next string.

7. Use the previous exercise to output all possible strings of twelve Os and Is.

8. Examine all subsets of the set of 12 space shuttle experiments of Section 1.3 to find an optimal subset having
a total rating of 53. What experiments are used?

9. Given n, output all possible strings of n Os and Is.

10. Given a list of 10 numbers, output the list in nondecreasing order. Use the bubble sort algorithm.

SUGGESTED READINGS
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132.
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1976.

3. Lewis, Harry R., and Christos H. Papadimitriou. "The Efficiency of Algorithms." Scientific American (March
1978): 96-109.

4. Lockyer, K.G. An Introduction to Critical Path Analysis. 3rd ed. London: Pitman and Sons, 1969.
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Sets, Relations, and Functions
2.1 Set Operations

2.2 Equivalence Relations
ion Cnn--n-

2.4* Partial Ordering Relations

2.5 Functions

2.6 Mathematical Induction

2.7 Applications

A s we saw in Chapter 1, discrete mathematics is concerned with solving
problems in which the number of possibilities is finite. Often, as in the analysis
of the knapsack problem in Section 1.3, the discussion of a problem requires
consideration of all the possibilities for a solution. Such an approach can be
made easier by the use of seis. In other situations we may need to consider re-
lationships between the elements of sets. Such relationships frequently can be
expressed using the mathematical ideas of relations and functions. In this chap-
ter we will study these basic concepts as well as the principle of mathematical
induction, an important method of proof in discrete mathematics.

2.1 SET OPERATIONS

In Section 1.3 we presented some of the basic ideas about sets. In this section we
will discuss several ways in which sets can be combined to produce new sets.

Suppose that in the example discussed in Section 1.3 it is decided that the
space shuttle will carry experiments on two successive trips. If S = {1, 5, 6, 8}
is the set of experiments carried on the first trip and T = {2, 4, 5, 8, 9} is the set
of experiments carried on the second trip, then {1, 2, 4, 5, 6, 8, 91 is the set of
experiments carried on the firsi or second trip or both. This set is called the union
of S and T.

More generally, by the union of sets A and B we mean the set consisting of
all the elements that are in A or in B. Note that, as always in mathematics, the
word "or" in this definition is used in the inclusive sense. Thus, an element x is

40



2.1 Set Operations 41

in the union of sets A and B in each of the following cases:

(1) xEAandx§fB,
(2) xgXAandxEB,or
(3) xEAandxEB.

The union of sets A and B is denoted A U B. Thus

A uB = {x: x E A orx E B).

Another set of interest in the space shuttle example is the set {5, 8) of ex-
periments carried on both trips. This set is called the intersection of S and T. In
general, the intersection of sets A and B is the set consisting of all the elements
that are in both A and B. This set is denoted A n B. So

A n B = {x: x E A and x E B).

If the intersection of two sets is the empty set, then these sets are said to be disjoint.

Example 2.1

If A = {1,2,4},B = {2,4,6,81,andC = {3,6},then

AUB = {1,2,4,6,8} and AlB = {2,4},

AUC={1,2,3,4,6} and AnCr =0,

and

BUC={2,3,4,6,81 and BnC={61.

Thus A and C are disjoint sets. +

The set { 1, 61 of elements carried on the first space shuttle trip but not on the
second trip is called the difference of S and T. More generally, the difference of
sets A and B, denoted A - B, is the set consisting of the elements in A that are
not in B. Thus

A - B = {x: x E A and x V B}.

Note that, as the following example shows, the sets A - B and B - A are not
usually equal.

Example 2.2

IfAandBareasinExample2.1,thenA-B={1}andB-A={6,8}. +

In many situations all of the sets under consideration are subsets of a set U.
For example, in our discussion of the space shuttle example in Section 1.3, all of
the sets were subsets of the set of experiments

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.
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Such a set containing all of ihe elements of interest in a particular situation is
called a universal set. Since there are many different sets that could be used
as a universal set, the particular universal set being considered must always be
described explicitly. Given a universal set U and a subset A of U, the set U - A
is called the complement of A and is denoted A.

' Example 2.3

If A = {1, 2, 4}, B = {2, 4. 6, 8}, and C = {3, 6} are the sets in Example 2.1 and

U {1, 2,3,4,5,6,7,8}

is the universal set, then

A={3,5,6,7,8}, B={1,3,5,7}, and C={1,2,4,5,7,81. +

The theorem below lists sorne elementary properties of set operations. These
properties follow immediately from the definitions given above by using the fact
that A = B if and only if A C .B and B C A.

Let U be a universal set. For any subsets A, B, and C of U, the following are true.

(a) AUB=BUAandAn B= BnA
(b) (AUB)UC=AU(BUC)and

(A n B)AC = A n (B A C)
(c) AU(BAc)=(AUB)rn(AUC)and

A A (B U C) =(A A B) U (A AC)

(d) A = A
(e) AUA=U
(f) AnA =0
(g) A c AUBandB C AUB
(h) AnB C AandAAn < B
(i) A-B =AnB

(commutative laws)
(associative laws)

(distributive laws)

Relationships among sets can be pictured in Venn diagrams, which are
named after the English logician John Venn (1834-1923). In a Venn diagram, the
universal set is represented by a rectangular region and subsets of the universal
set are usually represented by circular disks drawn within the rectangular region.
Sets that are not known to be disjoint should be represented by overlapping circles
as in Figure 2.1.

Figure 2.2 contains Venn diagrams for the four set operations defined earlier.
In each diagram the colored region depicts the set being represented.

Venn diagrams depicting more complicated sets can be constructed by com-
bining the basic diagrams found in Figure 2.2. For example, Figure 2.3 shows

how to construct a Venn diagram for (A U B). (See also Example 2.4.)

Theorem 2.1
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FIGURE 2.1

A B A B

AuB AnB

| A B I I : A;

A-B A

FIGURE 2.2

L W S \ S I I

B

A B

AuB (AUB)

FIGURE 2.3

I



44 Chapter 2 Sets, Relations, and Functions

The theorem below enables us to determine the complement of a union or
intersection of sets. This result will be needed in Section 7.6 to help us find the
number of elements in the union of several sets.

Theorem 2.2 De Morgan's Laws For any subsets A and B of a universal set U, the following
are true.

(a) (AUB)=AnB
(b) (AnB)=AUB

Proof. To prove that (A UB) A A B, we will show that each of the sets
(A U B) and A n B is a subset Df the other.

Firstsupposethatx E (A _B).Thenx g A U B.Butsincethisistrue,_x _ A
and x V B. So x E A and x B.It follows that x e A n B. Therefore (A U B) C

An B.
Now suppose that x E AU B. Then x e A and x c B. Hence x § A and

x t B. It follows that x V A U B. So x E (A U B). Thus AA B -C (A U B).
Because we have (AU B) C A n B and A n B C (A U B), it follows that

(A U B) = A n B. This proves part (a).
The proof of part (b) is similar and will be left as an exercise. X

+ Example 2.4

We can compute (A U B) using Theorems 2.2(a), 2.1(d), and 2.1(i).

(A U B) == A n B = A n B = A - B

This equality is illustrated by Figure 2.3. +

+ Example 2.5

According to the U.S. customs laws, a person is not allowed to bring liquor into
the United States duty-free if he or she is not over 21 or if he or she has brought
duty-free liquor into this country in the previous 30 days. Who is allowed to bring
duty-free liquor into the United States?

Let A denote the set of people aged 21 or over, and let B denote the set of
people who have brought duty-free liquor into the United States in the previous
30 days. Then the persons who are not allowed to bring duty-free liquor into the
United States are those in the set A U B. This means that those who are eligible

to bring duty-free liquor into this country are those in the set (A U B). Example
2.4 shows that the persons who can bring duty-free liquor into the United States
are those in the set A - B, the set of people aged 21 or over who have not brought
duty-free liquor into the United States in the previous 30 days. +
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When listing the elements of a set, the order in which the elements are written
is immaterial. Thus, for example, {1, 2, 3} = {2, 3, 11 = {3, 1, 2}. Often, how-
ever, we need to be able to distinguish the order in which two elements are listed.
In an ordered pair of elements a and b, denoted (a, b), the order in which the
entries is written is taken into account. Thus, (1, 2) # (2, 1), and (a, b) = (c, d)
if and only if a = c and b = d.

The final set operation that we will consider is the Cartesian product, which
arises in connection with relations (to be studied in Section 2.2). Given sets A
and B, the Cartesian product of A and B is the set consisting of all the ordered
pairs (a, b), where a E A and b c B. The Cartesian product of A and B is denoted
A x B. Thus

A x B = {(a, b): a e A and bE B).

The Cartesian product is often encountered in discussions of the Euclidean plane,
for if R denotes the set of all real numbers, then R x R is the set of all ordered
pairs of real numbers, which can be pictured as the Euclidean plane.

Example 2.6

Let A 1, 2, 3} and B = {3, 4}. Then

A x B ((1,3), (1,4), (2, 3), (2,4), (3, 3), (3, 4)) and

B x A -(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)1. +

As Example 2.6 shows, usually A x B =# B x A.

Example 2.7

A public opinion poll was taken to see how several of the leading Democratic
presidential candidates would fare in the 1976 presidential election against the
leading Republican candidates. The set of Democratic candidates considered
was

D = (Brown, Carter, Humphrey, Udall),

and the set of Republican candidates considered was

R = (Ford, Reagan).

How many pairings of a Democratic and a Republican candidate are there?
The set of all possible pairs of a Democratic and a Republican candidate is

D x R. The elements of this set are the ordered pairs

(Brown, Ford), (Brown, Reagan), (Carter, Ford), (Carter, Reagan),

(Humphrey, Ford), (Humphrey, Reagan), (Udall, Ford), (Udall, Reagan).
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Thus there are eight different airings of a Democratic and a Republican candi-
date. +

EXERCISES 2.1

In Exercises 1-4 evaluate A U B. A n B. A -B. A, and BJbr each of the given sets A and B. In each case assume
that the universal set is U = {1, 2, ... , 91.

1. A = {2, 3, 5, 7, 8}andB = 11,3,4,5,6,9)

3. A = {1,2,4,8,91andB={3,71

2. A = [1,4,6,9landB=11,2,4,5,6,7,9}

4. A = {3,4,6,7,8,9}andB={2,5,7,9}

In Exercises 5-8 compute A x B for each of the given sets 4 and B.

5. A = 11,2,3,41 andB = {7,8}
7. A = [a, el and B = tx, y, z)

6. A= (3,4,5}andB={1,2,3}

8. A = {p,q,r,s}and B = {ace}

Draw Venn diagrams representing the sets in Exercises 9-12.

9. (A n B) 1(1. A-B

11. A n (BUC) 12. AU (B-C)

13. Give an example of sets for which A U C = B U C, bst A # B.

14. Give an example of sets for which A n C = B n C, but A + B.

15. Give an example of sets for which A -C = B - C', but A # B.

16. Give an example of sets A, B, and C for which (A - B) - C 5 A -(B - C).

Use Theorems 2.1 and 2.2 as in Example 2.4 to simplipf the sets in Exercises 17-24.

17. A A (B - A)

21. An(AUB)

18. (A-B)U(AnB) 19. (A-B)n(AUB) 20. An(AnB)

22. (A-B)nA 23. An(AnB) 24. AU(AUB)

25. If A is a set containing m elements and B is a set containing n elements, how many elements are there in
A x B?

26. Under what conditions is A -B = B - A? 27. Under what conditions is A U B = A?

28. Under what conditions is A n B = A? 29. Prove parts (c) and (i) of Theorem 2.1.

30. Prove part (b) of Theorem 2.2 by using an argument similar to that in the proof of part (a).

31. Note that if A = B, then A = B. Use this fact to prove )art (b) of Theorem 2.2 from part (a).

32. Let A and B subsets of a universal set U. Prove that if A C B, then B C A.

Prove the set equalities in Exercises 33-38.

33. (A-B)U(B-A)=(AUB)-(AnB)

35. (A-B)-C =(A-C)-(B-C)

37. (A-B)n(A-C)=A-(BUC)

34. (A-B)U(A-C)=A-(Bnc)

31,. (AxC)A(BxD)=(AnB)x(CnD)

38. (A-C)n(B-C)=(AnB)-C

39. Give an example where (A x C) U (B x D) # (A U B') x (C U D).

40. Prove that (A x C) U (B x D) C (A U B) x (C U D).

o�o
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2.2 +t EQUIVALENCE RELATIONS

In Section 1.2 we considered a problem involving the matching of pilots to flights
having different destinations. Recall that the seven destinations and the pilots who
requested them are as shown below.

Los Angeles: Timmack, Jelinek, Rupp
Seattle: Alfors, Timmack, Tang, Washington
London: Timmack, Tang, Washington
Frankfort: Alfors, Tang, Rupp, Ramirez
Paris: Jelinek, Washington, Rupp
Madrid: Jelinek, Ramirez
Dublin: Timmack, Rupp, Ramirez

This list establishes a relation between the set of destinations and the set of pilots,
where a pilot is related to one of the seven destinations whenever that destination
was requested by the pilot.

From this list we can construct a set of ordered pairs in which the first entry
of each ordered pair is a destination and the second entry is a pilot who requested
that destination. For example, the pairs

(Los Angeles, Timmack), (Los Angeles, Jelinek), and (Los Angeles, Rupp)

correspond to the three pilots who requested the flight to Los Angeles. Let

S = {(Los Angeles, Timmack), (Los Angeles, Jelinek), . . ., (Dublin, Ramirez))

denote the set of all 22 ordered pairs of destinations and the pilots who requested
them. This set contains exactly the same information as the original list of pilots
and their requested destinations. Thus the relation between the destinations and
the pilots who requested them can be completely described by a set of ordered
pairs. Notice that S is a subset of A x B, where A is the set of destinations and
B is the set of pilots.

Generalizing from the previous example, we define a relation from a set A
to a set B to be any subset of the Cartesian product A x B. If R is a relation from
set A to set B and (x, y) is an element of R, we will say that x is related to y by
R and write x R y instead of (x, y) E R.

+ Example 2.8

Among three college professors, suppose that Lopez speaks Dutch and French,
Parr speaks German and Russian, and Zak speaks Dutch. Let

A = [Lopez, Parr, Zak)
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denote this set of professors and

B = {I)ulch, French, German, Russian}

denote the set of foreign languages they speak. Then

R = {(Lopez, Dutch), (Lopez, French), (Parr, German), (Parr, Russian), (Zak, Dutch)}

is a relation from A to B in which x is related to y by R whenever Professor x
speaks language y. So, for instance, Lopez R French and Parr R German are both
true, but Zak R Russian is false. +

Often we need to consider a relation between the elements of some set.
In Section 1.1, for instance, we considered the problem of determining how
long it would take to produce and deliver the advertisements for a department
store sale. In analyzing this p)ioblem, we listed all the tasks that needed to be
done and represented each task by a letter. Then we determined which tasks
immediately preceded each task. This listing establishes a relation on the set of
tasks

S = {A, I;, C, D, E, F, G, H, I, J, KI

in which task X is related to task Y if X immediately precedes Y. The resulting
relation

{(A, C), (B, C), (C, [)), (C, E), (D, F), (E, F), (C, G), (G, H),

(1, [), (H, J), (I, J), (J, K)}

is a relation from set S to itself that is, a subset of S x S.
A relation from a set S to i :self is called a relation on S.

" Example 2.9

Let S = {1, 2, 3, 4}. Define a ret ation R on S by letting x R y mean x < y. Then I
is related to 4, but 4 is not related dto 2. Likewise 2 R 3 is true, but 4 R 2 is false. "

A relation R on a set S may have any of the following special properties.

(1) If for each x in S, x R x is true, then R is called reflexive.
(2) If y R x is true whenever x R y is true, then R is called symmetric.
(3) If x R z is true whenever x R y and y R z are both true, then R is called

transitive.
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The relation R in Example 2.9 is not reflexive since 1 R 1 is false. Likewise, it
is not symmetric because 4 R 1 is false but 1 R 4 is true. However, R is transitive
because if x is less than y and y is less than z, then x is less than z.

+ Example 2.10

Let S be the set of positive integers, and define x R y to mean that x divides y
(that is, Y is an integer). Thus 3 R 6 and 7 R 35 are true, but 8 R 4 and 6 R 9 are
false. Then R is a relation on S. Furthermore, R is reflexive since every positive
integer divides itself, and R is transitive since if x divides y and y divides z,
then x divides z. (To see why this is so, note that if Y and Z are integers, so is
x Y.) However, R is not symmetric because 2 R 8 is true, but 8 R 2 is
false. +

+ Example 2.11

Let S denote the set of all nonempty subsets of {1, 2, 3, 4, 5 1, and define A R B to
mean that A n B #& 0. Then R is clearly reflexive and symmetric. However, R is
not transitive since {1, 21 R {2, 31 and {2, 31 R {3, 41 are true, but (1, 21 R {3, 41
is false. +

A relation that is reflexive, symmetric, and transitive is called an equivalence
relation. The most familiar example of an equivalence relation is the relation of
equality. Two more examples follow.

+ Example 2.12

On the set of students attending a particular university, define one student to be
related to another whenever their surnames begin with the same letter. This re-
lation is easily seen to be an equivalence relation on the set of students at this
university. +

+ Example 2.13

An integer greater than 1 is called prime if its only positive integer divisors are
itself and 1. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, and 23.
We will see in Theorem 2.13 that every integer greater than 1 is either prime or
a product of primes. For example, 67 is prime and 65 = 5. 13 is a product of
primes. On the set S of integers greater than 1, define x R y to mean that x has the
same number of distinct prime divisors as y. Thus, for example, 12 R 55 since
12 = 2. 2 . 3 and 55 = 5. 11 both have two distinct prime divisors. Then R is an
equivalence relation on S. +
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+ Example 2.14

Let S denote the set of all people in the United States. Define a relation R on S
by letting x R y mean that x has the same mother or father as y. Then R is easily
seen to be reflexive and symmetric. But R is not transitive, for x and y may have
the same mother and y and z may have the same father, but x and z may have no
parent in common. Hence R is not an equivalence relation on S. +

If R is an equivalence relation on a set S and x C S, the set of elements of S
that are related to x is called the equivalence class containing x and is denoted
[x]. Thus

[-:1 = {y E S: y R x}.

Note that by the reflexive property of R, x E [x] for each element x in S. In the
equivalence relation described in Example 2.12, there are 26 possible equivalence
classes; namely, the set of students whose surnames begin with A, the set of
students whose surnames begin with B, and so forth.

+ Example 2.15

Let S denote the set of integers greater than 1. For x and y in S, define x R y
to mean that the largest prime divisor of x equals the largest prime divisor of y.
Then R is an equivalence relat on on S.

The equivalence class of R containing 2 consists of all elements in S that are
related to 2, that is, all the elements in S whose largest prime divisor is 2. Such
integers must be powers of 2, and hence

[21 = {2k:k = 1,2,3,...}.

Similarly, [3] consists of all the elements in S whose largest prime divisor
is 3. Such integers must have 3 as a divisor and may or may not have 2 as a
divisor. Thus

[3] = [2'3i: i =0, 1,2,.... and j = 1, 2, 3,...}.

Note that because the largest prime divisor of 4 is 2, we have 4 R 2. Since R is
an equivalence relation on S, any element of S that is related to 2 must also be
related to 4. Hence

[4:1 = 112] = 12k: k = 1, 2, 3, .... .}. +

The fact that [2] = [4] in Example 2.15 illustrates part of the following
theorem.
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Theorem 2.3 Let R be an equivalence relation on a set S.

(a) If x and y are elements of S, then x is related to y by R if and only if
[x] = [y].

(b) Two equivalence classes of R are either equal or disjoint.

Proof (a) Let x and y be elements of S such that x R y. We will prove that
[x] = [y] by showing that [x] C [y] and [y] C [x].

If z E [x], then z is related to x, that is, z R x. But if z R x and x R y, then
z R y by the transitive property of R. So z E [y]. This proves that [x] C [y].

If z E [y], then z R y as above. By assumption x R y, and so y R x is true
by the symmetric property of R. But then z R y and y R x imply z R x by the
transitive property. Hence z E [x], proving that [y] C [x]. Since we have both
[x] C [y] and [y] C [x], it follows that [x] = [y].

Conversely, suppose that [x] = [y]. Now x E [x] by the reflexive property,
and so x E [y] because [x] = [y]. But if x E [y], then x R y. This completes the
proof of part (a).

(b) Let [u] and [v] be any two equivalence classes of R. If [u] and [vI are not
disjoint, then they contain a common element w. Since w E [u], part (a) shows
that [w] = [u]. Likewise, [w] = [v]. It follows that [u] = [v]. Hence, [u] and [v]
are either disjoint or equal.

Because of part (b) of Theorem 2.3, the equivalence classes of an equivalence
relation R on set S divide S into disjoint subsets. This family of subsets has the
following properties:

(1) No subset is empty.
(2) Each element of S belongs to some subset.
(3) Two distinct subsets are disjoint.

Such a family of subsets of S is called a partition of S.

' Example 2.16

Let A = {1, 3, 4), B = 12, 6), and C = {5}. Then P = {A, B, C) is a partition of
S = {1,2,3,4,5,61.SeeFigure2.4. +

FIGURE 2.4
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We have seen that every equivalence relation on S gives rise to a partition
of S by taking the family of subsets in the partition to be the equivalence classes
of the equivalence relation. Crcnversely, if P is a partition of S, we can define a
relation R on S by letting x R y mean that x and y lie in the same member of P.
Using the partition in Examp .e 2.16, for instance, we obtain the relation

((I, 1), (1, 3), (1, 41, (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4),

(2, 2) (2, 6), (6, 2), (6, 6), (5, 5)}.

Then clearly R is an equivalenrce relation on S, and the equivalence classes of R
are precisely the members of '2. We will state these facts formally as our next
theorem.

Theorem 2.4 (a) An equivalence relation R gives rise to a partition P in which the members
of P are the equivalence Classes of R.

(b) Conversely, a partition P induces an equivalence relation R in which two
elements are related by R whenever they lie in the same member of P.
Moreover, the equivalence classes of this relation are the members of P.

Although the definitions of an equivalence relation and a partition appear to
be quite different, as a result of Theorem 2.4 we see that these two concepts are
actually just different ways of c describing the same situation.

EXERCISES 2.2

In Exercises 1-12 determine which of the reflexive, symnmett ic, and transitive properties are satisfied by the given
relation R defined on set S.

1. S = I1, 2,31 and R = {(l, 1), (1, 2), (2, 1), (2, 2)}.
2. S = {1, 2,3) and [(I, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3 2), (3, 3)}.

3. S is the set of all Illinois residents and x R y means thst x has the same mother as y.
4. S is the set of all citizens of the United States and x R y means that x has the same weight as y.

5. S is the set of all students at Illinois State University and x R y means that the height of x differs from the
height of y by no more than one inch.

6. S is the set of all teenagers and x R y means that x has a grandfather in common with y.

7. S is the set of all graduates of Michigan State University and x R y means that x first attended Michigan State
University in the same year as y.

8. S is the set of all residents of Los Angeles and x R Y me ans that x is a brother of y.

9. S is the set of all real numbers and x R y means that x ' = y2.

10. S is the set of positive integers and x R y means that x divides y or y divides x.
11. S is the set of all subsets of {1, 2, 3, 4} and X R Y means X C Y.

12. S is the set of ordered pairs of real numbers and (x1, X2) R (Y1, Y2) means that xi = ye and x2 ' Y2-
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In Exercises 13-18 show that the given relation R is an equivalence relation on set S. Then describe the equivalence
class containing the given element z in S, and determine the number of distinct equivalence classes of R.

13. Let S be the set of integers, let z = 7, and define x R y to mean that x - y is even.

14. Let S be the set of all possible strings of 3 or 4 letters, let z = ABCD, and define x R y to mean that x has the
same first letter as y and also the same third letter as y.

15. Let S be the set of integers greater than 1, let z = 60, and define x R y to mean that the largest prime divisor
of x equals the largest prime divisor of y.

16. Let S be the set of all subsets of (1, 2, 3, 4, 5}, let z = (1, 2, 3}, and define X R Y to mean that X n (1, 3,5} =
Y nl 1, 3,51.

17. Let S be the set of ordered pairs of real numbers, let z = (3, -4), and define (xI, X2) R (Yl, Y2) to mean that
2 2 2 2

X1 +X 2 = y1 + Y2.

18. Let S be the set of ordered pairs of positive integers, let z = (5, 8), and define R so that (xI, x2) R (YI, Y2)

means that xi + Y2 = YI + X2.

19. Write the equivalence relation on {1, 2, 3, 4, 5) that is induced by the partition with {I, 5}, (2, 4), and {3) as its
partitioning subsets.

20. Write the equivalence relation on {1, 2, 3, 4, 5, 61 that is induced by the partition with (1, 3, 6), {2, 5}, and {4)
as its partitioning subsets.

21. Let R be an equivalence relation on a set S. Prove that if x and y are any elements in S, then x R y is false if
and only if [x] n [y] = 0.

22. Let R be an equivalence relation on a set S, and let x and y be elements of S. Prove that if a E [x], b e [y],
and [x] :A [y], then a R b is false.

23. What is wrong with the following argument that attempts to show that if R is a relation on set S that is both
symmetric and transitive, then R is also reflexive?

Since x R y implies y R x by the symmetric property, x R y and y R x imply x R x by the transitive
property. Thus x R x is true for each x E S, and so R is reflexive.

24. Let RI and R2 be equivalence relations on sets S, and S2, respectively. Define a relation R on S, x S2 by letting
(xI, x2 ) R (Yi, Y2) mean that xl R, yi and x2 R2 Y2. Prove that R is an equivalence relation on S, x S2 , and
describe the equivalence classes of R.

25. Determine the number of relations on a set S containing n elements.
26. Call a relation R "circular" if x R y and y R z imply z R x. Prove that R is an equivalence relation if and only

if R is both reflexive and circular.
27. Let S be a set containing n elements, where n is a positive integer. How many ways are there to partition S into

two subsets?

28. How many partitions are there of a set containing three elements?
29. How many partitions are there of a set containing four elements?
30. Prove Theorem 2.4.

31. Let S be any nonempty set and f any function with domain S. Define si R S2 to mean that f (sl) = f(s 2). Prove
that R is an equivalence relation on S.

32. State and prove a converse to Exercise 31.
33. Let pm(n) be the number of partitions of a set of n elements into m subsets. Show that for I < m < n,

pm(n + 1) = mpm(n) + pm. (n).
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2.3 + CONGRUENCE

In this section we will discuss an important equivalence relation on the set of
integers. This relation will lead to the study of number systems containing only
a finite number of elements. Such number systems arise naturally in the study of
computer arithmetic.

We will begin by discussing some ideas from arithmetic. If m and n are
integers and m + 0, the division algorithm states that n can be expressed in the
form

n = qm, + i, where 0 < r < Iml,

for unique integers q and r. (:Recall that Iml, the absolute value of m, is defined
to be m if m > 0 and is defined to be -m if m < 0.) These integers q and r are
called the quotient and remainder, respectively, in the division of n by m and
can be found by the process of long division. Thus, for instance, in the division
of 34 by 9, the quotient is 3 an(d the remainder is 7 because

34=3 9+7 and 0<7<9.

Note, however, that although

-34 = 3 (-9) + (-7),

3 is not the quotient in the division of -34 by -9 because -7 is not a possible
remainder. (It does not lie between 0 and 1-91 = 9.) In this case we have

-34 = 4 (-9) + 2 and 0 < 2 < 9,

so that 4 is the quotient and 2 is the remainder in this division. If the remainder
in the division of n by m is Ct, then we say that n is divisible by m (or that m
divides n). Thus to say that n is divisible by m means that - is an integer.

Now let m be an integer greater than 1. If x and y are integers, we say that
x is congruent to y modulo m if x - y is divisible by m. If x is congruent to y
modulo m, we write x - y (mod m); otherwise, we write x 0 y (mod m). We
call this relation on the set of integers congruence modulo m.

+ Example 2.17

Clearly, 3 =- 24 (mod 7) because 3 -24 = -21 is divisible by 7. And similarly,
98 - 43 (mod 11) because 98 -- 43 = 55 is divisible by 11. But 42 # 5 (mod 8)
since 42 - 5 = 37 is not divisible by 8, and 4 # 29 (mod 6) since 4 - 29 = -25
is not divisible by 6. +

The most common situation in which congruence occurs is in connection
with the telling of time. Standard clocks and watches keep track of time modulo
12. Thus we say that 15 hours alter 7 o'clock is 10 o'clock, because 7 + 15 - 10
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(mod 12). Transportation schedules (such as train schedules) usually list times
modulo 24 because there are 24 hours per day.

+ Example 2.18

Congruences often occur in applications involving error-detecting codes. In this
example we will describe an application of such a code in the publishing industry.

Since 1972 a book published anywhere in the world has carried a ten-digit
code number called an International Standard Book Number (ISBN). For in-
stance, the ISBN for Finite Mathematics by Spence and Vanden Eynden is
0-673-38582-5. By providing a standard identifier for books, these numbers have
allowed publishers and bookstores to computerize their inventories and billing
procedures more easily than if each book had to be referred to by author, title,
and edition.

An ISBN consists of four parts: a group code, a publisher code, an identifying
number assigned by the publisher, and a check digit. In the ISBN 0-673-38582-5,
the group code (0) denotes that the book was published in an English-speaking
country (either Australia, Canada, New Zealand, South Africa, the United
Kingdom, or the United States). The next group of digits (673) identifies the pub-
lisher, and the third group of digits (38582) designates this particular book among
all those published by that publisher. The final digit of the ISBN (5) is the check
digit, which is used to detect errors in copying or transmitting the ISBN. By using
the check digit, publishers are often able to detect an incorrect ISBN and prevent
the costly shipping charges that would result from filling an incorrect order.

The check digit has eleven possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or X.
(A check digit of X represents the number 10.) This digit is determined in the
following way: multiply the first nine digits of the ISBN by 10, 9, 8, 7, 6, 5, 4, 3,
and 2, respectively, and add these nine products to obtain a number y. The check
digit d is then chosen so that y + d - 0 (mod 11). For example, the check digit
for Finite Mathematics is 5 because

10(0) + 9(6) + 8(7) + 7(3) + 6(3) + 5(8) + 4(5) + 3(8) + 2(2)

= 0 + 54 + 56 + 21 + 18 + 40 + 20 + 24 + 4 = 237

and 237 + 5 = 242 0 (mod 11).
Likewise the ISBN for this book (found on the back of the title page) is

0-321-07912-4. Here the check digit is 4 because

10(0) + 9(3) + 8(2) + 7(1) + 6(0) + 5(7) + 4(9) + 3(l) + 2(2)

=0+27+ 16+7+0+35+36+3+4= 128

and 128+4= 132 0(mod 11).
For other uses of congruence in identification numbers, see suggested read-

ings [2] and [3] at the end of this chapter. +



56 Chapter 2 Sets, Relations, and Functions

It can be shown thatx is congruent toy modulo m precisely when x = km + y
for some integer k. In particular, x is congruent to the remainder in the division
of x by m. Hence x is congrtient to y module m if and only if x and y have the
same remainder when divided by m. (See Exercise 51.) From this fact the next
theorem follows immediately.

Theorem 2.5 Congruence module m is an equivalence relation.

The equivalence classes for congruence modulo m are called congruence
classes modulo m. The set of all the congruence classes modulo m will be denoted
by Zm. It follows from Theorem 2.3 that any two congruence classes module m are
either equal or disjoint. Moreover, in Zm, [x] = [y] if and only if x = y (mod m).
Thus if r is the remainder in the division of x by m, then [x] = [r] in Z. So
there are m distinct congruence classes in Zm, namely [0], [11], [2], . . ., [m - 1].
These correspond to the m possible remainders when dividing by m.

+ Example 2.19

In Z3 the distinct congruence --asses are

[O = {...,-6, -3,0,3,6,9,...},

[1] = {...,-5, -2, 1, 4, 7, 10, ... }, and

[2] = {..., -4,-1,2,5,8, 11,...}.

Notice that each of the congruence classes in Z3 has many possible representa-
tions. For instance, [0] = [3] = [9] = [-12] and [2] = [-4] = [11] = [32]. +

We would like to define addition and multiplication in Zm. There is a natural
way to do this using the addition and multiplication of integers; simply define

[x] + [yl =- x + y] and [x][y] = [xy].

In order for these definitions to make sense, however, we must be sure that they
do not depend on the way in which congruence classes are represented. In other
words, we must be certain thai these definitions depend only on the congruence
classes themselves. For example, in Z3 , we have [0] = [9] and [2] = [11]; so we
must be certain that the sums [DI9 + [2] and [9] + [11] give the same answer. The
following result gives us that assurance.

Theorem 2.6 If x -x' (mod m) and y - y' (mod m), then

(a) x + y - x' + y' (mod m) land
(b) xy x'y' (mod m).

Proof. If x = x' (mod m) and y - y' (mod m), then there are integers a and b
such that x = am + x' and Y == bm + y'.
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(a) Thusx+y=(am+x')+(bm+y')=(a+b)m+(x'+y').Then

(x + y) -(x'+ y') = (a + b)m,

so that (x + y) -(x' + y') is divisible by m. This proves (a).
(b) Likewise, xy = (am + x')(bm + y') = (amb + ay' + bx')m + x'y', so
that xy-x'y'=(amb+ay'+bx')m. Hence xy-x'y' is divisible by m,
proving (b). 0

Notice that part (b) of Theorem 2.6 implies that if x - z (mod m), then
Xn = z' (mod m) for all positive integers n. Moreover, the definition of multipli-
cation in Zm shows that [x]' = [z]n.

Example 2.20

In Z6 we have

[5] + [3] = [5 + 3] = [8] = [2]

since 8 - 2 (mod 6). Also,

[5][3] = [5 .3] = [15] = [3]

because 15 - 3 (mod 6). And

[8]4 = [2]4 = [24] = [16] = [4]

since 8 2 (mod 6) and 16 4 (mod 6). +

Example 2.21

In Z8 we have

[4] + [7] = [4 + 7] = [11] =[3]

since 11 = 3 (mod 8). Also

[4][7]= [4 7] = [28] = [4]

because 28 = 4 (mod 8). And

[7]9 = [-1]9 = [(-1)9] = [-1] = [7]

since 7 1 (mod 8). +

Example 2.22

A scientific recording instrument uses 1 foot of paper per hour. If a new roll
of paper 100 feet long is installed at 11 A.M., at what hour of the day will the
instrument run out of paper?

To answer this question, we will number the hours of a day with midnight
being hour 0, 1 A.M. being hour 1, etc. Using arithmetic in Z24, we see that the
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paperwillrunoutattime[ II] 4 [100] = [111] = [15]. Sincehour l5corresponds
to 3 P.M., we see that the paper will run out at 3 P.M. 0la

1 Example 2.23

In the Apple Pascal programming language, integer variables must have values
between -32,768 and 32,767 inclusive. This range permits integer variables to
have 65,536 = 216 different va- ues. Moreover, all integer arithmetic is done mod-
ulo 65,536, with answers given in the range above. Thus,

60,000 + 10,000 = 4464

since 70,000 = 4464 (mod 5:5,536). Likewise

23,000 + 3,000 = -29,536

because 36,000 - 36,000 -- 65,536 - -29,536 (mod 65,536). Similarly, we
see that 400 500 = 3392 and 123 487 = -5635. o

+ Example 2.24

On a Sharp model EL-506S ca curator, the value of 230 is given as 1,073,741,820.
If this value is correct, then the last digit of 228 = must be 5. But clearly no
power of 2 can be odd, so the last digit of 230 must be wrong. What is the correct
last digit of 230?

It is easy to see that twvo positive integers have the same last digit if and only
if they are congruent modulo 10. But in Z10

[230] = [25]6 = [32]6 = [2]6 - [26] = [64] = [4].

Hence, the last digit of 230 is 4. Actually 230 = 1,073,741,824. c

EXERCISES 2.3

In Exercises 1-8 find the quotient and remainder in the division of n by m.

1. n= 67andm=9 2. n- 39andm=-13 3. n= 25andm=42

4. n = 103 andm =8 5. n = -54 andm == 6 6. n =-75 andm = 23

7. n =-89 and m -10 8. n =-57 andm -=-11

In Exercises 9-16 determine if p = q (mod m).

9. p=29,q=-34,andm=7 10. p-=47,q=8,andm=11

11. p = 96, q = 35, and m = 10 12. p = 21, q = 53, and m= 8

13. p = 39, q = -46, and m = 2 14. p = 75, q = -1, and m = 19

15. p = 91, q = 37, and in = 9 16. p = 83, q = -23, and m zz: 6
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In Exercises 1 7-36 perform and indicated calculations in Zm. Write your answer in the form [r] with 0 < r < m.

17. [8] + [6] in Z12  18. [9] + [11] in Z15  19. [5] + [10] in Z,,

20. [9] + [8] in Z13  21. [23] + [15] in Z8 22. [12] + [25] in Z7

23. [16] + [9] in Z6  24. [43] + [31] in Z22  25. [8][7] in Z6

26. [9][3] in Z4 27. [4][11] in Z9 28. [3][20] in Z

29. [5][12] in Z8 30. [8][11] in Zs 31. [9][6] in Zio

32. [16][3] in Z7  33. [9]7 in Z7 34. [1l] in Z5

35. [11]9 in Z12  36. [13]6 in Z 15

37. A newspaper teletypewriter that is in constant operation uses 4 feet of paper per hour. If a new roll of paper
200 feet long is installed at 6 P.M., at what hour of the day will the machine run out of paper?

38. A hospital heart monitoring device uses 2 feet of paper per hour. If it is attached to a patient at 8 A.M. with a
supply of paper 150 feet long, at what hour of the day will the device run out of paper?

39. Use Example 2.18 to determine the correct check digit for the ISBN that has 3-540-90518 as its first nine digits.

40. Use Example 2.18 to determine the correct check digit for the ISBN that has 0-553-103 10 as its first nine digits.

41. The Universal Product Code (UPC) is a 12-digit number found on products that enables them to be identified by
electronic scanning devices. The first six digits identify the country of origin and the manufacturer, the next five
digits indicate the product, and the last digit is a check digit. If the first 11 digits of a UPC are a,, a2, . . ., at l,
then the check digit a12 is chosen so that 3a, + a2 + 3a3 + a4 + ... + 3a11 + a 2 =- 0 (mod 10). Find the
correct check digit for the product that has 0 70330 20118 as its first 11 digits.

42. Federal Express packages carry a 10-digit identification number. The last digit is a check digit that equals the
remainder in the division of the first nine digits by 7. Find the last digit of the Federal Express package tracking
number with 903786299 as its first nine digits.

43. Use Example 2.23 to determine the result of the operations 26,793 + 28,519 and 418 . 697 if performed on
integer variables in the Apple Pascal programming language.

44. Use Example 2.23 to determine the result of the operations 4,082 + 30,975 and 863 . 729 if performed on
integer variables in the Apple Pascal programming language.

45. Let A denote the equivalence class containing 4 in Z6 and B denote the equivalence class containing 4 in Z8.
Is A = B?

46. In Z8 which of the following congruence classes are equal: [2], [7], [10], [16], [39], [45], [-1], [-3], [-6],
[-17], and [-23]?

47. Let R be the equivalence relation defined in Example 2.13. Give an example to show it is possible that p R x and
q R y are both true, yet (p + q) R (x + y) and pq R xy are both false. Thus the definitions [p] + [q] = [p + q]
and [p][q] = [pq] do not define meaningful operations on the equivalence classes of R.

48. Give an example to show that in Zm it is possible that [x] #0 [0] and [y] :A [0] but [x][y] = [0].

49. Let m and n be positive integers such that m divides n. Define a relation R on Z, by [x] R [y] in case x =- y
(mod m). Prove that R is an equivalence relation on Z,. What can be said if m does not divide n?

50. A project has the nine tasks T1, T2, T3, T4, T5, T6, T7, T8, and T9. Task Tj takes i days to complete for
i = 1, 2, ... , 9. If i divides j and i 54 j, then task Tj cannot be started until task T; is completed.

(a) Make a PERT diagram for this project. Include the task symbols TI, T2, . . ., T9 and the times in each circle.
(b) Apply the PERT method to assign to each task the shortest time until it can be completed. What is the

shortest time to complete the whole project?
(c) What is the critical path?
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51. (a) Prove that x y (mod m) if and only if x = km + y for some integer k.
(b) Prove that x - y (mod m) if and only if x and y have the same remainder when divided by m.

52. (a) Suppose that a, b, and c are integers such that x - y (mod m). Prove that ax2 + bx + c - ay
2 + by + c

(mod m).
(b) Show that the result in part (a) may be false if a, o, and c are not all integers, even if ax2 + bx + c and

ay2 + by + c are both integers.

2.4* + PARTIAL ORDERING RELATIONS

In Section 1.1 we discussed a construction example in which the tasks necessary
to build a house, the number of days needed to complete each task, and the
immediately preceding tasks are as given in the following table. In Section 1.1 we
saw that by doing some of the tasks simultaneously, all the tasks could be finished
(and so the house could be completely built) in 45 days. In this section we will
consider a different question: ina what sequence should the tasks be performed if
all the tasks are to be carried out by a group of individuals who are capable of
doing only one task at a time"

Task Time in Days Preceding Steps

A Site preparation 4 None

B Foundation 6 A

C Drains and services 3 A

D Framing 10 B

E Roof 5 D

F Windows 2 E

G Plumbing 4 C, E

H Electrical work 3 E

I Insulation 2 G, H

J Shell 6 F

K Drywall 5 1, J

L Cleanup and paint 3 K

M Floors and trim 4 L

N Inspectior 10 I

In this construction project, certain tasks cannot be started until others are
completed. Task G (the plumbing), for example, cannot be started until both tasks
C and E are completed. Recall that there are other requirements that are not as
readily apparent from the table In this case task G cannot be started until each of
A, B, C, D, and E are completed. This is because task E cannot be started until D
is completed, D cannot be started until B is completed, and B cannot be started
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until A is completed. Seeing all of the dependencies among the tasks is easier in
the following diagram, where an arrow from task X to task Y signifies that task
Y cannot be started until task X and all of its predecessors have been completed.
If we omit the arrowheads in Figure 2.5 by agreeing, as in Section 1.1, that all
arrows point from left to right, then the resulting diagram is shown in Figure 2.6.
(It is essentially the same as the one in Figure 1.8.)

A B D E F J K L M

H

C G I N

FIGURE 2.5

The sequencing of the tasks described in the original table and pictured in
the diagram of Figure 2.6 creates a relation R on the set of tasks

S = {A, B, C, D, E, F, G, H, I, J, K, L, M, N},

where X R Y means either that X = Y or that Y cannot be started before X is
completed. This relation has some of the special properties that we encountered
in Section 2.2. First, this relation is obviously reflexive since each task in S is
related to itself. Second, the relation is transitive. To see why, suppose that X R Y
and Y R Z. If X = Y or Y = Z, then clearly X R Z. Otherwise task Y cannot be
started before task X is completed and task Z cannot be started before task Y is
completed. It follows that task Z cannot be started before task X is completed.
Thus in each case we have X R Z, proving that R is transitive.

A B D E F J K L M

FIGURE 2.6

However, this relation is not symmetric because A R B is true but B R A is
false. But the relation does have the following property: if both X R Y and Y R X
hold, then necessarily X = Y. For if X =A Y and task Y cannot be started before
task X is completed and also task X cannot be started before task Y is completed,
then neither X nor Y can be started, and so the project cannot be finished!

A relation R on a set S is called antisymmetric if, whenever x R y and
y R x are both true, then x = y. A relation R on a set S is called a partial
ordering relation or, more simply, a partial order if it has the following three
properties.
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(1) R is reflexive, that is, x R x is true for every x in S.
(2) R is antisymmetric, that is, whenever both x R y and y R x are true, then

x = y.
(3) R is transitive, that is, x R z is true whenever x R y and y R z are both true.

Many familiar relations are partial orders, as the following examples show.

Example 2.25

The equality relation on any set is obviously antisymmetric. Since equality is also
reflexive and transitive, it is a partial order on any set. +

Example 2.26

Let S be any collection of sets. For A, B E S define A R B to mean that A C B.
Then R is an antisymmetric relation on S, for if X R Y and Y R X are both true,
then X C Y and also Y C X, from which it follows that X = Y.

Moreover, R is reflexive because X C X for every X E S, and R is transitive
because X C Y and Y C Z imply that X C Z for all X, Y, Z e S. Therefore R
is a partial order on S. 4

Example 2.27

Let S be a set of real numbers. The familiar less than or equal to relation (<) is
an antisymmetric relation on S. Since this relation is also reflexive and transitive,
it is a partial order on S. 4

Example 2.28

Let S be the set of positive integers. Define a relation R on S by letting a R b
mean that a divides b (as defined in Section 2.3). Suppose that both x R y and
y R x are true. Then

:=m and -=n
Y x

where m and n are positive integers. Thus x = my = m(nx) = (mn)x. Since m
and n are positive integers such that mn = 1, it follows that m = n = 1. Hence
x = my = y. Therefore R is an antisymmetric relation on S. Since this relation
is also reflexive and transitive (see Example 2.10), it is a partial order on S. 4

Example 2.29

Congruence modulo 6 is not an antisymmetric relation on the set of integers
because both 3 - 9 (mod 6) and 9 - 3 (mod 6) are true, but 3 :7 9. Hence con-
gruence module 6 is not a partial order on the set of integers. +
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Example 2.30

Today Mr. Webster is scheduled to interview three applicants for a summer in-
ternship at 9:00, 10:00, and 1 1:00, and Ms. Collins is to interview three applicants
at the same times. Unfortunately, both Mr. Webster and Ms. Collins have become
ill, and so all six interviews are to be conducted by Ms. Herrera. She has de-
cided to schedule the applicants to be interviewed by Ms. Collins in the order
in which they were to appear followed by the applicants to be interviewed by
Mr. Webster in the order in which they were to appear. Thus the sequence in
which the interviews are to be conducted is (Collins, 9:00), (Collins, 10:00),
(Collins, 11:00), (Webster, 9:00), (Webster, 10:00), and (Webster, 11:00). The
ordering of applicants used here by Ms. Herrera is an example of a lexicographic
order. +

In Example 2.30 there are two sets

SI = {Webster, Collins} and S2 = 19:00, 10:00, 11:00}

and two partial orders RI and R2 on those sets. In this case the relation RI on SI is
alphabetical order, and the relation R2 on S2 is numerical order (i.e., less than or
equal to). The sequence in which the interviews are to be conducted is obtained
by extending R1 and R2 to a partial order on SI x S2.

More generally, suppose that RI is a partial order on set SI and that R2 is a par-
tial order on set S2. It is possible to use RI and R2 to define arelation R on SI x S2.
We define R by (a,, a2) R (hi, b2) if and only if one of the following is true:

(1) a, i& bi anda, RI b, or
(2) a, = bi and a2 R2 b2 -

This relation is called the lexicographic order on SI x S2. This ordering is also
called "dictionary order" because it corresponds to the sequence in which words
are listed in a dictionary.

Theorem 2.7 If RI is a partial order on set SI and R2 is a partial order on set S2, then the
lexicographic order is a partial order on SI x S2.

Proof Let R be the lexicographic order on SI x S2. For any (ai, a2) e SI x S2,
we have (a,, a2 ) R (ai, a2) by condition (2) in the definition of the lexicographic
order. Hence R is reflexive.

Next suppose that (ai, a2) and (bl, b2 ) are elements of SI x S2 such that
both (a,, a2 ) R (b1, b2 ) and (bl, b2) R (a,, a2 ). If ai #& bl, then condition (1) in
the definition of the lexicographic order applied to (a,, a2 ) R (bi, b2) implies
that a, RI bl. Moreover, condition (1) applied to (bl, b2) R (a], a2) implies that
b1 RI ai. Because RI is antisymmetric and both ai RI b, and b1 RI a, are
true, we must have a, = bl, in contradiction of our assumption that at :A bl.
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Thus a, = b, and condition (2) must apply. Applying (2) to (a,, a2) R (bl, b2 )
implies that a2 R2 b2 , and app l ing condition (2) to (bl, b2 ) R (a,, a2 ) implies that
b2 R2 a2 . Since R2 is antisymnnetric, then a2 = b2 . But if a, = b1 and a2 = b2 ,
then (a,, a2 ) = (b1, b2), proving that R is antisymmetric.

An argument similar to that in the preceding paragraph shows that R is also
transitive. Hence the lexicographic order on SI x S2 is a partial order. X

Note that despite the similarity in their names, the concepts of a symmet-
ric relation and an antisynnictric relation are independent of each other. The
relation in Example 2.25 is both symmetric and antisymmetric, the relations in
Examples 2.26 through 2.28 are antisymmetric but not symmetric, and the re-
lation in Example 2.29 is symmetric but not antisymmetric. Moreover, it is not
difficult to find examples of relations on sets that are neither symmetric nor anti-
symmetric.

The reason for using the name partial order is that there may be elements
in the underlying set that cannot be compared. For example, if we consider the
partial order "is a subset of" (Cc) on the collection S of all subsets of {1, 2, 3, 41,
we see that the elements A -= {1, 21 and B = {1, 3} of S cannot be compared,
that is, neither A C B nor B - A is true.

If R is a partial order on S and S' is any subset of S, then R induces a partial
order R' on S' by defining x R' y if and only if x R y. (In other words, two
elements of S' are related by I?' if and only if the same two elements, regarded as
elements of S, are related by P.) Using the ordered pair notation for a relation, this
relation R' can be defined as R' = R n (S' x S'). So, for instance, in Example
2.28 the "divides" relation induces a partial order on any subset of the set of
positive integers.

A partial order R on set S is called a total order (or a linear order) on S
if every pair of elements in S can be compared, that is, if for every x, y E S, we
have x R y or y R x. Thus, tie "less than or equal to" relation (<) on the set of
all real numbers is a total order. However, in Example 2.28 the "divides" relation
is not a total order on the set of positive integers because neither 6 divides 15 nor
15 divides 6, and so the positive integers 6 and 15 cannot be compared.

Let R be a partial order on set S. An element x in S is called a minimal
element of S (with respect to R) if the only element s E S satisfying s R x is
x itself, that is, if s R x implies s = x. Likewise an element z in S is called a
maximal element of S (with respect to R) if the only element S E S satisfying
z R s is z itself, that is, if z R e mplies s = z. Minimal or maximal elements need
not exist for a particular partia- order.

Example 2.31

The "is a subset of" relation (C) is a partial order on the collection S of all
subsets of {1, 2, 31. Here 0 (the empty set) is a minimal element of S because
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A C 0 implies that A = 0. Also, f 1, 2, 31 is a maximal element of S because
{1, 2, 31 C A implies that A = {1, 2, 3}. +

4 Example 2.32

Let S denote the set of real numbers greater than or equal to 0 and less than or
equal to 7. The "less than or equal to" relation (<) is a total order on S, and with
respect to this relation 0 is a minimal element of S and 7 is a maximal element
of S. +

+ Example 2.33

The "less than or equal to" relation (<) is a total order on the set of real numbers,
but here the set has neither minimal nor maximal elements. o

+ Example 2.34

The "is a subset of" relation (C) is a partial order on the collection S of subsets of
( 1, 2, 3, 41 that contain 1, 2, or 3 elements. In this setting the one-element subsets
of S are minimal elements of S and the three-element subsets of S are maximal
elements of S. +

In Example 2.33 we saw that a set need not have minimal or maximal elements
with respect to a particular partial order. This cannot happen if the set is finite.

Theorem 2.8 Let R be a partial order on a finite set S. Then S has both a minimal and a maximal
element with respect to R.
Proo.f Pick any element si E S. If there is no element s E S other than Si such
that s R sI, then S1 is a minimal element of S. Otherwise there exists an element
52 E S such that S2 :A S, and S2 R sI. If there is no element s E S other than S2 such
that s R S2 , then S2 is a minimal element of S. Otherwise there exists an element
S3 E S such that S3 $ s2 and s3 R S2 . Note that S3 + S1 because 53 = SI would
imply that s, R S2 . Since R is antisymmetric and we have S2 R sI, it would follow
that s, = S2 , contrary to our choice of S2. Because S is a finite set, continuing in
this manner must produce a minimal element of S.

The proof that S contains a maximal element is similar.

f ?'.se Diligr ImS,' 's;e9l

We have already seen that the diagram in Figure 2.6 is helpful in visualizing the
precedence relations among the tasks in the construction example discussed at
the beginning of this section. Similar diagrams can be constructed for any partial
order R on a finite set S. Such diagrams are named Hasse diagrams after the
German number theorist Helmut Hasse (1898-1979).
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To construct a Hasse diagram for the partial order R on set S, we represent
each element of S by a point, arid for each pair of distinct elements x and y in S, we
draw an arrow from the point representing x to the point representing y whenever
x R y and there is no s E S other than x and y such that x R s and s R y. Finally,
arrange each arrow so that its initial point is below its terminal point and remove
all the arrowheads. Thus bv convention, a Hasse diagram is read from bottom to
top, so that all the line segmer ts between points are regarded as pointing upward.
For instance, a Hasse diagram for the construction example would be drawn as
in Figure 2.7. (This is just the diagram in Figure 2.6 rotated by 90°.)

11,2,31

Ma

Kit

JO

Fat

E i

Do4

Bei

At4

1 H

I

IN

11,21

~11
X G (I

IC

(2, 31

131

rK' 0

FIGURE 2.7 FIGURE 2.8

It is easy to detect minima, and maximal elements from a Hasse diagram. A
minimal element is one that is joined by a segment to no lower point. Similarly,
a maximal element is one that is joined by a segment to no higher point. Hence
in Figure 2.7 we see that A is the only minimal element and that M and N are the
only maximal elements in the precedence relation for the tasks in the construction
example.

Example 2.35

A Hasse diagram for the relation in Example 2.31 consists of eight points corre-
sponding to the eight element Af S. A line segment is drawn upward from A to B
whenever A C B and there is no C in S other than A or B such that A C C C B.
The resulting diagram is showII in Figure 2.8. '

Example 2.36

Let R be the partial order "divides" on the set

S = {2, 3,4, 6, 8, 20, 24,48, 100, 120}.

0



2.4* Partial Ordering Relations 67

FIGURE 2.9

A Hasse diagram for R and S is shown in Figure 2.9. Here 2 and 3 are minimal
elements of S, and 48, 100, and 120 are maximal elements of S. +

4 Example 2.37

Let R be the partial order "is a subset of" (defined in Example 2.26) on the set

S = {l}, {2}, {3), {4), {1, 2}, 11, 51, {3, 6}, (4, 6), J0, 3, 61, {1, 5, 8), J0, 3, 4, 61).

A Hasse diagram for R and S is shown in Figure 2.10. Here J1}, {2), J3} and
(4) are minimal elements of S, and {1, 21, J1, 5, 81, and J0, 3, 4, 6} are maximal
elements of S. +

(1,5,8) {0,3,4,61

(1,51 {1,2} (0,3,61

/{3,6) (4,6)

{1) {2) {3) {4)

FIGURE 2.10

Now let us return to the question asked at the beginning of this section: In what
sequence should the tasks in the construction example be performed if all the
tasks are to be carried out by a group of individuals who are capable of doing
only one task at a time? Since the tasks must be performed sequentially, we are
seeking a total order T on the set of tasks that contains the original partial order
R (the one depicted in the Hasse diagram in Figure 2.7). That is, we want a total
order T such that x R y implies x T y.

48

24

6

3
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The process of constructing a total order that contains a given partial order
is called topological sorting. The following algorithm will produce such a total
order for any partial order on a finite set. It is based on the fact that R induces a
partial order on every subset of S.

Topological Sorting Algorithm

Given a partial order R on a finite set S, this algorithm produces a total order T such
that x R y implies x T y.

Step I (initialization)
Set k = t and S' = S.

Step 2 (pick next element)
while S' is nonempty

(a) Choose any minimal element Sk of S' with respect
to the order induced by R.

(b) Delete Sk from S'.
(c) Replace k with k + 1.

endwhile
Step 3 (define T)

Define the total order r on S by si T sj if and only if i < j.

To illustrate the use of the 1 opological sorting algorithm, we will construct a
total order for the set S of tasks in the construction example that contains the given
partial order. From the Hasse diagram in Figure 2.7, we see that A is the only
minimal element of S. Therefore we take s, = A and delete A from S. The
corresponding Hasse diagram f Dr this new set is shown in Figure 2.1 1. Here both
B and C are minimal elements, and we may arbitrarily select either one. Suppose
we take s2 = C. A Hasse diagram for this new set is shown in Figure 2.12. Since
B is the only minimal element in this new set, we take s3 = B.
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B.

0
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C D
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FIGURE 2.11 FIGURE 2.12
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Continuing in this manner, we choose s4 = D, s5 = E, s6 = G, s7 = H,
X8 = I, s9 = F, s10 = J, sII = N, s12 = K, s13 = L, and s14 = M. Thus a sequence
in which the tasks can be performed that contains the given partial order of the
tasks is

A, C, B, D, E, G, H, I, F, J, N, K, L, and M.

Of course, other such sequences are possible because at various stages of the
algorithm there were several possible minimal elements that could be chosen in
step 2. Another possible sequence is

A, B, D, E, F, J, C, H, G, I, K, L, M, and N.

Each of these sequences corresponds to a total order of the tasks in S that contains
the given partial order, namely, the order formed by defining X to be related to Y
if and only if X = Y or X occurs before Y in the sequence.

Example 2.38

To get the best seats at the basketball games of a large university, one must belong
to the Basketball Booster Club. Occasionally, the athletic department receives
complaints from members of the club who believe that their seats are inferior to
those of another member. Experience shows that the complainer can be mollified
by being assured that the other member either has been a member of the booster
club longer or is giving a larger donation.

Let us define a relation R on the members of the Basketball Booster Club by
x R y in case both of the following are true:

(1) x has belonged to the booster club at least as many years as y
(2) the current contribution of x is at least as great as that of y.

Suppose that the athletic department receives seating complaints from or
about the following members of the booster club: Adams, Biaggi, Chow, Duda,
El-Zanati, and Friedberg. It has agreed to examine the seats assigned to these six
persons and make changes if the seating is found to be inequitable. The table
below gives the number of years of membership in the Basketball Booster Club
and the current contribution of these members.

Member x Years in the Club Current Contribution

Adams 6 $150

Biaggi 3 $200

Chow 5 $600

Duda 8 $500

El-Zanati 7 $400

Friedberg 4 $450
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Because no two of these six persons have the same number of years of
membership and the same cur-ent contribution, the relation defined above is a
partial order on the set

S= {A, B, C, D, E, F),

where each person is denoted by his or her initial. The Hasse diagram for this
partial order on the set S is shown in Figure 2.13.

B A

FE

FIGURE 2.13

If we apply the topological sorting algorithm to this situation (choosing
minimal elements in alphabetical order when there is a choice), we get the
sequence

C, D, E, F, A, B.

If the athletic department assigns seats in this sequence (with Chow getting the best
seats, etc.), then it can answer any complaint about the seats of these six persons.
For example, Chow has better seats than Duda because Chow's contribution is
larger, and El-Zanati's seats are better than Friedberg's because she has been a
member of the booster club longer. +

EXERCISES 2.4

In Exercises 1-8 determine if the given relation R is a partial order on set S. Justify your answer.

1. S = {1, 2,3) and R = {(1, 1), (2, 3), (1,3)1
2. S = {1, 2, 3) and R = {(l, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 1), (1, 3), (3, 2))
3. S = {3,4,5)andR = {(5,5),(5,3),(3,3),(3,4),(4,4),(5,4))

4. S = {0, {1}} and R = {({1}, 0), ({1}, {1}), (0, 0)}
5. S = {1, 2, 3, 4} and x R y if y divides x
6. S is the collection of all subsets of {I, 2, 3} and A R B if A C B or B C A

7. S = Z6 andx R y ifx = y orx = y + [1]
8. S is the collection of all subsets of { 1, 2, 3) and A R B if I Ai< I

In Exercises 9-12 determine a Hasse diagram for the given partial order R on set S.

9. S= {1,2,3)andR = {(I,1),(3,1),(2,1),(2,2),(3,3))
10. S= {1,2,3,4}andR = {(1,1),(2,2),(3,3),(4,4),i2,4),(3,1)}
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11. S = 1,2,3,4,5,6,7,81 andx R y ifx divides y

12. S is the collection of all subsets of {1, 2, 3, 4} with an even number of elements and A R B if A C B

In Exercises 13-16 construct the partial order R on set S from the given Hasse diagram.

13. 12 14. a

b
6d

2 3C

15. A 16.

*A'
2 x 0 2 8

In Exercises 17-20 identify the minimal and maximal elements of S with respect to the given partial order R.

17. S= {1, 2, 3, 4, 5, 61 and x R y if x divides y

18. S is the set of nonempty subsets of { 1, 2, 31 and A R B if B C A

19. S= {1,2,3,4}andR = {(1,1),(2,2),(3,3),(4,4),(4,1),(3,1)}

20. S is the set of all real numbers x such that 0 < x < 1 and x R y if x < y

In Exercises 21-24 apply the topological sorting algorithm to the given set S and partial order R, and give the
sequence in which the elements of S are chosen.

21. S = 1,2,3,41 and R = {(l, 1), (2, 2), (3, 3), (4,4), (1, 3), (2, 4), (4,3), (2, 3)}

22. S = {1, 2, 3, 41 and x R y if x divides y

23. S is the collection of all subsets of {1, 2, 31 such that the sum of their elements is less than 5 and A R B if
A C B

24. S = {1, 2, 3, 4, 6, 121 andx R y if x divides y

25. Let S be the set of nonzero integers. Define a relation R on S by letting a R b mean that a is an integer. Is Ra
an antisymmetric relation on S?

26. Find a relation R on a set S that is neither symmetric nor antisymmetric.

27. Give an example of a subset S of the set of positive integers such that S has at least three elements and the
"divides" relation is a total order on S.

28. Consider the "divides" relation on the set of positive integers greater than 1. Determine all the minimal and
maximal elements of S.

29. Give an example of a set S and a partial order R on S such that S has exactly three minimal elements with
respect to R and exactly four maximal elements with respect to R.
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30. Let SI {1, 2, 31 and S2 = {1, 2, 3, 4), and let RI be t ie "less than or equal to" relation on SI and R2 be the
"less than or equal to" relation on S2. The lexicographic order is a total order on SI x S2. List the elements of
SI x S2 in the sequence given by the lexicographic order.

31. Let S be a set with five elements, and let R be a total oider on S. Draw a Hasse diagram for R.

32. Let S, = {7, 8, 91 and S2 = {2, 3, 4, 6}. Let R, be the "less than or equal to" relation on S, and R2 be the
"divides" relation on S2. Construct a Hasse diagram for the lexicographic order on S, x S2.

33. Let R be a partial order on S and S' be any subset of S. Prove that R' = R n (S' x S') is a partial order on S'.

34. Complete the proof of Theorem 2.8 by showing that if R is a partial order on a finite set S, then S has a maximal
element with respect to R.

35. Let R be a total order on set S. Prove that if S has a minimal element, then the minimal element is unique.

36. Let R be a partial order on S, and suppose that x is a anique minimal element in S.
(a) Prove that if S is finite, then x R s for all s in S.
(b) Show that the conclusion in (a) need not be true i f S is infinite.

37. Let RI be a total order on set S, and R2 a total order mn set S2. Prove or disprove that the lexicographic order
is a total order on S, x S2.

38. Complete the proof of Theorem 2.7 by proving that the lexicographic order on S, x S2 is transitive.

39. Let RI be a partial order on set SI and R2 a partial onler on set S2.
(a) Prove that if a is a minimal element of S, and b is .i minimal element of S2, then (a, b) is a minimal element

of SI x S2 with respect to the lexicographic order.
(b) State and prove a result about a maximal element cf S, x S2 that is similar to the result in (a).

40. Let S be a set containing exactly n elements. How many relations on S are both symmetric and antisymmetric?

41. Let S be a set containing exactly n elements. How many total orders on S are there?

42. Let S be a set containing exactly n elements. How many antisymmetric relations on S are there?

2.5 + FUNCTIONS

In the matching problem described in Section 1.2, we are seeking an assignment
of flights and pilots such that at many pilots as possible are assigned to flights that
they requested. We saw in Section 2.2 that the list of destinations requested by the
pilots gives rise to a relation between the set of destinations and the set of pilots.
An assignment of flights and pilots can therefore be thought of as a special type
of relation between the set of destinations and the set of pilots in which exactly
one pilot is assigned to each destination. We will now study this special type of
relation.

If X and Y are sets, a function f from X to Y is a relation from X to Y
having the property that, for each element x in X, there is exactly one element y
in Y such that x f y. Note that because a relation from X to Y is simply a subset
of X x Y, a function is a subset S of X x Y such that for each x E X there is a
unique y E Y with (x, y) in 'S.
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Example 2.39

LetX = {1,2,3,4},andY {5,6,7,8,9).Then

f = {(l, 5), (2, 8), (3, 7), (4, 5))

is a function from X to Y because, for each x E X, there is exactly one y E Y with
(x, y) in f .Note that in this case not every element of Y occurs as the second entry
of an ordered pair in f (6 and 9 do not occur in any ordered pair in f ), and some
element of Y (namely 5) occurs as the second entry of several ordered pairs in f.

On the other hand,

g = {(I, 5), (1, 6), (2, 7), (3, 8), (4, 9))

is not a function from X to Y because there is more than one y C Y (namely, 5
and 6) such that (1, y) belongs to g. And

h = {(1, 5), (2, 6), (4, 7)}

is not a function from X to Y because there is no element of Y associated with
some element (namely 3) of X. However, h is a function from {1, 2, 41 to Y. +

We denote that f is a function from set X to set Y by writing f: X Y. The
sets X and Y are called the domain and codomain of the function, respectively.
The unique element of Y such that x f y is called the image of x under f and
is written f (x), read "f of x." For the function f defined in Example 2.39, for
instance, f(1) = 5, f(2) = 8, f(3) = 7, and f(4) = 5. Thus writing y = f(x)
is another way of expressing that (x, y) belongs to f.

It is often useful to regard a function f: X -* Y as a pairing of each element
x in X with a unique element f (x) in Y. (See Figure 2.14.) In fact, functions are
often defined by giving a fonrmula that expresses f (x) in terms of x; for example,
f (x) = 7x2 - 5x + 4.

x Y

FIGURE 2.14

Note that in order for a set X to be the domain of a function g, it is necessary
that g(x) be defined for all x in X. Thus, g(x) = ax cannot have the set of all
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real numbers as its domain and codomain, for g(x) is not a real number if x < 0.
Likewise, g(x) = x cannot hive the set of all nonnegative real numbers as its
domain because g(x) is not defined if x = 0.

01 Example 2.40

Let X = {-1, 0, 1, 2} and Y = {-4, -2, 0, 21. The function f: X -* Y defined
by f (x) = X2- x behaves as follows.

The image of-I under f is the element (- 1)2 - (-1) = 2 in Y.
The image of 0 under f is the element (0)2 - (0) = 0 in Y.
The image of 1 under f is the element (1)2 -(1) = 0 in Y.
The image of 2 under f is the element (2)2 - (2) = 2 in Y.

Thus, f(-l) = 2, f(O) =0. f1) =0, and f(2) = 2. See Figure 2.15. 0

X Y

10 .2

2'2

FIGURE 2.15

01 Example 2.41

Let X denote the set of all real numbers and Y denote the set of all nonnegative real
numbers. The function f: X -+ Y defined by g(x) = Ix I assigns to each element
x of X its absolute value x . Tle domain of g is X and the codomain is Y. +

i) Example 2.42

Let X be the set of all real numbers between 0 and 100 inclusive, and let Y be the
set of all real numbers between 32 and 212 inclusive. The function F: X -+ Y that
assigns to each Celsius temperature c its corresponding Fahrenheit temperature
F(c) is defined by F(c) = 2c d- 32.

Unlike the preceding examples, it is not immediately clear that the image
under F of each element in X is an element of Y. To see that this is so, we must
show that 32 < F(c) < 212 if 0 < c < 100. But if

0 < C < 100,
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then

9 9
0< -C< - *100= 180.~5 - 5

So

9
32 < c-+32 < 212.

-5

Hence F(c) is an element of Y, and so F is a function with domain X and
codomain Y. +

Example 2.43

Let Z denote the set of integers. The function G: Z -* Z that assigns to each
integer m the number 2m is defined by G (mi) = 2m. The domain and the codomain
of G are both equal to Z. +

+ Example 2.44

Let Z denote the set of integers and Z12 the set of congruence classes modulo
12. The function h: Z -* Z12 defined by h(x) = [x] is the function that assigns
to each integer its congruence class in Z12. Here the domain of h is Z and the
codomain is Z12. 1

+ Example 2.45

In Apple Pascal, there is a built-in function named MOD that behaves as follows:
If N and M are positive integers, the value of the expression N MOD M is
the remainder in the division of N by M. Therefore, we can regard MOD as a
function with {(N, M): N and M are positive integers) as its domain and the set
of nonnegative integers as its codomain. +

+ Example 2.46

Let X denote the set of all subsets of U = {1, 2, 3, 4, 5), and let Y be the set of
nonnegative integers less than 20. If S is an element of X (i.e., if S is a subset of
U), define H(S) to be the number of elements in S. Then H: X -. Y is a function
with domain X and codomain Y. +

We have already noted that it is possible for a function to assign the same
element of the codomain to different elements in the domain. The function g(x) =
Ix I in Example 2.41, for instance, assigns to both -4 and 4 in the domain the
element 4 in the codomain. If this does not occur, that is, if no two distinct elements
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of the domain are assigned the same element in the codomain, then the function
is said to be one-to-one. Thus, to show that a function f: X -- Y is one-to-one,
we must show that f(x 1 ) =- (r2) implies xi = x2.

It is also possible that one or more elements of the codomain are not paired
by a function to any element in the domain. The function f in Example 2.40, for
instance, does not pair the elements -4 and -2 in the codomain with any elements
in the domain. Thus, in this case, only the elements 0 and 2 in the codomain are
paired by f with elements in Ihe domain. The subset of the codomain consisting
of the elements that are paired with elements of the domain is called the range of
the function. In Example 2.40 the range of f is 10, 21. If the range and codomain
of a function are equal, then the function is called onto. Hence, to show that a
function f: X -) Y is onto, we must show that if y e Y, then there is an x E X
such that y = f (x).

A function that is both cne-to-one and onto is called a one-to-one corre-
spondence. Note that if f: X -* Y is a one-to-one correspondence, then for each
y E Y there is exactly one IV E: X such that y = f (x).

For any set X, the function Ix: X -* X defined by Ix(x) = x is a one-to-one
correspondence. This function is called the identity function on X.

Example 2.47

The function f in Example 2.40 is neither one-to-one nor onto. It is not one-
to-one because f assigns the same element of the codomain (namely 0) to both
0 and 1, that is, because 0 and 1 are distinct elements of the domain for which
f (0) = f (1), and f is not onto because, as noted above, the elements -4 and -2
in the codomain of f are not elements in the range of f. +

Example 2.48

Let X be the set of real numbers. We will show that the function f: X -> X
defined by f (x) = 2x -3 is both one-to-one and onto and, hence, is a one-to-
one correspondence.

In order to show that f is one-to-one, we must show that if f (x I) = f (X2 ),

then xi = x2. Let f (xl) I (x) ) Then

2x,-3 = 2x2- 3

2x, = 2X2

Xi = X2.

Hence f is one-to-one.
In order to show that f is, onto, we must show that if y is an element of the

codomain of f, then there is an element x of the domain such that y = f (x).
Since the domain and codomain of f are both the set of real numbers, we need
to show that for any real number y, there is a real number x such that y = f (x).
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Take x = 2(y + 3). (This value was found by solving y = 2x - 3 for x.) Then

f(x)=f -(y+3)

G3
=2[-2(y+3)] -3

= (y + 3)- 3

= y.

Thus f is onto and so is a one-to-one correspondence. +

Note that whether or not a function is onto depends on the choice of domain
and codomain. If, for instance, the codomain of the function f in Example 2.40
were changed from {-4, -2, 0, 2} to {0, 2), then f would be onto. Furthermore,
if the set X in Example 2.48 were changed from the set of real numbers to the
set of integers, then the function f in Example 2.48 would not be onto because
there would be no element x E X such that f (x) = 0. Likewise whether or not a
function is one-to-one depends on the choice of domain and codomain.

Example 2.49

The function G: Z -* Z in Example 2.43 is one-to-one. For if G(xi) = G(X2),

then 2x, = 2x2; so xI = x2. But G is not onto because there is no element x
in the domain Z for which G(x) = 5. In fact, it is easy to see that the range of
G is the set of all even integers, and so the range and codomain of G are not
equal. +

Example 2.50

The function h: Z Z 12 in Example 2.44 is easily seen to be onto. But h is not
one-to-one since 1 # 13 but h(l) = [1] = [13] = h(13) in Z 12 . +

Example 2.51

Let X denote the set of real numbers and Y = {x E X: -1 < x < 1}. Define a
function f: X -+ Y by

x XI

We will show that f is a one-to-one correspondence.
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As in Example 2.42, we will show first that if x E X, then f(x) E Y. For
each x e X we have

-lxi < x < 1xi.

Now-1 - lxl <-Ixi and Ixi < 1 + IxI, so

-1 - lxi < x < 1 + xi.

Dividing by 1 + ixI gives

x
-1 < < 1,

1I+ lxi

so that f(x) E Y.
Next we will prove that f is one-to-one. If xI, x2 E X and f(xI) = X2),

then

X--lxi - 1i2iXI~ll IX2

So

lXI I X21+1+xil 1+ix21

+ lXII 1 + Ix21

i1I(1 + 1X21) = Ix21(1 + lXIi)

XII i+ lXII IX21 = IX21 + 1X21 lXII

lXII = IX21

I+ ±lxII = I + lX21.

Multiplying the original equation

xi x

+lxI 1+lX2l

by 1 + Ix I = 1 + Ix2I gives x1 = x2. Hence f is one-to-one.
To show that f is onto, wz solve y = f (x) for x in terms of y as in Example

2.48. Then by taking -Y YE X if O < y < 1, we have -(IYY) = y. And taking
+Y E X if-1 <y < O, we have f( Y)= y. Thus f is onto. 4

Since functions are sets of ordered pairs, the definition of equality for func-
tions follows from the definition of equality for sets. That is, f: X -* Y and
g: V -* W are equal if X = V, Y = W, and

{(x, fix)):x E X} = {(v, g(v)): v E V}.
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It follows that f = g if and only if X = V, Y = W, and f(x) = g(x) for all x in
X. It is possible for functions that appear different to be equal, as the following
example shows.

M Example 2.52

Let X = {-1,0,1,2} and Y = {-4,-2,0,2). The functions f: X -- Y and
g: X -+ Y defined by

21f (X) =  -x and g(x) = 2 1x- -
2

are equal since they have the same domains and codomains and f(x) = g(x) for
eachx E X:

f(-l)=2=g(-l) f(0)=O=g(O),

f(l) = 0 = g(l), and f(2)= 2 =g(2). +

If f is a function from X to Y and g is a function from Y to Z, then it is
possible to combine them to obtain a function gf from X to Z. The function gf is
called the composition of g and f and is defined by taking the image of x under
gf to be g(f (x)). Thus gf (x) = g(f (x)) for all x E X. The composition of g and
f is therefore obtained by first applying f to x to obtain f (x), an element of Y,
and then applying g to f (x) to obtain g(f (x)), an element of Z. (See Figure 2.16.)
Note that in evaluating gf(x), we first apply f and then apply g. If X = Z, it is
also possible to define the function fg; here we first apply g and then apply f.
In general, however, the functions gf and fg are not equal.

x Y z

FIGURE 2.16

+ Example 2.53

Let X denote the set of subsets of { 1, 2, 3, 4, 51, Y the set of nonnegative integers
less than 20, and Z the set of nonnegative integers. If S is an element of X,
define f(S) to be the number of elements in set S, and if y E Y define g(y) =
2y. Then for S = {1, 3, 4} we have gf(S) = g(f(S)) = g(3 ) = 6. In general,
gf(S) = g(f(S)) = 2. f(S); thus, gf assigns to S the integer that is twice the
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number of elements in S. It follows that gf is a function with domain X and
codomain Z. Note that in this case the function fg is not defined because g(y)
does not lie in X, the domain off. +

" Example 2.54

Let each of X, Y, and Z be the set of real numbers. Define f: X -+ Y and
g: Y -+ Z by f(x) = xI for all x e X and g(y) = 3y + 2 for ally e Y. Then
gf: X -+ Z is the function such that

gf (x) = g(f (x)) = g(jxj) = 3Ixl + 2.

In this case we can also define :he function fg, but

fg(x) =- f ('(x)) = f (3x + 2) = 13x + 21.

So gf # fg because gf(- 1) == 5 # 1 = fg(-1). +

Suppose that f: X -- Y is a one-to-one correspondence. Then for each y e Y
there is exactly one x E X such that y = f (x). Hence we may define a function
with domain Y and codomain X by associating to each y e Y the unique x e X
such that y = f (x). This function is denoted by f -1 and is called the inverse of
function f . (See Figure 2.17.) The next theorem lists some properties that follow
immediately from the definition of an inverse function.

xf Y

FIGURE 2.17

Theorem 2.9 Let f: X -* Y be a one-to-one correspondence. Then

(a) f -l: Y -. X is a one-to-one correspondence.
(b) The inverse function of f -1 is f .

(c) For all x e X, f - 1J(x) = x; and for all y e Y, ff -l(y) = y. That is,
f -f = Ix andff -1= fy.

+ Example 2.55

Theorem 2.9(c) can be used to compute the inverse of a given function. Suppose,
for instance, that S is the set of real numbers,

X={xES: -I <x<31, Y= {yeS:6<y<14},
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and f: X -* Y is defined by f (x) = 2x + 8. It can be shown that f is a one-to-one
correspondence and, hence, has an inverse.

If y = f (x), then, by Theorem 2.9(c), f -(y) = f 1 f(x) = x. Thus, if we
solve the equation y = f (x) for x, we will obtain f 1(y). This calculation can
be done as follows.

y = 2x + 8

y - 8 = 2x

2(Y - 8) = x

Hence,f 1-(y) =(y -8), and sof 1-(x) =(x -8). +

We will conclude this section by discussing an important inverse function
that frequently arises in discussions about the complexity of algorithms. Recall
that for any positive integer n, 2' denotes the product of n factors of 2. Also

20 = 1, and 2'

It is possible to extend the definition of an exponent to include any real number in
such a way that all of the familiar exponent properties hold. When this is done, the
equation f (x) = 2x defines a function with the set of real numbers as its domain
and the set of positive real numbers as its codomain. We call f the exponential
function with base 2. The behavior of this function is shown in Figure 2.18.

f(x)

10

5

r f(x)=2

x

FIGURE 2.18

It can be seen in Figure 2.18 that the exponential function with base 2 is
a one-to-one correspondence because each element of the codomain is associ-
ated with exactly one element of the domain. Hence this function has an inverse
g called the logarithmic function with base 2. We denote this inverse func-
tion by g(x) =log2 x. Note that the definition of an inverse function implies
that

y = log 2 x if and only if x = 2Y.
Thus log2 x is the exponent y such that x = 2Y. In particular, log2 2' = n. So
1og2 4 = 1og22 2 = 2, 1og 2 8 = 1og 2 2

3 = 3, log2 16 = 1og 2 2
4 = 4, lg 2 2 =

log2 2-1 = -1, and so forth. Although log2 x increases as x increases, the rate of
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growth of log2 x is quite slow For example,

log 2 l((C' -< log2 1024 = log 2 210 = 10,

and similarly, log2 2,000,000 < 20. The behavior of the function g(x) = log2 x
is shown in Figure 2.19.

g(x)

5

-5

- (X I 1012 X

5 10

FIGURE 2.19

Scientific calculators usually contain a key marked LOG. This key can be
used to find values of the logarithmic function with base 2, for

log x

g2  log 2g

+ Example 2.56

A swarm of killer bees escaped several years ago from South America. Suppose
that the bees originally occupied a region with area of one square mile and the
region occupied by the bees doubles in area each year. How long will it take for
the bees to cover the entire surface of the earth, which is 197 million square miles?

Since the area of the region occupied by the bees doubles every year, after
n years the bees will cover 2' square miles. We must determine x such that
2x = 197,000,000. But then

x = 10g2 19>7,1)(0000 = log 197,000,000 2
log 2

Hence, the bees will cover the entire surface of the earth in about 27.55 years. +

EXERCISES 2.5

In Exercises 1-4 determine which of the given relations 11 are functions with domain X.

1. X = {1,3,5,7,8)andR =(1,7),(3,5), (5,3),(7, 7,(8,5)l

2. X = (0, 1,2,31 and R = 1(0,0), (1, 1), (1, -1), (2, 2), (3, -3)

3. X = {-2, -1,0,1 andR = ((-2,6),(0,3),(1, --1))

4. X = {l,3,5)andR = [(I,9),(3,9),(5,9)1
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In Exercises 5-12 determine if the given g is a function with domain X and some codomain Y.

5. X is the set of residents of Iowa and, for x E X, g(x) is the mother of x.

6. X is the set of computers currently in use on the Illinois State University campus and, for x e X, g(x) is the
operating system that x is running.

7. X is the set of students at Illinois State University and, for x E X, g(x) is the oldest brother of x.

8. X is the set of Presidents of the United States and, for x E X, g(x) is the year that x was first sworn into the
office of President.

9. X is the set of real numbers and, for x E X, g(x) = 10g 2 x.

10. X is the set of real numbers and, for x E X, g(x) = X
2 + 3.

11. X is the set of real numbers and, for x E X, g(x) = x2x.

12. X is the set of real numbers and, for x E X, g(x) = x

In Exercises 13-20 find the value of f (a).

13. f(x)=5x-7,a=3

16. f(x) = 3lx- 2, a = -5

19. f (x) =-x 2, a = -3

14. f(x)= 4, a=8

17. f(x)= x-5,a=9

20. f(x) = 2x 2 -x -3,a = -2

15. f (x) = 2x, a =-2

18. f (x) = 4, a = 2

Evaluate the numbers in Exercises 21-28 using the fact that 1og 2 2 n = n.

21. log2 8 22. log2 2 23. log2 1

25. log2 16 26. lg 2 4 27. log2 3

Approximate the numbers in Exercises 29-36 using a calculator.

29. ]og2 37 30. 1lg2 1.72 31. log2 0.86

33. log2 1.54 34. log2 9.31 35. log2 1000

24. log2 64

28. log2 1024

32. log2 100

36. log2 0.17

Determine the functions gf and fg in Exercises 37-44.

37. f (x) = 4x + 7 and g(x) = 2x-3 38. f(x) = x2 + I and g(x)= j

39. f (x) = 2' and g(x) = 5x + 7 40. f (x) = 3x and g(x) = 1x

41. f (x) = Ix I and g(x) = x 10g 2 x 42. f (x) = 2x and g(x) = 5x -x 2

43. f (x) = x 2 -2x and g(x) = x + 1 44. f (x) = and g(x) = x-1
2-x

In Exercises 45-52, Z denotes the set of integers. Determine if each function g is one-to-one or onto.

45. g: Z Z is defined by g(x) = 3x 46. g: Z Z is defined by g(x) = x-2

47. g: Z Z is defined by g(x) = 3 -x 48. g: Z Z is defined by g(x) = x 2

-(X+ 1 ) ifxis odd
49. g: Z Z is defined by g(x) = f is eve

-2x if x is even

50. g: Z Z is defined by g(x) = 3x-5 51. g: Z Z is defined by g(x) =Ix

52. g: Z Z is defined by g(x) = I if x 0{ if x < 0
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In Exercises 53-60, X denotes the set of real numbers. Compute the inverse of eachfunction f: X -* X if it exists.

53. f(x) = 5x 54. f(x) = 3x - 2 55. f(x) = -x 56. f(x) = x 2 +1

57. f(x) =,~/ 58. f(x) = -' 59. f(x) = 3 2X+1  60. f(x) = x 3 -

61. Find a subset Y of the set of real numbers X such that g: X -* Y defined by g(x) = 3 2x+1 is a one-to-one
correspondence. Then compute g- '.

62. Find a subset Y of the set of real numbers X such that g: Y -* Y defined by g(x) = -xl is a one-to-one
correspondence. Then compute g l.

63. If X has m elements and Y has n elements, how many functions are there with domain X and codomain Y?

64. If X has m elements and Y has n elements, how many one-to-one functions are there with domain X and
codomain Y?

65. Prove that if f: X Y and g: Y Z are both one-tc -one functions, then gf: X -* Z is also a one-to-one
function.

66. Prove that if f: X Y and g: Y Z are both onto, then gf: X -+ Z is also onto.

67. Let f: X -- Y and g: Y -* Z be functions such that g: X - Z is onto. Prove that g must be onto, and give
an example to show that f need not be onto.

68. Let f: X -- Y and g: Y -> Z be functions such that gf:,V -* Z is one-to-one. Prove that f must be one-to-one,
and give an example to show that g need not be one-to-one.

69. Let f: X -* Y and g: Y Z be one-to-one correspo ndences. Prove that gf is a one-to-one correspondence,
and that (gf )-' = f -'g

70. Let f: W -. X, g: X -+ Y, and H: Y -÷ Z be functions. Prove that h(gf) = (hg)f.

2.6 o MATHEMATICAL INDUCTION

In Section 1.4 we claimed tha -or any positive integer n

5 + 8 + I I +. + (3n + 2) = (3n2 + 7n).

Since there are infinitely man' positive integers, we cannot justify this assertion
by verifying that this equation holds for each individual value of n. Fortunately,
there is a formal scheme for proving statements are true for all positive integers;
this scheme is called the principle of mathematical induction.

1he Pt'g A'' ,ivhs W';z i ' 1icXl' aIn i;n Let S(n) be a statement involving
the integer n. Suppose that for some fixed integer no

(1) S(no) is true (that is, the statement is true if n = no) and
(2) whenever k is an integer sach that k > no and S(k) is true, then S(k + 1) is

true.

Then S(n) is true for all integer, n > no.

The induction principle is a basic property of the integers, and so we will give
no proof of it. The principle seems quite reasonable, however, for if condition
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(1) in the principle holds, then we know that statement S(no) is true. If condition
(2) in the principle also holds, then we can use condition (2) with k = no to
conclude that S(no + 1) is true. Using condition (2) with k = no + 1 now shows
that S(no + 2) is true. If we then apply (2) with k = no + 2, we see that S(no + 3)
is true. A continuation of this argument makes it plausible that S(n) is true for
each integer n > no.

A proof by mathematical induction consists of two parts. Part (1) establishes
a base for the induction by proving that some statement S(no) is true. Part (2),
called the inductive step, proves that if any statement S(k) is true, then so is the
next statement S(k + 1). In this section we will give several examples of the use
of mathematical induction. In these examples no, the base for the induction, will
usually be either 0 or 1.

The following example proves the result from Section 1.4 that was mentioned
earlier.

Example 2.57

We will prove that 5 + 8 ± I1 + ... + (3n + 2) = '(3n 2 + 7n) for any positive
integer n. The proof will be by induction on n, with S(n) being the statement:
5 + 8 + 11 + + (3n + 2) = j(3n2 + 7n). Since S(n) is to be proved for all
positive integers n, we will take the base of the induction to be no = 1.

(1) For n = 1, the left side of S(n) is 5 and the right side is

1 121 1
-[3(1)2 + 7(1)] = -(3 + 7) = (10) 5.
2 2 2

Hence S(1) is true.
(2) To perform the inductive step, we assume that S(k) is true for some positive

integer k and show that S(k + 1) is also true. Now S(k) is the equation

5 + 8 + 11 + + (3k + 2) = I(3k2 + 7k).
2

To prove that S(k + 1) is true, we must show that

11)
5 + 8 + 11 + + (3k +2) + [3(k + 1) + 2] = -[3(k + 1)2+ 7(k + 1)].

2

But by using S(k), we can evaluate the left side of the equation to be proved as
follows.

[5+8+11+ .. +(3k+2)]+[3(k+1)+2] = (3k2+7k)+[3(k+1)+2]

= (-k2+ k) +(3k+3+2)

= 3 k2+ 2k
2 2

l(3k 2+13k +10)
2
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On the other hand, the right side of the equation to be proved is

1_[3(k + 1)2 + 7(! ir 1)] I[3(k2 + 2k + 1) + 7(k + 1)]
23k1)±(+-) 2

= !(3k2+6k+3+7k+7)
2

= !(3k2 + 13k + 10).
2

Because the left and right sides; are equal in the equation to be proved, S(k + 1)
is true.

Since both (1) and (2) are true, the principle of mathematical induction
guarantees that S(n) is true for all integers n > 1, that is, for all positive
integers n. +

+ Example 2.58

Mathematical induction is often used to verify algorithms. To illustrate this, we
will verify the polynomial evaluation algorithm stated in Section 1.4. Recall that
this algorithm evaluates a polynomial

P(x) = aImx,' + am-Ixm + + ajx + ao

by the following steps.

Step I Let S = ao and k = 1.
Step 2 While k < m, replace S by S + akxk and k by k + 1.
Step 3 P(x) = S.

Let S(n) be the statement: If the replacements in step 2 are executed exactly
n times each, then S = anxn 4 an -xn-I + + aIx + ao. We will prove that
S(n) is true for all nonnegative integers n.

(1) If n = 0, then the replacements in step 2 are not performed, so the value of
S is the value ao given in step 1. But the equality S = ao is the statement
S(0); so S(0) is true.

(2) To perform the inductive step, we assume that S(k) is true for some positive
integer k and show that ',(k + 1) is also true. For S(k) to be true means
that S = akxk + ak- lxk-1 + . + aIx + ao when the replacements in step
2 are executed exactly k times. If the replacements in step 2 are executed
one more time (k + 1 times in all), then the value of S is

S + ak+IX k+ = (a. k + ak-lX + * * + aix + ao) + ak+IX +

= akF]X k+1 + akx + ak +'1 ++ax+ ao.

Thus S(k + 1) is true, completing the inductive step.
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Since both (1) and (2) are true, the principle of mathematical induction guar-
antees that S(n) is true for all nonnegative integers n. In particular, S(m) is true.
But S(m) is the statement that P(x) = S.

The proof above shows that, after the replacements in step 2 are executed
exactly k times each, the value of S is S = akxk + ak-Ixk- + + aix + ao.
Since this relationship holds for any number of repetitions of the while loop in
step 2, it is called a loop invariant. +

In our subsequent proofs by induction, we will follow the usual practice of
not stating explicitly what the statement S(n) is. Nevertheless, in every induction
proof the reader should formulate this statement carefully.

Example 2.59

For any nonnegative integer n and any real number x # 1,

1+ X + X 2 + ... +Xan =X -1

x-1

The proof will be by induction on n with 0 as the base of the induction. For
n = 0 the right side of the equation is

Xn+- 1 x - 1

x-l x-1

and so the equation is true for n 0.
Assume that the equation is true for some nonnegative integer k, that is,

Xk+ -1

1+X +X
2 

+ . .. +Xk
x-1

Then

1+ X + X + + xk +X k+=(1 +X +x
2 

+ .+Xk) +Xk+1

Xk+ - 1 k+

x-1

Xk+l -1 + Xk+(X -1)

x-1

Xk+J - 1 + Xk+2 - Xk+1

x-1

Xk+2 - 1

x-1

proving that the equation is true for k + 1. Thus the equation is true for all
nonnegative integers n by the principle of mathematical induction. +
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In Examples 2.57 and 2.59, we used mathematical induction to prove certain
formulas are true. The principle of mathematical induction is not limited, however,
to proving equations or inequalities. In the following example, induction is used
to establish a geometric result.

i] Example 2.60

We will prove that, for any positive integer n, if any one square is removed from a

2n x 2 n checkerboard (one having 2n squares in each row and column), then the
remaining squares can be covered with L-shaped pieces (shown in Figure 2.20)
that cover three squares.

FIGURE 2.20

Figure 2.21 shows that every 21 x 21 checkerboard with one square re-
moved can be covered by a single L-shaped piece. Hence the result is true for
n = 1.

Now assume that the result is true for some positive integer k, that is,
every 2k x 2 k checkerboard with one square removed can be covered by
L-shaped pieces. We must shcw that any 2 k+1 x 2 k+1 checkerboard with one
square removed can be covered by L-shaped pieces. If we divide the 2 k+1 x 2 k+1

checkerboard in half both horizontally and vertically, we obtain four 2 k x 2k
checkerboards. One of these 2A x 2 k checkerboards has a square removed, and
the other three are complete (See Figure 2.22.) From each of the complete
2k x 2 k checkerboards, remove the square that touches the center of the orig-
inal 2 k+1 x 2 k+1 checkerboard. (See Figure 2.23.) By the induction hypothesis,
we know that all four of the 24 x 2 k checkerboards with one square removed in
Figure 2.23 can be covered with L-shaped pieces. So with one more L-shaped
piece to cover the three squares touching the center of the 2 k+1 x 2 k+1 checker-
board, we can cover with L- shaped pieces the original 2 k+1 x 2 k+1 checkerboard
with one square removed. This proves the result for k + 1. It now follows from
the principle of mathematical induction that for every positive integer n, any
2' x 2' checkerboard with one square removed can be covered by L-shaped
pieces. +
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FIGURE 2.21

I I

FIGURE 2.22 FIGURE 2.23

Closely related to the induction principle are what are known as recursive
definitions. To define an expression recursively for integers n > no, we must give
its value for no and a method of computing its value for k + 1 whenever we know
its value for no, no + 1, . . ., k. An example is the quantity n! which was defined
in Section 1.2. A recursive definition of n! is the following:

0! = 1, and if n > O, then n! = n(n-1)!.

By repeatedly using this definition, we can compute n! for any nonnegative integer
n. For example,

4! = (4)3! = (4)(3)2! = (4)(3)(2)1! = (4)(3)(2)(1)O! = (4)(3)(2)(1)1 = 24.

Example 2.61

We will prove that n! > 2n if n > 4 by applying the principle of mathematical
induction with no = 4.

(1) If n = 4, then n! = 24 and 2' = 16; so the statement holds.
(2) Suppose k! > 2k for some integer k > 4. Then

(k + 1)! = (k + I)k! > (4 + I)k! > 2k! > 2(2k) = 2 k+1.

This is the required inequality for k + 1.
Thus, by the induction principle, the statement holds for all n > 4. o

I

I
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Another example of a rec arsive definition is that of the Fibonacci numbers
F1, F2 , ... , which are defined by

F, = 1, F2 = 1, and if n > 2, then F, = Fn - +Fn-2

Forexample, F 3 = F2 + F1 =1 + I = 2, F4 = F3 + F2 = 2 + I = 3, and F5s=
F4 + F3 = 3 + 2 = 5. Note that since Fn depends on the two previous Fibonacci
numbers, it is necessary to define both F1 and F2 at the start in order to have a
meaningful definition.

In some circumstances, a, Lightly different form of the principle of mathe-
matical induction is needed.

he ,S~u u 7 MI,/ :i,, v' 101,she~aF"l/r gg1@'.2m Let S(n) be a statement in-
volving the integer n. Suppose that for some fixed integer no

(1) S(no) is true, and
(2) whenever k is an integer such that k > no and S(no), S(no + 1), . . ., S(k)

are all true, then S(k J- 1) is true.

Then S(n) is true for all integers n > no.

The only difference between the strong principle of induction and the previous
version is in (2), where now we are allowed to assume not only that S(k), but also
S(no), S(no + 1), ... , S(k - 1), are true. Thus, from the point of view of logic,
the strong principle should be easier to apply, since more can be assumed. It is
more complicated than the previous form, however, and usually is not needed. In
this book we will primarily use the strong principle to prove results about certain
types of recurrence relations. To illustrate its use, we will prove a fact about the
Fibonacci numbers.

cl Example 2.62

We will prove that F, < 2" for every positive integer n. Since

Ft = I <2 = 2' and F2 = l <4=22 ,

the statement is true for n = 1 and n = 2. (We must verify the statement for both
n = 1 and n = 2 because we need to assume that k > 2 in the inductive step in
order to use the recursive de ignition of the Fibonacci numbers.)

Now suppose that for some positive integer k > 2 the statement holds for
n = 1, n = 2, n = k. Tlen

Fk+I= Fk + k- < 2k + 2k<2k + 2k =2 2k2k

So the statement is true for n =k + if it holds for n = 1, n = 2, ... , n = k.
Thus, by the strong principle of mathematical induction, the statement is true

for all positive integers n. +
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EXERCISES 2.6

1. Compute the Fibonacci numbers F] through Flo.

2. Suppose that a number x, is defined recursively by xi = 7 and x, = 2xn-1 - 5 for n > 2. Compute xl
through X6.

3. Suppose that a number x, is defined recursively by xi = 3, x2 = 4, and X, = Xn-I + xn-2 for n > 3. Compute
xi through xg.

4. Give a recursive definition of xn for any positive integer n.

5. Give a recursive definition of the nth even positive integer.

6. Give a recursive definition of the nth odd positive integer.

In Exercises 7-10 determine what is wrong with the given induction arguments.

7. We will prove that 5 divides 5n + 3 for all positive integers n.
Assume that for some positive integer k, 5 divides 5k + 3. Then there is a positive integer p such that

5k + 3 = 5p. Now

5(k + 1) + 3 = (5k + 5) + 3 = (5k + 3) + 5 =Sp + 5 = 5(p + 1).

Since 5 divides 5(p + 1), it follows that 5 divides 5(k + 1) + 3, which is the statement that we want to prove.
Hence, by the principle of mathematical induction, 5 divides 5n + 3 for all positive integers n.

8. We will prove that in any set of n persons, all people have the same age.
Clearly all people in a set of 1 person have the same age, so the statement is true if n = 1.
Now suppose that, in any set of k people, all persons have the same age. Let S = {xI, x2, Xk+J} be

a set of k + 1 people. Then by the induction hypothesis all people in each of the sets {xI, x 2 , .  Xk) and
{x2 , X3, . . - Xk+4 I have the same age. But thenxjx2, X2. X .k all have the same age and likewisex2 , x3, ... , Xk+l

all have the same age. It follows that xl, x2, . . ., Xk+I all have the same age. This completes the inductive step.
The principle of mathematical induction therefore shows that for any positive integer n, all people in any set

of n persons have the same age.

9. We will prove that for any positive integer n, if the maximum of two positive integers is n, then the integers are
equal.

If the maximum of any two positive integers is 1, then both of the integers must be 1. Hence the two integers
are equal. This proves the result for n = 1.

Assume that if the maximum of any two positive integers is k, then the integers are equal. Let x and y be
two positive integers for which the maximum is k + 1. Then the maximum of x -1 and y - 1 is k. So by the
induction hypothesis, x - 1 = y - 1. But then x = y, proving the result for n = k + 1.

It follows by the principle of mathematical induction that for any positive integer n, if the maximum of two
positive integers is n, then the integers are equal. Hence any two positive integers are equal.

10. Let a be a nonzero real number. We will prove that for any nonnegative integer n, an = 1.
Since a0 = 1 by definition, the statement is true for n = 0.

Assume that for some integer k, am = 1 for 0 < m < k. Then

k+ akak 1
akI= 1

The strong principle of induction therefore implies that a' = 1 for every nonnegative integer n.
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In Exercises 11-26 prove each of the given statements by f, athematical induction.

11. 1 + 2 + .. + n = ( 2 for every positive integer e.
2

12. 1 + 4 + 9 + + n2 
= n(n + 1)(2n + 1) for every pc sitive integer n.

6

13. 1 + 8 + 27 + +n3 = ( ) for every positive integer n.
4

14. -+- + = for every positive integer n.
12 2 3 n(n+1) n +

15. 1(1!) + 2(2!) + + n(n!) = (n + 1)! - I for every positive integer n.

16. (1-2 ) (I - 1) = L1 forevn y positive integern.

17. 1 3. . .. (2n- 1) > 2 4. ... (2n -2) for every int.ger n > 2.

18. n2 < 2'" for every integer n > 5.

19. n! > 3n for every integer n > 7.

20. (2n)! < (n!)2 4n 1 for every integern > 5.

21. F, < 2F,- for every integer n > 2.

22. F1 + F2 + + Fn= Fn+2 -I for every positive integer n.

23. F2 + F4 + * + F2 4 = F2 n+I - 1 for every positive integer n.

24. Fn < (< ) for every positive integer n.

25. F, > (4-) for every integer n > 3.

26. For any integer n > 2, a 6 x n checkerboard can be covered by L-shaped pieces of the form in Figure 2.20.

27. A sequence SO, Si, S2, .... is called a geometric progression with common ratio r if there is a constant r such
that sn = sorn for all nonnegative integers n. If so, s1, s, .... is a geometric progression with common ratio r,
find a formula for s ±sS + s . A -+ Sn as a function of sC, r, and n. Then verify your formula by mathematical
induction. (Hint: Use the equation in Example 2.59.)

28. A sequence, so, SI, S2, . .. is called an arithmetic progression with common difference d if there is a constantd
such that s, = so + nd for all nonnegative integers n. IF 0 O, SI, 2.. . .is an arithmetic progression with common
difference d, find a formula for so + sI + + s, as a function of so, d, and n. Then verify your formula by
mathematical induction.

29. Prove that 2' + 3f - 5" (mod 6) for every positive integer n.

30. Prove that 16" = 1 - IOn (mod 25) for every positive integer n.

2.7 + APPLICATIONS

In this section we will apply the two versions of the principle of mathematical
induction stated in Section 2.6 1o establish some facts that are needed elsewhere
in this book. Our first two results give the maximum number of comparisons that
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are needed to search and sort lists of numbers; these facts will be used in our
discussion of searching and sorting in Chapter 8.

Example 2.63

There is a common children's game in which one child thinks of an integer and
another tries to discover what it is. After each guess, the person trying to determine
the unknown integer is told if the last guess was too high or too low. Suppose, for
instance, that we must identify an unknown integer between 1 and 64. One way to
find the integer would be to guess the integers from 1 through 64 in order, but this
method may require as many as 64 guesses to determine the unknown number. A
much better way is to guess an integer close to the middle of the possible values,
thereby dividing the number of possibilities in half with each guess. For example,
the following sequence of guesses will discover that the unknown integer is 37.

Attempt Guess Result Conclusion

1 32 Low Integer is between 33 and 64.

2 48 High Integer is between 33 and 47.

3 40 High Integer is between 33 and 39.

4 36 Low Integer is between 37 and 39

5 38 High Integer is between 37 and 37.

6 37 Correct
010

Theorem 2.10

If the strategy described here is used, it is not difficult to see that any unknown
integer between 1 and 64 can be found with no more than 7 guesses. This simple
game is related to the problem of searching a list of numbers by computer to see
if a particular target value is in the list. Of course, this situation differs from the
number-guessing game in that we do not know in advance what numbers are in
the list being searched. But when the list of numbers is sorted in nondecreasing
order, the most efficient searching technique is essentially the same as that used
in the number-guessing game: repeatedly compare the target value to a number in
the list that is close to the middle of the range of values in which the target must
occur. The theorem below describes the efficiency of this searching strategy.

For any nonnegative integer n, at most n + 1 comparisons are required to deter-
mine if a particular number is present in a list of 2n numbers that are sorted in
nondecreasing order.

Proof. The proof will be by induction on n. For n = 0, we need to show that at
most n + 1 = 1 comparison is required to see if a particular number m is in a list
containing 20 = 1 number. Since the list contains only one number, clearly only
one comparison is needed to determine if this number is m. This establishes the
result when n = 0.
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Now assume that the result is true for some nonnegative integer k; that is,
assume that at most k + 1 comparisons are needed to determine if a particular
number is present in a sorted list of 2k numbers. Suppose that we have a list of 2 k+1
numbers in nondecreasing order. We must show that it is possible to determine
if a particular number m occurs in this list using at most (k + 1) + 1 = k + 2
comparisons. To do so, we will compare m to the number p in position 2k of the list.

Since the list is in nondecreasing order, for m to be present
in the list it must lie in positions 1 through 2k. But the numbers in positions
1 through 2k are a list of 2k numbers in nondecreasing order. Hence, by the
induction hypothesis, we can determine if m is present in this list by using at most
k + 1 comparisons. So in this :ase, at most 1 + (k + 1) = k + 2 comparisons are
needed to determine if m is present in the original list.

C I : ' 7Since the lis i-s in nondecreasing order, form to be present in the
list, it must lie in positions 2k + 1 through 2 k+I. Again, the induction hypothesis
tells us that we can determine if m is present in this sorted list of 2k numbers with
at most k + 1 comparisons. Hence, in this case also, at most k + 2 comparisons
are needed to determine if m is present in the original list.

Thus, in each of the cases, we can determine if m is present in the list of 2k+I
sorted numbers with at most k + 2 comparisons. This completes the inductive
step and, therefore, proves the theorem for all nonnegative integers n. a

Although Theorem 2.10 :s stated for lists of numbers in nondecreasing or-
der, it is easy to see that the same conclusion is true for lists that are sorted in
nonincreasing order. Moreover, the same conclusion is true for lists of words that
are in alphabetical order. The next theorem is similar to Theorem 2.10; it gives
an upper bound on the number of comparisons needed to merge two sorted lists
of numbers into one sorted list. Before stating this result, we will illustrate the
merging process to be used in proving Theorem 2.11.

+ Example 2.64

Consider the two lists of numbers in nondecreasing order:

2.5, 7,9 and 3,4,7.

Suppose that we want to merge them into a single list

2,3,4,5,7,7,9

in nondecreasing order. To corn mine the lists efficiently, first compare the numbers
at the beginning of each list (2 and 3) and take the smaller one (2) as the first
number in the combined list. (Ii the first number in one list is the same as the first
number in the other list, choose either of the equal numbers.) Then delete this
smaller number from the list that contains it to obtain the lists

5,7, 9 and 3,4,7.
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Second, compare the beginning numbers in each of these new lists (5 and 3) and
take the smaller one (3) as the second number in the combined list. Delete this
number from the list that contains it, and continue the process above until all of
the original numbers have been merged into a single list. Figure 2.24 illustrates
this process. +

2

2 / 3
4 3

5 5 4

7 7 7

9

FIGURE 2.24

Theorem 2.11 Let A and B be two lists containing numbers sorted in nondecreasing order.
Suppose that for some positive integer n, there is a combined total of n numbers
in the two lists. Then A and B can be merged into a single list of n numbers in
nondecreasing order using at most n - 1 comparisons.

Proof. The proof will be by induction on n. If n = 1, then either A or B must be
an empty list (and the other must contain 1 number). But then the list C obtained
by adjoining list B to the end of list A will be in nondecreasing order, and C
is obtained by making 0 = n - I comparisons. This proves the theorem when
n = 1.

Now suppose that the conclusion of the theorem holds for some positive
integer k, and let A and B be sorted lists containing a total of k + 1 numbers.
We must show that A and B can be merged into a sorted list C using at most k
comparisons. Compare a and b, the first elements of A and B, respectively.

( lfi~ g a < Iz Let A' be the list obtained by deleting a from A. Then A' and B
are sorted lists containing a total of k elements. So by the induction hypothesis, A'
and B can be merged into a single sorted list C' using at most k - 1 comparisons.
Form the list C by adjoining a to C' as the first element. Then C is in nondecreasing
order because C' is in nondecreasing order and a precedes all the other numbers
in A and B. Moreover, C was formed using 1 comparison to find that a < b and
at most k - 1 comparisons to form list C'; so C was formed using at most k
comparisons.
( i, '- a it b Delete b from B to form list B'. Then use the induction hy-
pothesis as in case 1 to sort A and B' into a sorted list C' using at most k - 1
comparisons. The list C is then obtained by adjoining b to C' as the first ele-
ment. As in case 1, C is in nondecreasing order and was formed using at most k
comparisons.
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Thus, in either case, we can merge A and B into a sorted list using at most k
comparisons. This completes the proof of the inductive step, and so the conclusion
is established for all positive integers n. a

Our next two results involve the number of subsets of a set. These results
arise in connection with the knapsack problem described in Section 1.3 and
with counting techniques to be discussed in Chapter 7. Recall that we stated
in Section 1.3 that the set 11, 2, . . ., n) has precisely 2 n subsets. If this result is
true in general, then increasing a by 1 doubles the number of subsets. An example
will indicate why this is true. Let us take n = 2 and consider the subsets of { 1, 21.
They are

0, {]}, {2}, and {1, 2}.

Now consider the subsets of { 1, 2, 3 }. Of course, the four sets we have just listed are
also subsets of this larger set; but there are other subsets, namely those containing
3. In fact, any subset of 11, 2, 31 that is not a subset of 11, 21 must contain the
element 3. If we removed the 3, we would have a subset of { 1, 2} again. Thus the
new subsets are just

(3), 11, 3}, 12, 3}, and (1, 2, 3},

formed by including 3 in eazh of the previous four sets. The total number of
subsets has doubled, as our formula indicates. This argument is the basis for a
proof of Theorem 1.3.

Theorem 1.3 If n is any nonnegative integer, then a set with n elements has exactly 2 ' subsets.

Proof. We will prove this res ult by induction on n.
To establish a base for th- induction, we will show that any set having 0

elements has 20 = 1 subset. But a set having 0 elements must be the empty set,
and so its only subset is 0. This establishes the result when n = 0.

To perform the inductive step, we assume the result for some nonnegative
integer k and prove it for k + 1. Thus we assume that any set with k elements has
exactly 2k subsets. Let S be a set with k + 1 elements, say a,, a2 , . ak+l, and
define a set R by

=a, a2 , . . ., ak).

Since R has k elements, ii has exactly 2k subsets by our assumption. But each
subset of S is either a subset of R or else a set formed by inserting ak+1 into a
subset of R. Thus S has exact y

,!k + 2k = 2(2k) = 2

subsets, proving the result fork + 1.
It therefore follows froni the principle of mathematical induction that the

result is true for all nonnegative integers n. H
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+ Example 2.65

For many years Wendy's Old Fashioned Hamburger Restaurants advertised that
they serve hamburgers in 256 different ways. This claim can be justified by using
Theorem 1.3, because hamburgers can be ordered at Wendy's with any combina-
tion of 8 toppings (cheese, ketchup, lettuce, mayonnaise, mustard, onions, pickles,
and tomatoes). Since any selection of toppings can be regarded as a subset of the
set of 8 toppings, the number of different toppings is the same as the number of
subsets, which is 28 = 256. +

We can say even more about the number of subsets of a set containing n
elements. The following theorem tells us how many of its 2' subsets contain a
specified number of elements.

Theorem 2.12 Let S be a set containing n elements, where n is a nonnegative integer. If r is an
integer such that 0 < r < n, then the number of subsets of S containing exactly
r elements is

n!

r! (n - r)!

Proof. The proof will be by induction on n, starting with n = 0.
If n = 0, then S is the empty set and r must also be 0. But there is exactly 1

subset of 0 with 0 elements, namely 0 itself. And

n! 0!
r! (n -r)! 0! 0!

because 0! = 1 by definition. Thus the formula is correct for n = 0.
Now suppose that the formula is correct for some integer k > 0. Let S be

a set containing k + 1 elements, say S = {a,, a2 , ... , ak, ak+ )}. We must count
the subsets of S containing exactly r elements, where 0 < r < k + 1. Clearly the
only subset of S containing 0 elements is 0. Likewise there is only one subset
of S containing k + 1 elements, namely S itself. In both these cases the formula
gives the correct value since

(k+)! =1 and (k+1)!
0! (k+ 1-0)! (k+ 1)! [k+ 1 -(k+ 1)]!

Let R be any subset of S containing exactly r elements, where 1 < r < k. There
are two cases to consider.

Then R is a subset of {a1, a2, . . , ak} having r elements. By
the induction hypothesis there are

k!

r! (k -r)!

such subsets.
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C vase: 2' {, ., R In this case, if we remove ak+l from R, we have a subset of
{a,, a2 , ... , ak} containing r -- 1 elements. By the induction hypothesis there are

k !
(r -1)! [k -(r -1]

sets like this.

Putting the two cases together, we see that S has a total of

k! k!
r! (A- - )! (r- 1)! (k-r + 1)!

subsets with r elements. But th is number equals

k! (k - i + 1) k! r
r! (k -r)! (1 r + l) r(r-1)! (k-r +1)!

k! (i,.r + 1) k! r

r! (k - r + I)! r! (k -r +I)

k (A r + 1 +±r)

r! r +)!

(k + 1)!
r' (A I - r)!

Since this is the number produced by the formula when k + 1 is substituted for
n, the formula is correct for n -= k + 1.

Thus by the principle of mathematical induction, the formula is correct for
all nonnegative integers n. If

Many counting problems require knowing the number of r-element subsets of
a set with n elements. We will denote] this number by C(n, r). With this notation,
Theorem 2.12 can be stated a,

C'(n, r) = r! (n r)!

+ Example 2.66

How many 2-person committees can be chosen from a set of 5 people?
This is equivalent to asking how many subsets of {1, 2, 3, 4, 51 have exactly

2 elements. Taking n = 5 anc[ r = 2 in Theorem 2.12 gives the answer

5! 5!
C52) 2! (5 -2)! ~2! 3!=1.

' Another common notation is (, 1 .
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Theorem 2.13

The actual subsets are {1, 21, {1, 31, {1, 41, {1, 51, {2, 31, {2, 41, {2, 51, {3, 41,
{3,51,and{4,5}. +

The last result in this section proves a very basic result about the positive
integers. This fact was referred to in Example 2.13.

Every integer greater than 1 is either prime or a product of primes.

Proof Let n be an integer greater than 1. The proof will be by induction on
n using the strong form of the principle of mathematical induction. Since 2 is a
prime number, the statement is true for n = 2.

Assume that for some integer k > 1, the statement is true for n = 2, 3, . . ., k.
We must prove that k + 1 is either prime or a product of primes. If k + 1 is prime,
then there is nothing to prove; so suppose that k + 1 is not prime. Then there
is a positive integer p other than l and k + 1 that divides k + 1. So k+1 = q is

p
an integer. Now q =A 1 (for otherwise p = k + 1) and q # k + 1 (for otherwise
p = 1). Hence both p and q are integers between 2 and k, inclusive. So the
induction hypothesis can be applied to both p and q. It follows that each of p
and q is either prime or a product of primes. But then k + 1 = pq is a product of
primes. This finishes the inductive step, and therefore completes the proof of the
theorem. N

With the development of larger and faster computers, it is possible to dis-
cover huge prime numbers. In 1978, for instance, Laura Nickel and Curt Noll,
two teenagers from Hayward, California, used 440 hours of computer time to
find the prime number 221701 - 1. At that time this 6533-digit number was the
largest known prime number. But finding whether a particular positive integer is
prime or a product of primes remains a very difficult problem. Note that although
Theorem 2.13 tells us that positive integers greater than 1 are either prime or
products of primes, it does not help determine which is the case. In particular,
Theorem 2.13 is of no help in actually finding the prime factors of a specific
positive integer.

Indeed, the difficulty of finding the prime factors of large numbers is the basis
for an important method of cryptography (encoding of data or messages) called
the RSA method. (The name comes from the initials of its discoverers, R. L.
Rivest, A. Shamir, and L. Adleman.) For more information on the RSA method,
see suggested reading [8] at the end of this chapter.

EXERCISES 2.7

Evaluate the numbers in Exercises 1-12.

2. C(8, 3)1. C(7, 2)

5. C(II,4)

3. C(lO, 5)

6. C(I0,7) 7. C(II,6)

4. C(12, 6)

8. C(13, 9)



100 Chapter 2 Sets, Relations, and Functions

9. C(n, 0) 10. C(n, 1) 11. C(n, 2) 12. P(n, r)
C (n, r)

13. How many subsets of the set 11, 3,4, 6, 7,91 are there?

14. How many nonempty subsets of the set {a, e, i, o, u} are there?

15. At Avanti's, a pizza can be ordered with any combir ation of the following ingredients: green pepper, ham,
hamburger, mushrooms, onion, pepperoni, and sausage How many different pizzas can be ordered?

16. If a test consists of 12 questions to be answered true or false, in how many ways can all 12 questions be
answered?

17. A certain automobile can be ordered with any comb nation of the following options: air conditioning, automatic
transmission, bucket seats, cruise control, power windo ws, rear window defogger, sun roof, and CD player. In
how many ways can this car be ordered?

18. Jennifer's grandmother has told her she can take as many of her 7 differently colored glass rings as she wants.
How many choices are there?

19. How many subsets of {1, 3, 4, 5, 6, 8, 9} contain exactlv 5 elements?

20. How many subsets of {a, e, i, o, u, yj contain exactly 4 elements?

21. A basketball coach must choose a 5-person starting team from a roster of 12 players. In how many ways is this
possible?

22. A beginning rock group must choose 2 songs to record from among the 9 they know. How many choices are
possible?

23. A person ordering a complete dinner at a restaurant may choose 3 vegetables from among 6 offered. In how
many ways can this be done?

24. A hearts player must pass 3 cards from his 13-card hand. How many choices of cards to pass does he have?

25. Three persons will be elected from among 10 candidates running for city council. How many sets of winning
candidates are possible?

26. A sociologist intends to select 4 persons from a lisi of c people for interviewing. How many sets of persons to
interview can be chosen?

27. How many 13-card bridge hands can be dealt from a 52-card deck? Leave your answer in factorial notation.

28. A racketeer is allowed to bring no more than 3 of the 7 lawyers representing him to a Senate hearing. How
many choices does he have?

Prove each of the statements in Exercises 29-40 by mathematical induction.

29. For any distinct real numbers x and y and any nonnegative integer n

Xfll n±1
xnyO + xn-1Y1 + + X I 1+ X0 Yn X -y

X-y

30. -+-+''+ <2- for all integers n > 2.
12 + 22 n 2 

< n_

31. (2n) is an integer for all positive integers n.

32. (n + 1)(n ...... (2n) is an integer for all positive integers n.

33. For all positive integers n, 3 divides 22n - 1.

34. For all positive integers n, 6 divides n3 + 5n.
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35 (4n)! is an integer for all nonnegative integers n.
Sn

36. (4 2) is an integer for all integers n > 5.
8n

37. (1 +2 2 + n)2 
= 1 + 2 +... + n3 for all positive integers n.

38. 12 -22 + + (-l)'+'nn2 = (_1) n(n + ) for all positive integers n.
2

39. + + >/ Vfor all integers n > 2.

40. 4 3 5....(2n -l1) > - for all positive integers n.
2 -4 .6 -... .(2n) - 2n

41. Let n be a positive integer and A, A2 , ... , An be subsets of a universal set U. Prove by mathematical induction
that

(Al U A2 U . U An) = A;fl A f2n ...- A".

42. Let n be a positive integer and A 1, A2 , An be subsets of a universal set U. Prove by mathematical induction
that

(Al n A2 r... n An) = Al U A2 u... u An.

43. If n is an integer larger than three, determine the number of diagonals in a regular n-sided polygon. Then prove
that your answer is correct using mathematical induction.

44. Suppose that, for some positive integer n, there are n lines in the Euclidean plane such that no two are parallel
and no three meet at the same point. Determine the number of regions into which the plane is divided by these
n lines, and prove that your answer is correct using mathematical induction.

45. Prove by mathematical induction that any list of 2' numbers can be sorted into nondecreasing order using at
most n '2n comparisons.

46. Prove by mathematical induction that a uniform cake can be divided by n persons so that each person believes
that the volume of cake he or she receives is at least 1 of the total volume of the cake. Assume that each person
is capable of dividing an object into parts that he or she considers to be of equal volume.

47. Mr. and Mrs. Lewis hosted a party for n married couples. As the guests arrived, some people shook hands.
Later Mr. Lewis asked everyone else (including his wife) how many hands each had shaken. To his surprise,
he found that no two people gave him the same answer. If no one shook his or her own hand, no spouses shook
hands, and no two persons shook hands more than once, how many hands did Mrs. Lewis shake? Prove your
answer by mathematical induction.

48. The well-ordering principle states that every nonempty set of positive integers contains a smallest element.
(a) Assume the well-ordering principle holds and use it to prove the principle of mathematical induction.
(b) Assume the principle of mathematical induction holds and use it to prove the well-ordering principle.

HISTORICAL NOTES

The theory of sets, congruences, relations, functions,,and mathematical induction share
many common roots. Set theory, as a method of discussing classes of objects and their
properties, got its start in the work of English mathematicians in the early to mid-1800s.
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George Boole's (1815-1864) publication of Investigation of Laws of Thoughts (1854)
provided a basis for an algebra cf sets and related logical forms. Boole recognized that,
through the limiting of ordinary aIgebraic thought to the values of 0 and 1, one could
develop a model for mathematical reasoning.

Boole's work amplified and clarified ideas developed earlier by George Peacock
(1791-1858), Augustus De Morgan (1806-1871), and the Scottish philosopher Sir William
Hamilton (1788-1856). This triohadbeenworking to generalize the connections between
arithmetic and algebra by reducing mathematical thought and argumentation to a series of
symbolic forms involving generalized numbers and operations. In 1847, Boole published
a work entitled The MathematicalAnalysis of Logic. In it, he separated mathematical logic
from the lozics emploved by the IJ reeks and scholastics. Boole's work elevated logic from

George Boole its use in arguing particular cases to claim a role as a subdiscipline of the mathematical
sciences in its own right.

In the development of the algebra of logic, Boole's work laid out an algebra of sets
where the union and intersection of sets were denoted by the signs + and x, respectively.
The empty set was denoted by 0 Our contemporary symbols U, n, and 0 came later.
The first two were developed frcm symbols used by the German algebraist Hermann
Grassmann (1809-1877) in his 44 work Ausdehnungslehre. These symbols were later
popularized by the Italian Giuseppe Peano (1858-1932) in his 1894 work Formulaire de
Mathematiques. In it, he added our present usage of E for set membership and c for set
containment. The origin of the s ymbol 0 to denote the empty set is less clear, although it
has been attributed to the Norwegian Niels Henrik Abel (1802-1829). Bertrand Russell
(1872-1970) and Alfred North Whitehead (1861-1947) brought several other signs to
common usage in their classic 1910-1913 multivolume Principia Mathematica. Among
them were braces to denote sets, and bars above the symbols denoting sets to denote their
complements [73, 74, 75, 80].

Venn diagrams are the work of the English logician John Venn (1834-1923). In his
1881 book Symbolic Logic, he used these diagrams to explain the ideas stated by Boole
more than a quarter of a century earlier. Leonhard Euler (1707-1783) had earlier used
a similar circle arrangement to make arguments about the relationships between logical
classes. The use of such diagram to represent sets, set operations, and set relationships
provided a readily understandable way of reasoning about the properties of sets.

The development of the concept of an equivalence relation is difficult to trace. How-
ever, the ideas central to the concept are found in the work of Joseph-Louis Lagrange
(1736-1813) and Carl Friedrich Gauss (1777-1855) to develop congruence relations de-
fined on the integers. The ideas are also present in Peano's 1889 work I Principii di
Geometria [82].

Gottfried Wilhelm Leibniz (1646-1716) was in 1692 the first mathematician to use
the word "function" to describe a quantity associated with an algebraic relationship de-
scribing acurve. In 1748, LeonhalrdEuler(1707-1783) wroteinhisIntroductio inAnalysin
1nfinitnrum. thit "a fuinction nf a variahl-e ninntit, is an nnhltirnl P-nrpccinn c-mnnQ-A

Carl Friedrich Gauss in any manner from that variable quantity ...... It is from the work of Euler and Alexis

Clairaut (1713-1765) that we have inherited the f(x) notation that is still in use today.
In 1837, Peter Gustav Le.leune Dirichlet (1805-1859) set down a more rigorous

formulation of the concepts of variable, function, and the correspondence between the
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independent variable x and the dependent variable y when y = f (x). Dirichlet's definition
did not depend on an algebraic relationship, but allowed for a more abstract relationship
to define the connection between the entities. He stated that "y is a function of a variable
x, defined on the interval a < x < b, if to every value of the variable x in this interval
there corresponds a definite value of the variable y. Also, it is irrelevant in what way this
correspondence is established." The modem set theoretic definition of a function as a subset
of a Cartesian product is based on Dirichlet's work, but its formal development comes from
a group of mathematicians writing under the pseudonym of Bourbaki in the late 1930s [81] .

Mathematical induction was first used by the Italian mathematician and engineer
Francesco Maurocyulus (1494-1575) in his 1575 book Arithmetica to prove that the sum
of the first n positive odd integers is n2. Blaise Pascal (1623-1662) used induction in
his work on his arithmetic triangle, now called the Pascal triangle. In his Traitt du tri-
angle arithmetique (1653), Pascal gave a clear explanation of induction in proving the
fundamental property defining his triangle. The actual name "mathematical induction"
was given to the principle by Augustus De Morgan in an article on the method of proof in
1838 [74].

SUPPLEMENTARY EXERCISES

Compute each of the sets in Exercises 1-8 if A = {l, 2, 3, 4), B = {1,4, 5), C = {3, 5, 61, and the universal set is
U = {1, 2,3,4,5, 6}.

1. AnC 2. AUB 3.A 4. C

5. AnB 6.;AUC 7. (BUC) 8. An(BUC)

Draw Venn diagrams depicting the sets in Exercises 9-12.

9. (A-B) 10. A -(BUC) 11. AU(B -C) 12. An (C-B)

Determine if each statement in Exercises 13-16 is true orfalse.

13. 37 = 18 (mod 2) 14. 45 -- 21 (mod 11) 15. -7 = 53 (mod 12) 16. -18 -- 64 (mod 7)

In Exercises 17-22 perform the indicated operations in Zm . Write your answer in the form [r], where 0 < r < m.

17. [43] + [32] in Z1I 18. [-12] + [95] in Z2 5  19. [5][1] in Z9

20. [ -3][9] in Z15  21. [22]7 in Z5  22. [13]6[23]5 in Z 1 2

23. If x - 4 (mod 11) and y = 9 (mod 11), what is the remainder when x2 + 3y is divided by 11?
24. If f(x) = X

3 
+ 1 and g(x) = 2x -5, determine gf and fg.

In Exercises 25-28 determine if relation R is a function with domain X = 1, 2, 3, 4}.

25. R = {(1, 4), (2, 1), (3, 2), (4,4)) 26. R = {(1, 3),(3, 4), (4, 1)1

27. R = {(I, -1), (2, -1), (3, 1), 4, 1)) 28. R = {(I, 2), (2, 3), (2, 1), (3,0), (4, 1))

Let Z denote the set of integers. Which of the functions g: Z -* Z in Exercises 29-32 are one-to-one? Which are
onto?

30. g(x) = x2 - 329. g(x) = 2x - 7
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x -2 ifx>0
31. F(x)=x+3 if x <O

x+ f<

32'. g(x) = 5 - x

Let X denote the set of real numbers. In Exercises 33-36 compute the inverse of each function f: X -* X if it
exists.

33. f (x) = xj - 2 34. f (x) = 3x + 1 35. f (x) = 3x - 6 36. f (x) = x3 + 5

37. At the local ice cream parlor, a sundae can be ordered with any combination of the following toppings: hot
fudge, whipped cream, maraschino cherries, nuts. anc marshmallows. How many different sundaes can be
ordered?

38. In how many different ways can the Supreme Court rernder a 6-to-3 decision?

39. A grievance committee consisting of 6 persons is to be formed from 7 men and 8 women. How many different
committees can be formed?

40. An investor is going to buy 100 shares of stock in each of 6 companies selected from a list of 10 companies
prepared by her broker. How many different selections of 6 companies are available to the investor?

In Exercises 41-44 show that each relation R is an equivalence relation on set S. Then describe the distinct
equivalence classes of R.

41. S = {1,2,3,4,5,6,7,8),andxRymeansthatx--- {-4,0,4).
42. S = {1,2,3,4,5,6,7,8},andxRymeansthat14--r = 14- y.

43. S is the set of integers, and x R y means that either x = y or lx-y = 1 and the larger of x and y is even.

44. S is the set of nonzero real numbers, and x R y means that xy > 0.

45. Let x be any integer and a and b be integers greater tlhan 1. Define A to be the congruence class of x in Za and
B to be the congruence class of x in Zh. Prove that if a divides b, then B C A.

46. How many relations can be defined on S = {a, b, c}?

47. How many equivalence relations on S = {a, b, c} are there?

48. How many functions f: S -* S are there if S = {a, L, c}?

49. Suppose that R is an equivalence relation on set S and also a function with domain S. Describe R.

50. Let g: Z -* Z be defined by g(x) = ax + b, where Z' Jenotes the set of integers and a, b E Z with a $ 0.
(a) Prove that g is one-to-one.
(b) What must be true about a and b if g is onto?

Exercises 51-53 give a relation R on a set S. Tell which ofr he reflexive, antisymmetric, and transitive properties R
has on S.

51. S is the set of all subsets of {1, 2,3,4) and A R B if and only if A C B and A # B.

52. S = {{1,2,3}, {2,3,4}, {3,4, 5}} andA R B if and only ifIA -BI < 1.

53. S is the set of positive integers and x R y if and only if y = n2 x for some integer n.

54. Let S be a set of people. For x, y E S define x R y to mean that x = y or x is a descendant of y. Prove that R
is a partial order on S.

55. Suppose that the advertisement for the Fourth of July sale (as described in Section 1.1) is to be created by a
team of persons who perform only one task at a time In what sequence should the tasks be performed?

56. Let R be a relation on set S. Define a relation R' on 5 by x R' y if and only if y R x. Prove that if R is a partial
order on S, then so is R'.
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57. Suppose that R is a relation on set S that is both an equivalence relation and a partial order. Describe R.

Use the following information for Exercises 58-62. If R is a partial order on a set S and x, y, and z are in S, we
call z the sup (pronounced "soup") of x and y and write z = x v y in case

(a) xRzandyRz, and
(b) ifw E Sand bothxRwandyRw, thenzRw.

58. Let S = {l, 2, 3, 4, 5, 6} with x R y if and only if x divides y. Compute x V y for all pairs (x, y) in S x S for
which it exists.

59. Let R be a partial order on set S, and let x, y e S. Prove that if x V y exists, then so does y v x, and that
x V y = y V x.

60. Let T be a set, and let S be the set of all subsets of T. For A, B E S define A R B if and only if A C B. Prove
that A v B = A U B for all A, B E S.

61. Let R be a partial order on set S, and let x, y, z E S. Prove that if x v y, y V z, (x V y) V z, and x v (y v z) all
exist, then the latter two are equal.

62. Give an example of a partial order R on a set S where x v y, y v z, and x v z all exist, but (x V y) V z does
not exist.

In Exercises 63-66 let Z denote the set of integers, f: Z -* Z be a function, and let x R y be defined to mean that
f(x) = f(y).

63. Prove that R is an equivalence relation on Z.
64. Determine [n], the equivalence class containing n E Z with respect to R, if f is the function defined by

f (x) - X2 .

65. What must be true about a function f if, for every n E Z, the equivalence class containing [n] consists of
exactly one element?

66. Give an example of a function f: Z -* Z for which every equivalence class [n] contains exactly three elements.

Prove each of the set equalities in Exercises 67-72.

67. A x (B U C) = (A x B) U (A x C) 68. A x (B n C) = (A x B) n (A x C)

69. Ax(B-C)=(AxB)-(AxC) 70. (AUB) -C=(A -C)U(B-C)
71. (A -B) -(A- C)=An(C-B) 72. (A-B)U(A -C)A -(BnC)

Prove the results in Exercises 73-80 by mathematical induction.

73. For all positive integers n, 12 + 32 + + (2n - 1)2 = n(2n - 1)(2n + 1)
3

1 1 1 n
74. For all positive integers n, 13 + ± + (

I 3 3-5 (2n -l)(2n +l) 2n±+1
5 6 n +4 n(3n +7)

75. For all positive integers n, 1*2*3 + +.4+ + n
I2-3 2.-3.-4 n(n +l)(n±+2) 2(n +l)(n +2)

76. Any integer n > 23 can be written in the form 5r + 7s for some nonnegative integers r and s.

77. Any postage of 8 cents or more can be obtained using only 3-cent and 5-cent stamps.
78. For all positive integers n and any distinct real numbers x and y, x -y divides xn -yn.

79. For all nonnegative integers n, 32n+1 + 2(- 1)n 0- (mod 5).

80. For all nonnegative integers n, 7h1+2 + 8 2n+1 0- (mod 57).
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81. Choose any n > 3 distinct points on the circumference (of a circle, and join consecutive points by line segments
to form an n-sided polygon. Show that the sum of the interior angles of this polygon is 180n - 360 degrees.

82. Prove that Fn+1 = F,-,,Fm + F,,m+IFm+, for any irtegers m and n such that n > m > 1. (Hint: Fix m, and
use induction on n beginning with n = m + 1.)

83. Prove that Fm divides Fmn for all positive integers n.

84. Prove that if n > 12 is an even integer not divisible by 3, then an n x n checkerboard with one square removed
can be covered by L-shaped pieces as in Figure 2.20. (Hint: Divide the n x n board into (n - 6) x (n -6),
6 x (n -6), (n -6) x 6, and 6 x 6 subboards.)

COMPUTER PROJECTS

Write a computer program having the specified input and o wtput.

1. Given a nonnegative integer n, list all the subsets of { [, 2, . . ., n

2. Let U be a finite set of real numbers. Given lists of the clements in the universal set U and in subsets A and B,
list the elements in the sets A U B, A n B, A - B. A, and B.

3. Given a finite set S of integers and a subset R of S x S, determine which of the reflexive, symmetric, antisym-
metric, and transitive properties are possessed by the relation R on S. Assume that the elements of the sets S
and R are listed.

4. Given a finite set S of integers and a subset R of S x 5, determine if R is an equivalence relation on S. If so,
list the distinct equivalence classes of R. Assume that tie elements of the sets S and R are listed.

5. Given a partial order R on a finite set S, determine a total order on S that contains R. Assume that the elements
of the sets S and R are listed.

6. Given integers x, y, and m with m > 2, compute [x] t- l y] and [x][y] in Zm Write the answers in the form [r],
where 0 < r < m.

7. Given a positive integer n, compute 1!, 2!, . . ., n!.

8. Given a positive integer n, compute F,, F2 , ... , F,.

9. Given sets X = (XI, X2, .X.., m) and Y = {yI, y2, .,) containing m and n elements, respectively, list all
the functions with domain X and codomain Y.

10. Given sets X = {xI, x2 . . ., Xm and Y = {yI, Y2. y, containing m and n elements, respectively, list all
the one-to-one functions with domain X and codotnain Y.

11. Given sets X = {xI, x2, .X. ,m } and Y = {Y1, Y2. y , Yn containing m and n elements, respectively, list all
the onto functions with domain X and codomain Y.

12. Given sets X = {xI, x2 , .. . , x,} and Y = {1Y, Y2, .... n} containing n elements, list all the one-to-one corre-
spondences with domain X and codomain Y.

13. Given two sorted lists of real numbers, merge them in o a single sorted list using the technique described in
Example 2.64.
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3 Graphs
3.1 Graphs and Their Repre sensations

3.2 Paths and Circuits

3.3 Shortest Paths and Distance

3.4 Coloring a Graph

3.5 Directed Graphs and Multigraphs

Even though graphs have been studied for a long time, the increased use
of computer technology has generated a new interest in them. Not only have
applications of graphs been found in computer science but in many other areas
such as business and science. As a consequence, the study of graphs has become
important to many.

3.1 o GRAPHS AND THEIR REPRESENTATIONS

It is quite common to represent situations involving objects and their relationships
by drawing a diagram of pointy, with segments joining those points that are related.
Let us consider some specific examples of this idea.

+ Example 3.1

Consider for a moment an airline route map in which dots represent cities,
and two dots are joined by a segment whenever there is a nonstop flight be-
tween the corresponding cities. A portion of such an airline map is shown in
Figure 3.1. I

San Francisco Chicago

T / g New York
Lo ASt. Louis

Los An yeFes

FIGURE 3.1
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Example 3.2

Suppose we have four computers labeled A, B, C, and D, where there is a flow of
information between computers A and B, C and D, and B and C. This situation
can be represented by the diagram in Figure 3.2. This is usually referred to as a
communication network. +

A D

A B
B -OE

C D C F

FIGURE 3.2 FIGURE 3.3

+ Example 3.3

Suppose that there is a group of people and a set of jobs that some of the people
can do. For example, for individuals A, B, and C and jobs D, E, and F, suppose
A can do only job D, B can do jobs D and E, and C can do jobs E and F.
This type of situation can be represented by the diagram in Figure 3.3, where line
segments are drawn between an individual and the jobs that person can do. +

The general idea in the three examples is to represent by a picture a set
of objects in which some pairs are related. We will now describe this type of
representation more carefully.

A graph is a nonempty finite set V along with a set £ of 2-element subsets of
V. The elements of V are called vertices and the elements of £ are called edges.

Figure 3.2 depicts a graph with vertices A, B, C, and D and edges IA, B),
{B, C }, and {C, D }. Thus a graph can be described either by the use of sets or by
the use of a diagram, where segments between the vertices in V describe which
2-element subsets are being included. Figure 3.3 shows a graph with vertices A,
B, C, D, E, and F and with edges {A, D}, {B, D}, {B, El, {C, E}, and {C, F).

We caution the reader that the use of terminology in graph theory is not
consistent among users, and when consulting other books, definitions should
always be checked to see how words are being used. In our definition of a graph,
the set of vertices is required to be a finite set. Some authors do not make this
restriction, but we find it convenient to do so. Also our definition of a graph does
not allow an edge from a vertex to itself, or different edges between the same two
vertices. Some authors allow such edges, but we do not.

Whenever we have an edge e = {U, V}, we say that the edge e joins the
vertices U and V and that U and V are adjacent. It is also said that edge e is
incident with the vertex U and that the vertex U is incident with the edge e.
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For the graph in Figure 3.2, we see that vertices A and B are adjacent, whereas
vertices A and C are not becausMe there is no segment between them (that is, the set
{A, C I is not an edge). In Fig jre 3.3 the edge {B, E } is incident with the vertex B.

Note that the diagram in Figure 3.2 can be drawn differently and still represent
the same graph. Another representation of this graph is given in Figure 3.4.

.-- p p p
A B C D

FIGURE 3.4

The way our picture is drawn is not important, although one picture may be
much easier to understand that another. What is important in the picture is which
vertices are joined by edges, fDr this describes what relationships exist between
the vertices. In Figure 3.5 we have redrawn the graph from Figure 3.2 in such a
way that the edges meet at a place other than a vertex. It is important not to be
misled into believing that there is now a new vertex. Sometimes it is not possible
to draw a picture of a graph without edges meeting in this way, and it is important
to understand that such a cros sing does not generate a new vertex of the graph.
It is often very difficult to determine if a graph can be drawn without any edges
crossing at points other than vertices.

D

B C.0

A D

E

FIGURE 3.5 FIGURE 3.6

In a graph, the number of edges incident with a vertex V is called the degree
of V and is denoted as deg(V). [n Figure 3.6 we see that deg(A) = 1, deg(B) = 3,
and deg(C) = 0.

One special graph that is encountered frequently is the complete graph on n
vertices, where every vertex is Joined to every other vertex. This graph is denoted
by A2,. Figure 3.7 shows Kt3 and IC4.

A

,3 X4

FIGURE 3.7

In Figures 3.6 and 3.7, notice that adding the degrees of the vertices in each
graph yields a number that is twicee the number of edges. This result is true in
general.
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Theorem 3.1 In a graph, the sum of the degrees of the vertices equals twice the number of
edges.

Proof. The key to understanding why this theorem is true is to see that each
edge is incident with two vertices. When we take the sum of the degrees of the
vertices, each edge is counted twice in this sum. Thus the sum of the degrees is
twice the number of the edges. Look again at Figures 3.5, 3.6, and 3.7 to see how
this double counting of edges takes place. M

00htleS tRqressenfSalion;s of) (]grap'B~~~is

It is often necessary to analyze graphs and perform a variety of procedures and
algorithms upon them. When a graph has many vertices and edges, it may be
essential to use a computer to perform these algorithms. Thus it is necessary to
communicate to the computer the vertices and edges of a graph. One way to do
so is to represent a graph by means of matrices (discussed in Appendix B), which
are easily manipulated with a computer.

Suppose we have a graph g with n vertices labeled VI, V2, ... , V,. Such a
graph is called a labeled graph. To represent the labeled graph g by a matrix,
we form an n x n matrix in which the i, j entry is 1 if there is an edge between
the vertices Vi and Vj and 0 if there is not. This matrix is called the adjacency
matrix of g (with respect to the labeling) and is denoted by A(g).

+ Example 3.4

Figure 3.8 contains two graphs and their adjacency matrices. For (a) the 1, 2
entry is 1 because there is an edge between vertices VI and V2, and the 3, 4 entry
is 0 because there is no edge between V3 and V4. For (b) we see that the 1, 2
and 1, 3 entries are 1 because of the edges between VI and V2 and between VI
and V3.

Note that in A(g 1) the sum of the entries in row 1 is 1, which is the degree of
VI, and likewise the sum of the entries in row 2 is the degree of V2. This illustrates
a more general result. +

V, V2

,, q0 1 0 0
V3  A((g,) = tI o l

V4 n I I n

0 l 1
A (-J2) = I O I

I I 0

L - -- I2

(a) (b)

FIGURE 3.8

Theorem 3.2 The sum of the entries in row i of the adjacency matrix of a graph is the degree
of the vertex V1 in the graph.
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Proof. We recall that each 1 in row i corresponds to an edge on the vertex Vi.
Thus the number of Is in row i is the number of edges on Vi, which is the degree
of Vi. a

Matrices are not the only way to represent graphs in a computer. Although
an adjacency matrix is easy to construct, this form of representation requires
n n = n2 units of storage for a graph with n vertices and so can be quite inefficient
if the matrix contains lots of zeros. This means that if an algorithm to be performed
on the graph requires a lot of searching of vertices and adjacent vertices, then the
matrix representation can require a lot of unnecessary time. A better representation
for such a graph is an adjacency list.

The basic idea of an adjacency list is to list each vertex followed by the vertices
adjacent to it. This provides the basic information about a graph: the vertices and
the edges. To form the adjacency list, we begin by labeling the vertices of the
graph. Then we list the vertices in a vertical column, and after each one we write
down the adjacent vertices. 'Tius we see that the Is in a row of an adjacency
matrix tell what vertices are listed in the corresponding row of an adjacency
list.

' Example 3.5

For the graph in Figure 3.9 there are 6 labeled vertices, and we list them in a
vertical column as in (b). Beside vertex VI we list the adjacent vertices, which
are V2 and V3. Then proceeding to the next vertex V2, we list the vertices adja-
cent to it, VI and V4. This process is continued until we get the adjacency list
in (b). +

'2 VI: V2, V3

V2: VI, V4

V3 : VI, V4

I/4 14: V2, V3, V5

V<: V. V'

V6 : V5

(a) (b)

FIGURE 3.9
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In 1953 the CIA managed to photograph a KGB document listing their agents
in a large third-world city, showing their past operations, duties, and contacts
among themselves. Unfortunately, it listed the agents by the code designations D
through L. The document shows that agent D 's contacts were F and L; E 's were
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J and K; F's were D, J, and L; G's were I and L; H's were I and J; I's were
G, H, and K; J's were E, F, and H; K's were E and I; and L's were D, F,
and G. Drawing an edge between agents if they are contacts produces the graph
A shown in Figure 3.10. Unfortunately, the information in the document was of
little use without knowing the identities of the agents.

E F G

FIGURE 3.10

An inquiry to the CIA office in this city revealed that the suspected agents
there were Telyanin, Rostov, Lavrushka, Kuragin, Ippolit, Willarski, Dolokhov,
Balashev, and Kutuzov. By examining records of past meetings observed among
them, the CIA created the contact graph C in Figure 3.11 by joining two individuals
with an edge if they were known to have met together.

stov

P Lavrushka

tragin

wl HIM SKl Ippolit

FIGURE 3.11

If these nine persons are the agents described in the KGB document, then it
must be possible to match the code designations D through L with the names in
Figure 3.11 so that the edges in A correspond exactly to the edges in C. In general,
we say that a graph g1 is isomorphic to a graph g2 when there is a one-to-one
correspondence f between the vertices of g1 and g2 such that the vertices U and
W are adjacent in 5, if and only if the vertices f(U) and f (W) are adjacent in
g2 . The function f is called an isomorphism of g1 with g2. Because the relation
"is isomorphic to" is a symmetric relation on any set of graphs (see Exercise 38),
we usually just say that the graphs 51 and g2 are isomorphic. Thus isomorphic
graphs are essentially the same in the sense that, except for notation, they have
the same vertices and the same pairs of vertices are adjacent.

An examination of the graphs in Figure 3.12 shows that they are isomorphic
by using the correspondence indicated in the figure. The graphs in Figures 3.10

113
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A - ----A a A a

B ...... d

C ...... g

D ...... c

E ...... f F

F ...... b

G ...... e

FIGURE 3.12

Q

FIGURE 3.13

and 3.12 are not isomorphic, however, because they have different numbers of
vertices. In Figure 3.13, vertex C in g1 is adjacent to the vertices A, B, D, and
E. Therefore, under any isomorphism of g1 with g2 , the image of C would also
need to have 4 adjacent vertices s. Since there are no vertices of degree 4 in g2 , we
see that g1 and g2 are not isomorphic.

This last observation illustrates the following theorem.

Theorem 3.3 Let f be an isomorphism of graphs g1 and g2 . For any vertex V in g1, the degrees
of V and f(V) are equal.

Proof. Suppose f is an iso- Morphism of g1 with g2 and that V is a vertex of
degree k in gl. Then there are exactly k vertices U1, U2 , . . - Uk in g1 that are
adjacent to V. Since f is an isomnorphism, f (Ul), f (U2), . .. , f (Uk) are adjacent
to f (V). Since there are no oth r vertices in g1 adjacent to V, there are no other
vertices in g2 adjacent to f(V) Thus f(V) has degree k in 2. l

As a consequence of this theorem, we see that the degrees of the vertices of
isomorphic graphs must be exactly the same.

A property is said to be a graph isomorphism invariant if, whenever g1 and
52 are isomorphic graphs and g has this property, then so does g2 . The properties
"has n vertices," "has e edges," and "has a vertex of degree k" are all invariants.
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Thus one way to show two graphs are not isomorphic is to find an invariant
property possessed by only one of the graphs. This is what was done in showing
that the graphs in Figure 3.13 are not isomorphic.

Returning to the graphs in Figures 3.10 and 3.11, we will construct an explicit
isomorphism of A with C by observing similarities between the graphs. Note that
vertices L, D, and F form the only "triangle" in A, that is, the only set of three
vertices in which each pair is adjacent. Thus, to have an isomorphism, these ver-
tices must correspond to Kutuzov, Lavrushka, and Dolokhov, in some order, since
they form the only similar set in C. In fact, since of these six vertices only D and
Kutuzov have degree 2, we must have f (D) = Kutuzov. Moreover, since of L and
F, only L is adjacent to another vertex of degree 2 (namely, G), and of Lavrushka
and Dolokhov, only Dolokhov is joined to another vertex of degree 2 (namely
Rostov), we must have f (L) = Dolokhov, f (F) = Lavrushka, and f (G) = Rostov.

Continuing in this way, we find that for f to be an isomorphism we must
have f(J) = Telyanin, f(I) = Balashev, f(H) = Ippolit, f(K) = Kuragin, and
f (E) = Willarski. It is easily checked that f is indeed an isomorphism.

Note that if there had been more than one isomorphism from A to C, then a
complete identification of the agents would not have been possible. For example,
consider the graphs of agents 1Z and contacts S in Figure 3.14.

V

x x
Rt S

FIGURE 3.14

Notice that in addition to the obvious isomorphism sending V, W, X, Y, and
Z into V *, W *, X *, Y *, and Z *, respectively, there is also an isomorphism that
is the same except that W maps to X * and X to W *. Hence, in this case, it would
be impossible to deduce whether W* or X * is the identity of agent W.

EXERCISES 3.1

In Exercises 1-4 list the set of edges and set of vertices for each graph.

L. A t B 2. Fi * G

Ho

C oD

V*
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3. Fe OG 4. A B

He

C D

In Exercises 5-8 draw a diagram representing the graph with the set V of vertices and the set £ of edges.

5. V = (A, B,C, D}, £ = {{B,CI, {C, Al, (B, D I

6. V= {X,Y,Z,W},E= {{X,YI,{X,Z),{Y,Z1,{:Y,AII

7. V={G,H,J},£=0

8. V = (A, X, B, Y}, £ = ((A, X}, (X, B], (B, Y), {Y, 4A}

In Exercises 9-14 determine if a graph is indicated.

9. * 1i).

11. A 12. A B

B C D

13. V = {A, B, C, D}, £ = ({A, B), 1A, A}} 14. V = [A, B}, S = [{A, B}, [B, C}}

15. Construct the graph where the vertices are you, your- parents, and your grandparents with a relationship of
"are the same sex."

16. Construct the graph where the vertices are you, your parents, and your grandparents with a relationship of
"born in the same state."

17. There is a group of 6 students, Alice, Bob, Carol, Dean, Santos, and Tom, where Alice and Carol are always
feuding, likewise for Dean and Carol, and for Santus, Tom, and Alice. Draw the graph to represent this
situation.

18. Draw the graph with V = {I, 2, . 1.., 01 as its set of v-itices and

£= {Jx, y}: x, y in V, x : y, and x divides y or y divides x}

as its set of edges.

In Exercises 19-20 list the vertices adjacent to A and give tee degree of A. Repeat for the vertex B.

19. A B 20. C a - B

E A

C D

21. Draw graphs where

(a) there are 4 vertices, each with degree 1.
(b) there are 4 vertices, each with degree 2.

116
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22. Show that there are an even number of vertices with odd degree in any graph.

23. How many edges does KC3 have? 1(4? K5? IC, in general?

24. Can there be a graph with 8 vertices and 29 edges? Justify your answer.

25. How many vertices are there in a graph with 10 edges if each vertex has degree 2?

In Exercises 26-29 find the adjacency matrix and the adjacency listfor each graph.

26. 1(4

27. V2

VI V3

V5 V4

28. V" 4 V2

V4 411iV 3

29. VI - * V2

V3 .

In Exercises 30-31 construct the graph for each adjacency matrix. Label the vertices V1, V2 , V3,..

101 1 if
30. 110 1 0

Oi 0 IO

1 0 0]

0 11 1
31. 0 1 i

111 0 1f

Li 1 1 0]

In Exercises 32-33 construct the graph for each adjacency list.

32. VI: V2, V4, V5

V 2: VI, V3
V3 : V2, V5

V4: VI
V'i: VI, V3

33. VI: V2, V3

V2: VI, V4
V3: VI, V4
V4: V2, V3

34. What does it mean when the adjacency matrix of a graph contains only zeros?

In Exercises 35-37, can each matrix be an adjacency matrix?

O 101 0

35. 1 0 1 I
1 1 0 f
Lool 10]

OI Ol O
I100 11

36. 0 0 0 0 I
I 11000O
00000]

I I ]
37. I 1 I

l I I

38. Show that the relation "is isomorphic to" is an equivalence relation on any set of graphs.

39. Will two graphs that have the same number of vertices always be isomorphic? Justify your answer.

40. Will two graphs that have the same number of edges always be isomorphic? Justify your answer.
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41. Will two graphs having the same number of vertices of degree k for each nonnegative integer k always be
isomorphic? Justify your answer.

42. Are the following pairs of graphs isomorphic? Justify your answer.

(a) (I) -- (c)

A
N

43. Are the following pairs of graphs isomorphic? Justify y our answer.
,\1 - - I,= - ,\ -

ka) i K) c)

I
44. Draw all the nonisomorphic graphs with 3 vertices.

45. Draw all the nonisomorphic graphs with 4 vertices.

46. Draw all the nonisomorphic graphs with 5 vertices of degrees 1, 2, 2, 2, and 3.

47. Draw all the nonisomorphic graphs with 6 vertices of degrees 1, 1, 1, 2, 2, and 3.

48. Consider a graph whose vertices are the closed intervals [m, n], where m and n are distinct integers between
1 and 4, inclusive. Let two distinct vertices be adjacent. if the corresponding intervals have at least one point in
common. Draw the graph.

49. Suppose a graph has n vertices, each with degree at least 1. What is the smallest number of edges the graph
can have? Justify your answer.

50. Suppose a graph has n vertices, each with degree at least 2. What is the smallest number of edges it can have?
Justify your answer.

51. A graph has m edges with m > 2. What is the smalles- number of vertices it can have? Justify your answer.

52. For n > 3, let V = {1, 2, .. , ni and

£ = {{x, y}: x, y in V. x $ y, and x divides y or y divides x}

What vertices of this graph have degree 1?
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53. Suppose Mr. and Mrs. Lewis attended a bridge party one evening. There were three other married couples in
attendance and several handshakes took place. No one shook hands with himself or herself, no spouses shook
hands, and no two people shook hands more than once. When each other person told Mr. Lewis how many
hands he or she shook, the answers were all different. How many handshakes did Mr. and Mrs. Lewis each
make?

54. Prove that if a graph has at least two vertices, then there are two distinct vertices that have the same degree.

3.2 + PATHS AND CIRCUITS

As we have seen, graphs can be used to describe a variety of situations. In many
cases we want to know whether it is possible to go from one vertex to another
by following edges. In other cases it may be necessary to perform a test that
involves finding a route through all the vertices or over all the edges. While many
situations can be described by graphs as we have defined them, there are others
where it may be necessary to allow an edge from a vertex to itself or to allow
more than one edge between vertices. For example, when a road system is being
described, there can be two roads, an interstate highway and an older two-lane
road, between the same two towns. There could even be a scenic route starting
and ending at the same town. To describe these situations, we need to generalize
the concept of a graph. A multigraph consists of a nonempty finite set of vertices
and a set of edges, where we allow an edge to join a vertex to itself or to a different
vertex, and where we allow several edges joining the same pair of vertices. An
edge from a vertex to itself is called a loop. When there is more than one edge
between two vertices, these edges are called parallel edges. It is important to
note that a graph is a special kind of multigraph. Thus all the definitions given
for multigraphs apply to graphs as well.

+ Example 3.6

The diagram in Figure 3.15 represents a multigraph but not a graph because there
are two parallel edges k and m between the vertices Y and Z and a loop h at
vertex X. +

FIGURE 3.15
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In a multigraph the number of edges incident with a vertex V is called the
degree of V and is denoted as deg(V). A loop on a vertex V is counted twice in
deg(V). Thus, in Figure 3.15, deg(Y) = 3 and deg(X) = 4.

Suppose 5 is a multigraph and U and V are vertices, not necessarily distinct.
A U-V path or a path from U to V is an alternating sequence

VI , e 1, V2, e2, V3, . . ., Vn, en, V,+ I

of vertices and edges, where the first vertex VI is U, the last vertex V,+I is
V, and the edge ei joins V, and V,+1 for i = 1, 2, ... , n. The length of this
path is n, the number of edges listed. We note that U is a path to itself of
length 0.

In a path the vertices need not be distinct, and some of the edges can be the
same. When there can be no chance of confusion, a path can be represented by
the vertices VI, V2, . . ., V,1 only or by the edges e1, e2, . . ., en only. Note that
in a graph it is always sufficient to list only the vertices or the edges.

+ Example 3.7

In Figure 3.15, U, f, V, g, X is a path of length 2 from U to X. This path can
also be written as f, g. Likewise f, g, h is a path of length 3 from U to X, and
U, f, V, f, U is a path of length 2 from U to U. The path Z, m, Y cannot be
described by just listing the vertices Z, Y since it would not be clear which edge
between Z and Y, k or m, is part of the path. +

A path provides a way of describing how to go from one vertex to another by
following edges. A U-V path need not be an efficient route; that is, it may repeat
vertices or edges. However, a 1U-V simple path is a path from U to V in which
no vertex and, hence, no edge i i repeated.

There are no simple paths of length 1 or more from a vertex to itself. Further-
more, a simple path does not Stve loops or pairs of parallel edges in it. In some
sense, a simple path is an efficient route between vertices, whereas a path allows
wandering back and forth, repeating vertices and edges.

+ Example 3.8

For the multigraph in Figure 3.16, the edges a, c, d, j form a simple path from
U to Z, whereas a, c, m, d, i is a path from U to Z that is not a simple path
because the vertex W is repeated. Similarly, e, i is a simple path from X to Z, but
f, i, j is a path from X to Z that is not a simple path. Note also that c, p, f, i, e,
n is a path from V to U that is not simple, but deleting f, i, e produces a simple
path c, p, n from V to U. This. illustrates the following theorem. +
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U

g

R

FIGURE 3.16

Theorem 3.4 Every U-V path contains a U-V simple path.

Proof. Let us suppose that U = VI, el, V2 , ... , e, V,+1 = V is a U-V path.
In the special case that U = V we can choose our U-V simple path to be just
the vertex U. So suppose that U :A V. If all of the vertices VI, V2, . . ., V,+, are
different initially, then our path is already a U-V simple path. Thus let us suppose
that at least two of the vertices are the same, say Vi = Vj, where i < j. See Figure
3.17 for an illustration of how to form a simple path from Vi to Vj.

V.

FIGURE 3.17

We delete ei, Vi+, . .. , ej-1 , Vj from the original path. What has been deleted
is the part that is between vertex Vi and edge ej. This still leaves a path from U
to V. If there are only distinct vertices left after this deletion, then we are done.
If there are still repetitions among the remaining vertices, the above process is
repeated. Because the number of vertices is finite, this process will eventually end
and give a U-V simple path from U to V. id

A multigraph is called connected if there is a path between every pair of
vertices. Thus in a connected multigraph we can go from any one vertex to
another by following some route along the edges.

Example 3.9

The multigraph in Figure 3.16 is connected since a path can be found between
any two vertices. However, the graph in Figure 3.18 is not connected since there
is no path from vertex U to vertex W. +
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FIGURE 3.18

A cycle is a path VI, el, 1 2, e2, .. ., Vn, en, Vn+l, where n > 0, VI = Vn+l
and all the vertices VU, V2, . ., V, and all the edges el, e2, . . .., e are distinct.
Thus a cycle of length 3 or more cannot have loops or parallel edges as part
of it.

Example 3.10

For the multigraph in Figure 3.16, the edges a, c, p, n form a cycle. Likewise,
the edges g, b, c, p, f, h fonn a cycle. Furthermore, the edges f, p, d, e, n, g, h
do not form a cycle because the vertex X is used twice. d

E~der C,0.Sfir. ..ds and.: PaIJ0Z:s

In testing a communication network, it is often necessary to examine each link
(edge) in the system. In order lo minimize the cost of such a test, it is desirable to
devise a route that goes through each edge exactly once. Similarly, when devising
a garbage pick-up route (where the garbage is picked up along both sides of the
street with one pass), we will want to go over each street exactly once. Thus, when
modeled by a multigraph (v% ith comers as the vertices and streets as the edges),
we want a path that includes every edge exactly once.

Because the mathematician Leonhard Euler was the first person known to
consider this concept, a path in a multigraph g that includes exactly once all the
edges of G and has different first and last vertices is called an Euler path. A path
that includes exactly once all :he edges of G and has the same initial and terminal
vertices is called an Euler circuit.

Example 3.11

For the graph in Figure 3.19(a), the path a, b, c, d is an Euler circuit since all the
edges are included and each edge is included exactly once. However, the graph in
Figure 3.19(b) has neither an Euler path nor circuit because, to include all three
of the edges in a path, we would have to backtrack and use an edge twice. For
the graph in Figure 3.19(c), there is an Euler path a, b, c, d, e, f but not an Euler
circuit. +
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FIGURE 3.19

As we proceed along an Euler circuit, each time a vertex is reached along
some edge, there must be another edge for us to exit that vertex. This implies
that the degrees of the vertices must all be even. In fact, as we will see shortly,
the converse statement is also true: Whenever a multigraph is connected and the
degree of each vertex is even, then the graph has an Euler circuit. The following
example shows how an Euler circuit can be constructed in such a case.

+ Example 3.12

The multigraph shown in Figure 3.20(a) is connected, and the degree of each
vertex is even. Therefore an Euler circuit can be constructed as follows. Select
any vertex U, and construct a path C from U to U by randomly selecting unused
edges for as long as possible. For example, if we start at G, we may construct the
path

C: G, h, E, d, C, e, F, g, E, j, H, k, G.

The edges in this path C are shown in color in Figure 3.20(b).
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FIGURE 3.20

Note that such a path must return to the starting vertex because the degree
of each vertex is even and the number of vertices is finite. In addition, every
edge incident with the starting vertex must be included in this path. If, as is the
case here, this path C is not an Euler circuit, then there must be edges not in C.
Moreover, since the multigraph is connected, there must be a vertex in C that is

J
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incident with an edge not in C'. In our case, the vertices E and H are vertices in
C that are incident with an edge not in C. Arbitrarily choose one of these, say E,
and construct a path P from E to E in the same manner that C was constructed.
One possibility for P is

P: E,c,B,a, A, b,D, f,E.

We now enlarge C to include the path P by replacing any one occurrence of
E in C by P. For example, if we replace the first occurrence of E in C, we obtain

C': G, h, E, c, B, a, A, b, D, f, E, d, C, e, F, g, E, i, H, k, G.

The edges in the enlarged pari C' are shown in color in Figure 3.20(c). Notice
that C', although larger than C, is still not an Euler circuit. We now repeat the
procedure used in the preceding paragraph. In this case H is the only vertex in C'
that is incident with an edge not in C'. So we construct a path P' from H to H,
say P': H, m, J, 1, H. Enlarging C' as before to include this path P', we obtain
the Euler circuit

G, h,E,c, B,a, A, b,D. f E, d,C,e, F, g,E, i,H,m, J,1, H, k,G. +

The process illustrated in Example 3.12 always produces an Euler circuit
in a connected multigraph in which the degree of each vertex is even. A formal
description of this procedure is given below.

Euler Circuit Algorithm

This algorithm constructs an Euler circuit for a connected multigraph g in which
every vertex has even degree.

Step I (start path)
(a) Set £ to be the set of edges of 5.
(b) Select a vertex U, and set C to be the path consisting of just U.

Step 2 (expand the path)
while £ is nonempty

Step 2.1 (pick a starting point for expansion)
(a) Set V to be a vertex in C that is incident with some edge

inS.
(b) Set P to be tLe path consisting of just V.

Step 2.2 (expand P into a path from V to V)
(a) Set W = V.
(b) while there is an edge e on W in £

(a) RemDve e from E.
(b) Replace W with the other vertex on e.
(c) Apperd edge e and vertex W to path P.

endwhile
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Step 2.3 (enlarge C)
Replace any one occurrence of V in C with path P.

endwhile
Step 3 (output)

The path C is an Euler circuit.

The following theorem gives necessary and sufficient conditions for a con-
nected multigraph to have an Euler circuit or path and justifies the Euler circuit
algorithm.

Theorem 3.5 Suppose a multigraph g is connected. Then g has an Euler circuit if and only
if every vertex has even degree. Furthermore, g has an Euler path if and only
if every vertex has even degree except for two distinct vertices, which have odd
degree. When this is the case, the Euler path starts at one and ends at the other of
these two vertices of odd degree.

Proof We will give a proof only in the case that 5 contains no loops. An easy
modification establishes the result when there are loops.

Suppose the multigraph g has an Euler circuit. Every time this Euler circuit
passes through a vertex, it enters along an edge and leaves along a different edge.
Since every edge is used in an Euler circuit, every edge through a vertex can be
paired as one of two, either coming in or going out. Thus each vertex has even
degree.

Conversely, suppose each vertex has even degree. The Euler circuit algo-
rithm constructs a path starting at V. This path must return to V since when we
enter a different vertex along one edge, another edge must leave the vertex be-
cause its degree is even. Thus a V-V path is constructed. The algorithm proceeds
by starting along unused edges on vertices on this path. Since the multigraph
is connected, there always exists a path from any unused edge to the path al-
ready constructed; so each edge is eventually included, and an Euler circuit is
formed.

If an Euler path exists between distinct vertices U and V, then clearly the
degrees of U and V must be odd, while all the other vertices have even degree.
Conversely, if only U and V have odd degrees in a connected multigraph, we
can add an edge e between U and V. The new multigraph will have all degrees
even, and so an Euler circuit will exist for it by what we have already proved.
Removing e produces an Euler path between U and V. 8

From the last paragraph of the proof of Theorem 3.5, we see that the Euler
circuit algorithm may be used to find an Euler path in a connected multigraph
with exactly two vertices of odd degree by applying it to the multigraph formed
by adding an edge between these two vertices.
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+ Example 3.13

For the multigraph in Figure 3.21 (a), an edge e is added between the two vertices
U and V of odd degree. This results in the multigraph in Figure 3.21 (b) for which
an Euler circuit, say e, a, d, c, b, can be found by using the Euler circuit algorithm.
Deleting the edge e from this circuit gives the Euler path a, d, c, b between U
and V for the multigraph in Figure 3.21(a). +
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FIGURE 3.21

In analyzing the complexity of the Euler circuit algorithm, we will use picking
an edge as an elementary operation. Since each of the e edges is used once, this
algorithm is of order at most e. For a graph with n vertices,

e < n(n-l)= (n2  n)
- 2 2

because C(n, 2) = 2n(n - 1) is the number of pairs of distinct vertices. (See
Theorem 2.12.) Thus, for a graph with n vertices, this algorithm is of order at
most n2 .

k i andh 'e nian V( lr4es .. ;: Pa th: s eX

In Example 3.1 a graph was used to describe a system of nonstop flights. Suppose
that a salesperson needs to visit each of the cities in this graph. In this situation
time and money would be saved by visiting each city exactly once. What is needed
for an efficient scheduling is a path that begins and ends at the same vertex and
uses each vertex once and only once.

In the first part of this section, paths that used each edge once and only
once were considered. Now we want to find a cycle that uses each vertex of a
multigraph exactly once. But since we want to avoid repetition of vertices, loops
and parallel edges will not be of any assistance. Consequently, we may assume
that we are working with a graph. In a graph, a Hamiltonian path is a path that
contains each vertex once and only once, and a Hamiltonian cycle is a cycle that
includes each vertex. These are named after Sir William Rowan Hamilton, who
developed a puzzle where the answer required the construction of this kind of
cycle.
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+ Example 3.14

Suppose the graph in Figure 3.22 describes a system of airline routes where the
vertices are towns and the edges represent airline routes. The vertex U is the home
base for a salesperson who must periodically visit all of the other cities. To be
economical, the salesperson wants a path that starts at U, ends at U, and visits
each of the other vertices exactly once. A brief examination of the graph shows
that the edges a, b, d, g, f, e form a Hamiltonian cycle.

a
U.

e

W

FIGURE 3.22

For the graph in Figure 3.1 there is no Hamiltonian cycle. The only way to
reach New York or St. Louis is from Chicago, and once in New York or St. Louis
the only way to leave is to return to Chicago. +

Relatively easy criteria exist to determine if there is an Euler circuit or an Euler
path. All that has to be done is to check the degree of each vertex. Furthermore,
there is a straightforward algorithm to use in constructing an Euler circuit or
path. Unfortunately, the same situation does not hold for Hamiltonian cycles
and paths. It is a major unsolved problem to determine necessary and sufficient
conditions for a graph to have either of them. In general, it is very difficult to
find a Hamiltonian cycle for a graph. There are, however, some conditions that
guarantee the existence of a Hamiltonian cycle in a graph. We will provide an
example of one of these theorems.

Theorem 3.6 Suppose 5 is a graph with n vertices, where n > 2. If for each pair of nonadjacent
vertices U and V we have

deg(U) + deg(V) > n, (3.1)

then 5 has a Hamiltonian cycle.

Proof. We will give a proof by contradiction. Suppose there exist graphs such
that every pair of nonadjacent vertices satisfies (3.1), but which have no
Hamiltonian cycle. Among all such graphs with n vertices, let 5 be one with
a maximal number of edges. Then if any edge is added to g, the new graph has
a Hamiltonian cycle. Because 5 has no Hamiltonian cycle, 5 is not a complete
graph, and so has nonadjacent vertices U and V. Let g' be the graph formed by
adding the edge {U, V} to 9.
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By assumption g' has a Il amiltonian cycle, and in fact every Hamilton cycle
of g' contains the edge {U, V). Removing this edge from such a cycle leaves a
Hamiltonian path

U -=U 1 , U2 , Un = V

in g.
We claim that for 2 < j n, if the edge {UI, Uj} is in g, then the edge

{Uj-,, Uj is not. For if both these edges were in g, then g would have the
Hamiltonian cycle

U1, Uj, .  Un, Uj-1, Uj-2, 2.. . U1,

contrary to assumption. (See Figure 3.23.)

Ul Un

U 2  --- -----

FIGURE 3.23

Now let d and d' be the respective degrees of U1 and Un in 9. Then there
are d edges from U1 to vertices Uj with 2 < j < n. This gives d vertices Uj-1 ,

< j 1- < n - 1, not adjacent to U. Thus d' < (n -1) -d, and so d + d' <
n -1, contradicting (3.1). It

Example 3.15

It follows from Theorem 3.6 that if, in a graph with n vertices, the degree of each
vertex is at least n2 then the graph must have a Hamiltonian cycle. Thus the graph
in Figure 3.24(a) has a Hamiltonian cycle because there are 6 vertices, each with
degree 3. However, even though the theorem says there is a Hamiltonian cycle, it
does not tell us how to find on-. Fortunately in this case, one can be found by a
little bit of trial and error.

(a) (b) (c)

FIGURE 3.24
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On the other hand, the graph with 5 vertices in Figure 3.24(b) does not have
a Hamiltonian cycle because, no matter where we start, we end up on the left
side needing to go to a vertex on the left side, and there are no edges connecting
the vertices on that side. Note that this graph does not satisfy the conditions of
Theorem 3.6 because, among its 5 vertices, there are nonadjacent vertices of
degree 2, so that (3.1) is not satisfied. On the other hand, the graph in Figure
3.24(c) also has 5 vertices, each with degree 2; yet it contains a Hamiltonian
cycle. Thus, when (3.1) fails for some pair of nonadjacent vertices, it is not
possible to conclude anything in general about the existence or nonexistence of
a Hamiltonian cycle. +

Example 3.16

There are several instances in which it is necessary to list all n-bit strings (a se-
quence of n symbols, each being a zero or one) in such a way that each n-bit
string differs from the preceding string in exactly one position and the last n-bit
string also differs from the first string in exactly one position. This kind of listing
is called a Gray code. For n = 2, the listing 00, 01, 11, 10 is a Gray code, but 00,
01, 10, 11 is not because string 2 and string 3 differ in more than one position, as
do strings 1 and 4.

One way a Gray code is used is in determining the position of a circular
disc after it stops rotating. In this situation a circular disc is divided into 2n
equal sectors, and an n-bit string is assigned to each sector. Figure 3.25 shows an
assignment of the 3-bit strings to a disc divided into 23 = 8 sectors.

FIGURE 3.25

To determine which n-bit string is to be assigned, the circular disc is di-
vided into n circular rings. Thus each sector is subdivided into n parts, each
of which is treated in one of two ways: as, for example, opaque or translucent.
Under the rotating disc are placed n electrical devices, such as photoelectric
cells, that can determine what type of treated material is above it. Figure 3.26(a)
illustrates how this can be done for the assignment in Figure 3.25, where the
electrical device below a shaded region will send a 1, the device below an un-
shaded region will send a 0, and the regions are read from the outside to the
center.
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FIGURE 3.26

(c)

In Figure 3.26(b) the rotating disc has stopped so that the three electri-
cal devices are completely contained within one sector. In this case the elec-
trical devices will send 0 0 1, which indicates the sector in which the disc
stopped. However, if the (lisc stopped as in Figure 3.26(c), there is a possibil-
ity for an incorrect reading. This time the innermost device could send either
0 or 1, as could the other two devices. Because of this, any of the eight pos-
sible 3-bit strings could be s-nt when describing the location of the disc in
Figure 3.26(c). To minimize this type of error, we want two adjacent sectors
to be assigned n-bit strings that differ in exactly one position. Then, no mat-
ter whether 0 or 1 is sent from the parts of the adjacent sectors, there will
be only two possible strings that could be sent to describe the location of the
disc, and these two strings will identify the two adjacent sectors where the disc
stopped.

To find a Gray code, we construct a graph using 2" vertices representing
the 2' possible n-bit strings. Tvo vertices are connected with an edge if the cor-
responding n-bit strings differ in exactly one position. It can be proved that a
graph constructed in this way always has a Hamiltonian cycle, and so this can be
used to find a Gray code for any n. See Figure 3.27 for the case n = 3, where
a Hamiltonian cycle is indicated by the colored edges. Thus when n = 3, one
Gray code is 000, 001, 011, 010, 110, 111, 101, 100. The interested reader should
consult suggested reading I I L] for more details. +

II0l 111
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000 001

FIGURE 3.27
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EXERCISES 3.2

In Exercises 1-4 determine if the multigraph is a graph.

1. a 0 2.

.

3. 4.

In Exercises 5-S list the loops and parallel edges in the multigraph.

5. 6.C

a _

7. a

b:

a

8. b

a m .

d

In Exercises 9-10

(i) List at least 3 different paths from A to D. Give the length of each.
(ii) List the simple paths from A to D. Give the length of each.

(iii) For each path you listed in (i), find a simple path from A to D contained in it.
(iv) List the distinct cycles. (Two cycles are distinct if there is an edge in one that is not in the other.) Give the

length of each.

9. A10. A b

a b ae C

d D

11. Give examples of multigraphs satisfying each of the following conditions.
(a) There are exactly 2 cycles.
(b) There is a cycle of length 1.
(c) There is a cycle of length 2.
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In Exercises 12-17 determine if the multigraph is connect J.

12. d 0

0

14-5W

16.

In Exercises 18-23 determine if the multigraph has an Eul.?r path. If it does, construct one using the Euler circuit
algorithm as in Example 3.13.

19.

I21.

m

18.

20.

22. 23.

13.

15.

17. e

a

b C

di

S t U
V W
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In Exercises 24-29 determine if the multigraph in the indicated exercise has an Euler circuit. If it does, construct
an Euler circuit using the Euler circuit algorithm.

24. Exercise 18 25. Exercise 19 26. Exercise 20

27. Exercise 21 28. Exercise 22 29. Exercise 23

30. The city of Konigsberg, located on the banks of the Pregel River, had seven bridges that connected islands
in the river to the shores as illustrated below. It was the custom of the townspeople to stroll on Sunday
afternoons and, in particular, to cross over the bridges. The people of Kbnigsberg wanted to know if it was
possible to stroll in such a way that it was possible to go over each bridge exactly once and return to the
starting point. Is it? (Hint: Consider carefully what a vertex is to represent.) (This problem was presented to the
famous mathematician, Leonhard Euler, and his solution is often credited with being the beginning of graph
theory.)

31. Could the citizens of Konigsberg find an acceptable route by building a new bridge? If so, how?

32. Could the citizens of Konigsberg find an acceptable route by building two new bridges? If so, how?
33. Could the citizens of Konigsberg find an acceptable route by tearing down a bridge? If so, how?

34. Could the citizens of Konigsberg find an acceptable route by tearing down two bridges? If so, how?

An old childhood game asks children to trace afigure with a pencil without either lifting the pencilfrom the figure
or tracing a line more than once. Determine if this can be done for the figures in Exercises 35-38, assuming that
you must begin and end at the same point.

35. 36.

38.37.
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39. The following graph has 4 vertices of odd degree, and :hus it has no Euler circuit or path. However, it is possible
to find two distinct paths, one from A to B and the other from C to D, that use all the edges and have no edge
in common. Find two such paths. (See Exercise 63.)

40. In 1859 Sir William Rowan Hamilton, a famous Irish rn.athematician, marketed a puzzle which consisted of a
regular dodecahedron made of wood in which each corner represented a famous city. The puzzle was to find
a route that traveled along the edges of the dodecahedron, visited each city exactly once, and returned to the
original starting city. (To make the task somewhat easier, each corner had a nail in it and one was to use string
while tracing out a path.) A representation of this puzzle drawn in the plane is given below. Can you find an
answer to the puzzle?

2

5 4

41. Give examples of connected graphs satisfying each set of conditions.
(a) There is both an Euler circuit and a Hamiltonian cycle.
(b) There is neither an Euler circuit nor a Hamiltonian cycle.
(c) There is an Euler circuit but not a Hamiltonian cycle.
(d) There is a Hamiltonian cycle but not an Euler circt it.
(e) There is a Hamiltonian path but not a Hamiltonian cycle.

42. Construct a Gray code for n = 4.

43. Draw all the nonisomorphic multigraphs having 5 vertices of degrees 1, 1, 2, 3, and 3.

44. Draw all the nonisomorphic multigraphs having 4 vertices of degrees 1, 2, 3, and 4.

45. Draw all the nonisomorphic multigraphs having 6 vertices of degrees 1, 1, 1, 2, 2, and 3.

46. Draw all the nonisomorphic multigraphs having 5 vertices of degrees 1, 2, 2, 2, and 3.

47. Is the property "has a cycle of length n" a graph isomorphism invariant? Justify your answer.

48. Is the property "has all vertices with even degrees" a graph isomorphism invariant? Justify your answer.

49. Is the property "has a Hamiltonian path" a graph isomcrphism invariant? Justify your answer.
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50. Are the following two graphs isomorphic? Justify your answer.

51. Are the following two graphs isomorphic? Justify your answer.

52. A bipartite graph is a graph in which the vertices can be divided into two disjoint nonempty sets A and B such
that no two vertices in A are adjacent and no two vertices in B are adjacent. The complete bipartite graph
ICmn is a bipartite graph in which the sets A and B contain m and n vertices, respectively, and every vertex in
A is adjacent to every vertex in B. The graph IC2 3 is given below. How many edges does Km,, have?

53. For which m and n does kImn have an Euler circuit?

54. For which m and n does KCm,n have a Hamiltonian cycle?

55. Prove that C, has a Hamiltonian cycle when n > 2.

56. In a multigraph with n vertices, what is the maximum length of a simple path?

57. Show that the relation "there is a path from vertex V to vertex U" is an equivalence relation on the set of
vertices of a graph. The vertices in an equivalence class of this relation along with the edges joining them form
a component of the graph.

58. Find the components of the following graphs. (See Exercise 57.)

(a) A (b) * ! (c) J K L M
' ' G H I

N 0 P 0

59. Find the components of the following graphs. (See Exercise 57.)

(a (b) I J (c)

G H V I

1-1

11
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60. A dog show is being judged from pictures of the (logs The judges would like to see pictures of the following
pairs of dogs next to each other for their final decis on: Arfie and Fido, Arfie and Edgar, Arfie and Bowser,
Bowser and Champ, Bowser and Dawg, Bowser and[ Edgar, Champ and Dawg, Dawg and Edgar, Dawg and
Fido, Edgar and Fido, Fido and Goofy, Goofy and Dawvg.
(a) Draw a graph modeling this situation.
(b) Suppose that it is necessary to put pictures of the dogs in a row on the wall so that each desired pair of

pictures appear together exactly once. (There are many copies of each picture.) What graph-theoretic object
is being sought?

(c) Can the pictures be arranged on the wall in this manner? If so, how?

61. At a recent college party there were a number of young men and women present, some of whom had dated
each other recently. This situation can be represented by a graph in which the vertices are the individuals in
attendance with adjacency being defined by having dated recently. If this graph has a Hamiltonian cycle, show
that the number of men is the same as the number of %A omen.

62. Prove Theorem 3.4 by using mathematical induction.

63. Suppose a connected multigraph has the property that exactly four of its vertices have odd degree. Prove that
there are two paths, one between two of these vertices and the other between the remaining two vertices, such
that every edge is in exactly one of these two paths.

64. In a graph, prove that if there is a U-U path of odd ]entIh for some vertex U, then there is a cycle of odd length.

65. Prove that if a connected graph has n vertices, then it must have at least n - I edges.

3.3 + SHORTEST PATHS AND DISTANCE

In this section we will consider ways to find a shortest path between vertices in a
graph. The need to find such paths arises in many different situations.

We want to find a path of minimal length between two vertices S and T, that
is, a path from S to T that has the fewest possible edges. This smallest possible
number of edges in a path fro:m S to T is called the distance from S to T. To find
the distance from S to T, the general approach is to look first at S, then at the
vertices adjacent to S, then at the vertices adjacent to these vertices, and so forth.
By keeping a record of the w ay in which vertices are examined, we are able to
construct a shortest path from S to T. To find the distance from S to every vertex
T for which there is a path froin S to T, we assign labels to some of the vertices
in the graph. If a vertex V is assigned the label 3(U), then the distance from S to
V is 3, and U is the predecessor of V on a shortest path from S to V (that is, a
shortest path from S to V curtains the edge {U, V}).

+ Example 3.17

For the graph in Figure 3.28, let us find the distance from S to each vertex for
which there is a path from S. We begin by assigning S the label 0(-), which
signifies that the distance front S to S is 0 and that there are no edges on this
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path. Next, we determine the vertices with distance 1 from S. These are A and B,
which are both assigned the label I(S), as shown in Figure 3.29.

A E F

S

B D G J

FIGURE 3.28

K L

M

I(S)
A E F

0O C I
S

B D G J

I(S) FIGURE 3.29

Having assigned labels to the vertices with distance I from S, we now deter-
mine the vertices with distance 2 from S. These are the vertices that are unlabeled
and adjacent to a vertex whose distance from S is 1. For example, the unlabeled
vertices C and E are adjacent to A, and so they are assigned the label 2(A).
Likewise, the unlabeled vertex D is adjacent to B and so is given the label 2(B).
The labels now appear as in Figure 3.30.

I (S) 2(A)
A E F

0(C)H IS( z

B D G J
I (S) 2(B)

FIGURE 3.30

K M

I (S) 2(A) 3(E)
A E F

O( 2(A) (C) 4(H)0( -=)HI

B D G J
I(S) 2(B) 3(D) 4(G)

FIGURE 3.31

We continue in this manner until no labeled vertex is adjacent to an unlabeled
vertex. If every vertex in the graph is labeled when this occurs, then the graph is
connected. Otherwise, there is no path from S to any unlabeled vertex. For the
graph in Figure 3.28, vertices A through J and S are eventually labeled as in
Figure 3.31. At this point, we stop because no labeled vertex is adjacent to an
unlabeled vertex. Note that there is no path from S to any of the unlabeled vertices
(K, L, or M).

The label assigned to any labeled vertex gives its distance from S. For ex-
ample, since the label assigned to I is 4(H), the distance from S to I is 4. Also,
the predecessor of I is H, which means that a shortest path from S to I includes
the edge {H, I}. Similarly, the predecessor of H is C, the predecessor of C is A,
and the predecessor of A is S. Thus a shortest path from S to I includes the edges
{H, 11, {C, H}, {A, C}, and {S, A), and so a shortest path from S to I is S, A,
C, H, I. In this graph, another shortest path from S to I exists, namely S, B, C,

K L

M

K 1.

M



138 Chapter 3 Graphs

H, L. Which path is found depends on whether vertex C is labeled because it is
adjacent to A or to B. +

Here is a formal description of this process.

Breadth-First Search Algorithm

This algorithm determines the d. stance and a shortest path in a graph from vertex S
to every other vertex for which there is a path from S. In the algorithm, L denotes the
set of labeled vertices, and the predecessor of vertex A is a vertex in L that is used
in labeling A.

Step ] (label S)
(a) Assign S the label 0, and let S have no predecessor.
(b) Set L = {SI and k = O.

Step 2 (label vertices)
repeat

Step 2.1 (increase the label)
Replace k with k + 1.

Step 2.2 (enlarge labeling)
while L contain': a vertex V with label k - 1 that

is adjacen e i o a vertex W not in L
(a) Assign the label k to W.
(b) A assign V to be the predecessor of W.
(c) Include W in L.

endwhile
until no vertex in L is adjacent to a vertex not in L

Step 3 (construct a shortest path to a vertex)
if a vertex T is in L'

The label on 7' is its distance from S. A shortest path
from S to T is fo med by taking in reverse order T, the
predecessor of T the predecessor of the predecessor of T,
and so forth, unti[ S is reached.

otherwise
There is no patL from S to T.

endif

It can be shown that the label assigned to each vertex by the breadth-first
search algorithm is its distance from S (see Exercise 18).

We will regard labeling a vertex and using an edge to find an adjacent vertex as
the elementary operations in analyzing this algorithm. For a graph with n vertices
and e edges, each vertex is labeled exactly once and each edge is used at most
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once to find an adjacent vertex. Hence there will be at most n + e elementary
operations. But since

n+e <n+C(n,2)=n+- n(n -1),
2

we see that this algorithm is of order at most n2 .

Frequently when graphs are used to describe relationships between objects, a
number is associated with each edge. For example, if a graph is being used to
represent a highway system in the usual way, then a number can be assigned to
each edge indicating the mileage between the two cities. This idea of assigning
numbers to the edges is a very important one in applications.

A weighted graph is a graph in which a number called the weight is assigned
to each edge. The weight of a path is the sum of weights of the edges in the path.
When a weighted graph describes a highway system with vertices representing
cities and weights representing mileage between cities, the weight of a path is
simply the total mileage between the cities representing the start and end of the
path.

Example 3.18

The graph in Figure 3.32 is a weighted graph since each edge has a number
assigned to it. For example, the weight of the edge on A and B is 3 and the weight
oftheedgeonDandFis5.TheweightofthepathA,C,D,Fis4+2+5 = 11,
andtheweightofthepathF,D,B,E,Dis5+1+2+1 =9. +

B 2 E

C F

FIGURE 3.32

In many applications we need to find a path of smallest weight. However,
there need not always be one. This kind of situation can occur if there is a cycle
with negative weight.

+ Example 3.19

For the weighted graph in Figure 3.33, the path A, B, D, E has weight 2, and
the path A, B, D, C, B, D, E has weight -2, which is a smaller weight than
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that of the first path. Note that -As the cycle B, D, C is repeated, the weight of the
path gets smaller and smaller. Thus there is no path of smallest weight between A
and E. +

A *--

D

FIGURE 3.33

Consequently, we shall assume, unless explicitly stated otherwise, that
weighted graphs do not have a cycle with negative weight. This assumption as-
sures the existence of a path of smallest weight between two vertices if there is any
path between them. Furthermore, a path of smallest weight between two vertices
may be assumed to be simple since any cycle of weight 0 could be removed as in
Theorem 3.4. A path of smallest weight is called a shortest path between those
two vertices, and the weight of that path is called the distance between them.

When the weights assigned to edges are positive, as is the case with highway
or airline mileage, there is an a- gorithm that finds the distance and a shortest path
between two vertices S and T In fact, it can be used to find the distance and a
shortest path between S and al Iother vertices at the same time.

The idea of this algorithm is to find the vertex closest to 5, then the second
closest vertex to S, and so forth. In this way we can find the distance between
S and all other vertices. In addition, if we keep a record of the vertices used in
determining distances, it is possible to find a shortest path from S to any other
vertex. This algorithm is due to E. Dijkstra, one of the pioneers in computer
science.

Dijkstra's Algorithm

Let 0be a weighted graph in w hich there is more than one vertex and all weights are
positive. This algorithm determines the distance and a shortest path from vertex S to
every other vertex in g. In the a lp orithm, P denotes the set of vertices with permanent
labels. The predecessor of verleK A is a vertex in P used to label A. The weight of
the edge on vertices U and V! Ls denoted hy W(U. V). and if there is no edge on U
and V, we write W(U, V) =: Do)

Step]I (label 5)
(a) Assign S the label 0, and let S have no predecessor.
(b) Set P-={SI.

Step 2 (label vertices)
Assign to each vertex V1 not in P the (perhaps temporary) label
W (S, V), and let V have the (perhaps temporary) predecessor S.
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Step 3 (enlarge P and revise labels)
repeat

Step 3.1 (make another label permanent)
Include in P a vertex U having the smallest label of the
vertices not in P. (If there is more than one such vertex,
arbitrarily choose any one of them.)

Step 3.2 (revise temporary labels)
For each vertex X not in P that is adjacent to U, replace
the label on X with the smaller of the old label on X and
the sum of the label on U and W(U, X). If the label on X
was changed, let U be the new (perhaps temporary) prede-
cessor of X.

until P contains every vertex of 5
Step 4 (find distances and shortest paths)

The label on a vertex Y is its distance from S. If the label on Y
is xc, then there is no path, and hence no shortest path, from S
to Y. Otherwise, a shortest path from S to Y is formed by using
in reverse order the vertices Y, the predecessor of Y, the predecessor
of the predecessor of Y, and so forth until S is reached.

The proof that this algorithm actually computes the distance between S and
every other vertex can be found in Exercises 21-24.

In analyzing this algorithm for a graph with n vertices, we will consider
assignments involving one vertex as being just one operation. So in step 1 there is
just one operation, and in step 2 there are n - 1 more. Step 3 is done n - 1 times.
Each time at most n - 2 comparisons are done on the labels to find the smallest
one, and then at most one assignment occurs. Also, in revising the labels, we
examine at most n - 1 vertices, each of which requires an addition, a comparison,
and two possible assignments for a total of 4 operations. So for step 3 there are
at most (n- 1)[n - 2 + 1 + 4(n - 1)] = (n -1)(5n - 5) operations. In step 4,
looking up the distance and tracing back at most n - I predecessors to find a
shortest path takes at most n operations. From this, we see that there are at most

+ (n - 1) + (n - l)(5n - 5) + n = Sn2 
- 8n + 5

operations, and so the algorithm is of order at most n2.

A 2 C

FIGURE 3.34

D
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+ Example 3.20

For the weighted graph in Figure 3.34 we want to find a shortest path and the
distance from S to every other vertex.

In step 1 we set P = {S} and assign S the label 0. We indicate this on the
graph by writing the label and predecessor (in parentheses) beside S. We use an
asterisk to denote that S is in P. The graph now looks like that in Figure 3.35.

Next, in step 2, we assign the label W(S, V) and the predecessor S to every
other vertex V. Recall that VWA.S, V) = oc when there is no edge joining S and
V. The graph now looks like that in Figure 3.36.

3(S) oo(S)
A 2 C

5)

FIGURE 3.35 FIGURE 3.36

Now we perform step 3. Tiie vertex not in P with the smallest label is B, and
so we include B in P. The vertices not in P and adjacent to B are A, C, and D;
and we replace the label on each such vertex X by the minimum of the old label
and the sum of the label on E and W(S, B). These numbers are as follows.

VertexX Old Lbel (Label on B) + W(B, X) Minimum

A 3

C x]

D x

I + 1 = 2 2

1+3 =4 4

1 +5=6 6

Since each label is changed, wve also replace the predecessor of each of these
vertices by B, producing Figuie 3.37.

2(B) 4(B)
A 2 C

3 /I3

/ 3
1. 1 E

0(--) \(S)

B* S D

I (S) 6(B)

FIGURE 3.37
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We continue in this way until P contains every vertex in the weighted graph.
The following table shows the labels, predecessors, and vertices added to P
at each stage. No entry in a column indicates no change from the previous
stage.

Labels and Predecessors

Vertex S A B C D E Vertex Added to P

0(-) 3(S) 1 (S) -o(S) 0o(S) -o(S) S

2(B) 4(B) 6(B)

5(C) 7(C)

6(D)

B

A

C

D

E

The final graph is shown in Figure 3.38. In this figure the label on each vertex
gives the distance between it and S, and a path of this length can be found by
backtracking through the predecessors of the vertices. For example, the distance
from S to E is 6, and the path S, B, C, D, E has this length. +

2(B)

S*4

of-)

4(B)

FIGURE 3.38

Theorem 3.7

We conclude this section by considering the number of paths between two vertices,
or, alternatively, how many paths of length m there are between a pair of vertices.
One answer to these questions involves powers of the adjacency matrix of the
graph.

For a graph 5 with vertices labeled VI, V2, .. . , V, and adjacency matrix A, the
number of paths of length m from Vi to Vj is the i, j entry of Am.

Before we show how the theorem is proved for m = 1, 2, and 3, we present
an example to illustrate the theorem.



144 Chapter 3 Graphs

V4 V2

XX A= [I° I []0

(a) (b)

FIGURE 3.39

+ Example 3.21

The graph in Figure 3.39(a) has the adjacency matrix A given in Figure 3.39(b).
To find the number of pa- hs of length 2, we compute the product

0 1 1-1 0 1 1 1 -

A 2= AA 1) l 0 1 1 -12 3 1 1
I IC O 1 1 0 0 - l 2 2

-1 I(' 0- 1 1 0 2 2

That the 3, 4 entry is 2 means there are 2 paths of length 2 between V3 and V4,

namely, V3, VI, V4 and V3, 1/2, V4. Likewise the 1, 3 entry being 1 means there is
only one path of length 2 betwe-en VI and V3, namely, VI, V2, V3. The number of
paths of length 3 is given by the product A2 

. A = A3 computed below.

-3 2 1 1- - 1 1 1- 4 5 5 5~
A3 = A 2A = 2 3 1 1 1 0 1 1 = 5 4 5 5

l1 l 2 2- -1 I 0 0- -5 5 2 2-

Since the 1, 2 entry of A3 is ';, there are 5 paths of length 3 between VI and V2,

namely, VI, V2, VI, V2; VI, V, V4, V2; VI, V2, V3, V2; VI, V3, VI, V2; and VI, V4,

VI, Y2. +

We now give the proof of Theorem 3.7 for m = 1, 2, and 3. Let aij denote
the i, j entry of A. The number of paths of length 1 between Vi and Vj is either
o or 1 depending on whether there is an edge joining these vertices. But this
is the same as aij, which is 1 when there is an edge joining Vi and Vj and 0
otherwise. So the i, j entry of A gives the number of paths of length 1 from Vi
to V1.

For a path of length 2 between Vi and Vj, there needs to be a vertex Vk such
that there is an edge joining 1'i and Vk and an edge joining Vk and Vj. In terms of
the adjacency matrix, this is the same as saying that there is an index k such that
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both aik and akj are 1, or equivalently, aikaki = 1. Thus the number of paths of
length 2 between Vi and Vj is the number of k's where aikakj = 1. This number
is the value of

aila1 j + ai2a2 j + + ainanj

since each term in the sum is 1 or 0. But this sum is also the i, j entry in A2, the
product of A with A, and thus the i, j entry in A2 is the number of paths of length
2 between Vi and Vj.

For a path of length 3 between Vi and Vj, there are vertices Vp and Vk with
edges joining Vi and Vp, joining Vp and Vk, and joining Vk and Vj. But this means
there is a path of length 2 between Vi and Vk and an edge on Vk and Vj. If bik

denotes the i, k entry of A2, then the number of paths Vi, Vp, Vk, Vj of length 3
between Vi and Vj is bikakj. Thus the total number of paths of length 3 between
Vi and V1 is the value of

bilaij + bi2 a2 j + -±+ binan

which is the same as the i, j entry in A2 
. A = A3. Hence the i, j entry in A3 is

the number of paths of length 3 between Vi and Vj.
The proof of the general case of Theorem 3.7 is left as an exercise; the last

paragraph suggests what is to be done for the inductive step.

EXERCISES 3.3

In Exercises 1-4 use the breadth-first search algorithm to determine the distance and a shortest path from S to T
in the graph. Use alphabetical order when there is a choice for a predecessor.

B 2.
A C

S E F T

G Hf I
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3. S A B C 4, S A B C D

In Exercises 5-8 determine the distance from S to all the cther vertices in the weighted graph. Find a shortest path
from S to A.

5. C 2 D 5 A 6. C 5 D A

2 FI - 1 FN 01 H

4 E 1 2 332

S E4 2 S-

3H I B

J K

In Exercises 9-12 find a shortest path from S to T that gses through the vertex A in the weighted graph. Explain
your procedure.

9. S 8 B 4 A 2 C 7 D C'0, 3 B 4 C 2 1

2 6 7 2 E F A G H

6 1 1 1 2

5 1 3 3

J K L M T

- . -

E OF G H~

L
I J K OM

N V Q R

U VI W T
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B I C I D

H I 8 I 5

11. 12.

Use Theorem 3.7 to solve Exercises 13-16.

13. For the graph below, determine the number of paths of lengths 1, 2, 3, and 4 from VI to V2, and from V2 to V3 .

14. For the graph below, determine the number of paths of lengths 1, 2, 3, and 4 from VI to V2, and from VI to V3.

15. For the graph below, determine the number of paths of lengths 1, 2, 3, and 4 from V, to VI, and from V4 to V3 .

V, V2

147



148 Chapter 3 Graphs

16. For the graph below, determine the number of paths of lengths 1, 2, 3, and 4 from VI to V3, and from V2 to V 4.

V4  V5

17. If A is the adjacency matrix of a labeled graph G, what does the i, j element of A + A2 + A3 describe?

18. Prove that the label given to each vertex by the breadth-first search algorithm is its distance from S.

19. Prove Theorem 3.7 using mathematical induction.

20. Two weighted graphs are said to be isomorphic wher there is an isomorphism between the underlying graphs
such that the edges joining corresponding vertices have the same weight. Give an example of two nonisomorphic
weighted graphs where the underlying graphs are isoinorphic.

Exercises 21-24 provide a proof of the validity of'Dijkstra's algorithm. Assume in them that 5 is a weighted graph
with all weights W(U, V) positive, and that S is a vertAx Of 5.

21. Suppose each vertex V of g is assigned a label L(V), which is either a number or no. Assume that P is a set of
vertices of 5 containing S such that (i) if V is in P, then L(V) is the length of a shortest path from S to V and
(ii) if V is not in P, then L(V) is the length of a shortest path from S to V subject to the restriction that V is
the only vertex of the path not in 'P. Let U be a vertex not in P with minimal label among such vertices. Show
that a shortest path from S to U contains no element nct in P except U.

22. Show that under the assumptions of Exercise 21 the length of a shortest path from S to U is L(U).

23. Assume the hypotheses of Exercise 21, and let P' be the set formed by U and the elements of P. Show that P'
satisfies property (i) of Exercise 21, and show that if V is not in P', then the length of a shortest path from S
to V, all of whose vertices except V are in P', is the rrinimum of L(V) and L(U) + W(U, V).

24. Prove that Dijkstra's algorithm gives the length of a shortest path from S to each vertex of 5 by mathematical
induction on the number of elements in P. Let the induction hypothesis be that 'P is a set of vertices containing
S and satisfying properties (i) and (ii) of Exercise 21.

3.4 o COLORING A GRAPH

In Sections 3.1, 3.2, and 3.3 we discussed several situations described by graphs
or multigraphs. Sometimes the situation in which a graph can be used is somewhat
unexpected. Two such examples follow.

+ Example 3.22

Suppose that a chemical manu Fa cturer needs to ship a variety of chemical products
from a refinery to a processing plant. Shipping will be by rail, but according to
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EPA regulations not all of these chemical products can be shipped together in
one railroad car because of the possibility of their mixing together and creating a
violent reaction should an accident occur. How can these products be shipped? In
order to minimize expenses, the manufacturer wants to use the smallest possible
number of railroad cars. What is this number? +

+ Example 3.23

The State Senate has a number of major standing committees with every senator
on one or more of these. Each committee meets every week for an hour. Each
senator must be able to attend each meeting of a committee he or she is on, and so
no two committees can meet at the same time if they have a member in common.
The Clerk of the Senate is responsible for scheduling these meetings. How should
the Clerk schedule these committee meetings so that the senators can attend their
major committee meetings and yet keep the number of meeting times as small as
possible? +

In these examples there are objects (chemical products or committees) and
relationships (cannot travel in the same railroad car or cannot meet at the same
time) existing among them. Since this is the basic idea of a graph, it seems natural
to describe each of these examples by a graph. In the first example the vertices
are the chemical products, and an edge is drawn between two vertices whenever
they represent chemical products that cannot be in the same railroad car. In the
second example the vertices are the committees, and an edge is drawn between
two vertices whenever some senator is on both of these committees.

To illustrate this idea further, let us assume in Example 3.22 that there are six
chemical products Pi, P2 , P3 , P4 , P5 , and P6 and that PI cannot ride in the same
railroad car as P2 , P3 , or P4; P2 also cannot ride with P3 or P5; P3 also cannot
be with P4; and P5 cannot be with P6. The graph that is described is found in
Figure 3.40, where the vertices represent the six products and the edges join pairs
of products that cannot ride together.

The question still remains: What is the smallest number of railroad cars
needed? In the graph in Figure 3.40, products represented by adjacent vertices
are to be in different cars. For example, product PI could be in car 1. Then because
PI and P2 are adjacent, a different car is needed for P2, say car 2. Since P3 is
adjacent to both PI and P2 , another car is needed for P3, say car 3. But a new
car is not needed for P4 ; car 2 can be used again. Likewise, for P5 a new car is
not needed, as either car 1 or car 3 can be used. Let car 1 be chosen. Then for
P6, car 2 or car 3 can be picked, say car 2. The graph in Figure 3.41 shows how
the vertices are labeled so that incompatible chemical products travel in different
cars. Furthermore, because PI, P2 , and P3 are adjacent to each other, at least three
different railroad cars must be used; so three is the smallest number of railroad
cars that can be used.
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FIGURE 3.40 FIGURE 3.41

We have assigned labels to the vertices of a graph so that adjacent vertices
have different labels. This idea occurs frequently in graph theory, and for historical
reasons the labels are called colors. To color a graph means to assign a color
to each vertex so that adjacent vertices have different colors. Asking what is the
smallest number of railroad cars needed in Example 3.22 is the same as asking
what is the smallest number of colors needed to color the graph in Figure 3.40,
with a color corresponding to a railroad car.

When a graph can be colored with n colors but not with a smaller number of
colors, it is said to have chromatic number n. Thus the graph in Figure 3.40 has
chromatic number 3.

+ Example 3.24

The graph in Figure 3.42(a) has chromatic number 2 since the vertices VI, V3,
and V5 can be colored with one color (say red) and the other three vertices with a
second color (blue), as shown in Figure 3.42(b). In general, if a cycle has an even
number of vertices, then it can be colored using 2 colors. +

V1 VI red

blue

red

V2 blue

V3 red

V4  V4 blue

(a) (b)

FIGURE 3.42
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P2

P5

P4
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Example 3.25

When a cycle has an odd number of vertices, such as that in Figure 3.43(a), then
3 colors must be used. If we try to alternate colors, as was done in Figure 3.42,
with the color red assigned to vertices VI and V3 and the color blue assigned to
vertices V2 and V4, then it is not possible to use either red or blue for V5. Using
3 colors to color a cycle with an odd number of vertices is illustrated in Figure
3.43(b). +

V,

V5

V4

green

blue

(a)

V2 blue

V3 red

(b)

FIGURE 3.43

+ Example 3.26

The complete graph IC, with n vertices can be colored using n colors. But since
every vertex is adjacent to every other vertex, a smaller number of colors will not
work. Thus IC, has chromatic number n. +

+ Example 3.27

The graph in Figure 3.44(a) can be colored with 2 colors as indicated in Figure
3.44(b). +

V3

V4 4

V6 4

(a)

red

red V4

Vi red

red

blue

(b)

FIGURE 3.44

H..,> U
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* Example 3.28

The graph in Figure 3.45 has chromatic number 2 since the vertices on the left
can be colored with one color and the vertices on the right can be colored with a
second. *

v

V4

V,

V5

V

FIGURE 3.45

In general, it is very difficult to find the smallest number of colors needed
to color a graph. One method is to list all the different ways to assign colors to
the vertices of a graph, then gc through these ways one at a time to see which of
them is a coloring, and then finally determine which colorings have the smallest
number of colors. Unfortunate ly, even if the graph has a relatively small number
of vertices, this becomes an extraordinarily time-consuming process, measured
in centuries rather than minutes even with the use of a supercomputer.

Nevertheless, there are a number of results that describe the chromatic number
of a graph. For instance, as seen in Example 3.25, a cycle with an odd length has
chromatic number 3. Thus any graph containing a cycle of this type needs at least
3 colors. The graph in Figure 3 41 is an example of this. When there are no cycles
of odd length in a graph, there 2 colors are enough.

Theorem 3.8 A graph G can be colored with 2 colors if and only if it contains no cycle of odd
length.

Proof As noted above, when 5 has a cycle of odd length, then coloring 5
requires at least 3 colors. Hence if G can be colored with two colors, then it
contains no cycle of odd length.

Conversely, suppose G has no cycle of odd length. We will show that G can be
colored with 2 colors. Since any coloring of each component of G with two colors
provides such a coloring of 5, we can assume G is connected. (See Exercise 57
of Section 3.2 for the definition of a component.)

Choose an arbitrary vertex S of G, and apply the breadth-first search algorithm
to 5, starting with S. Since G i, connected, every vertex gets labeled. Color each
vertex red or blue according as its label is even or odd.

We must show that no adjacent vertices, say U and V, have the same color.
By the way the breadth-first search algorithm works, labels on adjacent vertices
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cannot differ by more than 1. Since the labels on U and V are both even or both
odd, they must be the same, say m. Use the predecessors to trace shortest paths
from U and V back to S. Let these paths first meet at the vertex W, with label k.
(See Figure 3.46. We could have W = S and k = 0.) Then the portions of these
paths from W to U and W to V, along with the edge {U, V }, form a cycle of length
2(m - k) + 1, which is odd, contrary to our assumption that 5 contains no odd
cycle. W

U

S
0

FIGURE 3.46

+ Example 3.29

The breadth-first search algorithm has been applied to the graph in Figure 3.47,
starting with vertex V in the left component and X in the right. The resulting labels
are shown. The coloring with 2 colors in Figure 3.48 is produced by coloring
vertices red or blue according as their labels are even or odd. +

(1) (°) (1)
F &_ 0 A

(1) (2)

BI I C

(2) (2) (3)
E4 D) G

FIGURE 3.47

red
(0)
X41

(I)
Ye

(2)
Z4

Ix

y

z

red

blue

red

FIGURE 3.48

Theorem 3.9

The following result gives an upper bound on the number of colors needed
to color a graph.

The chromatic number of a graph 9 cannot exceed one more than the maximum
of the degrees of the vertices of 9.
Proof Let k be the maximum of the degrees of the vertices of g. We will show
that 9 can be colored using k + 1 colors Co, CI, . . . , Ck. First, select a vertex V
and assign the color Co to it. Next, pick some other vertex W. Since there are
at most k vertices adjacent to W and there are at least k + 1 colors available to
choose from, there is at least 1 color (possible many) that has not been used on a
vertex adjacent to W. Choose such a color. This process can be continued until
all the vertices of 9 are colored. X



4 Example 3.30

The procedure described in Theorem 3.9 may use more colors than are really nec-
essary. The graph in Figure 3.49 has a vertex of degree 4, which is the maximum
degree, and so by Theorem 3 9 can be colored using 1 + 4 = 5 colors. How-
ever, by using the procedure described in Theorem 3.8, it can be colored using
2 colors. +

FIGURE 3.49

One of the most famous problems of the 19th century concerned the number
of colors required to color a map. It is understood that, when coloring a map,
countries with a common boundary other than a point are to be colored with
different colors. The map is assumed to be drawn on a flat surface or globe, as
opposed to a more complicated surface such as a doughnut. The usual approach
to this problem is to let each country be a vertex of a graph and to join vertices
representing countries with a. common boundary other than a point. Then coloring
the map is the same as coloring the vertices of this graph so that no two adjacent
vertices have the same color It was conjectured in 1852 that four colors would be
enough to color any such map, but it was not until 1976 that Kenneth Appel and
Wolfgang Haken, two mathe naticians at the University of Illinois, verified this
conjecture. Their verification required an exhaustive analysis of more than 1900
cases that took more than 1200 hours on a high-speed computer.

Example 3.31

In Figure 3.50(a) is a portion of a map of the United States. The associated graph
obtained as described above is shown in Figure 3.50(b). This graph can be colored
with 3 colors as illustrated in Figure 3.50(c). +

- I 'NY WY
Vy I

UT
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FIGURE 3.50
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EXERCISES 3.4

In Exercises 1-8 find the chromatic number of the graph.

1. 2.

3. 4.

6.5.

7. 8.

9. What does it mean for a graph to have chromatic number 1?

10. What is the chromatic number of IC2,3? of IC7,4? of PCm,n? (See Exercise 52 of Section 3.2 for a definition
of Kmn.)

11. Give examples of graphs where:
(a) The chromatic number is one more than the maximum of the degrees of the vertices.
(b) The chromatic number is not one more than the maximum of the degrees of the vertices.

12. It might be supposed that if a graph has a large number of vertices and each vertex has a large degree, then the
chromatic number would have to be large. Show that this conclusion is incorrect by constructing a graph with
at least 12 vertices, each of degree at least 3, that has chromatic number 2.

13. Using the process presented in the proof of Theorem 3.8, write a formal algorithm for coloring a graph with
no cycles of odd length.

14. Show that when the algorithm in Exercise 13 is applied to a graph with n vertices and e edges, the graph can
be colored using at most n + e elementary operations. (In analyzing the algorithm, consider the elementary
operations to be coloring a vertex and using an edge.)
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In Exercises 15-18 color the graph using the algorithm in Exercise 13.

15. i i6.

17. _ 18. A I

19. What is the chromatic number of the graph in Exercise 48 of Section 3. 1 ?

20. Suppose 5 is a graph with 3 vertices. How many ways are there to assign 3 colors to the vertices (this need not
be a coloring of the graph)? What if the graph has 4 vertices and 4 colors are available?

21. Generalize Exercise 20 to the case of a graph with n vertices and n colors.

22. Suppose G is a graph with n vertices and there are n available colors to assign to the vertices. If one operation
consists of assigning colors to the vertices and checking if a coloring has been made, how long would it take
a computer that can perform one billion operations per second to check all possible color assignments for a
graph with 20 vertices? Would this be a good way to find a coloring using the least number of colors?

23. Color the following map using only 3 colors.

24. Color the following map using only 3 colors.

K

4 '

---
-

D--

i

i

I 0---A

0 4

1 4

4

4

4

- I I I I -

" " I_-I



3.4 Coloring a Graph 157

25. Color the following map using only 4 colors.

26. Color the following map using only 4 colors.

27. Solve Example 3.23 if there are 5 major committees: finance, budget, education, labor, and agriculture. The Clerk
of the Senate needs only to consider State Senators Brown, Chen, Donskvy, Geraldo, Smith, and Wang. The
finance committee has members Chen, Smith, and Wang; the budget committee has members Chen, Donskvy,
and Wang; the education committee has members Brown, Chen, Geraldo, and Smith; the labor committee has
only Geraldo; and the agriculture committee has Donskvy and Geraldo.

28. By representing the figure below by a graph, determine the minimum number of colors needed to color each
circle so that touching circles have different colors.

29. The zookeeper of a major zoo wants to redo the zoo in such a way that the animals live together in their
natural habitat. Unfortunately, it is not possible to put all the animals together in one location because some
are predators of others. The dots in the chart below show which are predators or prey of others. What is the
minimum number of locations the zookeeper needs?
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a
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d
e

f

g
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i
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0
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e
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0

f

0

g

0 0.

0

6

i

0

0

0

30. Is "can be colored with 3 colors" a graph isomorphismn invariant?
31. Show that "has chromatic number 3" is a graph isomorphism invariant.
32. There are 7 tour bus companies in the Los Angeles area, each visiting at most three different locations from

among Hollywood, Beverly Hills, Disneyland, and Universal Studios during a day. The same location cannot
be visited by more than one tour company on the saire day. The first tour company visits only Hollywood,
the second only Hollywood and Disneyland, the third only Universal Studios, the fourth only Disneyland and
Universal Studios, the fifth Hollywood and Beverly Hills, the sixth Beverly Hills and Universal Studios, and the
seventh Disneyland and Beverly Hills. Can these tours be scheduled only on Monday, Wednesday, and Friday?

33. Prove that if a graph with n vertices has chromatic number n, then the graph has in(n -1) edges.
34. Show that it is possible to assign one of the colors red and blue to each edge of K5 in such a way that no cycle

of length 3 has all its edges the same color.

35. Show that the statement of Exercise 34 is incorrect if K5 is replaced by IC6.
36. Prove Theorem 3.9 by mathematical induction on the number of vertices.
37. For a graph 5, suppose that whenever a vertex V and the edges incident with V are removed from 5, the

resulting graph has a smaller chromatic number. Prov- that if the chromatic number of 5 is k, then the degree
of each vertex of g is at least k - 1.

3.5 o DIRECTED GRAPHS AND MULTIGRAPHS

In previous applications of graphs, an edge was used to represent a two-way or
symmetric relationship between two vertices. However, there are situations where
relationships hold in only one direction. In these cases the use of a line segment
is not descriptive enough, and a directed line segment is needed.

+ Example 3.32

In many urban downtown areas the city streets are one-way. In such a case, it
is necessary to use a directed line segment to indicate the legal flow of traffic.
In Figure 3.51 major downtown locations are represented by dots, and two dots
are connected by an arrow when it is possible to go from the first location to the
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second by means of a one-way street. For example, the arrow from BANK to
HOTEL denotes that there is a one-way street from BANK to HOTEL. +

POST CITY
BANK OFFICE HALL

HOTEL DEPT.
STORE

FIGURE 3.51

i Example 3.33

Although in a communication network there are routes where information can
flow either way, there are also some where the flow is in just one direction. Within
a microcomputer system, data usually can travel in either direction between CPU
and the Memory, but only from the Input to the Memory and from the Memory
to the Output. This type of situation can be represented by the diagram in Figure
3.52, where the arrows indicate how the data can flow. +

FIGURE 3.52

A directed graph is a finite nonempty set V and a set £ of ordered pairs of
distinct elements of V. The elements of V are called vertices and the elements of
£ are called directed edges.

Figure 3.52 depicts a directed graph with vertices C, I, M, and 0 and directed
edges (C, M), (M, C), (I, M), and (M, 0). As was true for graphs, a directed
graph can be described either by the use of sets or by the use of a diagram, where
arrows between the vertices in V describe which ordered pairs of vertices are
being included.

If there is a directed edge e = (A, B), it is said that e is a directed edge from
A to B. In Figure 3.52 there is a directed edge from M to 0 but no directed edge
from 0 to M. Similarly, there is a directed edge from M to C and one from C to M.

Just as for graphs, two directed edges crossing in a diagram do not cre-
ate a new vertex. Likewise, in this book the set of vertices is to be a finite set
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(although not all authors require this). Finally, a directed edge cannot go from a
vertex to itself, nor can there be two or more directed edges from one vertex to
another.

In a directed graph, the nu-nber of directed edges from vertex A is called the
outdegree of A and is denoted as outdeg(A). Similarly, the number of directed
edges to vertex A is called the indegree of A and is denoted by indeg(A). In Figure
3.52weseethatoutdeg(M) = 2,indeg(C) = l,andoutdeg(O) = O.Theorem3.1
states that in a graph the sum of the degrees is equal to twice the number of edges.
Because each directed edge leaves one vertex and enters a second vertex, there is
the following similar theorem for directed graphs.

Theorem 3.10 In a directed graph the following three numbers are equal: the sum of the indegrees
of the vertices, the sum of the cutdegrees of the vertices, and the number of directed
edges.

Represent'itf};7C A'fl) td est;,z'g5-

As for graphs, a directed graph can be represented by a matrix. Suppose we have
a directed graph D with n vertices labeled Vl, V2, . .. , V,. Such a directed graph
is called labeled. Form an n x n matrix in which the i, j entry is 1 if there is a
directed edge from the vertex V, to the vertex Vj and 0 if there is not. This matrix
is called the adjacency matrix of D (with respect to the labeling) and is denoted
by A(D).

Example 3.34

Figure 3.53 contains a directed graph and its adjacency matrix. The 1, 4 entry is
O because there is no directed edge from VI to V4, but the 4, 1 entry is 1 because
there is a directed edge from V4 to VI. Row 3 contains all zeros because there
are no directed edges from the vertex V3. Since there are no directed edges to the
vertex V4, column 4 also contains all zeros.

V1  V2Vl^ ='V 0 1 0 ok

00 0

V4  -- V3

FIGURE 3.53

The last two observations in the previous example suggest the following
version of Theorem 3.2 for directed graphs. The proof follows from the definitions.
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Theorem 3.11 The sum of the entries in row i of the adjacency matrix of a directed graph equals
the outdegree of the vertex Vi, and the sum of the entries in column j equals the
indegree of the vertex Vi.

Directed graphs can also be represented by adjacency lists. To form an
adjacency list, we begin by labeling the vertices of the directed graph. Then we
list the vertices in a column, and after each vertex we list the vertices to which
there is a directed edge from the given vertex.

+ Example 3.35

For the directed graph in Figure 3.53, the adjacency list is given below. Since V2
is the only vertex to which there is a directed edge from VI, V2 is the only vertex
listed after VI. Similarly, because the only directed edges from V4 are to VI and
V3, these are the two vertices listed after V4.

VI: V2

V2: VI, V3

V3: (none)
V4: VI,1/3 Y

In Sections 3.2 and 3.3 we introduced the concepts of multigraph, weighted graph,
path, simple path, and cycle. These concepts have analogs using directed edges.
We will leave the concept of directed weighted graphs to the exercises. To illustrate
the other definitions, we will consider the diagram in Figure 3.54.

X Y

FIGURE 3.54

The diagram in Figure 3.54 describes a directed multigraph. Here there is a
directed loop h at the vertex W, and there are parallel directed edges i and j from
V to X. Because a directed graph is also a special kind of directed multigraph,
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definitions developed for a directed multigraph also apply to a directed graph.
Note that directed edges such as f and m are not parallel directed edges, whereas
i and j are parallel directed edges.

An alternating sequence of vertices and directed edges

I' 1, 01, V2, e2, .. ., Vn, en, Vnt1

is called adirected path from V, to Vn+i if ei = (V,, Vi+i) foreachi = 1, 2,... n.
The length of this directed path is n, the number of directed edges. Thus R, a,
S, b, T, e, W is a directed path from R to W of length 3, which can also be
written R, S, T, W or a, b, e. The directed path V, i X, k, U, m, V, j, X
cannot be described by just using the vertices because there are two directed
edges from V to X. However, this directed path can be described by just listing
the directed edges i, k, m, j. Also T, b, S. d, V is not a directed path since the
directed edge b is not from T to S but from S to T. Likewise, there is no directed
path of positive length starting from Y. As before, a vertex is a directed path of
length 0.

The directed path a, d, , s a simple directed path from R to W, that is, a
directed path with no vertex repeated. The directed path a, d, i, k, m, g is not
a simple directed path because the vertex V is repeated. It is easily seen that a
directed path contains a simple directed path. This proof follows very closely the
proof of Theorem 3.4 for graphs and is omitted here.

Theorem 3.12 Every U-V directed path con ains a U-V simple directed path.

The directed path a, d, f, c in Figure 3.54 is a directed cycle because it is a
directed path of positive length from R to R in which no other vertex is visited
twice. But b, e, g, d is not a directed cycle because the directed edges g and d
go in the wrong direction. Both h and f, m are considered to be directed cycles.
The directed path k, m, f, c, a, d, j is not a directed cycle because the vertices
U and V appear twice.

A directed multigraph D is called strongly connected if for every pair A and
B of vertices in D there is a directed path from A to B. Thus, in a strongly con-
nected directed multigraph, we can go from any vertex to any other by following
some route along the directed edges.

+ Example 3.36

The directed multigraph in Figure 3.54 is not strongly connected since there is no
directed path from Y to any otier vertex. The directed graph in Figure 3.55(a) is
strongly connected, however. S ince a directed path can be found from any vertex
to any other. On the other hand, the directed graph in Figure 3.55(b) is not strongly
connected because there is no directed path from A to C. +
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A B A B

C D C D

(a) (b)

FIGURE 3.55

+ Example 3.37

Suppose the city council of a middle-sized city is concerned about traffic con-
gestion in the downtown area. It instructs the city traffic engineer to turn each
two-way street into a one-way street in the downtown area in such a way that
there still will be a route from each downtown location to any other.

If a graph is used to represent the current downtown street system (where
intersections are vertices and streets are edges), then the city traffic engineer is
to assign a direction to each edge, transforming the graph into a directed graph.
Since there is to be a route from any place to any other, we want this new di-
rected graph to be strongly connected. For example, if the graph in Figure 3.56
represents the downtown streets, then assigning directions as in Figure 3.55(a)
produces a directed graph which is strongly connected. Thus this assignment of
directions satisfies the city council's requirement. On the other hand, the assign-
ment of directions as in Figure 3.55(b) yields a directed graph that is not strongly
connected, and so it does not satisfy the city council's requirement. +

FIGURE 3.56

An important question: When can directions be assigned to the edges of a
graph to yield a directed graph that is strongly connected? In Figure 3.57 there
is an example of a graph that cannot be transformed into a strongly connected
directed graph. The source of difficulty is the edge joining A and B. For if we
direct this edge from A to B, then we cannot find a route from a place on the right
side to any place on the left side. A similar problem occurs if we direct this edge
from B to A. This edge joining A and B possesses an interesting property: if it is
removed from the graph, the graph is no longer connected.
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iA
FIGURE 3.57

It can be proved that the absence of an edge whose removal disconnects a
connected graph is equivalent to the existence of an assignment of directions to
the edges to create a strongly connected directed graph. A proof can be found in
suggested reading [9]. Thus, for the city traffic engineer in Example 3.37 to decide
if there is an acceptable pattern of one-way streets, it suffices for the engineer to
find if there is an edge whose removal will disconnect the graph.

The material in Section 3.2 can be modified in a natural way to work for
directed graphs. To illustrate ihis statement, we will consider directed Euler paths
and circuits and directed I-lar]i Itonian paths and cycles.

DirctP::ed I rder O.irct~isks ond P:athigs

The ideas of a directed Euler7 path and a directed Euler circuit in a directed
multigraph are similar to the corresponding ones in a multigraph. A directed path
in a directed multigraph D that includes exactly once all the directed edges of D
and has different initial and ter-minal vertices is called a directed Euler path. A
directed path that includes exactly once all the directed edges of D and has the
same first and last vertices is called a directed Euler circuit.

Recall that, in the proof of Theorem 3.5, constructing an Euler circuit required
that each time we entered a vertex along an edge, there was another edge for us to
leave on. This translated into the requirement that each vertex be of even degree.
In constructing a directed Eu] er circuit, we require similarly that for each directed
edge going into a vertex, there must be another directed edge leaving that vertex.
This implies that the indegrez of each vertex is the same as the outdegree. These
observations are summarized in the following theorem.

Theorem 3.13 Suppose the directed multigiaph D has the property that whenever the directions
are ignored on the directed edges, the resulting graph is connected. Then D has
a directed Euler circuit if and only if, for each vertex of D, the indegree is the
same as the outdegree. Furthermore, E has a directed Euler path if and only if
every vertex of D has its inclegree equal to its outdegree except for two distinct
vertices B and C, where the outdegree of B exceeds its indegree by 1 and where
the indegree of C exceeds it; Dutdegree by 1. When this is the case, the directed
Euler path begins at B and enAs at C.
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The algorithm for constructing an Euler circuit in a graph may be modified in a
natural way (by choosing an unused directed edge leaving the vertex) to construct
directed Euler circuits and paths in directed graphs that satisfy the hypotheses of
Theorem 3.13.

Example 3.38

In telecommunications, there is an interesting application of directed Euler circuits
that is due to Liu. (See [7] in the suggested readings.) Suppose there is a rotating
drum with 8 different sectors, where each sector contains either a 0 or a 1. There
are three detectors which are placed so that they can read the contents of three
adjacent sectors. (See Figure 3.58.)

a

FIGURE 3.58

The task is to assign Is and Os to the sectors so that a reading of the detec-
tors describes the exact position of the rotating drum. Suppose the sectors are
assigned Is and Os an in Figure 3.59. Then a reading of the detectors gives 010.
If the drum is moved 1 sector clockwise, the reading becomes 101. However, if
the drum is moved still another sector clockwise, the reading becomes 010 again.
Thus two different positions of the rotating drum give the same reading. We want
an assignment of I s and Os where this will not happen; that is, we want to arrange
eight is and Os in a circle so that every sequence of three consecutive entries is
different.

FIGURE 3.59

We will create a directed multigraph with 00, 01, 11, and 10 as vertices. From
each vertex, construct two directed edges in the following manner. For the vertex
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ab, consider the two vertices o0 and bl (obtained from ab by dropping a and
appending 0 and 1 at the end). Construct a directed edge from vertex ab to the
vertex be (where c is either 0 or 1), and assign this directed edge the label abc.
For example, there is a directed edge from 01 to 10 with label 010 and from 01 to
11 with label 011. This directed multigraph is shown in Figure 3.60. Note that the
labels assigned to the directed edges are all different and would be an acceptable
set of readings for the detector,;.

000

10

111

FIGURE 3.60

This is a directed multigraph such that when the directions on the directed
edges are ignored, the resulting graph is connected. Furthermore, the indegree
equals the outdegree of each vertex, and so a directed Euler circuit exists. Using the
modification of the Euler circuit algorithm indicated in the paragraph preceding
this example, we start with vertex 01 and construct the directed Euler circuit
011, 111, 110, 101, 010, 1)00, 000, 001. For the directed edges in this directed
Euler circuit, the last 2 digits in each label are the first 2 digits in the label of the
next directed edge. Thus, if we select the first digit of the label of each directed
edge in the directed Euler circa uit, we get a sequence of 8 numbers such that every
sequence of 3 consecutive entries is different (because the labels are all different).
For this example this process gives the sequence 01110100. When this sequence
is placed in the sectors of the rotating drum, the 8 positions of the drum will give
8 different readings. +

A directed Hamiltonian cycle (path) is a directed cycle (path) that includes
each vertex exactly once. Because directed loops and parallel directed edges are
not needed for a directed Haamiltonian cycle or path, we will assume that we are
working with directed graphs rather than directed multigraphs. As with graphs, it
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is very difficult to decide if there is a directed Hamiltonian cycle and if so, to find
one.

These concepts arise in connection with round-robin athletic competitions.
In a round-robin contest, each team plays every other team exactly once, and a
tie between two teams is not permitted. Such a competition can be described by
a directed graph in which the teams are represented by vertices, and there is a
directed edge from one vertex to another if the first team beats the second team.
A directed graph of this kind is called a tournament directed graph or, more
simply, a tournament. An alternate way of thinking of a tournament is that it
is the result of taking the complete graph IC, and assigning a direction to each
edge.

Example 3.39

Suppose there are three teams A, B, and C, where team A beat teams B and C,
and team B beat team C. This is described in Figure 3.61(a). If, instead, team C
beat team A, the tournament would be as in Figure 3.6 1(b). +

A A

a b a b

B c C B C C

(a) (b)

FIGURE 3.61

It may be desirable to find a ranking of the teams such that the first team
beat the second team, the second team beat the third team, and so forth. Finding
a ranking of the teams is the same as finding a directed Hamiltonian path for the
tournament. It can be shown that every tournament has a directed Hamiltonian
path. In Figure 3.61(a), the directed path a, c is Hamiltonian and thus provides
a ranking of the teams. However, an examination of Figure 3.61(b) shows that
there can be more than one directed Hamiltonian path. In fact, there are three:
a, c; b, a; and c, b. This means that three separate rankings can be found. But also
note that in Figure 3.61(b) there is a directed cycle, whereas in Figure 3.61(a)
there is not. In general, if a tournament has no directed cycles, then there is
only one directed Hamiltonian path, which provides a unique ranking of the
teams.

Further illustration of these points is found in Figure 3.62. For the tournament
in Figure 3.62(a), there are no directed cycles and only one directed Hamiltonian
path, namely, a, f, d, which gives the ranking A, B, C, D of the teams. In Figure
3.62(b) the tournament has a directed cycle, for example, a, f, d, e, and so there
are several directed Hamiltonian paths, such as a, f, d and e, a, f.
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A a -

b >< C

C, d D

(a) (b)

FIGURE 3.62

In Chapter 2 the concept of a relation on a set was introduced. When the set
is finite, it is possible to depict the relation by a directed multigraph, which we
will call the directed multigraph of the relation. In this multigraph the vertices
correspond to the elements of the set, and there is a directed edge from x to y
whenever x is related to y.

Consider, for instance, the round-robin competition between the three teams
A, B, and C described in Example 3.39. This situation can be described as a
relation R on set S = {A, B, (71 where X R Y means that team X beat team Y. In
this case the directed multigraph of relation R is precisely the tournament shown
in Figure 3.61(a).

Another example of the directed multigraph of a relation follows.

Example 3.40

Let R be the relation on set

S = {2, 3, 4, 5, 6)
defined by x R y whenever x divides y. Then R can be expressed as the following
subset of S x S.

R = {(2, 2), (2, 4), 2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)}

Thus the directed multigraph of this relation has 5 vertices and 8 directed edges.
It is shown in Figure 3.63. +

Cop/

FIGURE 3.63

Other material in Sections 3.1-3.3 can also be modified in an appropriate
way for directed graphs. Some examples are found in the following exercises.

I I
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EXERCISES 3.5

In Exercises 1-4 list the vertices and directed edges for the directed graph.

1. A

3. A B

04 D-,

C D

B 2. A4  B
.0

4. A B C

D E
D E

In Exercises 5-S draw a diagram representing the directed graph with the set of vertices V and the set £ of directed
edges.

5. V = {X, Y, Z, W, U ,8 = {(X, Y), (Z, U), (Y, X), (U, Z), (W, X), (Z, X)}

6. V = {A, B, C, DI, 6' =0
7. V= {A,B,C),6= {(A,B),(B,C),(C,A),(B,A),(C,B))

8. V={A,B,C,D),8=t(A,D),(D,B),(D,A)}

In Exercises 9-12 construct the labeled directed graph for the adjacency matrix.

0 1 0 1

9. 1 0 1 0
0 0 0

Loilo]

0
10. 0 1

-O I 0 1 I-

I 0 0 0 0

12. 1 0 0 1 1
1 1 0 0 0
-1 0 0 1 0-

In Exercises 13-16 list for the directed graph the other vertices on the directed edges to A, the other vertices on
the directed edges from A, the indegree of A, and the outdegree of A.

13. A G dB 14. B -C

An

011. I
I

11I
I 1
0 1
0 0

w - - .
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15. 16.

C

D E

E A

For the directed graphs in Exercises 17-18:

(i) List the simple directed paths from A to B. Give the length of each.
(ii) List the distinct directed cycles. (Two directed cycles are distinct if there is a directed edge in one but not the

other.) Give the length of each.

17. A B 18. AyB3

C E

In Exercises 19-22 find the adjacency matrix and adjacency list for the directed graph in the indicated exercises.
Order the vertices according to alphabetical order.

19. Exercise 13 20. Exercise 14 21. Exercise 15 22. Exercise 16

23. Let V = { I, 2, . 1} and £ = {(x, y): x, y are in V, v : y, and x divides y}. Draw the directed graph with
vertices V and directed edges £.

24. What does it mean if a row in an adjacency matrix for a directed graph contains only zeros? What if a column
contains only zeros?

25. Draw all nonisomorphic directed graphs with 2 veriic.'.

26. Let S = {1, 2, 4, 8) and R = {(1, 8), (2, 4), (8, 2), (4, 1), (2, 2), (8, 1)) be the relation defined on S. Draw the
directed multigraph of this relation.

27. Let S = {3, 5, 8, 10, 15, 24} and R be the relation defined on S by x R y whenever x divides y. Draw the
directed multigraph of this relation.

28. Let S be the collection of all subsets of 1I, 2, 3} and R lre the relation defined on S by A R B whenever A is a
subset of B or B is a subset of A. Draw the directed multigraph of this relation.

29. Describe the directed multigraph of a relation that is reflexive.

30. Describe the directed multigraph of a relation that is symmetric.

31. Describe the directed multigraph of a relation that is antisymmetric.

32. Construct the directed graph where the vertices are yoi, your parents, and your grandparents using the rela-
tionship "is a child of."

33. Construct the directed graph using "is a parent of" in place of "is a child of" in Exercise 32. How do the two
directed graphs in Exercises 32 and 33 compare?
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34. Susan has a fondness for chocolate desserts, in particular, pudding, pie, ice cream, eclairs, and cookies.
Her preference is for pie over ice cream and cookies, eclairs over pie and cookies, cookies over pudding
and ice cream, and pudding over eclairs, with no other preferences. Draw a directed graph to represent this
situation.

In Exercises 35-36 determine if the directed graphs in the indicated exercises are strongly connected.

35. Exercise 17 36. Exercise 18

37. Give an example of a directed graph with 4 vertices where every directed path of positive length has length 1.

38. In a directed multigraph with n vertices what is the maximum length of a simple directed path?

In Exercises 39-42 determine if a direction can be assigned to each edge of the graph resulting in a directed graph
that is strongly connected. If so, give such an assignment.

39. 40. 4

41. 42.

43. If a directed graph has a directed Hamiltonian cycle, why is it strongly connected?

In Exercises 44-49 determine if the directed multigraph has a directed Euler path or circuit. If there is one, construct
it using the appropriate algorithm as discussed in this section.

44. 45.
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46.

48.

47.

49.

i k

50. Suppose in Example 3.38 the rotating drum has only 4 different sectors on the drum and 2 detectors. Using the
procedure described in that example, find a sequence of four Os and Is to be used on the rotating drum so that
every sequence of two consecutive entries is different.

51. Show that in a tournament with n vertices the sum of the outdegrees is ln(n -1).

52. Show that in a round-robin contest with 7 players thei-e cannot be 23 winners.

In Exercises 53-54 find all the directed Hamiltonian paths en the tournament.

53. A a B 54.

b e

C f D

55. Suppose that Susan has established a preference between any two chocolate desserts (pie, pudding, ice cream,
cookies, and eclairs). She prefers cookies over all of -he Dthers, ice cream over all but cookies, pie over pudding,
and eclairs over pie and pudding. Is there a ranking tc her preferences? How many?

56. In a tournament, the outdegree of a vertex is called the :sore (the number of wins for that team). In the following
tournament, find a vertex with a maximum score and show that there is a directed path of length I or 2 from
that vertex to any other.

A (( B

d7

b / e

C D
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57. Repeat Exercise 56 for the tournament below.

A D

C

58. Can a tournament have 2 teams that lose every time?

59. Suppose that the teams in the NFL Central Division play a round-robin contest, each team playing the others
exactly once, in which the Bears beat every other team, the Lions lose to every other team, the Packers beat
only the Lions and Bucs, and the Vikings beat everyone but the Bears. Is there a ranking of the teams? Is this
ranking unique?

60. Write an algorithm for finding a directed Euler circuit.

61. Write a breadth-first search algorithm for directed graphs.

In Exercises 62-65 use the breadth-first search algorithm for directed graphs (see Exercise 61) to determine the
distance and a shortest directed path from S to T in the directed graph.

63.62. s A B C D

i K L M T

64.

A

S BC D E T
0 0
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66. Write an algorithm for directed weighted graphs that finds the distance and a shortest directed path from a
vertex S to every other vertex.
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In Exercises 67-70 determine the distance from S to all the other vertices in the directed weighted graph. Find a
shortest directed path from S to A.

6867. C 2 A

5 2. 4 -I

E12I B

F 2 G

CI De8 --

5 3 2 4

S 2 F3 G! B

1 1 3

A I H 2
/

C 1 D 2 E 4 A

2
S F

32

7 I.

S

4I

L 2

i 2 -

, 1 ,

2

Hi B

J K

4

3

I

71. Show that for a directed graph D with vertices V1, V2.... V, and adjacency matrix A, the number of directed
paths of length m from V, to Vj is the i, j entry of A"'.

72. For the directed graph below, determine the number of directed paths of lengths 1, 2, 3, and 4 from VI to V3,
and from V2 to V 4.

V, V2

V3  V4

73. For the directed graph below, determine the number of directed paths of lengths 1, 2, 3, and 4 from VI to V 4 ,

and from V4 to VI.

V 2

69.

I
. Ps P
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74. Write a definition for an isomorphism between directed graphs.

75. Give two examples of properties of directed graphs that are invariant under isomorphism. Justify your answer.

76. Determine if the following pairs of directed graphs are isomorphic.

(a)

77. Determine if the following pairs of directed graphs are isomorphic.

(a) X (b)

78. Prove Theorem 3.10. 79. Prove Theorem 3.11.

80. Prove Theorem 3.12. 81. Prove Theorem 3.13.

79. Prove that every tournament has a directed Hamiltonian path.

80. Prove that if A is a vertex of maximum score (see Exercise 56) in a tournament, then there is a directed path of
length 1 or 2 from A to any other vertex.

81. Give a definition of isomorphic directed weighted graphs. (See Exercise 20 of Section 3.3 for the definition
of isomorphic weighted graphs.) Give an example of two nonisomorphic directed weighted graphs where the
underlying graphs are isomorphic.

HISTORICAL NOTES

The origin of graph theory is linked to Leonhard Euler's consideration of the bridges
of Konigsberg problem. (See Exercise 30 in Section 3.2.) This problem dealt with a
long-standing puzzle in the eastern Prussian city of Konigsberg. The center of the old city
in Konigsberg was situated on an island in the Pregel River just below the point where its
two upper branches joined. Seven bridges connected the land between the branches, the
island, and the parts of the city on the two banks, as shown in the picture. The puzzle for
the citizens of Konigsberg was to devise a walking route that crossed each of the bridges

Leonhard Euler exactly once and ended at its starting place. Leonhard Euler (1707-1783) was the first to
show this was impossible. In doing so, he characterized the situations where such paths

and circuits were possible.
Euler's solution, while it did not use a graphical representation, used the type of com-

binatorial reasoning that distinguishes graph theoretic forms of mathematical reasoning.
His work in describing how to create Eulerian paths and circuits for such situations used
a method of "mentally removing" edges from graphs and considering the nature of the
remaining structure. This representational process was central to the later proof, in 1752,

(b) 0

F
I
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of his famous formula for polyhedra and their related planar graphs, f - e + v = 2.
(See Exercise 8 of the Supplementary Exercises for Chapter 3.) In his proof, Euler
sliced off tetrahedral pieces of polyhedra associated with the planar graphs and noted
that the

(number of faces) -- number of edges) + (number of vertices)

remains unchanged, eventually aniving at a tetrahedron. While there were some gaps in
Euler's approach, they were filled in 1813 by Augustin-Louis Cauchy (1789-1857) [72].

In 1859, Sir William Rowar Hamilton (1805-1865) marketed a puzzle that required
that one find specified paths and circuits on a planar graph consisting of the edges and
vertices related to a regular dodecahedron. (See Exercise 40 in Section 3.2.) The first
problem was to find a cycle passirg through each vertex once and only once. The puzzle
was later offered in the form of a solid regular dodecahedron with pegs at the vertices
and a string to mark out the edges in such a cycle. When the basic underlying graph is a
weighted graph, the challenge of finding a Hamiltonian cycle of minimum weight is known

William Rowan as the traveling salesperson problem. To date, mathematicians have been unable to find
Hamilton necessary and sufficient conditions that characterize those graphs that have a Hamiltonian

path or cycle.
The most famous problem in graph theory is the four color problem. This problem

deals with the minimum number of colors needed to color a map in such a way that
neighboring countries are differently colored. The four color problem was first examined
by Francis Guthrie (1831-1899) in 1850. Augustus De Morgan learned of the problem
through Guthrie's brother in 1852, and Arthur Cayley (1821-1895) posed it to the London
1'snhnmo3tanQ RZ-etv in 1 272 While. -- 1rsl ;n--rrnntnrnnf- wFe re -ff.r-A r-ver the --nrc

resolution of the problem had to wait until the 1976 proof by Kenneth Appel and Wolfgang
Haken of the University of Illinois. Their methods, implemented by computer, called for
the checking of nearly 2000 cases through an involved algorithm.

These are but a few of the many different results that mark the first 250 years of
work in graph theory. Its applications have become increasingly important in business and
industry. In 1936, the first book on graph theory, written by the Hungarian mathematician
AL11 _- 11 llioOj 17t'tJ, aN wu[L] a-uuay, a iiiuiuI-UU UI -U1U1 L-AL- CA1SL, -I-I--

D. Konig (1884-1944) with several journals devoted to gr ph theory.

SUPPLEMENTARY EXERCISES §'p

1. For a graph 5, the complement of 5 is the graph where the vertices are the same as the vertices of g and
there is an edge between vertices A and B if and only if 5 does not have an edge between A and B. Find the
complement of the following graph.

0
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2. Is there a graph with 5 vertices, each with degree 1? Each with degree 2? Each with degree 3? Justify your
answers.

3. Draw the graph with vertices X, Y, Z, W, R, and S, where X and R are adjacent, W, R, and S are adjacent to
each other, and Y and Z are adjacent.

4. A few years ago the National Football League had two conferences each with 13 teams. It was decided by the
league office that each team would play a total of 14 games, 11 of which were to be with teams in their own
conference and the other 3 games with teams outside their own conference. Show that this is not possible.

5. Are the following graphs isomorphic? Justify your answer.

6. For the following graph, label the vertices and construct the adjacency matrix. Then label the vertices in a
different manner and construct the adjacency matrix. Compare the two adjacency matrices and describe how
they are related.

7. Construct the graph for the following adjacency list.

VI: V2, V3, V5

V2: VI, V4, V5

V3: VI, V4, V5

V4: V2, V3, V5

V5: VI, V2, V3, V4

Suppose a graph g is drawn in the plane so that the edges of G intersect only at the vertices of G. Then g partitions
the plane into a finite number of parts, called regions. An illustration is given below, where the regions are labeled
A,B,C,D,E,F,H,and I.

I

8. If g is such a connected graph in which e is the number of edges, v is the number of vertices, and f is the
number of regions, prove that f - e + v = 2. (This result is called Euler's formula.)
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9. The floor plan of the bottom level of a new home is shcwn below. Is it possible to enter the house at the front,
exit at the rear, and travel through the house going through each doorway exactly once?

I --- I

10. Find a Hamiltonian cycle for K14 and for 1C5.

11. Could the citizens of Kbnigsberg find an acceptable rcute by tearing down one bridge and building one new
bridge? (See Exercise 30 in Section 3.2.)

12. Determine if the following multigraph has an Euler path. If it does, construct one using the Euler circuit
algorithm.

a f

g 1h

13. Determine if the following multigraph has an Euler circuit. If it does, construct one using the Euler circuit
algorithm.

C

h

j
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14. A street inspector wants to examine the streets in her region for potholes. If the map of her region is given
below, is it possible for her to devise a route to examine each street once and return to her office?

15. Is the property "is connected" a graph isomorphism invariant?
16. Is the property "has an Euler circuit" a graph isomorphism invariant?

17. Use the breadth-first search algorithm to determine the distance and a shortest path from S to T in the following
graph.

In Exercises 18-19 determine the distance from S to all the other vertices in the weighted graph. Find a shortest
path from S to A. Find a shortest path from S to B.

C 2 D 5 A

3 1

S D 2 11FlIS E G

5 1 3 2

H I B

19. C 5 D A

4 E/ 1

OL
j 4 K 2

B

18.
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20. In the following weighted graph, find a shortest path fr:)m S to T which goes through the vertex A.

B I C I D

S 2 4

\E'
I X3

5

2

A

J t 4

4 -

6 G

<3

H 2 I 8 j 5 T

21. For the following graph, determine the number of pati s of lengths 1, 2, 3, and 4 from VI to V2 and from VI
to V4.

V1

V4

22. Find the chromatic number of each of the following graphs.

(a) (b) -

23. Color the following map.

24. Is "has two vertices with the same color" a graph isomnorphism invariant?

25. Show that a map formed by crossing a square with line segments can be colored with two colors.

26. Show that "has chromatic number n" is a graph isomorphism invariant.
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27. There are locations in a computer memory where stacks are stored during the execution of a computer program.
Furthermore, a location can store only one stack at a time. Suppose stacks SI, S2, . . ., Sio are to be constructed
during the execution of a computer program and stacks S and Sj will be in use at the same time if i = j
(mod 3) or i - j (mod 4). What is the minimum number of locations for the stacks that will be needed during
the execution of this computer program?

28. Suppose that the Illinois Electric Company has a power plant from which electrical power is sent along
transmission lines to the surrounding communities. However, there is a continuing problem with power loss
in these lines because of their deteriorated condition. The table below describes the loss along a transmission
line from one community to another. What is the best route (one with least power loss) from the plant to the
surrounding communities? (A dash in the table means there is no transmission line.)

To Plant Normal Hudson Ospur Kenney Lane Maroa

Plant - 3 2 6 1 4 5

Normal - - 4 4 - 3

Hudson 9 2 - 3 5 6 3

Ospur 3 - - - 6 9 4

Kenney 2 3 1 1 - 7 2

Lane 1 - 2 2 7 - 6

Maroa 6 2 3 4 2 2

29. Construct the directed graph for the following adjacency matrix.

0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

30. In a large corporation, the chief executive officer communicates with her vice-presidents, and they can com-
municate with her. Furthermore, the vice-presidents can communicate with the directors, field managers, and
division heads, but only the directors can communicate back. Also, the field managers and division heads can
communicate with salespersons, but they can communicate back only with the field managers. Draw a directed
graph to represent the communication lines among these positions.

31. Construct, if possible, a directed graph with 6 vertices where the outdegrees of the vertices are 2, 3, 4, 1, 0, and
5 and the indegrees of the vertices are 2, 4, 1, 1, 5, and 2.

32. Give an example of a directed graph with 6 vertices where every directed path is a simple directed path.

33. Work Example 3.38 if there are 16 different sectors and 4 detectors.

A tournament is transitive if whenever (A, B) and (B, C) are directed edges in the tournament, then so is
(A, C).

34. Prove that a tournament is transitive if and only if there are no directed cycles.

35. Prove that the scores (see Exercise 56 of Section 3.5) in a transitive tournament with n vertices are 0, 1, 2,
3,...,n-1.
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36. Find all the directed Hamiltonian paths in the following tournament.

A a B

b e

c f D

37. For the directed graph below, determine the number of directed paths of length 1, 2, 3, and 4 from VI to V 4 ,

and from V2 to V5.

V -- V

,% \3

V4  -- V5

38. Show that a connected graph can be made into a strongly connected directed graph if and only if each edge is
an edge of some cycle.

39. The directed edges of a directed graph can be considered as a relation on the set of vertices. (See Section 2.2.)
When will this relation be reflexive? Symmetric? Transitive?

40. For the following directed weighted graph, determine the distance from S to all the other vertices in the directed
graph. Find a shortest directed path from S to A. Find Et shortest directed path from S to B.

COMPUTER PROJECTS I 1

Write a computer program having the specified input and output.

1. Given the adjacency matrix of a graph, find the degree of each vertex.

2. Given the adjacency matrix of a directed graph, find the indegree and outdegree of each vertex.
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3. Given the adjacency matrix of a graph, find its adjacency list.

4. Given the adjacency list of a graph, find its adjacency matrix.

5. Given the adjacency matrix of a graph with vertices VI, V2, . .V., V, find the number of paths of length m from
Vi to Vj.

6. Determine if a given graph is a complete graph.

7. Given a graph and U-V path, find a U-V simple path.

8. Given a multigraph, determine if there are any loops or parallel edges.

9. Determine if a given graph is a bipartite graph.

10. Use the breadth-first search algorithm to find the components of a given graph. (See Exercise 57 in Section 3.2.)

11. Given a graph, find a coloring of its vertices in which the number of colors does not exceed one more than the
maximum of the degrees of the vertices.

12. Given a graph, use the breadth-first search algorithm to label its vertices.

13. Given a weighted graph 5 with positive weights and a vertex S. use Dijkstra's algorithm to determine the
distance and a shortest path from S to every other vertex in g.

14. Given a connected graph in which every vertex has even degree, find an Euler circuit.

15. Given a connected graph in which every vertex has even degree except for two vertices A and B, find an Euler
path between A and B.

16. Given a graph with n vertices in which each vertex has degree greater than ', find a Hamiltonian cycle.

17. Given a graph and a positive integer n, determine if the graph has a cycle of length n.
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Trees
4.1 Properties of Trees

4.2 Spanning Trees

4.3 Depth-First Search

4.4 Rooted Trees

4.5 Binary Trees and Traversals

4.6 Optimal Binary Trees and Binary Search Trees

In Chapter 3 we studied several different types of graphs and their appli-
cations. A special class of graphs-trees-has been found to be very useful in
computer science. Trees were irst used in 1847 by Gustav Kirchhoff in his work
on electrical networks. Later they were used by Arthur Cayley in the study of
chemistry. Now trees are widely used in computer science as a way to organize
and manipulate data.

4.1 + PROPERTIES OF TREES

We begin this section by looking at some examples.

o Example 4.1

In 1857 Arthur Cayley studied hydrocarbons, chemical compounds formed from
hydrogen and carbon atoms. In particular, he investigated saturated hydrocarbons,
which have k carbon atoms and 2k + 2 hydrogen atoms. He knew that a hydrogen
atom was bonded (chemically kept together) with one other atom, and each carbon
atom was bonded with four other atoms. These compounds are usually represented
pictorially as in Figure 4.1, where a line segment between two atoms indicates a
bonding.

These chemical diagrams can be redrawn as graphs, as illustrated in Figure
4.2. Note that in these graphs we have followed the customary practice of using
the same chemical symbol on different vertices representing the same element.
However, it is not really necessary to label the vertices with C and H since a vertex

184
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of degree 4 represents carbon and a vertex of degree 1 represents hydrogen. It
was through the mathematical analysis of these graphs that Cayley predicted the
existence of new saturated hydrocarbons. Later discoveries proved his predictions
correct. +

H

H

H C

H

methane

H

He C

H C H

H H C H

H

ethane

FIGURE 4.1

H

,-o *H

H -

He -

H

C
OH

H

H

FIGURE 4.2

+ Example 4.2

Suppose we are planning the telephone network for an underdeveloped area,
where the goal is to link together five isolated towns. We can build a telephone
line between any two towns, but time and cost limitations restrict us to building as
few lines as possible. It is important that each town be able to communicate with

l

r

Ii I0
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each other town, but it is not necessary that there be a direct line between any pair
of towns, since it is possible to) route calls through other towns. If we represent
the towns by the vertices of a graph and the possible telephone lines by edges
between the vertices, then the graph in Figure 4.3 represents all the possibilities
we can have for the telephone lines. (This is merely the complete graph on five
vertices.)

We need to select a set of edges that will give us a path between any two
vertices and that has no more edges than necessary. One such set of edges is
la, b, c, d), as illustrated in Figure 4.4. This choice of edges allows communi-
cation between any two towns For example, to communicate between Y and X,
we can use edges d, b, a, c in that order. Notice that if any edge is deleted from
this set, then it is not possible to communicate between some pair of towns. For
example, if we use only edges a, b, and c, towns U and Y cannot communicate.
Another setofacceptableedg.!is {e, g, h, k).The sets {g, h, j, k) and {a, b, e, h)
are not acceptable because nct every pair of towns can communicate. Also the set
{a, b, g, j, k} is bigger than necessary because the edge g can be left out without
disrupting communication between any two towns. +

FIGURE 4.3 FIGURE 4.4

For the graphs in Figures 4.2 and 4.4, we note two common characteristics;
namely, these graphs are connected (there is a path between any two vertices) and
have no cycles. Any graph that is connected and has no cycles is called a tree.
Additional examples of trees follow.

+ Example 4.3

Since each of the graphs in Figure 4.5 is connected and has no cycles, each is a
tree. +

V



(a)

* a

(b)

FIGURE 4.5

+ Example 4.4

Neither of the graphs in Figure 4.6 is a tree. The graph in Figure 4.6(a) is not
connected, and the graph in Figure 4.6(b) has a cycle. +

(a) (b)

FIGURE 4.6

Theorem 4.1 Let U and V be vertices in a tree. Then there is exactly one simple path from U
to V.

Proof Since a tree is a connected graph, there is at least one path from U to V.
Thus, by Theorem 3.4, there is a simple path from U to V.

We will now show that there cannot be two distinct simple paths from U to
V. To do so, we will assume that there are distinct simple paths Pi and P2 from

4.1 Properties of Trees 187
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U to V and show that this leads to a contradiction. Since PI and P2 are different,
there must be a vertex A (possibly A = U) lying on both PI and P2 such that the
vertex B following A on PI does not follow A on P2. In other words, PI and P2
separate at A. (See Figure 4.7.) Now follow path PI until we come to the first
vertex C that is again on both paths. (The paths must rejoin because they meet
again at V.) Consider the par: of the simple path PI from A to C and the part
of the simple path P2 from C to A. These parts form a cycle. But trees contain
no cycles, so we have a contradiction. It follows that there cannot be two distinct
simple paths between any pair of vertices. 8

B P.

Up-. -T

P9

FIGURE 4.7

Looking at each previous example of a tree reinforces the idea that there is
a unique simple path from an) vertex to another. Notice also that, in all of these
examples, every tree has at least two vertices of degree 1.

Theorem 4.2 In a tree T with more than ore vertex, there are at least two vertices of degree 1.

Proof: Since T is a connected graph with at least two vertices, there is a simple
path with at least two distinct vertices. Thus 7 contains a simple path with a
maximal number of edges, sely from U to V, where U and V are distinct. If U
has degree more than 1, then since T has no cycles, a longer simple path would
exist; likewise for V. Thus U and V have degree 1. G

For the tree in Figure 4.4, there are 5 vertices and 4 edges, and for the tree in
Figure 4.5(a), there are 9 vertices and 8 edges. In fact, in each previous example
of a tree, the number of vertices is one more than the number of edges. The next
theorem establishes that this :is always the case.

Theorem 4.3 A tree with 11 vertices has exactly n -1 edges.

Proof. The proof will be by induction on n, the number of vertices. Because a
tree is a graph, there are no loops in a tree. Hence there are no edges in a tree with
only one vertex, and the theorem holds when n = 1.

Now assume the theorem holds for all trees which have k vertices. We will
prove that the theorem holds for a tree T with k + 1 vertices. By Theorem 4.2
there is a vertex V with degree ] . Remove the vertex V and the edge on V from the
graph T to obtain a new graph T'. (See Figure 4.8.) This graph T' has k vertices
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and is still a tree. (Why?) Thus, by the induction assumption, T' has k - 1 edges.
But then T has k edges.

By mathematical induction the theorem holds for all positive integers n. g

. 0

V A

FIGURE 4.8

* Example 4.5

An intelligence agency has established a network of 10 spies engaging in industrial
espionage. It is important that each spy be able to communicate with any other,
either directly or indirectly through a chain of others. Establishing secret locations
to exchange messages is difficult, and the agency wants to keep the number of
these meeting places as small as possible.

Yet for reasons of secrecy, no more than 2 spies should know about any
particular meeting place. This communication network can be represented by
a graph in which the vertices correspond to spies and an edge joins 2 vertices
when the corresponding spies know about the same meeting place. In fact, this
graph is a tree with 10 vertices, and so there will need to be 9 meeting places
in all. M

Theorem 4.4 (a) When an edge is removed from a tree (leaving all the vertices), the resulting
graph is not connected and hence is not a tree.

(b) When an edge is added to a tree (without adding additional vertices), the
resulting graph has a cycle and hence is not a tree.

Proof If an edge is added or removed from a tree, the resulting new graph can
no longer be a tree by Theorem 4.3. Since removing an edge cannot create a cycle
nor adding an edge disconnect the graph, both parts of the theorem follow. X

I @ 8

J
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Theorem 4.4 shows that a tree has just the right number of edges to be
connected and not have any cyz]es. By looking at the tree in Figure 4.5(a), we can
see how the deletion of any edge produces a disconnected graph by breaking the
tree into two parts. In addition, we can see how the addition of an edge between
two existing vertices creates a cycle in the new graph.

The following theorem gives some other ways of characterizing a tree. Its
proof will be left to the exercises.

Theorem 4.5 The following statements are equivalent for a graph T.

(a) T is a tree.
(b) T is connected, and the number of vertices is one more than the number of

edges.
(c) T has no cycles, and the number of vertices is one more than the number of

edges.
(d) There is exactly one simple path between each pair of vertices in T.
(e) T is connected, and the removal of any edge of T results in a graph that is

not connected.
(f) T has no cycles, and the addition of any edge between two nonadjacent

vertices results in a graph with a cycle. I I

It is the equivalence of pasts (a) and (b) in Theorem 4.5 that helps in the
mathematical analysis of saturated hydrocarbons of the type CkH2k+2. (See
Example 4.1.) We know that there will be k carbon atoms and 2k + 2 hydro-
gen atoms represented in the graph. Furthermore, since the atoms form a com-
pound, the graph will be connected. Since each vertex represents an atom, there
will be k + (2k + 2) = 3k + 2 vertices. Also, since a carbon atom has degree 4
and a hydrogen atom has degree 1, the sum of the degrees is 4k + (2k + 2) =
6k + 2. By Theorem 3.1 the number of edges is 2(6k + 2) = 3k + 1, which
is one less than the number of vertices. Hence, by Theorem 4.5(b), the graph
representing the chemical compound is always a tree. Knowing this, Cayley
used information about trees to predict the existence of new saturated hydro-
carbons. The interested reader should consult suggested reading [2] for more
details.

EXERCISES 4.1

In Exercises 1-S determine if each graph is a tree.

1. a 2.
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4.3.* 0

5.

8.

9. How many vertices are there in a tree with 15 edges?

10. How many edges are there in a tree with 21 vertices?
11. Seven farming communities in Iowa want to develop a computer telecommunications network to facilitate

communication during a farm crisis. For reasons of economy, they want to build as few lines as possible
but still allow communication between any two towns. Indicate how this might be done for the following
map.

Traer
0

Conrad

Beaman

Tama
0

0
Lincoln

Garwin

Gladbrook

12. As few trails as possible are to be built between houses in a primitive community so that it is possible for a
resident to go from any house to any other. If there are 34 houses, how many trails need to be built? Since
it is considered bad luck to live at the end of a trail, can the trails be constructed so that no house is so
situated?

13. A farmer needs to irrigate the fields in which his crops are growing. (A map of the fields is given below, in
which the fields are the enclosed areas and edges represent earthen walls between the fields.) Because he lacks
modem equipment, his method of irrigation is to break holes in the walls and let water from the outside cover

6. *-

7.

191
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the entire field. He wants to irrigate each field and to break as few walls as possible. In how many walls should
he break holes?

14. Draw a graph that is not a tree for which the number (if vertices is one more than the number of edges.

15. Draw a tree with at least 6 vertices that has exactly 2 vertices of degree 1.

16. What is the smallest number of edges in a connected graph with n vertices?

17. What is the largest number of vertices in a connected graph with n edges?

18. How many simple paths of nonzero length are there in a tree with n vertices, where n > 2? (Regard two simple
paths as the same if they have the same edges.)

19. Prove that the graph T' in the proof of Theorem 4.3 is a tree.

20. Prove that if an edge is deleted from a cycle in a connected graph, the graph remains connected.

21. For which n is IC, a tree? (The graph En is defined in Section 3.1.)

22. Prove by mathematical induction on the number of velrtices that any tree can be drawn on a sheet of paper so
that its edges do not intersect except at vertices.

23. There are two saturated hydrocarbons of the type C4H 0: butane and isobutane. Draw a tree representing the
chemical structure of each.

24. Draw a graph representing a saturated hydrocarbon with 5 carbon atoms.

25. Can a tree with 13 vertices have 4 vertices of degree 3, 3 vertices of degree 4, and 6 vertices of degree 1?

26. How many vertices of degree 1 are there in a tree with 3 vertices of degree 4, 1 vertex of degree 3, 2 vertices
of degree 2, and no vertices of degree more than 4?

As trees on the vertices labeled A, B, and C, the two trees; in figures (a) and (b) below are the same since they
both have the same set of edges, namely, {A, B} and {B, C). The trees in figures (a) and (c) are distinct since they
do not have the same set of edges. For example, {A, C') is an edge of the tree in figure (c) but not of the tree in
figure (a).

A B C A C A B

C B
0----

(a) 0fi) (c)
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27. Draw the 3 distinct trees with 3 labeled vertices. (Use 1, 2, 3 as the labels.)
28. Draw the 16 distinct trees with 4 labeled vertices. (Use 1, 2, 3, 4 as the labels.)

In order to count the number of distinct trees with vertices labeled 1, 2, . .., n we establish a one-to-one correspon-
dence between each such tree and a list a,, a2 , . . ., an- 2 , where 1 < a; < n for i = 1, 2, ..., n -2. The following
algorithm shows how to get such a list from a labeled tree T.

Prufer's Algorithm

This algorithm constructs a list a,, a2, . an-2 of numbers for a tree with n labeled vertices, where n > 3
and the labels are 1, 2, n.

Step 1 (initialization)
(a) Set T to be the given tree.
(b) Set k = 1.

Step 2 (choose ak)
while T has more than two vertices

Step 2.1 (find a vertex of degree 1)
Select from T the vertex X of degree 1 that has the smallest label.

Step 2.2 (make a new tree)
(a) Find the edge e on X, and let W denote the other vertex on e.
(b) Set ak to be the label on W.
(c) Delete the edge e and vertex X from T to form a new tree T'.

Step 2.3 (change T and k)
(a) Replace T with T'.
(b) Replace k with k + 1.

endwhile
U U D .f ... . Q Ua, U. nD A.....S ,S S , =W AEW.. ........................ .,.............

For example, the list for the following tree is 6, 5, 1, 5, 6.

2

6

35 7

1 4

In Exercises 29-32 use Prufer's algorithm to find the listfor each tree in the indicated exercise or graph.

29. Exercise 27
30. Exercise 28
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31. 1 2 3 32. 1 2

4 5
*.

,I 5
6

.74

I 8 9

. 3

6

7

33. We can construct a tree from a list L of n -2 numnbes taken from N = {l, 2, ... , n) as follows. (Here we
assume that the vertices of the tree are labeled 1, 2, .. ., n.) Pick the smallest number k from N that is not in
the list L and construct an edge on that number and the first number in the list L. Then delete the first number
in L, delete k from N, and repeat the process. When L is exhausted, construct an edge joining the two numbers
remaining in N. For example, the tree generated by the 1 st 6, 5, 1, 5, 6 is pictured before Exercise 29. Construct
the tree for the list 2, 2, 2, 2.

In Exercises 34-3 7 repeat Exercise 33 for each list.

34. 1,2,3,4 35. 1,2,3,2,1 3i. 4,3,2,1 37. 3,5,7,3,5,7

38. Assuming that Prufer's algorithm establishes a one-to one correspondence between trees with vertices labeled
1, 2, . . ., n and lists as described in Exercise 33, prove ti at the number of distinct trees with vertices 1, 2, n
is n'-2 for n > 1.

Exercises 39-44 establish in a cyclical fashion a proof of Theorem 4.5.

39. Prove that part (a) implies part (b) in Theorem 4.5.

40. Prove that part (b) implies part (c) in Theorem 4.5.

41. Prove that part (c) implies part (d) in Theorem 4.5.

42. Prove that part (d) implies part (e) in Theorem 4.5.

43. Prove that part (e) implies part (f) in Theorem 4.5.

44. Prove that part (f) implies part (a) in Theorem 4.5.

45. Give an inductive proof of Theorem 4.3 that does not use Theorem 4.2. (Hint: Use mathematical induction on
the number of edges.)

46. Use Theorem 4.3 to give an alternate proof of Theore mn 4.2.

47. Show that Prufer's algorithm establishes a one-to-one correspondence between trees with vertices labeled
1, 2, . n and lists as described in Exercise 33.

4.2 + SPANNING TREES

In Example 4.2 in Section 4. L, we found a tree that contained all the vertices of
the original graph. This is an idea that appears in many applications, including
those that involve power lines,, pipeline networks, and road construction.
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Example 4.6

Suppose an oil company wants to build a series of pipelines between six storage
facilities in order to be able to move oil from one storage facility to any of the
other five. Because the construction of a pipeline is very expensive, the company
wants to construct as few pipelines as possible. Thus the company does not
mind if oil has to be routed through one or more intermediate facilities. For
environmental reasons, it is not possible to build a pipeline between some pairs
of storage facilities. The graph in Figure 4.9(a) shows the pipelines that can be
built.

a a

b h

(a) (b)

FIGURE 4.9

The task is to find a set of edges which, together with the incident vertices,
form a connected graph containing all the vertices and having no cycles. This will
allow oil to go from any storage facility to any other without unnecessary dupli-
cation of routes and, hence, unnecessary building costs. Thus a tree containing all
the vertices of a graph is again being sought. One selection of edges is b, e, g, i,
and j, as illustrated by the colored edges in Figure 4.9(b). +

A spanning tree of a graph g is a tree (formed by using edges and vertices
of g) containing all the vertices of S. Thus in Figure 4.9, the edges b, e, g, i,
and j and their incident vertices form a spanning tree for the graph. We shall
follow the customary practice of describing a tree by listing only its edges, with
the understanding that its vertices are those incident with the edges. Thus in
Figure 4.9, we would say that the edges b, e, g, i, and j form a spanning tree for
the graph.

If a graph is a tree, then its only spanning tree is itself. But, in general, a
graph may have more than one spanning tree. For example, the edges a, b, c, d,
and e also form a spanning tree for the graph in Figure 4.9(a).

There are several ways to find a spanning tree for a graph. One is to get
rid of cycles by removing edges. This process is illustrated in the following
example.
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+ Example 4.7

The graph in Figure 4.10(a) is not a tree because it contains cycles such as
a, b, e, d. In order to obtain a tree, our procedure will be to delete an edge in
each cycle. Deleting b from the cycle a, b, e, d gives the graph in Figure 4.10(b),
which is still not a tree because of the cycle c, e, d. So we delete an edge in this
cycle, say e. The resulting graph in Figure 4.10(c) is now a tree. This, then, is a
spanning tree for the original graph. +

a b\\

C

(a) (b) (c)

FIGURE 4.10

If a connected graph has n vertices and e edges, with e > n, we must
perform this deletion process e - n + 1 times in order to obtain a spanning
tree. By performing these deletions, we change the number of edges from e
to e - (e - n + 1) = n - 1, which is the number of edges in a tree with n
vertices.

Tmte Bread1,-First Seareh Algorfthnn,

The method described above :is not the only way to find a spanning tree. There are
many others, and some of these are easier to program on a computer because they
do not require that cycles be found. One of these methods uses the breadth-first
search algorithm, which was discussed in Section 3.3.

Recall that in the breadth-first search algorithm, we start with a vertex S.
Then we find the vertices adjacent to S, and assign them the label 1(S). (The label
given to a vertex by the breadth-first search algorithm indicates its distance from
S and its predecessor on a shortest path from S.) Next, we look at each unlabeled
vertex that is adjacent to a vertex V with label 1; these vertices are then given the
label 2(V). We continue in this manner until there are no more unlabeled vertices
adjacent to labeled vertices.

Let T denote the set of edges that join each labeled vertex to its predecessor.
The labeling process in step 2.2 of the breadth-first search algorithm guarantees
that the edges in T form a connected graph. Furthermore, each edge in T joins
two vertices labeled with consecutive integers, and no vertex in L is joined by an
edge in T to more than one vertex with a smaller label. Therefore no collection of
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edges in T forms a cycle. Because, in a connected graph, every vertex is eventually
labeled, the edges in T form a tree that includes every vertex in the graph, and so
T is a spanning tree for the graph. (As before, we are referring to T as a tree, with
the understanding that the vertices of the tree are those incident with the edges.)

Example 4.8

We shall apply the breadth-first search algorithm to find a spanning tree for the
graph in Figure 4.11.

We may start the breadth-first search algorithm at any vertex, say K, which is
labeled 0(-). The vertices adjacent to K are A and B, and these are labeled 1 (K).
Next we label the unlabeled vertices adjacent to A and B, which are D and E.
These are labeled 2(A) and 2(B), respectively. We continue in this manner until
all the vertices are labeled. One possible set of labels is shown in Figure 4.12.
The edges that join each vertex to its predecessor (which is indicated in the label
on the vertex) then form a spanning tree for the graph. These edges are shown in
color in Figure 4.12. +

I (K) 3(D) 4(C)
A C F

B E H 1(K) 2(B) :J()

FIGURE 4.11 FIGURE 4.12

We should note that, when using the breadth-first search algorithm, there
are places where edges are chosen arbitrarily. Different choices lead to different
spanning trees. In Example 4.8, for instance, instead of choosing the edges {D, H I
and IC, F), we could have chosen the edges {E, H) and {F, G). This would give
the spanning tree shown in color in Figure 4.13.

I(K) 3(D) 4(C)
A C F

0H 2(A-) 4(G)

B E H
l (K) 2(B) 3(D)

FIGURE 4.13

i

2(A)
0H D 4(G)
K I

i
B E H



198 Chapter 4 Trees

A simple path from the starting vertex S to any other vertex that uses only
edges in a spanning tree is a shortest path in the original graph between these
vertices. (Recall from Section 3.3 that the label given to each vertex by the breadth-
first search algorithm is its distance from S.) For this reason, a spanning tree
constructed by means of the bieadth-first search algorithm is sometimes called a
shortest path tree.

In the examples so far, the graphs have had spanning trees. However, this is
not always the case, as the next example shows.

+ Example 4.9

The graph shown in Figure 4.14 does not have a spanning tree because it is not
possible to choose edges that connect all the vertices. In particular, we cannot
find edges that can be used to rr ake a path from A to E.

RI E
FIGURE 4.14

In previous examples we have seen that the existence of a spanning tree is
related to the connectedness of the graph. This relationship is made explicit in
the following theorem.

Theorem 4.6 A graph is connected if and only if it has a spanning tree.

Proof Suppose that the graph g has a spanning tree T. Since T is a con-
nected graph containing all the vertices in g, there is a path between any two
vertices U and V in g using edges from T. But since the edges of T are also
edges of g, we have a path between U and V using edges in g. Hence g is
connected.

Conversely, suppose g is connected. Applying the breadth-first search algo-
rithm to g yields a set L of vertices with labels and a set T of edges connecting
the vertices in L. Moreover, 7 is a tree. Since g is connected, each vertex of
g is labeled. Thus £ contains all the vertices of g, and T is a spanning tree
for g.

We will now discuss two types of spanning trees that occur frequently in
applications.
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When pipelines are to be constructed between oil storage facilities, it is likely that
the cost of building each pipeline is not the same. Because of terrain, distance,
and other factors, it may cost more to build one pipeline than another. We can
describe this problem by a weighted graph (discussed in Section 3.3), in which
the weight of each edge is the cost of building the corresponding pipeline. Figure
4.15 depicts such a weighted graph. The problem is to build the cheapest set of
pipelines. In other words, we want to find a spanning tree in which the sum of the
costs of all the edges is as small as possible.

FIGURE 4.15

In a weighted graph, the weight of a tree is the sum of the weights of the
edges in the tree. A minimal spanning tree in a weighted graph is a spanning
tree for which the weight of the tree is as small as possible. In other words, a
minimal spanning tree is a spanning tree such that no other spanning tree has a
smaller weight.

+ Example 4.10

For the weighted graph in Figure 4.15, the edges b, c, e, g, and h form a spanning
tree with weight 3 + 4 + 3 + 4 + 3 = 17. The edges a, b, c, d, and e form another
spanning tree with weight 2 + 3 + 4 + 2 + 3 = 14. The edges a, d, f, i, and j
form yet another spanning tree, which has weight 8. Since this spanning tree
uses the five edges with the smallest weights, there can be no spanning tree with
smaller weight. Thus, the edges a, d, f, i, and j form a minimal spanning tree
for this weighted graph. +

In Example 4.10, we were able to find a minimal spanning tree by trial
and error. However, for a weighted graph with a large number of vertices and
edges, this is not a very practical approach. One systematic approach would
be to find all the spanning trees of a connected weighted graph, compute their
weights, and then select a spanning tree with the smallest weight. Although this
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approach will always find a min imal spanning tree for a connected weighted graph,
checking out all the possibilities can be a very time-consuming task, even for a
supercomputer. A natural way to try to construct a minimal spanning tree is to build
a spanning tree using edges oF smallest weights. This approach is illustrated in
Example 4.1 1.

+ Example 4.11

For the weighted graph in Figure 4.16(a), we begin with any vertex, say A, and
select the edge of smallest weight on it, which is b. To continue building a tree,
we look at the edges a, c, e, and f touching edge b and select the one with the
smallest weight, which is f. Tha next edges to look at are a, c, e, and g, the ones
touching b and f, the edges already selected. There are two with the smallest
weight, e and g, and we select one arbitrarily, say e. The next edges we consider
are a, c, and d. (The edge g is not considered any longer, for its inclusion will
form a cycle with e and f.) The edge with the smallest weight is a, and so it is
added to the tree. These four edges a, b, e, f form a spanning tree (see Figure
4.16(b)), which also turns out to be a minimal spanning tree. +

S :J

(a) (b)

FIGURE 4.16

The method in Example 4.11 is due to Prim and will always produce a mini-
mal spanning tree. Prim's algorithm builds a tree by selecting any vertex and then
an edge of smallest weight on that vertex. The tree is then extended by choosing
an edge of smallest weight that forms a tree with the previously chosen edge. This
tree is extended further by choosing an edge of smallest weight that forms a tree
with the two previously chosen edges. This process is continued until a spanning
tree is obtained, which turns out to be a minimal spanning tree. This process can
be formalized as follows.
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Prim's Algorithm

This algorithm finds a minimal spanning tree, if one exists, for a weighted graph with
n vertices. In the algorithm, I is a set of edges that form a tree and £ is the set of
vertices incident with the edges in T.

Step 1 (select starting vertex)
Select a vertex U, and set C = {U} and T = 0.

Step 2 (enlarge T)
while some edge has one vertex in L and one not in £

(a) Choose an edge of smallest weight from among those
with one vertex in L and the other not in £. (Ties
can be broken arbitrarily.)

(b) Place the edge in T.
(c) Place its vertices in L (one of these is already in C).

endwhile
Step 3 (is there a minimal spanning tree?)

if JCl < n
The graph is not connected, and so it has no minimal
spanning tree.

otherwise
The edges in T and their incident vertices form a minimal
spanning tree.

endif

In step 2 of Prim's algorithm, the selection of an edge with one vertex in L and
the other not in L guarantees that there are no cycles formed by any collection of
edges in T. Thus, at the end of each iteration of the loop in step 2, the edges in T
and the vertices in L form a tree. Furthermore, when L contains all the vertices of
5, a spanning tree is formed. As usual, we will denote this tree by T. The proof that
Prim's algorithm yields a minimal spanning tree is found at the end of this section.

cM Example 4.12

Prim's algorithm will be applied to the weighted graph in Figure 4.17. We start
with vertex F, and set L = (F) and T = 0. Since there are edges that have one
vertex in C and the other not in C, we perform (a), (b), and (c) of step 2. The
edges on F that do not have their other vertex in L are a, b, f, and g (see Figure
4.18), and, of these, a is the one of smallest weight. Therefore a is included in T
and its vertices are included in L. Thus L = {F, C I and T = {a). Since there are
edges that have one vertex in L and the other not in L, we continue step 2. The
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A C 9 B d C
Ae

X i m

31 9g N 6 3

D 1 11 E D E

FIGURE 4.17 FIGURE 4.18

edges having exactly one vertex in L are b, d, e, f, and g. (See Figure 4.19.) Of
these, e has the smallest weight and is therefore included in T, and the vertex E
is included in L. Now L = {F, C, E} and T = la, el. Again there are edges with
exactly one vertex in L, and so we continue step 2. This time the edges to consider
are b, d, g, and j. (See Figure 4.20.) Notice that edge f is not considered, for it
has both of its vertices in L. Of the edges b, d, g, and j, there are two with the
smallest weight, namely b and d. Let us arbitrarily choose b and include it in T
and Bin L. Thus L = I F, C. E, B} andT = {a, e, b}.

B d 8 -C

8 F

9f

D F3
D L'

FIGURE 4.19 FIGURE 4.20

Again there are edges heating one vertex in C and the other not in L, and so
step 2 continues. The edges with exactly one vertex in C are c, g, i, and j. Of
these, both c and g have the smallest weight. Suppose that we choose c. Then we
include c in T and A in C, making

1C={F,C,HB,Al and T ={a,e,b,cl.

As step 2 continues, the edges to consider are g, h, i, and j. The one with the
smallest weight is h, and so it is inserted in T and D is inserted in L. Now

C= {F,CE,B,A,D} and T = a,e,b,c,h).

Since there is no longer an edge with exactly one vertex in 1 (because C
contains all the vertices of the weighted graph), we proceed to step 3. It tells us
that the edges in T and their incident vertices form a minimal spanning tree, as
illustrated in Figure 4.21. The weight of this spanning tree is 28. +
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A c 9 B d 8 C

b a e

9 f 3

D J 11 E

FIGURE 4.21

There are two places in the example above where we have a choice of edges
with the same least weight. Step 2(a) of the algorithm indicates that any edge of
least weight could be chosen in such cases. If other choices are made, different
minimal spanning trees would be constructed. For example, if in Example 4.12
we choose edge d instead of b, followed by the choices of g and h, the minimal
spanning tree in Figure 4.22 results. Thus we see that minimal spanning trees
need not be unique.

A c 9 B d 8 C

a5  e

33

D 1 11 E

FIGURE 4.22

Prim's algorithm is an example of what is called a greedy algorithm since at
each iteration we do the thing that seems best at that step (extending a tree by
including an available edge of smallest weight). In Prim's algorithm this approach
does lead to a minimal spanning tree, although in general a greedy algorithm need
not produce the best possible result. (See Exercises 36 and 37.)

In analyzing the complexity of Prim's algorithm for a weighted graph with
n vertices and e edges, we will consider comparing the weights of two edges as
the basic operation. At each iteration of the loop in step 2, there will be at most
e - 1 comparisons made in order to find an edge of smallest weight having one
vertex in L and one vertex not in L. Step 2 is done at most n times, and so there
are at most n(e - 1) operations. Since

e < C(n, 2) = -n(n - 1),
2

our implementation of Prim's algorithm is of order at most n3.
Another algorithm that can be used to find a minimal spanning tree is due to

Kruskal. It is found in Exercises 4.2.
Let us return to Figure 4.15. Suppose now that the weights of the edges

measure the profit that results when oil is pumped through the corresponding
pipelines. Our problem is to find a spanning tree of pipelines that generates the
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most profit. Thus we want a spanning tree for which the sum of the weights of
the edges is not as small as po, sible, but as large as possible.

A maximal spanning tree in a weighted graph is a spanning tree such that the
weight of the tree is as large as possible. In other words, there is no spanning tree
with larger weight. Fortunately, finding a maximal spanning tree is very similar
to finding a minimal spanning tree. All that is needed is to replace the phrase "an
edge of smallest weight" by the phrase "an edge of largest weight" in step 2(a)
of Prim's algorithm.

B l
A 1( C

I5 b

h 8 F
11

D E D 1 11 E

FIGURE 4.23 FIGURE 4.24

Example 4.13

We will begin to construct a maximal spanning tree for the weighted graph in
Figure 4.17 by picking the vertex F. Then T = 0 and L = (F . Examining the
edges on F (see Figure 4.23). we pick one with the largest weight. This is the
edge g, and so T = {g) and )< = IF, D}. The edges with one vertex in L and
one vertex not in £ are a, b, J' h, i, and j (see Figure 4.24). Of these, there are
two with the largest weight, i and j. We choose one arbitrarily, say i. So now
T = {g, i} and £ =IF, D, B). Again the process is repeated (see Figure 4.25)
by choosing edge j (the edge of largest weight having one vertex in L and one
not in L). Now T = {g, i, j) anti f = {F, D, B, E}. Again we look at the edges
with a vertex in L and one not in L:. Of these, c is the edge with the largest weight,
and so T = {g, i, j, c} and L£= {F, D, B, E, Al. One more iteration yields the
choice of the edge d; therefore, T = {g, i, j, c, d) and L = (F, D, B, E, A, C},
which is the set of all vertices. Hence T is a maximal spanning tree, as illustrated
in Figure 4.26. The reader should check that the weight of this tree is 48. 4

A c 9 B d 8 C A c 9B d 8 C

11f ti 9 f

D i 1t E D I 11 E

FIGURE 4.25 FIGURE 4.26



4.2 Spanning Trees 205

Now we will prove that if Prim's algorithm is applied to a connected weighted
graph with n vertices, it actually produces a minimal spanning tree. Let T be as
in the algorithm, that is, T is a set to which we add edges one at a time until we
get a spanning tree. We will prove that this spanning tree is minimal by induction
on m, the number of edges in T.

The induction hypothesis will be that when T has m edges, then T is contained
in some minimal spanning tree. If m = 0, then T is the empty set. Since some
minimal spanning tree exists, the hypothesis holds for m = 0.

Now suppose that T is a set with k edges, and that T is contained in a
minimal spanning tree T'. Let L be the corresponding set of vertices given by
Prim's algorithm, and suppose {U, V } is the next edge that it will put in T, where
U is in L but V is not in L.

If {U, V I is in f, then our induction hypothesis holds for k + 1, and we are
done. Thus we suppose that {U, V} ' T'. Since TF is a spanning tree, there must
be a path from U to V in T'. Since U E C and V ' £, this path must contain an
edge e having one vertex in L and the other not.

Because Prim's algorithm chooses {U, V} instead of e, the weight of {U, V)
must be less than or equal to the weight of e. Thus if we form F" by adding {U, V }
to T' and taking out e, we do not increase its weight. Since T" is connected and
has n - I edges, it is also a minimal spanning tree. But T' contains the k + 1
edges of T U {{U, VI}. This proves the induction hypothesis for k + 1.

By the principle of mathematical induction, we see that the tree T produced
by Prim's algorithm is always contained in a minimal spanning tree. But when
the algorithm ends and T has n - 1 edges, this spanning tree can only be T itself.
Thus Prim's algorithm produces a minimal spanning tree.

EXERCISES 4.2

In Exercises 1-6 use the breadth-first search algorithm to find a spanning tree for each connected graph. (Start
with A and use alphabetical order when there is a choice for a vertex.)

1. 2.

A

E
L

E

- n
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7. At its refinery an oil company has 7 major buildings that are connected by underground tunnels, as illustrated
below. Because of the possibility of a major explosion, there is a need to reinforce some of these tunnels to
avoid a possible cave-in. The company wants to be able to go from any building to any other in case of a major
fire above ground, but it wants to avoid reinforcing more tunnels than necessary. How can this be done?

8. One of the primary responsibilities of the National Security Agency is to assist other governmental agencies
in providing secure computer communications. The Department of Agriculture does not ordinarily need to be
concerned about this, but when estimates of future crop productions arrive, it is important that these be kept
secret until the time of the public announcement. The map of computer links between reporting agencies for the
Department of Agriculture is shown below. Realizing that there is a need for complete security only at certain
times, the National Security Agency will make secure only the minimum number of lines. How can this be
done?
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D
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B

G

H

9. Will any two spanning trees for a connected graph always have an edge in common? If so, give a proof, and if
not, give a counterexample.

10. How many different spanning trees are there for a cycle with n vertices, where n > 3?

11. Prove that any edge whose removal disconnects a connected graph is part of every spanning tree.

12. Draw a spanning tree formed by applying the breadth-first search algorithm to Ka.

13. Draw a spanning tree formed by applying the breadth-first search algorithm to JCm,n.

14. Can a spanning tree formed using the breadth-first search algorithm be a simple path?

15. A graph with vertices labeled 1, 2, ... , 9 is described below by giving its adjacency list. Determine if this graph
is connected by using the breadth-first search algorithm.

1: 2,3,5,7,9
2: 1,3,4,5,9
3: 1,2,4,6,8

4: 2, 3, 5, 6
5: 1,2,6,7
6: 3,4,5,7,9
7: 1,5,6,8,9
8: 3, 7
9: 1,2,6,7

16. Repeat Exercise 15 with the adjacency list below.

1: 2, 5
2: 1,3
3: 2, 6

4:5,6
5: 1, 4
6: 3,4

7: 8, 9
8: 7, 9
9: 7, 8
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Throughout the remaining exercises, if there is a choice of edges to use informing a minimal or maximal spanning
tree, select edges according to alphabetical order.

In Exercises 17-20 use Prim's algorithm to find a minimal spanning tree for each weighted graph. (Start at A.)
Give the weight of the minimal spanning tree found.

A a 3 B

de

b c

4 f 3
2 3

D h 3 E

18. A a 4 B

3 . X

, h 6 k

4

C h 3 D

e

5
F i I

f

2
G

:X

i-X2
j 4l

H
m

l , 3 J

In Exercises 21-24 use Prim's algorithm to find a minimal spanning tree for the weighted graphs in the indicated
exercises. Give the weight of the minimal spanning tree found.

21. Exercise 17 (Start at E.)

23. Exercise 19 (Start at G.)

22. Exercise 18 (Start at H.)

24. Exercise 20 (Start at H.)

In Exercises 25-28 use Prim's algorithm to find a maximal spanning tree for the weighted graphs in the indicated
exercises. Give the weight of the maximal spanning tree fouad.

25. Exercise 17 (Start at A.)

27. Exercise 19 (Start at F.)

26. Exercise 18 (Start at A.)

28. Exercise 20 (Start at D.)

29. The Gladbrook Feed Company has 7 bins of corn that must be connected by grain pipes so that grain can
be moved from one bin to another. To minimize the cost of construction, it wants to build as few grain pipes
as possible. The cost (in hundreds of thousands of dollars) of building a pipeline between two bins is given
in the following table, where a "-" indicates no pipeline, can be built. How can the pipes be built at minimal
cost?

17.

A HA

19. B 9 3 1 2U.

4 b f
3 6 i

C 40A 2

d 3

e 2
D E m 4 F
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Bin 1 2 3 4 5 6 7

1 - 4 - 6 2 - 3

2 4 - 5 2 3 1

3 - 5 - 7 2 2

4 6 2 7 - 4 1

5 2 - - 4 - I

6 - 3 2 1 1 - 2

7 3 1 2 - - 2 -

30. FBI Special Agent Hwang is working with 5 informants who have infiltrated organized crime. She needs to
make arrangements for the informants to communicate with each other, either directly or through others, but
never in groups of more than two. For reasons of security, the number of meeting places must be kept as
small as possible. Furthermore, each pair of informants has been assigned a danger rating (given in the table
below) which indicates the risk involved in their being seen together. How can Special Agent Hwang arrange
communication so as to minimize the danger? Assume the danger is proportional to the sum of the danger
ratings of the individuals who meet directly.

Jones Brown Hill Ritt Chen

Jones - 3 4 5 2

Brown 3 - 3 1 4

Hill 4 3 - 2 3

Ritt 5 1 2 - 4

Chen 2 4 3 4

31. Give an example of a connected weighted graph (not a tree) where the same edge is part of every minimal
spanning tree and every maximal spanning tree.

32. Modify Prim's algorithm to find a spanning tree that is minimal with respect to those containing a specified
edge. Illustrate your modification with edge g in Exercise 17.

33. Repeat the second part of Exercise 32 with edge b in Exercise 19.

34. If the weights in a connected graph correspond to distances, does a minimal spanning tree give the shortest
distance between any two vertices? If so, give a proof. If not, give a counterexample.

35. Can a minimal spanning tree in a connected weighted graph (not a tree) contain an edge of largest weight? If
so, give an example. If not, give a proof.

36. In the knapsack problem of Section 1.3, explain why choosing the experiment with the highest rating does not
give a good procedure.

37. Suppose that we want to mail a package and have stamps worth 1, 13, and 22 cents. If we want to make the
necessary postage with the minimum number of stamps, the greedy algorithm approach is to use as many
22-cent stamps as possible, then as many 13-cent stamps as possible, and, finally, the necessary number of
1-cent stamps. Show that this approach need not result in the fewest stamps being used.
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Kruskal's Algorithm

This algorithm finds a minimal spanning tree, if one exists, for a weighted graph g with n vertices, where
n > 2. In the algorithm, S and T are sets of edges of g

Step 1 (initialization)
(a) Set T =0.
(b) Let S be the set of all edges of g

Step 2 (enlarge T)
while ITI < n 1 and S is not empty

(a) Choose an edge e of smallest weight from S. (Ties can be broken
arbitrarily.)

(b) If no cycle is formed by any of the edges in 'T U f el, then replace
T with T U [el.

(c) Remove e from S.
endwhile

Step 3 (is there a minimal spanning tree?)
if ITI <n 1

There is no minimal spanning tree for g because it is not connected.
otherwise

The edges in T and their incident vertices form a minimal spanning
tree.

endif

In Exercises 38-41 use Kruskal's algorithm to find a minimal spanning tree for the weighted graphs in the indicated
exercises.

38. Exercise 17 3'). Exercise 18

40. Exercise 19 41. Exercise 20

42. Modify Kruskal's algorithm to find a spanning tree that isi minimal with respect to all those containing a specified
edge. Illustrate your modification with edge d in Exercise 17.

43. Repeat the second part of Exercise 42 with edge b in Exercise 19.

44. Prove that Kruskal's algorithm gives a minimal spanring tree for a connected weighted graph.
45. Prove that if the weights in a connected weighted graphic are all different, then the weighted graph has exactly

one minimal spanning tree.

4.3 do DEPTH-FIRST SEARCH

In Section 4.2, we saw how breadth-first search can be used to find a spanning
tree in a connected graph. TI'is algorithm starts from one vertex and spreads out



4.3 Depth-First Search 211

to all the adjacent vertices. From each of these, we spread out again to all the
adjacent vertices that have not been reached and continue in this fashion until we
can go no further. In this way, we obtain the distance from the initial vertex to
each vertex and also a spanning tree.

Another algorithm for finding a spanning tree in a connected graph is the
depth-first search algorithm. In this algorithm, we label the vertices with consec-
utive integers that indicate the sequence in which the vertices are encountered.
The underlying idea of the algorithm is that, to find the vertex that should be
labeled immediately after labeling vertex V, the first vertices to consider are the
unlabeled ones adjacent to V. If there is an unlabeled vertex W adjacent to V, W
is assigned the next label number, and the process of searching for the next vertex
to label is begun with W. If V has no unlabeled adjacent vertices, we back up
along the edge that we traveled to label V and continue backing up, if necessary,
until we reach a vertex having an unlabeled adjacent vertex U. Vertex U is then
assigned the next label number, and the process of searching for the next vertex
to label is begun with U.

The key idea in the depth-first search algorithm is to back up when we have
gone as far as we can. As an example of this process, consider the graph in
Figure 4.27. We will assign to each vertex V a label that indicates both the
sequence in which V is labeled and its predecessor (the vertex that we came
from to reach V). We start at any vertex, say A, and assign it the label I(-) to
indicate that it is the first vertex labeled and that it has no predecessor. Then,
of the two adjacent vertices B and D, we arbitrarily choose one, say B, and
give it the label 2(A). Next, of the two unlabeled vertices adjacent to B, we
arbitrarily choose C and give it the label 3(B). Since C is a vertex with no
unlabeled adjacent vertices, we back up to B, the predecessor of C, and go
next to D, giving it the label 4(B). When all the vertices are labeled, we can
construct a spanning tree for the graph by selecting the edges (and their incident
vertices) that join each vertex to its predecessor. These edges are shown in color in
Figure 4.27.

3(B)

D
4(B)

FIGURE 4.27

The following example demonstrates this technique on a more complicated
graph.
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+ Example 4.14

We will find a spanning tree for the graph in Figure 4.28 by using the depth-first
search process. In this example, we will follow the convention that when there
is a choice of vertices, vertices will be chosen in alphabetical order. We begin
by selecting a starting vertex, arid using our convention, we choose A. Thus A is
assigned the label 1(-), indicating that it is the first vertex labeled and that it has no
predecessor. Now we select an unlabeled vertex adjacent to A. The possibilities
are B and G, and, according 10 our convention, we choose B and assign it the
label 2(A). (As illustrated in Figure 4.29, we display each vertex's label near the
vertex, and show in color the edge joining a vertex to its predecessor.)

1(-)

FIGURE 4.28 FIGURE 4.29

We now continue from B, selecting an adjacent unlabeled vertex from among
F, J, and H. Here we choose F, and assign it the label 3(B). Continuing from
F, we select C and give it the label 4(F). Next, we select D and label it 5(C).
The present situation is shown in Figure 4.30.

At this point, there are no unlabeled vertices adjacent to D, the last labeled
vertex. Thus we must back up from D to its predecessor C. Since there are
unlabeled vertices adjacent to C. we select one, namely E, and label it 6(C). The
current situation is shown in Figure 4.31.

1(-) 4(F) 5(C) 1(-) 4(F) 5(C)

2(A
B

D A G C D

2(A)
B

3(B)
F 6(C)

4 1 E

J H I J H I

I

FIGURE 4.30 FIGURE 4.31
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Because there are no unlabeled vertices adjacent to E, we back up to the
predecessor C of E and select G next, giving it the label 7(C). See Figure 4.32.

Once again we must back up, because there are no unlabeled vertices adjacent
to G. Thus we return to C, the predecessor of G. This time, however, there are
no unlabeled vertices adjacent to C, and so we are forced to continue backing
up to F. the predecessor of C. Since there are unlabeled vertices adjacent to F.
we continue labeling from F. We next select H and label it 8(F). Continuing
from H, we choose I and give it the label 9(H). The present situation is shown
in Figure 4.33.

1(-) 7(C) 4(F) 5(C)

2(A)
B

I 7(C) 4(F) 5(C)

I H I
J H 1 8(F) 9(H)

FIGURE 4.32 FIGURE 4.33

Because there are no unlabeled vertices adjacent to I, we back up to H. Now
we select J and assign it the label 10(H). At this point, every vertex is labeled
(see Figure 4.34), and so we stop. In Figure 4.34, the colored edges (and their
incident vertices) form a spanning tree. +

1(-) 7(C) 4(F) 5(C)
A G C D

2(A) 3()6C
BG

J H I
10(H) 8(F) 9(H)

FIGURE 4.34

The procedure used in Example 4.14 is formalized below.
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Depth-First Search Algorithm

This algorithm finds a spanning tree, if one exists, for a graph 5 with at least two
vertices. In the algorithm, £ is the set of vertices with labels, the predecessor of vertex
Y is a vertex in £ that is used in labeling Y, and T is the set of edges that join each
vertex to its predecessor.

Step I (label the starting vertex)
(a) Select a vertex U, assign U the label 1, and let U have no

predecessor.
(b) Set £ = {U) and T = 0.
(c)Setk =2andA = U.

Step 2 (label other vertices)
repeat

Step 2.1 (label a -ertex adjacent to X)
while there is a vertex Y not in £ that is adjacent to X

(a) Place the edge (X, YJ in T.
(b) Assign X to be the predecessor of Y.
(c) Assign Y the label k.
(d) Include Y in L.
(e) Replace k with k + 1.
(f) Now let X de note the vertex Y.

endwhile
Step 2.2 (back up)

Replace X with the predecessor of X.
until X = null or every vertex of 5 is in L

Step 3 (is there a spanning tree'?)
if every vertex of G is in £

The edges in T and their incident vertices form a spanning tree
of g.

otherwise
There is no spanning iree for g because G is not connected.

endif

.. ~~~~~~~~~~~~~~~~~~. ... .. . A........ ...... .--......... .......... ,S:,.tS.,SS.S:

There is a fundamental difference between breadth-first search and depth-first
search. With breadth-first search, we fan out from each vertex to all the adjacent
vertices, and this process is repeated at each vertex. Furthermore, at no time do
we back up in order to continue -he search. But with depth-first search, we go out
from a vertex as far as we can, and when unable to continue, we back up to the
most recent vertex from which there was a choice; then we resume going out as
far as we can.

An analogous situation can be found in two different ways to explore a cave
with many tunnels. With the breadth-first search approach, a posse searches the
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cave and whenever a tunnel branches off into several others, subgroups are formed
to explore each of these simultaneously. With the depth-first search approach, one
person explores the cave by leaving a phosphorous trail to mark where she has
been. When there is a choice of tunnels, an unexplored one is chosen at random
to be explored next. Upon reaching a dead end, she backtracks using the marked
trail to find the next unvisited tunnel.

Theorem 4.7 Let the depth-first search algorithm be applied to a graph 5.

(a) The edges in T and the vertices in L form a tree.
(b) Furthermore, if g is connected, this tree is a spanning tree.

Proof. (a) By the construction process of depth-first search, the edges of T and
the vertices in L form a connected graph. In step 2 each time an edge is selected
to be placed in T, one vertex is in L: and the other is not in 12. Thus this selection
does not create any cycles using the other edges in T. Consequently, at the end
of the depth-first search algorithm, the graph formed by the edges in T and the
vertices in L contains no cycles and is, therefore, a tree.

The proof of part (b) is left as an exercise. W

We will follow our convention and refer to the tree in Theorem 4.7 formed
by the edges in T and the vertices in 1 as simply T. The tree T is called a
depth-first search tree. The edges in T are called tree edges and the other edges
are called back edges. The labeling of the vertices is called a depth-first search
numbering. Thus, in Figure 4.34 vertex F has depth-first search number 3, the
edge on vertices F and C is a tree edge, and the edge on vertices F and G
is a back edge. Of course, the designation of edges as tree and back edges, as
well as the depth-first search numbering, depends upon the choices made during
implementation of the algorithm.

In order to analyze the complexity of the depth-first search algorithm, we
will regard labeling a vertex and using an edge as the elementary operations. For
a graph with n vertices and e edges, each vertex is labeled at most once and each
edge is used at most twice, once in going from a labeled vertex to an unlabeled
vertex and once in backing up to a previously labeled vertex. Hence, there will
be at most

n+2e <n+2C(n,2)=n+2- -n(n -1)
2

operations, and thus this algorithm is of order at most n2 .
Depth-first search can be used in many ways to solve problems involving

graphs. Some will be presented below.
Following Example 3.41 in Section 3.5, we investigated the problem of how

to assign directions to the edges of a graph to create a strongly connected directed
graph (a directed graph having a directed path between any two vertices). We
stated that the absence of an edge (called a bridge) whose removal disconnects
the graph is necessary and sufficient to guarantee that there is a way to assign
directions to edges so as to produce a strongly connected directed graph. However,
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no procedure was given to determine if a graph has a bridge. We will now describe
how depth-first search can be used for this purpose.

We first apply depth-first search to a connected graph g to obtain a spanning
tree T. Observe that a bridge in 5 must be one of the edges in T. Now successively
delete each edge in T from g and apply depth-first search to see if the resulting
graph is connected. If not, the deleted edge must be a bridge.

Next we will show hown to assign directions to the edges of a connected graph
5 with no bridge so that g becomes a strongly connected directed graph. We begin
by applying a depth-first searcli to 5 and assigning directions to the tree edges
by going from the lower depth-first search number to the higher. Then we assign
directions to back edges by going from the larger depth-first search number to the
smaller. With these assignmerlt, a strongly connected directed graph is formed.

M Example 4.15

The depth-first search algorithra has been applied to a graph to yield the depth-
first search numbering in Figuie 4.35(a), where the tree edges are colored blue
and the back edges black. Now we assign directions to all the edges as described
above, producing the directed graph shown in Figure 4.35(b). Examination shows
that it is strongly connected since there is a directed path from every vertex to
every other vertex. +

2 5 2 5

(a) (b)

FIGURE 4.35

This example illustrates the following theorem.

Theorem 4.8 Suppose depth-first search is applied to a connected graph without a bridge. If
directions are assigned to tree edges by going from the lower depth-first search
number to the higher and to back edges by going from the higher number to the
lower, then the resulting graph is strongly connected.
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The process of going as far as possible before backing up is called backtracking
when used as a general problem-solving strategy. It is often used as a systematic
way to explore a large set of possibilities when looking for a solution or for all the
solutions with particular characteristics. We will illustrate the idea of backtracking
with two examples.

Although backtracking may not seem to be directly related to the depth-first
search algorithm as applied to graphs, the set of possible solutions for a problem
can often be represented as a graph. Depth-first search can then be used as a
systematic way to search for solutions. This idea is illustrated in the first example
below.

Example 4.16

In the 4-queens problem we are asked to place 4 queens on a 4 x 4 chessboard
so that no two queens can attack one another. This means that we must place
4 tokens on a 4 x 4 grid so that no two tokens are in the same row, column, or
diagonal. We shall show how backtracking can be used to find a solution to this
problem.

First we observe how the placement of the queens can be described by a
graph. Each vertex will represent a placement of n (n > 0) nonattacking queens
placed in consecutive columns from left to right. An edge will connect two vertices
when the two configurations differ by the placement of one additional queen. To
help identify locations on the chessboard, we will think of it as a 4 x 4 matrix.
We begin by placing a queen in the 1, 1 position. Then in column 2, the only
acceptable positions for a queen are positions 3, 2 or 4, 2 because position 1, 2
would result in two queens in the same row and position 2, 2 would result in
two queens in the same diagonal. With the choice of the queen in position 3, 2
no further placements can be made, while the placement in position 4, 2 allows
for the placement of another queen in position 2, 3. The rest of the graph can
be completed in the same way, giving the graph in Figure 4.36. Now depth-first
search can be used to search this graph for a solution to the problem, that is, a
placement containing 4 nonattacking queens.

In practice, however, it is often desirable to search for solutions to a problem
without first constructing a graph like that in Figure 4.36. We will illustrate
this technique by reworking the 4-queens problem described above. Our overall
general search strategy will be to place queens on the chessboard in columns from
left to right and in rows from top to bottom. If we are unable to place a queen in
a column, we backtrack to the previous column and change the location of the
queen there. If that does not work, we go back one more column. As before, to
identify locations on the chessboard, we will think of it as a 4 x 4 matrix.

We begin by placing a queen in the 1, 1 position. (See Figure 4.37(a)).
Then, going from top to bottom in column 2, we place a queen in position 3, 2
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FIGURE 4.36

(Figure 4.37(b)) because position 1, 2 would result in two queens in the same
row and position 2, 2 would result in two queens in the same diagonal. How-
ever, we now see that there i, no spot in which to place a queen in column 3.
So we backtrack to the queen in column 2 and move the queen to position 4, 2
(Figure 4.37(c)). Then in column 3 we are able to place a queen in position 2, 3
(Figure 4.37(d)). However, we are now unable to find a position in column 4 in
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(e

FIGURE 4.37

which to place a queen. Since the location chosen in column 3 for the queen is the
only one possible, it is necessary to backtrack to column 2. But again there is no
place (other than position 3, 2, which was previously considered) in which to move
the queen in column 2. So we must backtrack all the way to column 1 and move
the queen in column 1 to position 2, 1 (Figure 4.37(e)). Then the only location in
column 2 for a queen is position 4, 2, the only location for a queen in column 3 is
position 1, 3, and for column 4 the only location is position 3, 4 (Figure 4.37(f)).
Thus a solution to the 4-queens problem has been found. +

Example 4.17

Another use of backtracking is in providing a systematic way to go through a
maze such as in Figure 4.38, where the colored lines indicate barriers. Since at
each location we have four possible choices to make, our general strategy will
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be to go east, north, west, or south in that order without returning to a previously
occupied location. When we can go no further, we backtrack to the last location
where there was a choice and foIlow our priority list of directions. Again we will
use matrix notation to describe locations in the maze. From the starting position
1, 1 we go east, east, and then 5.outh, ending up in location 2, 3. We are unable to
proceed any further from this location, and so we back up to location 1, 2. Then
we go south, west, south, east, east, east, north, and north, ending in location 1, 4.
Again unable to go any further. we backtrack to location 3, 1. Then we go south,
east, east, and east, ending up at position 4, 4. +

Start

Finish

FIGURE 4.38

For other applications of depth-first search, the interested reader should con-
sult suggested reading [9] at the end of the chapter.

EXERCISES 4.3 1' 4

Throughout these exercises, if there is a choice of vertices choose the vertex that appears first in alphabetical
order.

In Exercises 1-6 apply depth-first search to each graph to obtain a depth-first search numbering of the vertices.

1. 2. A E D J

C4 --,-B G L

H if I K

D
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4.

I E B 6.

A
C F

In Exercises 7-12 use the depth-first search numbering obtained for the graph in the indicated exercises to form
the spanning tree described in Theorem 4.7.

7. Exercise 1 8. Exercise 2 9. Exercise 3

10. Exercise 4 11. Exercise 5 12. Exercise 6

In Exercises 13-18 use the depth-first search numbering obtained in the indicated exercises to list the back edges
in the graphs.

13. Exercise 1 14. Exercise 2 15. Exercise 3

16. Exercise 4 17. Exercise 5 18. Exercise 6

In Exercises 19-22 determine if there are any bridges using the discussion preceding Example 4.15.

20.A D

B C
D C E F

3. A J

B

F

F B

5. H

G

D J

19.

221

I
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21. A 22.

B

E F

In Exercises 23-26 use Theorem 4.8 and the depth-first search numbering obtained in the indicated exercise to
assign directions to the edges that will make each graph intc a strongly connected directed graph.

23. Exercise 1 24. Exercise 2 25. Exercise 4 26. Exercise 6

27. The city manager of a community with a large university believes that something needs to be done to handle the
large influx of automobile traffic on those days that stadents are checking into the dormitories. She instructs
the chief of police to transform the current two-way street system into a system of one-way streets to handle
the extra traffic, with the provision that students can still get from any place to any other. The campus area is
given below. Is there a way for the chief of police to can y out these instructions? If so, how?

A C

28. Can the spanning trees for a connected graph formed by breadth-first search and depth-first search be the same?

29. Prove part (b) of Theorem 4.7.

30. Show that every strongly connected directed graph with more than one vertex has at least one additional
orientation of its edges under which it is strongly connected.

31. Label the vertices of IC3 as 1, 2, 3. Apply depth-first search to C3, starting at 1. How many different depth-first
search numberings are there?

32. Label the vertices of k 4 as 1, 2, 3,4. Apply depth-first search to K4, starting at 1. How many different depth-first
search numberings are there?

33. Label the vertices of IC, as 1, 2, ... , n. Apply depth-first search to IC,,, starting at 1. How many different
depth-first search numberings are there?

34. Suppose breadth-first search and depth-first search are applied to a connected graph starting at the same vertex.
If b is the label assigned to a vertex by breadth-first search and d is the label assigned to the same vertex by
depth-first search, what is the relationship between 1) and d? Why?
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35. Let depth-first search be applied to a connected graph g. Prove that every cycle of g contains a back edge, and
every back edge is contained in a cycle of 5.

A vertex A is called an articulation point of a connected graph g when the deletion of A and the edges incident
on A creates a graph that is not connected. For example, the vertex A is an articulation point of the graph
below.

36. Prove that A is an articulation point of a connected graph g if and only if there exist vertices U and V such
that U, V, and A are distinct and every path between U and V contains the vertex A.

37. Use backtracking to show that there is no solution to the 2-queens problem.

38. Use backtracking to show that there is no solution to the 3-queens problem.
39. Use backtracking to find a solution to the 5-queens problem.

40. Use backtracking to show that it is not possible to fit 7 dominoes (consisting of two unit squares) into a 4 x 4
chessboard that is missing opposite corners.

41. Use backtracking to construct a sequence of length 8 composed of the digits 1, 2, 3 with the property that
nowhere in the sequence are there two adjacent subsequences that are identical.

4.4 o ROOTED TREES

People have always been interested in learning about the descendants of histori-
cally important individuals. To assist in these investigations, a genealogical chart
is often drawn. An example is given in Figure 4.39, where for simplicity only
first names are used. It is understood that the downward lines represent the "is a
parent of' relationship.

Peter

Godfried Betty Albert

Mary Marvin Doris Denise Gregory

Judy Hal

FIGURE 4.39
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This chart can also be represented by a directed graph in which vertices
represent individuals and directed edges begin at a parent and end at a child. Such
a directed graph is shown in Figure 4.40.

s Gregory

Judy Hal

FIGURE 4.40

Since all the arrows in Figure 4.40 point downward, it is not really necessary
to draw the arrowheads on the edges as long as the directions are understood to
be downward. Figure 4.41 shows the corresponding directed tree without these
arrowheads.

Peter

Ma i Gregory

Hal

FIGURE 4.41

For the directed graph in Figure 4.40, there is one vertex with indegree 0,
and all the other vertices have indegree 1. Furthermore, when the directions on
the edges are ignored, we have a tree.

A rooted tree is a directed graph f satisfying two conditions: (1) When
the directions of the edges in 'F are ignored, the resulting undirected graph is a
tree; and (2) there is a unique vertex R such that the indegree of R is 0 and the
indegree of any other vertex is .- This vertex R is called the root of the rooted
tree. The directed graph in Figure 4.40 is a rooted tree with Peter as its root. We
will follow the customary practice of drawing rooted trees with the roots at the
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top and omitting arrowheads on the directed edges, with the understanding that
edges are directed downward.

+ Example 4.18

The graph in Figure 4.42(a) is a rooted tree with root A since (1) when the
directions on the edges are ignored, the resulting graph is a tree; and (2) A has
indegree 0, and all the other vertices have indegree 1. The usual way of drawing
this tree is shown in Figure 4.42(b). +

A

B En A- G

A F

C D HI

(a) (b)

FIGURE 4.42

Rooted trees are often used to describe hierarchical structures. One such
example occurs with the family tree of Peter. Another example is given below.

Example 4.19

A rooted tree can be used to describe the organization of a book by using "book"
as the root and other vertices as subdivisions. In some books there are subsections
of a section, and so another level of vertices could be added in this case. See Figure
4.43 for an illustration. +

Book

Sec I Sec 2 Sec 3 Sec I Sec 2 Sec I Sec 2

FIGURE 4.43

The following theorem gives some properties of rooted trees.
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Theorem 4.9 In a rooted tree:

(a) The number of vertices is one more than the number of directed edges.
(b) There are no directed cycles.
(c) There is a unique simple directed path from the root to every other vertex.

Proof. Suppose T is a rooted tree with root R. The proofs of (a) and (b) fol-
low immediately because T is a tree if the directions on the directed edges are
ignored. Next we will show that there is a directed path (and, hence, there will
be a simple directed path) from R to any other vertex V =A R. Since the indegree
of V is 1, there is a vertex l1' $ V and a directed edge from VI to V. If V, R,
we are finished. If not, since the indegree of V, is 1, there is a vertex V2 7 V,
and a directed edge from V2 to VI. Since there are no directed cycles, V2 7 V.
If V 2 = R, then we are done. Otherwise, this process can be repeated with each
iteration generating a new verlex. Since the number of vertices is finite, we must
eventually reach R. Thus we create a directed path from R to V. The unique-
ness of a simple directed path from R to V follows immediately as in parts (a)
and (b). -

Family terms are used to de.s cribe the relationships among vertices in a rooted
tree, just as they describe relationships in a genealogical chart. If in a rooted tree
there is a directed edge from a vertex U to a vertex V, we say U is a parent of
V or V is a child of U. For a vertex V, the vertices other than V on the directed
simple path from the root to V are called the ancestors of V, or, equivalently,
we say that V is a descendent of these vertices. A terminal vertex is a vertex
that has no children, and an internal vertex is one that has children. For the
rooted tree in Figure 4.42, E is a child of G, and A, F, and G are ancestors of
E. Also, F has H, G, and E as its descendants. Vertices B, D, E, and H are
terminal vertices, and the others are internal vertices. Note that, in any rooted
tree, the root has no ancestors, and every other vertex is a descendant of the root.
A terminal vertex is a vertex w Itl outdegree 0, and an internal vertex has nonzero
outdegree.

We will now consider two examples where a rooted tree is used to obtain a
solution to a problem.

+ Example 4.20

In Chapter 2 the concept of a partition of a set was introduced. To list all the
partitions of {1, 2, . . ., n} requires a systematic approach, so as not to miss
any possibility. The rooted tree in Figure 4.44 shows one such approach for
n = 4. Here the terminal vertices are the partitions. Do you recognize the pat-
tern? The children of {1,31, {2} are 1,3,4), {2}; {1,3}, {2,4}; and {1,3},
{2}, {4}. +
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FIGURE 4.44

Example 4.21

Suppose we have seven identical coins and an eighth that looks the same but is
heavier. With the use of a balance scale, we want to identify the counterfeit coin
in the smallest number of weighings. Let us label the coins 1, 2, ... , 8. Note that
when coins are placed on the two sides of the balance scale, either the left side
will go down, the two sides will balance, or the right side will go down. We can
construct a rooted tree as in Figure 4.45 giving a systematic approach for weighing
the coins. The label beside each vertex indicates which coins are being weighed
on each side of the balance scale. For example {1, 2}-{3, 4} means that coins 1
and 2 are weighed on the left side and coins 3 and 4 on the right. If the right side
goes down, we proceed to the child on the right side for the next weighing, and
similarly when the left side goes down. The terminal vertex indicates the heavy
coin. For example, we begin by comparing the weight of coins 1, 2, 3, and 4
on the left with the weight of coins 5, 6, 7, and 8 on the right. If the balance tips
to the left, we then compare coins 1 and 2 against coins 3 and 4. If in this weigh-
ing the right side goes down, we next compare coins 3 and 4. If this weighing
shows the right side going down again, we reach the terminal vertex indicating
that 4 is the counterfeit coin. Since each terminal vertex is at the end of a simple
directed path of length 3 from the root, we see that this scheme requires three
weighings to find the counterfeit coin.

Could there be a different approach that will find the counterfeit coin with
fewer weighings? Since a balance scale has three possible outcomes, we can
build a rooted tree in which there are three children rather than just two as was
done above. Figure 4.46 gives one such possibility, where we proceed to the
middle child when the two sides balance. Here, because each terminal vertex is
at the end of a simple directed path of length two from the root, we can find

I
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18,

MII 121 :31 (4) 15) (61 17) 18)

FIGURE 4.45

the counterfeit coin with just two weighings. The trees in Figures 4.45 and 4.46
are called decision trees because of the way they structure a decision-making
process. +

{1} {2} {3} {4} {5} {6} {7} {8}

FIGURE 4.46

Theorem 4.10

We will finish this section by describing the relationship between depth-first
search and rooted trees. We %N ill use from Section 4.3 the definitions and the
notation of Theorem 4.7.

If the depth-first search algorithm is applied to a graph, then the edges in T, when
oriented from the lower depth-first search number to the higher, form a rooted
tree whose root is the vertex with depth-first search number 1.

Proof Theorem 4.7 shows that T is a tree. Let R be the vertex with depth-first
search number 1. Only during step 2.1 of depth-first search is a vertex assigned a
depth-first search number and a tree edge going into it. This means that the root
R has indegree 0, and each vertex in the tree other than R has indegree 1. N

+ Example 4.22

In Figure 4.47(b), the vertices are labeled using a depth-first search numbering
obtained by applying depth-iilst search to the graph in Figure 4.47(a). If we
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assign directions to the tree edges as described in Theorem 4.10 and delete the
back edges, we obtain the rooted tree in Figure 4.47(c). +

(a)

10 10

6

2

(b)

2

(c)

FIGURE 4.47

The ideas in Example 4.22 can also be used to find bridges in a graph. The
interested reader should consult suggested reading [3] for more details.

EXERCISES 4.4

In Exercises 1-8 determine if each directed graph is a rooted tree.

1. 2- A A2

3.

229
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4.
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6.

8.

In Exercises 9-12 draw the rooted trees in the indicated exercises in the usual way, with the root at the top and
without the arrowheads.

9. Exercise 1 10. Exercise 4 11. Exercise 6 12. Exercise 8

13. LISP is the primary programming language used in artificial intelligence. There are seven objects manipulated
by LISP: S-expressions, atoms, lists, numbers, symbols, fixed-point numbers, and floating-point numbers. An
S-expression can be an atom or a list, an atom can be a number or a symbol, and a number can be either
fixed-point or floating-point. Draw a rooted tree describing these relationships.

14. Draw a rooted tree for your mother and her descendants.

15. Tom and Sue are first cousins living in a state that allows first cousins to marry. If a child is born to this
marriage, what effect would this have upon a genealogical chart in which the root is Tom and Sue's common
grandfather?

16. It is known that a male bee has only a mother and teiat a female bee has both a mother and father. Draw
a rooted tree giving the ancestors of a male bee for four generations back, assuming no mating between
ancestors.

17. Write an algorithm describing how a tree with a vertex labeled R can be transformed into a rooted tree with
root R. Illustrate your algorithm on the tree below.

5.

7. I I

I I

I II

I
L

I
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18. Repeat the second part of Exercise 17 for the following tree.

19. In how many ways can a tree with a vertex labeled R be transformed into a rooted tree with root R?

In Exercises 20-23 list for each rooted tree:

(i) the root

(ii) the internal vertices

(iii) the terminal vertices

(iv) the parent of G

(v) the children of B

(vi) the descendents of D

(vii) the ancestors of H.

20. A 21. A

B D

E F.G H

l

22. 23. E

B K G F H C

I

I

0 1

0 4

0

i

I

R

4 1

i i P 0
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24. Draw a rooted tree with 7 vertices having as many terminal vertices as possible.

25. Draw a rooted tree with 7 vertices having as many internal vertices as possible.

26. Use Figure 4.44 to determine the number of partitions of {1, 2, 3,4, 5}.

27. Draw a rooted tree describing all the possible outconmes for a two-game match between two chess players.
(Remember that a chess game can end in a win, draw, or loss.)

28. Draw a rooted tree showing how to sort letters having a three-digit zip code in which the digits are 1
and 2.

29. Suppose we have three identical coins and a fourth that ooks the same but is lighter. Construct a decision tree
that will find the counterfeit coin using no more than two weighings on a balance scale.

30. Suppose we have eleven identical coins and a twelfth that looks the same but is lighter. Construct a decision
tree that will find the counterfeit coin using no more than three weighings on a balance scale.

31. Suppose we have three identical coins and a fourth that looks the same but is heavier or lighter. Construct a
decision tree that will find the counterfeit coin and detennine if it is heavier or lighter using no more than three
weighings on a balance scale.

32. Suppose we have seven identical coins and an eighth [hat looks the same but is counterfeit (either heavier or
lighter). Construct a decision tree that will find the counterfeit coin and determine if it is heavier or lighter
using no more than three weighings on a balance scale.

33. In a rooted tree, the level of a vertex is defined to be the .ength of the simple directed path from the root to that
vertex. What is the level of the root?

34. How many rooted trees are there with 2 vertices? With 'i vertices? With 4 vertices?

In Exercises 35-38 determine the level of each indicated v,?t tex. (See Exercise 33 for the definition of "level.")

35. vertex F in the rooted tree of Exercise 20 36. vertex L in the rooted tree of Exercise 21

37. vertex H in the rooted tree of Exercise 22 38. vertex F in the rooted tree of Exercise 23

39. For the tree obtained by applying depth-first search to a connected graph, prove that the descendents (relative
to the depth-first search tree) of any vertex V have larger depth-first search numbers than V.

4.5 + BINARY TREES AND TRAVERSALS

Expl! e, sA i;;ln.~ trees

In previous examples and applications of rooted trees, it was not necessary to
distinguish between the children of a parent. In other words, there was no need to
designate a child as the first cii ld or the second child. However, there are many
situations where it is necessary to make such a distinction. For example, in an
arithmetic expression such as A - B, the order of A and B is important. Thus if
we represent A - B by a rooted tree in which the root represents the operation (-)
and the children represent the operands (A and B), then the order of the children
is important.

A binary tree is a rooted tiee in which each vertex has at most two children
and each child is designated as being a left child or a right child. Thus, in a
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binary tree, each vertex may have 0, 1, or 2 children. When drawing a binary
tree, we will follow customary practice and draw a left child to the left and below
its parent and a right child to the right and below its parent. The left subtree
of a vertex V in a binary tree is the graph formed by the left child L of V, the
descendents of L, and the edges connecting these vertices. The right subtree of
V is defined in an analogous manner.

Example 4.23

For the binary tree in Figure 4.48(a), A is the root. Vertex A has two children, a
left child B and a right child C. Vertex B has one child, a left child D. Similarly,
C has a right child E but no left child. The binary tree in Figure 4.48(b), in which
A has a left child B, is different from the one in Figure 4.48(c), in which B is a
right child. For the binary tree in Figure 4.48(d), the left subtree of V is shown
in color in Figure 4.48(e), and the right subtree of W is shown in color in Figure
4.48(f). The right subtree of V consists of the vertex U alone. +

A

(a)

A

B

(b)

A

B

(C)

(d) (e)

FIGURE 4.48

(D

Binary trees are used extensively in computer science to represent ways
to organize data and describe algorithms. For example, during the execution
of a computer program it may be necessary to evaluate arithmetic expressions
such as (2 - 3 4) + (4 + 8). Our knowledge of the conventions for the order of
operations tells us how to proceed with this calculation: Scan from left to right,
first doing multiplication and division and then addition and subtraction, with the
understanding that parentheses have priority. However, when an expression needs
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to be evaluated frequently, this method cannot be used efficiently by a computer.
An alternate approach is to represent an arithmetic expression by a binary tree
and then process the data in sone other way.

We will represent an arithraetic expression as a binary tree with the operations
as internal vertices and the operands as terminal vertices. In this representation
we let the root denote the final operation done in the expression, and we place the
left operand as its left child and the right operand as its right child. If necessary,
this process is repeated on these operands. The binary tree created by this process
is called an expression tree.

+ Example 4.24

The expression a * b (where * denotes multiplication) is represented by the binary
tree in Figure 4.49. Note that the operation * is represented by an internal vertex,
and the operands a and b are represented by terminal vertices. +

a b

FIGURE 4.49

+ Example 4.25

The expression a + b * c means a + (b * c). The last operation to be performed
is addition. Thus we first represent this expression by the binary tree in Figure
4.50(a). Repeating the process with the operand b * c yields the expression tree
in Figure 4.50(b). +

X + .

a b* C h c

(a) (b)

FIGURE 4.50
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+ Example 4.26

The expression tree for a + d * (b - c) is created by the sequence of binary trees
in Figure 4.51. +

+ a

a /1%d
d*(b -c) b -c

FIGURE 4.51

+ Example 4.27

The expression

(a+b*c)- (f - d)

is represented by the expression tree in Figure 4.52. +

+-

b c d e

FIGURE 4.52

We have seen that an arithmetic expression can be represented by an expression
tree. Now we must process the expression tree in some way so as to obtain an
evaluation of the original expression. We are looking for a systematic way to
examine each vertex in the expression tree exactly once. Processing the data at a
vertex is usually called visiting a vertex, and a search procedure that visits each
vertex of a graph exactly once is called a traversal of the graph. For example,
both breadth-first search and depth-first search are traversals of a connected graph
because both are methods by which each vertex of the graph is visited (labeled)
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exactly once. Note that "visit" is used in a technical sense; merely considering a
vertex in an algorithm does not necessarily constitute a visit.

We will consider a traversal of a binary tree characterized by visiting a par-
ent before its children and a left child before a right child. (This holds for all
the vertices in the binary tree.i Such a traversal is called a preorder traver-
sal, and listing the vertices in the order they are visited is called a preorder
listing.

Although it is possible to give a description of a preorder traversal using the
depth-first search algorithm,* we will state an algorithm for the preorder traversal
that is consistent with the descriptions of the other traversals we will discuss.
This is a recursive formulation of the preorder traversal, which means that in this
description the algorithm refers to itself. This is analogous to the definition of n!
given in Section 2.6.

Preorder Traversal Algorithm

This algorithm gives a preorder listing of the vertices in a binary tree.

Step I (visit)
Visit the root.

Step 2 (go left)
Go to the left subtree, if one exists, and do a preorder traversal.

Step 3 (go right)
Go to the right subtree, if one exists, and do a preorder traversal.

A Example 4.28

For the binary tree in Figure 4.53(a), we start by visiting the root A. (We use
the word "visit" to indicate when a vertex should be listed, and in the figures
we show the order of visiting in parentheses near the vertex.) Then we go to the
left subtree of A (see Figure 4.5 3(b)) and start the preorder traversal again. Now
we visit the root B and go to the left subtree of B (see Figure 4.53(c)), where
we start another preorder traversal. Next we visit the root D. Since there is no
left subtree of D, we go to the right subtree of D (which consists of just the
vertex F), and again start a preorder traversal. Thus we visit the root F. Since
there are no subtrees of F, we have completed the preorder traversal of the left

*Apply the depth-first search algorithm to a binary tree by starting at the root and always choosing
a left child in preference to a right ch Ald. The order in which the vertices are labeled is the preorder
listing.
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subtree of B. Consequently, we next begin a preorder traversal of the right subtree
of B (see Figure 4.53(d)). To do this, we visit the root E and then go to the left
subtree of E (which consists of only the vertex G) to begin another preorder
traversal. Thus we visit vertex G. Since G has no subtrees and E has no right
subtree, both subtrees of B are traversed. This completes the traversal of the left
subtree of A, and so we begin another preorder traversal on the right subtree of A.
This consists only of visiting the root C and so completes the preorder traversal
of the entire binary tree. The resulting preorder listing is A, B, D, F, E, G, C
with a labeling of the vertices shown in Figure 4.53(e). +

A(1) A(1) A(1)

B

C

D E D

F G

(a) (b) (c)

D(3)

(d) (e)

FIGURE 4.53

+ Example 4.29

Applying preorder traversal to the binary tree in Figure 4.54 yields the order of
visiting shown in Figure 4.55. +

When a preorder traversal is performed on an expression tree, the resulting
listing of operations and operands is called the prefix form or Polish notation
for the expression. (The latter name is used in honor of the famous Polish logician
Lukasiewicz.) For example, the four expressions in Examples 4.24, 4.25, 4.26,

F G

7)
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and 4.27 have as their Polish notations

*ab, +a *bc, +-a *d-bc, and -+a *bc-f/de,

respectively. An expression in Polish notation is evaluated according to the fol-
lowing rule: Scan from left to right until coming to an operation sign, say T, that
is followed by two successive numbers, say a and b. Evaluate T a b as a T b,
and replace T a b by this value in the expression. Repeat this process until the
entire expression is evaluatecL (Equivalently, an expression in Polish notation can
be scanned from right to lefId ntil coming to two successive numbers followed
immediately by an operation sign.)

FIGURE 4.54

o~10

6 7

FIGURE 4.55

+ Example 4.30

The expression (2 - 3 * 4) + (4 + 8) is represented by the expression tree in
Figure 4.56. The Polish notation for this expression (found by doing a preorder
traversal on the expression tree) is + - 2 * 3 4 + 4 / 8 2. The evaluation is
performed as follows.
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+

2

3 4 8 2

FIGURE 4.56

First, we evaluate * 3 4 and replace it by 3 * 4 = 12. This substitution gives
the new expression + 2 12 + 4 / 8 2.

Second, we evaluate - 2 12 and replace - 2 12 by -10. This substitution
yields the new expression + -10 + 4 / 8 2, where we remember that the - is
part of -10 and is not a new operation.

Third, we evaluate / 8 2 and replace these symbols with 4. Thus the current
expression is + -10 + 4 4.

Fourth, we evaluate + 4 4 as 8. The expression now has the form + -10 8.
Fifth, we evaluate + -10 8 to obtain the final result, which is -2. +

The Polish notation for an expression provides an unambiguous way to write
it without the use of parentheses or conventions about the order of operations.
Many computers are designed to rewrite expressions in this form.

Po3stordXer Trav\ersal

Readers who are familiar with hand calculators know that some require algebraic
expressions to be entered in a form known as reverse Polish notation or postfix
form, also introduced by Lukasiewicz. Unlike Polish notation, in which the op-
eration sign precedes the operands, in reverse Polish notation the operation sign
follows the operands. The reverse Polish notation for the expression in Example
4.30 is 2 3 4 * - 4 8 2/ + +. It is evaluated in a fashion similar to Polish notation
except that, as we scan from left to right, we look for two numbers immediately
followed by an operation sign. (As with Polish notation, we could scan from right
to left looking for an operation sign followed immediately by two consecutive
numbers.) The steps in evaluating the expression above are

2 3 4 * -4 8 2 / + + (First 3 4 * is evaluated and replaced.)
2 12 - 4 8 2 / + + (Next 2 12 - is evaluated and replaced.)
-10 4 8 2 / + + (Then 8 2 / is evaluated and replaced.

Note that the first symbol is part of
the number -10 and not an operation sign.)

-10 4 4 + + (Next 4 4 + is evaluated and replaced.)
-10 8 + (Finally we evaluate -10 8 + to obtain

the final result.)
-2



240 Chapter 4 Trees

Again we see that we car evaluate an expression without the need for paren-
theses and without worrying about the order of operations. Thus reverse Polish
notation is an efficient method for use in hand calculators and computers. How can
the reverse Polish notation for- an expression be obtained from an expression tree?

By using a traversal called postorder, we can obtain the reverse Polish no-
tation for an expression. The postorder traversal is characterized by visiting
children before the parent and a left child before a right child. (This holds for all
the vertices in the binary tree.) A systematic way to do this is described in the
following recursive algorithm.

Postorder Traversal Algorithm

This algorithm gives a postorder listing of the vertices of a binary tree.

Step]I (start)
Go to the root.

Step 2 (go left)
Go to the left subtree, if one exists, and do a postorder traversal.

Step 3 (go right)
Go to the right subtrec, if one exists, and do a postorder traversal.

Step 4 (visit)
Visit the root.

+ Example 4.31

For the binary tree in Figure 4.57(a), we begin at the root A, go to the left subtree
of A (see Figure 4.57(b)), and begin postorder traversal again. Thus we go to the
left subtree of B (see Figure 4 57(c)) and start postorder traversal again. Since
there is no left subtree of D, xwe go to the right subtree of D (which consists only
of the vertex F) and begin postorder traversal again. Because F has no subtrees,
we visit F. Since the right subtree of D has been traversed, we next visit D.
(Again we use the word "visit" to indicate when a vertex should be listed, and in
the figures, show the order of visiting in parentheses near the vertex.) Now the
left subtree of B has been traversed, so we go to the right subtree of B (see Figure
4.57(d)) and start postorder traversal again. Next we go to the left subtree of E
(which is just G) and start postorder traversal again. Since G has no subtrees, G
is visited. Because the left subtree of E has been traversed and there is no right
subtree of E, we visit E. Nowv both the left and right subtrees of B have been
traversed; so we visit B. This completes the traversal of the left subtree of A, and
so we go to the right subtree of A and start postorder traversal again. Because C
has no subtrees, C is visited. Since both subtrees of A have been traversed, we
visit A. This completes the poltorder listing F, D, G, E, B, C, A with a labeling
of the vertices shown in Figure .4.57(e). +
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A

D D

(b) (c)

A A(7)

F(1) G(3) F(1) G(3)

(d) (e)

FIGURE 4.57

* Example 4.32

The postorder traversal applied to the binary tree in Figure 4.54 yields the order
of visiting shown in Figure 4.58. +

16

FIGURE 4.58

We have seen how expression trees yield the Polish and reverse Polish notations
for an expression. In these notations, the operation sign precedes or follows the
operands, respectively. With the use of the inorder traversal, it is possible to

A A

F G

(a)

241
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obtain an expression with the operation sign between the operands. However,
this traversal requires the c'areful insertion of parentheses in order to evaluate the
expression properly.

The inorder traversal 's characterized by visiting a left child before the
parent and a right child after the parent. (This holds for all the vertices in the
binary tree.) A systematic way to do this is described in the following recursive
algorithm.

Inorder Traversal Algorithm

This algorithm gives an inorder listing of the vertices of a binary tree.

Step 1 (start)
Go to the root.

Step 2 (go left)
Go to the left subtree, if one exists, and do an inorder traversal.

Step 3 (visit)
Visit the root.

Step 4 (go right)
Go to the right subtvee, if one exists, and do an inorder traversal.

Example 4.33

For the binary tree in Figure 4.59(a), we begin at the root A, go to the left
subtree of A (see Figure 4.59s b)), and then start inorder traversal again. Next
we go to the left subtree of B (see Figure 4.59(c)) and start inorder traversal
again. Since there is no left subtree of D, we visit the root D. (Again we use
the word "visit" to indicate when a vertex should be listed, and in the figures,
show the order of visiting in parentheses near the vertex.) Then we go to the
right subtree of D (which is just the vertex F) and start inorder traversal again.
Since there is no left subtree of F, we visit the root F. Since F has no right
subtree, we have traversed the left subtree of B. So we visit B, go to the right
subtree of B (see Figure 4.59(d)), and do inorder traversal again. Thus we go
to the left subtree of E (which is just the vertex G) and start inorder traversal
again. Since G has no left subtree, we visit G. Because G has no right subtree,
we have traversed the left subtree of E. Thus we visit E. Since E has no right
subtree, we have traversed the right subtree of B. We have now traversed the
left subtree of A. Hence we v sit the root A and go to the right subtree of A
(which consists only of the vertex C) and begin inorder traversal again. Since C
has no left subtree, we visit C'. This step completes the inorder traversal giving
the inorder listing D, F, B, G, E, A, C with the labeling of vertices shown in
Figure 4.59(e). +
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D

(c)

(d) (e)

FIGURE 4.59

+ Example 4.34

When inorder traversal is applied to the binary tree in Figure 4.54, the vertices
are listed according to the numbering in Figure 4.60. +

9

FIGURE 4.60

+ Example 4.35

Applying inorder traversal to the expression tree in Figure 4.56 yields the expres-
sion2 - 3 * 4 + 4 + 8/2. +

(a) (b)

D(I
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Other uses of traversals can be found in suggested reading [7] at the end of
the chapter.

EXERCISES 4.5

In Exercises 1-6, construct an expression tree for each exp session.

1. a*b+c 2. (4+2)*(6-8)

3. ((a-b)/c) * (d + e/f) 4. (((6-3) * 2) + 7)/((5-1) * 4 + 8)
5. a*(b*(c*(d*e+f)-g)+h)+j 6. (((4*2)/3)-(6-7))+(((8-9)*8)/5)

In Exercises 7-12 find the indicated subtrees.

7. the left subtree of vertex A 8. the right subtree of vertex A

A A

B C

9. the left subtree of vertex C 1(. the right subtree of vertex E

A

11. the left subtree of vertex E 12. the right subtree of vertex D

A

B C

F

I K

L m N 0 P Q
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In Exercises 13-18 give the preorder listing of vertices for the binary trees in the indicated exercises.

13. Exercise 7 14. Exercise 8 15. Exercise 9

16. Exercise 10 17. Exercise 11 18. Exercise 12

In Exercises 19-24 give the postorder listing of vertices for the binary trees in the indicated exercises.

19. Exercise 7 20. Exercise 8 21. Exercise 9

22. Exercise 10 23. Exercise 11 24. Exercise 12

In Exercises 25-30 give the inorder listing of vertices for the binary trees in the indicated exercises.

25. Exercise 7 26. Exercise 8 27. Exercise 9

28. Exercise 10 29. Exercise 11 30. Exercise 12

In Exercises 31-36 find the Polish notation for the expressions in the indicated exercises.

31. Exercise 1 32. Exercise 2 33. Exercise 3

34. Exercise 4 35. Exercise 5 36. Exercise 6

In Exercises 3 7-42 find the reverse Polish notation for the expressions in the indicated exercises.

37. Exercise 1 38. Exercise 2 39. Exercise 3

40. Exercise 4 41. Exercise 5 42. Exercise 6

Evaluate the Polish notation expressions in Exercises 43-46.

43. + /42+56 44. *+-+43628

45. +*4/62-+425 46. +*+34-12-3/42

Evaluate the reverse Polish notation expressions in Exercises 47-50.

47. 45-7*23++ 48. 56422/+*-

49. 23+46--5*4+ 50. 34+ 12 -*42/3-+

51. Construct an expression tree for the Polish notation expression

* + B D - AC.

52. Construct an expression tree for the Polish notation expression

* + B - DF + ACE.

53. Construct an expression tree for the reverse Polish notation expression

AC * B - D +.

54. Construct an expression tree for the reverse Polish notation expression

ED - A + BC - F * +.

55. Construct a binary tree for which the preorder listing of vertices is C, B, E, D, A and the inorder listing is
B, E, C, A, D.

56. Construct a binary tree for which the preorder listing of vertices is E, C, A, D, B, F, G, H and the inorder
listing is A, C, D, E, F, B, G, H.
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57. Construct a binary tree for which the postorder listing of vertices is E, B, F, C, A, D and the inorder listing is
E, B, D, F, A, C.

58. Construct a binary tree for which the postorder listing of vertices is D, H, F, B, G, C, A, E and the inorder
listing is D, F, H, E, B, A, G, C.

59. Construct a binary tree with 7 vertices for which the preorder listing is the same as the inorder listing.
60. Construct a binary tree with 8 vertices for which the postorder listing is the same as the inorder listing.
61. Construct a binary tree for which the preorder listing is the same as the postorder listing.
62. Construct two distinct (nonisomorphic) binary trees hat have 1, 2, 3 as their preorder listing of vertices.
63. Construct two distinct (nonisomorphic) binary trees 1hat have 1, 2, 3 as their postorder listing of vertices.

64. Verify for n = 1, 2, and 3 that the number of binary trees with n vertices is

n!(A+ 1)!

(Such numbers are called Catalan numbers.)
65. Prove that if vertex X is a descendant of vertex Y in a binary tree, then Y precedes X in the preorder listing of

vertices and X precedes Y in a postorder listing.
66. Prove that if the preorder and the inorder listings of vertices of a binary tree are given, then it is possible to

reconstruct the binary tree.
67. The Fibonacci trees are defined recursively as follows: each of El and T2 is a single vertex and for n > 3, T,

is a tree where the left subtree of the root is Tn-1 and the right subtree is Tn-2. Find and prove a formula for
the number of vertices in T.

4.6 + OPTIMAL BINARY TREES AND BINARY
SEARCH TREES

In this section we present two applications, both of which require the construction
of a binary tree to solve a problem. These can be studied in either order.

To represent symbols, computers use strings of Os and Is called codewords. For
example, in the ASCII (American Standard Code for Information Interchange)
code, the letter A is represented by the codeword 01000001, B by 01000010,
and C by 01000011. In this system each symbol is represented by some string
of eight bits, where a bit is either a 0 or a 1. To translate a long string of Os
and Is into its ASCII symbols, we use the following procedure: Find the ASCII
symbol represented by the first 8 bits, the ASCII symbol represented by the
second 8 bits, etc. For example, 010000110100000101000010 is decoded as
CAB.
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For many purposes this kind of representation works well. However, there
are situations, as in large-volume storage, where this is not an efficient method.
In a fixed length representation, such as ASCII, every symbol is represented by
a codeword of the same length. A more efficient approach is to use codewords
of variable lengths, where the symbols used most often have shorter codewords
than the symbols used less frequently. For example, in normal English usage the
letters E, T, 0, and A are used much more frequently than the letters Q, J, X, and
Z. Is there a way to assign the shortest codewords to the most frequently used
symbols? If messages use only these eight letters, a natural assignment to try is:

E: 0, T: 1, 0: 01, A: 11,
Q: 00, J: 10, X: 101, Z: 011.

Here the shortest possible codewords are assigned to the most frequently used
letters, and longer codewords are assigned to the other letters. This appears to be
a more efficient approach than assigning all these letters a codeword of the same
fixed length, which would have to be three or more. (Why?)

But how can we decode a string of Os and Is? For example, how should the
string 0110110 be decoded? Should we start by looking at only the first digit, or
the first two, or the first three? Depending upon the number of digits used, the first
letter could be E, 0, or Z. We see that, in order to use variable length codewords,
we need to select representations that permit unambiguous decoding.

A way to do this is to construct codewords so that no codeword is the first
part of any other codeword. Such a set of codewords is said to have the prefix
property. This property is not enjoyed by the above choice of codewords since
the codeword for T is also the first part of the codeword for A. On the other
hand, the set of codewords S = {000, 001, 01, 10, 111 has the prefix property
since no codeword appears as the first part of another codeword. The method for
decoding a string of Os and Is into codewords that have the prefix property is
to read one digit at a time until this string of digits becomes a codeword, then
repeat the process starting with the next digit, and continue until the decoding
is done. For example, using the set of codewords S above, we would decode
the string 001100100011 as 001, 10, 01, 000, 11. Thus an efficient method of
representation should use codewords such that (1) the codewords have the prefix
property; and (2) the symbols used frequently have shorter codewords than those
used less often.

Any binary tree can be used to construct a set of codewords with the prefix
property by assigning 0 to each edge from a parent to its left child and 1 to each
edge from a parent to its right child. Following the unique directed path from
the root to a terminal vertex will give a string of Os and Is. The set of all strings
formed in this way will be a set of codewords with the prefix property, because
corresponding to any codeword we can find the unique directed path by working
down from the root of the binary tree, going left or right according to whether a
digit is 0 or 1. By definition we finish at a terminal vertex, and so this codeword
cannot be the first part of another codeword.
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0

(a) (b)

FIGURE 4.61

* Example 4.36

For the binary tree in Figure 4.615(a), we assign Os and Is to its edges as shown in
Figure 4.61(b). The directed paths from the root to all the terminal vertices then
produce the codewords 000, 0011, 01, 10, 11 as illustrated in Figure 4.62, where
each codeword is written below the corresponding terminal vertex. *

0 1

0 10

ON) o01

FIGURE 4.62

Thus, by using a binary tree, we have found a way to produce codewords
that have the prefix property. It remains to find a method for assigning shorter
codewords to the more frequently used symbols. If we have only the 5 symbols
in Figure 4.62, then we want to use the codewords 01, 10, and 11 for the three
most frequently used symbols. Notice that these codewords correspond to the
terminal vertices that are closest to the root. Thus, to obtain an efficient method
for representing symbols by variable length codewords, we can use a binary tree
and assign the most frequently used symbols to the terminal vertices that are
closest to the root.

We will restrict our discussion to those binary trees for which every in-
ternal vertex has exactly 2 children. Suppose wI, w2 . Wk are nonnegative
real numbers. A binary tree for the weights wI, W2 . Wk is a binary tree
with k terminal vertices labeled wI, w2 , ... , Wk. A binary tree for the weights
wI, W2, .. -Wk has weight d uwl + d2 w2 + . + dkwk, where di is the length of
the directed path from the root lo the vertex labeled wi (i = 1, 2, . . ., k).

HI
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+ Example 4.37

The binary tree in Figure 4.63(a) is a binary tree for the weights 2, 4, 5, 6 and
has weight 3 . 6 ± 3 5 + 2 4 + 1 . 2 = 43. In Figure 4.63 (b) is another binary
tree for the weights 2, 4, 5, 6, but its weight is 2(2 + 4 + 5 ± 6) = 34, since the
distance from the root to each terminal vertex is 2. +

Distance
from loot

I- - -
2

2 - -

6 5

(a) (b)

FIGURE 4.63

For the coding problem, we want to find a binary tree of smallest possible
weight in which the frequencies of the symbols to be encoded are the weights.
A binary tree for the weights WI, W2 , ... , Wk is called an optimal binary tree
for the weights w1 , W2 . -Wk when its weight is as small as possible. Thus the
binary tree in Figure 4.63(a) is not an optimal tree for the weights 2, 4, 5, 6 since
there is another binary tree with smaller weight, namely that in Figure 4.63(b).

The following algorithm due to David A. Huffman produces an optimal binary
tree for the weights W I~, ., Wk-.

Huffman's Optimal Binary Tree Algoritlhm

For nonnegative real numbers w I, W2. -Wk, where k > 2, this algorithm constructs
an optimal binary tree for the weights WI, W2 , ... ,- Wk. In the algorithm, a vertex is
referred to by its label.

Step 1 (create trees)
(a) For i = 1, 2,. k construct a tree consisting of one vertex

that is labeled wi.
(b) Let S denote the set of trees constructed in this manner.

Step 2 (make a larger tree)
repeat

Step 2.1 (select smallest weights)
From S select two trees El and T2 with roots that have the
smallest labels, say V and W. (Ties can be broken arbitrarily.)

Step 2.2 (combine the trees)
(a) Construct the root of a binary tree, and assign the label

V + W to this root.
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(b) Make El the lef t subtree of this root.
(c) Make T2 the right subtree of this root.
(d) In S, replace 'I- and T2 with the tree having root labeled

V + W.
until ISI I

Example 4.38

We begin the construction of an optimal binary tree for the weights 2, 3, 4, 7, and
8 by constructing five binary tre.es, each having a single vertex that is labeled by
one of the given weights. (See Figure 4.64.) The set consisting of these five trees
is denoted S. Now we select the two trees Ti and T 2 with roots having the smallest
labels, namely 2 and 3. (For convenience, we will refer to a vertex by its label.)

2 3 4 7 8

FIGURE 4.64

We use Ti and T2 to forrri a new tree with root 5, and replace Ti and T2 in
S by this new tree. The binary trees in S now have roots labeled 5, 4, 7, and
8, as shown in Figure 4.65. Next, we continue step 2 by combining the binary
trees with roots labeled 5 and 4 to form a new binary tree with root 9. This tree
replaces the two trees in S with labels 5 and 4. The binary trees now in S have
roots labeled 9, 7, and 8. (See Figure 4.66.) As step 2 continues, we combine the
binary trees with roots labeled 7 and 8 to form a binary tree with root 15. This

5

2 3 4 7 8

FIGURE 4.65

9

5

4

2 3 7 8

FIGURE 4.66
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new tree now replaces the trees in S with labels 7 and 8. At this point S consists
of two binary trees with roots labeled 9 and 15. (See Figure 4.67.) Combining
these two binary trees gives the optimal binary tree for the weights 2, 3, 4, 7, and
8 shown in Figure 4.68. The weight of this tree is

2(4+7+8)+3(2+3)=53. +

9

15

FIGURE 4.67

24

3

FIGURE 4.68

+ Example 4.39

Using Huffman's optimal binary tree algorithm, we can construct an optimal
binary tree for the weights 2, 4, 5, and 6 in the steps shown in Figure 4.69. This
tree has weight

1 .6+2 5+3(2+4)= 34.

Note that in step 2.1 we could have chosen the binary tree with one vertex
labeled 6 instead of the tree with three vertices labeled 2, 4, and 6. In this case
we would have obtained a different optimal binary tree. +
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(a)

6

2 4 5 6

(b)

I I

5

2 4 6

(c)

17

5

2 4

(d)

FIGURE 4.69

An analysis of this algorithm requires knowledge of sorting and inserting
algorithms that we have not studied. Thus we state without proof (see suggested
reading [4] at the end of the chapter) that Huffman's optimal binary tree algorithm
is of order at most k2, where k is the number of weights. A proof that the algorithm
constructs an optimal binary tree is found in Exercises 45-47.

252 Chapter 4 Trees
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In order to find codewords with the prefix property such that the most fre-
quently used symbols are assigned the shortest codewords, we construct an op-
timal binary tree with the stated frequencies of the symbols as its weights. Then
by assigning Os and is to the edges of this tree, as described in Example 4.36,
codewords can be efficiently assigned to the various symbols.

Example 4.40

Suppose the characters E, T, A, Q, and Z have expected usage rates of 32, 28, 20,
4, and 1, respectively. In Figure 4.70 we see an optimal binary tree with weights
1, 4, 20, 28, 32 created by Huffman's optimal binary tree algorithm. Furthermore,
each symbol has been placed in parentheses next to its usage rate. Then Os and Is
are assigned to the edges of the trees so that codewords with the prefix property
are formed at the terminal vertices. (See Figure 4.71.) Thus we see that E should
be assigned the codeword 1, T should be assigned the codeword 01, A should be
assigned 001, Q should be assigned 0001, and Z should be assigned 0000. +

0 \~32(E)

28(T)
0 1 01

20(A)

I(Z) 4(Q)
0000 00011(Z)

FIGURE 4.70 FIGURE 4.71

A binary tree describing the codewords can also be used to decode a string of
Os and Is. To do so, we start with the digits in the string and follow the directed
path from the root indicated by the Os and is. When a terminal vertex is reached,
the string is then decoded by the codeword at that vertex. Then this process is
begun again at the root with the next digit. For example, to decode the string
00101 with the tree in Figure 4.71, we start at the root and go to the left child,
then to the left child again, and then to the right child, which is a terminal vertex
with the codeword 001 and symbol A. Then we go back to the root and decode
the remaining bits 01, which correspond to the symbol T.

Another application of Huffman's optimal binary tree algorithm arises in
regard to the merging of sorted lists. Suppose we have two sorted lists of numbers
L and L2 that we want to merge together into one sorted list. Recall from Theorem
2.11 that if L I and L2 have n I and n2 numbers, respectively, then these two sorted
lists can be merged into one sorted list with at most n, + n2 - 1 comparisons.
Now suppose we have 3 sorted lists LI, L2 , and L3 containing 150, 320, and 80
numbers, respectively. By merging only two lists at a time, how can we merge
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these 3 lists into one sorted list so that we minimize the number of comparisons
needed? One way is to merge L 1 and L2 into a third list with 470 numbers, which
requires at most 469 comparisons. Then we merge this new list with L3, which
requires at most 470 + 80 -- 1 == 549 comparisons. Altogether this merge pattern
requires at most 469 + 549 = 1018 comparisons. This process can be represented
by the binary tree in Figure 4.72 a), where the labels represent the sizes of the lists.
A second merge pattern is to merge L, and L3 first, followed by merging this new
list with L2. This merge pattern requires at most 229 + 549 = 778 comparisons
and is represented in Figure 4.72(b). Finally, we can merge L2 and L3 first and then
merge the result with LI. This requires at most 399 + 549 = 948 comparisons
and is represented in Figure 4.72(c). Thus we see that the second merge pattern
requires the fewest comparisons. Furthermore, we observe that the optimal pattern
of merging (the one requiring the fewest comparisons) occurs when the smallest
lists are used first, since in this way fewer comparisons are made overall. In fact,
the number of times an item is sorted is the distance of its list from the root in the
binary trees shown in Figure 4.72. Thus the optimal merging pattern corresponds
to the tree of minimum weight in Figure 4.72, where the weight of a vertex is
the number of items in the corresponding list. Hence the optimal merge pattern
can be found by following the construction in Huffman's optimal binary tree
algorithm.

550 550

470) 230
80 320

150 320 150 80 320 80

(a) (b) (c)

FIGURE 4.72

* Example 4.41

In order to merge five sorted lists with 20, 30, 40, 60, and 80 numbers optimally,
we begin by merging together the two sorted lists with the smallest number of
items. These are the sorted lists with 20 and 30 numbers, giving a new sorted list
of 50 numbers and using at most 49 comparisons. Now we consider the four sorted
lists with 50, 40, 60, and 80 numbers and combine the lists with 50 and 40 items;
this merging yields a new sorted list of 90 items using at most 89 comparisons.
Next, from the three sorted lists with 90, 60, and 80 numbers, we merge the lists
with 60 and 80 numbers to obtain a new sorted list of 140 items using at most
139 comparisons. Finally, we combine the sorted lists with 90 and 140 numbers
giving one sorted list with 230 numbers and using at most 229 comparisons. This
optimal merge pattern uses at most 506 comparisons. A binary tree representation
of this optimal merge pattern is given in Figure 4.73. +
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,140

20 30

FIGURE 4.73

Maintaining a large data set is a common problem for data processors. This
consists not only of updating the data set by adding and deleting, but also of
searching the data for a particular piece of information. Suppose, for instance,
that the Acme Manufacturing Company maintains a list of its customers. When
an order is received, the company must search this list to determine if the order
is from an old or a new customer. If the order is from a new customer, then this
customer's name must be added to the list. Moreover, when a customer goes out
of business, that customer's name must be removed from the list.

One way to maintain such lists is to keep the data in the order in which
they are received. For example, if Acme Manufacturing has ten customers named
Romano, Cohen, Moore, Walters, Smith, Armstrong, Garcia, O'Brien, Young,
and Tucker, they can keep these names in an array in the given order. This method
enables items to be added to the list easily; if Jones becomes a customer, this new
name can be added to the end of the existing array. However, this method makes it
very time-consuming to determine if a particular name is in the list. Determining
that Kennedy is not a customer, for instance, will require checking every name in
the list. Of course, the amount of checking required is minimal when Acme has
only ten customers, but if Acme has a million customers, checking every name
on the list is prohibitive.

Another approach is to keep the list in alphabetical order. For example, Acme
Manufacturing's list of customer names can be stored as Armstrong, Cohen,
Garcia, Moore, O'Brien, Romano, Smith, Tucker, Walters, and Young. With this
method, it is easy to search the list for a particular name. (The procedure used in
the proof of Theorem 2.10 can be adapted to give an efficient searching method.)
However, adding or deleting from the list is more difficult because of the need
to reposition the entries when an item is added or deleted. For example, if Acme
gains a new customer named Baker, then we need to insert this name as the second
entry in the list. This insertion requires repositioning every name in the original
list except Armstrong's. Again, this process is prohibitive if the list is very long.

A third approach is to store data at the vertices of a binary tree. For example,
the list of Acme Manufacturing's customer names can be stored as in Figure 4.74.
This binary tree is arranged so that if a vertex U belongs to the left subtree of
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vertex V, then U precedes V in alphabetical order; and if a vertex W lies in the
right subtree of V, then W fellows V in alphabetical order. Adding a new name
to this tree is simple because we need only to include one new vertex and edge in
the tree, and searching the tree for a particular name requires no more than four
comparisons if we search the tree properly.

Romano

Am

FIGURE 4.74

In order to generalize this example, suppose that we have a list of distinct
numbers or words. We will us, the symbol < to denote the usual numerical or
alphabetical (dictionary) order. For example, 7 < 9 and ABGT < ACE. A binary
search tree for the list is a binary tree in which each vertex is labeled by an
element of the list such that:

(1) No two vertices have the same label.
(2) If vertex U belongs to the left subtree of vertex V, then U < V.
(3) If vertex W belongs to the right subtree of vertex V, then V < W.

Thus, for each vertex V, all descendents of V in the left subtree of V precede V,
and all descendents of V in the right subtree of V follow V.

Example 4.42

One possible binary search tree for the list 1, 2, 4, 5, 6, 8, 9, 10 is given in Figure
4.75(a). Another possibility is shown in Figure 4.75(b). +

6

4 9

10

2

(a)

8

6 9

5

4 10

1(

(b)

FIGURE 4.75
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Example 4.43

A binary search tree for the list IF, THEN, FOR, BEGIN, END, WHILE, TO is
illustrated in Figure 4.76. +

IF

FOR THEN

BEGIN WHILE

END TO

FIGURE 4.76

There is a systematic way to construct a binary search tree for a list. The basic
idea is to put smaller elements as left children and larger elements as right children.

Binary Search Tree Construction Algorithm

This algorithm constructs a binary search tree in which the vertices are labeled
al,,a2, . . ., an,wherea 1,,a 2 .  an are distinct and n > 2. In the algorithm, avertex
is referred to by its label.

Step 1 (construct the root)
(a) Construct the root of the binary tree, and label it ai.
(b) Set k= 1.

Step 2 (insert elements into the tree)
while k < n

Step 2.1 (find the insertion point)
Step 2. 1.1 (initialization for descent)

(a) Let V denote the root of the tree.
(b) Replace k with k ± 1.

Step 2.1.2 (descend the tree)
repeat

Perform exactly one of the following three steps.
(a) (go left)

if ak < V and V has a left child W
Replace V with W.

endif
(b) (go right)

if ak > V and Vhas aright child W
Replace V with W.

endif
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(c) (stay here
if neither ' a) nor (b) is possible

Do nothing.
endif

until either (aA < V and V has no left child) or (ak > V and
V has no right child)

Step 2.2 (insert ak)
if ak < V

Construct a left child for V and label it ak.
otherwise

Construct a right child for V and label it ak.

endif
endwhile

The construction described in the binary search tree construction algorithm
does produce a binary tree. Furthermore, labels for the left descendants (those
on the left side) are smaller than the label for the parent, and labels for the right
descendants are larger. Thus the algorithm yields a binary search tree.

+ Example 4.44

The result of using the binary search tree construction algorithm on the list
5, 9, 8, 1, 2, 4, 10, 6 is shown ii Figure 4.77. +
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FIGURE 4.77

I I
to



4.6 Optimal Binary Trees and Binary Search Trees 259

Example 4.45

For the list of words in the sentence DISCRETE MATH IS FUN BUT HARD,
the algorithm yields the binary search tree in Figure 4.78. +

If an additional item is to be added to the binary search tree, then we can
simply use the binary search tree construction algorithm one more time with that
item. For example, to add SOMETIMES to the end of the list of words in the
sentence DISCRETE MATH IS FUN BUT HARD, we would repeat the algorithm
using the word SOMETIMES with the binary search tree in Figure 4.78 to obtain
the one in Figure 4.79. This procedure for adding an item to a binary search tree
is an efficient one.

DISCRETE

'MATH BUT

FL

or)

TIMES

FIGURE 4.78 FIGURE 4.79

To determine if an item is in a binary search tree (or equivalently, a list), we
follow closely the process used to construct a binary search tree. Specifically, we
compare the item with the root and go left if it is smaller and go right if it is larger.
This process is repeated until we either match some item in the tree or find that the
item is not in the tree. This procedure is formalized in the following algorithm.

Binary Search Tree Search Algorithm

This algorithm will examine a binary search tree to decide if a given element a is in
the tree.

Step I (initialization)
Let V be the root of the binary search tree.

Step 2 (descend the tree)
while (a < V and V has a left child) or (a > V and V has a

right child)
if a < V and V has a left child

Replace V with its left child.
otherwise

Replace V with its right child.
endif

endwhile
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Step 3 (is a in the tree?)
if a :A V

Element a is not in the tree.
otherwise

Element a is in the tiee.
endif

+ Example 4.46

Let us use this algorithm to search for 7 in the last binary search tree of Figure
4.77. We begin by comparing 7 to the root of the tree. Since it is larger, we go to
the right child 9 and make another comparison. This time 7 is smaller, and so we
go to the left child 8. Comparing 7 to 8, we go to the left child 6. Now comparing
7 to 6, we go to the right child of 6. Since there is none, 7 is not in the binary
search tree. We also note that f we wanted to add 7 to this binary search tree at
this time, it would become the right child of 6. +

+ Example 4.47

To search for the word FUN in the tree of Figure 4.78, we begin with the root
DISCRETE. The first comparison takes us to the right child MATH. From there
another comparison takes us to the left child IS. Again we go to the left child FUN.
This comparison results in a match. Hence we find that FUN is in the tree. +

Applying the inorder traversal to the binary search tree in Figure 4.77 yields
the inorder listing 1, 2, 4, 5, 6, 8, 9, 10, which is the usual numerical order
for these numbers. Similarly, for the binary search tree in Figure 4.76, the inorder
traversal gives the listing BEGIN, END, FOR, IF, THEN, TO, WHILE, which is
the alphabetical order for thes- words. In general, when the inorder traversal is
applied to a binary search tree, the resulting listing is the usual ordering of the
elements. From this, the smallest and largest elements of the tree can be found.
Thus by going left as far as pos sible in a binary search tree, the last vertex reached
is the smallest element in the tree. Similarly, by going right as much as possible,
the last vertex reached is the largest element in the tree.

Deletions of items from a binary search tree can also be done efficiently. The
details are left as exercises.

The construction of a bin iry search tree depends upon the order in which
the items appear in the list. Er other words, a different order for the items can
produce a different binary search tree. For example, for the list 10, 9, 8, 6, 5, 4,
2, 1, which is the same set of items as in Example 4.44, the algorithm produces
the binary search tree shown in Figure 4.80. It is easy to see that this tree offers
no advantage over numerica. Drder in storing the numbers since a search may
require a comparison with every item in the tree. However, there is an extensive
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literature on the construction of binary trees that make for efficient searching.
For example, binary search trees can be constructed so that the more frequently
accessed items are closer to the root than those items that are not. Interested
readers should consult suggested readings [7] and [9] at the end of the chapter.

4

FIGURE 4.80

EXERCISES 4.6

In Exercises 1-4 determine if the given sets of codewords have the prefix property.

1. {0, 100, 101, 11, 10111

3. {00, 101, 111, 10001, 10101

2. {00, 11,010, 100,0111

4. (00,110,101,011

5. Can there be a set of 6 codewords with the prefix property that contains 0, 10, and 11?
6. Can there be a set of 6 codewords with the prefix property that contains 10, 00, and 110?

7. Determine values for a, b, and c so that {00, 01, 101, a 10, bcl} is a set of 5 codewords with the prefix property.

8. Determine values for a, b, c, and d so that (00, OaO, Obc, dO, 110, 1111 is a set of 6 codewords with the prefix
property.

For the values of n given in Exercises 9-14, draw a binary tree in which each vertex has 0 or 2 children that
generates as in Example 4.36 a set of n codewords with the prefix property. Label the vertices with the codewords.

9. n = 2
12. n = 7

10. n = 3

13. n = 8

11. n = 4

14. n = 9

In Exercises 15-18 draw a binary tree that generates as in Example 4.36 the given codewords at the terminal
vertices.

15. 1,00,011,0100,0101 16. 101, 00, 11, 01 1, 100, 010

17. 1111,0, 1110, 110, 10 18. 1100,000, 1111, 1101,0010, 10,0011

19. Decode the message 111010100000101 10 with the assignment A: 010, B: 111, M: 000, N: 110, and T: 10.

20. Decode the message 110010111011110 with the assignment 0: 0, B: 10, R: 110, 1: 1110, N: 11110, and
T: 11111.

21. Decode the message 100101110101001011 with the assignment A: 111, E: 0, N: 1010, 0: 1011, and T: 100.
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22. Decode the message 00111100010000111 with the assignment B: 1100, D: 111, E: 1101, J: 0011, N: 0000,
0: 01, S: 0010, and T: 0001.

In Exercises 23-26 decode the messages using the given binary tree.

23. message: 01110111

C

G

T

F 0

24. message: 11001001011000

/A
TI R A S

25. message: 01111111011101001100

E H
AT

26. message: 00001001001100001101001

A H

E T

Locate a copy of the ASCII code in a computer programming book and use it to decode the messages given in
Exercises 27-30.

27. 010001000100111101000111

29. 010100010101010101001001010001010101010(

28. 01001000010011110100110101000101

30. 01001000010001010100110001010000

In Exercises 31-34 construct an optimal binary tree for the given weights. In the construction, when there is a
choice of trees having roots with the same label, select the tree having the greater number of vertices.

31. 2,4,6, 8,10

33. 1,4,9,16,25, 36

32. 4,6,8,14,15

34. 10, 12,13, 16,17, 17

In Exercises 35-38 determine the smallest maximum number of comparisons needed to merge sorted lists with the
given numbers of items into one sorted list.

35. 4 lists with 20, 30, 40, and 50 items

37. 6 lists with 20, 40, 60, 70, 80, and 120 items

36. 5 lists with 15, 25, 35, 40, and 50 items

38. 7 lists with 10, 30, 40, 50, 50, 50, and 70 items

In Exercises 39-42, in the construction of an optimal binary tree, when there is a choice of trees having roots with
the same label, select the tree having the greater number of vertices.

39. The National Security Agency is helping American diplomats in foreign countries send coded messages back
to the State Department in Washington, D.C. These messages are to be sent using the characters R, I, H, V with

HI

I

-
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an expected usage rate of 40, 35, 20, 5, respectively, per 100 characters. Find an assignment of codewords that
minimizes the number of bits needed to send a message.

40. Tom and Susan are exchanging love letters during class. In order to prevent others from reading these sweet
words of romance, the messages are coded using only the characters T, A, I, L, P, and J with an expected usage
rate of 34, 27, 21, 10, 6, 2, respectively, per 100 characters. Find an assignment of codewords that minimizes
the amount of time (and hence, the number of bits) needed to send a message.

41. NASA is receiving information from one of its space probes. This information is in the form of numbers that
represent pictures. (Each number corresponds to a shade of white, black, or gray.) The numbers used are 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10 with expected usage rates of 125, 100, 75, 40, 60, 180, 20, 120, 150, and 130,
respectively, per 1000 colored dots. Find an assignment of codewords for these numbers that minimizes the
number of bits needed for the storage of this information.

42. The Gregory Computer Company has received a contract to store nursing data for all hospitals in the Blooming-
ton, Illinois, area. Even though the storage of this data will be on hard disks, the high volume of data makes it
important that the data be stored efficiently. An analysis of sample data shows that only certain symbols are used;
in, , c, s, po, os, od, tid, qod. Furthermore, the analysis shows a usage rate of7, 12,4, 9, 10, 8, 2, 18, 30, respec-
tively, per 100 symbols. Find an assignment of codewords that minimizes the number of bits needed to store this
data.

43. Prove that there exists a binary tree with n terminal vertices in which each vertex has 0 or 2 children.

44. In a binary tree in which each vertex has 0 or 2 children, prove that the number of terminal vertices is one more
than the number of internal vertices.

Exercises 45-47 provide a proof that Huffman's optimal binary tree algorithm creates an optimal binary tree.
Suppose w , W2, . . - Wk are nonnegative real numbers and wI < W2 < .. . < Wk.

45. Prove that if T is an optimal binary tree for the weights wI, W2, . . - Wk, and if wi < wj, then the distance
from the root to wi is greater than or equal to the distance from the root to Wi .

46. Prove that there is an optimal binary tree for the weights wI, W2 . W. k, where wI and W2 are children of the
same parent.

47. Prove that if T is an optimal binary tree for the weights wI + W2 , W3 ... Wk, then the tree obtained by re-
placing the terminal vertex wI + w 2 by a binary tree with two children wI and w2 is an optimal binary tree for
the weights wI, W2, .W .. , Wk.

In Exercises 48-53 construct a binary search tree for the items in the order given.

48. The accounting department in the Busby Insurance Company has 8 divisions with 11, 15, 8, 3, 6, 14, 19, and
10 staff members in them. Construct a binary search tree for the number of staff in these units.

49. Reserved words in Pascal include LABEL, SET, OR, BEGIN, THEN, END, GOTO, DO, PACKED, and ELSE.
Construct a binary search tree for these reserved words.

50. Predefined identifiers in Apple Pascal include ORD, CHR, WRITE, SEEK, PRED, EOF, WRITELN,
BOOLEAN, PAGE, GET, TRUE, COPY, PUT, and ABS. Construct a binary search tree for these predefined
identifiers.

51. The mathematics department has 13 faculty members with 14, 17, 3, 6, 15, 1, 20, 2, 5, 10, 18, 7, and
16 years of teaching experience. Construct a binary search tree for the years of teaching experience by the
faculty.
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52. In a survey of 15 mathematics departments it was found that there were 18, 9, 27, 20, 30, 15, 4, 13, 25, 31, 2,
19, 7, 5, and 28 faculty members. Construct a binary se arch tree for the sizes of the faculty.

53. ASCII code is used to represent more than just the alphabet. It is also used to represent the symbols ), :,
-, #, <, @, ?, $, (, l, and &. The corresponding ASCUI codewords can be interpreted as binary numbers (with
decimal values 41, 58, 37,45, 35, 60, 64, 63, 36,40, 33, and 38, respectively) and, hence, can be used to provide
an ordering of these symbols. Construct a binary searz-l tree for these symbols.

54. Construct a binary search tree for the letters of the alphabet so that at most 5 comparisons are needed to locate
any specified letter.

55. In the binary search tree of Exercise 49, draw the directed path required to show that FILE is not in the tree.
Then indicate where FILE would be added to the tree.

56. In the binary search tree of Exercise 48, draw the directed path required to show that 16 is not in the tree. Then
indicate where 16 would be added to the tree.

57. In the binary search tree of Exercise 51, draw the directed path required to show that 4 is not in the tree. Then
indicate where 4 would be added to the tree.

58. In the binary search tree of Exercise 50, draw the directed path required to show that POS is not in the tree.
Then indicate where POS would be added to the tree.

59. In the binary search tree of Exercise 53, draw the directed path required to show that > (with decimal number
62) is not in the tree. Then indicate where > would be added to the tree.

60. In the binary search tree of Exercise 52, draw the directed path required to show that 8 is not in the tree. Then
indicate where 8 would be added to the tree.

61. Suppose that the vertices of a binary tree are assigned distinct elements from a list of either numbers or words
with the property: if L is the left child of a vertex V. then L < V, and if R is the right child of a vertex V, then
V < R. Must the binary tree with this assignment be a binary search tree for the list?

Deletion of a terminal vertex V from a binary search tree is accomplished as follows: Delete the vertex V and the
edge on V and its parent.

62. Draw the binary search tree obtained by deleting 6 from the binary search tree in Exercise 48.

63. Repeat Exercise 62 for PACKED in the binary search tree in Exercise 49.

When a binary search tree has a root R with only one child, deletion of the root is accomplished as follows: Delete
R and the edge on R and its child.

64. Draw the binary search tree obtained by deleting the root from the following binary search tree.

6

14

7

16 20
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65. Repeat Exercise 64 for the binary search tree below.

3 12

Suppose that V is a vertex in a binary search tree such that V is not the root and V has only one child C. Deletion
of V from the binary search tree is accomplished as follows: Delete V and the edge on V and C, and replace the
tree formed by V and its descendants by the tree formed by C and its descendants.

66. Draw the binary search tree obtained by deleting < from the binary search tree in Exercise 53.

67. Repeat Exercise 66 for the vertex 3 in the binary search tree of Exercise 48.

In a binary search tree, deletion of a vertex V with 2 children is accomplished as follows. Find the largest item L
in the left subtree of V. If L has no left child, delete L and the edge on L and its parent, and replace V by L. If L
has a left child C, delete L and the edge on L and C, replace the tree formed by L and its descendants by the tree
formed by C and its descendants, and then replace V by L.

68. Draw the tree obtained by deleting 9 from the binary search tree in Exercise 52.

69. Draw the tree obtained by deleting 3 from the binary search tree in Exercise 51.

70. Draw the tree obtained by deleting ORD from the binary search tree in Exercise 50.

71. Draw the tree obtained by deleting WRITE from the binary search tree in Exercise 50.

72. Draw the tree obtained by deleting 27 from the binary search tree in Exercise 52.

73. Draw the tree obtained by deleting 4 from the binary search tree in Exercise 52.

74. Prove that the inorder listing of the vertices in a binary search tree gives the natural order for the elements in
the tree.

HISTORICAL NOTES

Unlike the real-world motivation of the Konigsberg bridge problem, the study of trees
got its start in considerations related to operators in differential calculus. The intuitive
concept of a tree was first employed by the Germans G. K. C. Von Staudt (1798-1867)
and Gustav Kirchhoff (1824-1887) in separate articles in 1847. Kirchhoff's article dealt
with an extension of Ohm's laws for electrical flow. However, the introduction of the

term "tree" and the mathematical development of the concept came from the English
mathematician Arthur Cayley (1821-1895) in 1857.

Cayley noted that the number of rooted trees with n edges could be found by observing
the effect of removing the root vertex from the tree and examining the remaining collection

Arthur Cayley ot rooted trees. This observation, combined with some of the fundamental ideas concerning
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generating functions, led to a fonnula. Cayley's research in this area continued through
the mid-1870s when he discovered a method for counting the number of unrooted trees.

Around the same time, the French mathematician Camille Jordan (1838-1922) began
a systematic study of graphs. As part of this, he focused on the question of when two
graphs are essentially the same but have different representations, that is, when the graphs
are isomorphic. In the special case when the vertices can be relabeled to result in an
isomorphism, the mapping is called an automorphism. He noted that the complete graph
IC, has n! automorphisms. Jordar also noted that certain trees have a special vertex, or
vertices, called a centroid or bicen eroids, that are preserved by automorphisms. This work
drew the notice of Cayley, who used Jordan's concepts in 1881 to develop a more elegant
proof of his result on the number of rooted trees. One of Cayley 's last major contributions to
the development of trees was his proof in 1889 that the number of ways of joining n separate
labeled vertices to form a tree is given by nn-2. (See Exercise 38 in Section 4.1.) This
result was proved independently in 1918 by the German Heinz Prufer (1896-1934) [72].

Other attempts were made Iry James Joseph Sylvester (1814-1897) and William
Kingdon Clifford (1845-1879) to develop an algebra of graphs, trees specifically, to
develop and enumerate the various different compounds possible by joining atoms of
various substances. While the graphical representations resulting from these efforts has
had an enormous impact on chemistry, the enumeration attempts eventually failed. One
side-product of these efforts was the use of the word "graph," which first appeared in an
article in Nature authored by Sylvester in 1878.

While Kirchhoff's initial work focused on electrical networks, his ideas were not lost
Jamesh JUNCp11

Sylvester on the American mathematicians George David Birkhoff (1884-1944) and Oswald Veblen
(1880-1960). Veblen's analysis of Kirchhoff's work resulted in 1922 in a theorem that
every connected graph contains a tree, called a spanning tree, which includes every vertex
of the graph. In 1956, Joseph B. Kruskal (1928- ), and in 1957, Robert C. Prim (1921- ),
coworkers at the Bell Telephone Laboratories in Murray Hill, New Jersey, developed the
algorithms that bear their names b r finding a minimum spanning tree in a weighted graph.
Their work opened new approaches to network designs for communication systems [72].

SUPPLEMENTARY EXERCISES

1. At the Illinois FBI office, Special Agent Jones is working with 7 informants who have infiltrated a gambling
ring. She needs to arrange for the informants to comnmu nicate with each other in groups of two in such a way
that messages can be passed on to others. For secrecy. the number of meeting places must be kept as small as
possible. How many meeting places must Agent Jones find?

2. What is the smallest number of colors needed to color a tree with n vertices, where n > 2?

3. If m > 2, for which n is KCmn a tree? (The graph 1Q,1 n i; defined in Exercise 52 of Exercises 3.2.)

4. Ask a chemist about the chemical structure of benzene .nd draw a graph describing it. Is it a tree?

5. Prove that if there is a vertex of degree k in a tree, then there are at least k vertices of degree 1.

6. Prove that if a tree has n vertices with degrees dl, d2, . ., dn, then the sum of the degrees is 2n -2.

7. Prove that if dX, d2, . . ., dn are positive integers with stun equal to 2n -2, then some di = 1, and if n > 3, then
some di > 1.



Supplementary Exercises 267

8. For n > 2, suppose di, d2, . .. , dn are positive integers with sum 2n - 2. Prove that there is a tree with n vertices
having degrees di, d2, .. ., d. (Hint: Use mathematical induction on n.)

9. Find all the spanning trees of the following graph.

10. For a connected graph, show that the process of selecting edges so that an edge is not selected if it forms a
cycle with edges already selected yields a spanning tree.

11. Suppose g is a connected graph with 10 vertices and 19 edges. What is the maximum number of edges that
can be removed from g such that the remaining graph is still connected? Justify your answer.

12. For the following graph, use the breadth-first search algorithm to find a spanning tree. (Start with B and use
alphabetical order when there is a choice for a vertex.)

H

L

G

K

13. If 5 is a connected weighted graph and all the weights in 5 are distinct, must distinct spanning trees of 9 have
distinct weights? Justify your answer.

14. Use Prim's algorithm to find a minimal spanning tree for the following two weighted graphs. (Start at G, and
if there is a choice of edges to use in forming a minimal spanning tree, select edges according to alphabetical
order.) Give the weight of the minimal spanning tree found.

B 9 3 I

D E In 4 F

A a 5 B b

d

4

E m-
0F

5

A C , I

f g

2 3
KG n 9 H,

4 s

m 7

p

8

4

I u 6 j V w 6

15. Show that if g is a connected weighted graph and e is an edge of minimum weight incident on some vertex V,
then there is a minimal spanning tree containing e.

D

j

2

L

A:

. ,
5 K
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16. Can a maximal spanning tree in a connected weighted graph (not a tree) contain an edge of smallest weight?
If so, give an example. If not, give a proof.

17. Can Kruskal's algorithm be modified to find a spanning tree that is minimal with respect to all those containing
two specified edges? Justify your answer. (See Exerc is 42 in Section 4.2.)

18. Apply depth-first search to each graph below to obtain a depth-first search numbering of the vertices. If there
is a choice of vertices, choose the vertex that appears first in alphabetical order.

A D E F

G H D H

E B

19. Use the depth-first search numbering obtained for each graph in Exercise 18 to form the spanning tree described
in Theorem 4.7.

20. Use Theorem 4.8 and the depth-first search numbering obtained in Exercise 18 to assign directions to the edges
that will make each graph in Exercise 18 into a strongly connected directed graph.

21. Show that an edge {A, BI in a connected graph is a bridge if and only if every path from A to B includes

{A, B}.
22. Show that an edge of a connected graph is a bridge if aid only if it is not in any cycle.

23. Use backtracking to find a solution to the 6-queens problem.

24. Use backtracking to construct a sequence of length 10 composed of the digits 1, 2, 3 with the property that
nowhere in the sequence are there two adjacent subsequences that are identical.

25. For positive integers p, q, and n, where p + q = n, does there exist a rooted tree with n vertices having p
internal and q terminal vertices? Justify your answer.

26. A foreign language facility has 28 CD players that must be connected to a wall socket with four outlets.
Extension cords having four outlets each are to be used to make the connections. What is the least number of
cords needed to get these CD players connected so that they can be used?

27. How many vertices are there in a rooted tree with p internal vertices, each having exactly q children? Justify
your answer.

28. How many terminal vertices are there in a rooted tree with p internal vertices, each having exactly q children?
Justify your answer.

29. Consider 3' or fewer coins that are identical except bor one that is lighter. Show by mathematical induction that
they can be tested in at most n weighings on a balance sale to find out which one is lighter.

30. Suppose T is a rooted tree where every vertex has at most k > 2 children and the length of the longest path
from the root to a terminal vertex is h. Prove that

kh+1 - I
(a) T has at most k vertices and

(b) if some vertex has k children, then T has at least h - k vertices.

31. For the tree obtained by applying depth-first search to a connected graph, show that if a vertex with depth-first
search number k has m descendants (relative to the depth h-first search tree) with m > 1, then their depth-first
search numbers are k + 1, k + 2, . . ., k + m.
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32. Prove that when depth-first search is applied to a connected graph, one of the vertices on a back edge is an
ancestor of the other (relative to the depth-first search tree).

33. Prove that when depth-first search is applied to a connected graph, one of the vertices on an edge is an ancestor
of the other (relative to the depth-first search tree).

For Exercises 34-35 let depth-first search be applied to a connected graph g as in Theorem 4.10, and let A be a
vertex in 5.

34. If the depth-first search starts at A, prove that A is an articulation point of g if and only if A has more than one
child. (See Exercise 36 of Section 4.3.)

35. If depth-first search does not start at A, prove that A is an articulation point of 9 if and only if, for some child
C of A, there is no back edge between C or any of its descendants and an ancestor of A.

The height of a binary tree is the maximum of the levels of its terminal vertices.

36. If T is a binary tree with n vertices and height h, prove that n < 2 -h+ 1.

37. Prove that a binary tree of height h has at most 2h terminal vertices.

A binary tree with height h is called balanced when the only vertices with no children are at level h or h - 1.

38. Construct a balanced binary tree with 8 vertices.

39. Construct two distinct binary trees, each with more than one vertex, so that each has the same preorder listing
and the same postorder listing as the other.

40. A complete binary tree has vertices V = {l, 2, 3, 4, 5, 6, 7, 8, 9, 101 with a postorder listing of 4, 5, 2, 8, 9, 6,
10, 7, 3, 1. Construct the tree if the height of the tree is 3.

41. Write the associative law for multiplication in Polish notation and in reverse Polish notation.

42. Write the distributive law of multiplication over addition in Polish notation and reverse Polish notation.

43. Does the set {00, 01, 100, 1010, 1011 , 11 of codewords have the prefix property? Justify your answer.

44. Can there be a set of 7 codewords with the prefix property that contains 11, 101, 0101?

45. Draw a binary tree that generates the following codewords at the terminal vertices: 1, 00, 10, 010, 0110, 01 111,
01110.

46. Construct an optimal binary tree for the weights 1, 3, 5, 7, 9, 11, 13, 15. In the construction, select a vertex
with children in preference to a vertex without children, and use as the left child the vertex of smaller weight
or the vertex with more children if the two vertices have equal weights.

47. Construct a binary search tree for the words in the order given in the sentence "Gladly would he learn so that
others can be taught."

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given a graph, determine if it is a tree.
2. Given a rooted tree, find the internal vertices, the terminal vertices, and the root.
3. Given a graph, use the breadth-first search algorithm to find a spanning tree if one exists.
4. Given a graph, use the breadth-first search algorithm to determine if it is connected.
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5. Given a graph, use the depth-first search algorithm to assign labels to its vertices.

6. Given a graph, use the depth-first search algorithm to determine if it is connected.

7. Given a graph, use the depth-first search algorithm to find a spanning tree if one exists.

8. Given a graph, use the discussion before Example 4.15 to determine if it has a bridge.

9. Given a weighted graph, use Prim's algorithm to find a minimal spanning tree if one exists.

10. Given a weighted graph, use Kruskal's algorithm to [id a minimal spanning tree if one exists.

11. Given a weighted graph, use Prim's algorithm to find a maximal spanning tree if one exists.

12. Given a binary tree, use the preorder traversal algorithm to give a preorder listing of the vertices.

13. Given a binary tree, use the postorder traversal algorithm to give a postorder listing of the vertices.

14. Given a binary tree, use the inorder traversal algorithm to give an inorder listing of the vertices.

15. Given an arithmetic expression in Polish notation, evaluate it.

16. Given an arithmetic expression in reverse Polish notation, evaluate it.

17. Given nonnegative real numbers wu, W2, . .w,, use Huffman's optimal binary tree algorithm to construct an
optimal binary tree for the weights wI, W2, . .., Wn.

18. Given words a,, a2 , . . ., a,, use the binary search tree algorithm to construct a binary search tree with vertices
labeled al, a2 , . . *, a,.

19. Given a binary search tree and an element a, use the binary search tree search algorithm to decide if a is in the
tree.

20. Given a tree T with n labeled vertices, use Prufer's algorithm to construct a list of numbers that uniquely
describes T.

21. Given a positive integer n, use backtracking to determine a solution to the n-queens problem.

22. Given a graph, use Theorem 4.8 to transform it into a strongly connected directed graph, if possible.

SUGGESTED READINGS

1. Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullmnan. Data Structures and Algorithms. Reading, MA:
Addison-Wesley, 1983.

2. Balaban, A. T. Chemical Applications of Graph Theory New York: Academic Press, 1976.

3. Bogart, Kenneth P. Introductory Combinatorics, 3rd ed. San Diego, CA: Academic Press, 1999.

4. Horowitz, Ellis and Sartaj Sahni. Fundamentals of Ccnputer Algorithms. New York: Freeman, 1984.

5. . Fundamentals of Data Structures in Pascal. 41h ed. New York: Freeman, 1992.

6. Hu, T. C., T. C. Shing, and Y. S. Kuo. Combinatorial4.'gorithms. Reading, MA: Addison-Wesley, 1982.

7. Knuth, Donald E. The Art of Computer Programming, vol. 1: Fundamental Algorithms, 2nd ed. Reading, MA:
Addison-Wesley, 1973.

8. Liu, C. L. Elements of Discrete Mathematics, 2nd ed. New York: McGraw-Hill, 1985.

9. Reingold, Edward, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms. Englewood Cliffs, NJ:
Prentice Hall, 1977.

10. Stubbs, Daniel and Neil W. Webre. Data Structures with Abstract Data Types and Pascal. Monterey, CA:
Brooks/Cole, 1985.

11. Tarjan, Robert Endre. Data Structures and Network Aigorithms. Philadelphia, PA: SIAM, 1983.



Matching
5.1 Systems of Distinct Representatives

5.2 Matchings in Graphs

5.3 A Matching Algorithm

5.4 Applications of the Algorithm

5.5 The Hungarian Method

Many combinatorial problems involve matching items, subject to certain re-
strictions. An example is the problem of assigning airline pilots to flights (intro-
duced in Section 1 .2). Another example is the assignment of pairs of participants
at a conference to rooms so that roommates have the same smoking prefer-
ence and sex. Sometimes an optimal matching may be desired. For example,
a basketball coach must assign a player to guard each player on the opposing
team in such a way as to minimize the opponents' total score. Such problems
will be treated in this chapter.

5.1 + SYSTEMS OF DISTINCT REPRESENTATIVES

The same matching problem may be viewed in various ways. As an example, let
us consider the summer schedule of classes of the English department at a small
college. There is a demand for 6 courses. To keep things simple, we will call these
Course 1, Course 2, . . ., Course 6. Certain professors are available to teach each
course, as given in the following table.

Course Professors

I Abel, Crittenden, Forcade

2 Crittenden, Donohue, Edge, Gilmore

3 Abel, Crittenden

4 Abel, Forcade

5 Banks, Edge, Gilmore

6 Crittenden, Forcade

271
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For brevity we will denDle the professors by A, B, C, D, E, F, and G,
according to their initials. In order to distribute the summer teaching jobs as fairly
as possible, it is decided thai- no professor should teach more than one course.
The question is whether all 6 courses can be taught, subject to this restriction. If
not, what is the maximum number of courses that can be taught?

This is a problem of exactly the same sort as that of assigning airline pilots
in Section 1.2. With only 6 courses and 7 professors we could probably find the
answer by considering all possible matchings. One systematic way of doing this
is the following. Let PI denote the set of professors available to teach Course 1,
P2 the set of professors available to teach Course 2, etc. Thus,

PI = {A, C, F),

P2 = IC, D, E, G}

P3 = {A, C),

P4 = {A, F),

P5 = {B, E, G},

P6 = {C, FL.

If we forget for the moment the restriction that no professor teach more than
one course, then a possible assignment of a professor to each course consists of a
6-tuple (xI, x2, X3, X4, x5, x6) where xi E PI, x2 E P2, etc. This is an element of
the Cartesian product

PI X .P2 x P3 X P4 x P5 x P6 ,

which has 3 4 2. 2. 3 . 2 == 288 elements. We need to know whether any of
these 288 6-tuples has all its entries distinct (so that no professor teaches more
than one course). Checking this without the help of a computer would be possible
but extremely tedious. As in the case of the pilot assignment problem, however,
such crude methods of searching for a solution quickly get beyond the capability
of even a computer as the number of items to be matched gets larger. For example,
if there were 30 courses and 3 professors available for each, then the Cartesian
product would contain 330 elements, and it would take a computer checking one
million of these per second more than six years to go through them all.

There is a name for the sort of sequence of distinct elements, one from each of
a given sequence of sets, that vie are seeking in this example. Let SI, S2, .. , S,
be a finite sequence of sets, not necessarily distinct. By a system of distinct
representatives for Si, S2, . n - S, we mean a sequence xI, x2 , . . , Xn such that
xi E Si for i = 1, 2, . . ., n, arid such that the elements xi are all distinct.

+ Example 5.1

Find all systems of distinct representatives forthe sets SI = {1, 2, 31,S2 = {1, 31,
S3 = {1,3},S4 = {3,4, 51.
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Notice that the elements chosen from S2 and S3 must be 1 and 3 in some
order. There are four systems of distinct representatives:

2, 1,3,4

2,3, 1,4

2, 1,3,5

2,3,1,5. +

Example 5.2

Find all systems of distinct representatives for the sets SI = {2, 3}, S2 =

{2, 3, 4, 5], S3 = {2, 3], S4 = {3}.
There are none. For if xl, x2 , x3 , X4 were a system of distinct representatives,

then xi, x3 , and x4 would be 3 distinct elements of SI U S3 U S4 = {2, 31, which
is impossible. +

+ Example 5.3

How many systems of distinct representatives does the sequence S, S, S, S have,
where S = {1, 2,3,41?

In this case a system of distinct representatives is simply a permutation of
the integers 1, 2, 3, 4. By Theorem 1.1 there are exactly 4! = 24 of these. +

Now we return to our problem of assigning a professor to each summer English
course. We are looking for a system of distinct representatives for the sequence

Pi = (A, C, F],

P2 = {C, D, E, G},

P3 = {A,C],

P4 = {A, F),

P5 = (B, E, GI,

P6 = IC, F).

The problem seems small enough that we might expect to find the solution, if
there is one, by simply trying different combinations. Yet perhaps the best we can
come up with is to cover 5 of the 6 courses. For example, we might assign the
first 5 courses as in the list below.

Course I to Abel

Course 2 to Donohue
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Course 3 to Crittenden

Course 4 to Forcade

Course 5 to Banks

We might suspect that it is not possible to do better than this, but it is difficult to
be certain. We would like a A ay to convince ourselves that no assignment of all
6 courses is possible without going through all 288 possibilities.

There is a way, and the key to it is to be found in Example 5.2. If we could
discover some collection of sets chosen from PI through P6 , the union of which
contained fewer elements than the number of sets in the collection, then we
would know that a system of distinct representatives was impossible. Since this is
a somewhat abstract idea, we will exhibit such a collection to make the argument
more concrete. How such a collection might be found will be covered in a later
section of this chapter.

The collection we have in mind is PI, P3 , P4 , and P6. Notice that

PI U P'3 U P4 U P6 = {A, C, F),

and the argument is the same as in Example 5.2. Suppose we had a system of
distinct representatives xI, x., ... , x6. Then xi, X 3 , X4 , and x6 would comprise
4 distinct elements lying in the union of the sets PI, P3, P4, and P6. But this
is impossible because this union contains only 3 elements. There are only 3
professors (Abel, Crittenden, and Forcade) available to teach 4 of the courses,
and so an assignment where no professor teaches more than 1 course cannot be
made.

We have found a general p inciple, which could be stated as follows. Suppose
SI, S2 , . . ., Sn is a finite sequence of sets, and suppose I is a subset of {l, 2, . . . , n}
such that the union of the sets Si for i E I contains fewer elements than the set
I does. Then SI, S2, . . . Sn has no system of distinct representatives. In our
example (taking Si = Pi for i = I to 6), the set I is {l, 3, 4, 61.

Finding such a set I enables us to be sure that no system of distinct rep-
resentatives exists. The person responsible for assigning summer courses in our
example will have to assign the same professor to teach 2 courses if all 6 courses
are to be given. Professors with no summer employment may object that this is
unfair, but the scheduler can use the set I to demonstrate to them that there is no
way to cover all the courses otherwise.

If a sequence of sets has no system of distinct representatives, is there always
some set I as above that can be used to demonstrate this fact in a compact way?
The answer is yes, but the proof is somewhat complicated. This is the content of
a famous theorem due to Phil] ip Hall.

Theorem 5.1 a -,.'he:n The sequence of finite setsS, 5  S2 ... ,Sn has a system of dis-
tinct representatives if and orly if whenever I is a subset of {l, 2, . . ., n}, then
the union of the sets Si for i ( I contains at least as many elements as the set I
does.
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The "only if" part of this theorem amounts to the principle we have already
discovered. The "if" part will be proved in Section 5.4 in a different context; for
a direct proof see Exercise 31.

+ Example 5.4

We will use Hall's theorem to show that the sequence

Si = {A, C, El,

S2 = 1A, B},

S3 = {B, E}

has a system of distinct representatives. The subsets I of { 1, 2, 3), and the corre-
sponding unions of sets Si are given below.

I Union of Sets Si, i E I

0 0

11) {A, C, El

{2} (A, B)

131 {B, El

11,21 (A, B, C, El

11,31 {A, B, C, El

12,3} IAB, E

11,2,31 {A,B,C,E}

Since every set on the right has at least as many elements as the corresponding
set on the left, the sequence has a system of distinct representatives. Of course, it
is easy in this case to find one by inspection, for example, A, B, E. +

Applying Hall's theorem to our course scheduling example would involve
examining the 26 = 64 subsets of f 1, 2, 3, 4, 5, 61 and computing the correspond-
ing union of sets Pi for each. (Of course, we would find that no system of distinct
representatives exists.) Although this may seem better than our previous method,
which entailed looking at 288 possible assignments, it is still not practical for
finding whether a system of distinct representatives exists, since if there are n sets
Si, then there are 2' sets I, and 2" increases very quickly with n. Also, although
the theorem tells us when a system of distinct representatives exists, it does not
tell how to find one. Efficient methods for finding optimal matchings will be
developed later in this chapter.

Readers interested in extensions of Hall's theorem should consult [7] in the
suggested readings at the end of this chapter.
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EXERCISES 5.1

In Exercises 1-6 tell how many systems of distinct representatives the given sequence of sets has.

1. {1, 2), {2, 3), {I, 3) 2. L1, 41, {2}, L2, 3}, 11, 2, 3)
3. {1,2,3),{1,2,3),{1,2,3) 4. 11,2,3,4,51,11,2,3,4,51

5. {1,2,5}, 12, 1), {3,4}, {1,51, {1,2,5), {2,4,5) 6i. {1,2,3), {4,5}, {6,7}

In Exercises 7-10 a sequence of sets SI, S2, . . - Sn is given. For each subset I of {1, 2, ... , n} compute the
union of the corresponding sets St and determine from the se unions whether the sequence has a system of distinct
representatives or not.

7. {1,2,4},{2,4},{2,3},{1,2,3} S. {1,2,5), 15, 1}, {1,2), (2,5)

9. (1),{1, 2), 1, 2, 3}, t1, 3} 904''}'267'0

In Exercises 1-16 a sequence of setsS, , . S. Snis given. Find a subset of {1,2,...,n such that the union
of the corresponding sets Si has fewer elements than I doc s

11. 11, 2), 12, 3), 0 12. tI), {1, 2), {2, 3}, {2}

13. (1,2,3},{1,2,41,L1,3,4),{1,2,3,41,{2,3,4}
14. {1, 2), {2, 3), (5), 1I, 3), {4, 5), 14, 5)
15. {2,5,7},{I,3,4,5},(5,7),{2,7),{1,3,61,{2,51
16. {1,2),{2,4,5,7},{1,2,3,5,6), {1,4,7}, 12,5,7}, {1,4,5,7), {2,4,71

17. Let Si = {1, 2, . . , n) for i = 1, 2, . n. How many systems of distinct representatives does the sequence
Si, S2, ... , S, have?

18. Let Si = 11, 2, ... , k) for i = 1, 2, . n, where n < k. How many systems of distinct representatives does
SI, S2, ... , S, have?

19. Let Si = (1, 2, ... , k) for i = 1, 2, . n, where k < i. How many systems of distinct representatives does
S, S2, . . - S, have?

20. Show that if the nonempty set Si has ki elements for i = 1, 2, ... , n, then the sequence SI, S2, ... , S, has
exactly kI k2 ... kn systems of distinct representatives if and only if the sets S are pairwise disjoint.

21. Mr. Jones brought home 6 differently flavored jelly beans for his 6 children. However, when he got home he
found out that each child likes only certain flavors. Amy will eat only chocolate, banana, or vanilla, while Burt
likes only chocolate and banana. Chris will eat only banana, strawberry, and peach, and Dan will accept only
banana and vanilla. Edsel likes only chocolate and vanilla, and Frank will eat only chocolate, peach, and mint.
Show that not every child will get a jellybean he or she likes.

22. Five girls go into a library to get a book. Jennifer wants to read only The Velvet Room or Daydreamer. Lisa
wants only Summer of the Monkeys or The Velvet Room. Beth and Kim each want only Jelly Belly or Don't
Hurt Laurie!, while Kara wants either one of the latter two books or else Daydreamer. If the library has only
one copy of each book, can each girl take out a book she wants?

23. Show thatif theunion of the sets Si, S2, .. . , S, contains more than n elements, and if the sequence Si, S2 5, S,
has a system of distinct representatives, then it has more than one.
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24. Let S be a set with m elements, and let Si = S for i = 1, 2, . . ., n. Show that the number of systems of distinct
representatives of SI, S2 , Sn is the same as the number of one-to-one functions from {1, 2, . n} into
(I, 2, .. ., m).

25. In the example in Section 1.2, there are 7 cities and a set of pilots who want to fly to each city. Either find a
system of distinct representatives for this sequence of sets or else prove that none exists.

26. Let Si, S2, ... , S,, and T1, T2, . T,, be sequences of sets such that Si and Tj are disjoint for all i and j.
Show that the sequence SI, S2 . Sm, TI, . .. T,, has a system of distinct representatives if and only if
SI, S2, ... , Sm and TI, T2, ... , T, do.

27. Let SI, S2, ..5 , S, be a sequence of sets such that JSi I > i for i = 1, 2, n. Show that the sequence has a
system of distinct representatives.

28. Let S = {1, 2, . i} for i = 1, 2, . n. How many systems of distinct representatives does SI, S2 . Sn
have?

29. Let Si = {O. 1, 2, i } for i = 1, 2, n. How many systems of distinct representatives does SI, S2, .,Sn
have?

30. Suppose that Si C Si+1 for i = 1, 2, . n - 1, and that ISj = ki for i = 1, 2, . n. How many systems of
distinct representatives does SI, S2 . , Sn have?

31. A sequence of finite sets SI, S2, .. ., S, is said to satisfy Hall's condition if whenever I C {1, 2, . n}, then
the number of elements in the union of the sets Si, i E I, is at least IIl. The "if" part of Hall's theorem amounts
to the statement that any sequence satisfying Hall's condition has a system of distinct representatives. Prove
this by using the strong induction principle on n. To prove the inductive step, consider two cases: (a) whenever
I is a nonempty subset of {1, 2, .. ., k + 1} with fewer than k + 1 elements, then the union of the sets Si for
i E I has at least one more element than I does; (b) for some nonempty subset I of (1, 2, ... , k + 1} with
fewer than k + 1 elements, the union of the sets S for i E I has the same number of elements as I.

32. For r < n, an r x n Latin rectangle is an r x n matrix that has the numbers 1, 2, .. ., n as its entries with no
number occurring more than once in any row or column. An n x n Latin rectangle is called a Latin square.
Show that if r < n, then it is possible to append n -r rows to an r x n Latin rectangle to form a Latin square.
(Hint: Use Hall's theorem.)

5.2 + MATCHINGS IN GRAPHS

There is a symmetry in matching problems that is hidden when they are formulated
in terms of sets as in Section 5.1. For example, when we were trying to match a pro-
fessor with each English course, we associated with each of the 6 courses a set-
the set of professors who could teach that course. But we could just as well have
turned the problem around and considered for each professor the set of courses he
or she can teach. This symmetry is displayed better if we draw a graph as we did
in Figure 1.10 for the airline pilot problem. We will let the courses and professors
be the vertices of the graph, and put an edge between a course and a professor
whenever the professor can teach the course. The result is shown in Figure 5.1.

The graph we get is of a special form, since no edge joins a course to a course,
or a professor to a professor. We say a graph with vertex set V and edge set E



278 Chapter S Matching

is bipartite in case V can be written as the union of two disjoint sets VI and V2
such that each edge joins an element of VI with an element of V2. The graph of
Figure 5.1 is bipartite since we could take VI to be the set of courses and V2 to
be the set of professors.

Courses Professors

I

2

3

4

5

6

Abel

Banks

Crittenden

Donohue

Edge

Forcade

Gilmore

FIGURE 5.1

+ Example 5.5

The graph shown in Figure 5.2 is bipartite (even though it may not look it) because
every edge goes between an odd-numbered vertex and an even-numbered one.
Thus we could take VI = {1, 3, 5, 7} and V2 = 12, 4, 6, 81. +

2

1 2

3 4 5

86 7-

FIGURE 5.2 FIGURE 5.3

Example 5.6

The graph shown in Figure 5.3 is not bipartite, as we can see by considering the
vertices 1, 3, and 4. If, for example, 1 is in VI, then 3 must be in V2. But then 4
can be in neither of these sets. +

In our course assignment problem, we wanted to pair up courses and profes-
sors. In terms of the graph representing the problem, this means that we want to
choose a subset, say M, of the set of edges. No course can be taught by two pro-
fessors, nor can a professor teach more than one course. This means that no vertex
of the graph can be incident with more than one edge of M. In this application
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we would like M to contain as many edges as possible. These considerations
motivate the following definitions.

A matching of a graph is a set M of edges such that no vertex of the graph
is incident with more than one edge of M. A maximum matching is a matching
such that no other matching contains more edges.

Example 5.7

The colored edges in Figure 5.4(a) form a matching of the bipartite graph pictured,
since no two of them are incident with the same vertex. This matching of 3 edges is
not a maximum matching, however, since Figure 5.4(b) shows another matching
with 4 edges. Note that even though the first matching is not a maximum match-
ing, no edge could be added to it and still have a matching. A maximum match-
ing need not be unique. Figure 5.4(c) shows another maximum matching of the
graph. +

I A 1 A 1 A

2 B 2 B 2 B

3 C 3 C 3 C

4 D 4 D 4 D

(a) (b) (c)

FIGURE S.4

Our definition of a matching of a graph did not specify that the graph be
bipartite. Finding a maximum matching is easier in the case of a bipartite graph,
however, and many applications give rise to bipartite graphs. The following
example gives a case when a maximum matching of a nonbipartite graph is
desired.

+ Example 5.8

A group of United Nations peacekeeping soldiers is to be divided into 2-person
teams. It is important that the 2 members of a team speak the same language.
The following table shows the languages spoken by the 7 soldiers available. If we
make a graph, putting an edge between 2 soldiers whenever they speak a language
in common, the result is exactly the graph of Figure 5.3, which we saw was not
bipartite. One matching is pictured in color in Figure 5.5. It is clearly a maximum
matching since only one soldier is unmatched. +
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Soldier Languages

I French, German, English

2 'Spanish, French

3 German, Korean

4 Greek, German, Russian, Arabic

5 Spanish, Russian

6 Chinese, Korean, Japanese

7 Greek, Chinese

1 2

3 4 56 > 7

FIGURE 5.5

A convenient way to represent: a bipartite graph where every edge joins a vertex
of V1 to a vertex of V2 is by a matrix of Os and Is, with the rows correspond-
ing to the elements of VI anc the columns to the elements of V2. We put a 1
in the matrix whenever the vertices corresponding to the row and column are
joined by an edge and a 0 otherwise. For example, the matrix of the graph of
Figure 5.4 is

A B C D

LKO 1 0
I,, 0 0 1 1

4 0 0 1 1

Of course, this matrix is unique y determined only if we specify some order for
the vertices in VI and V2. Recall hat a matching of a graph is a subset of its edges,
and each edge corresponds to a I in the matrix. Two edges incident on the same
vertex correspond to Is in the same row or column of the matrix, depending on
whether the vertex is in VI or V2 . Thus a matching of a bipartite graph corresponds
to some set of Is in the matrix of the graph, no two of which are in the same row
or column. Matrices have their cwn terminology, however.

By a line of a matrix, we mean either a row or a column. Let A be a matrix.
We say that a set of entries of A is independent if no two of them are in the same
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line. An independent set of Is in A is a maximum independent set of Is if no
independent set of Is in A contains more elements.

We will mark the Is in a particular independent set with stars. The reader
should check that the stars in the following three matrices mark independent sets
corresponding to the three matchings shown in Figure 5.4.

[11* 0 1* I 0 0 [1* 0 0
0 1 1* 0 0 1* I 0 0 1* I 0
0 0 1 1* 0 0 1* I 0 0 1 1*
O0 0 1 1 O0 0 1 1*- O 0 1* I

For example, since one of the edges in the matching shown in Figure 5.4(a) is
11, B }, a star is placed on the 1 in row 1 and column B of the first matrix.

Although the language is different, finding a maximum matching in a bipartite
graph and finding a maximum independent set of Is in a matrix of Os and Is are
really the same problem, and we will use whichever form is more convenient.
Graphs are sometimes more accessible to the intuition, while matrices may be
better for computational purposes.

Recall Example 5.8, where a group of soldiers was to be broken into 2-person
teams speaking a common language. Suppose that before any teams are formed,
some of the soldiers are to attend a meeting. It is desired that each possible team
should have at least one member at the meeting.

Since each edge in the graph of Figure 5.5 represents a possible team, what
we need is a set of vertices such that each edge of the graph is incident with at
least one vertex in this set. We might want this set to be as small as possible
so as to minimize the number of soldiers required to attend the meeting. Such
considerations motivate the following definitions.

By a covering C of a graph, we mean a set of vertices such that every edge
is incident with at least one vertex in C. We say C is a minimum covering if no
covering of the graph has fewer vertices. For example, the set {2, 3, 4, 5, 6) may
be seen to be a covering of the graph shown in Figure 5.5. This is not a minimum
covering, however, since the covering 1 1, 3, 5, 71 has fewer elements.

+ Example 5.9

Figure 5.6 represents the streets and intersections of the downtown area of a small
city. A company wishes to place hot dog stands at certain intersections in such a
way that no one in the downtown area will be more than one block from a stand.
It would like to do this with as few stands as possible.

If we interpret Figure 5.6 as a graph with vertices at the intersections, then
our problem is exactly one of finding a minimum covering. One covering is the
set of vertices { 1, 3, 6, 8, 9, 111. We will see as a consequence of the next theorem
that this is a minimum covering. +



282 Chapter S Matching

1 2 3 4

5 61 71 8
9 10 1 1 12

FIGURE 5.6

The next theorem gives a relation between the matchings and the coverings
of a graph.

Theorem 5.2 Let a graph have a matching M1 and covering C. Then IMI < ICI. Moreover, if
IMI = ICI, then M is a maximum matching and C is a minimum covering.

Proof. By the definition of a covering, every edge of the graph, and in particular
every edge in M, is incident with some vertex in C. If the edge e is in M, let v(e)
be a vertex in C incident with e. Notice that if el and e2 are distinct edges in M,
then v(el) and v(e2 ) are also distinct, since by definition two edges in a matching
cannot share a vertex. Thus there are at least as many vertices in C as edges in
M, and so IMI < ICI.

Now suppose I A = IC I]f M were not a maximum matching, there would
be a matching M' with I.M'I > IMI = ICI, contradicting the first part of the
theorem. Likewise if C were not a minimum covering, there would be a covering
with fewer than IMI vertices leading to the same contradiction. X

In light of the second part of this theorem, we can show the covering given
in Example 5.9 is a minimum covering by exhibiting a matching with the same
number of elements, namely 6. ODne is indicated by the colored edges in Figure 5.7;
of course, Theorem 5.2 also implies that it is a maximum matching.

1 2 3 4

5 __6 7 8

9 10 11 12

FIGURE 5.7

In the case of a bipartite graph, we can translate Theorem 5.2 into matrix
language. The vertices of the graph correspond to the lines of its matrix, and an
edge is incident with a vertex when the 1 corresponding to the edge is in the line
corresponding to the vertex. Thus we define a covering of the Is of a matrix of
Os and Is to be a set of lines containing all the Is of the matrix. It is a minimum
covering if there is no covering with fewer lines. With these definitions, the
following theorem is an immediate consequence of Theorem 5.2.
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Theorem 5.3 If a matrix of Os and Is has an independent set of m Is and a covering of c lines,
then m < c. If m = c, then the independent set is a maximum independent set
and the covering is a minimum covering.

o Example 5.10

The Scientific Matchmaking Service has as clients 5 men, Bob, Bill, Ron, Sam,
and Ed, and 5 women, Cara, Dolly, Liz, Tammy, and Nan. The company believes
that 2 people are not compatible if their first names do not contain a common
letter. On the basis of this rule, the company constructs the following matrix, in
which a 1 means that the man and woman corresponding to the row and column
are compatible.

Cara Dolly Liz Tammy Nan

Bob 0 0f 0
Bill 0 1 11 0 0
Ron 1 0
Sam 0t 0 1 1
Ed 0 0J (

The company would like to match as many clients as possible; that is, it wants
a maximum independent set of Is. Since all the Is lie in just 4 lines, namely the
3rd and 4th rows and 2nd and 3rd columns, it is realized that no independent set
of Is can have more than 4 elements. An independent set with 4 elements does
exist, however, and one is shown below.

0 1 *0 0 O-
O I l * 0 0
I 1 0 0 1*
I1* 0 0 1 1
O 1 0 0 0

EXERCISES 5.2

In Exercises 1-6 tell whether the graph is bipartite, and if so give disjoint sets of vertices VI and V2 so that every
edge joins a vertex of V1 to a vertex of V2.

1 1 2 3 4 2

5

9

6

to
10

13

; 8

114

5

6 7
12
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3. 1 2

3 5

4

5, 1 2

6 7\<8 9

10

4. 2 4

6.

7. Give a maximum matching for each graph in Exercises 1, 2, and 3.

8. Give a maximum matching for each graph in Exercises 4, 5, and 6.

9. Give a minimum covering for each graph in Exercises 1, 2, and 3.

10. Give a minimum covering for each graph in Exercises 4, 5, and 6.

In Exercises 1-] 16 every edge of the graph joins a vertex cf VI = {1, 3, 5. . . .) to one of V2 = {2, 4, 6, .. .}. Give
the matrix of each graph. (Take the vertices in increasing order.)

11. 1 2 3 4

8 o 4

13.

6

12. 14 2

4 3

9 8 7

~5 6

14. 1 2O 3 4

8 6 1

11 12

I

Il
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15. 2 1 16.

6 3 5

11 7 8 9

1I0, 3 121

17. Find a maximum independent set of is for the matrices in Exercises 11, 12, and 13.

18. Find a maximum independent set of Is for the matrices in Exercises 14, 15, and 16.

19. Find a minimum covering for the matrices of Exercises 11, 12, and 13.

20. Find a minimum covering for the matrices of Exercises 14, 15, and 16.

In Exercises 21 and 22 construct a bipartite graph and the corresponding matrix modeling the situation de-
scribed. Indicate a maximum matching in the graph and the corresponding maximum independent set of is in the
matrix.

21. Four airplane passengers want to read a magazine, but only 5 are available. Of these, Mr. Brown will only read
Time, Newsweek, or Fortune; Ms. Garvey will only read Newsweek or Organic Gardening; Miss Rollo will
only read Organic Gardening or Time; and Mrs. Onishi will only read Fortune or Sunset.

22. The Glumby family is going to Europe and each member is to choose one country that he or she knows the
language of to study beforehand. Mr. Glumby knows Russian and French; Mrs. Glumby knows only Russian;
Sally knows French, German, and Spanish; and Tim knows only French.

In Exercises 23 and 24 construct a graph modeling the situation described, and find a maximum matching for it.

23. The church sewing circle wants to break into 2-person groups to make altar cloths. The two people in a group
should own the same brand of sewing machine. Ann has a Necchi; Beth has a Necchi and a Singer; Cora has
a Necchi, a Singer, and a White; Debby has a Singer, a White, and a Brother; Ellie has a White and a Brother;
and Felicia has a Brother.

24. The Weight Whittler Club wants to break up into 2-person support groups. The weights of the two men in a
group should differ by no more than 20 pounds. Andrew weighs 185, Bob 250, Carl 215, Dan 210, Edward
260, and Frank 205.

In Exercises 25 and 26 model the situation described with a bipartite graph, and construct the corresponding
matrix. Find a minimum covering for the graph and indicate the corresponding lines of the matrix.

25. The police department has a policy of putting an experienced officer together with a rookie in a squad car. The
experienced officers are Anderson, Bates, Coony, and Dotson, and the rookies are Wilson, Xavier, Yood, and
Zorn. Anderson always works with Wilson or Xavier; Bates with Xavier, Yood, or Zorn; Coony with Wilson;
and Dotson with Wilson or Xavier. The captain, who does not know what the teams for the next month will
be, would like to call as small a number of officers as possible to tell at least one member of each team its
schedule.

26. In mixed doubles Michael always plays with Venus, Martina, or Monica; Andre plays with Lindsay; Pete always
plays with Venus or Lindsay; and Patrick always plays with Venus. The tournament director wants to tell each
possible mixed-doubles pair its rating with as few phone calls as possible.
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27. Show that the matrix of a bipartite graph is a submatriK of the adjacency matrix of that graph, as defined in
Section 3.1. A submatrix of a matrix A is a matrix formed by removing some rows or columns (or both)
from A.

28. Find a graph in which a maximum matching has fewer edges than a minimum covering has vertices.
29. Show that if a graph contains a cycle with an odd number of edges, then it is not bipartite.

30. Show that if a graph contains no cycle with an odd number of edges, then it is bipartite.
31. Show that a graph is bipartite if and only if it can be colored with two colors.

32. Consider K20, the complete graph on 20 vertices.
(a) How many edges are in a maximum matching for K:20?
(b) How many vertices are in a minimum covering for iC20?

33. Let a graph have a vertex set V, edge set 6£, and adjacency matrix A = [aij]. Show that a subset C of V is a
covering if and only if aij = 0 whenever i g C and j is C.

5.3 c A MATCHING ALGORITHM

So far our examples have been snall enough that we could find a maximum match-
ing by trial and error. For larger graphs, however, a better technique is needed;
and, as was indicated in Section 5.1, simple exhaustion of all possibilities soon
becomes impractical, even with a computer. There is an efficient algorithm for
finding a maximum matching in a graph. For simplicity, we consider the algo-
rithm only for the case of a bipartite graph. To make explaining the algorithm
easier, we will present it as a rrmethod of finding a maximum independent set of
Is in a matrix of Os and Is. As we saw in the previous section, this is equivalent
to the problem of finding a maximum matching in a bipartite graph.

We will give an example of the use of the algorithm before we state it in a
more formal way later in this section. We start with some independent set of Is.
This set could be found by inspection and could even be the empty set! Starting
with a larger independent set % ill speed up finding a maximum such set, however.
The algorithm will either tell us that we have a maximum independent set of Is,
or else produce an independent set containing one more 1. We continue to apply
the algorithm until a maximum independent set is reached.

For our example we will u se the matrix

A B C D

1 1* 0 1 1
2 0 1* 0 0
3 1 1 ° o
4 0 1 0 0]

in which an independent set of I s has been indicated. Notice that if any 1 is added
to this set it will no longer be independent. Our algorithm will involve performing
two operations on some of the lines of this matrix, operations which we will call



5.3 A Matching Algorithm 287

labeling and scanning. Once a line has been labeled, it will never be labeled again
in one application of the algorithm, and the same is true for scanning. A line must
be labeled before it can be scanned. We begin by labeling (with the symbol "#")
all columns containing no starred is. (If there are no such columns, our set of
starred Is is already a maximum independent set.) In our example, this produces
the following matrix.

A B C D

I * 0 1 11
2 0 1* 0 0
3 1 1 0 0
4 -0 1 0 0-

Now we scan each labeled column for unstarred Is. In column C we find an
unstarred 1 in the first row, so we label that row with a C to indicate that the
unstarred 1 was found in column C. (In general, row labels are column names,
and column labels are row names, except for the labels "#.") Then we put a check
mark under column C to indicate that it has been scanned. The matrix now appears
as follows.

A B C D

1 -1 0 1 1 C
2 0 1 0 0
3 1 1 0 0
4 -0 1 0 0

When we scan column D, we also find an unstarred I in row 1. Since this row
has already been labeled, we put a check mark under column D to indicate that
it also has now been scanned.

Since all labeled columns have been scanned, we now turn our attention to
the rows. Only row 1 has been labeled; so we scan it, now looking for starred Is.
There is one in column A; so we label this column with a 1 (the row scanned),
and put a check mark after row 1 to show that it has been scanned.

A B C D

1 r1* 0 1 1 ]CV
2 0 1* 0 0
3 1 1 0 0
4 0 1 0 0

Since all labeled rows have been scanned, we go back to scanning columns.
Column A is labeled but not scanned; so we scan it for unstarred is. There is
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one in row 3; we label that row with an A, since we found it when scanning
column A.

A B C D

1 1 0 1 1 C,/
2 1) 1* 0 0
3 1 1 0 0 A
4 -D 1 0 0

I a/ #A/ #'/

We are now at a turning point in the algorithm. When we scan the labeled
row 3, we find no starred ], and so we mark this row with an exclamation point.
This indicates that we will be able to improve on the independent set of is we
started with. The labels on the lines of the matrix tell us exactly how to do this.
Row 3 is labeled with an A, so we put a circle around the 1 in column A (and
row 3). This column is labeled with a 1, so we put a circle around the starred 1 in
row 1 (and column A). Row 1 is labeled with a C, so we put a circle around the 1
in column C (and row 1). CoLumn C is labeled with the symbol "#," so we stop
drawing circles at this point. Our matrix now appears as follows.

A B C D

1IL* 0 01 I C>,/
2 0 1* 0 0
3 (f) I 0 0 A!
4 0 1 0 0

1A/ #'/ #'//

At this point we find a larger independent set of 1 s by reversing the stars on the
circled Is, that is, by adding a star to any circled 1 without a star, and removing
the star from any circled I with a star. The result is an independent set of Is with
3 elements instead of 2.

A B C D

1 0 1 1
7 0 1* 0 0
~3 1* 1I 0 0
.11 0 1 0 0

It is instructive to see whai we have done in this example in terms of graphs.
Figure 5.8(a) shows the bipartite graph corresponding to our matrix, with the
matching of our original set of two Is indicated in color.

The three positions circled in our matrix operations correspond to the edges
{3, A}, { 1, Al, and {1, C I of the graph. These form a simple path from 3 to A to 1
to C. (See Figure 5.9(a).) Since the circled Is of the matrix are alternately starred
and unstarred, the edges of this path are alternately in and not in the original
matching. Note that, when inserting the circles in our matrix, we start with an
unstarred 1 (corresponding lo a labeled row with no stars), and also end with



5.3 A Matching Algorithm

2 eN ' B

3 < C

(a)

1A

2 B

3 C

4 D

(b)

FIGURE 5.8

an unstarred 1 (corresponding to a column labeled with the symbol "#" because
it contained no stars). Thus the number of edges in the path must be odd; and
reversing which of these edges are in the matching, as shown in Figure 5.9(b),
increases the number of edges in our matching by one. The larger matching is
shown in Figure 5.8(b).

2

3

4.

2.

3 C

*D 4*

(a) (b)

FIGURE 5.9

Now we will apply the algorithm to the matrix with our new set of 3 starred 1 s.
Since only column D has no starred Is, we start by labeling that column.

A B C D

1 I 0 1* 1
2 1* 0 0
3 I* 1 0 0
4 0 1 0 0

Scanning this column for unstarred is leads us to label row 1.

1
2
3
4 [

A

1
0
1*
0o

B

0
1*
1
1

C

1*

0
0
0

D

1 D
01
0o

0 -

289
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Scanning row 1 for starred Is leads us to label column C.

4 B C D

I I 0 1 I D ma
2 i) I* 0 0
3 1* I 0 0
4 l) I 0 0

I #AV/

This is the most important point in the present application of the algorithm.
When we scan column C there is nothing to label, and we have the following
matrix.

Ai B C D

1 I 0 1 * I D >
2 (0 1 * 0 0
3 ] * I 0 0
4 (0 1 0 0

1+/ #'/

All lines that are labeled have also been scanned, and there is nothing else
we can do. This indicates thiat we started with a maximum independent set
of I S.

We now state our algorithm formally.

Independent Set Algorithm

Given an independent set of starred Is in a matrix of Os and 1 s, this algorithm either
indicates that this independent ;et is a maximum independent set, or else it finds a
larger independent set.

Step I (start)
Label each column containing no starred 1.

Step 2 (scan and label)
repeat

Step 2.1 (scan columns)
For each collns that is labeled but not scanned, look at
every unstarred t in that column. If such a m is in an
unlabeled row, then label that row with the name of the
column being scared. Mark the column to indicate that
it has been scanners

Step 2.2 (scan rows)
For each row that is labeled but not scanned, look for a
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starred 1 in that row. If there is a starred 1 in the row,
then label the column containing the starred 1 with the
name of the row being scanned. Mark the row to indicate
that it has been scanned.

until either some labeled row contains no starred 1 or all the labeled
rows and all the labeled columns have been scanned

Step 3 (enlarge the independent set if possible)
if some labeled row contains no starred 1

Step 3.1 (backtracking)
Find the first labeled row that contains no starred 1.
Circle the 1 in this row and in the column that the row
is labeled with. Circle the starred 1 in this column and
the row that this column is labeled with. Then circle the
unstarred 1 in this new row and in the column that this
row is labeled with. Continue in this manner until a 1 is
circled in a column labeled in step 1.

Step 3.2 (larger independent set)
Reverse the stars on all the circled Is. This gives an
independent set of Is with one more element than the
original set.

otherwise
Step 3.3 (no improvement)

The present independent set is a maximum independent set.
end if

This algorithm is due to Ford and Fulkerson, and can be found in suggested
reading [3] at the end of this chapter. We will prove that it does what it says it
does in the next section. Of course, with a change of language the algorithm could
just as well be applied to a graph, but there are complications if it is not bipartite.
A modification of the algorithm that applies to arbitrary graphs can be found in
suggested reading [2].

Let us examine the complexity of this algorithm. In our analysis, we will use
the word "operation" in a somewhat vague way to indicate looking at some entry
or row or column label of a matrix and perhaps taking some simple action such
as applying or changing a symbol.

Suppose a matrix of Os and Is has m rows and n columns. Step 1 involves
looking at all mn entries in the matrix, which we count as mn operations. After
this the algorithm alternates between steps 2.1 and 2.2, both of which involve
scanning. In order to scan one of the n columns we need to look at the m entries
in that column, so all column scanning will take at most mn operations. Likewise,
row scanning will take at most nm operations.
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If we get to step 3.3, we are done, so we analyze steps 3.1 and 3.2. Back-
tracking will take at most m 4- n operations, since each 1 we circle can be asso-
ciated with a distinct row or column. Actually, we could combine step 3.2 into
step 3.1 with no additional work, reversing the stars as we backtracked. Thus
one application of the algorithm will take at most 3mn + m + n operations. To
build up to a maximum indep dent set of Is, the algorithm will have to be re-
peated at most minim, ni tirrws, even if we start with the empty set as our first
independent set of Is. Thus the complexity of the algorithm for finding a max-
imum independent set of ones in an m by n matrix is of order no more than
(3mn + m + n) - minim, n}. For the case m = n = 30, fewer than 90,000 opera-
tions would be necessary, and a fast computer could do the problem in less than
one second.

Assigning Courses

As another example of the use of the algorithm, we will go back to the example
of assigning English professor; to courses of Section 5.1. The matrix of the graph
shown in Figure 5.1 is the following.

A B C D E F G

1 1F 0 1 0 0 1 0
2 0 0 1* 1 1 0 1
3 1 0 1 0 0 0 0
4 I 0 0 0 0 1 0
5 0 1* 0 0 1 0 1
6 L 0 1 0 0 1 0

The independent set of Is shown was chosen by taking the first available I in the
first row, second row, etc.. subject to the condition that we not choose two is in
the same column. We will show what our matrix looks like after each step in the
algorithm.

A B C D E F G

1 1 0 1 0 0 1 0
2 0 0 1*1 1 0 1
3 1 0 1 0 0 0 0
4 1 0 0 0 0 1* 0
5 0 1* 0 0 1 0 1
6L o o 1 0 0 1 0

# # I

After Step 1



A B C D E F

I 1* 0 1 0 0 1
2 0 1* 1 1 0
3 1 0 1 0 0 0
4 1 0 0 0 0 1*
5 0 1* 0 0 1 0
6 L 0 1 0 0 1

After Step 2.1

G

0
1 D
0
01
1 E
0

A B C D E F G

I 1* 0 1 0 0 1 0
2 0 1* 1 1 0 1 DV
3 1 0 1 0 0 0 0
4 1 0 0 0 0 1* 0
5 0 1* 0 0 1 0 1 EV,
6L O o 1 0 0 1 0 J

5 2 #V #V/

After Step 2.2

A B

1 1* 0
2 0 0
3 1 0
4 1 0
S O 1*
6 0 0

SV

A B

1* 0

0 0
1 0

1 0

0 1*
0 0
1 5,/

C D E F

1 0 0 1
1* 1 1 0
1 0 0 0
0 0 0 1*
0 0 1 0
1 0 0 1

2V #V #V

After Step 2.1

C D E F G

1 0 0 1 0

0 0 1 0 1
T 0 00 0

0 0 0 1* 0

0 0 1 0 1

1 0 0 1 0

2V #V #V/

After Step 3.1

G

0 C
1 DV1
0 C
0 I
1 EV
0- C

#V

C
D4
C!

EV
C

5.3 A Matching Algorithm

I

2

3

4

5
6
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A B C D E F G

1 0 1 0 0 1 0
2() 0 1* 1 0 1
3 l 0 1*0 0 0 0
4 1 1 0 0 1* 0
5 it 1* 0 1 1 0 1
6L 0 o 1 0 0 1 0

After Step 3.2

If the algorithm is now applied with this new independent set of Is, it tells us
that we have a maximum independent set of 1 s, and we end up with the following
configuration.

A B C D E F G

1 I* 0 1 0 0 1 0
2 0 0 1 1 I 0 1 E as
3 1 0 1 *0 0 0 0
4 1 0 0 0 0 1* 0
5 0 1 * O 1 0 1 E at/

6L o o 1 o 0 1 0
5>,/ 2./ #/ #

It should be noted that, in steps 2.1 and 2.2, the order in which the labeled
but not scanned lines are chosen may affect what larger independent set of is
the algorithm produces. In computing answers for the examples in this section,
we always chose the rows from top to bottom and the columns from left to
right.

EXERCISES 5.3

Throughout these exercises, when applying the independent set algorithm, choose rows from top to bottom and
columns from left to right.

In Exercises 1 and 2 one stage in the application of the independent set algorithm is shown. Apply step 2.1 or 2.2,
as appropriate.

1. A B C D 2. A B C D E

1 0 1 0 1 D1 1* 0 1 0 1 CV/
2 1* 0 0 1 D 2 0 1* 0 1 1 Es
3 1 1 0 0 3 1 1 0 0 0
4 I 0 0 0 4L0 1 0 1* 0

#A/ #A/ 1 2 #A/
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In Exercises 3 and 4 the matrix is ready for step 3.1. What entries should be circled?

3. A B C D

1 -O l* 1 0 CV
2 1* 0 0 1 DV1
3 1 1 0 0 A!
4 0 0 1* IJ DVs

2V 1 4V #/

4. A B C D E

1 0 0 1 * 1 E as
2 [* 0 1 0 0 Cv
3 0 2 * 0 1 0 D3/
4 1 0 1 0 0 C!

2 3A>/ 1^>/ #^>/ #,/

In Exercises 5-10 a matrix is given with an independent set of is. Use the independent set algorithm until it ends
in step 3.3.

5. 0- 1* I 0 1 1
1* 0 0 1 0 1 0 I 0 0 0 1*

0 0 1* I I 1 0 0 0 1* 0 1 0
1 1 1 0 9. 1* 0 1 1 0 0 1

8. O 0 1* I 0 9. - 1* I I I 10. -O 1* 0 1 0-
0 1* I 0 0 1 0 0 0 0 0 0 1* 1 0

01 0 0 0 0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0 0 O 1 1 0 0

I 0 1* 0 1 1I* 0 1 1 1

In Exercises 11-16 a bipartite graph is given with a matching. Convert it to a matrix andfind a maximum matching
by using the independent set algorithm, starting with the corresponding independent set of Is.

11. A

B

C

13. 1

2

3

12. 1

3

4

A

B

C

4

14. 1

2

3

4

295
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15. 3 E 2 D lbO.

A X B

4

In Exercises 17-22 a sequence of sets is given with distinct elements in some of the sets starred. Convert it to a
matrix and use the independent set algorithm tofind a system of distinct representatives, if possible. Start with the
corresponding independent set of Is.

17. {B*1, {A*, B, C, D}, {A, B), {B, D*)

18. {C*, DI, {A*, B), {A, D*}, (A, C, D)

19. tW*}, (Y., Z1, {W. Y), {W. X., Y, Z}

20. {1*, 3, 5), 1,4*), (2*, 3,5,{1, 2,41
21. {carrot*, egg}, {apple*, bananna, date, fennel), (apple. carrot, egg*}, [apple, carrot, egg)

22. {5*, 13}, {1*, 6, 9), {1, 5}, {1, 6*, 13)

23. Five ships, the Arabella, Constantine, Drury, Egmont, and Fungo, arrive at five loading docks. For technical
reasons, each dock can only accept certain ships. Dock I can only accept the Constantine or Drury. Likewise,
Dock 2 can only accept the Egmont or Fungo; Dock 3 the Constantine, Egmont, or Fungo; Dock 4 the Arabella,
Drury, or Fungo; and Dock 5 the Arabella, Constantine, or Egmont. The harbormaster sends the Constantine
to Dock 1, the Egmont to Dock 2, the Fungo to Dock .3, and the Arabella to Dock 4. Use the independent set
algorithm to improve on this, if possible.

24. A radio station wants to play an hour of rock music, followed by an hour each of classical, polka, and rap. Six
disk jockeys are available, but each has his or her scru jes. Only Barb, Cal, Deb, and Felicia are willing to play
rock. Likewise, only Andy, Barb, Erika, and Felicia will play classical; only Barb, Deb, and Felicia will play
polkas; and only Andy, Barb, and Deb will play rap. Ns disk jockey is allowed to work more than one hour per
day. At present, the station manager plans to use Barb, Andy, and Deb for the first 3 hours, but has no one left
for the rap hour. Use the independent set algorithm to find a better matching.

5.4 + APPLICATIONS OF THE ALGORITHM

In this section we will prove that our independent set algorithm actually does what
it claims to do. At the same tirre, we will find that the algorithm actually leads to
more insight about the relations among independent sets, coverings, and systems
of distinct representatives. W.- start with a sequence of short lemmas concerning
the results of applying the algorithm.

Lemma 1 If the algorithm gets to step .3.1, then it produces an independent set of Is with
more elements than the original one.
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Proof What goes on in the backtracking process was indicated in the previous
section. Schematically, a pattern such as shown in Figure 5.10 emerges. According
to the way the algorithm works, the circled symbols form an alternating sequence
of unstarred and starred Is, beginning and ending with an unstarred 1. Reversing
the stars on these clearly increases the number of starred Is by one. The new set
is still independent since if a 1 given a star was in a line with any starred 1, the
latter l's star is removed in Step 3.2. X

(nol*s) ................... .: . ... .

(no 1*s)

. I

Q.. 1*

FIGURE 5.10

Now we prove some lemmas about what our matrix looks like if step 3.3 is
reached and the algorithm indicates that we have a maximum set of starred Is.
Recall that in this case each line that has been labeled has also been scanned.

Lemma 2 If step 3.3 is reached, then the labeled rows and unlabeled columns form a cov-
ering.

Proof. If not, then some I is at the same time in an unlabeled row and labeled
column. If this 1 is starred, then its column can only have been labeled when its
row was scanned, contradicting the fact that the row is unlabeled. But if the 1 is
unstarred, then when its column was scanned its row would have been labeled,
another contradiction. K

Lemma 3 If step 3.3 is reached, then each labeled row and unlabeled column contains a
starred 1.

Proof Each unlabeled column contains a starred 1 since columns that do not
are labeled at step 1. On the other hand, if a labeled row contained no starred 1,
we would go to step 3.1 instead of step 3.3. M

Lemma 4 If step 3.3 is reached, then no starred 1 is in both a labeled row and unlabeled
column.
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Theorem 5.4

Proof If a starred 1 is in a labeled row, then its column is labeled when the row
is scanned. d

The independent set algorithm increases the number of elements when applied to
an independent set that is not a maximum independent set. When applied to an
independent set that is a maximum independent set, it tells us so.

Proof The flow of the algorithm is shown in Figure 5.11.

FIGURE 5.11

Theorem 5.5

In steps 2.1 and 2.2, columns and rows are scanned. Since a matrix has only
a finite number of lines, the algorithm eventually gets to step 3.2 or step 3.3. If it
gets to step 3.2, then Lemma I tells us that it constructs an independent set with
more elements than the one with which we started.

It remains to show that if rhe algorithm gets to step 3.3, then the independent
set we started with is actually a maximum independent set. According to Lemma 2,
the labeled rows and unlabeled columns form a covering. But Lemmas 3 and 4
say that the lines in this covering are in one-to-one correspondence with our
independent set. Thus the cov ring and the independent set contain the same
number of elements. Then, by Theorem 5.3, the covering is a minimum covering
and the independent set is a maximum independent set, which is what we want
to prove. 9

The argument just given amounts to a proof of a famous theorem of graph theory,
first stated in 1931 by D. Koriig, who pioneered the area. We state it in both its
matrix and bipartite graph fonns.

Aiy0nh': I hvWv#_~ A . In a matrix of Os and Is, a maximum independent set of Is
contains the same number of elements as a minimum covering. Equivalently, in a
bipartite graph, a maximum matching contains the same number of elements as
a minimum covering.

When the independent set a]gorithm reaches step 3.3, it gives us a construction
of a minimum covering, namely, the labeled rows and unlabeled columns.
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+ Example 5.11

We will use the algorithm to find a minimum covering for the graph shown in
Figure 5.12.

FIGURE 5.12

We convert the graph to the matrix that follows, and by inspection find the
independent set shown.

A B C D

IFO 0 1* 01211*o 10 O2 1* 0 1
3 0 0 1 0
4 - 1* 1 0]

Applying the algorithm yields the following.

A B C D

1 F0 0 1* 01
2 1* 1 0 1 DV
3 0 0 1 0
4 L 0 1* 1 0 L

2V/

We see that the matching we found by inspection was a maximum matching, since
we have reached step 3.3. A minimum covering consists of the labeled rows and
unlabeled columns, namely row 2 and columns B and C. Thus vertices 2, B, and
C form a minimum covering for the original graph. +

Note that Konig's theorem only applies to bipartite graphs, even though
matchings and coverings have been defined for arbitrary graphs. The reader should
check that a maximum matching for the nonbipartite graph shown in Figure 5.13
contains 2 edges, while a minimum covering contains 3 vertices.

FIGURE 5.13
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A Purof of H all's ' wlter

We can also use our conclusions about the algorithm to complete the proof
of Hall's theorem, which was. stated in Section 5.1. Recall that it remains to
show that if SI, S2 , . . ., S, is a sequence of sets not having a system of distinct
representatives, then there exists a subset I of {1, 2, ... , n} such that the union
of the sets S for i E I has fewer than III elements.

Let the union of all the sets Si for i = 1, 2, . . ., n be {t,, t2 , . . . , tml where
the t's are distinct. We construct a matrix of Os and Is with rows corresponding
to the sets Si and columns corresponding to the elements tj. Explicitly, the entry
in row i and column j is to be 1 if tj c S and 0 otherwise. (We have already
constructed such matrices; foi example, the sequence PI, P2 , . . ., P6 of sets of
professors who teach certain courses mentioned in Section 5.1 leads to the matrix
of the second example in Section 5.3.)

We use our algorithm as many times as necessary to confirm that we have
a maximum independent set of Is in the matrix. Let rL, ru, CL, and cu denote
the number of labeled rows, unlabeled rows, labeled columns, and unlabeled
columns in this matrix after the last application of the algorithm, respectively.
Certainly rL + ru = n (the number of sets) and CL + CU = m (the number of
elements). By Lemmas 2, 3, and 4, our maximum independent set has rL + CU
elements.

If our maximum independent set had n elements, it would correspond to a
system of distinct representatives, so we may assume that

rL +-CU < n = rL + ru.

Thus cu < ru.
We claim that the union of the ru sets corresponding to the unlabeled rows

contains fewer than ru elements. The reason is that each 1 in an unlabeled row
must be in an unlabeled column by Lemma 2. Thus the union of the corresponding
sets contains at most cu elements, and we know that cu < ru. Hence we can take
I to be the numbers of the unlabeled rows. This completes the proof of Hall's
theorem.

Notice that we have an actual construction of the set I using the algorithm.
For example, the problem of th- courses and professors led to the matrix below.

A B C D E F G

1 1 1 0 0 1 0
2 o 0 1 1* 1 0 1 EV
3 1 ) 1* 0 0 0 0
4 1 V 0 0 0 1* 0
5 0 l* 0 0 1 0 1 E,1
6L - ° ) I o o 1 0

5,1 2,/ #,/ A
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The unlabeled rows are the four rows 1, 3, 4, and 6. As we saw in Section 5. 1, the
union of the corresponding sets contains fewer than four elements. Note that the
unlabeled columns correspond to the three professors able to teach any of these
four courses.

Example 5.12

At a business meeting, 6 speakers are to be scheduled at 9, 10, 11, 1, 2, and 3
o'clock. Mr. Brown can only talk before noon. Ms. Krull can only speak at 9
or 2. Ms. Zeno cannot speak at 9, 11, or 2. Mr. Toomey cannot speak until 2.
Mrs. Abernathy cannot speak between 10 and 3. Mr. Ng cannot speak from 10
until 2. The scheduler cannot seem to fit everyone in. Show that it is impossible
to do so, and give a way the scheduler can convince the speakers of this fact.

We construct the following matrix, where the rows correspond to speakers
and columns to times.

9 10 It 1 2 3

B 1*
K 1
Z 0
T 0
A l
N I

I
0
1*

0

0

0

1
0
0
0
0
0

0

0

1

0

0

0

0
1 *

0
1

0

I

01
01

111*

The independent set indicated was found by inspection. Applying the algorithm
produces first

B
K
z
T
A
N

9 10

@ 1
1 0
0 1*
0 0

0 0
1 0

BI Zl

and then the matrix below.

B
K
z
T
A
N

9

1
1
0
0

1*1

11

0
0
0
0
0
0

1*

0
0
0
0
0

B,,,

2

0
1°*
0
1
0
1

K

2

0
1*
0
1
0
1

111
9A/
11

9!
9

101/

1I

1

0
0
1
0
0
0

0
0
1
0
0
0

#1

3

0
0
1
1*
1
1

3

0
0
1
1*
11

10

1
0
1*

0

0

0

Zi/
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Notice that the rows corresponding to Krull, Toomey, Abernathy, and Ng
are unlabeled. These four speakers all want to speak at 9, 2, or 3 (the unlabeled
columns), which shows that all their restrictions cannot be accommodated. +

The 130lttlengeck Prhbt: ln

A foreman has 4 jobs that need to be done and 5 workers to whom he could assign
them. The time in hours each worker would need to do each job is shown in the
following table.

Job] Job2 Job3 Job4

Worker 1 3 7 5 8

Worker 2 6 3 2 3

Worker 3 3 5 8 6

Worker 4 5 8 6 4

Worker 5 6 5 7 3

He needs all 4 jobs finished as soon as possible and so is interested in making
the maximum job time for the 4 workers chosen as small as possible.

Only one worker can do a job in 2 hours, so that it is obviously impossible
to get all 4 jobs done that fast. Three hours is more reasonable. Let us make a
matrix of Os and is, putting a 1 in each position corresponding to a job time of 3
hours or less.

I 0 0 0
0 1 1 1
1 0 0 0
0 0 0 0
0 0 0 1

We would like an independent set of Is having 4 elements to correspond to the 4
jobs. Unfortunately, no such set exists. Since all the is lie in 3 lines (row 2 and
columns 1 and 4), this fact is implied by K6nig's theorem. Doing the jobs will
take at least 4 hours, and so we add is to our matrix corresponding to the 4s in
the original matrix.

1 0 0 0
0 1 1 1
1 0 0 0
0 0 0 1
0 O 0 1
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The same reasoning shows that still no independent set of four is exists, so we
add is corresponding to the 5s in the original matrix.

[
1 *0 10
01* 1 1
1 1 0 0
1 0 0 1*
0 1 0 1I

The starred independent set was found by inspection. By applying the algorithm,
we find the larger set that follows.

I 0 1* 0
0 1* 1 1
1* I 0 0
1 0 0 1
0 1 0 1

Thus the shortest time in which all the jobs can be completed is 5 hours.
Problems such as this are called bottleneck problems, since we are inter-

ested in making the job time of the slowest worker as small as possible. In other
circumstances, we might be interested instead in minimizing the total time to do
all the jobs. Such problems will be treated in the next section.

EXERCISES 5.4

In Exercises 1-4 a matrix of Os and Is is given with an independent set indicated. Use the independent set algorithm
to find a minimum covering.

1. O 1* 0 1
1* 1 1 0
0 1 0 1*

L 0 0 1

3. -1* 0 1 0 ]-
0 0 1* 1 0
1 1* 0 1 1
1 0 1 1* 0
1 0 0 1 0-

2. 1* 0 0 01
0 1* 0 1
1 00 01
1 0 1* 1

4. -0 1* 0 0 0-
0 0 1* 0 0
0 1 1 0 0

0 0 1 0 0

_1* 1 0 1 1
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In Exercises 5-S a bipartite graph is given with a matching indicated. Use the independent set algorithm to find a
minimum covering.

5. 1 A 6. 1 / A

2 *B 2B

3 C 3CC

4 D 4 \ O D

H1E

7. 1 *A 8.

2 B

3 C

4 D

5 E

A

B

C

D

E

In Exercises 9-12 a sequence of sets SI, S2 , Sn is giver . Use the independent set algorithm tofind, if possible,
a subset I of { 1, 2, . .. n } such that the union of the sets S, for i E I has fewer elements than I.

9. {2,4,5},{1,3,5},{2,3,5},{3,4,5},{2,3,41

10. {1,2,4},{2,3,4,5},{2,4,6},{1,6),{1,4,61,{1,2, 61
11. {2, 7), {1, 3, 6), (5, 7}, (3,4, 6}, {2, 5), (2, 5,7)

12. {1, 2}, (4, 6}, {0, 1,3,5, 6), {1, 4,7), {2, 6}, I1,4, 7}, {2, 6, 7}

13. A military commander must send a runner to each of four posts notifying them of a plan to attack. Because of
differing terrain and skills, the time in hours for each runner to reach each post varies. Runner A takes 6 hours
to get to Post 1, 5 hours to Post 2, 9 hours to Post 3, and 7 hours to Post 4. Runner B takes 4, 8, 7, and 8 hours
to reach the four posts. Likewise, Runner C takes 5, 3, 9, and 8 hours; and runner D takes 7, 6, 3, and 5 hours.
The attack cannot begin until all posts have gotten the message. What is the shortest time until it can begin?

14. One step of a manufacturing process takes 5 operations that can be done simultaneously. These take different
times in minutes on the 5 machines available, as given in the following table.

M] M2 M3 M4 MS

Operation 1 6 7 3 6 2

Operation 2 6 3 4 3 3

Operation 3 2 5 3 7 4

Operation 4 3 i 2 6 3

Operation 5 4 7 2 7 6

How fast can the entire step be accomplished?
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15. The graph below shows a city map. Adjacent vertices are one block apart. It is desired that a police officer be
stationed at some of the vertices so that no one is more than one block from a police officer. Use the algorithm
to find the smallest number of police officers necessary to accomplish this, and tell where they should be
positioned.

I A 2 B 3

Ed 5F D 4

F i6 G

C

7

H

16. Show that if step 3.3 is reached in the independent set algorithm, then the number of labeled columns equals
the number of labeled rows plus the number of columns containing no starred l.

17. Show that if the independent set algorithm is applied to the matrix derived from a sequence of sets SI, S2 . 5,
as in the proof of Hall's theorem and step 3.3 is reached, then the union of the sets corresponding to the unlabeled
rows has exactly cu elements, where cu is the number of unlabeled columns.

18. Consider a bipartite graph where every edge is from a vertex in VI to one in the disjoint set V2. If S C VI, let
S* be the set of vertices of V2 adjacent to a vertex in S. Show that the graph has a matching with IV, I vertices
if and only if 5*1> i TI whenever S C VI.

5.5 + THE HUNGARIAN METHOD

In the last section, we considered a problem of assigning 4 jobs to 5 workers in
such a way that all 4 jobs got done as soon as possible. Although this might be
our goal in special circumstances, a more common aim is to minimize the total
time necessary to do the 4 jobs. If each worker was paid the same hourly rate, for
example, this would minimize the labor cost for the project.

For simplicity, we will start with an example in which there are the same
number of jobs and workers. The times in hours for each worker to do each job
are given in the following table.

Worker I Worker 2 Worker 3 Worker 4

Job] 3 6 3 5

Job2 7 3 5 8

Job3 5 2 8 6

Job4 8 3 6 4

An assignment of a worker to each job amounts to an independent set of
four entries from the corresponding matrix, and we want the sum of the entries
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in that set to be as small as possible. For example, two possible assignments are
indicated below.

3* 6 5 3 6 3 5*
7 3* 5 8 7 3* 5 8
5 2 S,* 6 5* 2 8 6
-8 3 6 4* 8 3 6* 4

The first of these produces the sum 3 + 3 + 8 + 4 = 18, and the second gives
5 + 3 + 5 + 6 = 19; so the first independent set is better than the second for our
purposes. Of course, other assignments might yield even smaller sums.

Suppose we subtract 3 fromn each entry in the first row of our matrix. The two
assignments are shown below for the new matrix.

0* 3 [ 2 0 3 0 2*
7 3* ' 8 7 3* 5 8
5 2 i* 6 5* 2 8 6
8 3 5 4* 8 3 6* 4

Now the first set has the sum 0 + 3 + 8 + 4 = 15 and the second has the sum
2 + 3 + 5 + 6 = 16. The firsi assignment still has a sum 1 less than the second.
The point is that although subtracting the same number from each entry of the
first row changes the problem. it does not change which positions give the answer.
Since any independent set of four entries will have exactly one of them in the
first row, the sum of the entries in any such set will be decreased by 3 by our
operation.

Any assignment producing a minimum sum for the new matrix will also give
a minimum sum for the original matrix. Furthermore, the same analysis applies
to the other rows as well. In order to have entries as small as possible without
introducing negative numbers, we will subtract from all entries in each row the
smallest number in that row. This means subtracting 3 from the entries of the
second row, 2 from those of the third row, and 3 from the entries of the fourth
row.

0 3 0 2
4 0 2 5
3 0 6 4
5 0 3 1

The same argument applies to columns, and so now we will subtract 1 from
each entry of the fourth colurmn.

0 3 0 1
4 0 2 4
3 0 6 3
5 0 3 0
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Finding a four-entry independent set in this matrix will solve our original
problem. Furthermore, now at least we might be able to recognize a solution.
Suppose we could find an independent set of four Os. This will clearly have
minimum sum, since the matrix has no negative entries. Unfortunately, a max-
imum independent set of Os has only three entries, as we can confirm with the
independent set algorithm (modified to find an independent set of Os instead
of is).

A B C D

1 0* 3 0 2 C1
2 4 0* 2 4
3 3 0 6 3
4 5 0 3 0*

1V #1
We have reached step 3.3 of that algorithm, and so the independent set of

three Os indicated is a maximum independent set of Os. Now we will show how to
change the matrix so as to have a better chance of finding an independent set of
four Os. Later we will show why the solution to the minimum sum problem has
not been changed.

Since a maximum independent set of Os has fewer than four entries, there
is a minimum covering consisting of fewer than four lines. In fact, by what we
discovered in the last section, such a covering consists of the labeled rows and
unlabeled columns of the above matrix. These lines are indicated below.

A B C D

1 [0*3 0 1] CV
2 4 0* 2 4

4 - 5 0 3 0*

11 #V

Look at the entries not in any line of this covering. (By the definition of a
covering, they are all positive.) The smallest of these is 2. Now we change our
matrix as follows:

(1) Subtract 2 from each entry not in a line of the covering.
(2) Add 2 to each entry in both a row and column of the covering.
(3) Leave unchanged the entries in exactly one line of the covering.

The resulting matrix is shown below.

0 0 3
2004
1043
3 01
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Now we can find an independent set of four Os, and pick out the corresponding
set in the original matrix, as 3hown.

~0* 5 hi) 3 ~ 3* 6 3 5
2 0 1)' 4 7 3 5* 8
1 0* 4 3 5 2* 8 6

-3 0 L 0*_ 8 3 6 4*

The minimum sum for an independent set of four entries in the original matrix is
3 + 5 + 2 + 4 = 14.

Of course, several questions need to be answered. One is whether the opera-
tion involving a minimum covering we just described is legitimate, that is, does
not change the solution to the minimum sum problem. Another is whether this
operation even does any good for the purpose of producing an independent set of
four Os, since although we subtract from some entries, we add to others. These
questions will be answered aftter we state our method in a formal way.

Hungarian Algorithm

Starting with an n x n matrix w iih integer entries, this algorithm finds an independent
set of n entries with minimum sum.

Step I (reduce the matrix)
(a) Subtract from each entry of each row the smallest

entry in that row.
(b) Subtract from each entry of each column the smallest

entry in that column.
Step 2 (determine a maxirnu 11 independent set of Os)

Find in the matrix a maximum independent set, S, of Os.
Step 3 (enlarge the independent set if ISI < n)

while ISI < n
(a) Find a minimum covering for the Os of the matrix.
(b) Let k be the smallest matrix entry not in any line of

the covering.
(c) Subtract k from each entry not in a line of the covering.
(d) Add k to each entry in both a row and column of the

covering.
(e) Replace S with a new maximum independent set of Os.

endwhile
Step 4 (output)

The set S is an independent set of n entries with minimum sum.
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First we will show why the loop in step 3 in the algorithm does not change which
independent set is a solution. The reason is that this loop may be broken down into
adding and subtracting numbers from rows and columns of the matrix, which we
have already seen do not change which independent set is a solution. In particular,
let k be the smallest (positive) entry not in any line of a covering. Let us subtract
k from every entry of every row of the whole matrix, and then add k to every
entry of every line of the covering, line by line. The net effect is exactly that of
the loop of step 3. The number k is subtracted from each entry not in a line of
the covering. If an entry is in a line of the covering exactly once, then it is not
changed, since k is both subtracted from and added to it. Entries in both a row
and column of the covering have k subtracted once but added twice, a net result
of +k.

Now we address the question of whether step 3 does any good. It is con-
ceivable that the algorithm could cycle through its parts forever without ever
producing an independent set of n Os. We will show that this cannot happen.
After step 1, our matrix will contain only nonnegative integers as entries. We will
show that the sum of all entries in the matrix will decrease whenever a loop of
step 3 is performed. Obviously, if this sum were 0, then all matrix entries would
be 0 and an independent set of n Os would exist. Thus if the algorithm went on
forever, the sums of all matrix entries would give an infinite decreasing sequence
of positive integers, which is impossible.

Step 3 continues only while no independent set of n Os exists. Then a minimum
covering will contain c rows and columns, where c < n. (This is a consequence
of Konig's theorem.) Let us compute the effect of a loop of step 3 on the sum of
all the entries of the matrix. As we have just seen, this amounts to subtracting k
from each entry of the entire matrix and then adding k to each entry of each line
of the covering. Since there are n2 entries in the matrix, the subtraction decreases
the sum of all entries by kn2. Likewise, since there are c lines in the covering,
each containing n entries, the addition increases the sum of all the entries by kcn.
The net amount added to the sum of all the entries is

-kn 2 + kcn = kn(-n + c).

But this quantity is negative because c < n, and so the net effect is to decrease
the sum of all entries, as claimed.

The reason this method is called "Hungarian" is to honor Konig, who was
from Hungary, and upon whose theorem it is based. The algorithm is due to
H. W. Kuhn.

Matrsice ;/mthat gg,/E AreS No, tElt Sqnuv

Let us suppose that in our example a fifth worker becomes available, so that now
our table becomes as follows.
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Worker I Vorker 2 Worker 3 Worker 4 Worker 5

Jobi 3 6 3 5 3

Job2 7 3 5 8 5

Job3 5 2 8 6 2

Job4 8 3 6 4 4

It is still reasonable to ask how to assign the 4 jobs in such a way as to make the
sum of their times minimal, but our matrix is no longer square, and the algorithm
only applies to square matric.-s. Of course, one worker is not going to get a job,
and this simple idea provides a key to how to adapt the method. We introduce a
fifth job, one requiring no lime at all to do. This amounts to adding a row of Os to
the matrix, producing the square matrix on the left below.

3 6 3 5 3] 0 3 0 2 0
7 3 5 8 5 4 0 2 5 2
5 2 8 6 2 3 0 6 4 0
8 3 6 4 4 5 0 3 1 1

The second matrix above shows the result of applying step 1. Applying the in-
dependent set algorithm to this matrix yields the matrix on the left below. The
matrix on the right shows the result of applying step 3 (with k = 1) to it.

A B C D E
31 0*3001 CV 002

2 4 2 - 3 4 0 2 1
2 4 l*2 'i 2 3 0 1 4 2
3 3 06 04 2 0 5 3 0
4 5 3 L 1 4 0 2 0 1
5 L 0o*TI J D,1 1001

l'/ 5V/ #,/

An independent set of five Os is shown below for this matrix, along with the
corresponding set for the original matrix.

0* 4 0 2 1 3* 6 3 5 3
3 0* 1 4 2 7 3* 5 8 5
2 0 5 3 0* 5 2 8 6 2*
4 0 2 Cl* 1 8 3 6 4* 4
0 1 0* C I O0 0 O* 0 0

By using the fifth worker, we can do all jobs in 3 + 3 + 4 + 2 = 12 hours instead
of the previous minimum of 14 hours.
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A sweater factory has 4 workers and 4 machines on which sweaters can be made.
The number of sweaters a worker can make in a day depends on the machine he
or she uses, as indicated in the following table.

Machine I Machine 2 Machine 3 Machine 4

Worker 1 3 6 7 4

Worker 2 4 5 5 6

Worker 3 6 3 4 4

Worker 4 5 4 3 5

In this case, we are looking for an independent set with 4 entries, the sum of which
is a maximum instead of a minimum. We reduce this to a problem we already
know how to solve by multiplying the corresponding matrix by - . The result is
shown at the left below.

-3 -6 -7 -4 4 1 0 3
-4 -5 -5 -6 2 1 1 0
-6 -3 -4 -4 0 3 2 2

-- 5 -4 -3 -5 - 1 2 0

Finding a maximum sum in the original matrix is equivalent to finding a minimum
sum in this matrix. The negative entries cause no problems, since they disappear
when we subtract the least entries of each row (here -7, -6, -6, and -5). The
result is shown at the right above. Thus a maximum sum problem may be solved
by applying the Hungarian method to the negative of the original matrix. The
reader should check that a maximum of 23 sweaters can be produced per day.

EXERCISES 5.5

In Exercises 1-8 find the smallest sum of an independent set of entries of the matrix with as many elements as the
matrix has rows.

1. [1 2 3]

4. -2 3 5 1 2-
4 3 5 4 2
3 6 3 1 4
3 6 4 5 4

L4 2 4 5 4j

2. 1 4 3 8]
2 7 9 3
8 2 5 5
6 6 4 7

5. 3 5 5 3 8-
4 6 4 2 6
4 6 1 3 6
3 4 4 6 5

-5 7 3 5 9

3. 6 2 5 8]
6 7 1 6
6 3 4 5
5 4 3 4

6. 0 1 0- -I 1]
3 0 4 4 5
1 3 7 4 7

-1 -2 2 3 3
2 4 7 5 9 -



312 ChapterS Matching

7. ~3 4 5 7 6- 8. ~5 6 2 3 4 3~
5 3 4 5 2 6 4 4 2 0 3
1 3 4 5 3 5 4 5 2 6 6
L 6 5 4 3 ] 6 1 4 7 6

In Exercises 9-12 find the largest sum of an independent Yet of entries with as many elements as the matrix has
rows.

9. ~5 4 2 3 10. 4 3 4 11. 6 5 3 1 41 12. 6 7 3 8 9
3 1 4 3 5 3 1 7 2 5 3 7 8 4 7 5 6 2

1 1 1 3 7 5 2 10 8 3 7 5 4 2 5 8 6 9
5 3 6 3 2 4 2 7- 7 I 5 3 8

13. A newspaper sports editor must send 4 of his reporters tc 4 cities. From past experience, he knows what expenses
to expect from each reporter in each city. He can expe ct Addams to spend $700 in Los Angeles, $500 in New
York, $200 in Las Vegas, and $400 in Chicago. Hart zan be expected to spend $500, $500, $100, and $600 in
these cities; Young to spend $500, $300, $400, and $700; and Herriman to spend $400, $500, $600, and $500.
How should the editor make the assignments to keep the total expenses to a minimum?

14. A supervisor has 5 salespeople who can be assigned to 5 different routes next month. Adam can be expected to
see $9000 worth of goods on Route 1, $8000 on Route 2, $10,000 on Route 3, $7000 on Route 4, and $8000 on
Route 5. Betty would sell $6000, $9000, $5000, $70CO, and $4000 on these routes; Charles would sell $4000,
$5000, $4000, $8000, and $2000; Denise would sell $4000, $7000, $5000, $4000, and $2000; and Ed would
sell $5000, $5000, $7000, $9000, and $3000. What is t be maximum total expected sales possible next month?

15. A foreman has 4 jobs and 5 workers he could assign them to. The time in hours each worker needs for each job
is shown in the following table.

Worker I Worker 2 Worker 3 Worker 4 Worker 5

Job 1 7 3 5 7 2

Job 2 6 1 4 2 6

Job 3 8 3 8 9 1

Job4 7 2 1 5 6

After subtracting the minimum entries from the rows and columns of the corresponding matrix, we have the
matrix

O0* 1 3 4 0
0 O0 3 0 5
2 2 7 7 0*
I I 0* 3 5

in which the stars indicate a maximum independent set of Os. The corresponding job assignment will require a
total of 7 + 1 + 1 + 1 = 10 hours. But by assigning the jobs to workers 2, 4, 5, and 3, the total time could be
reduced to 3 + 2 + 1 + 1 = 7 hours. What is wrong?
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HISTORICAL NOTES

Philip Hall (1904-1982), who contributed Theorem 5.1, was a very gifted English mathe-
matician. After receiving his doctorate in algebra, Hall worked on generalizations of the
Sylow theorems in group theory and with correlation in statistics. In 1935 he published
the paper that listed the necessary and sufficient conditions for the existence of a system
of distinct representatives for a sequence of finite sets. During World War II, he worked
with the famous British cryptography group at Bletchley Park.

The methods for linking systems of distinct representatives to matching are a combi-
Phillp Hall nation of the work of Ddnes Konig (1884-1944), a Hungarian mathematician, and the two

American mathematicians Lester R. Ford Jr. (1927- ) and Delbert R. Fulkerson (1924-
1976), who considered the question of whether or not there is a subset of edges in a
bipartite graph with the property that every vertex meets just one of them. Konig initially
proved this in 1914 and published his result in 1916. The approach of Ford and Fulkerson
used the independent set algorithm found in Section 5.3. When extended to apply to bi-
partite graphs, the result is equivalent to an algorithmic approach developed by Konig in
1931.

SUPPLEMENTARY EXERCISES

1. How many systems of distinct representatives does each of the following sequences of sets have?

(a) {1,2,3,4,5),(1,2,3,4,51,{(,2,3,4,5}
(b) 11,2,3,41, (I,2,3,4), (5,6,71
(c) (1, 2,31, (2, 3,4), (1, 2,41, (1, 3,4}, {1, 2,4}

2. Let SI = I1, 2, 5}, S2 = (1, 5}, S3 = (1, 2}, S 4 = (2, 3, 41, and S3 = (2, 5}. Give an argument to show that the
sequence SI, S2, S3, S4, S5 does not have a system of distinct representatives.

3. Tell whether each of the following graphs is bipartite or not, and if so give disjoint sets VI and V2 such that
each edge joins a vertex in VI to one in V2.

1 13 2 3

5 1 t
4 i 4 6

7 154 9
8

10 1 12 10 11 16 12

(a) (b)

4. Give a maximum matching for each graph in Exercise 3.

5. Give a minimum covering for each graph in Exercise 3.
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6. The graph below is bipartite in that every edge joins a vertex in VI = {1, 3, 6, 8} to one in V2 = {2, 4, 5, 71.
Give the matrix of the graph.

8 4

3 -- 5

7 6L
2 -- X

7. Find a maximum independent set of Is for the matrix of Exercise 6.

8. Find a minimum covering for the matrix of Exercise 6

9. Use the independent set algorithm to find a maximum independent set of Is for the following matrix, starting
with the starred set of is. Use the algorithm to find a minimum covering also.

1* 0 0 0 1
0 0 1 * I 0
0 () I 0 0
1 1* 0 1 1

0 0 1 0 0

10. Convert the following bipartite graph into a matrix, and use the independent set algorithm to find a max-
imum matching and minimum covering for the gragh. Start with the set of Is corresponding to the given
matching.

A

B

C

D

E

11. Convert the sequence of sets Jw*, y), {x*, zl, {vx, z}, {w, x}, {v, y*) to a matrix, and use the independent set
algorithm to find a system of distinct representatives i- possible, starting with the set of Is corresponding to the
starred elements.

12. Dan, Ed, Fred, Gil, and Hal are at a dance with Iv17, June, Kim, Lii, and Mae. The only compatible dancing
partners are Dan with Kim or Lil, Ed with Ivy or Mae, Fred with June or Mae, Gil with June or Lil, and Hal
with Ivy or Kim. Those currently dancing are Dan with Kim, Ed with Ivy, Fred with June, and Gil with Lil,
with Hal and Mae left out. Use the independent set algorithm to find everyone a partner.
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13. The table below shows the number of hours it would take each of workers A, B, C, D, and E to do jobs 1, 2,
3, 4, and 5. What is the minimum time needed to do all five jobs?

1
2
3
4
5

AB CD E

7 5 8 6 4
4 3 5 4 6
5 8 6 7 3
6 7 3 4 5
4 3 6 5 3

14. Use the Hungarian algorithm to find an independent set of entries with minimum sum for each of the following
matrices.

(a) l 3 5 7 (b) 3 4 7 81
2 8 6 4 7 5 6 5
5 4 1 2 5 3 4 4
6 4 3 5 8 6 5 7

4 2 8 9

15. A car dealer has four salespeople, and each is assigned to sell a particular brand of car. Adam can sell 6
Hupmobiles, 8 Studebakers, 7 Packards, or 4 Hudsons per month. Beth can sell 7, 3, 2, or 5 of each brand; Cal
6, 7, 8, or 7; and Danielle 6, 4, 5, or 4. How should each be assigned a different brand to maximize the number
of cars sold?

16. Prove that if a graph with v vertices has a matching M, then 21MI < v.

17. Suppose M is a matching of a graph such that there is a simple path el, e2 . en of odd length that begins and
ends at vertices not incident with any edge in M. Show that if el, e3 . en are not in M, while e2, e4 . e.,
are in M, then M is not a maximum matching.

18. Let a graph have a maximum matching with m edges and a minimum covering with c vertices. Show by
mathematical induction on m that the greatest integer not exceeding c"l is less than or equal to m.

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given a set S of m elements and n subsets T1, T2, . . ., T, of S. generate all possible lists XI, X2, Xn, where
Xi E T, for i = 1, 2, .. ., n. For each list, check whether the elements xi are all distinct. Apply the program
to the example of professors and courses in Section 5.1 to confirm that the sets PI, P2 , ... , P6 there have no
system of distinct representatives.

2. Given a graph with vertex set V = {1, 2, ... , n) and adjacency matrix A = {aij), decide if a given subset W
of V is a covering or not. (See Exercise 33 of Section 5.2.)

3. Apply the independent set algorithm to an m x n matrix of Os, Is, and 2s, with no two 2s in a line. The Os
and Is should be interpreted as in that algorithm, while the 2s correspond to starred is. Thus the program will
either interchange some Is and 2s to get a new matrix with a larger independent set of 2s or else determine
that this is impossible. In the latter case, output the row and column numbers corresponding to a minimum
covering.

4. Find a maximum independent set of Is in a given matrix of Os and ls by repeatedly invoking the program of
the previous exercise.



316 Chapter5 Matching

5. Solve the bottleneck problem, starting with an m x n matrix A = [aij] of positive integers. (Hint: For k =
1, 2, ... form a new matrix B = [bij], where byj == 0 or I according as aij > k or not. Apply the program of
the previous exercise until k is sufficiently large so that B has an independent set with n elements.)

6. Given an m x m matrix, perform step I of the Hung-rian algorithm to get a matrix with nonnegative entries
and at least one 0 in each line.

7. Implement the Hungarian algorithm, given an m x in matrix. Use the program of Exercise 4. Note that an
auxiliary matrix in which Os and Is correspond to positive and 0 entries will be needed to apply that program.
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Network Flows
6.1 Flows and Cuts

6.2 A Flow Augmentation Algorithm

6.3 The Max-Flow Min-Cut Theorem

6.4 Flows and Matchings

Many practical problems require the movement of some commodity from one
location to another. For example, an oil company must move crude oil from
the oil fields to its refinery, and a long-distance telephone company must move
messages from one cityto another. In both of these situations, there is a limitation
to the amount of the commodity that can be moved at one time. The volume of
crude oil that the oil company can move, for instance, is limited by the capacity
of the pipeline through which the oil must flow. And the number of telephone
calls that the phone company can handle is limited by the capacity of its cable
and its switching equipment. This type of problem, in which some commodity
must be moved from one location to another subject to the restriction that
certain capacities not be exceeded, is called a network flow problem. In this
chapter we will be primarily concerned with solving such problems.

6.1 + FLOWS AND CUTS

When an oil company must ship crude oil from the oil fields to its refinery,
there is one origin for the oil (the oil fields) and one destination (the refinery).
However, there may be many different pipelines available through which the oil
can be sent. Figure 6.1 shows this situation for an oil company with oil fields
at Prudhoe Bay and a refinery in Seward, Alaska. (Here the pipeline capaci-
ties are given in thousands of barrels per day.) This figure showing the possible
routes from the oil fields to the refinery is a special type of weighted directed
graph.

By a transportation network, or more simply a network, we mean a
weighted directed graph satisfying the following three conditions.

(1) There is exactly one vertex having no incoming edges, i.e., exactly one
vertex with indegree 0. This vertex is called the source.

317



318 Chapter 6 Network Flows

FIGURE 6.1

(2) There is exactly one verte x having no outgoing edges, i.e., exactly one vertex
with outdegree 0. This v.r tex is called the sink.

(3) The weight assigned to each edge is a nonnegative number.

In this context a directed edge of the network will be called an arc, and the weight
of an arc will be called its capacity.

Example 6.1

Figure 6.2 shows a weighted directed graph with five vertices and seven arcs.
The seven arcs are: (A, B) with capacity 6, (A, C) with capacity 8, (A, D) with
capacity 3, (B, C) with capacity 5, (B, D) with capacity 6, (C, E) with capacity
4, and (D, E) with capacity 9. Clearly the capacity of each arc is a nonnegative
number. Note that vertex A is the only vertex having no incoming arcs, and
vertex E is the only vertex having no outgoing arcs. Thus the directed graph in

Drvr5ol



6.1 Flows and Cuts 319

Figure 6.2 is a transportation network with vertex A as its source and vertex E as
its sink. +

D

FIGURE 6.2

In a transportation network, we consider a commodity flowing along arcs
from the source to the sink. The amount carried by each arc must not exceed the
capacity of the arc, and none of the commodity can be lost along the way. Thus, at
each vertex other than the source and the sink, the amount of the commodity that
arrives must equal the amount of the commodity that leaves. We will formalize
these ideas in the following definition.

Let A be the set of arcs in a transportation network AK, and for each arc e in
A let c(e) denote the capacity of e. A flow in K is a function f that assigns to
each arc e a number f(e), called the flow along arc e, such that

(1) 0 < f(e) < c(e), and
(2) for each vertex V other than the source and sink, the total flow into V (the

sum of the flows along all arcs ending at V) equals the total flow out of V
(the sum of the flows along all arcs beginning at V).

Since the capacity of an arc is nonnegative, it is clear that the function f
assigning the number 0 to each arc is always a flow in a transportation network.
Consequently, every network has a flow.

+ Example 6.2

For the transportation network in Figure 6.2, the function f such that f(A, B) =

6, f(A,C) = O, f(A,D) = 3, f(B,C) = 4, f(B,D) = 2, f(C,E) = 4, and
f(D, E) = 5 is a flow. This flow is shown in Figure 6.3, where the first number on
each arc is its capacity and the second number is the flow along that arc. Notice that
each value of f is a nonnegative number that does not exceed the capacity of the
corresponding arc. In addition, at vertices B, C, and D the total flow into the vertex
equals the total flow out of the vertex. For instance, the total flow into vertex B is 6
along arc (A, B); and the total flow out of vertex B is also 6:4 along arc (B, C) and 2
along arc (B, D). Likewise, the total flow into vertex D is 5: 3 along arc (A, D) and
2 along arc (B,D); and the total flow outof vertex Dis also 5 along arc (DE). +

OE



320 Chapter 6 Network Flows

In Figure 6.3 the total flow out of vertex A is 9: 6 along arc (A, B), 0 along
arc (A, C), and 3 along arc (tA, D). Notice that this number is the same as the
total flow into vertex E, which is 4 along arc (C, E) and 5 along arc (D, E). This
equality is a basic property or every flow.

C

8,0 4,4
5,4

AK- *E

D

FIGURE 6.3

Theorem 6.1 For any flow in a transportation network, the total flow out of the source equals
the total flow into the sink.

Proof. Let VI, V2 , .. .,, denote the vertices of the network, with VI being
the source and V, being the sink. Let f be a flow in this network, and for each
k (1 < k < n) define Ik to be the total flow into Vk and Ok to be the total flow out
of Vk. Finally, let S denote the sum of the flows along every arc in the network.

For each arc e = (Vj, l'k). f (e) is included in the sum II + 12 + . . + I,
exactly once (in the term Ok) and in the sum 01 + 02 + ..* + O, exactly once
(in the term 0j). Hence II + 12 + - -** + In = S and 01 + 02 + * * * + On = S;
SO O 1 + 02 + * * * + On = 11 - 12 + * * * + In. But for any vertex Vk other than
the source and sink, Ik = 0 k Cancelling these common terms in the preceding
equation gives 01 + O, = I, +- I,. Now I, = 0 because the source has no in-
coming arcs, and O, = 0 because the sink has no outgoing arcs. Hence we see
that 01 = I,, that is, the total flow out of the source equals the total flow into the
sink. N

If f is a flow in a transportation network, the common value of the total flow
out of the source and the total flow into the sink is called the value of the flow f.

In the network shown in Figure 6.1 in which crude oil is to be shipped through
pipelines, the oil company would be interested in knowing how much oil can be
sent per day from the oil fields to the refinery. Likewise, in any transportation
network, it is important to know the amount of a commodity that can be shipped
from the source to the sink without exceeding the capacities of the arcs. In other
words, we would like to know the largest possible value of a flow in a transportation
network. A flow having maximum value in a network is called a maximal flow.

In Section 6.2 we will present an algorithm for finding a maximal flow in
a transportation network. In order to understand this algorithm better, we will
first consider some of the ideas that are involved in finding a maximal flow.
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Suppose, for example, that we want to find a maximal flow in the transportation
network shown in Figure 6.2. Because this network is so small, it will not be dif-
ficult to determine a maximal flow by a little experimentation. Our approach will
be to find a sequence of flows with increasing values. We will begin by taking
the flow to be zero along every arc. Thus the current flow is as in Figure 6.4,
where the numbers along each arc are the arc capacity and the current flow along
the arc.

C

A

D

FIGURE 6.4

Now we will try to find a path from the source to the sink along which we can
increase the present flow. Such a path is called a flow-augmenting path. In this
case, since there is no arc along which the flow equals the capacity, any directed
path from the source to the sink will suffice. Suppose that we choose the path
A, C, E. By how much can we increase the flow along the arcs in this path?
Because the capacities of the arcs (A, C) and (C, E) in this path are 8 and 4,
respectively, it is clear that we can increase the flows along these two arcs by
4 without exceeding their capacities. Recall that we are only changing the flow
along arcs in our chosen path A, C, E and that the flow out of vertex C must equal
the flow into C. Consequently, if we tried to increase the flow along arc (A, C)
by more than 4, then the flow along arc (C, E) would also need to be increased
by more than 4. But a flow along arc (C, E) that is greater than 4 would exceed
the capacity of this arc. Hence the largest amount by which we can increase the
flow along the path A, C, E is 4. When we increase the flow in this manner, we
obtain the flow shown in Figure 6.5.

Al

D

FIGURE 6.5

Now we will try to find another flow-augmenting path so that we can increase
the present flow. Note that such a path cannot use arc (C, E) because the flow in
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this arc is already at its capacity. One acceptable path is A, D, E. For this path
we can increase the flow by as much as 3 without exceeding the capacity of any
arc. (Why?) If we increase the flows in arcs (A, D) and (D, E) by 3, we obtain
the new flow shown in Figure 5.6.

Again we will try to find a flow-augmenting path. Path A, B, D, E is such a
path. For this path we can increase the flow by as much as 6 without exceeding
the capacity of any arc. If we increase the flows in arcs (A, B), (B, D), and (D, E)
by 6, we obtain the new flow shown in Figure 6.7.

C C

8,4 4,
5,0

A -- 6,0 .
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3,3 \ /\/ 9.3

D D

FIGURE 6.6 FIGURE 6.7

Is it possible to find another flow-augmenting path? Note that any path leading
to the sink must use either arc (C, E) or arc (D, E) because these are the only
arcs leading to the sink. But the flow along these arcs is already at the capacity
of the arcs. Consequently. it is not possible to increase the flow in Figure 6.7
any further, and so this flow is a maximal flow. The value of this flow is 13, the
common value of the flow out of the source and into the sink.

The argument used here to justify that there could be no flow having a value
larger than 13 is an important one. As this argument suggests, the value of a
maximal flow is limited by the capacities of certain sets of arcs. Recall once
more the oil pipeline network in Figure 6.1. Suppose that after analyzing this
network you have determined that the value of a maximal flow is 18 but that your
colleagues at the oil company are questioning your calculations. They point out
that it is possible to ship 22 thousand barrels per day out of Prudhoe Bay and 22
thousand barrels per day into Seward; so they believe that there should be a flow
having the value 22. How can y ou convince them that there can be no flow having
a value greater than 18?

Suppose that the vertices of the network are partitioned into two sets S and
T such that the source belong!, to S and the sink belongs to T. (Recall that this
statement means that each vertex belongs to exactly one of the sets S or T.) Since
every path from the source to the sink begins at a vertex in S and ends at a vertex in
T, each such path must contain an arc that joins some vertex in S to some vertex
in T. So if we can partition thc vertices of the network into sets S and T in such
a way that the total capacity of the arcs going from a vertex in S to a vertex in T
is 18, we will have proved that there can be no flow with a value greater than 18.
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It can be seen in Figure 6.8 that such a partition is obtained by taking

T = {Fairbanks, Delta Junction, Valdez, Seward)

and S to be the other cities in the figure. The heavy line in Figure 6.8 separates
the cities in S (northwest of the line) from the cities in T (southeast of the line).
Notice that the only arcs joining a city in S to a city in T are those from Anchor-
age to Seward (with capacity 9), Livengood to Fairbanks (with capacity 3), and
Prudhoe Bay to Delta Junction (with capacity 6). These arcs have a total capacity
of 9 + 3 + 6 = 18, and so no flow from a vertex in S to a vertex in T can exceed
this number.

FIGURE 6.8

Generalizing from this example, we define a cut in a network to be a partition
of its vertices into two sets S and T such that the source lies in S and the sink
belongs to T. The sum of the capacities of all arcs leading from a vertex in S to a
vertex in T is called the capacity of the cut. Note that in determining the capacity
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of the cut, we consider only the capacity of arcs leading from a vertex in S to a
vertex in T, and not those leading from a vertex in T to a vertex in S.

+ Example 6.3

In Figure 6.8, let

S = {Prudhoe Bay, Barrow, Wainwright, Point Hope, Kotzebue)

and T contain the cities not in S. Then S, T is a cut because Prudhoe Bay is in S
and Seward is in T. The arcs leading from a city in S to a city in T are Kotzebue
to Unalakleet (with capacity 5), Kotzebue to Galena (with capacity 4), Prudhoe
Bay to Wiseman (with capacity 12), and Prudhoe Bay to Delta Junction (with
capacity 6). So the capacity of this cut is 5 + 4 + 12 + 6 = 27. +

C C

A

(a) (b)

FIGURE 6.9

Example 6.4

In Figure 6.9(a), S = {A. B, C) and T = {D, E} form a cut. The arcs leading
from a vertex in S to a vertex in T are (A, D) with capacity 3, (B, D) with capacity
6, and (C, E) with capacity 4. Therefore the capacity of this cut is 3 + 6 + 4 = 13.

The sets S' = {A, B, C, E I and T' = {E} also form a cut. See Figure 6.9(b).
In this case the arcs leading from a vertex in S' to a vertex in T' are (C, E) with
capacity 4 and (D, E) with capacity 9. Thus this cut also has capacity 13. +

In Figure 6.10, let S, T be the cut with S = {A, C, D} and T = {B, E}. Let
us consider the total flow (not the capacities) along the arcs joining vertices in S
and T. Notice first that the toial flow from S to T (that is, the total flow along
arcs leading from a vertex in S to a vertex in T) is 6 + 4 + 7 = 17, the sum of
the flows along the blue arcs (.4, B), (C, E), and (D, E), respectively. Likewise,
the total flow from T to S is 1 + 5 = 6, the sum of the flows along the black
arcs (B, C) and (B, D). The difference between the total flow from S to T and
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the total flow from T to S is therefore 17 -6 = 11, which is the value of the
flow shown in Figure 6.10. This equality is true in general, as the next theorem
shows.

A

D

FIGURE 6.10

Theorem 6.2 If f is a flow in a transportation network and S, T is a cut, then the value of f
equals the total flow along arcs leading from a vertex in S to a vertex in T minus
the total flow along arcs leading from a vertex in T to a vertex in S.

Proof. If U and V are sets of vertices in the network, we will denote by f (U, V)
the total flow along arcs leading from a vertex in U to a vertex in V. Let a be
the value of f. With this notation, the result to be proved can be written as
a = f (S, T) - f(T, S). Note that if V, n V2 = 0, then f (U, V, U V 2 ) =

f (U, V,) + f (U, V2); and likewise, if U1 n U2 = 0, then f (Ul U U2, V) =

f (UI, V) + f (U2, V).
By the definition of a flow, f ({V}, S U fT)-f (S U T, {V}) = 0 if V

is neither the source nor the sink, and f ({V}, S U T)-f (S U T, {V)) = a
if V is the source. Summing these equations for all V in S gives the equation
f(S,S UT) - f(S U TS) = a. Thus

a f(S, S U T) -f(S U T, S)

= [f(S,S) + f(S, T)] - [f(S,S) + f(T,S)]

=f(S,' ) - f(T,S).

Corollary If f is a flow in a transportation network and S. T is a cut, then the value of f
cannot exceed the capacity of S, T.

Proof. Using the notation in the proof of Theorem 6.2, we have

a = f(S, T) - f(T,S) < f(S, T)

since f (T, S) > 0. But the flow along any arc leading from a vertex in S to a
vertex in T cannot exceed the capacity of that arc. Thus f (S, T) cannot exceed
the capacity of the cut S, T. It follows that the value of f cannot exceed the
capacity of the cut S, T. T
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The corollary to Theorem 6.2 is a useful result. It implies that the value of
a maximal flow in a transportation network cannot exceed the capacity of any
cut in the network. By using this fact, we can easily obtain an upper bound on
the value of a maximal flow. [n Section 6.3 we will be able to strengthen this
result by showing that every transportation network contains at least one cut
with capacity equal to the value of a maximal flow. (Notice, for instance, that
Example 6.4 presents two cuts with capacity equal to the value of the maximal
flow in the network shown in Figure 6.7.) This fact will enable us to prove
that a particular flow is a maximal flow as we did in analyzing the flow in
Figure 6.7.

EXERCISES 6.1

In Exercises 1-6 tell whether the given weighted directed graph is a transportation network or not. If so, identify
the source and sink. If not, tell why.

1.

A

/4

D

3. B 2 D

4 3

A I 1 OF

23

IC 3 E

5.

IF

4. B 6 D

3 11

A 2 2 F

C 4 E

6. B 3 D

21

A 6 F

C 4 E

:1.

I
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In Exercises 7-12 a transportation network is given. The first number along each arc gives the capacity of the arc.
Tell whether the second set of numbers along the arcs is a flow for the network. If so, give the value of the flow.
If not, tell why.

7. C 8. C

17,3

D

9. B 7,3 D

13,1 I,

A< 7,6 3,2 F

C 6,4 E

11. B 3,1 D

4,25,

A 4, 5,1 F

13,3 4, 12,2

C 6.2 E

10. B 53 D

2,1 %8,5

A , 1 F

C 2,2 E

12. B 5,1 D

17,36,

A t4,2 8 ,46,3 F

6,4 , 3,2

C 15.2 E

In Exercises 13-18 tell whether the given sets S, T form a cut for the network indicated. If so, give the capacity
of the cut. If not, tell why.

13. S = {A,BIandT = {D,EIforthenetworkinExercise7

14. S = {A, D) and T = {B, C, El for the network in Exercise 8

15. S = {A, D, E} and T = {B, C, F} for the network in Exercise 9

16. S = {A, B, C, D} and T = {D, E, FI for the network in Exercise 10

17. S I{A, D, E} and l = {B, C, FI for the network in Exercise 11
18. S I {A, B, C} and T = {D, E, FI for the network in Exercise 12

In Exercises 19-24 find by inspection a flow satisfying the given conditions.

19. A flow of value 11 for the network in Exercise 7
20. A flow of value 13 for the network in Exercise 8

21. A flow of value 11 for the network in Exercise 9
22. A flow of value 17 for the network in Exercise 10

23. A flow of value 18 for the network in Exercise 11
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24. A flow of value 18 for the network in Exercise 12

In Exercises 25-30 find by inspection a cut satisfying the given conditions.

25. A cut of capacity 11 for the network in Exercise 7

26. A cut of capacity 13 for the network in Exercise 8

27. A cut of capacity 11 for the network in Exercise 9
28. A cut of capacity 17 for the network in Exercise 10
29. A cut of capacity 18 for the network in Exercise I 1
30. A cut of capacity 18 for the network in Exercise 1 2

31. A telephone call can be routed from Chicago to Atlanta along various lines. The line from Chicago to Indianapolis
can carry 40 calls at the same time. Other lines and their capacities are: Chicago to St. Louis (30 calls), Chicago
to Memphis (20 calls), Indianapolis to Memphis (15 calls), Indianapolis to Lexington (25 calls), St. Louis
to Little Rock (20 calls), Little Rock to Memphis ( 15 calls), Little Rock to Atlanta (10 calls), Memphis
to Atlanta (25 calls), and Lexington to Atlanta (I 5 calls). Draw a transportation network displaying this
information.

32. A power generator at a dam is capable of sending 300 megawatts to substation 1, 200 megawatts to substation 2,
and 250 megawatts to substation 3. In addition, substat ion 2 is capable of sending 100 megawatts to substation
1 and 70 megawatts to substation 3. Substation 1 can send at most 280 megawatts to the distribution center,
and substation 3 can send at most 300 megawatts to the distribution center. Draw a transportation network
displaying this information.

In Exercises 33-36 let f(U, V) be defined as in the proof of Theorem 6.2.

33. Find f(U, V) and f(V, U) if f is the flow in Exercise 1(0, U = {B, C, D}, and V = {A, E, Fl.

34. Find f (I, V) and f(V, U) if f is the flow in Exercise 12, U = {C, E, F), and V = {A, B, D}.

35. Give an example to show that if V1 and V2 are not disj cint, then it is possible that f (U, VI U V2) may not equal
f (W, V) + f(W, V2 ).

36. Prove that f(U, V U W) = f(U, V) + f((U, WA - f(U, V n W) for any sets of vertices U, V,
and W.

6.2 o A FLOW AUGMENTATION ALGORITHM

In this section we will present an algorithm for finding the maximal flow in a
transportation network. This algorithm is based on a procedure formulated by
Ford and Fulkerson and utilizes a modification suggested by Edmonds and Karp.
(See suggested readings [5] and [3] at the end of this chapter.) The essence of the
algorithm is described in Section 6.1:

(1) Begin with any flow, for example, the one having zero flow along every arc.
(2) Find a flow-augmenting path (a path from the source to the sink along which

the present flow can be increased), and increase the flow along this path by
as much as possible.
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(3) Repeat step (2) until it is no longer possible to find a flow-augmenting
path.

Some care must be taken in deciding if there is a flow-augmenting path. Con-
sider, for example, the transportation network in Figure 6.11, where the numbers
along each arc are the capacity of the arc and the present flow along the arc, in that
order. This flow was obtained by sending 4 units of flow along path A, B, C, E;
3 units along path A, D, E; and then 2 units along path A, B, D, E.

C

5,4
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\ 6,2

3,3 9,5

D

FIGURE 6.11

The value of the flow in Figure 6.11 is 9, and we know from the argument
following Figure 6.7 that the value of a maximal flow in this network is 13.
Consequently, we will look for a path from A to E along which the present flow
can be increased. Clearly the only way to increase the flow out of A is to use arc
(A, C). But (C, E) is the only arc leading out of the vertex C, and the present
flow along this arc equals its capacity. Thus we cannot increase the flow along
arc (C, E). Therefore, there is no directed path from A to E along which the flow
can be increased. But if we allowed flow from vertex C to vertex B along the arc
(B, C), we could send 4 units of flow along path A, C, B, D, E. This additional
4 units would give us a maximal flow from A to E.

How can we justify sending 4 units from C to B when the arc is directed
from B to C? Since there are already 4 units of flow along arc (B, C), sending
4 units of flow from C to B has the effect of cancelling the previous flow along
(B, C). Thus, by sending 4 units of flow along path A, C, B, D, E, we obtain the
maximal flow shown in Figure 6.7.

If we look at the network in Figure 6.11 more carefully, we can see that our first
path A, B, C, E was not well chosen. By using the arc (C, E) as part of this path,
we prevent the later use of arc (A, C). (Note that because there is no arc except
(C, E) leaving vertex C, any flow sent into vertex C along arc (A, C) must leave
along arc (C, E).) Therefore, using arc (B, C) in the path A, C, B, D, E corrects
the original poor choice of path A, B, C, E. Clearly our algorithm will need some
method to correct a poor choice of path from source to sink made earlier. In the
version of the algorithm that follows, this correction occurs in step 2.2(b).

This algorithm, like the independent set algorithm in Section 5.3, is based
on the labeling procedure devised by Ford and Fulkerson. In the algorithm two
operations, called labeling and scanning, are performed on vertices. As in the
independent set algorithm, a vertex must be labeled before it can be scanned.
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Flow Augmentation Algorithm

For a transportation network in % hich arc (X, Y) has capacity c(X, Y), this algorithm
either indicates that the current flow f is a maximal flow or else replaces f with a
flow having a larger value.

Step ] (label the source)
Label the source with the triple (source, +, cc).

Step 2 (scan and label)
repeat

Step 2.1 (select a vertex to scan)
Among all the vert ces that have been labeled but not scanned,
let V denote the one that was labeled first, and suppose that the
label on V is (U, i, a).

Step 2.2 (scan verie' V)
For each unlabeled vertex W, perform exactly one of the fol-
lowing three actions.

(a) If (V, TV) is< an arc and f (V, W) < c(V, W), assign to W
the label (V, +, b), where b is the smaller of a and
c(V, W) -- f(V, W).

(b) If (W, V) is an arc and f (W, V) > 0, assign to W the
label (V, -, b), where b is the smaller of a and f (W, V).

(c) If neither (a) nor (b) holds, do not label W.
Step 2.3 (mark as scanned)

Mark vertex V as h aving been scanned.
until either the sink is Icbeled or every labeled vertex has been scanned

Step 3 (increase the flow if possible)
if the sink is unlabeled

The present flow is a mtaximal flow.
otherwise

Step 3.1 (breakthrough)
Now let V denote the sink, and suppose that the label on V is
(U, +, a).

Step 3.2 (adjust the flow)
repeat

(a) if the labeI on V is (U, +, b)
Replace f (U, V) with f (U, V) + a.

endif
(b) if the label on V is (U, -, b)

Replace f (V, U) with f (V, U) - a.
endif

(c) Now let V denote the vertex U.
until V is the source

endif
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If the present flow is not a maximal flow, the algorithm uses breadth-first
search to find a shortest flow-augmenting path (that is, one with the fewest arcs).
Each vertex V along this path is labeled in one of two ways: (U, +, a) or (U, -, a).
The first entry of the label, U, signifies that vertex U precedes V on this path.
The second entry of the label denotes that (U, V) is an arc or that (V, U) is an
arc on this path, depending on whether the entry is + or -, respectively. And the
third entry of the label, a, is a positive number indicating how much the present
flow can be increased (if the second entry of the label is +) or decreased (if the
second entry of the label is -) without violating the restrictions in condition (1)
of the definition of a flow for any arc along the path from the source to V.

We will illustrate the use of the flow augmentation algorithm by finding a
maximal flow for the network discussed in Section 6.1. When we reach step 2.2
of the algorithm, we will examine the unlabeled vertices in alphabetical order.
In order to begin the algorithm, we will take the flow to be 0 along every arc, as
shown in Figure 6.12. (Again the two numbers written beside each arc are the
capacity and the present flow along that arc.)

In step 1 we assign the label (source, +, oc) to the source, vertex A. In step 2,
we note that only vertex A has been labeled but not scanned. In step 2.2 we scan
vertex A by examining the unlabeled vertices (B, C, D, and E) to see if any of
them can be assigned labels. Note that vertex B is unlabeled, (A, B) is an arc,
and the flow along this arc (0) is less than the capacity (6). Thus we can perform
action (a) in step 2.2 on vertex B. Since 6 is the smaller of oo (the third entry in
the label on A) and 6- 0, we label B with (A, +, 6). Likewise, we can perform
action (a) on the vertices C and D, which assigns them the labels (A, +, 8) and
(A, +, 3), respectively. Because vertex E is not joined to vertex A, it cannot yet
be given a label. This completes the scanning of vertex A. The current labels are
shown in Figure 6.13.

(A, + 8)
C

D

FIGURE 6.12 FIGURE 6.13

After scanning vertex A, we return to step 2.1. There are 3 vertices that have
been labeled but not scanned (namely, vertices B, C, and D). Of these, vertex
B was the first one to be labeled, and so we scan vertex B. Because there are
no unlabeled vertices joined by an arc to vertex B, no changes result from the
scanning of vertex B. Therefore we return to step 2.1 once more. At this stage
there are two unlabeled vertices that have not been scanned (namely, vertices C
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and D), and, of these, C was ihe first to be labeled. Thus we scan vertex C in
step 2.2. Since E is unlabeled. (C, E) is an arc, and the flow along this arc (0)
is less than its capacity (4), we perform action (a). This action assigns to vertex
E the label (C, +, 4) because 4 is the smaller of 8 (the third entry in the label
on C) and 4 - 0 (the capacity ninus the flow along arc (C, E)). Since there are
no unlabeled vertices remaining, this completes the scanning of vertex C. The
present labels are shown in Figure 6.14.

In the scanning of vertex C, the sink was labeled, and so we proceed to step 3.
The fact that the sink has been labeled (C, +, 4) tells us that the current flow can
be increased by 4 along a path through vertex C. The vertex that precedes C in
this path is the first entry in the Label on C, which is (A, +, 8). Thus the path from
the source to the sink along which the flow can be increased by 4 is A, C, E.
When we increase the flow along the arcs in this path by 4, the resulting flow is
as in Figure 6.15.

(A. + 3)

C

,4) A 6,0 *E

\ 6,0
3,0\\ /9,0

(A, - 3) D

FIGURE 6.14 FIGURE 6.15

This finishes step 3, and so the first iteration of the algorithm has been com-
pleted. We now remove all the labels and repeat the algorithm with the flow in
Figure 6.15. As before, we assi yn to vertex A the label (source , +, oc), and then
in step 2.2 we scan vertex A. This results in vertices B, C, and D receiving the
respective labels (A, +, 6), (A, +, 4), and (A, +, 3). This completes the scan-
ning of vertex A. Since B is the unscanned vertex that was labeled first, we now
scan vertex B. As in the first iteration of the algorithm, no changes result from
the scanning of vertex B. So we return to step 2.1. This time vertex C is the
unscanned vertex that was labeled first. But unlike the first iteration, we cannot
label vertex E because the flow along arc (C, E) is not less than the capacity of
the arc. Consequently, no changes result from scanning vertex C. Once more we
return to step 2.1. This time vertex D is the only labeled vertex that has not been
scanned, and so we scan vertex D. Since (D, E) is an arc along which the flow is
less than the capacity, we perform action (a). As a result of this action, vertex E
is labeled (D, +, 3). This completes the scanning of vertex D. But now the sink
has been labeled; so we proceed to step 3. (See Figure 6.16.)
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Because the label on the sink is (D, +, 3), we can increase the current flow
by 3 along a path through vertex D. To find the vertex that precedes D in this path,
we examine the label on D, which is (A, +, 3). Since the first entry of this label
is A, we see that the path along which the flow can be increased by 3 is A, D, E.
When we increase the flow along the arcs in this path by 3, we obtain the flow
shown in Figure 6.17. This completes the second iteration of the algorithm.

(A, + .4)
C

C

8,4 4,4

60B
,3) A *E

3,3 9,3
D MY

(A. + ,3) D

FIGURE 6.16 FIGURE 6.17

Again we discard all of the labels and perform another iteration of the al-
gorithm. In this third iteration, we reach step 3 with the labels shown in Figure
6.18. From these labels, we see that the flow can be increased by 6 along the path
A, B, D, E. By increasing the flows along the arcs in this path by 6, we obtain
the flow in Figure 6.19.

(A, + ,4)
C

C

.6)

D
(B, +,6) D

FIGURE 6.18 FIGURE 6.19

Again we discard all of the labels and perform another iteration of the al-
gorithm. This time, however, we can label only vertex C when scanning vertex
A. (See Figure 6.20.) Moreover, when vertex C is scanned, no changes occur.
Consequently all of the labeled vertices have been scanned. Thus step 3 assures
us that the present flow (the one shown in Figure 6.19) is a maximal flow. When
the algorithm ends, the set of labeled vertices S = {A, C} and the set of unla-
beled vertices T = {B, D, E} form a cut. Notice that the capacity of this cut is
4 + 6 + 3 = 13, which equals the value of the maximal flow in Figure 6.19. We
will see in Section 6.3 that this is no coincidence: When the flow augmentation

(source,

(source,
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algorithm ends with the sink 14nlabeled, the sets of labeled and unlabeled vertices
always determine a cut with capacity equal to the value of a maximal flow.

(A, +,4)
C

8,4 4,4

66B
A adE5'

(source, i- \6,6

3,3 4 9,9

D

FIGURE 6.20

# Example 6.5

We will use the flow augmentation algorithm to find a maximal flow for the
network shown in Figure 6.21. When labeling vertices in step 2.2, we will consider
them in alphabetical order.

A

FIGURE 6.21

i f",'"ii }. The labels assigned in iteration 1 are shown in Figure 6.22. Thus
we increase the flow by 3 along the path A, B, F, G.

(A, + ,5) (B. +,3)
B 350 F

A (7 907

(source, + ,-)' fA + 0

D) 4,0 E
(A, + ,4) (C, + ,5)

FIGURE 6.22
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1!,rf'ion 2I,l The labels assigned in iteration 2 are shown in Figure 6.23. Thus
we increase the flow by 5 along the path A, C, E, G.

(A, +,2) (C, +,4)

D 4,0 E
(A, +,4) (C, +,5)

FIGURE 6.23

I emi: 38., f The labels assigned in iteration 3 are shown in Figure 6.24. Thus
we increase the flow by 2 along the path A, C, F, G.

(A, +,2) (C, +,2)

A '
(source, + .G ,2)

D 4,0 E
(A, + ,4) (D), + ,4)

FIGURE 6.24

4. The labels assigned in iteration 4 are shown in Figure 6.25. Thus
we increase the flow by 1 along the path A, D, E, G.

(A, + ,2) (C, +,I)
B 3,3 F

A 7 J\ \
(source, + oo) (+

D 4,0 E
(A, + ,4) (D), + ,4)

FIGURE 6.25
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7$ealon .4'. The labels assigned in iteration 5 are shown in Figure 6.26. Thus
we increase the flow by 1 along the path A, B, C, F, G.

(4 +,2) (C't,1)

FIGURE 6.26

,77 7tl~t~l f.The labels assigned in iteration 6 are shown in Figure 6.27. Thus
we increase the flow by 1 alo~n, the path A, D, E, F, G.

(4 +,1) (E, + ,1)
B 3,3 F

2 4 1 1 56

A 71-

(source, + 5,5 2

4,1 6,6

D 4,1 E
(A, + ,3) (D, +,3)

FIGURE 6.27

Bi r.7io 6,7 The labels assigned in iteration 7 are shown in Figure 6.28. Thus
we increase the flow by 1 along the path A, D, E, C, F, G. (Note that we are
using arc (C, E) in the wrong direction to cancel 1 unit of the flow sent along this
arc in iteration 2.)

A, +J ,I)

B3,3 F

(I~ ~ --11

(source, + ,5)\ ,UG

(A, +F,) (D, + 6 )

FIGURE 6.27
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The labels assigned in iteration 8 are shown in Figure 6.29.

(A, + 1)

A
(source, +±

(A, + ,1) (D, +,I1)

FIGURE 6.29

Since the sink is not labeled, the flow shown in Figure 6.29 is a maximal
flow. The value of this maximal flow is 14. Note that the set S = {A, B, C, D, E }
of labeled vertices and the set T = {F, GI of unlabeled vertices form a cut with
capacity 3 + 4 + 1 + 6 = 14. +

Maximal flows need not be unique. For instance, the flow shown in Figure
6.30 is a maximal flow for the network in Example 6.5. This flow is different from
the one shown in Figure 6.29.

A
.1

FIGURE 6.30

We conclude this section with a useful observation about the flow augmenta-
tion algorithm. Any flow in which the flow along each arc is an integer is called an
integral flow. Suppose that all of the arc capacities in a network are integers and
we begin the flow augmentation algorithm with an integral flow. In this case the
third entry of each label, which is assigned during step 2.2 of the algorithm, is a
minimum of integers. Consequently, if all the arc capacities are integers and we
begin with zeroflow along every arc, the maximalflow that results from repeated
use of the flow augmentation algorithm is an integral flow.
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EXERCISES 6.2

Throughout these exercises, if there is a choice of vertices to label when using the flow augmentation algorithm,
label the vertices in alphabetical order.

In Exercises 1-4 a network, a flow, and a flow-augmenting path are given. Determine the amount by which the flow
can be increased along the given path.

1. Path:A,B,D,E

C

A

3. Path: A, B, E, D, F

A

:2. Path: A, B, C, E

C

2.2, 1.8 7.6, 5.1

6.,425.2, 3.3 3
15, 0.9

3.1,1.5 .2, 2.4

D

4. Path:D,B,C,E,F

F

C 3,1 E C 6,5 E

In Exercises 5-8 a network and flow are given. By perfcrmning the flow augmentation algorithm on this network
andflow, we obtain the labels shown in each network. Determine a flow having a larger value than the given flow
by performing steps 3.1 and 3.2 of the flow augmentation algorithm.

(B, + ,2)
C

4,4 9,6

A 6,4 B

(source, +, ) 5,2 (D, + ,4)
7,2 8,4

D
(A, + ,5)

(A, +,3) (E, -,2)

B 6,6 D

6 ,3 _ 6 ,2

A 7,6 3 F

(source, + a) (D, + ,2)

7, ,24

(Al + ,4) (B, + ,2)

6.

4,4
9,6

AI

(source +,2)

(A, + ,5)

(D, + ,4) (source, + ,oo)

B 7,3 D

2,1 66

A 5,3 7,7 ' , F
(B.-,1) (E,+,3)

C( 4,4 F
(B, - 3) (C, - 3)

5.

7.
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In Exercises 9-16 a network andflow are given. Use theflow augmentation algorithm to show that the given flow
is maximal or else to find a flow with a larger value. If the given flow is not maximal, name the flow-augmenting
path and the amount by which the flow can be increased.

9. C 10.

9.7

A AE

11. B 7,5 D

10,8 33

A 3,1 44 22 F

6, I11,9

C 3,3 E

13. B 5,5 D

9,9 6,

A 41 6,4 F

7,3 \2,2, 9,5

C 1,1 E

15. B 2,2 E

9,6 77 9,6

A 3,3 G

7,7 37

C 7 F4 F

12. B 8,5 D

5,1 8,
11,6

A 3,0 6,6 F

AFF

4,1< i 20,11

C 5,1 E

14. B 5,5 D

6,1 74

A ,9 6,6 6,6 F
AIF

3,3 z, 7,2

C 8,4 E

16. B 6,3 -

9,4 7A 5 3,A3

A 5,5 G

6,6 11,7

C 7,2 F.

In Exercises 17-20 a transportation network and flow are given. Use the flow augmentation algorithm to find a
maximal flow for each network.

18. B 3,0

4,0 42

A 51 41 3,1 F

3,0 31

C 2,1 E

17. B 6,6

.0\7,6\,4.

A 2,2 2,0 F

I

C 4,4 E



340 Chapter 6 Network Flows

19. B 5,0 E

4,0 6,4 4,,4

A 4,0 G

C 5,1 F

B 4,0 E

3,3 3,3 50

A 4,3 G

4,0 6,

C 5,0 -F

In Exercises 21-28 a transportation network is given. Fin'd a maximal flow in each network by starting with the
flow that is 0 along every arc and applying the flow augmentation algorithm.

21. Li

4

A

23. B 75 D

90 65

A 55 F

C 80 E

25.

At

27.

22. C

3.2 4.1

A1.

B E
4 1

2.5\ 3.6

D

24.

Al

2(.

28.

B 5 iD 3 F

A 4 H

C 4 E F G

B 8 F

A

2C
2~

E 7 H

D 2 G

29. Give an example of a transportation network in which each arc has an integral capacity and there is a maximal
flow such that the flow along some arcs is not an integer.

B

A

C F
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30. Consider a transportation network with source U and sink V in which each arc has capacity 1. Show that the
value of a maximal flow equals the number of directed paths from U to V that have no arcs in common.

6.3 + THE MAX-FLOW MIN-CUT THEOREM

In this section we will show that the flow augmentation algorithm described in
Section 6.2 does what we claim; that is, it either confirms that the current flow
is a maximal flow or else finds a flow having a larger value. We will also verify
the observation that when the algorithm ends, the sets of labeled and unlabeled
vertices determine a cut with capacity equal to the value of a maximal flow. Such
cuts are of special interest because they are cuts having the smallest possible
capacity, as we will see in Theorem 6.4.

A cut in a transportation network is called a minimal cut if no other cut has
a smaller capacity. The theorem below provides a method for detecting maximal
flows and minimal cuts.

Theorem 6.3 In any transportation network, if f is a flow and S, T is a cut such that the value of
f equals the capacity of S, T, then f is a maximal flow and S, T is a minimal cut.

Proo.f Let f be a flow having value c, and let S, T be a cut having capacity c.
Let f' be any other flow in this network, and let the value of f' be v. Applying
the corollary to Theorem 6.2 to f' and S, T, we see that v < c. Hence there is
no flow in this network having a value greater than c, the value of f. It follows
that f is a maximal flow.

Now let S', T' be a cut in this network with capacity k. Applying the corollary
to Theorem 6.2 to f and S', T' gives c < k. Consequently, there is no cut in this
network having a value less than c, the capacity of S, T. Therefore, S, T is a
minimal cut. 6

In order to justify the validity of the flow augmentation algorithm, we need
to show that:

(1) When the algorithm ends with the sink unlabeled, the current flow is a
maximal flow.

(2) When the algorithm ends with the sink labeled, the original flow has been
replaced by a flow with a larger value.

The proof of statement 2 will be left as an exercise (Exercise 24). Theorem 6.4
verifies statement 1 by showing that if an iteration of the flow augmentation
algorithm ends with the sink unlabeled, then the present flow is a maximal flow.

Theorem 6.4 If, during an iteration of the flow augmentation algorithm, the sink is not labeled,
then the present flow is maximal. Moreover, the sets of labeled and unlabeled
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vertices form a minimal cut having capacity equal to the value of the present
flow.

Proof. Suppose that during some iteration of the flow augmentation algorithm
the sink is not labeled. Let f denote the current flow, c(X, Y) the capacity of arc
(X, Y), S the set of labeled vertices, and T the set of unlabeled vertices. Then the
source is in S and the sink is in T; so S, T is a cut.

Let (X, Y) be an arc leadi -ig from a vertex X in S to a vertex Y in T. Since X is
in S, X has been labeled during this iteration of the flow augmentation algorithm.
If f(X, Y) < c(X, Y), then when X was scanned, we would have labeled Y in
step 2.2(a) of the algorithm. B3ut Y is in T and hence is unlabeled; thus we must
have f(X, Y) = c(X, Y).

Now let (Y, X) be an arc leading from a vertex Y in T to a vertex X in S. Since
X is in S, X has been labeled during this iteration of the algorithm. When X is
scanned, we would have labeled Y in step 2.2(b) of the algorithm if f (Y, X) > 0.
But Y is in T and so is unlabeled; thus we must have f (Y, X) = 0.

By Theorem 6.2, the value of f equals the total flow p along all arcs leading
from a vertex in S to a vertex: n T minus the total flow q along all arcs leading
from a vertex in T to a vertex .n S. But the two preceding paragraphs show that
p equals the capacity of the c al S, T and q = 0. Therefore the value of f equals
p, the capacity of the cut S, 'T. It then follows from Theorem 6.3 that f is a
maximal flow and S, T is a minimal cut. :

Theorem 6.4 also proves our earlier assertion that when the flow augmentation
algorithm ends with the sink unlabeled, the cut determined by the sets of labeled
and unlabeled vertices is a minimal cut. Thus, for example, in Figure 6.20 we see
that S = {A, C) and Tr = [B, D, E} form a minimal cut, and in Figure 6.29 we
see that S = {A, B, C, D, E) and T = {F, G} form a minimal cut.

We have already seen tha. a network may have more than one maximal flow.
Likewise, a network may have more than one minimal cut. In Figure 6.20, for
instance, {A, B, C} and {D, E I is a different minimal cut from the one mentioned
in the previous paragraph.

+ Example 6.6

A natural gas utility delivers gas to Little Rock from a source in Amarillo through
the network of pipelines shown in Figure 6.31. In this diagram the first num-
ber beside each pipeline is the capacity of the pipeline and the second is the
present flow, both measured in hundreds of millions of cubic feet per day. The
utility has proposed raising its rates to pay for additional pipelines. Although
the Arkansas Regulatory Commission agrees that more than the present 14.7
hundred million cubic feet of gas are needed in Little Rock each day, it is not
convinced that additional pipelines need to be built. It questions the need for more
pipelines because most of the piipelines operated by the utility are not being used to
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capacity, and some are not being used at all. How should the utility argue for new
pipelines?

FIGURE 6.31

In order to justify its request for additional pipelines, the utility should apply
the flow augmentation algorithm to the network and flow in Figure 6.31. By
doing so, it will find that only the vertices A, B, C, G, H, and J are labeled.
Consequently, the flow in Figure 6.31 is a maximal flow, and

S={A,B,C,G,H,J} and T={D,E,F,I,K,LI

form a minimal cut. The utility should, therefore, prepare a map as in Figure 6.32
with A, B, C, G, H, and J in the northwestern region and D, E, F, I, K, and L
in the southeastern region. This map shows that only three pipelines (shown in
color) carry gas from the northwestern region to the southeastern region, and each
of these is being used to capacity. On this basis, the utility can argue the need for
more pipelines from the northwestern region to the southeastern region. +

Rock

9

FIGURE 6.32

It is conceivable that the flow augmentation algorithm may never produce a
maximal flow because no iteration occurs in which the sink cannot be labeled. Our
next result, however, shows that this situation cannot occur if all the capacities in
the network are rational numbers.

343
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Theorem 6.5 If all the capacities in a transportation network are rational numbers and we
start with zero flow along each arc, then repeated use of the flow augmentation
algorithm produces a maximal flow in a finite number of iterations.

Proof Suppose first that all the capacities in the network are integers. Let S,
T be the cut in which S consists of the source alone and T contains all the other
vertices. Since all the arc capacities are integers, the capacity of the cut S. T is
an integer c.

Apply the flow augmentati:in algorithm, beginning with zero flow along every
arc. Now consider any iteration of the algorithm in which the sink is labeled.
The label on the sink must ba of the form (U, +, a) or (U, -, a), where a > 0.
Moreover, because all the capacities are integers, a is a minimum of integers
and hence is an integer. Therefore, a > 1, and each iteration of the algorithm in
which the sink is labeled increases the value of the flow by at least 1. But by the
corollary to Theorem 6.2, no flow in this network can have a value exceeding c.
Hence after at most c + 1 iterations the flow augmentation algorithm must end
with the sink unlabeled. But i the sink is unlabeled, then Theorem 6.4 guarantees
that a maximal flow has been obtained.

Suppose now that all the capacities in the network are rational numbers. Find
the least common denominator d of all the arc capacities, and consider the new
network obtained by multiplying all of the original capacities by d. In this new
network, all the capacities are integers. Applying the flow augmentation algorithm
to the new network must therefore produce a maximal flow f in a finite number
of steps by the argument above But then this same sequence of steps will produce
a maximal flow for the original network in which the flow along arc (X, Y) is
f (X, Y)/d. (See Exercises 13--15.) R

Theorem 6.5 can be proved without the requirement that the capacities be
rational numbers. More generally, Edmonds and Karp (1972) have shown that
the flow augmentation algorithm produces a maximal flow in no more than lmn
iterations, where m is the number of arcs and n is the number of vertices in the
network. (See pages 117-119 of suggested reading [9] at the end of the chapter.)
Note that, in each iteration of .he algorithm, we consider an arc (V, W) at most
twice, once in the proper direct on from V to W and once in the opposite direction
from W to V. Thus if we count the number of times that an arc is considered before
obtaining a maximal flow, the cDmplexity of the flow augmentation algorithm is at
most 2m(mn) = m2n. Since the number of arcs m cannot exceed n(n - 1), it follows
that the complexity of the flow augmentation algorithm is at most n3 (n -1)2.

We will end this section by proving a famous theorem discovered indepen-
dently by Ford and Fulkerson and by Elias, Feinstein, and Shannon. (See sug-
gested readings [6] and [4] at the end of the chapter.)

Theorem 6.6 M i Ppi s al Fhv;oe In any transportation network, the value of a
maximal flow equals the capacity of a minimal cut.
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Proof. Let f be a maximal flow in a transportation network. Apply the flow
augmentation algorithm to this network with f as the current flow. Clearly the sink
will not be labeled, for otherwise we would obtain a flow having a greater value
than f, which is a maximal flow. But if the sink is not labeled, then Theorem 6.4
shows that the sets of labeled and unlabeled vertices form a minimal cut having
capacity equal to the value of f. X

EXERCISES 6.3

In Exercises 1-4 give the capacity of the cut S, Tfor the network below.

Al

1. 5= {A,C,F and T {B,D,E,GI

3. S = {A, D, E} and T = {B, C, F, G}

2. S = {A, B, E} and T = {C, D, F, G}
4. S = {A, E, F) and T = fB, C, D, GI

In Exercises 5-S a network and a maximalflow are given. Find a minimal cut for the network by applying the flow
augmentation algorithm to this network and flow.

5. B 4,4 D

6 ,6 _ 5 ,4

A 2, 53 3,0 F

7,68,

C 5,5 E

7. B 3,2 D

A F 2 F

8,8 8446

C 5,4 E

6. B 4,3 D

2 ,0 _ 6 ,,6

AgW~,3 wA 4,0 5,5 F

3,0 10,8

C 5,0 E

8. B 2,0 D

3,3

A 52 73 F

C 2,2 E
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In Exercises 9-12 use the flow augmentation algorithm tofind a minimal cut.

9.

11.

3

10,

12.

C 4 F C 4 F

In Exercises 13-14 a network X' with rational arc capacities is given. Let A' be the network obtained from X'

by multiplying all the capacities in A by d, the least common denominator of the capacities. Apply the flow
augmentation algorithm to A", and use the result to determine a maximalflow for the original network A'.

13. 14.

A E

D D

15. Let A be a transportation network and d > 0. Define A"' as in Exercises 13 and 14 to be the network with the
same directed graph as A' but with all the arc capacities of A' multiplied by d.
(a) Show that S, T is a minimal cut for A' if and only if it is a minimal cut for A'.
(b) Prove that if v and v' are the values of maximal flows for A' and A', respectively, then v' = dv.
(c) Show that f is a maximal flow for A if and only if f 'is a maximal flow for A"', where f' is defined by

f'(X, Y) = df (X, Y).

16. Suppose that D is a weighted directed graph having a nonnegative weight (capacity) on each directed edge.
Show that if any two distinct vertices of D are designat d as the source and the sink, then repeated use of the flow
augmentation algorithm will produce a maximal flow from the source to the sink. (Thus the flow augmentation
algorithm can be used even if conditions 1 and 2 in sh. definition of a transportation network are not satisfied.)

17. How many cuts are there in a transportation network with n vertices?

18. Let D be a directed graph, and let X and Y be distinct vertices in D. Make D into a network by giving each
directed edge a capacity of 1. Show that the value of a maximal flow in this network equals the minimum
number n of directed edges that must be removed fiom D so that there is no directed path from X to Y. (Hint:
Show that if S, T is a minimal cut, then n equals the number of arcs from X to Y.)

/8
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In Exercises 19-20 use the result of Exercise 18 to find a minimal set of directed edges whose removal leaves no
directed path from S to T.

19. A D 20.

S T

B D F

C F

21. Consider an (undirected) graph g in which each edge {X, Y} is assigned a nonnegative number c(X, Y) =
c(Y, X) representing its capacity to transmit the flow of some substance in either direction. Suppose that we
want to find the maximum possible flow between distinct vertices S and T of G, subject to the condition that, for
any vertex X other than S and T, the total flow into X must equal the total flow out of X. Show that this problem
can be solved with the flow augmentation algorithm by replacing each edge (X, Y} of ! by two directed edges
(X, Y) and (Y, X), each having capacity c(X, Y).

For the graphs in Exercises 22-23, use the method described in Exercise 21 to find the maximal possibleflowfrom
S to T if the numbers on the edges represent the capacity of flow along the edge in either direction:

22. A 3 C 23.

S Si

B 4 D B 3 E

24. Prove that if the flow augmentation algorithm ends with the sink labeled, then the original flow has been replaced
by a flow with a larger value.

25. Consider a transportation network with source S, sink T, and vertex set V. Let c(X, Y) denote the capacity
of arc (X, Y). If X, Y E V but (X, Y) is not an arc in the network, define c(X, Y) = 0. Show that the average
capacity of a cut is

I(c(S, T) + c(S, X) + A, c(X, T) + L c(X, Y)).
XEV xe=v xYEV

6.4 + FLOWS AND MATCHINGS

In this section we will relate network flows to the matchings studied in Section
5.2. Recall from Sections 5.1 and 5.2 that a graph 9 is called bipartite if its vertex
set V can be written as the union of two disjoint sets V, and V2 in such a way
that all the edges in g join a vertex in V, to a vertex in V2. A matching of g is a
subset M of the edges of g such that no vertex in V is incident with more than

OT

- -
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one edge in M. In addition, a matching of g with the property that no matching
of g contains more edges is called a maximum matching of g.

From abipartite graph g, Ne can form atransportationnetworkA as follows.

(1) The vertices of X are the vertices of g together with two additional vertices
s and t. These vertices s and t are the source and sink for AC, respectively.

(2) The arcs in AC are of three types.

(a) There is an arc in A'C from s to every vertex in V1.
(b) There is an arc in A' from every vertex in V2 to t.
(c) If X is in VI, Y is in V2, and {X, Y} is an edge in g, there is an arc from

X to Y in JV.

(3) All arcs in A have capacity 1.

We call A the network associated with g.

c Example 6.7

In the bipartite graph g in Figure 6.33, the vertex set V = {A, B, C, W, X, Y, Z}
is partitioned into the sets VI == {A, B, C} and V2 = {W, X, Y, Z}.

s

z

FIGURE 6.33 FIGURE 6.34

The network AC associated with g is shown in Figure 6.34. Note that AC
contains a copy of 5 and two new vertices s and t, which are the source and the
sink for JA, respectively. The edges of G that join vertices in VI to vertices in V2
become arcs in AC of capacity I directed from the vertices in VI to the vertices in
V2. The other arcs in AC are directed from the source s to each vertex in VI and
from each vertex in V2 to the sink t; these arcs also have capacity 1. +

Consider the bipartite graph in Figure 6.35. The network associated with this
graph is shown in Figure 6.36.

t
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A

X

B

Y
s

C

Z
D e- D I

FIGURE 6.35 FIGURE 6.36

When the flow augmentation algorithm is applied to the network in Figure
6.36, the zero flow can be increased by 1 unit along the path s, A, X, t; by 1 unit
along the path s, B, Y, t; and by 1 unit along the path s, C, Z, t. The resulting
maximal flow is shown in Figure 6.37. Notice that this is an integral flow.

D IV

FIGURE 6.37

Thus we see that a maximal flow in the network shown in Figure 6.36 has
value 3, and one maximal flow is obtained by sending:

1 unit along s, A, X, t;

1 unit along s, B, Y, t; and

1 unit along s, C, Z, t.

If we disregard the source and sink in these three paths, we obtain the three arcs
(A, X), (B, Y), and (C, Z). These arcs correspond to the edges {A, X}, {B, Y},
and {C, ZJ in Figure 6.35. Clearly these edges are a maximum matching of the
bipartite graph in Figure 6.35, because in this graph the set V2 contains only three
vertices.

Thus we have obtained a maximum matching of a bipartite graph by using the
flow augmentation algorithm on the network associated with the graph. Theorem
6.7 shows that this technique will always work.

t
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Theorem 6.7 Let G be a bipartite graph and AF the network associated with G.

(a) Every integral flow in Af c orresponds to a matching of g, and every matching
of g corresponds to an integral flow in K. This correspondence is such that
two vertices are matched in g if and only if there is 1 unit of flow along the
corresponding arc in K.

(b) A maximal flow in ' corresponds to a maximum matching of g.

Proof. Let the vertex set of 5 be written as the union of disjoint sets V1 and V2
such that every edge in G joins. a vertex in VI to a vertex in V2.

(a) Let f be an integral flow in K, and let M be the set of edges {X, Y } in g
for which X is in VI, Y is in 122, and f (X, Y) = 1. To prove that M is a matching
of G, we must show that no vertex of G is incident with more than one edge in
M. Let U be any vertex in g. Since g is the union of the disjoint sets V1 and V2,
U belongs to exactly one of the sets VI or V2.

Assume without loss of generality that U belongs to V1 and that U is incident
with the edge {U, V I in M. 'W'e will show that vertex U is not incident with any
other edge in M. Suppose that {U, WI is another edge in M. Then f (U, V) = 1
and f (U, W) = 1 by the definition of M. Thus in K the total flow out of vertex
U is at least 2. But inKN the only arc entering U is (s, U), and this arc has capacity
1. So the total flow into vertex U does not equal the total flow out of vertex U, a
fact which contradicts that f is a flow in K. Hence U is incident with at most one
edge in M, and so M is a matching of G. This proves that every integral flow in
K corresponds to a matching of g.

Now suppose that M is a matching in g. Let K be the network associated
with 5, and let s be the source e in K and t be the sink. For each arc in K, define
a function f by:

f (s, X) = 1 if X E 1), and there exists Z e V2 such that {X, Z} E M;

f (Y, t) = I if Y E V2 and there exists W E V1 such that {W, Y} E M;

f(X,Y)=lifXEVI,1 eV2 ,and{X,Y}JM;and

f (U, V) = 0 otherwise.

Since each arc e in K has capacity 1 and 0 < f (e) < 1, f satisfies condition (1)
in the definition of a flow.

Now consider any vertex X of K other than s and t. Such a vertex is a vertex
of G and, hence, belongs to either VI or V2. Assume without loss of generality
that X belongs to V12. By the definition of f, either f (s, X) = 0 or f (s, X) = 1. If
f (s, X) = 0, then there exists no Z c 12 such that {X, Z) E M; so the total flow
into X and the total flow out of X are both 0. On the other hand, if f (s, X) = 1,
then there exists Z c V2 such ihat {X, Z} E M. Because M is a matching of g,
Z is unique. Thus, in this case also, the total flow into X equals the total flow out
of X, and so f satisfies condot on (2) in the definition of a flow. It follows that f
is a flow in K. This proves that every matching of G corresponds to an integral
flow in K.
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(b) Under the correspondence described in part (a), the total number of
vertices in VI that are matched with vertices in V2 is the value of the flow
f. Thus M is a maximum matching of G if and only if f is a maximal flow
in .A.

Course Professors

I Abel, Crittenden, Forcade

2 Crittenden, Donohue, Edge, Gilmore

3 Abel, Crittenden

4 Abel, Forcade

5 Banks, Edge, Gilmore

6 Crittenden, Forcade

Example 6.8

Recall the example from Section 5.1 in which an English department wishes
to assign courses to professors, one course per professor. The list of professors
available to teach the courses is given above. The English department would like
to obtain a maximum matching so that it can offer the largest possible number of
courses.

As in Section 5.2, we can represent this problem by a bipartite graph with
the vertex set V = {1, 2, 3, 4, 5, 6, A, B, C, D, E, F, G }, where we have denoted
the professors by their initials. Here the set V can be partitioned as the union of
the disjoint sets of courses and professors

V1 = 11,2, 3,4,5,6) and V2 = {A, B,C, D, E, F, G},

respectively. By drawing an edge between each professor and the courses he or she
can teach, we obtain the graph shown in Figure 6.38. (This is the graph obtained
previously in Figure 5.1.)

A

2

3

4

5

6

B

C

D

E

F

G

FIGURE 6.39FIGURE 6.38
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We will obtain a maxirtlrn matching for the graph in Figure 6.38 using the
flow augmentation algorithm. Let us begin by assigning professors A, C, F, and
E to teach courses 1, 2, 4, and 5, respectively. This gives the matching with
edges { 1, Al, {2, C }, {4, Fl . and {5, E }. The network associated with the graph
in Figure 6.38 is shown in Figure 6.39. Here all arcs are directed from the left
to the right and have capacity 1. The matching {1, Al, {2, C}, {4, Fl, 15, El
obtained above corresponds to the flow shown in Figure 6.40, where arcs having
a flow of zero are shown in black and those with a flow of 1 are shown in blue.

I A I A

s

C G

FIGURE 6.40 FIGURE 6.41

If we apply the flow augmentation algorithm to the network and flow in Figure
6.40, we find that s, 3, C, 2. D, t is a flow-augmenting path. Increasing the flow
by 1 along this path gives the flow in Figure 6.41.

If another iteration of the Row augmentation algorithm is performed on the
flow in Figure 6.41, only vertices s, 1, 3, 4, 6, A, C, and F will be labeled. Thus
the flow shown in Figure 6.41 is a maximal flow. By Theorem 6.7 this means
that the corresponding matching {1, A), {2, D} {3, Cl, {4, Fl, and {5, El is a
maximum matching for the bipartite graph in Figure 6.38. Hence the English
department can offer 5 of the 6 courses by assigning course 1 to Abel, course
2 to Donohue, course 3 to Crittenden, course 4 to Forcade, and course 5 to
Edge. +

EXERCISES 6.4

In Exercises 1-6 determine whether the given graph is bipartite or not. If it is, construct the network associated
with the graph.

2.

C E

1.

A

F H
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4.

6.

E F
F G

In Exercises 7-10 a bipartite graph is given with a matching indicated in color. Construct the network associated
with the given graph, and use the flow augmentation algorithm to determine whether this is a maximum matching.
If not,find a larger matching.

X

y

z

8. A

B

C

D

W

X

y

z

10.

W X y Z

In Exercises 11-14 use theflow augmentation algorithm tofind a maximum matching for the given bipartite graph.

12. a

b

C

d

3.

5.

7. A

B

9. A

B

C

D

11.

2
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I, - - - 1 1
13. a

b

C

d

e

e 1I4.

B 2

C

D 4

5

15. Four mixed couples are needed for a tennis team, and f men and 4 women are available. Andrew will not play
with Flo or Hannah; Bob will not play with Iris; Flo, Greta, and Hannah will not play with Ed; Dan will not
play with Hannah or Iris; and Cal will only play with (3-eta. Can a team be put together under these conditions?
If so, how?

16. Five actresses are needed for parts in a play that require Chinese, Danish, English, French, and German accents.
Sally does English and French accents; Tess does ('inese, Danish, and German; Ursula does English and
French; Vickie does all accents except English; and Winona does all except Danish and German. Can the five
roles be filled under these conditions? If so, how?

17. The five assistants in the Mathematics Department must decide which jobs each will do. Craig likes filing and
collating, Dianne can distribute paychecks and help students, Gale types and collates, Marilyn enjoys typing
and distributing the paychecks, and Sharon prefers lo help students. Can the jobs be assigned so that every
assistant is given one of his or her preferences? If so, how?

18. When the flow augmentation algorithm is applied to the network and flow in Figure 6.41, only the vertices,
s, 1, 3, 4, 6, A, C, and F will be labeled. What is the significance of courses 1, 3, 4, and 6 and professors A,
C, and F in the context of Example 6.8?

19. Describe how to use the flow augmentation algorithm to determine if a system of distinct representatives exists
for a sequence of sets SI, S2, . . ., Sn.

20. Apply the flow augmentation algorithm as described in Exercise 19 to find a system of distinct representatives,
if possible, for the sequence of sets (3, 41, (1, 51, (2, 3}, (2, 51, 11, 4}.

21. Apply the flow augmentation algorithm as described in Exercise 19 to find a system of distinct representatives,
if possible, for the sequence of sets {2, 5}, (1, 6}, 13, 51, (4, 61, {2, 3}, {2, 3, 5}.

22. Five men and five women are attending a dance. Ann will dance only with Gregory or Harry, Betty will dance
only with Frank or Ian, Carol will dance only with Hany or Jim, Diane will dance only with Frank or Gregory,
and Ellen will dance only with Gregory or Ian. Is it possible for all ten people to dance the last dance with an
acceptable partner? If so, how?

23. The History Department at a state college would like to offer six courses during the summer. Although there are
seven professors available, only certain professors can leach each course. The list of courses and the professors
capable of teaching them is shown below. Is there an assignment of professors to courses so that no professor
teaches more than one course?

Courses P'rofessors

American History Getsi, Dammers, Kagle, Ericksen

British History D)uncan, Getsi, Harris

Latin American History D)uncan, Getsi

Oliver Cromwell I)uncan, Harris

Ancient History White, Kagle, Harris

20th Century History Getsi, Harris
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24. Suppose that the flow augmentation algorithm is applied to find a system of distinct representatives for a
sequence of sets SI, S2, . . ., S, as described in Exercise 19. If the algorithm is applied to a maximal flow with
value less than n, prove that the number of labeled sets must exceed the number of elements in the union of the
labeled sets.

In Exercises 25-28 let 5 be a bipartite graph in which the set of vertices is written as the union of two disjoint sets
VI and V2 such that all the edges in 5 join a vertex in VI to a vertex in V2. For each subset A of VI, let A* denote
the set of vertices in 5 that are adjacent to some vertex in A. The maximum value d of AI - IA* I over all subsets
A of VI is called the deficiency of 5.

25. Prove that d > 0.

26. Prove that if A' is the network associated with g, then A' has a flow with value IV1 I - d.

27. Let X be the network associated with 5, and let s and t be the source and sink of A, respectively. Let A be a
subset of VI such that JAI - A*I = d. Prove that the cut S, T with

S={s}UAUA* and T=(Vl-A)U(V2 -A*)U tt

has capacity IV, I-d.

28. Deduce that a maximal flow in A' has value VI -d and hence that a maximum matching in g contains VI I-d
edges.

In Exercises 29-31 let 5 be a bipartite graph in which the vertex set is written as the union of two disjoint sets
VI and V2 such that all the edges of 5 join a vertex in VI to a vertex in V2. Suppose that the flow augmentation
algorithm is performed on the network associated with 5 until the algorithm ends with the sink unlabeled.

29. Prove that if X E VI, Y E V2, and f(X, Y) = 1, then, in the last iteration of the flow augmentation algorithm,
X is unlabeled or Y is labeled.

30. Prove that in Exercise 29 it is impossible that X is unlabeled and Y is labeled. Deduce that the num-
ber of unlabeled vertices in VI plus the number of labeled vertices in V2 equals the value of the present
flow f.

31. In the context of Exercise 30, show that there are no edges in 5 that join a labeled vertex X E Vi to an unlabeled
vertex Y E V2. Deduce that the unlabeled vertices in VI and the labeled vertices in V2 form a minimum
covering of 5 in the sense of Section 5.2. (Hint: The label on X must be either (s, +, 1) or (Z, -, 1) for
Z 7$ Y.)

HISTORICAL NOTES

The concept of flows in transportation networks is a recent mathematical discovery, with

the majority of the work in this area appearing since 1960. The initial work in the field was
provided by Lester Randolph Ford Jr. (1927- ) and Delbert Ray Fulkerson (1924-1976)
in a series of papers, the first of which appeared in 1956 and 1957. Their seminal 1962
text Flows in Networks outlined the field. While others were later able to make some
improvements to their algorithms, their basic approaches still define the way network
flows are conceptualized.
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SUPPLEMENTARY EXERCISES

In Exercises -l find a maximal flow and a minimal cut in each transportation network by using the flow augmen-
tation algorithm. Start with the flow that is 0 along every arc, and if there is a choice of vertices to label, label the
vertices in alphabetical order.

1.

A

2.

IF

4.

6.

B 4 E

A <

C 2 F

B 7 F

3S 4 5 H

5 \,S

4

A 6

81

iD 3 G

B 4 _ H

A~ 1K

D 5 c. 9 .J

B 4 E

A GG

C 2

B 7 F

F 5H
C

2 14 \ 2

3 G

8.

A

6

8\

? I E 3 H

Cs

45

46

D 9 G 3

! 7+ K

LIX

I

By a multisource transportation network we mean a weighted directed graph that satisfies the conditions in the
definition of a transportation network except that instead o, its containing only one vertex of indegree 0, there is a
nonempty finite set So of vertices with indegree 0. We say that f is aflow in such a network if:

(i) 0 < f (e) < c(e)for each arc e, where c(e) is the capacity of arc e; and

(ii) for each vertex V other than the sink and the elements cf So, the totalfiow into V equals the totalfiow out of V.

The value of such a flow is the total flow into the sink, and a flow is called a maximal flow if its value is as large
as possible.

3.

5.

A

6/

8\

7.
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9. Show that in a multisource transportation network the value of a flow equals the total flow out of all the vertices
in So.

10. Given a multisource transportation network K, create from JV a transportation network .,V' by introducing a
new vertex u and edges with infinite capacity from u to each element in So. Show that a maximal flow in Al
may be found by applying the flow augmentation algorithm to K'.

By using Exercise 10, find a maximal flow in each of the multisource transportation networks given in Exercise
11-12.

11. 12.

A G

13. Generalize the concept of a transportation network to allow multiple sources and sinks; then define "flow,"
"value of a flow," and "maximal flow" for such a network. State and prove an analogue of Theorem 6.1 for such
a network.

14. By a network with vertex capacities we mean a transportation network K\ along with a function k from its
set of vertices to the nonnegative real numbers. In such a network a flow must satisfy the additional restriction
that, for each vertex V, neither the total flow into V nor the total flow out of V can exceed k(V). (Of course,
these totals are the same if V is a vertex other than the source or sink.) Show that the value of a maximal flow
in such a network equals the value of a maximal flow in the ordinary transportation network JK*, where Ko* is
formed as follows.

(i) For each vertex X in K, include two vertices X' and X" in JV*.
(ii) For each vertex X in K, include an arc (X', X") in JK* with capacity k(X).
(iii) For each arc (X, Y) in jK, include an arc (X", Y') of the same capacity in JK*.

(Note that if in K the source is s and the sink is t, then in K* the source is s' and the sink is t".)

For the networks with vertex capacities in Exercises 15-1 7, construct the network K* described in Exercise 14.

15. k(A) = 9, k(B) = 8, k(C) = 9, k(D) = 7, k(E) = 10

A

D
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16. k(A) = 8, k(B) = 4, k(C) = 7, k(D) = 7, k(E) = 6, k(F) = 9

B _, D

3
A 4 3 4 F

C 3 E

17. k(A) = 16, k(B) = 9, k(C) = 6, k(D) = 5, k(E) -= I,, k(F) = 7, k(G) = 15

B 2 E

A 3 G

C F

In Exercises 18 and 19 use the method of Exercise 14 tofind a maximal flowfor the network with vertex capacities
in the indicated exercise.

18. Exercise 15 19. Exercise 16

20. Let s and t be vertices in a directed graph D having indegree 0 and outdegree 0, respectively. Make D into
a transportation network./V with vertex capacities by letting s and t have infinite capacity, letting the other
vertices have capacity 1, and letting each arc have capac ity 1. Use Exercise 14 above and Exercise 30 of Section
6.2 to show that the value of a maximal flow for .A equ als the number of directed paths from s to t that use no
vertex other than s and t more than once.

21. Let m and n be positive integers. Make a transportation network with vertices s, XI, X2 . , Xm,
Y1, Y2, ... Y,, t and an arc of infinite capacity frorr s to each Xi, an arc of infinite capacity from each
Yj to t, and an arc of capacity I from Xi to Yj for e4ery i and j. Prove that if f is an integral flow in this
network, then there exists an m x n matrix of O s and I s having f(s, Xi) Is in row i and f (Yj, t) Is in column
j for every i and j.

22. Let A be an m x n matrix of Os and Is with u, Is in iow i and vj is in column j for every i and j. Prove that

UI + U2 + ' ' + Um == V1 + V2 + ' + Vn

23. Let m and n be positive integers, and let ui and vj lhe nonnegative integers for 1 < i < m and I < j < n.

Suppose that

U I+ U2 + U+ rm = VI + V2 + + Vn.

Construct a network having the same arcs as in Exercise 21, but let the capacity of each arc (s, Xi) be ui and the
capacity of each arc (Yj, t) be vj. Show that if the value of a maximal flow in this network is u I + u2 + *.. + Ur,
then there exists an m x n matrix of Os and is with u, Is in row i and vj is in column j for every i and j.

24. If in Exercise 23 the value of a maximal flow is not ,Il + u2 + *.. + um, prove that there does not exist an
m x n matrix of Os and Is with u Is in row i and vj 1 3 in column ] for every i and j.

25. Use Exercise 23 to construct a 4 x 6 matrix of Os anc.: s in which there are

(i) four is in rows 1, 2, and 4; and two Is in row 3;
(ii) three Is in columns 1, 3, and 6; two Is in columns 2 and 4; and one 1 in column 5.
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COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. For a given transportation network, compute the capacity of every cut.

2. For a given transportation network, determine a maximal flow by repeated use of the flow augmentation algorithm
starting with the flow that is zero along every arc.

3. For a given bipartite graph, use the method described in Section 6.4 to produce a maximum matching.

4. For a given bipartite graph, use the method described in Section 6.4 to produce a minimum covering. (See
Exercise 31 in Section 6.4.)

5. For a given bipartite graph, compute IAI-1 IA* I for each subset A of VI. (The notation is as in the instructions
for Exercises 25-28 in Section 6.4.)

6. For a given network with multiple sources and sinks (see Supplementary Exercise 13), determine a maximal
flow.

7. For a given network with vertex capacities (see Supplementary Exercise 14), determine a maximal flow.

8. Let m and n be positive integers, and let ui for 1 < i < m and vj for 1 < j < n be nonnegative integers such
that

U +U2 + *+Um =VI+ V2 + + V,-

Construct, if possible, an m x n matrix of Os and ls with ui Is in row i and vj Is in column j for every i and j.
(See Supplementary Exercise 23.)
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Counting Techniques
7.1 Pascal's Triangle and the ]3 inomial Theorem

7.2 Three Fundamental Principles

7.3 Permutations and Combina ions

7.4 Arrangements and Selections with Repetitions

7.5 Probability

7.6*The Principle of Inclusion-lExclusion

7.7*Generating Permutations and r-Combinations

A we saw in Sections 1.2 and 1.3, many combinatorial problems involve
counting. Since the number of objects under consideration is often extremely
large, it is desirable to be ableIo count a set of objects without havingto listthem
all. In this chapter we will discuss several fundamental counting techniques
that are frequently used in solving combinatorial problems. The reader should
carefully review Sections 1.2 and 2.7, which contain several results we will
refer to.

7.1 o PASCAL'S TRIANGLE AND THE BINOMIAL
THEOREM

One of the most basic problems that arises in combinatorial analysis is to count
the number of subsets of a given set that contain a specified number of elements.
Recall that we are denoting this number by C(n, r). Theorem 2.12 shows that

C(n, r) = ! ( )! (7.1)

c Example 7.1

By (7.1) we see that the number of subsets containing two elements that can be
formed from the set of vowels {a, e, i, o, ul is

5! 5 4 .3! 5 4
C(5, 2)z = = = 10.

2! 3! 2.1.-3! 2.1

360
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The ten subsets in question are easily seen to be {a, el, {a, i}, {a, ol, {a, u}, {e, i},
{e, o}, {e, u), {i, ol, {i, u), and {o, u). +

The proof of Theorem 2.12 shows that any subset R of {ai, a2 , .. ., an} that
contains r elements (1 < r < n) is either:

(1) a subset of {a,, a2 , . . ., an-l} containing r elements (if an g R), or
(2) the union of {an} and a subset of {a,, a2, . . ., an- } containing r - 1 ele-

ments (if an E R).

Thus the number of subsets of {a1, a2 , . . ., an} containing r elements, C(n, r),
is the sum of the number of subsets of type (1), C(n - 1, r), and the number of
subsets of type (2), C(n - 1, r - 1). We have obtained the following result.

Theorem 7.1 If r and n are integers such that 1 < r < n, then

C(n,r)=C(n- 1,r - 1)+C(n - 1,r).

+ Example 7.2

It follows from Theorem 7.1 that C (7, 3) = C (6, 2) + C (6, 3). We will verify this
equation by evaluating C(7, 3), C(6, 2), and C(6, 3) using (7.1):

6! 6 .5. 4! 6 .5
C(6, 2) = = = 1 = 15,

2! 4! 2 I.1.4! 2 -1
6! 6.5.4.3! 6.5.4

C(6, 3) = 3 = 3 = 20, and
3!3! 3.2.1.3! 3.2.1
7! 7.6.5.4! 7.6.5

C(7, 3) = - - = 35.
3!4! 3*2.1-4! 3.2.1

SoC(6,2)+C(6,3)= 15+20=35=C(7,3). +

The triangular array below

n =0 C(0,0)

n =1 C(1, O) C(1, 1)

n 2 C(2,0) C(2, 1) C(2,2)

n = 3 C(3, 0) C(3, 1) C(3, 2) C(3, 3)

n =4 C(4,0) C(4, 1) C(4,2) C(4,3) C(4,4)

is called Pascal's triangle. Although this array was first known to the Chinese, its
name comes from the French mathematician Blaise Pascal (1623-1662), whose
paper Traite du TriangleArithmetique developed many of the triangle's properties.

361
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Note that the rows of the triangle are numbered beginning with row n = 0
and that the entries C (n, r) for a fixed value of r lie along a diagonal extending
from the upper right to the lower left.

Let us consider the entries of Pascal's triangle in more detail. Since every set
has exactly one subset containing 0 elements (namely the empty set), C (n, 0) = 1.
Moreover, there is only one subset of n elements that can be formed from a set
containing n elements (name ly the entire set); so C (n, n) = 1. Therefore the first
and last numbers in every rowv of Pascal's triangle are ls. In addition, Theorem
7.1 states that every entry that is not first or last in its row is the sum of the two
nearest entries in the row above. For example, C(4, 2) = C(3, 1) + C(3, 2) and
C(4, 3) = C(3, 2) + C(3, 3). By repeatedly using these properties, we can easily
evaluate the entries in Pascal's triangle. The resulting numbers are shown below.

I
1 1

1 2 1
1 3 3 1

1 4 6 4 1

+ Example 7.3

Continuing in the triangle atove, we see that the numbers in the next row (the
row n = 5) are

1, 1+4=5, 4 + 6 =10, 6+4= 10, 4+1=5, and1. +

Pascal's triangle contains; an important symmetry: Each row reads the same
from left to right as it does from right to left. In terms of our notation, this statement
means that C(n, r) = C(n. n -- r) for any r satisfying 0 < r < n. Although this
property is easily verified by computing C(n, r) and C(n, n - r) using (7.1), we
will prove this fact by a combiatorial argument, a proof based on the definition of
these numbers. (This is the same type of argument used to establish Theorem 7. 1.)

Theorem 7.2 If r and n are integers such that 0 < r < n, then C(n, r) = C(n, n - r).

Proof. Recall that C(n, fl is the number of subsets containing k elements that
can be formed from a set of n elements. Let S be a set of n elements. The
function that assigns to an r-element subset A C S the (n - r)-element subset
A, the complement of A witty respect to S, is easily seen to be a one-to-one
correspondence between the sLbsets of S that contain r elements and the subsets
of S that contain n - r elements. Hence the number of r-element subsets of S is
the same as the number of subsets that contain exactly n - r elements, that is,
C(n, r) = C(n, n - r). O
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The numbers C(n, r) are called binomial coefficients because they appear
in the algebraic expansion of the binomial (x + y)n. More specifically, in this
expansion, C(n, r) is the coefficient of the term x,-ryr. Thus the coefficients that
occur in the expansion of (x + y)f are the numbers in row n of Pascal's triangle.
For example,

(x + y)3 = (x + y)(x + y) 2 = (x + y)(X2 + 2xy + y 2)
= x(x 2 + 2xy + y2 ) + y(x 2 + 2xy + y2 )

= (x3 + 2x 2 y + xy2 ) + (x 2y + 2xy2 +y)

= x3 + 3x2 y + 3xy2 + y3 .

Note that the coefficients (1, 3, 3, and 1) occurring in this expansion are the
numbers in the n = 3 row of Pascal's triangle.

Theorem 7.3 lhe inonua1TN nre,7n For every positive integer n,

(X + y)n = C(n, O)Xn + C(n, I)x'-Iy + + C(n, n -l)xy'-l + C(n, n)y'.

Proof. In the expansion of

(X + y)n = (X + y)(x + y) (X + y),

we choose either an x or a y from each of the n factors x + y. The term in the
expansion involving xn-ryr results from combining all the terms obtained by
choosing x from n -r factors and y from r factors. The number of such terms
is, therefore, the number of ways to select a subset of r factors from which to
choose y. (We will select x from each factor from which we do not choose y.)
Hence the coefficient of Xn-ryr in the expansion of (x + y)n is C(n, r). a

+ Example 7.4

Using the binomial theorem and the coefficients from the n = 4 row of Pascal's
triangle, we see that

(x + y)4 = C(4, O)x
4 

+ C(4, 1)x3 y + C(4, 2)x 2 y 2 + C(4, 3)xy 3 + C(4, 4)y4

= x 4 + 4x3 y + 6x2y 2 + 4xy3 +y4. g +

EXERCISES 7.1

Evaluate the numbers in Exercises 1-12.

1. C(5, 3) 2. C(7, 2) 3. C(8, 5) 4. C(12, 7)

5. the coefficient of x2 y2 in the expansion of (x + y)4
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6. the coefficient of x5 y in the expansion of (x + y)
6

7. the coefficient of x3y9 in the expansion of (x _ y)12

8. the coefficient of x5 y4 in the expansion of (x -y)9

9. the coefficient of x6y4 in the expansion of (x + 2y) 1c

10. the coefficient of x4y9 in the expansion of (3x + )13

11. the coefficient of x3 y7 in the expansion of (x- 3) IC

12. the coefficient of x 7y2 in the expansion of (2x- )9

13. Write the numbers in the n = 6 row of Pascal's triangle .

14. Write the numbers in the n = 7 row of Pascal's triangle.

15. Evaluate (x + y)6. 16. Evaluate (x + y)7 .

17. Evaluate (3x - y)4 . 13. Evaluate (x -2y) 5.

19. How many subsets containing four different numbers can be formed from the set {I, 2, 3, 4, 5, 6, 71?
20. How many subsets containing eight different letters can be formed from the set {a, b, c, d, e, f, g, h, i, j, k, 11?

21. How many subsets of (b, c, d, f, g, h, j, k, I, ml contain five letters?

22. How many subsets of {2, 3, 5, 7, 11, 13, 17, 19, 231 contain four numbers?

23. How many four-element subsets of { 1, 2, 3, 4, 5, 6, 7. 8;, 9, 10, 11, 121 contain no odd numbers?

24. How many three-element subsets of {a, b, c, d, e, f, g. h, i, j, k} contain no vowels?

25. Use the binomial theorem to show that C(n, 0) + C(ri, 1) + * + C(n, n) = 2' for all nonnegative integers n.

26. Use (7.1) to verify that C(n, r) = C(n, n -r) for 0< E < n.

27. Use the binomial theorem to show for n > 0 that

C(n,0) - C(n,1) +C(n, 2) -C'n,3) + -+ (-l)nC(n, n) = .

28. Prove that 2°C(n, 0) + 21C(n, 1) + ..* + 2'C(n, n) == 3f for all positive integers n.

29. Prove that rC(n, r) = nC(n- 1, r -1) for 1 < r < a.

30. Prove that 2C(n, 2) + n2 = C(2n, 2) for n > 2.

31. For any positive integer k and any nonnegative integer -, prove that

C(k,0)+C(k+l, 1)+- - -C(k+r,r)=C(k+r+1,r).

32. ProvethatC(r,r) +C(r + 1,r)+ --... + C(n,r)= C(n + 1,r + 1)forO <r < n.Whydoyouthinkthename
"hockey stick formula" is used for this result?

33. Prove that C(2n + 1, 0) + C(2n + 1, 1) + - + C(2n +- 1, n) = 22n for all nonnegative integers n.

34. Let p and r be integers such that p is prime and I r < p - 1. Prove that C(p, r) is divisible by p.

35. Let k and n be nonnegative integers such that k < '. Prove that C(n, k) < C(n, k + 1).

36. Prove that C(m, 2) + C(n, 2) < C(m + n -1, 2) for any integers m, n > 2.

37. Prove that the product of any n consecutive positive integers is divisible by n!.

38. Prove that I * C(n, 0) + 2 . C(n, 1) + - . + (n + 1) Ci' n, n) = 2n + n2n for all nonnegative integers n.
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7.2 + THREE FUNDAMENTAL PRINCIPLES

In this section we will introduce three basic principles that will find frequent
use throughout this chapter. The first of these is a suprisingly simple existence
statement that has many profound consequences.

Theorem 7.4 1 4ll Ou': Vf . S If asetof pigeonsisplacedintopigeonholes andthere
are more pigeons than pigeonholes, then some pigeonhole must contain at least
two pigeons. More generally, if the number of pigeons is more than k times the
number of pigeonholes, then some pigeonhole must contain at least k + 1 pigeons.

Proof The first statement is a special case of the more general result, namely,
the case in which k = 1. We will prove only the more general result.

Suppose that there are p pigeonholes and q pigeons. If no pigeonhole contains
at least k + I pigeons, then each of the p pigeonholes contains at most k pigeons;
so the total number of pigeons cannot exceed kp. Thus if the number of pigeons
is more than k times the number of pigeonholes (that is, if q > kp), then some
pigeonhole must contain at least k + 1 pigeons. 0

+ Example 7.5

How many people must be selected from a collection of 15 married couples to
ensure that at least two of the persons chosen are married to each other?

It is easy to see intuitively that if we choose any 16 persons from this collection
of 15 couples, we must include at least one husband and wife pair. This conclusion
is based on the pigeonhole principle. Let us place persons (the pigeons) into sets
(the pigeonholes) in such a way that two persons are in the same set if and
only if they are married to each other. Since there are only 15 possible sets, any
distribution of 16 persons must place two people in the same set. Thus there must
be at least one married couple included among the 16 persons. Note that if we
choose fewer than 16 persons, a married couple may not be included (for instance,
if we choose the 15 women). +

+ Example 7.6

How many distinct integers must be chosen to assure that there are at least 10
having the same congruence class modulo 7?

This question involves placing integers (the pigeons) into congruence classes
(the pigeonholes). Recall that there are 7 distinct congruence classes modulo 7,
namely, [0], [1], [2], [3], [4], [5], and [6]. So if we want to guarantee that there are
at least 10 = k + 1 integers in the same congruence class, the generalized form
of the pigeonhole principle states that we must choose more than 7k = 7 9 = 63
distinct integers. Hence at least 64 integers must be chosen. +
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Often the pigeonhole principle is the key to the solution of a problem that
requires producing a pair of elements with special properties. The next example
is of this type.

+ Example 7.7

Choose any five points from the interior of an equilateral triangle having sides
of length 1. Show that the distance between some pair of these points does not
exceed 2.

Subdivide the given triangle into 4 equilateral triangles with side 2 as shown2
in Figure 7.1. Since there are 5 points and only 4 small triangles, some pair
of points must lie in the same triangle. But it is easy to see that any 2 points
lying in the same small triangle must be such that their distance apart does not
exceed

FIGURE 7.1

In contrast to the pigeonhole principle, which asserts that some pigeonhole
contains a certain number of pigeons (an existence statement), the next two results
tell us how to count the number of ways to perform certain procedures. The first
theorem is a restatement of a result from Section 1.2 that enables us to count
the number of ways of performing a procedure that consists of a sequence of
operations.

Theorem 7.5 The Multiplication Principle Consider a procedure that is composed of a se-
quence of k steps. Suppose that the first step can be performed in nI ways, and
for each of these the second step can be performed in n2 ways, and, in general, no
matter how the preceding steps are performed, the ith step can be performed in
ni ways (i = 2, 3, . .. , k). Then the number of different ways in which the entire
procedure can be performed is n1 * n2 -. .. - nk-

To illustrate the multiplication principle, suppose that a couple expecting a
child has decided that if it is a girl, they will give it a first name of Jennifer, Karen,
or Linda and a middle name of Ann or Marie. Since the process of naming the
child can be divided into the two steps of selecting a first name and selecting a
middle name, the multiplication principle tells us that there are 3 . 2 = 6 possible
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names that can be given. To see that this is the correct answer, we can enumerate
the possibilities as in Figure 7.2.

First name Middle name Complete name

Ann Jennifer Ann
Jenniferc

Marie Jennifer Marie

Ann Karen Ann
Karen

K Marie Karen Marie

\ Ann Linda Ann
Lindac

Marie Linda Marie

FIGURE 7.2

+ Example 7.8

A bit (or binary digit) is a zero or a one. An n-bit string is a sequence of n
bits. Thus 01101110 is an 8-bit string. Information is stored and processed in
computers in bit strings because a bit string can be regarded as a sequence of on
or off settings for switches inside the computer.

Let us compute the number of 8-bit strings using the multiplication principle.
To do so, we will regard the 8-bit string as a sequence of 8 choices (choose the
first bit, then choose the second bit, and so forth). Because each bit can be chosen
in 2 ways (namely, zero or one), the number of possible 8-bit strings is

2 2 2 2 2 2 222 =28 = 256.

Since an 8-bit string can be regarded as the binary representation of a
nonnegative integer, this calculation shows that 256 nonnegative integers can be
expressed using no more than 8 binary digits. More generally, a similar argument
shows that the number of n-bit strings (and, hence, the number of nonnegative
integers that can be expressed using no more than n binary digits) is 2n. +

+ Example 7.9

On January 20, 1996, telephones in the northern suburbs of Chicago were given
a new area code (847). Previously all the suburbs had the same area code (708).
Other suburban and city regions will soon be similarly divided. With the increased
demand by businesses for telephone lines for computers, fax machines, and cel-
lular phones, metropolitan areas are actually running out of phone numbers! How
many different telephone numbers with the same area code are possible?

Within one area code, a local telephone number is a sequence of seven digits
(0-9) with the restriction that the first and second digits cannot be 0 or 1. The
number of possible local phone numbers can therefore be counted using the
multiplication principle. Each of the first two digits can be any of the numbers
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2-9, and the remaining digits can be any value 0-9. Thus the number of possible
local phone numbers, which equals the number of ways that the seven digits can
be chosen, is

8 .8.10 10 100 .10 = 6,400,000. +

When using the multiplication principle, it is important to note that the num-
ber of ways to perform a step must not depend on the particular choice that is
made at any previous step. That is, in the notation of Theorem 7.5, no matter
how the first step is performed, there must be n2 ways of performing the second
step; no matter how the first two steps are performed, there must be n3 ways of
performing the third step, anc so forth. Because of this restriction, some ingenuity
may be required to obtain the correct solution to a problem, as in the following
example.

+ Example 7.10

Suppose that we are to use the digits 1-8 without repetition to make five-digit
numbers.

(a) How many different five-digit integers can be made?
(b) How many of the numbers in part (a) begin with 7?
(c) How many of the numbers in part (a) contain both 1 and 2?

(a) We can construct five-Jigit numbers by choosing a value for each of the
five digits in the number. This amounts to filling each of the blanks below

with one of the digits 1-8. Clearly there are 8 ways in which the first digit can be
selected because any of the digits 1-8 can be used. There are only 7 ways to choose
the second digit, however, because the first digit cannot be repeated. Similar
reasoning shows that there are 6 ways to choose the third digit, 5 ways to choose
the fourth digit, and 4 ways to choose the fifth digit. Hence the multiplication
principle shows that the number of possible ways of making all five choices is

8 . 7 . 6- 5 . 4 = 6720.

This is the number of five-digit numbers that can be formed from the digits 1-8
without repetition.

(b) To count the numbers. that begin with 7, we can proceed as above except
that there is only one way to choose the first digit (since it must be 7). Therefore
of the 6720 integers in part (a),

I 7 . 6. 5 . 4 = 840

begin with 7.
(c) The method used in the preceding parts cannot be used to count the number

of five-digit numbers containing both 1 and 2. The reason this method fails is that
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the number of ways to select the fourth and fifth digits depends on earlier choices.
For example, if the first three digits are 231, then there are 5 ways in which the
fourth digit can be chosen (namely, 4, 5, 6, 7, or 8); but if the first three digits
are 567, then there are only two ways in which the fourth digit can be chosen
(namely, 1 or 2).

Consequently we must look for another approach. Since the digits 1 and 2
must be used, we begin by deciding where to put them. We can then fill the three
remaining positions with any of the digits 3-8. Thus we proceed as follows.

Choose a position for the I (in 5 possible ways).
Choose a position for the 2 (in 4 possible ways).
Choose a value to put in the first unfilled blank (using one of 6 possible
digits).
Choose a value to put in the second unfilled blank (using one of 5 possible
digits).
Choose a value to put in the third unfilled blank (using one of 4 possible
digits).

Thus, by the multiplication principle, there are

5 . 4 6 . 5 4= 2400

ways of making all five choices. Hence 2400 of the integers in part (a) contain
both of the digits 1 and 2. +

The second basic counting principle is concerned with the number of elements
in the union of pairwise disjoint sets.

Theorem 7.6 '^a SD.'> Suppose that there are k sets of elements with nI ele-
ments in the first set, n2 elements in the second set, etc. If all of the elements are
distinct (that is, if all pairs of the k sets are disjoint), then the number of elements
in the union of the sets is n I + n2 + * + nk.

To illustrate this result, let A ={1, 2, 3} and B ={4, 5, 6, 7}. Since the el-
ements in A and B are distinct, it follows from the addition principle that the
number of elements in the union of sets A and B equals the number of elements
in set A (which is 3) plus the number of elements in set B (which is 4). There-
fore, in our example, the number of elements in A U B is 3 + 4 = 7. Clearly this
answer is correct because A U B = {1, 2, 3, 4, 5, 6, 71. But note the necessity of
distinct elements: If A had been the set A =f 1, 2, 4}, then the answer would no
longer have been 7 since in this case A U B = {l, 2, 4, 5, 6, 7J.

+ Example 7.11

Suppose that a couple expecting a child has decided to name it one of six names
(Jennifer Ann, Jennifer Marie, Karen Ann, Karen Marie, Linda Ann, or Linda
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Marie) if it is a girl and one of f:bur names (Michael Alan, Michael Louis, Robert
Alan, or Robert Louis) if it is a boy. How many different names can the child
receive?

Since the names to be given to a girl are different from those to be given to a
boy, the addition principle states that the number of possible names is the sum of
the number of girls' names and the number of the boys' names. Thus the answer
to the question posed above is 6 + 4 = 10. 0

Example 7.12

How many integers between 1 and 100 (including 100) are even or end with 5?
Let A denote the set of ce en integers between 1 and 100, and let B denote

the set of integers between I And 100 that end with 5. The number of integers
between I and 100 that are e-,en or end in 5 is then the number of elements in
A U B. Now A contains 50 elements because every other number from 1 to 100
is even. And B contains 10 elements since 5, 15, 25, 35, 45, 55, 65, 75, 85, and
95 are the only integers between 1 and 100 that end in 5. Moreover, the elements
in A and B are distinct because a number ending in 5 cannot be even. Thus it
follows from the addition principle that the number of integers between 1 and
100 that are even or end with .5 is 50 + 10 = 60. +

Often the multiplication and addition principles are both needed to solve a
problem, as in the following examples.

Example 7.13

In the Applesoft BASIC langu age, the name of a real variable consists of alphanu-
meric characters beginning with a letter. (An alphanumeric character is a letter
A-Z or a digit 0-9.) Although variable names may be as long as 238 characters,
they are distinguished by their first two characters only. (Thus RATE and RATIO
are regarded as the same name.) In addition, there are seven reserved words
(AT, FN, GR, IF, ON, OR, and TO) that are not legal variable names. We will
use the multiplication and addition principles to determine the number of legal
variable names that can be distinguished in Applesoft BASIC.

Clearly there are 26 real variable names consisting of a single character,
namely A-Z. Any other distinct name will consist of a letter followed by an al-
phanumeric character. It fol cws from the multiplication principle that the number
of distinguishable names con sisting of more than one character is 26. 36 = 936,
since there are 26 letters and 36 alphanumeric characters. Thus, by the addition
principlethenumberof one-characterortwo-characternames is26 + 936 = 962.
So there are 962 distinguishable real variable names in Applesoft BASIC, and
hence 962 - 7 = 955 legal names that can be distinguished. +



7.2 Three Fundamental Principles 371

+ Example 7.14

(a) How many 8-bit strings begin with 1011 or 01?
(b) How many 8-bit strings begin with 1011 or end with 01?

(a) An 8-bit string beginning with 1011 has the form 1011 , where the
dashes denote either zeros or ones. The number of 8-bit strings that begin with
1011 is equal to the number of ways that bits five through eight can be chosen.
By reasoning as in Example 7.8, we find that this number is 24 = 16. Likewise,
the number of 8-bit strings that begin with 01 is 26 = 64. Since the set of strings
beginning with 1011 is disjoint from the set of strings beginning with 01, the
addition principle shows that the number of strings beginning with 1011 or 01 is
16 + 64 = 80.

(b) Although it is tempting to approach this problem as in part (a), the set of
strings beginning with 1011 is not disjoint from the set of strings ending with 01;
so the correct answer is not 16 + 64 as before. Since the addition principle can
only be used with disjoint sets, let us define sets of 8-bit strings A, B, and C as
follows:

A = {strings beginning with 1011 and not ending with 011,

B = {strings ending with 01 and not beginning with 101 11,

C = {strings beginning with 1011 and ending with 01}.

Clearly all pairs of the sets A, B, and C are disjoint, and A U B U C consists of
the strings that begin with 1011 or end with 01. Therefore the addition principle
states that the number of elements in A U B U C is the sum of the sizes of A,
B, and C. Now strings in A begin with 101 1 and end with 00, 10, or 11. Thus
there is only one way to choose the first four bits of a string in A (namely 1011),
there are two ways to choose each of the fifth and sixth bits (O or 1), and there
are three ways to choose the last two bits (00, 10, or 11). Hence the number
of strings in A is 1 2. 2 3 = 12. Similar arguments show that the numbers
of strings in B and C are 15 2 2 2 1 = 60 and 1 . 2 2. 1 = 4, respectively.
Therefore the number of strings in A U B U C is 12 + 60 + 4 = 76. +

EXERCISES 7.2

1. How many people must there be in order to assure that at least two of their birthdays fall in the same month?

2. If a committee varies its meeting days, how many meetings must it schedule before we can guarantee that at
least two meetings will be held on the same day of the week?

3. A drawer contains unsorted black, brown, blue, and gray socks. How many socks must be chosen in order to
be certain of choosing two of the same color?

4. How many words must be chosen in order to assure that at least two begin with the same letter?

5. A conference room contains 8 tables and 105 chairs. What is the smallest possible number of chairs at the table
having the most seats?
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6. If there are 6 sections of Discrete Math with a total enrollment of 199 students, what is the smallest possible
number of students in the section with the largest enrol ment?

7. How many books must be chosen from among 24 mathematics books, 25 computer science books, 21 literature
books, and 15 economic books in order to assure that there are at least 12 books on the same subject?

8. A sociologist intends to send a questionnaire to 32 whites, 19 blacks, 27 Hispanics, and 31 Native Americans.
How many responses must she receive in order to guarantee that there will be at least 15 responses from the
same ethnic group?

9. An automobile can be ordered with any combination of the following options: air conditioning, automatic
transmission, bucket seats, rear window defogger, and CD player. In how many different ways can this car be
equipped?

10. How many different pizzas can be ordered if a pizza can be selected with any combination of the following
ingredients: anchovies, ham, mushrooms, olives, onion. pepperoni, and sausage?

11. Use the multiplication principle to determine the number of subsets of a set containing n elements.

12. How many different sequences of heads and tails can result if a coin is flipped 20 times?

13. A businessman must fly from Kansas City to Chicago Dn Monday and from Chicago to Boston on Thursday. If
there are 8 daily flights from Kansas City to Chicago and 21 daily flights from Chicago to Boston, how many
different routings are possible for this trip?

14. An interior decorator is creating layouts that consist of carpeting and draperies. If there are 4 choices of carpets
and 6 choices of draperies, how many layouts must be made to show all of the possibilities?

15. Until recently, a telephone area code was a three-digit r umber that could not begin with 0 or 1 and must have
0 or 1 as its middle digit. How many such telephone area codes are possible?

16. How many different character strings of length three ca:i be formed from the letters A, B, C, D, E, and F if
(a) letters can be repeated?
(b) letters cannot be repeated?

17. In how many different orders can 3 married couples be seated in a row of 6 chairs under the following
conditions?
(a) Anyone may sit in any chair.
(b) Men must occupy the first and last chairs,
(c) Men must occupy the first three chairs and women the last three.
(d) Everyone must be seated beside his or her spouse.

18. On student recognition night, a high school will present awards to 4 seniors and 3 juniors. In how many different
orders can the awards be presented under the following conditions?
(a) The awards can be presented in any order.
(b) Awards are presented to juniors before awards are presented to seniors.
(c) The first and last awards are presented to juniors.
(d) The first and last awards are presented to seniors.

19. In the Apple Pascal programming language, identifies (that is, variable names, file names, and so forth) are
subject to the following rules:
(i) The first character in an identifier must be a letter (capital or lower case).

(ii) Subsequent characters may be letters or digits (0, 1, . . ., 9).
If the reserved words IF, LN, ON, OR, and TO cannot be used as identifiers, how many different Apple Pascal
identifiers contain exactly two characters?

20. In FORTRAN, unless an integer variable is explicitly declared, its name must begin with one of the letters I,
J, K, L, M, or N. Subsequent characters can be any letter A, B., Z or digit 0, 1, . 9. How many such
integer variable names contain exactly four characters'?
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21. A men's clothing store has a sale on selected suits and blazers. If there are 30 suits and 40 blazers on sale, in
how many ways may a customer select exactly one item that is on sale?

22. A restaurant offers a choice of 3 green vegetables or a potato prepared in one of 5 ways. How many different
choices of vegetable can be made?

23. How many 8-bit strings begin with 1001 or 010?

24. How many 8-bit strings end with 1000 or 01011 ?

25. In the United States, radio station call letters consist of 3 or 4 letters beginning with either K or W. How many
different sets of radio station call letters are possible?

26. Suppose that a license plate must contain a sequence of 2 letters followed by 4 digits or 3 letters followed by
3 digits. How many different license plates can be made?

27. From among a group of 4 men and 6 women, 3 persons are to be appointed as a branch manager in different
cities. How many different appointments can be made under the following circumstances?

(a) Any person is eligible for appointment.
(b) One man and two women are to be appointed.
(c) At least two men are to be appointed.
(d) At least one person of each sex is to be appointed.

28. Suppose that 3 freshmen, 5 sophomores, and 4 juniors have been nominated to receive scholarships of $500,
$250, and $100. How many different distributions of the three scholarships are possible under the following
circumstances?

(a) Anyone may receive any scholarship.
(b) The $500 scholarship is to be awarded to a freshman, the $250 scholarship to a sophomore, and the $100

scholarship to a junior.
(c) At least two scholarships are to be awarded to juniors.
(d) One scholarship is to be awarded to someone from each class.

29. How many 8-bit strings begin with 11 or end with 00?

30. How many 8-bit strings begin with 010 or end with 11?

31. The digits 1-6 are to be used to make four-digit numbers.

(a) How many such numbers can be made if repetition is allowed?
(b) How many such numbers can be made if repetition is not allowed?
(c) How many of the numbers in (b) begin with 3?
(d) How many of the numbers in (b) contain 2?

32. A university task force on remedial courses is to be formed from among 3 mathematics teachers, 4 English
teachers, 2 science teachers, and 2 humanities teachers. The committee must contain at least one math teacher
and at least one English teacher. How many different committees can be formed if

(a) two committees are considered the same when they contain precisely the same individuals?
(b) two committees are considered the same when they contain the same number of teachers from each

discipline?

33. Show that if the 26 letters of the English alphabet are written in a circular array in any order whatsoever, there
must be 5 consecutive consonants.

34. Prove that in any nonempty list of n integers (not necessarily distinct) there is some nonempty sublist having
a sum that is divisible by n.

35. Let S = {a,, a2, . . ., a91 be any set of 9 points in Euclidean space such that all three coordinates of each point
are integers. Prove that for some i and j (i :A j) the midpoint of the segment joining ai and aj has only integer
coordinates.
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36. Suppose that there are 15 identical copies of The Great Gatsby and 12 distinct biographies on a bookshelf.

(a) How many different selections of 12 books are possible?
(b) How many different selections of 10 books are possible?

7.3 c PERMUTATIONS AND COMBINATIONS

Two types of counting problems occur so frequently that they deserve special
attention. These problems are:

(1) How many different arrangements (ordered lists) of r objects can be formed
from a set of n distinct objects?

(2) How many different selections (unordered lists) of r objects can be made
from a set of n distinct objects?

In this section we will consider these two questions in the case that repetition of
the n distinct objects is not allowed. Section 7.4 will answer these same questions
when repetition is permitted.

Recall from Section 1.2 that an arrangement or ordering of n distinct objects
is called a permutation of the objects. If r < n, then the arrangement or ordering
using r of the n distinct objects is called an r-permutation. Thus, 3142 is a
permutation of the digits 1, 2, 3, and 4, and 412 is a 3-permutation of these digits.

The number of different r -permutations of a set of n distinct elements is
denoted P(n, r). In Theorem 1 2 this number was found to be

n !
15(n, r) = (n r)! (7.2)

Thus (7.2) gives us the answer to question 1 above.

4 Example 7.15

How many different three-digit numbers can be formed using the digits 5, 6, 7,
8, and 9 without repetition.

This question asks for the number of 3-permutations from a set of 5 digits.
This number is P(5, 3). So, using (7.2), we see that the answer to the question
above is

P(5 3) 5! 5 4 .3 2! 543=60 +
2! 2!

+~ Example 7.16

In how many different orders can 4 persons be seated in a row of 4 chairs?
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The answer to this question is the number of permutations of a set of 4
elements. Recalling that O! = 1, we see from (7.2) that this number is

4! 4!P(4,4)= 0 = - =4! =24. +
0! 1

Note that Example 7.16 could also have been answered by appealing to
Theorem 1. 1, which can be rewritten using our present notation as P (n, n) = n!.

Let us now consider the second question above. If r < n, then an unordered
selection of r objects chosen from a set of n distinct objects is called an
recombination of the objects. Thus {1, 41 and {2, 3} are both 2-combinations
of the digits 1, 2, 3, and 4. Note that since combinations are unordered selections,
the 2-combinations { 1, 4} and {4, 11 are the same. In fact, an unordered selection of
r elements from a set of n distinct elements is just a subset of the set that contains
r elements. Thus the number of different r-combinations of a set of n distinct
elements is C(n, r). So, using (7.1), we see that the answer to question 2 above is

C(n,r) = ! ( )!

o Example 7.17

How many different 4-member committees can be formed from a delegation of
7 members?

Since a 4-member committee is just a selection of 4 members from the dele-
gation of 7, the answer to this question is C(7, 4). Using (7.1), we find that

7! 7.6.5.4! 7*6 5
C (7, 4)= = = ~ = 35.c o

4!3! 4!.3. 2- 1 3.2.1

+ Example 7.18

How many 8-bit strings contain exactly three Os?
Note that an 8-bit string containing exactly three Os is completely determined

if we know the positions of the three Os (since the other five positions must be
filled with 1 s). Thus the number of 8-bit strings containing exactly three Os equals
the number of different locations that the three Os can occupy. But this number is
the number of ways to choose three positions from among eight, which is C (8, 3).
So the number of 8-bit strings containing exactly three Os is

8! 8.7.6.5! 8.7.6
C(8,3)= = 5! = = 56. +

3!5! 3i2.1.5! 3.2.1

It is clear from (7. 1) and (7.2) that

P(n, r) = r! C(n, r).
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This equation can be interpreted combinatorially as follows: The number of ways
to arrange r objects from a set of n objects equals the number of ways to select
r of the n objects and then arri6nge the selected objects in order.

Many counting problems require distinguishing permutations from combi-
nations. Since permutations are ordered lists, they arise in problems where the
order of selection is significant, such as when the selected objects are to be treated
differently. Combinations, on the other hand, are unordered lists and occur when
the order of selection is irrelevant, such as when the selected objects are treated the
same. Note the use of permutations and combinations in the following example.

Example 7.19

An investor is going to invest $16,000 in 4 stocks chosen from a list of 12 prepared
by her broker. How many different investments are possible if

(a) $4000 is to be invested in each stock?
(b) $6000 is to be invested in one stock, $5000 in another, $3000 in the third,

and $2000 in the fourth?

(a) Since each stock is to be treated the same, we need an unordered list of 4
stocks. Hence the number of investments in this case is

12! 12 11 10 9
C(12, 4,) =:--~ =495.

4! 8! 4 3 2 1

(b) Since each stock is to be treated differently, we need an ordered list of 4
stocks. Hence the number of investments is this case is

P(12, 4) = 128! = 12 112!9 = 11,880.

Counting problems often require that permutations or combinations be used
together with the multiplication or addition principles. The following examples
are of this type.

Example 7.20

Three men and three women are going to occupy a row of six seats. In how many
different arrangements can they be seated so that men occupy the two end seats?

We can regard the assigning of seats as a two-step process: First fill the two
end seats, and then fill the middle four seats. Since the end seats must be filled by
two of the three men, there are P (3, 2) different ways to occupy the end seats. The
remaining four persons can fill ihe middle seats in any order, so there are P(4, 4)
different ways to fill the middle seats. Thus, by the multiplication principle, the
number of ways to fill both the end seats and the middle seats is

P(3, 2) P(4,4)=6 24= 144. d
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+ Example 7.21

An investor is going to purchase shares of 4 stocks chosen from a list of 12
prepared by her broker. How many different investments are possible if $5000 is
to be invested in each of two stocks and $3000 in each of the others?

We can regard the choice of stocks as a two-step process by first choosing
the stocks in which $5000 is to be invested and then choosing the stocks in which
$3000 is to be invested. Clearly the stocks in which $5000 is to be invested can
be chosen in C(12, 2) ways. The stocks in which $3000 is to be invested must be
chosen from the remaining 10 stocks, and so this choice can be made in C(10, 2)
ways. The multiplication principle now gives the number of different investments
to be

C(12, 2) . C(10, 2) = 66 45 = 2970. i)

+l Example 7.22

From among a group of 6 men and 9 women, how many three-member committees
contain only men or only women?

The number of three-member committees containing only men is C (6, 3), and
the number of three-member committees containing only women is C (9, 3). Since
the set of committees containing only men is disjoint from the set of committees
containing only women, the addition principle shows that the number of three-
member committees containing only men or only women is

C(6, 3) + C(9, 3) = 20 + 84 = 104. i

i Example 7.23

How many 8-bit strings contain six or more Is?
If an 8-bit string contains six or more I s, then the number of I s that it contains

must be six, seven, or eight. Reasoning as in Example 7.18, we see that the number
of strings containing exactly six Is is C(8, 6), the number of strings containing
exactly seven Is is C(8, 7), and the number of strings containing exactly eight
Is is C(8, 8). So the addition principle shows that the number of 8-bit strings
containing six or more is is

C(8,6)+C(8,7)+C(8,8)=28+8+I =37. +

i) Example 7.24

How many 8-bit strings with exactly two Is are such that the Is are not adjacent?
If an 8-bit string contains exactly two Is, then it must also contain exactly

six Os. We will consider two cases, according to whether the last bit is 0 or 1.
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If the last bit is 0 and the tvwo Is are not adjacent, then each 1 is followed
by at least one 0. Hence we can regard the bits to be arranged as two strings
of 10 and four single Os. The number of ways to arrange these six groups is
the number of ways to choose positions for the four Os from six locations, which
is C(6, 4). On the other hand, if the last digit is 1 and the two is are not adjacent,
then we must arrange five Os and one string of 10. (The other 1 is reserved for the
last bit.) The number of such arrangements is the number of ways to choose po-
sitions for the five Os from six locations, which is C(6, 5). Hence, by the addition
principle, the number of 8-bil strings with exactly two nonadjacent Is is

C(6.L )+C(6,5)= 15+6=21. +

EXERCISES 7.3

Evaluate the numbers in Exercises 1-12.

1. C(6, 3) 2. C(7, 4) 3. C(5, 2) 4. C(8, 4)
5. P(4,2) 6. P(6,3) 7, P(9,5) 8. P(12,3)

9. P(10,4) 10. P(8, 3) 11. P(n, 1) 12. P(n,2)

13. How many different arrangements are there of the letters a, b, c, and d?
14. How many different arrangements are there of the letters in the word "number"?
15. How many different four-digit numbers can be fotmn d using the digits 1, 2, 3, 4, 5, and 6 without repetition?
16. How many different ways are there of selecting five persons from a group of seven persons and seating them

in a row of five chairs?

17. How many different 3-member subcommittees can bc formed from a committee with 13 members?

18. How many different 16-bit strings contain exactly foar Is?
19. How many different subsets of { 1, 2, . . ., 101 contain exactly six elements?

20. How many different 4-person delegations can be fbnn-d from a group of 12 people?
21. Five speakers are scheduled to address a convention. In how many different orders can they appear?

22. Six persons are running for four seats on a town council. In how many different ways can these four seats be
filled?

23. For marketing purposes, a manufacturer wants to tesW new product in three areas. If there are nine geographic
areas in which to test market the product, in how many different ways can the test areas be selected?

24. An investor intends to buy shares of stock in 3 companies chosen from a list of 12 companies recommended
by her broker. How many different investment option are there under the following circumstances?
(a) Equal amounts will be invested in each company.
(b) Amounts of $5000, $3000, and $1000 will be invested in the chosen companies.

25. How many different committees consisting of three representatives of management and two representatives of
labor can be formed from among six representatives cf management and five representatives of labor?

26. In how many different sequences can we list 4 novels followed by 6 biographies if there are 8 novels and 10
biographies from which to choose?
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27. An election will be held to fill three faculty seats and two student seats on a certain college committee.
The faculty member receiving the most votes will receive a three-year term, the one receiving the sec-
ond highest total will receive a two-year term, and the one receiving the third highest total will receive a
one-year term. Both of the open student seats are for one-year terms. If there are nine faculty members
and seven students on the ballot, how many different election results are possible assuming that ties do not
occur?

28. In how many different ways can 8 women be paired with 8 of 12 men at a dance?

29. Suppose that 3 freshmen, 4 sophomores, 2 juniors, and 3 seniors are candidates for four identical school service
awards. In how many ways can the recipients be selected under the following conditions?

(a) Any candidate may receive any award.
(b) Only juniors and seniors receive awards.
(c) One person from each class receives an award.
(d) One freshman, two sophomores, and one senior receive awards.

30. Suppose that 3 freshmen, 5 sophomores, 4 juniors, and 2 seniors have been nominated to serve on a student
advisory committee. How many different committees can be formed under the following circumstances?

(a) The committee is to consist of any four persons.
(b) The committee is to consist of one freshman, one sophomore, one junior, and one senior.
(c) The committee is to consist of two persons: one freshman or sophomore and one junior or senior.
(d) The committee is to consist of three persons from different classes.

31. Prove by a combinatorial argument that 2C(n, 2) + n2 
= C(2n, 2) for n > 2.

32. Prove by a combinatorial argument that rC(n, r) = nC(n - 1, r -1) for 1 < r < n.

33. Prove that C(n, m) . C(m, k) = C(n, k) * C(n - k, m -k) for k < m < n by a combinatorial argument.

34. Prove that C(n, 0)2 + C(n, 1)2 + . + C(n, n)2 
= C(2n, n) for every positive integer n.

35. Prove that C(1, 1) + C(2, 1) + * + C(n, 1) = C(n + 1, 2) for every positive integer n by a combinatorial
argument.

36. State and prove a generalization of Exercise 35.

7.4 + ARRANGEMENTS AND SELECTIONS
WITH REPETITIONS

In this section we will learn how to count the number of arrangements of a
collection that includes repeated objects and the number of selections from a
set when elements can be chosen more than once. As we will see, both of these
counting problems require the use of ideas from the two preceding sections.

Let us consider first the number of arrangements of a collection containing
repeated indistinguishable objects. As a simple example of this type of problem,
we will count the number of different arrangements of the letters in the word
"egg." Since there are only three letters in "egg," it is not difficult to list all of the
possible arrangements. These are:

egg geg gge.
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Hence there are only 3 arrangements of the letters in "egg" compared to the
P (3, 3) = 6 arrangements that we would expect if all the letters had been distinct.
To see more clearly the effect of the repeated letters, let us capitalize the first "g"
in "egg" and regard a capital letter as different from a lowercase letter. Then the
six possible arrangements of the letters in "eGg" are:

eGg Geg Gge
egG geG gGe

Note that because the two g s in the first list are identical, interchanging their
positions does not produce different arrangements. But each arrangement in the
first list gives rise to two arrangements in the second list, one with "G" preceding
"g" and the other with "g" preceding "G." Thus the number of arrangements
in the first list equals the number of arrangements in the second list divided by
P(2, 2) = 2, the number of permutations of the two g's.

Another way to count the number of arrangements of the letters in "egg" is
by thinking of an arrangement as having 3 positions and first choosing positions
for the two g's and then choosing a position for the "e." Since the positions for
the g's can be chosen in C 3, 2) ways and the remaining position for the "e" can
be chosen in only C(1, 1) way, the multiplication principle then gives the number
of possible arrangements as C(3, 2). C(1, 1) = 3. 1 = 3. This analysis and the
one in the preceding paragraph lead to the same answer (see Exercise 35), which
demonstrates the following result.

Theorem 7.7 Let S be a collection containing n objects of k different types. (Objects of the
same type are indistinguishable, and objects of different types are distinguishable.)
Suppose that each object is cf exactly one type and that there are n, objects of
type 1, n2 objects of type 2, and, in general, ni objects of type i. Then the number
of different arrangements of th- objects in S is

C(n, nI) C(n - ni, n2 ) C(n -- n -n 2, n3) .... C(n-n I 2- - nkk- 1, nk),

which equals

n!
nl!n2! .. nk!

The conclusion of this theorem states that the number of different arrange-
ments of the objects in S equals the number of ways C(n, nI) to place the n,
objects of type 1 in n possible locations, times the number of ways C(n - n], n 2 )

to place the n2 objects of type 2 inn - n, unused locations, times the number of
ways C(n - n1 - n2, n 3 ) to place the n3 objects of type 3 inn - n -n 2 unused
locations, etc. Note that this number can also be written in the form n !
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Also note that n = nI + n2 + * . . + nk because we are assuming that each of the
n elements in S belongs to exactly one of the k types.

4 Example 7.25

How many arrangements are there of the letters in the word "banana"?
Since "banana" is a six-letter word consisting of three types of letters (1 b, 3

a's, and 2 n's), the number of arrangements of its letters is

6! 6 .5 4 3! 6 .5. 4

1! 3! 2! 1 3! 2 2

+ Example 7.26

Each member of a nine-member committee must be assigned to exactly one of
three subcommittees (the executive subcommittee, the finance subcommittee, or
the rules committee). If these subcommittees are to contain 3, 4, and 2 members,
respectively, how many different subcommittee appointments can be made?

Let us arrange the nine persons in alphabetical order and give each person a
slip of paper containing the name of a subcommittee. Then the number of possible
subcommittee appointments is the same as the number of arrangements of 9 slips
of paper, 3 of which read "executive subcommittee," 4 of which read "finance
subcommittee," and 2 of which read "rules subcommittee." By Theorem 7.7, this
number is

9!
= 1260. +

3! 4! 2!

Let us now consider the problem of counting the number of selections from
a set when elements can be chosen more than once. As an example, suppose
that seven persons in a hotel conference room call for refreshments from room
service. If the choice of refreshments is limited to coffee, tea, or milk, how many
different selections of seven refreshments are possible? Note that we are asking
this question from the room service's point of view; that is, we are not interested
in knowing who wants which beverage but only in the total number of beverages
of each type that are desired. For example, one such selection is for 4 coffees, 1
tea, and 2 milks. Thus we are selecting seven times from {coffee, tea, milk} with
repetition allowed.

To answer this question, we will suppose that one of the seven persons in the
room asks everyone which beverage he or she would like. In order to keep track
of the answers, the responses are recorded on a tally sheet as shown below. Note
that we need only two lines to divide our tally sheet into three columns.

Coffee Tea Milk

381
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For example, an order for 4 coffees, I tea, and 2 milks would be recorded as
follows.

Coffee Tea Milk
xxxx x xx

If we always list the beverages in the sequence above, the beverage names
can be omitted from the tally sheet because every order corresponds uniquely to
some arrangement of seven x's and two I's. For example, the order for 4 coffees,
1 tea, and 2 milks would be represented as xxxxIx lxx, and an order for 5 coffees,
2 teas, and 0 milks would appear as xxxxxlxxl. Hence the number of different
refreshment orders is the same as the number of ways to arrange seven x's and
two l's, or equivalently, the number of ways to choose positions for seven x's
from nine possible locations. Thus there are C(9, 7) = 36 different refreshment
orders possible. (Since C(9, 2) = C(9, 7) = 36, we can also interpret the number
of different refreshment orders as the number of ways to choose positions for
two I's from among nine positions.)

By using the same type ofi easoning as above, we obtain the following result.
Note that in this theorem s denotes the number of selections and t denotes the
number of types of objects from which to choose. (In the beverage example, s = 7
and t = 3.)

Theorem 7.8 If repetition is allowed, the number of selections of s elements that can be made
from a set containing t distinct elements is C(s + t - 1, s).

+ Example 7.27

Suppose that we take five coins from a piggy bank containing many pennies,
nickels, and quarters. How many different amounts of money might we get?

Note that because we are selecting five coins, each possible choice of coins
corresponds to a different amount of money. (This would not be the case if we
selected six coins, for 1 quarter and 5 pennies have the same value as 6 nickels.)
Thus, by Theorem 7.8, the answer to this question is

C(5 + 3 - 1, 5) = C(7, 5) = 21. o

4 Example 7.28

A bakery makes four different types of donuts.

(a) How many different assortments of one dozen donuts can be purchased?
(b) How many different assortments of one dozen donuts can be purchased that

include at least one donut of each type?
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(a) Since we are selecting 12 donuts from 4 types with repetition of the types
allowed, we use Theorem 7.8 with s = 12 and t = 4. The number of possible
choices is

C(s + t - 1, s) = C(12 + 4 - 1, 12) = C(15, 12) = 455.

(b) Because at least one donut of each type must be included, let us begin by
choosing one donut of each type. The number of possible assortments is then the
number of different ways the remaining 8 donuts can be selected. As in (a), this
number is

C(s + t - 1, s) = C(8 +4- 1,8) = C(1, 8) = 165. +

+ Example 7.29

How many 8-bit strings with exactly two Is are such that the Is are not adjacent?
The strings to be counted consist of two is and six Os. Arrange the two Is

in a line. In order that the Is not be adjacent, we insert a 0 between them. The
present configuration is shown below.

1 0 1

The string will be completely determined if we know the numbers of Os before
the first 1, between the two Is, and after the second 1. Thus the number of dif-
ferent strings with the desired form is equal to the number of different ways
to place the remaining five Os into three positions. But the number of differ-
ent ways to place the remaining five Os into three positions equals the number
of ways to choose 5 times with repetition from among 3 types of positions,
which is

C(5 + 3 - 1,5) = C(7,5) = 21.

Compare this solution to that in Example 7.24. +

Counting problems involving the distribution of objects can be interpreted as
problems involving arrangements or selection with repetition. Usually problems
involving the distribution of distinct objects correspond to arrangements with
repetition, and problems involving the distribution of identical objects correspond
to selections with repetition. The following examples demonstrate the use of
Theorems 7.7 and 7.8 in solving problems involving distributions.

+ Example 7.30

How many distributions of 10 different books are possible if Carlos is to receive
5 books, Doris is to receive 3 books, and Earl is to receive 2 books?
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Distributing the 10 books,: s equivalent to lining them up in some order and
inserting a piece of paper in eac i book marked with the recipient's name. Then the
number of possible distributions is the same as the number of ways of arranging
5 slips of paper marked "Carlos," 3 slips marked "Doris," and 2 slips marked
"Earl." Using Theorem 7.7, we see that this number is

10!
=2520.

5! 3! 2!

Note the similarity between this solution and that of Example 7.26. +

+ Example 7.31

If 9 red balloons and 6 blue balloons are to be distributed to 4 children, how
many distributions are possible if every child must receive a balloon of each
color?

Let us distribute the red balloons first and the blue balloons second. Since
every child must receive a ied balloon, we give one to each child. Now we
can distribute the remaining 5 red balloons in any way whatsoever. To decide
who will receive each of these 5 balloons, we will think of selecting five times
with repetition from a set containing the children's names. The number of pos-
sible selections is given by Th-orem 7.8 to be C(5 + 4 - 1, 5) = C(8, 5). Sim-
ilar reasoning shows that the number of ways in which the blue balloons can
be distributed so that every child receives at least one is C(2 + 4 - 1, 2) =
C(5, 2). Thus, by the multiple cation principle, the number of possible distri-
butions of the balloons in which every child receives a balloon of each
color is

C(8, 5) * C (5, 2) = 56 10 = 560. 4

In Section 7.3 we posed Iwo basic counting problems:

(1) How many different arrangements (ordered lists) of r objects can be formed
from a set of n distinct objects?

(2) How many different selections (unordered lists) of r objects can be formed
from a set of n distinct objects?

Theorem 7.8 provides the answer to question (2) when repetition of items
is permitted. The answer to question (1) in this case follows easily from the
multiplication principle, for there are r objects to be chosen, and each object can
be chosen in one of n ways. Fence the total number of arrangements of r objects
that can be formed from a set of n distinct objects when repetition of items is
permitted is

n n nn= n'.
r factors
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The following chart summarizes the answers to the two questions stated
above.

Number of Number of

Arrangements Selections

(ordered lists) (unordered lists)

Repetition of items P(n, r) C(n, r)
not permitted

Repetition of items n' C(n + r -1, r)

permitted

Note that, in this context, Theorem 7.7 gives the number of arrangements
with repetition when the number of items of each type is specified.

EXERCISES 7.4

1. How many distinct arrangements of the letters in "redbird" are there?

2. How many distinct arrangements of the letters in "economic" are there?

3. How many different 7-digit numbers can be formed using the digits in the number 5,363,565?

4. How many different 9-digit numbers can be formed using the digits in the number 277,728,788?

5. How many different fruit baskets containing 8 pieces of fruit can be formed using only apples, oranges, and
pears?

6. How many different assortments of 6 boxes of cereal can be made using packages of corn flakes, shredded
wheat, and bran flakes?

7. How many different assortments of one dozen donuts can be purchased from a bakery that makes donuts with
chocolate, vanilla, cinnamon, powdered sugar, and glazed icing?

8. How many different boxes containing 10 wedges of cheese can be made using wedges of Cheddar, Edam,
Gouda, and Swiss cheese?

9. A box contains 16 crayons, no two having the same color. In how many different ways can they be given to
four children so that each child receives 4 crayons?

10. In how many different ways can 15 distinct books be distributed so that Carol receives 6, Don receives 4, and
Ellen receives 5?

11. A committee's chairperson and secretary must telephone the other 7 members about a change in the committee's
meeting time. In how many different ways can these telephone calls be made if the chairperson calls 3 people
and the secretary calls 4?

12. Paula has bought 6 different CDs to give as Christmas gifts. In how many different ways can she distribute the
CDs so that each of her three boyfriends receives 2 CDs?

13. In how many different ways can 8 identical pieces of construction paper be distributed to 4 children?

14. In how many different ways can 10 identical quarters be distributed to 5 people?

15. In how many different ways can 6 identical sticks of white chalk be distributed to 3 students so that each student
receives at least one stick?

16. A father has 10 identical life insurance policies. He wants to name one of his 3 children as the beneficiary
of each policy. In how many different ways can the beneficiaries be chosen if each child is to be named a
beneficiary on at least 2 policies?
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17. A concert pianist is preparing a recital that will consist of I Baroque piece, 3 classical pieces, and 3 romantic
pieces. Assuming for the sake of programming that pie,-es of the same period are regarded as indistinguishable,
how many different programs containing the 7 pieces c an the pianist create?

18. In bridge a deal consists of distributing a 52-card deck into four 13-card hands. How many different deals are
possible in bridge?

19. In how many different ways can 8 identical mathematics books and 10 identical computer science books be
distributed among 6 students?

20. Twelve children are to be divided into groups of three lo play different number games. In how many ways can
the groups be chosen?

21. Ten diplomats are awaiting assignments to foreign embassies. If 3 of these diplomats are to be assigned to
England, 4 to France, and 3 to Germany, in how many ways can the assignments be made?

22. In order to stagger the terms of service of 12 people elected to a new committee, 4 members are to be assigned
a one-year term, 4 members are to be assigned a two-year term, and 4 members are to be assigned a three-year
term. In how many different ways can these assignment ts be made?

23. How many 16-bit strings are there containing six Os and ten Is with no consecutive Os?

24. How many positive integer solutions are there to the equation x + y + z = 17?

25. In how many ways can 2 identical teddy bears and 7 distinct Cabbage Patch dolls be distributed to 3 children
so that each child receives 3 gifts? (It is possible for she 3 gifts to include both teddy bears.)

26. How many numbers greater than 50,000,000 can be fonned by rearranging the digits of the number 13,979,397?

27. How many positive integers less than 10,000 are such :hat the sum of their digits is 8?

28. How many distinct arrangements are there of two a's, one e, one i, one o, and seven x's in which no two vowels
are adjacent?

29. How many positive integers less than 1,000,000 are such that the sum of their digits equals 12?

30. A domino contains two indistinguishable squares, eacL of which is marked with 0, 1, 2, 3, 4, 5, or 6 dots. How
many different dominoes are possible?

31. In the following segment of a computer program, how many times is the PRINT statement executed?

FOR I: = 1 'ro 1o
FOR J: = I TO I

FOR, K: = I TO J
PRINT I, J, K

NEX T K
NEXT J

NEXT I

32. A pouch contains $1 in pennies, $1 in nickels, and $1 in dimes. In how many different ways can 12 coins be
selected from this pouch? (Assume that all coins of the same value are indistinguishable.)

33. A pinochle deck consists of two each of 24 different cards. How many different 12-card pinochle hands are
possible?

34. If m > n, how many different ways are there to distribute m indistinguishable balls into n distinguishable urns
with no urn left empty?

35. Prove that the two expressions in Theorem 7.7 are equal.

36. Use Exercise 31 of Section 7.1 to prove Theorem 7.8 by induction on t.

ego
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7.5 + PROBABILITY

The subject of probability is generally accepted as having begun in 1654 with
an exchange of letters between the great French mathematicians Blaise Pascal
and Pierre de Fermat. During the next 200 years, probability was combined with
statistics to form a unified theory of mathematical statistics, and it is in this context
that any thorough discussion of probability must occur. Nevertheless, the history
of probability is closely related to the history of combinatorics, the branch of
mathematics concerned with counting. In this section we will discuss probability
as an application of the combinatorial ideas presented in Sections 7.2, 7.3, and 7.4.

Intuitively, probability measures how likely something is to occur. In his
important book Theorie Analytique des Probabilites, the French mathematician
Pierre Simon de Laplace (1749-1827) defined probability as follows: Probability
is the ratio of the number of favorable cases to the total number of cases, assuming
that all of the various cases are equally possible. Thus, according to Laplace's
definition, probability measures the frequency with which a favorable case occurs.
In this book we will study probability only in situations where this definition
applies. Note that this definition requires that we know the number of favorable
cases and the total number of cases and, therefore, requires the use of counting
techniques.

By an experiment we will mean any procedure that results in an observable
outcome. Thus we may speak of the experiment of flipping a coin (and observing
if it falls heads or tails) or the experiment of tossing a die (and noting the number
of spots that show). A set consisting of all the possible outcomes of an experiment
is called a sample space for the experiment. It is important to realize that there
may be many possible sample spaces for an experiment. In the experiment of
tossing an evenly balanced die, for instance, three possible sample spaces are

{I, 2, 3, 4, 5, 6}, {even, odd), and {perfect square, not a perfect square}.

Which of these sample spaces may be most useful depends on the particular type
of outcomes that we wish to consider. But in order to use Laplace's definition
of probability, we must be certain that the outcomes in the sample space are all
equally likely to occur. This is the case for the outcomes in the first two sample
spaces above, but the outcomes in the third sample space are not equally likely
since there are only two perfect squares among the numbers I through 6 (namely,
I and 4). Thus the sample space {perfect square, not a perfect square) will not
prove useful for computing probabilities.

Any subset of a sample space is called an event. Thus, in the die-tossing
experiment with sample space {1, 2, 3, 4, 5, 6), the following sets are events:

A =1,2,4,6}, B={n: nisanintegerand4<n<6}, and

C = {n: n is an even positive integer less than 7}.

Recall that the number of elements in a finite set X is denoted IXI. For any
event E in a finite sample space S consisting of equally likely outcomes, we define
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the probability of E, denoted P(E), by

P(E) = ASi (7.3)
Is'

So for the events A, B, and C above, we have P(A)= P(B) =

and P(C) = -

Example 7.32

In the experiment of flipping a properly balanced coin three times, what is the
probability of obtaining exactly two heads?

Since each flip of the coin has two possible results, heads (H) or tails (T), the
multiplication principle shovws that there are 2. 2 2 = 8 possible outcomes for
three flips. The set

S = (HHH, HIFT, HTH, HTT, THH, THT, TTH, TTT}

is a sample space for this experiment consisting of equally likely outcomes. The
event of obtaining exactly two heads is the set E = {HHT, HTH, THH). Thus the
probability of obtaining exactly two heads is

P(E) = -- = 83SI 8

In Example 7.32, we obtained the desired probability by listing the outcomes
in a sample space of equally likely outcomes. Usually, however, a sample space
will be so large that we must use counting techniques to determine its size.
Examples 7.33 through 7.37 are of this type. Notice that, in these examples, we
begin by determining the size of the sample space before counting the outcomes
in the event of interest.

Example 7.33

Suppose that there are six applicants for a particularjob, fourmen and two women,
who are to be interviewed in a random order. What is the probability that the four
men are interviewed before either woman?

To answer this question, we must decide on an appropriate sample space
consisting of equally likely outcomes. Since the ordering of the interviews is
important, the set S of all possible arrangements of the six interviews is the
obvious choice. Let E denote the subset of S in which the men are interviewed
before the women. Then the multiplication principle shows that the number of
elements in E equals the number of arrangements of the men times the number
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of arrangements of the women. So, by (7.3), we have

P IEI P(4, 4). P(2, 2) 24 2 1

151 P(6, 6) 720 15

+ Example 7.34

Suppose that there are two defective pens in a box of 12 pens. If we choose 3
pens at random, what is the probability that we do not select a defective pen?

In this problem, the set of all selections of 3 pens chosen from among the 12
in the box will be our sample space S. The set of all selections of 3 pens chosen
from among the 10 nondefective pens is the event E in which we are interested.
Thus, by (7.3), we find that

P(E) = E C(10, 3) _ 120 6 +
S1 C(12, 3) 220 11

+ Example 7.35

What is the probability that a randomly chosen permutation of the letters in the
word "computer" has no adjacent vowels?

Let the sample space be the set S of all permutations of the letters in the word
"computer," and let E denote the subset of all such permutations in which no two
vowels are adjacent.

To count the permutations in E, we first arrange the five consonants in one
of P(5, 5) = 120 ways, say

_p -t-c -r-m.

Since no two vowels are adjacent, we must insert at most one vowel in each
blank above. The number of ways to choose positions for the three vowels is,
therefore, C(6, 3) = 20. Finally we arrange the vowels in the chosen positions in
P(3, 3) = 6 ways. Thus E contains 120(20)(6) = 14,400 permutations, and so

I El I 14,400 - 14,400 = 5
P(E) =I= P(8, 8) 40,320 14

Example 7.36

Suppose that we have 10 differentnovels, five by Hemingway and five by Faulkner,
that we want to distribute so that Barbara receives 5, Cathy receives 2, and Danielle
receives 3. If the individual novels are distributed at random, what is the proba-
bility that Barbara receives all five of the novels by Hemingway?

Here the sample space S is the set of all distributions of 5 novels to Barbara,
2 to Cathy, and 3 to Danielle, and the event of interest is the set E of all such
distributions in which Barbara receives all the Hemingway novels. Note that the
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distributions in which Barbaia receives all the Hemingway novels are just those
in which the Faulkner novels ure distributed so that Cathy receives 2 and Danielle
receives 3. So, by reasoning as in Example 7.30, we see that

11i5 5! 1
P(E)- l (2 ) 5-5 1 .

- 10! ) 10! 252(5! 2! 3!

+ Example 7.37

We will compute the probability of being dealt each of the following hands if 5
cards are dealt from an ordinary 52-card deck:

(a) a flush (5 cards of the same suit), and
(b) a full house (3 cards of one denomination and 2 of another denomination).

In each case, the sample space S consists of all possible five-card hands. The
number of these is

('(52, 5) = 2,598,960.

(a) We will count the number of different flushes. To obtain a flush, we must
first choose a suit and then select 5 cards from that suit. Hence the multiplication
principle shows that the numbe r of different flushes is

C(4, 1). C(13, 5) = 4(1287) = 5148.

It follows that the probability of being dealt a flush is

5148
.00198.

2,598,960

(b) As in (a), we will count the number of possible full houses. To obtain a full
house, we must choose a denomination, pick 3 cards of that denomination, select
a different denomination, and pick 2 cards of that denomination. The number of
possible full houses is

C(13, 1). C(4, 3). C(12, 1). C(4, 2) = 13. 4 12 6 = 3744.

Hence the probability of being; dealt a full house is

3744
______ ~.00 144.

2,598,960

Since the probability of obtaining a full house is less than the probability of
obtaining a flush, a full house ranks higher than a flush in poker. +

Because our definition of probability requires that the sample space consist
of equally likely outcomes, care must be taken when using Theorem 7.8. For
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example, suppose that six identical cookies are to be distributed at random to
three children. What is the probability that each child gets exactly two?

In this problem we must consider what "at random" means. Presumably the
first cookie is given to one of the children, with each child equally likely to get
it, then the second cookie, etc. Thus the sample space S consists of all 6-element
lists with entries chosen from the set {1, 2, 31. For example, the list 2, 1, 3, 3, 3, 1
corresponds to giving the first cookie to child 2, the second cookie to child 1, etc.
By the multiplication principle, ISI = 36.

The event E consists of all rearrangements of the list 1, 1, 2, 2, 3, 3; so

E = 6! =90
IE | = 2! 2! 2! =90

Thus the probability that each child receives two cookies is

90 1 0
P(E)=P()=36 =81

Notice that the above analysis treats the six cookies individually (first cookie,
second cookie, . . . ) despite their being identical. The wrong answer is obtained if
the sample space S is taken to be all ways of dividing 6 indistinguishable objects
into 3 sets C1, C2 , and C3 . Then ISI = C(6 + 3 - 1, 6) = 28 by Theorem 7.8,
and IEl = 1, so that

JEl 1

ISI 28

The reason that this quotient is not P(E) is that the elements of the sample space
are not equally likely. For instance, a distribution in which each child receives
two cookies is 90 times more likely than that the first child gets all six cookies.

EXERCISES 7.5

1. In the experiment of rolling a die, what is the probability of rolling a number greater than 1?
2. In the experiment of rolling a die, what is the probability of rolling a number divisible by 3?

3. If a coin is tossed five times, what is the probability that it will land heads each time?

4. If three dice are rolled, what is the probability that a 1 will appear on each die?
5. If a pair of dice is rolled, what is the probability that the sum of the spots that appear is 11?
6. If four coins are tossed, what is the probability that all of them land with the same side up?
7. If five coins are tossed, what is the probability that exactly three of them land tails?

8. If a coin is tossed 8 times, what is the probability that it will land heads exactly 4 times?
9. If 3 persons are chosen at random from a set of 5 men and 6 women, what is the probability that 3 women are

chosen?
10. Suppose that a 4-digit number is created using the digits 1, 2, 3, 4, and 5 as often as desired. What is the

probability that it contains two Is and two 4s?

11. In a 7-horse race, a bettor bet the trifecta, which requires that the first three horses be identified in order of
their finish. What is the probability of winning the trifecta under these conditions by randomly guessing three
horses?
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12. If 4 persons are chosen at random from a class containing 8 freshmen and 12 sophomores, what is the probability
that 4 freshmen are chosen?

13. What is the probability that a randomly chosen four-cligit number contains no repeated digits?

14. What is the probability that a randomly chosen string cf three letters contains no repeated letters?

15. If the letters of "sassafras" are randomly permuted, w -at is the probability that the four s's are adjacent and the
three a's are adjacent?

16. In a consumer preferences test, 10 people were asked to name their favorite fruit from among apples, bananas,
and oranges. If each person named a fruit at random, wl at would be the probability that no one named bananas?

17. If the personnel files of 5 employees are randomly selected, what is the probability that they are chosen in order
of increasing salary? (Assume that no two employees have the same salary.)

18. In a particular group of people, 10 are right-handed ind 4 are left-handed. If 5 of these people are chosen at
random, what is the probability that exactly I left-hancled person is selected?

19. What is the probability that a randomly chosen subset of {I, 2, 3, 4, 5, 6} contains both 3 and 5?

20. A committee of 5 is to be formed from among 2 mathematics teachers, 2 English teachers, 2 science teachers,
and 2 humanities teachers. If all such committees are equally likely, what is the probability that the committee
contains at least 1 English teacher?

21. Thirteen sticks of chewing gum are to be given at random to 3 children. What is the probability that each child
receives at least 4 sticks of gum?

22. Three $10 bills, four $5 bills, and six $1 bills are randc mly arranged in a stack. What is the probability that all
of the $5 bills are adjacent?

23. If a 5-member committee is selected at random frorr among 7 faculty and 6 students, what is the probability
that it contains exactly 3 faculty and 2 students?

24. Suppose that we randomly distribute 5 distinct Cabbage Patch dolls and 3 identical teddy bears to 4 children.
What is the probability that each child receives 2 gifts"

25. In a small garden, there is a row of 8 tomato plants, 3 of which are diseased. Assuming that the disease occurs
at random in the plants, what is the probability that the 3 diseased plants are all adjacent?

26. If 10 quarters are distributed at random to 4 people, what is the probability that everyone receives at least 50
cents?

27. Each of 9 different books is to be given at random lo Rebecca, Sheila, or Tom. What is the probability that
Rebecca receives 2 books, Sheila receives 4, and Torm receives 3?

28. What is the probability that an odd number between 1000 and 9000 contains no repeated digits?

29. What is the probability that a randomly chosen pelnlutation of the letters in the word "determine" has no
adjacent e's?

30. Exactly 4 of 20 microcomputer diskettes are defective If the diskettes are packaged in two boxes of ten, what
is the probability that
(a) all the defective diskettes are packed in a particular box?
(b) 3 defective diskettes are packed in the same box"
(c) 2 defective diskettes are packed in each box?

In Exercises 31-34 compute the probability of being de it each of the given hands if 5 cards are dealt from an
ordinary 52-card deck.

31. a pair (2 cards of one denomination and 1 each of threz other denominations)

32. two pairs (2 cards of one denomination, 2 of another denomination, and 1 of a third denomination)

33. three-of-a-kind (3 cards of one denomination and I e azh of two others)
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34. a straight (5 cards of consecutive denominations, where an ace is the highest denomination)
35. A file contains 25 accounts numbered 1-25. If 5 of these accounts are selected at random for auditing, what is

the probability that no 2 accounts with consecutive numbers are chosen?

36. In the Illinois State Lotto game, 6 of the integers 1, 2, ... , 54 are picked to be the winning numbers. What
is the probability that 3 consecutive numbers n, n + 1, n + 2 are picked and no pairs of consecutive numbers
other than n, n + I and n + 1, n + 2 are picked?

7.6* + THE PRINCIPLE OF INCLUSION-EXCLUSION

The addition principle (Theorem 7.6) tells us how to find the number of elements
in the union of pairwise disjoint sets in terms of the number of elements in the
individual sets. In this section we will present a similar result that will enable
us to count the number of elements in the union of any sets, whether pairwise
disjoint or not.

The following simple example will demonstrate the type of counting prob-
lem that we will be discussing. Suppose that a certain group of computer sci-
ence students are all studying logic or mathematics. If 12 are studying logic, 26
are studying mathematics, and 5 are studying both logic and mathematics, how
many students are in this group? If we let A denote the set of students studying
logic and B denote the set of students studying mathematics, then the answer to
this question is the number of elements in the set A U B. But since A and B are
not disjoint, the addition principle cannot be used directly. It is not difficult, how-
ever, to see that the set B' of students studying mathematics but not logic contains
26 - 5 elements. Now A and B' are disjoint and contain all of the students in the
group. So the answer to our question is the number of elements in A U B', which
is 12 + (26 - 5) by the addition principle. (See Figure 7.3.)

A B

FIGURE 7.3

Our analysis in the example above showed that

IA U BI = IAI + IBI-IA n Bl. (7.4)

It is not difficult to see that equation (7.4) holds for any finite sets A and B: The
sum IA I + I B I counts the elements of A n B twice (once as members of A and
once as members of B); so IAl + IBI -IA n BI counts each element of A U B
exactly once.
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Example 7.38

In Example 7.14 we used the addition principle to count the number of 8-bit strings
that begin with 1011 or end with 01. Let us count them again by using (7.4).

Let A and B denote the sets of 8-bit strings that begin with 1011 and end with
01, respectively. Then A F1 B Ws the set of strings that begin with 1011 and end
with 01, that is, strings of the form 101 1- - 01. Since only the fifth and sixth bits
are unspecified, the number of such strings is 2 . 2 = 4. But since IA I = 24 = 16
and FBI = 26 = 64 from Example 7.14, it follows from (7.4) that the number of
8-bit strings that begin with I C 11 or end with 01 is

IAUB I = IAI -IBI-IAnBI = 16+64- 4=76. ,

Al A2

FIGURE 7.4

Our objective in this section is to generalize (7.4) from two sets to r sets,
Al, A2 , .. ., Ar. But let us first consider the case that r = 3. It is easy to see in
Figure 7.4 that (AI U A2 ) r A. = (AI n A3) U (A2 n A3). By using this fact and
(7.4), we can obtain a formula for IAI U A2 U A3 1 as follows.

AI U A2 U A3 1

=I(A U A2 ) U A3 1 = JAI U A.l -- IA 3 1-(Al U A2 ) n A3 1

=(JAI + IA2 1 -IA n A2 1) + IA 3 1 - (A, n A3) U (A2 n A3)l

=(AI + IA2 1-IAI n A21) + IA 31- (JA n A31 + IA 2 n A3 1-JAI n A3 n A2 n A3 1)

= JAII + IA21 + IA3 1 - JAI n A21 -- IAI n A3 1 - IA2 n A31 + IA, n A2 n A3 1

= (JAII + IA2 1 + IA 3 1)- (JAI i A21 + IAI n A3 1 + IA 2 n A3 1) + IAI n A2 n A31

In order to generalize (7.4) to r sets, let us define nr for 1 < s < r to be the
sum of the sizes of all possible intersections of s sets chosen without repetition
from among Al, A2 ... ,.Ar,.. (For s = 1, we define the "intersection" of a single
set to be the set itself. Thus n ] = I A Il + I A21 + * * + I Ar 1.) Note that since there
are C(r, s) ways to choose s seLs from among A1, A2 , . .. , Ar, each n, is the sum
of C(r, s) terms.
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If r = 3, so that there are only three sets Al, A2 , and A3, we have:

nj = 1A11 + IA21 + 1A31,

n2 = IAI n A2 1 + JAI n A3 1 + JA2 n A3 1, and

n3 = JAI A 2 n A3 1.

With this notation, the formula derived above can be written

IAI U A2 U A3 1 = n1 - n2 + n3.

Likewise, if r = 4 (there are four sets AI, A2, A3 , and A4 ), we have:

ni = JAI1 + IA2 1 + IA3 1 + lA41,

n2 = IAI n A21 + AAI n A31 + JAI n A41 + IA2 n A31 + IA2 n A41 + IA3 n A41,

n3 = JI, n A2 n A31 + JI, n A2 n A41 + JAI n A3 n A41 + JA2 n A3 n A41, and

n4 = AAI n A 2 n A3 n A41.

In this case, it can be shown that

IAI U A2 U A3 U A4 1 =n - n2 + n3 - n4 .

Then the desired generalization of (7.4) can be stated as follows.

Theorem 7.9 Tf t' ;in fi-f i~, fl':ig-t/7 sfin For any finite sets Al, A2 ,..., A, de-
fine nS for 1 < s < r to be the sum of the sizes of all possible intersections of s
sets chosen without repetition from among Al, A2, .. ., Ar. Then

IAI UA 2 UL..UArI =n -n 2 +n 3 -n 4 +---+(_1)r- nr.

Proof Letm = IAI UA 2 U U Ar I. We will show that

m-nl+n2 -n3+ ... +(-)rfnr=O-

Let a E Al U A2 U ... U Ar, and suppose that a belongs to exactly k of the
sets Ai. Thena is counted C(k, 0) = 1 time inm, C(k, 1) = k times in n1 (because
a belongs to exactly k of the sets Ai), C(k, 2) times in n2 (because a belongs to
exactly C(k, 2) of the intersections Ai n Aj), ... , and C(k, k) = 1 time in nk*

Furthermore, if s > k, then a is not counted at all in nS because a does not belong
to any intersection of more than k of the sets Ai. Hence, the number of times that
a is counted in m - n, + n2 -n 3 + ... + (_l)r nr, is

C(k,0) - C(k, l) +C(k, 2) -C(k, 3) +. +(_-l)kC (k, k).

But this value is [I + (-l)]k = Ok = 0 by the binomial theorem. It therefore
follows that

m =n 1 -n 2 +n 3 -n4+--+ (_)r- n,.
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Example 7.39

Among a group of programmers, 49 studied Pascal, 37 studied COBOL, and 21
studied FORTRAN. If 9 of these programmers studied Pascal and COBOL, 5
studied Pascal and FORTRAN. 4 studied COBOL and FORTRAN, and 3 studied
Pascal, COBOL, and FORTRAN, how many programmers are in this group?

Let us denote the sets of programmers who studied Pascal, COBOL, and
FORTRAN by P, C, and F, respectively (instead of Al, A2, and A3). Then the
number of programmers in the group is I P U C U F . Now

n = IPI + IC I - IFI =49+37+21 = 107,
n 2 =lPnCI+IPrFI+ICnFl=9+5+4= 18, and

n3 = IP n C n Fl = 3

So by the principle of inclusion-exclusion, we have

IPUCUF =n -n 2 +n 3=107 -18+3 =92.

Hence there are 92 programmers in this group. +

+ Example 7.40

How many positive integers less than 2101 are divisible by at least one of the
primes 2, 3, 5, or 7?

Let AI, A2, A3, and A 4 denote the sets of positive integers less than 2101
that are divisible by 2, 3, .5, and 7, respectively, and let n, be defined as in the
principle of inclusion-exclusion. Clearly

1AI = 2100 =1050, IA21 = 2 = 700,

IA31 = 21= 420, and IA41 = 2 = 300.

Thus

n= All + IA21 + IA31 + IA41
= 1050 + 700 + 420 + 300
= 2470.

An element of AI n A2 is divisible by both 2 and 3 and hence is divisible
by 6. Therefore

2100
IAi. n A21 = = 350,6
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and likewise
2100 2100

IAI nA 31 = - = 210, IAI nA 41 = 14 = 150,
10 1

IA2 n A31 = 20 = 140, IA2 n A4 1 = 21 = 100, and

IA3 n A41 = 20 = 60.

Thus

n2 = IAI n A21 + IAI n A31 + IA1 n A4 1 + IA2 n A31 + 1A2 n A41 + IA3 n A41
= 350+210+ 150+ 140+ 100+60

= 1010.

Similar reasoning shows that

IA0nA 2 nA 31= 20 =70, AjnA 2 nA 4 1= -2 =50,
30 42

2100 2100
JAI n A3 n A4 1 = 70 = 30, and IA2 n A3 n A4 1 = 105 = 20.

Hence

n3 = AI n A2 n A31 + IA1 n A2 n A4 1 + A1 0 A3 n A41 + JA2 n A3 0 A4 1

= 70 + 50 + 30 + 20

= 170.

Finally we see that

2100
n4 = 1A1 nA 2 nA 3 nA 4 1= =10.

210

Thus by the principle of inclusion-exclusion, the number of positive integers
less than 2101 that are divisible by 2, 3, 5, or 7 is

AI UA2 UA3 UA4 1 =n -n 2 +n 3 -n 4

= 2470 - 1010 + 170 - 10
= 1620. +

In many problems, there is a symmetry that makes the calculation of the
numbers nS easier than in Example 7.40. The following example is of this type.

+ Example 7.41

A bridge hand consists of 13 cards chosen from a standard 52-card deck. How
many different bridge hands contain a void suit (that is, no cards in some suit)?
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Let A 1, A2, A3, and A4 der ote the sets of bridge hands that contain no spades,
no hearts, no diamonds, and no clubs, respectively. Then the number of bridge
hands that contain a void suit is

JAI U A2 U A3 U A4 1.

Let ns be defined as in the principle of inclusion-exclusion.
Since a bridge hand that contains no spades must consist of 13 cards chosen

from among the 39 hearts, diamonds, and clubs, we see that

IAII = C(39, 13).

By the symmetry of the definition of the sets Ai, we see that

JAI = jA2 1 = IA3 1 = JA41,

and so

nl JA IA~ + IA21 + IA31 + IA41

= (4, 1) IA 1 I

4 . C(39, 13).

Likewise a hand that is void in both spades and hearts must consist of 13
cards chosen from among the 26 diamonds and clubs; so IAI n A21 = C(26, 13).
Again, by symmetry, all the sets Ai n Aj have the same size. Thus

n2 = JAl n A21 + IAI n A31-- JAI n A41 + IA2 n A3 1 + IA2 n A41 + IA3 n A4 1

= C(4, 2). IA n A21

= 6. C(26, 13).

Similar reasoning shows that a hand that is void in three suits must consist
of all the cards from the remaining suit; so

n3 = C(4,3) JAI n A2 n A31 = 4 C(13, 13).

Finally no hand can be void in all four suits; so

AI n A2 n A3 n A4 = 0,

and hence n4 = 0.
Therefore, by the principle of inclusion-exclusion, we have

IAI U A2 U A3 U A41 =nI - n2 + n 3 -n 4

=4 C(39, 13) - 6 C(26, 13) + 4 C(13, 13) - 0

4=(8,122,425,444) - 6(10,400,600) + 4(1) - 0

= :,427,298,180.
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Hence there are 32,427,298,180 different bridge hands containing a void
suit. +

In Examples 7.39-7.41, we were interested in determining the number of
elements in

Al U A2 U U Ar,

that is, the number of elements that belong to at least one of the sets Ai. When the
sets A, are subsets of a set U, we can also use the principle of inclusion-exclusion
to find the number of elements in none of the sets Ai, that is, the number of
elements in

(Al UA2 U " .UAr) = A, nA 2 n .. Ar.

Suppose, for example, that we want to know the number of positive integers
less than 2101 that are divisible by none of the numbers 2, 3, 5, or 7. In Example
7.40 we used the principle of inclusion-exclusion to calculate that there were 1620
positive integers less than 2101 that are divisible by at least one of the numbers 2,
3, 5, or 7. Hence the number of positive integers less than 2101 that are divisible
by none of these is

2100 - 1620 = 480.

In the remaining examples of this section, we will illustrate this use of the
principle of inclusion-exclusion.

Example 7.42

Among a group of 200 college students, 19 study French, 10 study German, and
28 study Spanish. If 3 study both French and German, 8 study both French and
Spanish, 4 study both German and Spanish, and 1 studies French, German,
and Spanish, how many of these students are not studying French, German, or
Spanish?

Let U denote the set of all 200 students and F, G, and S denote the subsets
of U consisting of the students who are studying French, German, and Spanish,
respectively. Then the number of students in U who are not studying French,
German, or Spanish is I U I- F U G U S 1. Now

n = IFI + IGI + SI = 19+ 10+28 = 57,

n 2 = IFnGI+ IFnSI+IGnSI =3+8+4= 15, and

n3 = IF f G n SI = 1.
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Thus, by the principle of inclusion-exclusion,

IF U G U SI= - n2 + n3 = 57 - 15 + 1 =43.

So 200 -43 = 157 students are not studying French, German, or Spanish. +

+ Example 7.43

At McDonald's restaurants, a H-appy Meal box contains one of four possible gifts.
If you buy five Happy Meal boxes, what is the probability that you will receive
every one of the four gifts?

Let U denote the set of all possible sequences in which five gifts can be
obtained, and let Ai denote the subset of U consisting of all the sequences which
do not include a gift of type (1 < i < 4). Then we must count the elements of
U that are in none of the sets Ai.

Clearly a sequence in Al must consist of only the second, third, and fourth
gifts. Therefore IA I I = 35, and so, by symmetry,

n I = C(4, I) -IA,1 = 4(35) = 4(243) = 972.

Likewise a sequence in Al nT A2 must consist of only the third and fourth gifts.
Therefore IAI n A21 = 25, and so

n2 = C(4, 2). IA, n A21 = 6(25) = 6(32) = 192.

Similar reasoning shows that

n3 =C(4,3) IAI nA 2 nA 31 =4(15 )=4(l)=4 and

n4 = C(4, 4). IA n A2 n A3 n A41 = 1(o5) = 1(0) = 0.

Hence the principle of inclusion-exclusion gives

IA, n A2  A3  A4 1 =n - n2 + n3 -n 4

=972- 192+4- 0

= 784.

It follows that the number of elements of U that are in none of the sets Ai is

IUI - IAI U A2 U A3 U A41 = 45- 784 = 1024-784 = 240.

Thus the probability of collect ing all four gifts if you buy five Happy Meal boxes is

240
-_ .234. o
1024

A permutation of the integers 1, 2, . . ., n such that no integer occupies its
natural position is called a derangement. So 41532 is a derangement of the
integers 1, 2, 3, 4, 5 because 1 is not the first digit, 2 is not the second digit, and
so forth. Counting the number of derangements is a famous problem that can be
solved by the use of the principle of inclusion-exclusion.
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+ Example 7.44

How many derangements of the integers 1, 2, 3, 4 are there?
Let U denote the set of permutations of 1, 2, 3, 4; and let AI denote the set

of members of U having a 1 as first digit, A2 denote the set of members of U
having a 2 as second digit, and so forth. Then a derangement of the integers 1, 2,
3, 4 is a member of U that is not in Al U A2 U A3 U A4.

Note that any permutation in A I has the form 1 - - -, where the second, third,
and fourth digits can be chosen arbitrarily. So the number of such permutations
is P(3, 3). Likewise, IA2 1 = IA3 1 = IA 4 1 = P(3, 3).

Permutations in Al n A2 have the form 1 2 -- , and so there are P(2, 2) of
them. Likewise

AA, n A3 1 = AAI n A4 1 = JA2 n A3 1 = JA2 n A4 1 =A 3 n A4 1 = P(2, 2).

Similar reasoning shows that

JA ln A2 n A3 1 =A, n A 2 n A4 1 = lA n A 3 n A4 1 =JA 2 n A 3 n A4 1 = P(1, 1)

and

JA, n A2 f A3  A4 1 = 1.

Thus, by the principle of inclusion-exclusion, we have

AI U A2 U A3 U A4 1 = 4 P(3, 3)- 6. P(2, 2) + 4 - P(l, 1) - P(l, 1)

= 4 6 - 6 - 2 +4. 1 - 1 = 15.

So the number of derangements of 1, 2, 3, 4 is

U)-)AI1 UA 2 UA 3 UA 41=P(4,4)-15=24-15=9. o

EXERCISES 7.6

1. In a survey of moviegoers it was found that 33 persons liked films by Bergman and 25 liked films by Fellini.
If 18 of these persons liked both directors' films, how many liked films by Bergman or Fellini?

2. Among a group of children, 88 liked pizza and 27 liked Chinese food. If 13 of these children liked both pizza
and Chinese food, how many liked pizza or Chinese food?

3. Among the 318 members of a local union, 127 liked their congressional representative and 84 liked their
governor. If 53 of these members liked both their congressional representative and their governor, how many
of these union members liked neither their congressional representative nor their governor?

4. In a particular dormitory, there are 350 college freshmen. Of these, 312 are taking an English course, and 108
are taking a mathematics course. If 95 of these freshmen are taking courses in both English and mathematics,
how many are taking a course in neither English nor mathematics?
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5. From a group of 650 residents of a city, the following information was obtained:

310 were college-educated.
356 were married.
328 were homeowners.
180 were college-educated and married.
147 were college-educated and homeowners.
166 were married and homeowners.
94 were college-educated, married, and homeowners.

How many of these residents were not college-educated, not married, and not homeowners?

6. In tabulating the 5681 responses to a questionnaire sent to her constituents, a congresswoman found:

3819 favored tax reform.
3307 favored a balanced budget.
2562 favored offshore drilling.
2163 favored tax reform and a balanced budget.
1985 favored tax reform and offshore drilling.
1137 favored a balanced budget and offshore drilling.
984 favored tax reform, a balanced budget, and offshore drilling.

How many of the respondents opposed tax reform, a balanced budget, and offshore drilling?

7. The following data were obtained from the fast-fooc restaurants in a certain city:

13 served hamburgers.
8 served roast beef sandwiches.

10 served pizza.
5 served hamburgers and roast beef sandwiches.
3 served hamburgers and pizza.
2 served roast beef sandwiches and pizza.
I served hamburgers, rcast beef sandwiches, and pizza.
5 served none of these three foods.

How many fast-food restaurants are there in this city'?

8. The following information was found about the residents of a certain retirement community:

38 played golf.
21 played tennis
56 played bridge.

8 played golf and tennis.
17 played golf and bridge.
13 played tennis and bridge.
5 played golf. tennis, and bridge.

72 did not play golf, tennis, or bridge.

How many residents are there in this retirement community?

9. Eight married couples came to a bridge party. Each woman randomly selected a different man to be her partner
for the evening. What is the probability that exactly four husbands were paired with their wives?

10. List all the derangements of 1, 2, 3, 4.
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11. While taking a 6-week summer math class, Alison frequently had dinner with seven friends from her hometown.
She ate dinner with each friend (exactly) 15 times, every pair of friends 8 times, every set of three friends 6
times, every foursome 5 times, every set of five 4 times, and every set of six 3 times, but she never ate with all
seven at once. On how many days did Alison have dinner with none of these friends?

12. How many sequences of five digits (0-9) contain at least one 4 and at least one 7?

13. For the graph below, determine the number of ways to assign one of k colors to the vertices so that no adjacent
vertices receive the same color.

VI V2

V3 V4

14. If three married couples are seated randomly in six chairs around a circular table, what is the probability that
no couple is seated in adjacent seats?

15. How many positive integers less than 101 are square free, that is, divisible by no perfect square greater than 1?

16. How many sequences of six digits (0-9) contain at least one 3, at least one 5, and at least one 8?

17. The sieve of Eratosthenes is an ancient method for finding prime numbers in a list of integers 2, 3, . n. First,
cross from the list every multiple of 2 greater than 2. Then cross from the list every multiple of the next prime (3)
greater than that prime. Continue this process until no further crossing out is possible. The remaining integers
are primes. Here is what the sieve looks like after crossing out multiples of 2 and 3 from the list 2, 3, ... , 20.

2 3 4 5 X< 7 '8 %
I X 13 )A X 't, 17 X 19 -M

How many integers in the list 2, 3, ... , 1000 are not crossed out after crossing out multiples of the primes 2,
3, 5, and 7?

18. At Brokaw Hospital, six babies were born to six different women on Monday through Thursday of a particular
week. Assuming that each baby was equally likely to be born on any of the four days, what is the probability
that there was at least one baby born on each day?

19. In how many ways can four married couples be seated in a row of eight chairs with no husband seated beside
his wife?

20. How many arrangements of the numbers 1, 1, 2, 2, 3, 3, 4, 4 are there in which no adjacent numbers are equal?

21. How many five-card poker hands contain at least one card in each suit?

22. How many of the functions with domain {5, 6, 7, 8, 9, 101 and codomain {1, 2, 3, 4} are onto?

23. How many nonnegative integer solutions of xl + x2 + X3 + X4 = 12 are there in which no xi exceeds 4?

24. Suppose that five balls numbered 1, 2, 3, 4, and 5 are successively removed from an urn. A rencontre is said to
occur if ball number k is the kth ball removed. What is the probability that no rencontres occur?

25. Let S be a set containing m elements, and let n > m be a positive integer. Ordered lists of n items chosen
from S are to be constructed in which each element of S appears at least once. Show that the number of such
lists is

C(m, 0)(m - 0), - C(m, l)(m - l), + ... + (-l),- C(M m- 1)(I)n.

26. Two integers are called relatively prime if I is the only positive integer that divides both numbers. Show that if
a positive integer n has PI, P2, , Pk as its distinct prime divisors, then the number of positive integers that
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are less than n and relatively prime to n is

n - -_- + n n + .+ (- l)k n
Pi P2 PiP2 P3 PIP2. Pk

27. Compute the number Dk of derangements of 1, 2, . k.

28. For Dn as in Exercise 27, evaluate Dn+1 -(n + 11),, when n is a positive integer.

For nonnegative integers n and m, define S(n, m) to be she number of ways to distribute n distinguishable balls
into m indistinguishable urns with no urns empty. These numbers are named Stirling numbers of the second kind
after the British mathematician James Stirling (1692-1770).

29. Let n be a positive integer. Evaluate S(n, 0), S(n, 1), S n, 2), S(n, n -2), S(n, n -1), and S(n, n).

30. Let X be a finite set containing n elements. How many partitions of X into k subsets are there? (See Section
2.2 for the definition of a partition.)

31. How many equivalence relations are possible on a set of n elements?

32. For all integers n > 0 and m > 1, prove that

S(n + 1, m) =C(n, O)S(O, m -) + C(n, I)S(l, m- ) + *+ C(n, n)S(n, m-1).

33. Prove that S(n + 1, m) = S(n, m - 1) + m - S(n, m) for all integers n > 0 and m > 1.

34. Use the result of Exercise 33 to describe a procedure for computing the numbers S(n, m) that is similar to the
manner in which the numbers C(n, r) can be compute(d using Pascal's triangle.

35. For all positive integers n and m, prove that

S(n, m) = [C(m, 0)(m- 0) -C(m, 1 )(m- l) + - + + (- l)m - C(m, m -)(l)"
m !

36. Let X and Y be finite sets containing n and m elemenLs, respectively. How many functions with domain X and
codomain Y are onto?

37. Let U be a finite set containing no elements, and let .4 1, A 2 . Ar be subsets of U. Let n, for 1 < s < r be
as defined in the principle of inclusion-exclusion, and for 0 < s < r let ps be the number of elements in U that
belong to precisely s of the subsets Al, A2 , . . ., A,_ Prove that

p, C(s, 0) n, -C(s + l, l) n,:+, + . + (-I)r-,C (r, r -s) - n,

,--s
- (-I)kC(s + k, k) n, 4 -k.

k=O

38. Use Exercise 37 to determine the number of different rearrangements of the letters in "correspondents" having
exactly three pairs of identical letters in adjacent positions.

7.7* + GENERATING PERMUTATIONS
AND r-COMBINATIONS

Unfortunately there are many Practical problems for which no efficient method of
solution is known (such as the knapsack problem described in Section 1.3). In such
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cases, the only method of solution may be to perform an exhaustive search, that
is, to systematically list and check all of the possibilities. Often, as in Section 1.2,
listing all of the possibilities amounts to enumerating all the permutations or
combinations of a set. In this section we will present procedures for listing all of
the permutations and r-combinations of a set of n elements. For convenience, we
will assume that the set in question is 11, 2, . . ., n}.

The most natural order in which to list permutations is called lexicographic
order (or dictionary order). To describe this order, let p = (Pi, P2, ... , p,) and
q = (qI, q2, ., q) be two different permutations of the integers 1, 2, . .. , n.
Since p and q are different, they must differ in some entry. Let k denote the
smallest index for which Pk : qk. Then (reading from left to right) the first k - 1
entries of p and q are the same, and the kth entries differ. In this case, we will say
that p is greater than q in the lexicographic ordering if Pk > qk. If p is greater
than q in the lexicographic ordering, then we write p > q or q < p. Thus, in the
lexicographic order, we have

(2,4,1,5,3) > (2,4,1,3,5) and (3,2,4, 1,5,6) < (3,2,6,5, 1,4).

By using a tree diagram and choosing entries in numerical order, we can list all
the permutations of 1, 2, . . ., n in lexicographic order. Figure 7.5 depicts the case
where n = 3. The permutations listed in the last column are in lexicographic order.

First entry Second entry Third entry Pennutation

2 3 (1,2,3)

3 2 (1,3,2)

1 3 (2,1,3)

2

3 1 (2,3,1)

3 1 2 (3,1,2)

3

2 1 (3,2, 1)

FIGURE 7.5

In order to have an efficient algorithm for listing permutations in lexico-
graphic order, we must know how to find the successor of a permutation p in
the lexicographic order, that is, the first permutation greater than p. Consider, for
example, the permutation p = (3, 6, 2, 5, 4, 1) of the integers 1 through 6. Let
q denote the successor of p in the lexicographic ordering, and let r denote any
permutation greater than q. Since p < q < r, q must agree with at least as much

405
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of p (from the left) as r does. Thus q must differ from p as far to the right in
its list as possible. Clearly we cannot rearrange the order of the last two entries
of p (4 and 1) or the last three entries of p (5, 4, and 1) and obtain a greater
permutation. But we can rearrange the last four entries of p (2, 5, 4, and 1) to
get a greater permutation, and the least such rearrangement is 4, 1, 2, 5. Thus the
successor of p in the lexicographic ordering is q = (3, 6, 4, 1, 2, 5). Notice that
the first two entries of q are tlhe same as those of p and that the third entry of q
is greater than that of p. Moreover, the third entry of q is the rightmost entry of
p that exceeds the third entry of p. Finally, note that the entries of q to the right
of the third entry are in increasing order.

More generally, consider a permutation p = (PI, P2 . p,) of the integers
1 through n. The successor of p in the lexicographic ordering is the permutation
q = (qj, q2, . ., qn) such that:

(1) The first k - 1 entries of q are the same as in p.
(2) The kth entry of q, q), is the rightmost entry of p that is greater than Pk.

(3) The entries of q that follow qk are in increasing numerical order.

Therefore we can completely determine q from p if we know the value of k,
the index of the entry of p to be changed. As we saw in our example, we want k to
be chosen as large as possible. So because of condition 2 above, we must choose
k to be the largest possible ind-x for which Pk is less than one of the entries that
follow it. But then k is the largest index such that Pk < Pk+]. Thus if we examine
the entries of p from right to /eft, the entry of p to be changed is the first entry we
reach that is less than the number to its right. In addition, since the entries of p to
the right of the kth entry are in decreasing order, qk equals the rightmost entry of
p that exceeds Pk. If we now ;witch Pk with the rightmost entry of p that exceeds
it, we obtain a new permutation in which the rightmost entries are the remaining
entries of q in reverse order.

+ Example 7.45

Let us determine the permutation q of the integers 1 through 7 that is the successor
of p = (4, 1, 5, 3, 7, 6, 2). Scanning p from right to left, we see that the first entry
we reach that is less than the nu mber to its right is the fourth entry, which is 3. (So
in the notation above, k = 4.) Thus, q has the form (4, 1, 5, ?, ?, ?, ?). Moreover,
the fourth entry of q will be the rightmost entry of p that exceeds the entry that is
being changed (which is 3 in our case). Scanning p again from right to left, we see
that the fourth entry of q will be 6. Interchanging the positions of the 3 and 6 in p,
we obtain (4, 1, 5, 6, 7, 3, 2). [i we now reverse the order of the entries to the right
of position k, we will have (4, 1, 5, 6, 2, 3, 7), which is the successor of p.

The following algorithm uses the method described in the previous example
to list all the permutations of 1, 2, . . ., n.
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Algorithm for the Lexicographic Ordering of Permutations

This algorithm prints all the permutations of 1, 2,. .,n in lexicographic order. In the
algorithm, (pi, P2. -,Pn) denotes the permutation currently being considered.

Step I (initialization)
for i =O0to n

Set p1 i.
endfor

Step 2 (generate the permutations)
repeat

Step 2.] (output)
Print (pi, P2. ,Pn).

Step 2.2 (find the index k of the leftmost entry to be changed)
Find the largest index k for which Pk < Pk±1

Step 2.3 (is there something to change?)
if k > 0

Step 2.3.1 (determine the new value for Pk)

Find the largest index j for which p1 > Pk, and inter-
change the values Of Pk and pj.

Step 2.3.2 (prepare to rearrange)
Set r =k + 1 and s =n.

Step 2.3.3 (rearrange)
while r > s

(a) Interchange the values of Pr and p5.
(b) Replace r with r + l and s with s - 1.

endwhile
endif

until k =0

Although the lexicographic ordering is the most natural ordering for listing
permutations, determining the successor of a given permutation in the lexico-
graphic ordering requires several comparisons. For this reason, an algorithm
that lists permutations in lexicographic order may be less efficient than one
that lists the permutations in a different order. But since there are n! permu-
tations of the integers 1, 2,. .. ,n, the complexity of any algorithm that lists
these permutations will be at least W!. Readers who are interested in leamn-
ing more efficient algorithms for listing permutations should consult suggested
reading 113].



408 Chapter 7 Counting Techniques

In Section 1.4 we discussed an algorithm for generating all of the subsets of a set
with n elements. Often, however, we need to consider only subsets of a specified
size. We will now describe a procedure for generating all of the r -element subsets
of {1, 2, . .. , nJ. As for permutations, we will list the subsets in lexicographic
order. Because a subset is not an ordered array, we will understand this to mean
that the elements of a subset will be listed in increasing order as we read from
left to right. Thus we will write the subset {3, 6, 2, 41 as {2, 3, 4, 6).

In order to obtain an algorithm for listing subsets in lexicographic order, we
need to determine the success Nor of any particular subset. Consider, for example,
the 4-element subsets of {1, 2 3, 4, 5, 6}. There are C(6, 4) = 15 such subsets,
and they are listed below in lexicographic order from left to right.

{1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {1,2,4,51, {l,2,4,6},

{1,2,5,6}, {1,3,4,5), {1, 3,4, 61, {1, 3,5, 6), {1, 4,5,6},

{2,3,4,5}, {2,3,4,6}, {2,3,5,6), {2,4,5,6}, 13,4,5,61

As was true for the lexicographic ordering of permutations, the successor of a
subset S must differ from S as far to the right in its list of elements as possible.
Thus if the last element of a subset in the preceding list is not 6, the successor is
obtained by adding 1 to the last element. For instance,

the successor of {1, 2, 3, 4} is 11, 2, 3, 5),

thesuccessorof{1,2,3,5} is (1,2,3,6},

and

the successor of {1,3,4, 5) is {1,3,4, 6}.

If the last element of a subset is 6, its successor will be obtained by a different
procedure. Consider {1, 2, 5, 6}, for instance. Because the last element is 6, it
cannot be increased. Likewise the next-to-last element is 5, and so it cannot be
increased. However, the third-firom-last element can be increased from 2 to 3, and
we finish the subset by listing consecutive integers beginning with 3. Thus

the successor of {1, 2, 5, 6} is {1, 3, 4, 5),

and similarly,

the successor of {2, 3, 5, 61 is {2, 4, 5, 6).

More generally, consider an r-element subset S = {5I,, 2, s, I of
{1, 2, . . ., n}. The successor of S in the lexicographic ordering is a subset T
{t1 , t2 , . . ., t, I such that:

(1) The first k - 1 elements in T are the same as those in S.
(2) The kth element in T, tk is one more than Sk, the kth element in S.
(3) The elements tk, tk+1, .... tr are consecutive integers.
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TABLE 7.1

Subset Index k

(1,2,3,4) 4

(1,2,3,51 4

(1,2,3,61 3

{1,2,4,51 4

{1,2,4,6) 3

{1,2,5,6) 2

{1,3,4,5) 4

(1,3,4,6} 3

(1,3,5,6) 2

{1,4,5,6} 1

{2,3,4,5) 4

(2,3,4,6} 3

{2,3,5,6} 2

(2,4,5,6} 1

(3,4,5,6) none

So, as for permutations, we can completely determine T from S if we know
Sk, the leftmost element in S to be changed. Our example illustrates that Sk is
the rightmost element in S which can be increased, that is, the rightmost element
in S that does not equal its maximum value. Note that the maximum value of
the last element in S is n, the maximum value of the next-to-last element in
S is n - 1, and so forth. Hence Sk is the rightmost element in S that does not
equal n - r + k. Then T is formed by replacing Sk by Sk + 1, Sk+I by Sk + 2,
and so forth. For example, in the lexicographic ordering of the 5-element subsets
of {, 2, 3, 4, 5, 6, 7,8,

the successor of S = {1, 3, 4, 7, 8} is T = {1, 3, 5, 6, 7)

because 4 (the third element in S) is the rightmost element that can be increased.
Although the procedure described above is easy for humans to implement,

searching for the element Sk requires more comparisons than necessary. Conse-
quently we can make the procedure more efficient for a computer by determining
k rather than Sk. Let us return to the list of all 4-element subsets of { 1, 2, 3, 4, 5, 6}
considered earlier. Table 7.1 gives the value of k needed to determine the successor
of each subset.

The observation that enables us to determine k more quickly is that the value
of k for the successor of a subset S is either r or one less than the value of k for
S. The following algorithm uses this method of determining k.

Algorithm for the Lexicographic Ordering of r-Combinations

This algorithm prints all the r-element subsets of { 1, 2, nj in lexicographic order,
where 1 < r < n. In the algorithm, {(S, S2, s,. denotes the subset currently being
considered.

Step I (initialization)
for j = 1 to r

Set sj= j.
endfor
if r = n

Setk -1.
otherwise

Set k = r.
endif

Step 2 (create the subsets)
repeat

Step 2.1 (output)
Print {SI, S2, . . ., Sr I

Step 2.2 (find the index, k, of the first element to be changed)
if sk :A n-r + k

Set k = r.
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otherwise
Replace k with k - 1.

endif
Step 2.3 determinedc the successor)

if k :A 0
(a) Replace Sk with Sk + 1.-
(b) for i = k -+ 1 to r

Replace .si with Sk + (i - k).
endfor

endif
until k =0

It can be shown that this algorithm has order at most n'r Therefore, for a
fixed value of r, the algorithm for the lexicographic ordering of r -combinations
is a "good" algorithm.

EXERCISES 7.7 IM

For the permutations p and q in Exercises 1-6, determine whether p < q or p > q in the lexicographic ordering.

l. p (3, 2, 4,1), q=(4,1, 3, 2) 2. p (2, 1, 3), q= (1,2, 3)

3. p=(1,2, 3), q= (1,3, 2) 4. p=(2,1, 3, 4), q= (2, 3,1, 4)

5. p (4, 2,5, 3,l), q =(4, 2,3, 5,l) 6. p=(2, 5,3, 4,1, 6), q =(2, 5,3,1, 6, 4)

In Exercises 7-18 determine the successor of permutation p in the lexicographic ordering of the permutations of
1, 2,3, 4, 5,6.

7. p=(2,1, 4, 3, 5,6) 8. p =(3, 6, 4,2, 1, 5)

9. p (2, 1,4, 6, 5,3) 10. p=(3, 6,5, 4, 2,l)

ll. p (5 , 6 , 3 , 4 , 2 ,) 1 2 . p (5 ,1, 6 , 4 , 3 , 2 )
13. p=(6, 5,4, 3,2,l1) 14. p (1, 2,3, 6, 5,4)
15.p=( 5, 2, 6 ,4, 3,l) 16 .p-( 4, 5 ,6,3, 2, 1)

1'7. p (6, 3, 5,4, 2,l) 1 8 . p-( 2 , 3 ,1, 6 , 5 , 4 )

19. List the permutations of 1, 2, 3, 4 in lexicographic ord,-r.

In Exercises 20-31 determine the successor of subset S ~n the lexicographic ordering of the 5-element subsets of

{1, 2, 3, 4, 5,6,7, 8, 9}.

20. S={11,2, 4, 5, 6 21. S=lI, 3, 5,7, 9)

22. S ={I, 3, 6, 8, 9 23. = 12, 3, 5,8, 91

24. S={[2,4, 6, 7, 9 25. S-={3, 4, 5,7, 8

26. S = 3,4, 7, 8, 9 27. S ={3, 5,7, 8, 9
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28. S= {4,5,6,7,8} 29. S= {4,5,7,8,9}

30. S={4,6,7,8,9) 31. S={5,6,7,8,9}

32. List all the 3-element subsets of { I, 2, 3, 4, 5, 6} in lexicographic order.

HISTORICAL NOTES

The roots of combinatorial enumerations reach back to at least the 79th problem of the
Rhind papyrus (c. 1650 B.C.). Others lie in the work of Xenocrates of Chalcedon (396-314
B.C.) and his attempts to solve a problem involving permutations and combinations, and
work by Oriental and Hindu mathematicians. By the sixth century B.C., texts exist listing
the values of combinations of tastes drawn from six basic qualities-sweet, acid, saline,
pungent, bitter, and astringent. In his text Lilavati, the Hindu mathematician Bhaskara
(ca. 11 14-1185) wrote rules for the computation of combinations and the familiar n! rule
for permutations. There is also evidence that the Hindus were familiar with the binomial
expansion of (a + b)' for small positive integers n [71, 73, 78, 86, 87].

Girolamo Cardano (1501- 1576) stated the binomial theorem and Blaise Pascal (1623-
1662) presented the first known proof in his 1665 Traite du Triangle Arithmentique. Jacob
Bernoulli (1654-1705) provided an alternate proof of the theorem in his Ars Conjectandi
(1713) and is often incorrectly given credit for the first proof of the theorem. The arith-
metic triangle, often referred to as Pascal's triangle, was known to the Chinese through

Blaise Pascal Chu Shih-Chieh's Ssu Yuan Yii Chien in 1303, and is believed to have been known to
others in the Orient before that date [73].

Abraham De Moivre (1667-1754) extended the binomial theorem in 1697
to the multinomial theorem, which governs the expansion of forms such as
(xI + x2 + .* + xr)n for positive integers r and n. By 1730, De Moivre and the British
mathematician James Stirling (1692-1770) had obtained the asymptotic result, now known
as Stirling's formula, that

n! ;t~ (n)n (27rn) 1/2
e

for large positive integers n.
At much the same time, the foundations of probability were forming. Early work

in the area came from Cardano and Niccolo Tartaglia (1500-1557), whose work dealt
with odds and gambling situations. Cardano published his Liber de Ludo Alea, a book
on games of chance, in 1526. In it, he shows knowledge of independent events and the
multiplication rule.

The Dutchman Christian Huygens (1629-1695) wrote De Ludo Aleae in 1657. In
this book, he considered problems dealing with the probabilities associated with drawing
colored balls from an urn.

Bernoulli's Ars Conjectandi, published posthumously in 1713, included informa-
tion on permutations and combinations, work on elementary nrobabilitv. and the law of

Jacob Bernoulli large numbers. With the work of Bernoulli, one sees the binomial theorem being used to



412 Chapter 7 Counting Techniques

compute binomial-based probabilities. This work was extended by Pierre Simon Laplace
(1749-1827) in Essai Philosoptnque sur les Probabilites in 1814. Laplace's work gave
special attention to the applications of probability to demography and other social science
problems.

Abraham De Moivre is cred ited with the statement that the probability of a compound
event is the product of the probabi lities of its components. He also presented an analytical
version of the principle of incl usio -exclusion in his 1718 work on probability, the Doctrine
of Chances. However, the modern version of the principle of inclusion-exclusion is usually
credited to the English/American mathematician James Joseph Sylvester (1814-1897)
[86, 87].

SUPPLEMENTARY EXERCISES 1r*1

Evaluate each of the expressions in Exercises 1-8.

1. C(9, 7) 2. P(8, 5) 3. P(9, 4) 4. C(10, 6)

5. (x - 1)6 6. (x + 2y)7  7. (2x + 3y)5  8. (5x - 2y)4

9. What is the successor of (8, 2, 3, 7, 6, 5, 4, 1) in the lexicographic ordering of the permutations of
1, 2, 3,4, 5,6,7, 8?

10. What is the successor of {1, 3, 6, 7, 81 in the lexicographic ordering of the 5-combinations of
(I, 2, 3, 4, 5, 6, 7, 81?

11. The first nine numbers in the n = 17 row of Pascal's triangle are 1, 17, 136, 680, 2380, 6188, 12376, 19448,
and 24310. What are the remaining numbers in this row of Pascal's triangle?

12. Use your answer to Exercise 11 to determine the coeff cient of x 1 2 in the binomial expansion of (x -2)17.

13. Use your answer to Exercise 11 to evaluate C(18. 12).

14. For a town's annual Easter egg hunt, 15 dozen eggs were hidden. There were 6 gold eggs, 30 pink eggs, 30
green eggs, 36 blue eggs, 36 yellow eggs, and 42 purple eggs. How many eggs must a child find in order to be
assured of having at least 3 of the same color?

15. The snack bar at a movie theatre sells 5 different sizes of popcorn, 12 different candy bars, and 4 different
beverages. In how many different ways can one snacks be selected?

16. A woman has 6 different pairs of slacks, 8 different blouses, 5 different pairs of shoes, and 3 different purses.
How many outfits consisting of one pair of slacks, on- blouse, one pair of shoes, and one purse can she create?

17. A woman has 6 different pairs of slacks, 8 different blouses, 5 different pairs of shoes, and 3 different purses.
Suppose that an outfit consists of one pair of slacks, cne blouse, one pair of shoes, and may or may not include
a purse. How many outfits can the woman create?

18. How many integers between 1500 and 8000 inclusivee) contain no repeated digits?

19. A pianist participating in a Chopin competition has decided to perform 5 of the 14 Chopin waltzes. How many
different programs are possible consisting of 5 waltzes played in a certain order?

20. How many ways are there to select a subcommittee of 5 members from among a committee of 12?

21. If two distinct integers are chosen from among the numbers 1, 2, ... , 60, what is the probability that their sum
is even?
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22. A committee of 4 is to be chosen at random from among 5 women and 6 men. What is the probability that the
committee will contain at least 3 women?

23. In a literature class of 12 graduate students, the instructor will choose 3 students to analyze Howard's End, 4
other students to analyze Room with a View, and the remaining 5 students to analyze A Passage to India. In
how many different ways can the students be chosen?

24. How many nonnegative integer solutions are there to x + y + z = 15?

25. How many arrangements are there of all the letters in the word "rearrangement"?

26. If an arrangement of all the letters in the word "rearrangement" is chosen at random, what is the probability
that all the r's are adjacent?

27. How many ways are there to select 4 novels from a list of 16 novels to be read for a literature class?

28. Nine athletes are entered in the conference high jump competition. In how many different ways can the gold,
silver, and bronze medals be awarded?

29. A college student needs to choose one more course to complete next semester's schedule. She is considering 4
business courses, 7 physical education courses, and 3 economics courses. How many different courses can she
select?

30. Suppose that 8 people raise their glasses in a toast. If every person clinks glasses exactly once with everyone
else, how many clinks will there be?

31. Suppose that the digits 1-7 are to be used without repetition to make five-digit numbers.

(a) How many different five-digit integers can be made?
(b) What is the probability that if one of these numbers is chosen at random, the number begins with 6?
(c) What is the probability that if one of these numbers is chosen at random, the number contains both the

digits 1 and 2?

32. If a die is rolled six times, what is the probability of rolling two 3's, three 4's, and one 5?

33. A newly formed consumer action group has 30 members. In how many ways can the group elect

(a) a president, vice-president, secretary, and treasurer (all different)?
(b) an executive committee consisting of 5 members?

34. A bakery sells 8 varieties of bagels. How many ways are there to select a dozen bagels if we must choose at
least one of each type?

35. A university's alumni service award can be given to at most 5 persons per year. This year there are 6 nominees
from which the recipients will be chosen. In how many different ways can the recipients be selected?

36. A candy company has an unlimited supply of cherry, lime, licorice, and orange gumdrops. Each box of gumdrops
contains 15 gumdrops, with at least 3 of each flavor. How many different boxes are possible?

37. If 10 different numbers are chosen from among the integers 1,2, ... ,40, what is the probability that no two of
the numbers are adjacent?

38. How many different assortments of two dozen cupcakes can be purchased if there are six different types of
cupcakes from which to choose?

39. How many different assortments of two dozen cupcakes can be purchased if there are six different types of
cupcakes from which to choose and we must choose at least two cupcakes of each type?

40. In Bogart's restaurant, the entrees include prime rib, filet mignon, ribeye steak, scallops, and a fish-of-the-
day. Each dinner is served with salad and a vegetable. Customers may choose from 4 salad dressings and 5
vegetables, except that the seafood dishes are served with wild rice instead of the choice of a vegetable. In how
many different ways can a dinner be ordered?
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41. What is the probability that a randomly chosen intbger between 10,000 and 99,999 (inclusive) contains a
zero?

42. What is the probability that a randomly chosen list of . letters contains 3 different consonants and 2 different
vowels? (Regard "y" as a consonant.)

43. In how many distinguishable ways can 4 identical algebra books, 6 identical geometry books, 3 identical
calculus books, and 5 identical discrete math books s e arranged on a shelf?

44. A shish kebab is to be made by placing on a skewer a piece of beef followed by 7 vegetables, each of which
is either a mushroom, a green pepper, or an onion. How many different shish kebabs are possible if at least 2
vegetables of each type must be used?

45. Sixteen subjects are to be used in a test of 3 exper mental drugs. Each experimental drug will be given
to 4 subjects, and no subject will receive more than one drug. The 4 subjects who are not given an ex-
perimental drug will be given a placebo. In how many different ways can the drugs be assigned to the
subjects?

46. The 12 guests of honor at an awards banquet are to be given corsages. Each guest of honor can choose the
color: pink, red, yellow, or white. How many corsage orders to the florist are possible?

47. Fifteen geraniums are to be planted in a row. There are 4 red geraniums, 6 white geraniums, and 5 pink geraniums.
Assuming that the plants are indistinguishable except for color, in how many distinguishable arrangements can
the flowers be planted?

48. Let S be a 6-element subset of {1, 2, ... , 91. Show that S must contain a pair of elements with sum 10.

49. Can the integers 1, 2, ... , 12 be placed around a circle so that the sum of 5 consecutive numbers never exceeds
32?

50. How many nonnegative integer solutions are there to the equation

XI + X2 + A3 + X4 = 28

with l < 8,x2 < 6,x3 < 12, andX4 < 9?

51. A pinochle deck consists of 48 cards, including two each of the aces of spades, hearts, diamonds, and clubs.
What is the probability that a random 12-card pinochle hand contains at least one ace of each suit?

52. In how many ways can n married couples be seated in a row of 2n chairs with no husband seated beside his wife?

53. Give a combinatorial proof that C(n, k) < 2n for 0 < 2 < n.

54. Prove that the largest entry in row n of Pascal's triangle exceeds (1 .5)f for n > 4.

55. Evaluate C(2, 2) + C(3, 2) + - + C(n, 2), and verify) your answer by mathematical induction.

56. If (xI + x2 + .-. + Xk)' is expanded and like terms are combined, how many terms will there be in the answer?

57. Prove the multinomial theorem: For any positive integers k and n,

(Xl +X2+ + Xk) = a nx ! n2! ... xl X Xf2 k

where the sum is taken over all nonnegative solutions of the equation nI + n2 + + nk = n.

58. Let s, = C(n, 0) + C(n -1, 1) + C(n - 2, 2) + l . -+ C(n - r, r), where r denotes the greatest integer less
than or equal to n

(a) What pattern does s, represent in Pascal's triangle?
(b) Formulate a conjecture about the value of Sn for all nonnegative integers n.
(c) Prove the conjecture made in part (b).
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59. To each subset of { 1, 2, . . ., n }, assign one of n possible colors. Show that no matter how the colors are assigned,
there are distinct sets A and B such that the four sets A, B, A U B, and A n B are all assigned the same color.
Show that the conclusion need not be true if there are n + I colors available.

60. Complete the following chart giving the number of distributions of n balls into m distinguishable urns in the
8 cases indicated. In 6 of the 8 cases, whether the answer is zero or nonzero depends on m > n, m = n, or
m < n. Note that each of the n balls must be put into some urn.

More than One Number of Distributions

Are the Balls Ball per Urn May Urns of n Balls into m

Distinguishable? Allowed? Be Empty? Distinguishable Urns

Yes Yes Yes

Yes Yes No

Yes No Yes

Yes No No

No Yes Yes

No Yes No

No No Yes

No No No

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given integers n and r such that 0 < r < n, compute the values of P(n. r) and C(n, r).

2. Given a nonnegative integer n, compute the numbers in rows 0, 1, . . ., n of Pascal's triangle.

3. Given positive integers k and n, list all the nonnegative integer solutions to the equation xi + x2 + + Xk = n.

4. Given a positive integer n, determine the probability that in a random selection of n people, no two have the
same birthday. Assume that no one was born on February 29.

5. Given a positive integer n, list all the derangements of the integers 1, 2, . . ., n. (See Section 7.6 for the definition
of a derangement.)

6. Given a positive integer n, use the sieve of Eratosthenes to determine all the primes less than or equal to n. (See
Exercise 17 in Section 7.6.)

7. Given positive integers k and n, compute S(n, k), the Stirling number of the second kind. (See Exercise 33 in
Section 7.6.)

8. Given a positive integer n, list all the permutations of 1, 2, . . ., n in lexicographic order.

9. Given positive integers r and n, list all the r -element subsets of { 1, 2, . . ., n} in lexicographic order.

10. Given positive integers r and n, list all the r-permutations of 1, 2, .. ., n in lexicographic order.

11. Given positive integers r and n, print all possible ordered lists of r items selected from the set (I, 2, . . ., nI if
repetition of items is allowed.

12. Given positive integers r and n, print all possible unordered lists of r items selected from the set {(, 2, . nI
if repetition of items is allowed.
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Recurrence Relations and
Generating Functions
8.1 Recurrence Relations

8.2 The Method of Iteration

X. i Linear Litterence Equations with Uonstant t-oetncients
8.4* Analyzing the Efficiency of Algorithms with Recurrence Relations

8.5 Counting with Generating Functions

8.6 The Algebra of Generating Functions

In preceding chapters, we have seen several situations in which we wanted to
associate with a set of objects a number such as the number of subsets of the set
or the number of ways to arrange the objects in the set. Sometimes this number
can be related to the corresponding number for a smaller set. In Section 2.7, for
example, we saw that the number of subsets of a set with n elements is twice
the number of subsets of a set with n - 1 elements. Often such a relationship
can be exploited to derive a formula for the number we are seeking. Techniques
for doing so will be explored in this chapter.

8.1 + RECURRENCE RELATIONS

An infinite ordered list is called a sequence. The individual items in the list are
called terms of the sequence. For example,

0!, 1!, 2!,...-n!, .

is a sequence with first term 0!, second term 1!, and so forth. In this case, the nth
term of the sequence is defined explicitly as a function of n, namely (n - 1)!.

In this chapter we will study sequences where a general term is defined as
a function of preceding terms. An equation relating a general term to terms that
precede it is called a recurrence relation. In Section 2.6 we saw that n! could be
defined recursively by specifying that

O! = 1 and n! = n(n-1)! for n > 1.

417
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In this definition, the equation

n! ==n(n -1)! forn > 1

is a recurrence relation. It defines each term of the sequence of factorials as a
function of the immediately preceding term.

In order to determine the values of the terms in a recursively defined sequence,
we must know the values of a specific set of terms in the sequence, usually the
beginning terms. The assignment of values for these terms gives a set of initial
conditions for the sequence. In the case of the factorials, there is a single initial
condition, which is that 0! = 1. Knowing this value, we can then compute values
for the other terms in the sequence from the recurrence relation. For example,

= 1(0!) 1 1 = 1,

2! = 2(1!) = 2.1 = 2,

3! = 3(2!) = 3. 2 = 6,

4! 4(3!) = 4 6 = 24,

and so on.
Another example of a sequence that is defined by a recurrence relation is

the sequence of Fibonacci numbers. Recall from Section 2.6 that the Fibonacci
numbers satisfy the recurrence relation

F, = F'n- 1 + Fn-2 for n > 3.

Because Fn is defined as a function of the two preceding terms, we must know two
consecutive terms of the sequence in order to compute subsequent ones. For the
Fibonacci numbers, the initial conditions are F1 = 1 and F2 = 1. Note that there
are sequences other than the Fibonacci numbers that satisfy the same recurrence
relation, for example,

3,47, 11, 18,29,47,76....

Here each term after the second is the sum of the two preceding terms, and so the
sequence is completely detennined by the initial conditions s, = 3 and s2 = 4.

In this section we will examine other situations in which recurrence relations
occur and illustrate how they c an be used to solve problems involving counting.

+ Example 8.1

Let us consider from a recursive point of view the question of determining the
number of edges e, in the complete graph IC, with n vertices. We begin by
considering how many new edges need to be drawn to obtain K, from IC, - I. The
addition of one new vertex requires the addition of n - I new edges, one to each
of the vertices in IC, - . (See Figure 8.1(a) for the case n = 4 and Figure 8.1(b)
for the case n = 5.) Thus we see that the number of edges in ICn satisfies the
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recurrence relation

en = en-l + (n -1) for n > 2.

In this equation, the definition of en involves only the preceding term en-l,
and so we need only one value of en to use the recurrence relation. Since the
complete graph with 1 vertex has no edges, we see that el = 0. This is the initial
condition for this sequence. +

(a)

(b)

FIGURE 8.1

+ Example 8.2

The Towers of Hanoi game is played with a set of disks of graduated size with
holes in their centers and a playing board having three spokes for holding the
disks. (See Figure 8.2.) The object of the game is to transfer all the disks from
spoke A to spoke C by moving one disk at a time without placing a larger disk
on top of a smaller one. What is the minimum number of moves required when
there are n disks?

FIGURE 8.2

To answer the question, we will formulate a recurrence relation for mn, the
minimum number of moves to transfer n disks from one spoke to another. This
will require expressing m, in terms of previous terms mi. It is easy to see that
the most efficient procedure for winning the game with n > 2 disks is as follows.
(See Figure 8.3.)
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A1 B C

Step I Posit o l after moving n - I disks from A to B

It B C

Step 2 Pos itio a Ifter moving the bottom disk from A to C

A B C

Step 3 Positi o l after moving n - I disks from B to C

FIGURE 8.3

(1) Move the smallest n - I disks (in accordance with the rules) as efficiently
as possible from spoke A to spoke B.

(2) Move the largest disk from spoke A to spoke C.
(3) Move the smallest n - L disks (in accordance with the rules) as efficiently

as possible from spoke B to spoke C.

Since step 1 requires moving n -1 disks from one spoke to another, the
minimum number of moves recluired in step 1 is just mn,-. It then takes one move
to accomplish step 2, and another Mn-1 moves to accomplish step 3. This analysis
produces the recurrence re[at icn

fn1r = Mn-1 + 1 + Mn-1,
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which simplifies to the form

mn = 2m-_ 1±1 for n > 2.

Again we need to know one value of mn in order to use this recurrence
relation. Because only one move is required to win a game with 1 disk, the initial
condition for this sequence is ml = 1. By using the recurrence relation and the
initial condition, we can determine the number of moves required for any desired
number of disks. For example,

ml = 1,

M2 = 2(1) + 1 = 3
M3 = 2(3) + 1 = 7,
m4 = 2(7) + I = 15, and
m5 = 2(15) + 1 = 31.

In Section 8.2 we will obtain an explicit formula that expresses m, in terms
of n. +

Example 8.3

A carpenter needs to cover n consecutive 1-foot gaps between the centers of
successive roof rafters with 1-foot and 2-foot boards, as shown in Figure 8.4. In
how many ways can the carpenter complete his task?

FIGURE 8.4

Our approach will be to determine a recurrence relation and initial conditions
for Sn, the number of ways n gaps can be covered. This will require expressing Sn

as a function of previous terms si. Note that in order to cover n gaps, the carpenter
must finish with either a 1-foot board or a 2-foot board. If the carpenter finishes
with a 1-foot board, then he must have covered n - 1 gaps prior to using the last
board. There are Sn, I ways to cover these gaps. On the other hand, if the carpenter
finishes with a 2-foot board, then he must have covered n - 2 gaps prior to using
the last board. There are S,-2 ways to cover these gaps. Since exactly one of these
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two cases must occur, the addition principle gives

Sn = S.]- + Sn 2 for n > 3.

To use this recurrence relation, we need to know two consecutive terms of
the sequence. Clearly the only way to cover a single 1-foot gap is with a single
1-foot board; so s1 = 1. However, there are two ways to cover two 1-foot gaps,
with a single 2-foot board or two 1-foot boards. Thus S2 = 2. The number Sn of
ways for the carpenter to complete his task is therefore given by the recurrence
relation

sl = 4-, + Sn-2 for n > 3

subject to the initial conditions si = 1 and S2 = 2. Note the similarity between
the numbers Sn and the Fibonacci numbers Fn.

e Example 8.4

Recall from Section 7.6 that a permutation of the integers 1 through n in which no
integer occupies its natural position is called a derangement. By enumerating all
permutations of 1, 2, . . ., n, we find that there are no derangements of 1, there is
one derangement of 1, 2 (namely 2, 1), and there are two derangements of 1, 2, 3
(namely 2, 3, 1 and 3, 1, 2). We have seen in Example 7.44 that the number D, of
derangements of the integers 1, 2, ... , n can be computed by using the principle
of inclusion-exclusion. In this example we will use a recurrence relation to count
derangements. The comments above show that D1 = 0, D2 = 1, and D3 = 2.

To illustrate the general technique, we will list the derangements of the inte-
gers 1, 2, 3, 4 that begin with 2. These derangements are of two types. The first
type is a derangement that ha; 1 in position 2. Here the situation is as shown
below.

Prohibited d value: 1 2 3 4

Derangement: 2 1 ? ?

It is easy to check that there -s exactly one derangement of this type, namely
2, 1, 4, 3. Notice that comple ing the derangement

2 1 ? ?

amounts to deranging the integers 3 and 4, and there is D2 = 1 derangement of
two integers.

The second type of derangement of 1, 2, 3, 4 that begins with 2 has 2 in
position 1 and 1 not in position 2. Note that in this case we have two restrictions
on the second position; neither 1 nor 2 can occur in the second position. But since
2 is in the first position, it cannot also occur in the second position. Thus the only
restriction with which we must be concerned is that 1 not occur in the second
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position. Hence the situation can be represented by the diagram below.

Prohibited value: 1 1 3 4

Derangement: 2 ? ? ?

In this case, it is easy to check that there are exactly two derangements of this
type, namely 2, 3, 4, 1 and 2, 4, 1, 3. Note that since 1 cannot occur in the second
position, 3 cannot occur in the third position, and 4 cannot occur in the fourth
position, completing the derangement

2 ? ? ?

amounts to deranging the integers 1, 3, 4, and there are D3 = 2 derangements of
three integers. Thus there are, in all,

D2 + D3 = 1 + 2 = 3

derangements of 1, 2, 3, 4 beginning with 2.
In the general case, a derangement of 1, 2, . . ., n must begin with k, where

k = 2, 3, .. - n. For n > 3, there are two types, one in which integer 1 is moved
to position k and one in which integer 1 is not moved to position k. If integer 1 is
moved to position k, the situation is as shown below.

Prohibitedvalue: 1 2 ... k-I k k+ .. . n

Derangement: k ? ... ? 1 ? ... ?

Here the remaining n - 2 positions can be filled with the integers other than 1 and
k to form a derangement in Dn-2 ways. In the second type of derangement, we
have the integer k in the first position and cannot have the integer 1 in position k.
Since the integer k is in the first position, it cannot also be in the kth position, and
so it is sufficient to require that the kth position not be filled by 1. We depict this
situation as follows

Prohibited value: 1 2 ... k-I I k + I ... n

Derangement: k ? ... ? ? ? ... ?

Thus we must place the n - 1 integers other than k into n - 1 positions with no
integer in a prohibited location. There are Dn-I ways to do this.

Thus by the addition principle there are

Dn-2 + Dn-1

derangements of the integers 1 through n in which integer k is moved to position 1.
But there are n - 1 possible values of k (namely 2, 3, .. ., n), and so Dn must
satisfy the recurrence relation

Dn = (n-1)(Dn-2 + D.-,) for n > 3.

To use this recurrence relation, we need two consecutive values of Dn Since we
have already seen that DI = 0 and D2 = 1, these are the initial conditions. In the
next section, we will obtain an explicit formula giving Dn as a function of n. +



424 Chapter 8 Recurrence Relations and Generating Fun( tisns

o Example 8.5

A stack is an important data structure in computer science. It stores data subject
to the restriction that all insertions and deletions take place at one end of the
stack (called the top). As a consequence of this restriction, the last item inserted
into the stack must be the first item deleted, and so a stack is an example of a
last-in-first-out structure.

We will insert all of the integers 1, 2, . . ., n into a stack (in sequence) and
count the possible sequences in which they can leave the stack. Note that each
integer from 1 through n enters and leaves the stack exactly once. We will denote
that integer k enters the stack by writing k and denote that integer k leaves the
stack by writing k. If n = 1, there is only one possible sequence, namely 1, 1. For
n = 2 there are two possibilities.

Order leaving the stack

(a) 1,2,2,1 2,1

(b) 1,1,2, 2 1, 2

Thus if n = 2, there are two possible sequences in which the integers 1, 2 can
leave a stack. Now consider the case n = 3. There are only five possibilities for
inserting the integers 1, 2, 3 into a stack and deleting them from it.

Order leaving the stack

(a) 1. 2, 3,3,2,1 3,2,1

(b) 1, 2,2.3,3,1 2,3,1

(c) 1. 2, 2,1,3,3 2,1,3

(d) 1, 1,2.3,3,2 1,3,2

(e) 1 1, 2,2, 3,3 1,2,3

Thus of the six possible permutations of the integers 1, 2, 3, only five can result
from the insertion and deletion of 1, 2, 3 using a stack.

We will count the number cn of permutations of 1, 2, ... , n that can result
from the use of a stack in this manner. (Thus cn is just the number of different
ways that the integers 1 through n can leave a stack if they enter it in sequence.)
The preceding paragraph shows that

cl = 1, c2 =2, c3 =5.

It is convenient also to define co = 1. For an arbitrary positive integer n, we
consider when the integer 1 i, deleted from the stack. If it is the first integer
deleted from the stack, then the sequence of operations begins:

1, 1, 2, ....

The number of permutations that can result from such a sequence of operations
is just the number of possible ways that 2, 3, . . ., n can leave a stack if they enter
it in sequence. This number is c,- 1 = COCn-I.
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If 1 is the second integer deleted from the stack, then the first integer deleted
from the stack must be 2. Thus the sequence of operations must begin:

1,2,2, 1,3,...

The number of permutations that can result from such a sequence of operations
is ClCn-2*

If 1 is the third integer deleted from the stack, then the first two integers
deleted from the stack must be 2 and 3. Thus 1 must enter the stack, 2 and 3
must enter and leave the stack in some sequence, then 1 must leave, and finally
4, 5, ... , n must enter and leave the stack in some sequence. The number of
permutations that can result from such a sequence of operations is C2Cn-3.

In general, suppose that I is the kth integer deleted from the stack. Then
the k - 1 integers 2, 3, . . ., k must enter and leave the stack in some sequence
before deleting integer 1, and the n - k integers k + 1, k + 2, . . ., n must enter
and leave the stack in some sequence after deleting integer 1. The multiplication
principle shows that the number of ways to perform these two operations is
Ck- I Cn -k. Thus the addition principle gives

Cn = COCn-C + CICn-2 + ' ' ' + Cn-lCO for n > 1.

Since we know that co = 1, the recurrence relation above can be used to
compute subsequent values of the sequence. For example,

Cl = COcO = 1 1 = 1,

C2 = coaC + clCO = 1 I + I I = 2,
C3 = COC2 + CC 1 + C2 CO = 1 2 + 1 1 + 2 1 = 5,
C4 = COC3 + CI C2 + C2 CI + C3 Co = 1 5 + 1 2 + 2* 1 + 5 . 1 = 14,

C5 = COC4 + CIC3 + C2C2 + C3CI + C4CO

= 1 . 14 + 1 . 5 + 2 . 2 + 5 1 + 14. 1 = 42,

and so forth.
The numbers Cn are called Catalan numbers after Eugene Charles Catalan

(1814-1894), who showed that they represent the number of ways in which n
pairs of parentheses can be inserted into the expression

XIX 2 ... Xn+1

to group the factors into n products of pairs of numbers. For example, the C3 = 5
different groupings of xix2 X3x 4 into three products of pairs of numbers are

((X1 X2 )X3 )X4 , Xl(X 2 (X3 X4 )), (X1 (X 2X 3 ))X4 ,

xI((x2x3)x 4), and (xIx2)(x3x4).

The Catalan numbers occur in several basic problems of computer science. +

The preceding examples have shown several situations in which recurrence
relations arise in counting problems. Recurrence relations are also invaluable in
examining change over time in discrete settings, as shown in the next example.
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Example 8.6

A grain elevator company rece yves 200 tons of corn per week from farmers once
harvest starts. The elevator o-perators plan to ship out 30% of the corn on hand
each week once the harvest season begins. If the company has 600 tons of corn on
hand at the beginning of harvest, what recurrence relation describes the amount
of corn on hand at the end of each week throughout the harvest season?

If g, represents the number of tons of corn on hand at the end of week n of the
harvest season, we can express the situation described in the preceding paragraph
by the recurrence relation

gn = gn-It -0.30gn-I + 200 for n > I

with the initial condition go 600, that is,

g, = 0.70g, 1 -- 200 for n > 1 and go = 600.

The 0.70 coefficient of gn-I reflects that 70% of the corn on hand is not shipped
during the week, and the constant term 200 represents the amount of new corn
brought to the elevator within the week. +

Recurrence relations are also often used to study the current or projected
status of financial accounts.

Example 8.7

The Thompsons are purchasing a new house costing $200,000 with a down pay-
ment of $25,000 and a 30-year mortgage. Interest on the unpaid balance of the
mortgage is to be compounded at the monthly rate of 1%, and the monthly pay-
ments will be $1800. How mruch will the Thompsons owe after n months of
payments?

Let bn denote the balance (: n dollars) that will be owed on the mortgage after
n months of payments. We will obtain a recurrence relation expressing bn in terms
of previous balances. Note thai the balance owed after n months will equal the
balance owed after n - I mornhs plus the monthly interest minus one monthly
payment. Symbolically, we haxe

b, == b,,-l+ .0lbn- -1800,

which simplifies to the form

bn = l.0]bn - 1800 forn > 1.

Since this equation expresses bn in terms of bn-I only, we need just one term to
use this recurrence relation. Now the amount owed initially is the purchase price
minus the down payment, and so the initial condition is b0 = 175,000. +
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Recurrence relations, when applied to the study of change as shown in
Examples 8.6 and 8.7, are sometimes referred to as discrete dynamical sys-
tems. They are the discrete analogs of the differential equations used to study
change in continuous settings.

The examples in this section have shown several situations in which recur-
rence relations arise. Other examples will be considered throughout this chapter.
When a sequence is defined by a recurrence relation, it is sometimes possible
to find an explicit formula that expresses the general term as a function of n.
Sections 8.2 and 8.3 will be devoted primarily to this subject.

EXERCISES 8.1

In Exercises 1-12 determine S5 if so, sI, S2, . . . is a sequence satisfying the given recurrence relation and initial
conditions.

1. Sn = 3Sn-I -9 forn > 1, so = 5

2. Sn =-Sn-1 +n 2  forn > 1,so=3
3. s, = 2sn-1 + 3n for n > 1, so= 5
4 . sn = 5s 2- 2 n for n > I, so 1
5. s- = 2sn-1 + Sn-2 for n > 2, so = 2, s1 = -3
6. s, = 5sn- - 3s,-2 for n > 2, so =-1, sI = -2
7. S, = -Sn-I + nsn-2 - I for n > 2, so = 3, s1 = 4
8. s, = 3Sn-I -2ns-2 + 2n for n > 2, s 0 = 2, s= 4

9. S. = 2s,_I + Sn-2 -S,-3 for n > 3, so = 2, s = -1, S2 = 4
10. S, = Sn-I -3Sn-

2 + 2Sn-3 for n > 3, s0 = 2, s =3, s2 = 4

11. Sn = -s,-I + 2s,-2 + Sn-3 + n for n > 3, so = 1, sI = 2, s2 -5
12. Sn = Sn-I - 4sn-2 + 3 sn-3 + (_ )n for n > 3, so = 3, sI = 2, S2 = 4

13. For the 1995-96 academic year, tuition at Stanford University was $28,000 and had increased by at least 5.25%
for each of the preceding 15 years. Assuming that the tuition at Stanford increases by 5.25% per year for the
indefinite future, write a recurrence relation and initial conditions for t, the cost of tuition at Stanford n years
after 1995.

14. Individual membership fees at the Evergreen Tennis Club were $50 in 1970 and have increased by $2 per year
since then. Write a recurrence relation and initial conditions for Mn, the membership fee n years after 1970.

15. A restaurant chain had 24 franchises in 1975 and has opened 6 new franchises each year since then. Assuming
that this trend continues indefinitely, write a recurrence relation and initial conditions for r,, the number of
restaurant franchises n years after 1975.

16. A bank pays 6% interest compounded annually on its passbook savings accounts. Suppose that you deposit
$800 in one of these accounts and make no further deposits or withdrawals. Write a recurrence relation and
initial conditions for bn, the balance of the account after n years.

17. A consumer purchased items costing $280 with a department store credit card that charges 1.5% interest
per month compounded monthly. Write a recurrence relation and initial conditions for b, the balance of the
consumer's account after n months if no further charges occur and the minimum monthly payment of $25 is
made.



428 Chapter 8 Recurrence Relations and Generating F' nations

18. Tom, a new college graduate, has just been offered a jot) paying $24,000 in the first year. Each year thereafter,
the salary will increase by $1000 plus a 5% cost of liv ng adjustment. Write a recurrence relation and initial
conditions for s, the amount of Tom's salary after n wears of employment.

19. The process for cleaning up waste in a nuclear reactor core room eliminates 85% of the waste present in the
area. If there is 1.7 kg of waste in the room at the begi ming of the monitoring period and 2 kg of additional
waste are generated each week, determine a recurrence relation and initial conditions describing the amount
w, of waste in the core room at the end of week n of the monitoring period.

20. The jabby bird is in danger of being placed on the endangered species list, as there are only 975 of the birds
known to be in existence. A bird is placed on the list "hen the known population reaches 100. If 27% of the
jabby bird population either dies or is taken by a peacher each year and only 5 new jabby birds are born,
write a recurrence relation and initial conditions describing the number jn of jabby birds at the end of n
years.

21. Each day you buy exactly one of the following items: tape (costing $1), a ruler (costing $1), pens (costing $2),
pencils (costing $2), paper (costing $2), or a loose-leaF binder (costing $3). Write a recurrence relation and
initial conditions for the number s, of different sequences in which you can spend exactly n dollars (n > 1).

22. Suppose that you have a large supply of 2¢, 3¢, and .5¢ stamps. Write a recurrence relation and initial conditions
for the number s. of different ways in which no worth of postage can be attached to an envelope if the order in
which the stamps are attached matters. (Thus a 2¢ stamp followed by a 3¢ stamp is different from a 3¢ stamp
followed by a 2¢ stamp.)

23. Write a recurrence relation and initial conditions for an, the number of arrangements of the integers 1, 2, . n.

24. Write a recurrence relation and initial conditions for ss, the number of subsets of a set with n elements.

25. Write a recurrence relation and initial conditions for s, the number of two-element subsets of a set with n
elements.

26. Write a recurrence relation and initial conditions for the number s, of n-bit strings having no two consecutive
zeros. Compute s6.

27. Write a recurrence relation and initial conditions for the number s, of sequences of nickels, dimes, and quarters
that can be inserted into a vending machine to purchase a soft drink costing 5n cents. How many sequences are
there for a drink costing 50¢?

28. For n > 2, a 6 x n checkerboard can be covered by L-shaped pieces of the type shown in Figure 2.20. Write
a recurrence relation and initial conditions for Pn the number of L-shaped pieces needed to cover a 6 x n
checkerboard.

29. Write a recurrence relation and initial conditions for the number cn of different ways to group 2n people into
pairs to play n chess games.

30. Let p, denote the number of permutations of 1, 2, . , n in which each integer either occupies its natural
position or is adjacent to its natural position. Write a recurrence relation and initial conditions for Pn

31. For some positive integer n, draw n circles in the Euclidean plane such that every pair of circles intersects at
exactly two points and no three circles have a point in common. Write a recurrence relation and initial conditions
for ri, the number of regions into which these circles Divide the plane.

32. Suppose that you have an unlimited supply of red, white, blue, green, and gold poker chips, which are indistin-
guishable except for color. Write a recurrence relation and initial conditions for the number Sn of ways to stack
n chips with no two consecutive red chips.

33. Write a recurrence relation and initial conditions for thme number sn of n-bit strings having no three consecutive
zeros. Compute s5 .

34. Write a recurrence relation and initial conditions for st, the number of three-element subsets of a set with n
elements.
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35. Suppose that 2n points are marked on a circle and labeled 1, 2, ... , 2n. Write a recurrence relation and initial
conditions for the number c, of ways to draw n nonintersecting chords joining two of these points.

36. Write a recurrence relation and initial conditions for s,, the number of squares of any size that can be formed
using the blocks on an n x n checkerboard.

37. Write a recurrence relation and initial conditions for the number s, of n-bit strings that do not contain the
pattern 010. Then compute s6.

38. Write a recurrence relation and initial conditions for the number s, of n-bit strings that contain neither the
pattern 1 000 nor the pattern 00 1.

8.2 + TH-E METHOD OF ITERATION

In Example 8.2 we saw that the minimum number of moves required to shift
n disks from one spoke to another in the Towers of Hanoi game satisfies the
recurrence relation

m, = 2m,_1 + 1 for n > 2

and the initial condition ml = 1. From this information, we can determine the
value of m, for any positive integer n. For example, the first few terms of the
sequence defined by these conditions are

ml = 1,

M2= 2(1) + 1 = 2 + 1 = 3,

M3 = 2(3) + 1 = 6 + 1 = 7,

m4 = 2(7) + I = 14 + 1 = 15, and

m5 = 2(15) + 1 = 30 + I = 31.

We can continue evaluating terms of the sequence in this manner, and so we can
eventually determine the value of any particular term. This process can be quite
tedious, however, if we need to evaluate m, when n is large. In Example 8.7, for
instance, we might need to know the unpaid balance of the mortgage after 20 years
(240 months), which would require us to evaluate b240. Although straightforward,
this calculation would be quite time-consuming if we were evaluating the terms
by hand in this manner.

We see, therefore, that it is often convenient to have a formula for computing
the general term of a sequence defined by a recurrence relation without needing
to calculate all of the preceding terms. A simple method that can be used to try to
find such a formula is to start with the initial conditions and compute successive
terms of the sequence, as illustrated above. If a pattern can be found, we can then
guess an explicit formula for the general term and try to prove it by mathematical
induction. This procedure is called the method of iteration.
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We will use the method of iteration to find an explicit formula for the general
term of the sequence satisfying the Towers of Hanoi recurrence

m,,=1 m-1 + 1 for n > 2

with the initial condition mn == 1. We computed above the first few terms of
the sequence satisfying these conditions. Although it is possible to see a pattern
developing from these compilations, it is helpful to repeat these calculations
without simplifying the results to a numerical value.

ml = 1

M2 = 2(1) + 1 2 + 1

M3 = 2(2 +)-- 1 = 22 +2+ 1

m4 = 2(22 +2 H 1) + I = 23 + 22+ 2 + 1

M5 = 2(23 + 22 2 2 + 1) + 1 = 24 + 2' + 22 + 2 + 1

From these calculations, we can guess an explicit formula for m,:

Mn = 2 n 1+2n-2 + ... +22 +2+ 1.

By using a familiar algebraic identity (see Example 2.59)

1 + s -X2 ,, xn X - I1x-1

this formula can be expressed in an even more compact manner:

=2 1 = _2 1.

At this point, the formula obtained above is nothing more than an educated
guess. To verify that it does indeed give the correct values for mu, we must prove
by induction that the formula is correct. To do so, we must show that if a sequence
mI, M2 , M3, .... satisfies the recurrence relation

mn,, 2mIn + 1 for n > 2

and the initial condition m l = 1, then mn = 2n- 1 for all positive integers n.
Clearly the formula is correct for n = 1 because

21-- =I = =2- 1 =Imi.

Now we assume that the formula is correct for some nonnegative integer k, that
is, we assume that

Mk = 2 - 1.
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It remains to show that the formula is correct for k + 1. From the recurrence
relation, we know that

mk+l = 2 mk + 1.

Hence

mk+l =2(2k - 1) + 1

- 2k±1 - 2 + 1
2 - 1,

which proves the formula for k + 1. It follows from the principle of mathematical
induction that the formula

mn = 2n- 1

is correct for all positive integers n.
Certain formulas are very useful for simplifying the algebraic expressions

that arise when using the method of iteration. One of these is the identity

x~l- 11 X+2 + .,, + Xn =Xn

from Example 2.59. Another is the formula for the sum of the first n positive
integers

1+2+3+ + n(n

which was obtained in Exercise 11 of Section 2.6.

+ Example 8.8

In Example 8.1 we saw that the number en of edges in the complete graph ICn
satisfies the recurrence relation

en = en-l + (n-1) for n > 2
and the initial condition el = 0. We will use the method of iteration to obtain a
formula for en. To begin, we use the recurrence relation to compute several terms
of the sequence.

el = 0

e2 = 0 + 1

e3 = (O+1)+2

e4 = (0 + 1 + 2) + 3

e5 = (0 ± 1 + 2 + 3) + 4
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From these calculations, we conjecture that

en = O + I + 2 + - .+ (n -1

(n - I)n

2

n2 -n

2

To verify that the formula is correct, we again need a proof by induction to
show that if a sequence satisfies the recurrence relation

en =e + (n-1) for n > 2

and the initial condition el = C, then its terms are given by the formula

n2 _n

en 2

The formula is correct for n == 1 because

n2 - n 12 1
2 2

Assume that

k2 - k
ek = 2

for some k > 1. Then

ekil =ek + [(k + 1)- 1]

k2 - k

2
k2 - k 2k

2 2

(k2 + 2k + 1) - (k + 1)
2

(k+ 1)2 -(k+ 1)

2

Thus the formula is correct for k + 1. It now follows from the principle of math-
ematical induction that the fonnula is correct for all positive integers n. +

+ Example 8.9

Find a formula for pn, the number of ways to group 2n people into pairs.
We begin by finding a recurrence relation and initial conditions for p, In

order to group 2n people intc' pairs, we first select a person and find that person
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a partner. Since the partner can be taken to be any of the other 2n - 1 persons in
the original group, there are 2n - 1 ways to form this first pair. We now are left
with the problem of grouping the remaining 2n - 2 persons into pairs, and the
number of ways of doing this is Pn-1. Thus, by the multiplication principle, we
have

p, = (2n - )Pn-1 forn > 1.

Since two people can be paired in only one way, the initial condition is p1 = 1.
Let us use the method of iteration to find an explicit formula for Pn. Because

PI = I

P2 = 3(1)

P3 = 5(3)(1)

P4 = 7(5)(3)(1)

P5 = 9(7)(5)(3)(1),

it appears that

p, = (2n - 1)(2n -3)... (3)(1),

the product of the odd integers from 1 through 2n -1. This expression can be writ-
ten more compactly using factorial notation. Since the even integers are missing
from this product, we insert them into both the numerator and the denominator:

(2n- 1(2n- 3 .. (3(1) (2n)(2n - 1)(2n - 2)(2n -3) ... (3)(2)(1)
( ( ) (2n)(2n - 2)... (2)

(2n)!

(2)(n)(2)(n -1) .. (2)(1)

(2n)!

2n n!

Thus our conjecture is that

(2n)!
MN 2nn!

We must prove that this formula is correct for all positive integers n by
mathematical induction. For n = 1, the formula gives

(2n)! 2! 2

2nn! 21 1! 2

which is correct. Assume that

(2k)!
PK - 2kk!
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for some positive integer k. 'Then

Pk+1 = [2(k + 1)- 1]Pk

= (2k + 1) (2kk!
( )2kk!

(2k + 1)!

2kk!

2k+2 (2k+1)!

2(k + 1) 2kk!

(2k + 2)!

2k+1(k + 1)!'

proving the formula for k + 1. Thus the formula is correct for all positive integers
n by the principle of mathematical induction. +

The process for finding a formula for the general term of the sequence of
values associated with a recurrence relation is akin to finding the solution of a
differential equation in a continuous setting. For this reason, the formula express-
ing the relation is sometimes called a solution to the recurrence relation.

In our examples so far, we verified formulas for recurrence relations that
expressed Sn in terms of s1, -1 but no other si. When we want to verify a formula
for a recurrence relation that expresses sn in terms of si for i < n - 2, then the
strong principle of mathematical induction will be required.

Example 8.10

We will prove that if xn satisfies Xn = Xn 1 + 2xn-2 + 2n - 9 for n > 2 with the
initial conditions xo = 6 and x I = 0, then

Xn = 3(-1)' + 2n + 2+-n for n > 0.

It is easily checked that the formula is correct for n = 0 and n = 1. Assume that
the formula is correct for n =- 0, , .t , k, where k > 1. Then

Xk+l = Xk + 2 Xk-I + 2(k I ])-9

= [3 (-l )k + 2k+ 2 - A] + 2 [3 (-l )k-I + 2 k1 +2-(k- 1)]+2k 7

= - 3 (- 1 )k 1+ 2 k + 2-- k + 6(-l)k 1+ 2 (2 k 1 ) + 4 - 2(k- 1) + 2k-7

-3( - lIk-1 + 6(- I )k-I + 2 k+ 2 k + 2 -k + 4 + 2- 7

= 3 (- )k I + 2(2k) 2 ± -kkk- I

= 3 (- )k+l + 2k+1 - 2 -- (k + 1),

which verifies the formula tcr k + 1. It follows from the strong principle of
induction that the formula is correct for all nonnegative integers n. +
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There can be many formulas that agree with the beginning terms of a partic-
ular sequence. Here is a famous problem where it is easy to mistake the pattern of
numbers. It can be shown that for any positive integer n, it is possible to draw n
circles in the Euclidean plane such that every pair of circles intersects at exactly
two points and no three circles have a point in common. Moreover, for any con-
figuration of such circles, the number r, of regions into which these circles divide
the plane is the same. Let us determine a formula expressing r, as a function of n.

(a) r, = 1 (b) r, = 2

4

(c) r2 = 4

8

(d) r3 = 8

FIGURE 8.5

Figure 8.5 shows that ro = 1, r, = 2, r2 = 4, and r3 = 8. From these numbers
it is natural to conjecture that r, = 2' .However, the formula r, = 2" is not correct
because Figure 8.6 shows that r4 = 14. To obtain a correct formula, we must
discover a recurrence relation that relates the number of regions formed by n
circles to the number of regions formed by n - 1 circles.

14

FIGURE 8.6

8

FIGURE 8.7
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Suppose that we include a fourth circle with the three in Figure 8.5(d).
This new circle (the inner circle in Figure 8.7) does not subdivide either region
5 or region 8 in Figure 8.5(d). We see, however, that this circle intersects each
of the other three circles in two points each, and so the circle is subdivided into
2(3) = 6 arcs, each of which subdivides a region into two new regions. The arc
from A to B in Figure 8.7, for instance, subdivides region 3 in Figure 8.5(d) into
the two regions marked 3 in Figure 8.7. This same situation occurs in general:
If there are n - 1 > 1 circles satisfying the given conditions and another circle
is drawn so that every pair of circles intersects at exactly two points and no three
circles have a point in common, then the new circle forms 2(n - 1) new regions.
Hence we see that

r, == r,-r + 2(n - 1) for n > 2.

Note that this recurrence relation is not valid for n = 1. Hence in trying to find a
formula for rn, we cannot expect our formula to be valid for n = 0.

From this recurrence relation, we see that

r = 2

r2 = r1 + 2(1'i = 2 + 2(1)

r3 =r 2 +2(2'= 2+2(1)+2(2)

r4 = r3 + 2(3 = 2 + 2(1) + 2(2) + 2(3)

r 5 = r4 + 2(4 = 2 + 2(l) + 2(2) + 2(3) + 2(4).

From these calculations, the pattern appears to be

rn = 2[1 + 2 + + (n -)].

Using the formula for the sum of the first k positive integers,

I + .i+3 + .+ k k( 2 )'2

we can simplify the expression above to the form

rn = 2± +2- l) =2+(n- l)n =n2  n+2.

Thus we conjecture that on = n2 - n + 2 for n > 1. We will leave as an
exercise the verification of this formula by induction. Note that, as expected, the
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formula

r, = n2 - n + 2

that we obtained is valid only for n > 1.
It is instructive to see what would happen if we try to prove that the incorrect

formula rn = 2n satisfies the recurrence relation. Note that for n = 1 the formula
is correct because 21 = 2 = rl. The difficulty arises in the inductive step. Assume
that the formula is correct for some positive integer k, that is, assume that rk = 2
Then

rk+l = rk + 2k = 2 + 2k,

which is not equal to 2 k+I for every positive integer k. Since our induction
proof breaks down, we must conclude that the general term of the recurrence
relation

rn = r,-I + 2(n-1)

is not given by the formula rn = 2".
We will conclude this section by obtaining a formula for the number of

derangements of the integers 1 through n.

+ Example 8.11

In Example 8.4 we obtained the recurrence relation

Dn = (n-1 )(Dn-I + D,-2) for n > 3

and the initial conditions DI = 0 and D2 = 1 for the number Dn of derangements
of the integers 1, 2, . . . , n. It turns out that a sequence that satisfies this recurrence
relation must also satisfy the relation

Dn =nDn-Il + (-_I )n.

To see why, note first that

Dn-nD- = Dn-(n -l)Dn- -Dn-1

= (n-l)Dn-2 -D-,

= -[D-l-(n -l)Dn-2]
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It follows that

Dn - n Dl = (-l )[Dn- -I(n - I)Dn -2]

= 1)2 [Dn-2 -(n-2)Dn-3]

= 1)3[Dn-3 -(n - 3)Dn-4]

= (-l)n-2[D2 - 2Di]

= (-1 2[1 - 2(0)]

)n2

= (-l)n.

The resulting recurrence relation

Dn = nDn-1 + (-l)n

holds not only for n > 3, but also for n = 2. Hence it is valid for n > 2.
We will use the method of iteration to obtain a formula expressing D, in

terms of n. It will be easier to apply the method of iteration to the new recurrence
relation above than to the one in Example 8.4 because the new one relates Dn to
Dn-1 rather than to both Dn-1 and Dn-2. It produces the following terms.

D 2 = 1

D3 = 3(1) -- 1 3 - 1

D4 = 4(3 - 1) I- 1 = 4(3) - 4 + 1
D5 = 5[4(3i -L+ 1] - 1 = 5(4)(3) - 5(4) + 5 - 1

D6 = 6[5(4i(3> - 5(4) + 5- 1] + 1

= 6(5)(4)(3;) - 6(5)(4) + 6(5) - 6 + 1

Note that

D6 = P(6, 4)- 1'(6,3) + P(6, 2)-P(6, l) + P(6, O)

6! 6! 6! 6! 6!
2! 3! 4! 5! 6!

1 1 1+ iN

(2! 3! 4! 5! 6!)

Thus we conjecture that

Dn = n! --- + + (-)n'!]
We2! 3! at

We leave as an exercise the verification that this formula is correct.
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The method of iteration depends upon being able to recognize a pattern
being formed by successive terms. In practice this may be very difficult, or even
impossible, to do. Nevertheless, the method of iteration can often be used to find
a formula for the general term of a sequence defined by a recurrence relation,
especially in problems where the recurrence relation is simple. Furthermore, the
method of iteration is not limited to recurrence relations of a particular form. In
the next section, we will use the method of iteration to find formulas for two very
common types of recurrence relations.

EXERCISES 8.2

1. Prove by mathematical induction that n2 
- n + 2 is a solution to the recurrence relation r, = rn-1 + 2(n - 1)

for n > 2 with the initial condition r1 = 2.

2. Prove by mathematical induction that 4(2n) + 3 is a solution to the recurrence relation s,= 2sn - 3 for n > 1
with the initial condition so = 7.

3. Prove by mathematical induction that 4" - 3n + 1 is a solution to the recurrence relation s, = 7s, -l12sn- + 6
for n > 2 with the initial conditions so = 1, s, = 2.

4. Prove by mathematical induction that 3"(3 + n) is a solution to the recurrence relation s,= 3s,_1 + 3" for
n > 1 with the initial condition so = 3.

5. In Example 8.11, prove by mathematical induction that

D, = 2! 3! .. d ( ) n! for n > 2.

6. Prove by mathematical induction that

-C(2n -2, n - 1)
n

is a solution to the recurrence relation

4n - 6
Sn = Sn-l for n > 1

n

with the initial condition s, = 1.

7. Prove by mathematical induction that C(2n + 2, 3) is a solution to the recurrence relation s, = s,_1 + 4n2 for
n > 2 with the initial condition s, = 4.

8. Prove by mathematical induction that C (2n + 1, 3) is a solution to the recurrence relation Sn = sn 1 + (2n -1)2
for n > 2 with the initial condition s1 = 1.

9. Compute 22 + 42 + 62 + + (2n) 2 .

10. Compute 12 + 32 + 52 + * + (2n - 1)2.

In Exercises 11-24 use the method of iteration to find a formula expressing x, as a function of n for the given
recurrence relation and initial conditions.

11. Sn = Sn-I + 4, so = 9 12 . Sn = -2s-n-, so = 3

13. xn = 3Sn-1, so 5 14. sn = Sn-1 -2, so = 7



440 Chapter 8 Recurrence Relations and Generating lFun,-tions

15. s, = -s,, -, so = 6 16. sn Sn l + 10, so = -4

17. Sn = 5
sn-_ + 3, so = I 13. sn = 5 -3sSn- so = 2

19. S, = Sn-I + 4(n -3), so = 10 20. sn = -Sn-I + (- l)n, so = 6
21. sn = -sn- 1 + a, so = 1, a 1 2 2. s, = s,_I + 2n + 4, so = 5

723. sn = nsn-I + 1, so = 3 24. s, = 4Sn-2 + 1, SO = 1 SI = 3

25. Suppose that a high school had 1000 students enrolled at the beginning of the 1995 school term. The trend in
enrollment over the previous 20 years was that the number Sn of students beginning a school year was 5% less
than that of the previous year.

(a) Find a recurrence relation and initial conditions representing this situation, assuming that the enrollment
trend continues.

(b) Find a formula expressing s, as a function of n.
(c) If the enrollment trend continues, what number cf students does the formula predict for the beginning of

the school year 2005?

26. Zebra mussels are fresh water mollusks that attack underwater structures. Suppose that the volume of mussels
in a confined area grows at a rate of 0.2% per day.

(a) If there are now 10 cubic feet of mussels in a lcck on the Illinois River at Peoria, Illinois, develop a
recurrence relation and initial conditions that represent the volume m, of the mussel colony n days hence.

(b) Develop a formula expressing mn as a function o a.

27. The figure below shows that 4 one-inch segments are needed to make a 1 x 1 square, 12 one-inch segments
are needed to make a 2 x 2 square composed of four I x 1 squares, and 24 one-inch segments are needed to
make a 3 x 3 square composed of nine 1 x 1 squares. How many one-inch segments are needed to make an
n x n square composed of 1 x 1 squares?

w]r
28. (a) A rabbit breeder has one male-female pair of newborn rabbits. After reaching two months of age, these

rabbits and their offspring breed two other male-fe -nale pairs each month. Write a recurrence relation and
initial conditions for rn, the number of pairs of racbits after n months. Assume that no rabbits die during
the n months.

(b) Showthattherecurrencerelationin(a)satisfiesr,, = 2 rn 1 + (- ))n forn > 2,andfindaformulaexpressing
rn as a function of n. (Hint: Use a procedure like that in Example 8. 11.)

29. Consider the sequences of n terms in which each term is- 1, 0, or 1. Let s, denote the number of such sequences
in which no term of 0 occurs after a term of 1. Find a formula expressing Sn as a function of n.

30. Consider the sequences of n terms in which each term is- 1, 0 or 1. Let sn denote the number of such sequences
that contain an even number of Is. Find a formula expressing Sn as a function of n.

31. For some positive integer n, draw n lines in the Euclidean plane so that every pair of lines intersects and no
three lines have a point in common. Determine r,. ih- number of regions into which these lines divide the
plane.
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32. Let mn denote the number of multiplications performed in evaluating the determinant of an n x n matrix by
the cofactor expansion method. Find a formula expressing mn as a function of n.

33. Suppose that the Towers of Hanoi game is played with 2n disks, two each of n different sizes. A disk may
be moved on top of a disk of the same size or larger, but not on top of a smaller disk. Find a formula for the
minimum number of moves required to transfer all the disks from one spoke to another.

34. Suppose that in the Towers of Hanoi game a disk can be moved only from one spoke to an adjacent spoke. Let
m, denote the minimal number of moves required to move n disks from the leftmost spoke to the rightmost
spoke. Find a formula expressing m, as a function of n.

8.3 + LINEAR DIFFERENCE EQUATIONS WITH
CONSTANT COEFFICIENTS

The simplest type of recurrence relation gives Sn as a function of Sn- 1 for n > 1.
We call an equation of the form

Sn aSn- + b,

where a and b are constants and a 7 0, a first-order linear difference equation
with constant coefficients. For example, the recurrence relations below are all
first-order linear difference equations with constant coefficients:

Sn = 3sn1-1, Sn = Sn-I + 7, and Sn = 5 Sn- I

Recurrence relations of this type occur frequently in applications, especially in
the analysis of financial transactions. The recurrence relations in Examples 8.2
and 8.7 are first-order linear difference equations with constant coefficients.

Since a first-order linear difference equation with constant coefficients ex-
presses Sn in terms of sn,-, a sequence defined by such a difference equation
is completely determined if a single term is known. We will use the method of
iteration to find an explicit formula for this type of equation that expresses sn as
a function of n and so.

Consider the first-order linear difference equation with constant coefficients
Sn = asn- + b that has first term so. The first few terms of the sequence defined
by this equation are

so = So,

s = aso0 + b,

S2 = as, ± b = a(aso + b) + b = a2so + ab + b,

S3 = as 2 +b =a(a2so+ab+b)+b =a3 so+a 2b+ab+b,

S4 = as3 + b = a(a3 so + a2b + ab + b) + b

= a4 so+a3 b+a 2 b+ab+b.

441
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Theorem 8.1

It appears that

s, ==anso - a,- 'b+a n- 2 b+ + +a 2 b+ab+b

= anso - (aI + an-2 + + a2 + a + l)b.

If a = 1, the expression in parentheses equals n; otherwise it can be simplified
by using the identity from Example 2.59:

1 x +x 2 + +±xn = x+-1
x-1

Applying this identity to the expression for s, above, we obtain

Sn = at'so + (a ) b
a-

=a"so +a'( b1)- (ab )
= a' (so + c) -c,

where

b

a -

We will state this result as Theorem 8.1, leaving a formal proof by mathematical
induction as an exercise.

The general term of the first-order linear difference equation with constant coef-
ficients Sn = aSn-l + b that has initial value so satisfies

an(so + c)-c if a :0 1
s = Iso + nb if a = 1,

where

b
c =-

a-1I

+ Example 8.12

Find a formula for s, if s, == 3s,, -l for n > 1 and so = 2. Here a = 3 and
b = -1 in the notation of Theorem 8.1. Thus

b -1 -1
c 1 =3 -

a -1 3 -1 2 '
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and so

s, = a (so + c) - c

2 2

1
= (3 f) + j

I (3n+1 + 1).
2

Substituting n = 0, 1, 2, 3, 4, and 5 into this formula gives

so = 2, s, = 5, S2 = 14, s3 = 41, 54 = 122, and S5 =365,

which are easily checked by using the recurrence relation

Sn = 3Sn-1 - I for n > I

and the initial condition so = 2. +

+ Example 8.13

Find a formula for bn, the unpaid balance after n months of the Thompson's
mortgage in Example 8.7.

We saw in Example 8.7 that bn satisfies the recurrence relation

bn = l.Olbn - 1800 forn > I

and the initial condition bo = 175,000. Since this recurrence relation is a first-
order linear difference equation with constant coefficients, Theorem 8.1 can be
used to find a formula expressing bn as a function of n and bo. In the notation of
Theorem 8.1, we have a = 1.01 and b =-1800. Hence

b -1800 -1800
a-1 1.01-1 0.01 =-180,000.

Thus the desired formula for bn is

bn = a'(bo + c) - c

= (1.0l)'[175,000 + (-180,000)] - (-180,000)

= -5000(1.01)n + 180,000.

For example, the balance of the loan after 20 years (240 months) of payments is

b24 = -5000(l.01)240 + 180,000 t -54,462.77 + 180,000

= 125,537.23.

Thus the Thompsons will still owe $125,537.23 after 20 years. +

443
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+ Example 8.14

A lumber company owns 7001) birch trees. Each year the company plans to harvest
12% of its trees and plant 600 new ones.

(a) How many trees will theie be after 10 years?
(b) How many trees will thee be in the long run?

Let s, denote the number of trees after n years. During year n, 12% of the
trees existing in yearn - I will be harvested; this number is 0.12sn 1. Since 600
additional trees will be planted during year n, the number of trees after n years is
described by the equation

as, = S -I - 0.1 2Sn + 600,

that is,

= 0.88s,-I + 600.

This is a first-order linear diffe ence equation with constant coefficients a = 0.88
and b = 600. We are interested in the solution of this equation satisfying the
initial condition so = 7000. In the notation of Theorem 8.1,

b 600 600
a-- 1 0.88- 1 -0.12

Hence a formula expressing s, in terms of n is

S a el' (So + C) - C

(0.88)"(7000 - 5000) + 5000

2(000(0.88)' + 5000.

(a) Therefore, after 10 years. the number of trees will be

so) = 2000(0.88)10 + 5000 - 5557.

(b) As n increases, the quantity (0. 88 )n decreases to zero. Hence the formula

Sn = 2000(0.88 ) + 5000

implies that the number of trees approaches 5000. (Note that as the number
of trees approaches 5000, the number of trees being harvested each year
approaches the number of new trees being planted.) +

X~COJ Order k obje X1ivle-:eo Ia in<tear i fCirest. ez E....v

Certainly one of the most famous sequences in mathematics is the sequence of
Fibonacci numbers, named aFtzr Leonardo Fibonacci of Pisa (c. 1170-1250), the
most famous European mathematician of the Middle Ages. The sequence first
appeared in the following problem in his text Liber Abaci.
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A man has one male-female pair of rabbits in a hutch entirely sur-
rounded by a wall. We wish to know how many rabbits can be bred
from this pair in one year, if the nature of these rabbits is such that
every month they breed one other male-female pair which begin to
breed in the second month after their birth. Assume that no rabbits die
during the year.

The diagram in Figure 8.8, with the letter "M" denoting a mature pair and the
letter "I" denoting an immature pair, shows the pattern of reproduction described
in the problem.

January 1 1

February 1 M

March I M I

AprillI M I M

May I M M I

June I M I M M I M I M

FIGURE 8.8

We see that the number of rabbits at the beginning of any month equals the
number at the beginning of the previous month plus the number of new pairs,
which equals the number of pairs two months earlier. Thus the number of rabbits
at the beginning of month n satisfies the recurrence relation

Fn = Fn-1 +Fn-2 for n > 3

with the initial conditions F, = F2 = 1. It is easily checked that there will be
F13 = 233 pairs of rabbits in the hutch one year later!

The recurrence relation

Fn = Fn-1 + Fn-2 for n > 3

is called the Fibonacci recurrence. It appears in a wide variety of applications,
often where it is least expected. Recall, for instance, that the Fibonacci recurrence
occurred in Example 8.3.

A recurrence relation of the form

Sn asn-I + bSn-2,

where a and b are constants and b # 0, is called a second-order homogeneous lin-
ear difference equation with constant coefficients. The word "homogeneous"



446 Chapter 8 Recurrence Relations and Generating Functions

indicates that there is no constant term in the recurrence relation. The Fibonacci re-
currence is an example of a second-order homogeneous linear difference equation
with constant coefficients. Since this type of recurrence relation occurs frequently
in applications, it is useful to have a formula expressing Sn as a function of n for
a sequence defined by such a recurrence.

Theorem 8.2 Consider the second-order homogeneous linear difference equation with constant
coefficients

Sn = asn-l + bsn-2 for n > 2

that has initial values so and sl. Let r, and r2 denote the roots of the equation

x2 =ax+b.

Then

(a) If r, =A r2, there exist constants cl and c2 such that Sn = clr n + c 2 r n for
n = 0, 1,2,..

(b) If r =r2 = r, there exist constants cl and c2 such that Sn = (cI + nc2 )r'
for = 0, 1,2....

Proof. (a) If Sn = c rI n+ c 2rn for n = 0, 1, 2, ... , then for n = 0 and n = 1
we must have

So = C1 + C2

sI = c 1rl + C2r2.

Multiplying the first equation by r2 and subtracting the second yields

'2SO -SI = cjr 2 - car,

= cI(r 2 -r 1 ).

Hence since r, 7 r2 , we have

r 2 sO -S
= C,.

r2 - r

Thus

C2 = so-Cl

r2So - SI
= So -

r2 -r

so(r2 - r) r2SO SI

r2- r r2 - r

s- r 1so

r2 - ri

We leave it to the reader to show that for these values of cl and c2 , the expression
clr n + c2r'1 with n = 0 and n = 1 yields the initial values so and sI.
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This establishes the base for an induction proof. Assume now that for n =

0, 1, . . ., k we have s, = c1r, + c2r2. Since ri and r2 are roots of the equation
x2 =ax + b, we have ar, + b = r2 and ar2 + b = r2. Thus

Sk+1 = ask + bSk-1

= a [cirk + c2rk] + b [cirf 1 + C2rk ]

= Cl [ar k+ brk k1] + C2 [ark + brk 1]

= clr, -(ar, + b) + c 2r2 (ar2 +b)

= crk-1 2(r) +c 2 rk- 2(r)

= k+1 k+1
= cirl + c2 r2

Therefore Sn = cjrn + c2r~' for n = k + 1. It follows from the strong principle of
mathematical induction that Sn = clrI + c2r2' for all nonnegative integers n.

(b) Note that since b 0 0 in the equation x2 = ax + b (because the given
recurrence relation is of the second order), we must have r :A 0. Therefore if
Sn = (c, + nC2 )rn for n = 0, 1, 2, . . ., then taking n = O and n = 1 gives

SO = Cl

St = cir + c2 r.

Hence we see that
si - sOT

cl = so and C2 = r
r

Again we leave it to the reader to show that for these values of cl and c2, the
expression (c1 + nc2 )rn with n = 0 and n = 1 yields the initial values so and sj.
Assume that for n = 0, 1, . .. , k, we have Sn = (cI + nc2 )rn. Since

x 2  ax-b=(x-r)2 =X 2 -2rx+r 2 ,

we have

a=2r and b=-r2 .

Thus

Sk+l = ask + bSk-1

= a(cl + kc 2)rk + b[ci + (k - 1)c2 ]rk-I

= 2r(c, + kc2 )r + (-r 2)[c + (k - l)c 2 ]rk-1

= (2c1 + 2kc2)rk+l - [c, + (k -)C2]rk+1

= [c, + (k + 1)c2 ]rk+.

The strong principle of mathematical induction therefore implies that s, =

(c1 + nC2)rn for all nonnegative integers n.
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The equation x2 = ax + cb in Theorem 8.2 is called the auxiliary equation
of the recurrence relation sn := asn-1 + bsn-2.

Note that the proof of Theorem 8.2 actually produces the constants cl and
c2 that occur in the formula expressing Sn = asn-1 + bsn-2 as a function of n.
Rather than memorizing the formulas for these constants, however, we will ob-
tain the values of c, and C2 by solving a system of linear equations as was
done in the proof of Theorem 8.2. Examples 8.15 and 8.16 demonstrate this
technique.

o Example 8.15

Find a formula for Sn if Sn satisfies the recurrence relation

Sn = -Sn- + 6Sn-2 for n > 2

and the initial conditions so == 7 and s, = 4.
The given recurrence relation is a second-order homogeneous linear differ-

ence equation with constant coefficients; its auxiliary equation is

x2 =-x +6.

Rewriting this equation in the form

x2+x-6=0

and factoring gives

(x + 3)(x - 2) = 0.

Thus the roots of the auxiliary equation are -3 and 2. Because these roots are
distinct, we use part (a) of Theorem 8.2 to obtain a formula for s,. Hence there
are constants cl and c2 such fnat s, = cl (- 3 )f + c2(2)n. To determine these con-
stants, we make use of the initial conditions so = 7 and s, = 4. For n = 0, we
have

7 =s,0 = cl(-3)0 + c 2 (2)0 = c] + c 2.

Likewise, for n = 1, we have

4 = sl = c (- 3)1 + c 2(2)' = -3c, + 2c2.

Therefore the values of cl an: c2 satisfy the system of linear equations

cl + c2 = 7

-3c, + 2c2 = 4.

A simple calculation gives cl = 2 and c2 = 5. Hence the terms of the sequence
defined by the given recurrence relation and initial conditions satisfy

S = c1(. )n + c2 (2)n = 2(-3)n + 5(2)n. +
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Example 8.16

Find a formula for s, if s, satisfies the recurrence relation

Sn = 6 sn-I - 9 Sn - for n > 2

and the initial conditions so = -2 and xl = 6.
The given recurrence relation is a second-order homogeneous linear differ-

ence equation with constant coefficients; its auxiliary equation is

x = 6x-9.

Rewriting this equation and factoring gives

x2 - 6x+9=(x-3)2 =0.

In this case, the roots of the auxiliary equation are equal, and so we use part (b)
of Theorem 8.2 to obtain a formula for Sn. According to this theorem, there are
constants cl and c2 such that Sn = (cl + nc2 )3n. To determine these constants,
we make use of the initial conditions so = -2 and sl = 6. For n = 0, we have

-2 = = (cl + Oc2 )30 = cl.

Likewise, for n = 1, we have

6 = s= (cl + 1c2)3 1 = 3c1 + 3c2.

Therefore the values of cl and c2 satisfy the system of linear equations

cl ==-2
3c, + 3c2 = 6.

Clearly cl = -2 and c2 = 4. Hence the terms of the sequence defined by the
given recurrence relation and initial conditions satisfy

sn = (cl + nC2)3n = (-2 + 4n)3 n.

In the next example, we use Theorem 8.2 to find a formula for the Fibonacci
numbers.

Example 8.17

Find a formula expressing the nth Fibonacci number Fn as a function of n.
Recall that the recurrence relation satisfied by the Fibonacci numbers is

Fn = Fn-1 + Fn-2 for n > 3,

a second-order homogeneous linear difference equation with constant coeffi-
cients. Its auxiliary equation is

X2 = x +1.
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Rewriting this equation in the Form x2 -x -1 = 0 and applying the quadratic
formula, we find that there are two distinct roots,

r =-- and r 2 = 2
1 2 2

Hence Theorem 8.2(a) guarantees that there are constants cl and C2 such that

F, := ('I ( ) + C2 ( )n
Cj )± ( 2)

To determine the values of c I and c2 , we use the initial values F, and F2 to obtain

CI= (1+ /' 1 ±5 (l 2) andl ( ,>) 2 2

C .>- } C2 2

Solving this system of two equations for cl and c2, we get cl and c2 =Al.
Substituting these values into the formula for Fn above gives

I /1 + 15\ 1 I I - 15

Fn= /-5 19 2 } 2 }n

Our final example provides a solution to a problem known as the gambler's
ruin.

Example 8.18

Douglas and Jennifer have agreed to bet one dollar on each flip of a fair coin and
to continue playing until one cf them wins all of the other's money. What is the
probability that Douglas will v in all of Jennifer's money if Douglas starts with a
dollars and Jennifer starts with b dollars?

To analyze this game, we will obtain a recurrence relation and initial condi-
tions for d, the probability that Douglas will win all of Jennifer's money if he
currently has n dollars. Let t = a + b, the total amount of money available to the
players. Note that do = 0 because Douglas has no money left, and d, = 1 because
Douglas has all of the money. Moreover, if 1 < n <t - 1, then Douglas has a .5
probability of winning one dollar on the next flip (raising the amount of money
he has to n + 1 dollars) and a .5 probability of losing one dollar on the next flip
(reducing the amount of money he has to n -1 dollars). Hence

dn = .5dn+1 + .5dn-1  for 1 < n < t -1.

Multiplying this equation by 2 and rearranging terms gives us

for 1 < n <t - 1.d,,+l = 2dn - dn-I



8.3 Linear Difference Equations with Constant Coefficients

Replacing n by n - 1 in this equation yields the second-order homogeneous linear
difference equation

dn=2 dn-l-dn-2 for 2 < n < t.

The auxiliary equation is

x = 2x-1,

which has r = 1 as a double root. Therefore Theorem 8.2(b) guarantees that there
exist constants cl and C2 such that dn = (cl + nc2 )1n. Using the initial conditions
do = 0 and d, = 1, we see that

do = 0 = c 1 + Oc2

d, = 1 = c1 + tc2.

The solution of this system of linear equations is cl = 0 and c2 = t. Hence

dn = (O+ n)(l)n = n =

Therefore at the start (when Douglas has a dollars), the probability of Douglas's
winning the game is

a

a + b'

and the probability of Jennifer's winning the game is

a = b
a+b a+b

Hence a player's probability of winning is proportional to the amount of money
with which he or she starts the game. +

EXERCISES 8.3

In Exercises 1-24, find an explicit formula for s, if So, sI, s2, ... is a sequence satisfying the given recurrence
relation and initial conditions.

1. Sn= Sn- + 3, so = 2

3. S, = 4Sn-1, So = 5

5. Sn = -Sn- + 6 , so = -4

7. Sn = 3s.-I -8, so = 3

9. Sn = Sn-I - 5, So = 100

11. sn = -2Sn- -9, so = 7

13. Sn = Sn-I + 2 5n-2, SO = 9, SI = 0

15. Sn = 8s, I - 16Sn-2, So = 6, Si = 20

17. Sn = 
9 Sn-2, SO = 1, SI = 9

2.

4.

6.

8.

10.

12.

14.

16.

18.

Sn 5=sn- -4, so = 1

Sn = 1 .5 sn- - 1, so = 4

Sn= Sn-I - 10, so = 32

s = -2Sn-, lSO = -5

sn -Sn-1 + 7 , so = I

Sn = 10 sn_ - 45, so = 2

Sn= -2Sn-i - Sn-2, So = 3, si = 1

Sn= 
4
Sn-2, SO = -1, SI = -14

Sn = 6Sn-I - 9Sn-2, SO = 1, SI = 9
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19. s, = - 4
Sn- 4s-2, SO = -4, S = 2 20. S, = - 8

snI - 15sn2, SO = 2, Si 2

21. Sn = lOSnI -
25 s5-2, SO -7, s = -15 22;. S= I OSn - 1 

24sn -2, So = 1, S1  0

23. Sn = - 5snl -4Sn-2, SO =3, S = 15 24. Sn = 4Sn- - 4sn-2, SO = -3, S 4

25. In order to combat hypertension, Mr. Lorenzo is to tak2 a capsule containing 25 mg of a drug each morning
after awaking. During the day, 20% of the amount of rho drug in the body is eliminated.

(a) Write a difference equation and initial conditions giving the amount of the drug in Mr. Lorenzo's body
immediately after taking the nth capsule.

(b) How much of the drug will there be in Mr. Lorenzo's body immediately after taking the eighth capsule?
(c) To what level will this drug eventually accumulate n his body?

26. In Mayville, 90% of the existing dog licenses are reissued each year, and 1200 new licenses are issued. In 2000
there were 15,000 dog licenses issued.

(a) Write a difference equation and initial conditions describing the number of dog licenses Mayville will issue
n years after 2000.

(b) How many dog licenses will Mayville issue in 2009?
(c) If the present trend continues, how many dog lice uises can Mayville expect to issue after many years?

27. Michelle has just opened a savings account with an initial deposit of $1000. From the money she earns on her
part-time job, Michelle will add $100 to her savings account at the end of each month. If the account compounds
interest monthly at the rate of 0.5% per month, how much will it be worth two years from now?

28. Suppose that a corporate executive deposits $2000 per vear for 35 years into an individual retirement account.
If interest is compounded annually at the rate of 8%, how much will the account be worth after the last
deposit?

29. The Johnson family is considering the purchase of a house costing $159,000. They will make a $32,000
down payment and take a 30-year mortgage for the remainder of the cost. The mortgage compounds interest
monthly at the rate of 0.9% per month. How much will the Johnson's monthly payment be under these
conditions?

30. An automobile advertisement states that a new Dodgc Stratus LE can be purchased for $175 per month. If
payments are to be made for 60 months and interest is charged at the rate of 1.075% per month compounded
monthly, how much does this car cost?

31. Write a recurrence relation and initial conditions fir the number sn of sequences of Is and 2s having a sum of
n. Use these to obtain a formula expressing Sn as a function of n.

32. Suppose that a bank, in order to promote long-terir saving by its customers, authorizes a new savings
account that pays 6% interest on money during the first year it is in the account and 8.16% interest on
money that is in the account for more than one year. Interest is to be compounded annually. If you deposit
$1100 in such an account and allow the interest to accumulate, how much will the account be worth in n
years?

33. Let VI, 2, Vn(n > 3) be the vertices of a cycle (as defined in Section 3.2), and let cn denote the number
of distinguishable ways to color these vertices with the colors red, yellow, blue, and green so that no adjacent
vertices have the same color. Determine a formula ex pressing cn as a function of n.

34. Use Theorem 8.1 to find a formula for

2n
Sn = so + Sot, + sor + - + sor,

the sum of the first n + 1 terms of a geometric progression with first term so and common ratio r :A 1.
(Hint: The sequence so, SI, S2 ... satisfies the first-order linear difference equation Sn = rsn-I + so with initial
term so.)
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35. Prove by mathematical induction that if so, sI, s2, ... is a sequence satisfying the first-order linear difference
equation Sn = asn-I + b, then

Jan(so + c) -c if a :A 1

Sn so+nb if a=l

for all nonnegative integers n, where

b
C-I a -1

36. Let so, SI, s2, ... be a sequence satisfying the first-order linear difference equation s, = as,-, + b for n > 1,
and define t, for n > 0 by t, = so + SI + S2 + * + Sn. Prove by mathematical induction that

a na+
1

- an+ I - (ni + l)a + nl

|( a - )so [+ (a-1)2  ifa
tn =

(n + ) SO+ 2) if a I

37. Show that if

r 2 sO - Si -rso
c, = and c2 =

r 2 -ri r2- r

then the values of crI + c 2 r2 for n = 0 and n = 1 equal so and sI, respectively, in the proof of Theorem 8.2(a).

38. Show that if

cl = so and C2 = r
r

then the values of (cl + nc2 )r' for n = 0 and n = I equal so and sl, respectively, in the proof of Theorem 8.2(b).

8.4* + ANALYZING THE EFFICIENCY OF ALGORITHMS
WITH RECURRENCE RELATIONS

An important use of recurrence relations is in the analysis of the complexity of
algorithms. In this section we will discuss the use of recurrence relations in deter-
mining the complexity of algorithms for searching and sorting, two fundamental
processes of computer science. In order to keep the discussion simple, we will
assume that the list of items to be searched or sorted consists of real numbers,
but the algorithms we present can be used with any objects subject to a suitable
order relation (for example, names and alphabetical order).

To illustrate this use, we will analyze the complexity of the following al-
gorithm for checking if a particular target value is present in an unsorted list.
The algorithm proceeds in a natural manner, comparing each item in the list
to the target value. It stops if a match is found or if the entire list has been
searched.
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Sequential Search Algorithm

This algorithm searches a list of n items a,, a 2 .  a, for a given target value t. If
t = ak, for some index k, then t1 e algorithm gives the first such index k. Otherwise
the algorithm gives k = 0.

Step]I (initialize the starting point)
Set j = 1.

Step 2 (look for a match)
while j < n and ai

Step 2.] (move lo the next element)
Replace]j with j + 1.

endwhile
Step 3 (was there a match?)

if j < n
Set k = j.

otherwise
Set k = 0.

endif

How efficient is the sequential search algorithm? To answer this question, we
will count the maximum number of times that the target value can be compared to
an item in the given list. Thus wxe will determine an upper bound for the number of
comparisons made in using the algorithm. Such an analysis is called a worst-case
analysis.

Suppose that the list to bie searched contains n items and that we count the
maximum number of compar' sons between the target value and an item in the list.
In the worst case, we will have, to search the entire list to determine if the target
value is present, and this requires comparing the target value to every item in
the list. Thus n comparisons ~me required in the worst case, and so the sequential
search algorithm is of order at most n.

Another way to count the maximum number of comparisons made by the
sequential search algorithm Ls with a recurrence relation. For a list of n items,
let Cn denote the maximum number of comparisons between the target value
and an item in the list. To determine if the target is contained in a list of 0
items requires no compariSCns; hence co = 0. To search a list of n items, we
compare the target value to the first item in the list and then, in the worst case,
still have to search a list of n -- I items. Thus we see that cn satisfies the recurrence
relation

Cn :Cn- +1I for n>1I
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and the initial condition co = 0. A formula for the solution to this first-order linear
difference equation can be obtained from Theorem 8.1:

c, = n for n > O.

Example 8.19

We will determine the number bn of comparisons of items that a bubble sort
performs in arranging n numbers a,, a2, ... , an in nondecreasing order.

Recall from Section 1.4 that in performing a bubble sort, the first iteration
requires comparing an,1 to an, then comparing an-2 to an-1, and so forth until
a2 is compared to a,. After each such comparison, we interchange the values
of ak and ak+I, if necessary, so that ak < ak+1. Thus when the first iteration is
complete, a, is the smallest number in the original list. A second iteration is
then performed on the smaller list a2, a3, .. ., an in order to make a2 the second-
smallest number in the original list. After n -1 such iterations, the original list
will be in nondecreasing order.

Since the first iteration of a bubble sort requires comparing ak to ak+1 for
k = n - 1, n -2, ... 1, we need n - 1 comparisons to determine the smallest
item in the original list. After this first iteration is complete, the bubble sort
algorithm is continued to arrange the smaller list a2, a3 , . . ., an in nondecreasing
order. But the number of comparisons of items needed to do this is just bi.

Thus we see that bn satisfies the recurrence relation

bn = bn-, + (n-1) for n > 2.

Since no comparisons are needed to sort a list containing only 1 item, an initial
condition for this recurrence relation is b, = 0. This is the same recurrence relation
and initial condition encountered in Example 8.1 and analyzed in Example 8.8.
Therefore for n > 1, we have

n - n
bn =2

and so the bubble sort algorithm has order at most n2. +

Divid e-. 11unit CR iqu a le- A| m ori 6thniS

A special type of recurrence relation occurs in the analysis of a class of algorithms
called divide-and-conquer algorithms. A divide-and-conquer algorithm is one
in which a problem is split into several smaller problems of the same type. These
smaller problems are each split into the same number of smaller problems, and
so forth, until the problems become so small that they can be readily solved. The
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resulting solutions of the small problems are then reassembled to give a solution
to the original problem.

Example 8.20

We will describe a divide-and-conquer approach for determining the largest item
in a list of n = 2k items at, a2 .  an. First we divide the original list into two
sublists

ala2,...,ar and ar+1,ar+2,...,an,

where we take r = n in order to make the two sublists of equal size. Then we find
the largest item u in the first iublist and the largest item v in the second sublist.
The larger of u and v is the largest item in the original list.

Thus we have reduced the original problem from one involving a list of 2 k

items to two problems, each inv Dving a list of 2 k- 1 items. To solve these problems,
we subdivide each of the subsists in half, obtaining four sublists with 2k-2 items
each. Continuing in this manner, we obtain 2k sublists after k such subdivisions,
and each of these sublists contains a single item. Since the largest item in a list
with one item is obvious, we can ultimately determine the largest item in the
sublists. +

If, in Example 8.20, the number n is not a power of two, at some stage of the
subdivision process we wi[l have a list containing an odd number of items, say

a, , a2 , . . . , am.

In order to obtain sublists of roughly equal size we divide the list as follows:

al a2,...,ar and ar+1,ar+2,...,am,

where

m-1
r =

2

This puts r items in the first sublist and m - r = r + 1 items in the second sublist.
Note that the number r is just the smallest positive integer less than m. We call
the greatest integer less than or equal to a real number x the floor of x and denote
it by Lxj .

+ Example 8.21

Find the floors of the following numbers:

312.5, - , 7, -3.6, and 1000.
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Since the floor of a number is the greatest integer less than or equal to that
number, we have

L312.5j = 312, L0] = 3, L71 = 7, L-3.6j = -4,

and, since 31 < 1000 < 32,

L[ llO0j = 31. +

In Example 2.63 we used a divide-and-conquer approach to search for an un-
known integer among the numbers 1, 2, .. ., 64. We will now present an algorithm
that formalizes this searching process.

Binary Search Algorithm

This algorithm searches a sorted list of n items a, < a2 < ... < a, for a given target
value t. If t = ak for some index k, then the algorithm gives one such index k;
otherwise the algorithm gives k = 0. In the algorithm, b and e are the beginning and
ending indices of the sublist of a,, a2 . . a currently being searched.

Step ] (initialize the starting point)
Set b = 1 and e = n.

Step 2 (look for a match)
repeat

Step 2.1 (determine the middle value of the sublist)

Set m = b +e)

Step 2.2 (determine the new sublist boundaries)
Step 2.2.1 (is t before am?)

if t < am
Replace e with m - 1.

endif
Step 2.2.2 (is t after am?)

if t > am
Replace b with m + 1.

endif
until either am = t or b > e

Step 3 (was there a match?)
if am = t

Set k = m.
otherwise

Set k = 0.
endif
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The following example illustrates the use of the binary search algorithm when
the target number is not contained in the given list.

+ Example 8.22

We will apply the binary search algorithm to determine whether the target number
253 is contained in the list of the 500 even integers from 2 through 1000. (Thus
as = 2i for 1 <i <500.)

In step 2.1 our first value cf m is

m = (I 5DO)j -(501)] = L250.51 = 250.

Comparing am = 500 to t = 25 3, we find that t =A am, and, in fact, t < am. There-
fore we change e to 249; b remains 1. The table below exhibits the working of
the algorithm as a sequence of questions and answers.

b e m
1I

1 500 -iI1+500)I-250
12 + =1

II
1 249 -1+ 249)1-125

[2 j

126 249 19(1:66+249) = 187

1I
126 186 -(16 + 186)= 156

2j

126 155 (6 + 155)I -140
2j

1I
126 139 -(I 26+ 139)= 132

[2j

126 131 - (26+131) 128
[2

126 127 (1 O 26 + 127 = 126
12

127 127 -(27 +127 =127
[2

am

500

Is am = 253?

no; greater

250 no; less

374 no; greater

312 no; greater

280 no; greater

264 no; greater

256 no; greater

252 no; less

254 no; greater

127 126

Since b > e in the last line of -.he table, we find that the target number is not in
the given list. +

- - .
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We will analyze the complexity of the binary search algorithm by counting
the maximum number of comparisons c, performed by the algorithm in search-
ing a list of n items. To simplify the analysis, we will assume that n = 2 r for
some nonnegative integer r. In step 2.2 we compare the target number to a mid-
dle item in the list, am. In the worst case, t # am, and we must search one of
the two sublists a, < a2 < < am-, or am+, < < ... < an. Since the
longer of these sublists contains n/2 items, we see that c, satisfies the recurrence
relation

Cn = cn/2 + I for n = 2r > 2.

Since one comparison is needed to search a list containing a single item, an
initial condition for this recurrence relation is cl = 1. We leave it to the reader to
verify that a formula for the general term of a sequence defined by this recurrence
relation is

Cn = I +log2 n forn = 2r > 1.

In the general case where n is any positive integer, it can be shown that c,
satisfies the recurrence relation

Cn = CLnh2i + I for n > 2

and the initial condition cl = 1. In this case, a formula for the general term of a
sequence defined by this recurrence relation is

Cn = X + L1±g2 nj for n > 1.

(See Exercise 39.) Thus the binary search algorithm is of order at most log2 n,
whereas the sequential search algorithm is of order at most n. Since

lg 2 n < n

for all positive integers n, the binary search algorithm is more efficient than the
sequential search algorithm when searching a sorted list.

The recurrence relation obtained above is typical of that which results from
the analysis of a divide-and-conquer algorithm. More generally, if a divide-and-
conquer algorithm subdivides a problem into p smaller problems, a complexity
analysis usually leads to a recurrence relation of the form

c, = kcL[/PJ + f (n),

where k is a constant and f is some function of n.
We will now describe an efficient sorting algorithm called a merge sort that

uses a divide-and-conquer approach. The sorting is accomplished by merging
two sorted lists into one larger sorted list as illustrated in Example 2.64. We first
present a formal description of this merging process.
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Merging Algorithm

This algorithm merges two sorted-( lists

A: a, <a 2 < : can and B: b < h2 <... < b

into a single sorted list

C: -"I1•-C2 < Cm +n.

Step 1 (initialization)
Set i 1, j = 1, and k = 1.

Step 2 (construct C until either A or B is used up)
repeat

Step 2.1 (find the next item in C)
if ai < bj

(a) Set Ck = aj.
(b) Replace i with i ± 1.
(c) Repla~e k with k + 1.

otherwise
(a) Set Ck = b.
(b) Replace j with j + 1.
(c) Rep ace k with k + I.

endif
until i > m or j -- n

Step 3 (copy end of A onto C if necessary)
while i < m

(a) Set Ck = a,.
(b) Replace i wit~i i + 1.
(c) Replace k with k + 1.

endwhile
Step 4 (copy end of B onto C if necessary)

while j < n
(a) Set Ck =b,.

(b) Replace j wilih j ± 1.
(c) Replace k wiih k + 1.

endwhile

We will now use the merging algorithm to sort a list of n items. We begin by
regarding the original list as n sublists containing exactly one item. These sublists
are necessarily sorted, and we merge them together in pairs. We continue merging
in this manner until all the sublists are combined into a single list.
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Merge Sort Algorithm

This algorithm sorts a list of n items a,, a2 , a, into nondecreasing order. In the
algorithm, k denotes the number of sublists currently being processed.

Step 1 (initialization)
(a) Regard each item al as a one-item list.
(b) Set k = n.

Step 2 (merge sublists)
while k > I

if k is even
Step 2.1 (merge an even number of sublists)

(a) Use the merging algorithm to merge sublist I with
sublist 2, sublist 3 with sublist 4, . . ., sublist k -I
with sublist k.

(b) Set k = n/2.
otherwise

Step 2.2 (merge an odd number of sublists)
(a) Use the merging algorithm to merge sublist I with

sublist 2, sublist 3 with sublist 4, . . ., sublist k - 2
with sublist k - 1, and sublist k with the empty list.

(b) Set k =( 2
2

endif
endwhile

The two examples that follow illustrate the working of the merge sort
algorithm.

+ Example 8.23

We will use the merge sort algorithm to sort the list

(19, 14, 11, 18, 30, 17, 6)

into nondecreasing order. In step 1 we regard the original list as seven one-item
sublists

(19), (14), (11), (18), (30), (17), (6)

Since each sublist contains only one item, each sublist is in nondecreasing order.
There are precisely seven sublists, and so we go to step 2 and apply the merging
algorithm to the first and second sublists, the third and fourth sublists, and the
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fifth and sixth sublists. The seventh sublist is merged with the empty list (the list
having no items), and so is unchanged. At this point, we have the four sublists
(each in nondecreasing order) shown below.

(14, 1')), (11, 18), (17, 30), (6)

Again we go to step 2, where we apply the merging algorithm to the first and
second and to the third and fourth of these sublists. This produces the following
two ordered lists.

(1i1, 14, 18, 19), (6, 17, 30)

When we merge these two lists together, we obtain a single list, and so in step 2
we stop. The resulting list

(6, 11,14,17,18,19, 30)

is the original list in nondecreasing order. +

+ Example 8.24

The sorting performed in Example 8.23 can be illustrated with a tree diagram.
Each level of the diagram shows one iteration of step 2 of the merge sort algorithm
(the application of the merging algorithm to the existing sublists).

The final row in Figure 8.9 contains the output of the merge sort
algorithm. +

(19) (14 (11) (18) (30) (17) (6)

(14, 9, (I 1, 18) (17, 30) (6)

(11, 14, 18, 19) (6, 17,30)

(6, 11, 14, 17, 18, 19,30)

FIGURE 8.9

We will analyze the complexity of the merge sort algorithm by counting the
maximum number of comparisons cn performed by the algorithm when the list
being sorted contains n = 2ir items for some positive integer r. As we have seen,
the merge sort algorithm works by successively applying the merging algorithm
to combine two sublists. Recall from Theorem 2.11 that the merging algorithm
requires at most

-2] + [2- = n -



8.4* Analyzing the Efficiency of Algorithms with Recurrence Relations

comparisons to merge two lists of length [nJ. Thus c, satisfies the recurrence
relation

Cl = 2cLf/2j + (n- 1) for n = 2r > 2.

Since no comparisons are needed to sort a list containing a single item, an initial
condition for this recurrence relation is cl = 0. A formula for the general term of
a sequence defined by this recurrence relation can be shown to be

c, = I + n(log2 n-1) for n = 2r > 1.

(See Exercise 37.) Hence the merge sort algorithm is of order at most n 10g2 n.

li i 9 iciet -gv 6 n S Sofm A ,~ .f ,~ msC

In this section we have seen that the bubble sort algorithm has order at most n
whereas the merge sort algorithm has order at most n lg 2 n. Consequently, the
merge sort algorithm is the more efficient algorithm for large values of n. But is
it possible to obtain an even more efficient algorithm?

Suppose that we must sort a list of n distinct items a,, a2, . . . , a, into non-
decreasing order. In any sorting algorithm, we compare pairs of items ai and
aj to determine whether a, < aj or ai > aj. Such a comparison results in one
of two possible outcomes. Some comparisons, of course, will not provide new
information; for example, there is no reason to repeat a previous comparison or
to compare a, to a3 if we know that a, < a2 and a2 < a3 . But no matter how
we make k comparisons, there will be at most 2t different patterns for the pieces
of information that we might receive. As a result, we can distinguish at most

2k different orderings with k comparisons. If we are to sort the list, we must
obtain enough information to distinguish among the n! different sequences in
which the items may be listed. Therefore, to sort the list, we must make at least
k comparisons, where

2 > n!.

It can be shown that n! > n l2 . (See Exercises 33-36.) Hence we must have

2k > n12

log2 (2 k) > log2 (n n/
2

)

k > - 10g 2 n.

From this inequality, we see that any sorting algorithm must have complexity at
least cn log2 n for some constant c. It follows that, up to a constant factor, the
merge sort algorithm is as efficient as a sorting algorithm can be.
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EXERCISES 8.4

In Exercises 1-8 find the floor of the given number.

33
1. 243 2. -34.5 .3. - 4. 28.963

7

5. 0.871 6. -2487 7-(-34 + 2) 8. 2343
2 26

In Exercises 9-12 make a table as in Example 8.22 showing the working of the binary search algorithm.

9. t = 83, n = 100, ai = i for i = 1, 2, ... , 100

10. t = 17, n = 125, ai = i for i = 1, 2,..., 125

11. t = 400, n = 300, a, = 3i for i = 1, 2,..., 300

12. t = 305, n = 100, as = 2i + 100 for i = 1, 2, ... , 10

In Exercises 13-18 draw a diagram as in Example 8.24 ifllstrating how the merge sort algorithm sorts the given
numbers into nondecreasing order.

13. 19, 56, 87,42 14. 42, 87, 56, 13

15. 13, 89, 56, 45, 62, 75, 68 lU. 34, 67, 23, 54, 92, 18, 34, 54, 47
17. 95,87,15,42,56,54,16,23,73,39 18. 34, 81, 46, 2, 53, 5,4, 8, 26, 1,0,45, 35

19. Suppose that one sorting algorithm requires 22 comparisons and a second requires n lg 2 n comparisons. How
large must n be for the second algorithm to be more eff cient?

20. Explain how the merging algorithm treats equal items appearing in the two lists being merged.

In Exercises 21-23 prove the statement true for all real numbers x and y.

21. LxJ <x < xJ + 1.
22. Lxs + LyJ < lx + yj. Show by example that equality need not hold.

23. LxJ + LYj > Lx + y - 1. Show by example that equality need not hold.

24. If x is any real number and n is an integer, show that Ix + nj = Lxj + n.

25. Write a recurrence relation and initial conditions for the number en of elementary operations performed by
the algorithm for evaluating xn in Section 1.4. Regard an elementary operation as the addition, subtraction,
multiplication, division, or comparison of two numbers.

26. Write a recurrence relation and initial conditions for the number en of elementary operations performed by the
polynomial evaluation algorithm in Section 1.4. Regarc an elementary operation as the addition, subtraction,
multiplication, division, or comparison of two numbers.

27. Write a recurrence relation and initial conditions for the number e, of elementary operations performed by
Homer's polynomial evaluation algorithm in Section 1.4. Regard an elementary operation as the addition,
subtraction, multiplication, division, or comparison of two numbers.

28. Write a recurrence relation and initial conditions for the number cn of comparisons performed by the divide-
and-conquer algorithm in Example 8.20.

29. In Exercise 25 find a formula expressing en as a function of n.

30. In Exercise 26 find a formula expressing en as a function of n.

31. In Exercise 27 find a formula expressing en as a function of n.
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32. In Exercise 28 find a formula expressing cn as a function of n.
33. Prove that for any integer k such that 1 < k < n, we have k(n + I- k) > n. (Hint: (n -k)(k- 1) > 0.)
34. Prove that if n is an even positive integer, then n! > n' 2. (Hint: Use Exercise 33.)
35. Prove that ne2 1 > fi for all positive integers n. (Hint: Show that (n + 1)2 > (2,/n)2.)

36. Prove that if n is an odd positive integer, then n! > n/2. (Hint: Use Exercises 33 and 35.)

37. Prove that for all positive integers of the form n = 2 k, 1 + n(log2 n- 1) is a solution to the recurrence relation
Sn = 2sLf/ 21 + (n - 1) for n > 2 with the initial condition s1 = 0.

38. Prove that for all positive integers r,

log2 J = 1og2(rjl)j

39. Letc andk be constants. Prove that for all positive integers n, k + c [log2 nj is a solution to the recurrence relation
Sn = SLn 2J + c for n > 2 with the initial condition s, = k. (Hint: Use the strong principle of mathematical
induction and Exercise 38.)

40. The following divide-and-conquer algorithm for sorting is due to R. C. Bose and R. J. Nelson. (See [I]
in the suggested readings.) For simplicity, we state it for lists of n = 2 k items, where k is a nonnegative
integer.

To sort a list of 2 k items, divide it into two sublists, each containing 2k-' items. Sort each of the sub-
lists, and then merge the two sorted sublists using the following divide-and-conquer algorithm. To merge
sorted lists A and B, subdivide each list into two (sorted) sublists Al, A2 and B1, B2, respectively, of equal
length. Merge Al and B1 into list C and A2 and B2 into list D. Subdivide lists C and D into sublists Cl,
C2 and D,, D2, respectively, of equal length. Then merge C2 and D, into list E. The final sorted list is C,.
E, D2.
(a) Let mk denote the number of comparisons needed to merge two lists, each containing 2 k items, by the

procedure described above. Write a recurrence relation and initial conditions for Mk.
(b) Find a formula expressing mk as a function of k.
(c) Write a recurrence relation and initial conditions for bk, the number of comparisons needed to sort a list of

2 k items by the Bose-Nelson algorithm.
(d) Use the method of iteration to find a formula expressing bk as a function of k.

8.5 + COUNTING WITH GENERATING FUNCTIONS

We saw in Section 7.1 that the numbers C(n, r) appear as the coefficients in the
expansion of (x + y)n. For example, we have

(l +x)' =C(n,O)+C(n, l)x+ +C(n,r)x + +±C(n,n)xn.

Taking n = 5 yields

(1 + x)5 = C(5, 0) + C(5, l)x + C(5, 2)x2 + C(5, 3)x3 + C(5, 4)x4 + C(5, 5)x 5

=I +5x + 1Ox 2 + l0x3 + 5x 4
+x

5 . (8.1)
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Thus the coefficient of Xr in the expansion of (1 + x)5 is exactly the number of
ways of choosing r objects from a set of 5 objects. This makes sense since, as we
saw in Chapter 7, the coeffic ent of xr in (1 + x)5 is just the number of ways of
choosing the x instead of the 1 from exactly r factors of the product

(1 + x)(L + + ±) ±x)(l + x).

+ Example 8.25

A boy is allowed to choose two items from a basket containing an apple, an
orange, a pear, a banana, and a plum. How many ways can this be done?

Since the boy is to choose 2 from a set of 5 items, the number of ways is
10, the coefficient of x2 in (C. l). Of course, the expression (8.1) also reveals the
number of ways the boy can choose any other number of items. It is suggestive
to replace

(I +- x)(l + x)(l + x)(l + x)(1 + x)

by

(O apples + I apple)(O oranges + I oiange)(0 pears + 1 pear)(O bananas + I banana)(O plums + 1 plum)

in order to see the connection between choosing r fruits and the coefficient of Xr

in the polynomial (1 + x)5 . +

Example 8.26

A boy is allowed to choose two items from a basket containing two apples, an
orange, a pear, and a banana. How many ways can this be done if we consider the
two apples to be identical'?

Instead of attempting a count by the methods of Chapter 7, we will look for a
polynomial similar to that of (:3.1) such that the coefficient of Xr gives the number
of ways of choosing r items One that does the job is

(1 +x x 2 ) (1 + x) (1 + x) (1 + x). (8.2)

ap ple orange pear banana

It may help to think of the expression

(O apples + I apple + 2 apples)(C oranges + 1 orange)(0 pears + I pear)(0 bananas + I banana)

to understand (8.2). The boy may choose 0, 1, or 2 apples and 0 or 1 oranges,
pears, and bananas, for a total of two items. The number of ways of doing this is
exactly the coefficient of x2 in (8.2). By computing

(1 + x + x 2 )(1 + x)(1 +x)(I +x)= 1+4x+7x2 + 7x3 + 4x4 + X5, (8.3)



8.5 Counting with Generating Functions

we see that the number of ways is 7. As a check, we list these below.

number of apples 2 1 1 1 0 0 0

number of oranges 0 1 0 0 1 1 0

numberof pears 0 0 1 0 1 0 1

number of bananas 0 0 0 1 0 1 1

For example, the third column corresponds to forming x2 by choosing x from the
first factor, I from the second factor, x from the third factor, and 1 from the fourth
factor.

Of course, (8.3) tells much more than that the boy can choose two items from
the basket in 7 ways. From it we can deduce that the boy can choose no items in
1 way, one item in 4 ways, two items in 7 ways, three items in 7 ways, etc.

Notice that in (8.2) distinguishable items (say an orange and pear) give rise
to different factors, while indistinguishable items (the two apples) are included
in the same factor. +

( ;' '; If :' ' 1 in' ' %t' ': A nk } D k'D,-,

In Examples 8.25 and 8.26, we have found polynomials with the property that
the coefficient of xr gives us the number of elements in a set whose definition
depends on r in some way. In Example 8.25, the coefficients of our polynomial
count the ways of choosing r items from a basket containing one each of five
different fruits, and in Example 8.26 they count the ways of choosing r items
from a basket containing two apples and one each of three other fruits.

In general, consider an infinite sequence of numbers

ao, al, a2 , .

where for some integer n we have an+, = an 2 = 0. We say that the
polynomial

ao + aix + a2x2 + a3x 3+ + anon

is the generating function for the sequence. For example, if we define ar to be
the number of ways of choosing r items from a basket containing two apples, one
orange, one pear, and one banana, then, since there are only 5 fruits in the basket,
we have a6 = a7 = ... = 0, and the generating function for the sequence (ar } is

(I +x +x 2)(l +x)(l +x)(l +x) = 1 +4x +7x2 +7x3 +4x4 +x 5

according to Example 8.26.

Example 8.27

Each of r people wants to order a Danish pastry from a bakery. Unfortunately,
the bakery only has 3 cheese, 2 apricot, and 4 raspberry pastries left. We want a

467
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generating function for Id,. }, where dr is the number of fillable orders for the r
pastries. In particular, what is d7?

The generating function is

(1 +X +X 2 +X3) (1 +X +X 2 ) (1 +X +X 2 +X 3 +X 4 ),

cheese apricot raspberry

since we must pick 0 through 3 cheese Danishes, 0 through 2 apricot Danishes,
and 0 through 4 raspberry Danishes, for a total of r Danishes. It is appropriate
that this is a polynomial of degree 9 because the bakery only has 9 Danishes, and
so clearly dr = 0 for r > 9. A tedious computation shows that our polynomial
equals

1 +3x +6x2 +Qx 4- 11x4 + I1xI +9X 6 +6X7 +3x 8 +x 9 ,

and so there are exactly 6 fillable orders for seven pastries. As a check, we list
them below.

number of cheese 3 3 3 2 2 1

number of apricot 2 1 0 2 1 2

number of raspberry 2* 3 4* 3 4* 4*

For example, column 4 corresponds to forming x7 by choosing x2 from the first
factor, x2 from the second factor, and X3 from the third factor.

Now suppose that raspberry pastries only come two to a box, and so the
bakery will sell them in multiples of two. Then the generating function for the
number of billable orders for r pastries becomes

(1+X +x 2 .1 X3 ) (I +X 2 ) ( 2 + X2 +X 4 ),

cheese apricot raspberry

since only 0, 2, or 4 raspberry can be bought. Multiplying this out gives

1 + 2x + 4x2 + 5xl + 6x4 + 6x 5 + 5x6 + 4X7 + 2x + x9 .

For example, since the coefficient of X7 is 4, there are 4 ways to order 7 pastries
with the new restriction. These ways are marked with an asterisk in the table
above. +

'P;'i wer, S(t~at rif''es

In Example 8.27, at most 9 pastries could be ordered. In some situations, however,
the number of choices is effectively unlimited.

+ Example 8.28

Now suppose that a multinationa corporation builds a large apricot Danish factory
next to the bakery. Thus the supply of apricot pastries has become unlimited for
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all practical purposes. Unfortunately, still only 3 cheese and 4 raspberry pastries
are available, and the raspberry must be bought two at a time. We would like a
generating function for the number of ways of buying r pastries.

Since any number of apricot pastries can be supplied, the natural thing with
which to replace the factor (1 + x + x2) in

(1 +X +x 2 +x 3 )(I +X +X 2 )(I +X2 +X 4 )

cheese apricot raspberry

seems to be

(1+x+x 2  +x3)+ (8.4)

where the powers of x go on forever. Of course, there is a problem with this
expression, since it indicates that infinitely many quantities are to be added. As
long as we never substitute a specific number for x, however, this problem does
not arise. We can treat the expression of (8.4) in a formal way, combining it
with similar expressions by using the usual rules for adding and multiplying
polynomials. For example, we would compute

(I + 2x +5x3 ) + (I +X +X2 +X 3 + ... )

= (1+1)+(2+1)x+(O+l)x 2 +(5+ l)x3 + (0 + 1)x 4 +*

= 2+3x+x 2 +6x 3 +X 4 + X5 +

and

(1 +X +X 2 +x 3)(1 +X +X 2 +X 3 + )

= l(l +X +X2 +X 3 + *--)

+ x(l+x +x
2 + X3+...)

+ X2 (l +X +X 2 +X 3 +*-)

+ x3(l +X +X 2 +X 3 
+ **)

= 1+ X + X + X3 + X4 +X 5 + (8.5)

+ X + X 2+ X3 + X4 +X 5 +

+ X2 + X3+ X4 + 5 +

+ X3+ X±4 + x5 +

= 1+2x+3x2 + 4X3 + 4X4 + 4X5 +*.

If we allow the expression (8.4), then the generating function we desire is

F = (I +x+x 2 +x 3 )(1 +x+x 2 +x 3 + )( +x 2 +x 4 ).

cheese apricot raspberry

We have already multiplied out the first two factors above to get (8.5). Thus

469
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we have

F =(1+2x+3x2 +4r 3 +4x 4 +4x 5 +.)(1+x2 +x 4 )

=( + 2x + 3x2 + 4&3 + 4x4 + 4x5 + .)I

+ (1 + 2x + 3X 2+ 4X3 + 4x4 + 4x5 + .)X2

+ (I + 2x + 3X2 +- X3 + 4x4 + 4X5 + )X4

= 1+ 2x +3X2 +43 +4x + 4X5 + 4X + 4X7 + 4X8 +

+ x2 ±223+ 34+ 4x5 + 4X62+ 4X7 + 4X8+..

+ x4 + 2x5 + 3X6 + 4X7 + 4X8i+

= +2x +4X2 +±6X
3 

+8X4+ IOx
5 

+ I1X
6

+ 12x7 + 12xX + ,

where the coefficient of Xr is 12 for r > 7. In particular, there are now 12 ways
of choosing 7 pastries, since the coefficient of x7 is 12. We list them below.

cheese 0 0) 0 1 1 1 2 2 2 3 3 3

apricot 3 :5 7 2 4 6 1 3 5 0 2 4

raspberry 4 2 0 4 2 0 4 2 0 4 2 0 +

In light of Example 8.28, we extend the definition of a generating function
given earlier to be an expression of the form

ao + c Ix + a2x2 + a3x + ,

where we now allow infinitely many of the coefficients ar to be nonzero. Such
an expression is called a formal power series. We add and multiply generating
functions just like polynomials, so that

(ao+a1 x+a 2 x 2
+ ai;A3+ )+(bo+bix+b2 x 2 +bix 3 + 3 )

= (ao + bo) 4- (al + bl)x + (a2 + b2 )x 2 + (a3 + b 3 )x 3 +

and

(aO + aix + a2x2+ a-,A3+ * * *)(bo + b-x + b2X2 + b3X3 + )

= aobo + (aolbj + abo)x + (aOb2 + abi + a2bo)x2 + .

+ Example 8.29

At a restaurant in a ski area, a grilled cheese sandwich costs $2 and a bowl of
noodle soup costs $3. Let ar be the number of ways of ordering r dollars worth
of grilled cheese sandwiches and bowls of noodle soup. We will find a generating
function for the sequence la, ).

The desired generating function is

r+X2l+lX4e+ X6+ nool3 soup

grilled cheek se noodle soup
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Choosing a term from the first factor above determines whether we spend $0, $2,
$4, etc. on grilled cheese sandwiches; likewise the term from the second factor
corresponds to the number of bowls of soup. Notice that

+x2 +X4 +x6 + .. )(I +X3 +x6 + X9 + )

=I -+X 2+x
3

+x
4 

+x
5 +2x 6

+x
7 +2x8+2x9+x 10 +

For example, since a8 = 2, there are exactly two ways of spending $8. These are
to buy four grilled cheese sandwiches and no soup, or else one grilled cheese
sandwich and two bowls of soup. +'

M Example 8.30

A woman has a large supply of 1¢, 2¢, and 3¢ stamps. (All the 1¢ stamps are
identical, etc.) Find a generating function for {ar}, where ar is the number of
ways she can arrange exactly 3 of these stamps in a row on an envelope so that
their total value is r cents. What if any number of stamps can be used?

Since the first stamp will be worth one, two, or three cents, and likewise for
the second and third stamp, the generating function for far } is

(x + X2 + X3)(X + X2 + X3)(X + X2 + X) = (X + X + XY)

=X +3x 3X4 + 6x 5 + 7x6 + 6x7 + 3x8 + X 9 .

For example, the 6 ways to total 5¢ are 113, 131, 311, 122, 212, and 221.
In the same way, if 4 stamps are to be used, the corresponding generating

function is (x + x2 + X3)4. If either 3 or 4 stamps are allowed, then the appropriate
generating function is

(X + X2 + X3 )3 + (x + x2 + X3 )4 ,

since the coefficient of xr in this expression will be the sum of the number of
ways of totaling r cents with an arrangement of 3 or 4 stamps.

What if we wish to count all arrangements of stamps totaling r cents, no
matter how many stamps are used? Since we wish to allow 0, 1, 2, ... stamps to
be used, the corresponding generating function is

+ (X + X2 + X3 ) + (X + x 2 + x 3)2 + (X + X2+ X3 )3 +

=1 +X+X + X

+X 2 +2x 3 +3x 4 +2x 5 + x6

+ x 3 + 3x 4 + 6x 5 + 7x6 + 6x 7 + 3x 8
+ x 9

= 1 +X +2X 2 + 4X 3 + 7X4 +.
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For example, the 4 ways of arranging 3¢ worth of stamps are as 3, 12, 21, and
111. c+

EXERCISES 8.5

Consider the generating functions

A = I +x +x 2 , B = 1 +2x +4x4 +x 5 ,

C = 1-x 2 +x 4 , D = I +x+x 2 +x 3 +..,

E = 1 +x3 ± x 6 x' +-x , + F =I 1x +x 2  X 3 +x 4

In Exercises 1-12, write each indicated expression in the form

a/ 4 aix + a2x + a3 x3 + *.

If the expression is a polynomial, then compute it compleley; otherwise compute it through the x7 term.

1. A+ B 2. B+C .3. AB 4. AC

5. B+D 6. C+F '7. AD 8. CF

9. EC 10. DC I1. DE 12. FD

In Exercises 13-22 give a generatingfunction for the sequence {ar 1, and then write it in the form ao + a x + a2 x 2 +

a3x3 + ... through the x 6 term.

13. Let ar be the number of ways of taking r drinks from a refrigerator containing 3 Cokes and 5 Pepsis.

14. Let ar be the number of ways of choosing r cars from a rental agency that has a Buick, a Dodge, a Honda, and
a Volkswagen available.

15. Let a, be the number of ways of choosing r jellybeans rom a basket containing 3 licorice, 4 strawberry, and 2
lemon jellybeans.

16. Let ar be the number of ways of buying r batteries from a store that has 3 C batteries, 4 D batteries, and 6 AA
batteries, if the AA batteries are only sold in sets of two.

17. Let ar be the number of ways of buying r chicken parts from a grocery that has 4 wings, 3 breasts, and 5
drumsticks, if the drumsticks are wrapped in a package of 2 and a package of 3, and the packages cannot be
broken up.

18. Let a,- be the number of ways of spending r dollars on posters, if four identical $1 and three identical $2 posters
are available.

19. Let ar be the number of ways of ordering r glasses of liquid, if 3 glasses of milk and an unlimited supply of
water are available.

20. Let a, be the number of ways of collecting r ounces of clams and mussels from a beach, if a clam weighs 3
ounces and a mussel 2 ounces.

21. Let ar be the number of ways of choosing r oak and nmple leaves for a scrapbook, if the book must contain at
least 4 oak leaves and at least 2 maple leaves.

22. Let a, be the number of ways of buying r baseball cards, if I Mickey Mantle, 1 Stan Musial, 1 Willie Mays,
and an unlimited supply of Pete Rose cards are available.
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In Exercises 23-26find the generating function for far }I

23. Let ar be the number of ways of choosing r books from seven different mathematics books and five identical
copies of Peyton Place.

24. Let ar be the number of ways of spending r dollars on three different $7 books (there is only one copy of each)
and an unlimited number of identical $9 books.

25. Let a, be the number of ways of catching r pounds of bluegill, catfish, and bass, if a bluegill weighs 1 pound,
a catfish weighs 3 pounds, and a bass weighs 4 pounds.

26. Let a, be the number of solutions to a + b = r, where a and b are elements of the set (I, 2, 4, 8, . .

In Exercises 27-32 suppose the indicated generatingfunction F is written as ao + alx + a 2 x
2 + a3x 3 + . Find

a formula for ar in terms of r.

27. F = (I+X +x2+x3 + .)2 28. F=((+x +x 2 +x 3 + *)(1-x)

29. F=(I+x+x
2 

+x 3
+- + )(1+x)

30. F = (1 + x + x 2 + x 3 + .* .)(1-x +x 2  x 3 + )

31. F=(I-x+x2
-x

3
+ )(1+x) 32. F=(I+X+X2+X3+ ... )3

33. Let ar be the number of solutions to p + q = r, where p and q are prime numbers. Find a generating function
for {ar,) and write it through the x1l term. It is an unproved conjecture (called the Goldbach conjecture) that
a, > 0 whenever r is even and greater than 2.

34. Let ar be the number of solutions to 2k + p = r, where k is a nonnegative integer and p is a prime number.
Express a generating function for far) , and write it out through the x to term. What is the smallest r > 2 such
that ar = O?

35. Let ar be the number of solutions to a2 + b2 + c2 + d2 = r, where a, b, c, and d are nonnegative integers.
Express a generating function for {ar 1, and write it out through the x1I term. (It can be proved that ar > 0 for
all r > 0.)

8.6 + THE ALGEBRA OF GENERATING FUNCTIONS

We saw in the previous section how generating functions, even those with in-
finitely many terms, can be added and multiplied just like polynomials. With these
definitions, generating functions obey the same algebraic laws as polynomials.
Examples are the associative and commutative laws of addition and multiplication
and the distributive law. The generating function

Z =0+Ox+Ox 2
+Ox

3
+

takes the role of additive identity; that is

Z+G=G+Z=G
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for every generating function G. Likewise the generating function

U = 1 =1 I + Ox + Ox
2 

+ Ox 3 
+.

is the multiplicative identity; so that

UG = GU =G

for every generating function G.

We define the subtraction f generating functions by

(ao + aix + a2x + a3x3+ ± )-(bo + bix + b2x2 + b3 x3 + )

= (ao - bo) + (c', - bI)x + (a2 - b2)x2 + (a3 - b3)x3 +

Division presents more of a problem. The key is the existence of inverses; that is,
given a generating function (,. we would like to find another generating function
G-1suchthatGG-1 = 1,the multiplicativeidentity.Suchaninverseoftenexists;
for example

(1-x)(1 x+x 2 +x 3  +) 1x+x 2 +x 3 + x-2-x 3 -_ =1.

Thus

(l-x Fx 2 +x 3 + )-I =1-x,

and

(1 y)l = 1 +x +x2 + x3 +

In fact, a similar computation shows that

(1-G)(1 + G + G 2 + G3 + )= (8.6)

for any generating function G having 0 as its constant term. For example, setting
G = -x in (8.6) gives

(I1 A.) (I- x + x2-_x3 + ) = 1

and taking G = 2x in (8.6) gives

(1 -2r,( +2x +4X2 +8x 3 + )= 1.

In Example 8.30 we found that the generating function for the number of
ways of arranging a sequence of 1¢, 2¢ and 3¢ stamps totaling r cents is



8.6 The Algebra of Generating Functions 475

By taking G = x + x 2 + x3 in (8.6), we can write this as

(1 -X -X 2 - X)-l.

It turns out that all that is needed for the inverse of a generating function
ao + aix + a2x2 + a3x3 + to exist is that ao # 0.

Theorem 8.3 Suppose that

G = ao + aix + a2x
2 

+ a3x
3 

+ ,

where ao 0  0. Then there is a unique generating function H such that GH = 1.

Proof. We are interested in a generating function

H = bo + bix + b2x
2 + b3x

3 
+

such that

GH = (ao + alx + a2x2 + a3x + )(bo + bjx + b2x
2 + b3 x

3 + )

= aobo + (aobi + albo)x + (aob2 + alb1 + a2bo)x2 
+"

= 1.

This leads to the following equations.

aobo = 1

aob1 + albo = 0

anb2 + alb, + a2 bo = 0

The first equation is true if and only if bo = a0 1 and aO- exists since ao & 0.
Then plugging this value of bo into the second equation determines b1 uniquely.
Likewise, the third equation can be solved for b2 after our previously determined
values of bo and b, are substituted in it. Continuing in this way, we see that a
unique sequence bo, bl, b2 , b3,... is determined such that

(ao + alx + a2x + a3x +3 )(bo + blx + b2x
2 + b3x 3 + ) =1.

+ Example 8.31

Let us try to find the inverse of the generating function

1 + 2x + 3X2 + 4x3 +

We wish to determine a sequence {br I such that

(I + 2x + 3X2 + 4x3 + .)(bo + bix + b2 x2 + b3 x3 + .)= 1.
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Equating the constant terms on both sides of this equation gives

lbo = 1,

and so bo = 1. Likewise the coefficients of x must be the same on both sides, so

lb, + 2bo = b1 + 2 =0.

This implies b, =-2. Equating the coefficients of x2 yields

lb 2 + 2 + 3bo = b2 -4 + 3 = 0,

and so b2 = 1. The next equation is

lb3 + 2b2 -- 3b, + 4bo = b3 + 2-6 + 4 = 0;

so b3 = 0. The reader should check that b4 = 0 also. In fact, it can be proved that
the rest of the coefficients b, are all 0, and so

(1 + 2x + 3x' + 4 X3 + .,, )-I = 1-2x + x 2.

The details are left for Exercis. 33.
The same result could have been reached by another route if we assume

that generating functions sati dy some familiar laws for exponents. According to
Exercise 27 of Section 8.5, we have

( + X + x2 J- a ) 2 = I + 2x + 3x2 + 4X3 +

Thus

(l+2x±3x 2+4x'1 * 1 =[(l+x+x 2 +x 3 + ... ) 2]-1

2

= [(1+x +x2 +x 3 + . 1 -]2

= [1 -x

= 1- 2x +x2

where the next-to-last equality comes from (8.6). +

Generating functions are an extremely flexible tool for studying combinato-
rial sequences, and we will only be able to touch on a few of their applications
here. Given a recurrence relat vcn, it is often possible to use it to construct the gen-
erating function for the corresponding sequence. This is illustrated by the next
example.

+ Example 8.32

Consider the sequence {mn,} cf Example 8.2, which concerned the Towers of
Hanoi game. The number m, is the minimal number of moves needed to transfer
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a stack of r disks to an empty peg. We found that ml = 1 and mr = 2mr-I + 1
for r > 2. In fact, if we define mO to be 0, then our recurrence relation holds for
r > 1.

Let us define M to be the generating function for {mr }, so that

M = mO + m x + m 2x 2 + m 3x
3 + * * .

Then since mO = 0 and mr = 2 mr-1 + 1 for r > 1, we have

M = 0 + (2mo + l)x + (2m, + 1)x 2 + (2m 2 + 1)x3 +

= 2mox + lx + 2mlx 2 + 1x 2 + 2m2 x 3 + 1x 3 + * .

= 2x(mo + mlx + m 2x2 + m3x3 + )+ x + x 2 + x3 +

= 2xM +x(l +x +x 2 + ).

Then

M - 2xM = x(l + x + x2 +.),

or

M(1 -2x) = x(l + x + x2 + )=x(l-x)-i,

where the last equation follows from setting G = x in (8.6). Thus we have

x
M =

(1 -2x)(1-x)'

where we have indicated the inverses by the usual fraction notation.
In order to get a formula for the coefficients of M, we will express the fraction

on the right in the form

a b

1-2x 1 -x'

where a and b are constants.' We have

x a b a(l - x) + b(1 - 2x)
(1 - 2x)(1 - x) I - 2x 1 - x (1 - 2x)(1 - x)

(a + b) + (-a - 2b)x

(1 - 2x)(1 - x)

and therefore by equating coefficients in the numerators we get a + b = 0 and
-a - 2b = 1. These equations are easily seen to have the solution a = 1 and
b = -1. Thus

x 1 1
M2 -=

(1 - 2x)(1 - x) I - 2x I - x

'Calculus students may recognize the method of partial fractions.
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But then (8.6) yields

M = (1-2x)-1 -(I-x)-1

= (I + 2X + 4x 2+ 8x 3 + -(I + x + x 2+ x 3 + .

= (1 -1) + (2 -- 1)x + (4 -)x 2 + (8-1)x3 +.

Thus we see that mr, the coefficient of xr, is 2 r - 1. This agrees with what we
found in Section 8.2. +

The method of Example S. 32 can be used on any first-order linear difference
equation. In fact, an alternate proof of Theorem 8.1 can be based on it; the details
are left for the exercises. Generating functions can also be applied to higher order
recurrences, as in the next example.

4 Example 8.33

Let us consider the recurrence relation

So = 0, S, = 1, Sn = 2sn-I -Sn-2 for n > 2.

If S is the generating function for this sequence, then

S = So + SIX + - 2 .x2 ±s 3 X3 + * -

= so + six +(2s 1 - so)x 2 + (2s 2 sO)x3 +* -

=O+x+2x(sX+S2X2 + * )-X 2 (So+SIX+ *)

= x + 2x(S - s,)) - x 2 S

= x + 2xS- 'S.

Thus we have

S - 2xS+x 2 S =x,

S(1 -- Id + x2) = x,

S =x(l-2x+x 2 )-1.

But in Example 8.31 we fourd that the generating functions

1-2x+x 2  and 1+2x+3x2+4x3 + +

are inverses of each other. Thus

S = A (I+ 2x + 3x 2 + 4x 3 +

=.A 4-2x +3x =4xnn ..e,

from which we see that Sr = r for all nonnegative integers r.
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o Example 8.34

Let us use a generating function to find a formula for s,, where so = s, = 1, and
Sn =-s,-, + 6sn-2 for n > 2. If S is the generating function for {ns, then

S =So + SIX + S 2X2 + S3X
3 + * -

= + X + (-s1  + 6so)x2+ (-S2 + 6sl)x3 +

= l+x-x(sIx+s 2 x 2 +*.-)+6x 2 (so+sSX --)

= 1 +x -x(S -so)+6X2 S

= 1+x -x(S - 1)+6x2 S

= 1+2x-xS +6x 2S.

Thus

S + xS - 6x2S = 1 + 2x,

S(1 +x - 6x2) = 1 + 2x,

S(l + 3x)(1 - 2x) = 1 + 2x,

and so

1 + 2xC=-
(1 + 3x)(1 -2x)

We will attempt to find constants a and b so that the last fraction has the form

a b
1+3x 1 - 2x

This gives

1 +2x a b a(1 - 2x) + b(1 + 3x)
(1 + 3x)(1 - 2x) +3x '1 - 2x (1 + 3x)(1 - 2x)

and so a + b = 1 and -2a + 3b = 2. Solving these equations simultaneously
yields a = 1 and b = 4-5.

Now we use (8.6) to write

1 1 4 1
5 1 + 3x 5 1 - 2x

=(l - 3x + 9x 2 - 27x3 +...) + -(1 + 2x + 4X2 + 8x3 + ).
5 5

Picking off the coefficient of x' tells us that

1 4
S = -(-3)n + -(2)n.

5 5

479
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For example, we have so + 4 1, SI = 0 (-3) + 4(2) = -3 + 1, and
S2 =(9) + 5(4) = + -5. O

The result of Example 8.34 could also have been found using Theorem 8.2.
In fact, a proof of Theorem 8.2 using generating functions is sketched in the
exercises at the end of this section.

+ Example 8.35

An embassy communicates wi th its home country in code words consisting of
a string of n decimal digits. In order to catch errors in transmission, it is agreed
that the total number of 3s and 7s in each word should always be odd. How many
code words are possible?

Let Sn be the number of allowable words of length n. We can get a recurrence
relation for Sn as follows. Consider a word W of length n + 1 counted by sn+1. It
either ends in a 3 or a 7 or noi. If it ends in a 3 or a 7, then the word W* of length
n formed by deleting the last digit from W must have an even number of 3s and
7s. Since there are Ion strings of n decimal digits, the number of such words W*
is ion - s, Thus the number of possible words W of this form is 2(10 - Sn),
since the last digit of W can be 3 or 7.

Now suppose that the allowable word W ends in a digit other than 3 or 7. Then
deleting its last digit leaves a word counted by Sn. Since there are 8 possibilities
for the last digit of W, the number of allowable words of this form is 8 sn,

By combining the results of the last two paragraphs, we see that

Sn+- = 2(10' -SO) + 8s, = 2 10' + 6s,

for n > 1. Clearly so = 0, since the empty string cannot have an odd number of
3s and 7s. Using this relation allows us to compute the following table.

n Sn

0 0

1 2 100+6 0= 2

2 2. 10 +6 2 = 32

3 2 102 + 6 32 = 392

For example, S2 counts the number of 2-digit strings with exactly one 3 or 7. Since
we can use either a 3 or 7, since this can be either the first or second digit, and
since there are 8 choices for the remaining digit, the number of such strings is
2 . 2. 8 = 32.

Now we will use generating functions to get an explicit formula for sno. Let
S be the generating function for {sn }, so that

S = SC + SIXi + S2X + S3X +3 .
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Then we have

S = so + (2 100 + 6so)x + (2 101 + 6s1)x2 + (2 102 + 6s2)x3 +

= so + 2x(100 +lOIx + 102X2 + .. ) + 6x(so + sIx + s 2x
2 + s 3x

3 + )

= 0 + 2x(1 + lox + (lOx)2 + )+ 6xS

= 2x(1 - lOx)- + 6xS.

Solving for S yields

S(1 - 6x) = 2x(1 - lOx)-f,

or

2x
(1 - 6x)(1 - lox)

We will find constants a and b such that

2x a b a(l-lox) + b(l-6x)

(l - 6x)(1 - lox) 1 - 6x 1 - lox (1 - 6x)(1 - lox)

Equating numerators gives the equations a + b = 0 and -IlOa - 6b 2. We
easily find that a =1- and b =1. Thus

11
S=--(1-6x)-1 + -(1-lOx)-

2 2

= -[(1 - lOx)- -(1 - 6x)-1]
2

=I-[(1+10x+l00x 2 + )-(1+6x+36x2 + A)],
2

from which we see that the coefficient of xr in S is

lor - 6r
Sr 2

For example, 52 = 102 36 = 32, and S3 = 10002 216 - 392. These values agree
with our earlier computations. #

EXERCISES 8.6

In Exercises 1-10 find the inverse of the given generating function.

1. 1-3x 2. 1-5x 3. 1+2x+4x 2 +8x 3 + +

4. 1-3x+9x 2 -27x3±+** 5. 1+x 2  6. 1+2x3

7. 1-x-x 2  8. l+x+x3  9. 2+6x

10. 1 + x
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In Exercises 11-20 let S be the generating function of the sequence {Sn 1. Find an equation satisfied by S as in
Examples 8.32 through 8.35, and solve for S.

11. so= 1, and Sn =2s,_- +1 for n > 1

12. so = 3, and Sn =-Sn-I + 2 for n > 1

13. so = 1, si = 1, and Sn = 2s5 i- S-2 for it > 2

14. so = 2, s, = 1, and Sn = Sn - 3s,-2 for t > '2

15. so=-1, s, = 0, and Sn =-Sn-1 + 2sn-2 for n > 2

16. so = 0, si =-2, and Sn = 3s,_1 + S,-2 for n - 2

17. so =-2, sI = 1, and Sn = S,-, + 3s,-2 + 2 for n > 2

18. so =-3, s, = 2, and s = 4sn- -5sn-2- 1 for n > 2

19. so = 2, sI = -1, S2 = 1, and Sn = Sn - 3Sn-2 + 3n-3 for n > 3

20. sO= 1, sI = 1, s 2 = 5, and Sn 
=  

2Sn-1 + S,- 2 
-- Sn-3 for n > 3

In Exercises 21-26 find constants a and b such that the given equations are identities in x.

x a h 2 a b
21. = + 22. = +

(1-x)(1 + 2x) 1-x 1 +2x (1 + x)(1 + 3x) 1 + x 1 + 3x

23 1 + 3x a + b 24 1-x a + b
(1 + 2x)(1-x) 1 + 2x 1-x (I + 2x)(1-3x) I + 2x 1-3x

1 +1x a b 3-x a b
2.= + T__+x22'). ~ 1
(1 + 2x) 2  1 + 2x (1 + 2x)2  2. X) 2 = + ( X) 2

In Exercises 27-32 give a formula for S,, if {Sn ) has the given generating function S.

27. S= I + 1 28. S = x3 1
1- 2x I1+x I- 3

29. S= I+ 430. S= 3 +
1-2x +15x 1-x 1+2x

2 2 1
31. S = I 3x2  32. S = - + 1 + 2

1 ~1 -x 1x

33. Suppose that bo = 1, bi =-2, b2 = 1, and bn + 2bn-I + 3b,-2 + + (n + 1)bo = 0 for all n > 1. Prove by
mathematical induction on n that bn = 0 for n > 3.

In Exercises 34-36 assume that so is given, and that s, = aSn-I + b for n > 1, where a and b are constants and
a 7# 1.

34. Show that if S is the generating function for {Sn ), then

S =so+axS +bx(1-x)-1.

35. Show that
so + (-so + b)x k1  _ k2

(1-ax)(1-x) 1-ax 1 -x

where

k, = so +-- .md k2 =
a-1 a -1
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36. Show that

Sn =(So+a i)an - i for n > 0.

In Exercises 37-43 consider the second-order homogeneous difference equation

8n = asn-1 + bSn-2,

where so and s, are given. Assume that x 2 -ax - b = (x - rl)(x -r 2).

37. Show that r, + r2 = a, rr 2 = -b, and 1 - ax - bx2 = (1- rx)(l - r2x).

38. Show that if S is the generating function for Is, , then

S = so + six + ax(S - so) + bx2S.

In Exercises 39-40 assume that r1 :$ r2.

39. Show that there exist constants cl and c2 such that

so + (s1 + aso)x cl C2

(1- rx)(1 -r 2 x) 1-rx 1 -r 2 x

40. Show that s, = clrn + c2r' for n > 0, where cl and c2 are as in Exercise 39.

In Exercises 41-43 assume that r, = r2 = r :A 0.

41. Show that there exist constants kA and k2 such that

so + (s1 +aso)x k k1  k2

(1 -rx) 2  1-rx (1-rX)2

42. Show that s, = kjr' + k2(n + l)r' for n > 0, where k, and k2 are as in Exercise 41.

43. Show that there exist constants cl and c2 such that s, = cjr' + nC2r' for n > 0.

HISTORICAL NOTES

Recursion has been used from Greek times. Its formal development, however, dates back
only to the past two and one-half centuries.

Archimedes had two relationships that involved recursion. If a, and An are, respec-
tively, the areas of the polygons with n sides inscribed in and circumscribed about a circle,
they are related by the formulas

a2n = V A and A 2n 2Ana2
AI + a2r

In a like manner, when p,~ and P,, are the perimeters of the regular polygons inscribed in
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and circumscribed about a circle, wve have

P2n = V/ 0a P2n and P2n = 2Pp
Pn + Pn

Starting with a regular hexagon, Archimedes developed reasonable estimates for the value
of 7r [73].

In his Liber Abaci of 121)2, Leonardo of Pisa (c. 1175-1250), known as Fibonacci,
provided the first systematic introduction for Europeans to the Arabic notation for numerals
and their algorithms for arithmetic. As part of the text, Fibonacci presented his famous
recursion problem dealing with generations of rabbits. While he did not develop any of

Edouard the many relationships stemming rom the recursion, the pattern was named in his honor
Lucas by the French mathematician Edoliard Lucas in the late 1800s.

The formula in Example 8.17 for the Fibonacci numbers was not derived until 1718,
..-T I 1t 4 a: -.. A,17cAX. .v . L- - -- A_ - .. I -- Id-
when Abraham De ivioivre 1,00/-1 /34) obtained me result with an approach using a
generating function. Extending the general techniques, Leonhard Euler (1707-1783) ad-
vanced the study of the partition, of integers in his 1748 two-volume opus Introductio in
Analysin Infinitorum. Pierre Simon de Laplace (1749-1827) also published a significant
amount of work on generating functions and their applications in his 1754 work The Cal-
culus of Generating Functions. TI e mathematical analysis of Tower of Hanoi puzzle and

Abraham its general closed form solution via generating functions is credited to Lucas in his 1884

De Moivre work Recrc'ations Mathematique s [74].

SUPPLEMENTARY EXERCISES

In Exercises 1-5 determine S5 if So, S5, S2, ... is a sequence satisfying the given recurrence relation and initial
conditions.

1. Sn = 
3 sn i + n 2  for n > 1, so = 2 2- Sn = (-l)n + s,_] for n > 1, so = 1

3. s, = 2ns,- for n > 1, so = I 4i s, = 3(s,_1 + Sn-2) for n > 2, so = 1, s1 = 2

5. Sn = nsn- -Sn-2 for n > 2, so = 1, s- = 1

6. Suppose that $20,000 is deposited in an account with an annual interest rate of 8% compounded quarterly. Each
quarter there is a withdrawal of $200 immediately afie- interest is credited to the account. Write a recurrence
relation and initial conditions for vn, the value of the ac count n quarters after the initial deposit.

7. A data processing position pays a starting salary of $16,000 and offers yearly raises of $500 plus a 4% cost
of living adjustment on the present year's salary. Write a recurrence relation and initial conditions for sno the
salary during year n.

8. An ecology group bought a printing press for $18,000 to print leaflets. If the resale value of the press decreases
by 12% of its current value each year, write a recurrence relation and initial conditions for v,, the resale value
of the press n years after its original purchase.

9. Write a recurrence relation and initial conditions for the number Cn of n-symbol codewords composed of dots
and dashes with no two consecutive dashes.

10. Suppose that, at the beginning of an experiment, there are 500 cells in a sample and the number of cells is
increasing at the rate of 150% per hour. Write a rectune ice relation and initial conditions for ca, the number of
cells in the sample n hours after the start of the experiment.
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11. Suppose that the efficiency en of a worker on an assembly line processing n units per minute is equal to the
efficiency of the same worker processing n - 1 units per minute minus an incremental loss for the nth unit.
Assume that the incremental loss is inversely proportional to n2. Write a recurrence relation describing the
efficiency of the worker.

12. Twenty years ago, an individual invested an inheritance in an account that pays 8% interest compounded
quarterly. If the present value of the account is $75,569.3 1, what was the initial investment?

13. Prove by mathematical induction that 2n2 + 2n is a solution to the recurrence relation Sn = s, I + 4n for n > 1
with the initial condition so = 0.

14. Prove by mathematical induction that 2 n-l + 2 is a solution to the recurrence relation s, = 2sn - -2 for n > 2
with sI = 3.

15. Prove by mathematical induction that (n + 1)! -1 is a solution to the recurrence relation s, = -s,_ + n n!
forn > I with so = 0.

16. Prove that 2" + 2(3n) + n - 7 is a solution to the recurrence relation s, = 5s, I- 6s,-2 + 2n - 21 for n > 2
with the initial conditions so = -4, sI = 2.

Find an explicitformulafor s if so, s, S2, .... is a sequence that satisfies the recurrence relation and initial conditions
given in Exercises 17-20.

17. Sn = 3Sn-I - 12 for n > 1, so = 5
18. s, = Sn-I + 7 for n > 1, so = 2

19- Sn = 4sn-, -4Sn-2 for n > 2, so = 4, s1 = 6
20. Sn = 7

5n-I - '
0

Sn-2 for n > 2, so = -2, SI = -I

A Lucas sequence is a second-order homogeneous linear difference equation with constant coefficients that is
similar to the Fibonacci sequence. The general Lucas sequence can be defined as

p for n = I

Ln = q for n = 2

L_ + L- 2  forn > 3,

where p and q are integers.

21. Find the first 10 terms of the Lucas sequence with initial conditions L I = 3 and L2 = 4.

22. Compute (to three decimal place accuracy) the quotient Li+, for the values obtained in Exercise 21. Compare
the resulting quotients with the value of , the golden ratio.

23. Prove that if Ln is a Lucas sequence with initial conditions LI = p and L2 = q, then Ln = qFn-1 + pFn-2
for all n > 3.

24. Solve the system of recurrence relations

Sn = 
8

sn-1 -9tn-I

t,, 
6

sn-I -
7
tn-I

with the initial conditions so = 4, to = 1. (Hint: Substitute Sn = 3Un + vn and tn = 2
Un + vn, and solve for un

and Vn -)
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25. Let k be a positive integer and a,, a2, ... , ak be real numbers such that ak # 0. We call the equation
xk = a1 xk-I + a2 xk-2 + + ak the auxiliary equation of the recurrence relation

S- = alns-I + 12S,-2 + * * * + akSn-k (8.7)

Prove that rn is a solution of (8.7) if and only if r is a root of the auxiliary equation.

26. Prove that if u, and Vn satisfy (8.7) for n > k, then for any constants b and c, bun + cv, also satisfies (8.7) for
n > k.

27. Find an explicit formula for S, if SO, S1 , S2 .... is a sequence that satisfies S, = 3s,-, + 1S,-2- 24Sn-3 for
n > 3 and the initial conditions so = -4, 5, =9. 9.2 = 13. (Hint: Proceed as in Theorem 8.2(a) using the
results of Exercises 25 and 26.)

28. Findanexplicitformulaforsnifs o ,s 1,s2, ... isasequer-cethatsatisfiess = 6s,-I -l2s,-2+8s,-3forn > 3
and the initial conditions So = 5, si = 6, S2 = -20. (hint: Proceed as in Theorem 8.2(b) using the results of
Exercises 25 and 26.)

29. Find an explicit formula for s, if sO, SI, S2, ... is a sequence that satisfies s, = 3Sn-2 + 2s,-3 for n > 3 and the
initial conditions so = 4, sl = 4, S2 = -3. (Hint: P'roceed as in Theorem 8.2(b) using the results of Exercises
25 and 26.)

30. A linear inhomogeneous difference equation with constant coefficients is a recurrence relation of the form

S- = als.-I + a2 S.,--2 + * * + akSn-k + f(n), (8.8)

where f is a nonzero function. Prove that if u, satisfy s (8.8) for n > k, then every solution of (8.8) has the
form un + v,, where v, satisfies (8.7) for n > k. (Hint if wn is a solution of (8.8) for n > k, consider Wn-, U,,)

31. (a) Find values of a and b so that an + b satisfies tie recurrence relation S, = S,-i + 6Sn-2 + 6n - I for
n > 2.

(b) Use Exercise 30 to find an explicit formula for s,, if So, sI, S2, . . . is a sequence satisfying the recurrence
relation Sn = Sn,- + 6 sn-2 + 6n - 1 for n > 2 and the initial conditions so = -6, si = 10.

32. As in Exercise 31, find an explicit formula for s, ifsO, s , S2, . . . is a sequence satisfying the recurrence relation
Sn = 5s,-1 + 6s,-2 + lOn - 37 for n > 2 and the iniial conditions so = 7, Si = 3.

33. Explain as in Example 8.22 the operation of the binary search algorithm to search the list 2, 4, 6, 8 for the
number 6.

34. Explain as in Example 8.22 the operation of the binary search algorithm to search the list 2, 4, 6, 8 for the
number 7.

Determine the number of comparisons needed by the merging algorithm to merge the lists in Exercises 35-38.

35. (45, 57) and (59, 87) 36. (45, 59) and (57, 87)

37. (1,3,5,7)and(2,4,6,8) 38. [(I)and(2,3)] and(4)

39. Give an example of ordered lists a,, a2 . am and bl, b2 , .. . , bn whose merging by the merging algorithm
requires the minimum number of comparisons. Assume that m < n.

40. Give an example of ordered lists a,, a2, . . ., am and bl, b2 , ... , b, whose merging by the merging algorithm
requires the maximum number of comparisons. Assume that m < n.

In Exercises 41-44, let S be the generating function of taeh sequence {s,} Find an equation satisfied by S as in

Section 8.6, and solve for S.

41. so = I and Sn = 2s,- 1 for n > 1 42. so = I and Sn = Sn-I + 2 for n > 1

43. so = 1, si = 1, andSn = -2sn- I - Sn-2 for n > 2 44. so = 0, s1 = 1, and sn = Sn-2 for n > 2
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In Exercises 45-48 give a formula for s, if is, } has the given generating function S.

45. S= 546. S -
1 + 2x 1 + 6x

47. S= 1- + 48. S= I + 1
1 -2x 1 -3x 1- 2x 1- x

In Exercises 49-55 give a generating function for the sequence {an }.

49. Let ar be the number of ways to select r balls from 3 red balls, 2 green balls, and 5 white balls.

50. In a soft serve ice-cream shop, Great Northern Delites are made using one candy bar flavor chosen from Heath,
Snickers, or Butterfinger. Let ar be the number of possible orders for r Great Northern Delites.

51. In a store giveaway, 6 individual winners were identified. Each winner received at least 2 prizes, but no more
than 4 prizes, and r identical prizes were awarded. Let a, be the number of ways the prizes could have been
distributed among the winners.

52. Let ar be the number of ways of selecting r pastries from a cabinet containing three each of cherry-filled
Bismarcks, lemon-filled Bismarcks, vanilla long-johns, chocolate long-johns, vanilla twists, chocolate twists,
bearclaws, and apple fritters.

53. Let ar be the number of ways r cents worth of postage can be placed on a letter using only 5¢, 12¢, and 25¢
stamps. The positions of the stamps on the letter do not matter.

54. Sample packages of chocolate and licorice are being made. Each package must contain r pieces of candy,
including at least 3 pieces of chocolate and at most 2 pieces of licorice. Let ar be the number of different ways
to fill a package.

55. Let ar be the number of ways to pay for an item costing r cents with pennies, nickels, and dimes.

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given a recurrence relation s, = aISn-I + a2S,-2 + + akSn-k and initial values so, s , Sk-1, compute a
specified term of the sequence defined by these conditions.

2. Given a positive integer n, list the moves necessary to win the Towers of Hanoi game with n disks using the
fewest possible moves.

3. Given a positive integer n, compute the nth Catalan number. (See Example 8.5.)

4. Given a positive integer n, list all the sequences in which the numbers 1, 2, . . ., n can leave a stack if they enter
it in sequence. (See Example 8.5.)

5. Given positive integers a and b, simulate 500 trials of the game in Example 8.18.

6. Given a list of n integers and a target integer t, find the first occurrence of t in the list using the sequential
search algorithm in Section 8.4.

7. Given a list of n integers and a target integer t, find an occurrence of t in the list using the binary search
algorithm in Section 8.4.

8. Given a list of n real numbers, sort the list into nondecreasing order using the merge sort algorithm in Section 8.4.
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9. Given a list of 2k real numbers for some nonnegative integer k, sort the list using the Bose-Nelson algorithm
described in Exercise 40 of Section 8.4.

10. Give f (x) = ao + a, x + *.. + anx' and g(x) = b) I - 1 x + + bnx' and a nonnegative integer k, compute
the coefficient of xk in the polynomial f (x)g(x).
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Combinatorial Circuits and
Finite State Machines
9.1 Logical Gates

9.2 Creating Combinatorial Circuits

9.3 Karnaugh Maps

9.4 Finite State Machines

1Today tiny electronic devices cal led microprocessors are found in such diverse
places as automobiles, digital watches, missiles, electronic games, compact disc
players, and toasters. These devices control the larger machines in which they
are embedded by responding to a variety of inputs according to a preset pattern.
How they do this is determined by the circuits they contain. This chapter will
provide an introduction to the logic of such circuits.

9.1 + LOGICAL GATES

The sensitive electronic equipment in the control room of a recording studio
needs to be protected from both high temperatures and excess humidity. An air
conditioner is provided that must go on whenever either the temperature exceeds
80° or the humidity exceeds 50%. What is required is a control device that has two
inputs, one coming from a thermostat and one from a humidistat, and one output
going to the air conditioner. It must perform the function of turning on the air
conditioner if it gets a yes signal from either of the input devices, as summarized
in the following table.

Temperature > 80 ° ? Humidity > 50%? Air conditioner on?

no no no

no yes yes

yes no yes

yes yes yes

We will follow the usual custom of using x and y to label our two in-
puts and 1 and 0 to stand for the input or output signals yes and no, respec-
tively. Thus x and y can assume only the values 0 and 1; such variables are

489



490 Chapter 9 Combinatorial Circuits and Finite State Machines

called Boolean variables. These conventions give our table a somewhat simpler
form.

x Y Output

0 0 0

0 1 1

1 0 1

1 1 1

The required device is an example of a logical gate, and the particular one
whose working we have just described is called an OR-gate, since its output is I
whenever either x or y is 1. We will denote the output of an OR-gate with inputs
x and y by x v y, so that

I I J if x=1I or y=lI
otherwise.

We will not delve into the internal workings of the devices we call logical
gates, but merely describe hois they function. A logical gate is an electronic device
that has either 1 or 2 inputs ani a single output. These inputs and output are in
one of two states, which we denote by 0 and 1. For example, the two states might
be a low and high voltage.

Logical gates are represented graphically by standard symbols established by
the Institute of Electrical and Electronics Engineers. The symbol for an OR-gate
is shown in Figure 9.1.

x--- xv y

OR-gate

FIGURE 9.1

We will study only two other logical gates, the AND-gate and the NOT-gate.
Their symbols are shown in Figure 9.2. Notice that the symbols for the OR-gate
and AND-gate are quite similar, so care must be taken to distinguish between
them.

xz xD^Y x
AND-gate NOT-gate

FIGURE 9.2
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The output of an AND-gate with inputs x and y is 1 only when both x and
y are 1. This output is denoted by x A y, so that the values of x A y are given by
the following table, which, as in logic, is called a truth table.

X y XAy

0 0 0

0 1 0

1 0 0

1 1 1

Example 9.1

An ink-jet printer attached to a personal computer will print only when the "on-
line" button on its case has been pressed and a paper sensor tells it that there is
paper in the printer. We can represent this as an AND-gate as in Figure 9.3. ~

on-line?

print

paper present?

FIGURE 9.3

The other logical gate we will consider is the NOT-gate, which has only a
single input. Its output is always exactly the opposite from its input. If the input
is x, then the output of a NOT-gate, which we will denote by x', is as follows.

x x

1 0

Example 9.2

A rental truck is equipped with a governor. If the speedometer exceeds 70 miles
per hour, the ignition of the truck is cut off. We can describe this with a NOT-gate
as in Figure 9.4. +

speed greater than 70? ignition

FIGURE 9.4

The reader familiar with logic will notice the similarity between the three
gates we have described and the logical operators "or," "and," and "not." Although
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other logical gates may be defined, by appropriately combining the three gates
we have introduced, we can simulate any logical gate that has no more than two
inputs.

+ Example 9.3

A home gas furnace is attached to two thermostats, one in the living area of the
house and the other in the chamber where the furnace heats air to be circulated.
If the first thermostat senses that the temperature in the house is below 68°, it
sends a signal to the furnace to turn on. On the other hand, if the thermostat in
the heating chamber becomes l otter than 150°, it sends a message to the furnace
to turn off. This signal is for reasons of safety and should be obeyed no matter
what message the house thermostat is sending.

house temperature below 6Xc?-

furnace

heating chamber temperature
greater than I 50 °?

FIGURE 9.5

One arrangement of gates giving the desired output is shown in Figure 9.5. It
is easier to check the effect of this arrangement if we denote the signals from the
two thermostats by x and y as il Figure 9.6. We can compute the value of x A y'

for the possible values of x and y by means of a truth table.

x --

OX

Y D'S
y

FIGURE 9.6

x Y

O (room ok) 0 (chamber ok)

o (room ok) I (chamber hot)

I (room cold) 0 (chamber ok)

I (room cold) I (chamber hot)

y XAy'

I 0 (furnace off)

o o (furnace off)

1 I (furnace on)

o 0 (furnace off)

-
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Notice that the furnace will run only when the house is cold and the heating
chamber is not too hot. +

Figure 9.6 shows an example of combining logical gates to produce what
is called a combinatorial circuit, which we will usually refer to simply as a
"circuit." More than two independent inputs are allowed, and an input may feed
into more than one gate. A more complicated example is shown in Figure 9.7, in
which the inputs are denoted by x, y, and z.

X DL D

FIGURE 9.7

We will only consider circuits that have a single output, and we will not
allow circuits such as shown in Figure 9.8, in which the output of the NOT-gate
doubles back to be an input for the previous AND-gate. (We leave the precise
formulation of this condition for the exercises.) In Figure 9.7 the input x splits at
the heavy dot. In order to simplify our diagrams we may instead label more than
one original input with the same variable. Thus Figure 9.9 is simply another way
to draw Figure 9.7.

x

y

FIGURE 9.8

Y >
l (X V )V (A A Z)

z

FIGURE 9.9

The effect of complicated circuits can be computed by successively evaluating
the output of each gate for all possible values of the input variables, as in the
following truth table.
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TABLE 9.1

(X V y') V (X A Z)x

0

0

0

0

The strings of symbols heading the columns of our table are examples of
Boolean expressions. In general, given a finite set of Boolean variables, by a
Boolean expression we mean any of these Boolean variables, either of the con-
stants 0 and 1 (which represent variables with the constant value 0 or 1, respec-
tively) and any subsequently formed expressions

BvC, B AC, or B',

where B and C are Boolean expressions.

Example 9.4

Which of the following are Boolean expressions for the set of Boolean variables
x, y, z?

X V iy A (x A z')') l A y z

(X Z) V y V y'A O

The first three are Boolear expressions, but the last two are not, since neither
A' nor vy' makes sense. +

Just as a combinatorial circuit leads to a Boolean expression, each Boolean
expression corresponds to a circuit, which can be found by taking the expression
apart from the outside. Consider the first expression of Example 9.4, which is
X V (y A (X A z')'). This corresponds to a circuit with an OR-gate having inputs
x and y A (x A z')', as in Figure 9.10. By continuing to work backward in this
way, we find the circuit shown in Figure 9.11.

y

0

0

l
I

0

0

1

1

XVyIz

0

l0

I0

0

()

0

0

0

01o

1o

XAZ

0

0

0

0

0

0
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X

X V (y A (X A Z'))

Y A (X

FIGURE 9.10

FIGURE 9.11

It may be that different circuits produce the same output for each combination
of values of the input variables. For example, if we examine Table 9. 1, in which
we analyzed the effect of the circuit in Figure 9.9, we may notice that the output
is 1 exactly when x is 1 or y is 0. Thus, the circuit has exactly the same effect
as that corresponding to x v y', shown in Figure 9.12. Since this circuit is much
simpler, manufacturing it rather than the circuit of Figure 9.9 will be cheaper.
A simpler circuit will also usually run faster. Some integrated circuits contain
more than 100,000 logical gates in an area of one square centimeter, and so their
efficient use is very important.

x r x vy

Y

FIGURE 9.12

Circuits that give the same output for all possible values of their input variables
are said to be equivalent, as are their corresponding Boolean expressions. Thus,
(x V y') V (X A z) is equivalent to x v y', as can be confirmed by comparing the
following table to the truth table for (x v y') v (x A z) (Table 9.1).

x

0

0

0

0

1

y

0
0

0

0

1

1

z

0

I 0

0

0

0

YI

I

I

00oo
o

X V y'

I

I
0

0

1
I
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Since the circuits corresponding to equivalent Boolean expressions have ex-
actly the same effect, we will write an equal sign between such expressions. For
example, we will write

(x V y') V (x A z) = x V y'

since the truth tables of the two expressions are the same. In subsequent sections,
we will study how we can reduce Boolean expressions to simpler equivalent
expressions to improve circuit design.

EXERCISES 9.1

In Exercises 1-8 write the Boolean expression associated w,7th each circuit.

2. x

y

5

y

1.
*Y r

Yes[

y

x5.

y

5

4.x
y

5

y

6. x r11
*Y {C
X DCMy

8. .

S

y

In Exercises 9-14 draw a circuit representing the given Boolean expression.

9. (X A y) V (X' V y)

11. [(X A y') V (X' A y')] V [X' A (y V z)]

13. (y' A z') V [(W A X') A yT]

10. (X' A y) V [X A (y A Z)]

12. (W A x) V [(x V y') A (W' V x')]

14. [X A (y A z)] A [(x' A y') V (z A W')]



9.1 Logical Gates 497

In Exercises 15-18 give the output valuefor the Boolean expression with the given input values.

15. (X Vy)A(x'Vz) forx = 1, y = 1, z =0
16. [(X A y) V z] A [x V (y'A z)J for x = O, y = 1, z = 1

17. [X A(y Az)]' forx = O, y = 1, z = O
18. [(x A (y A z')) V ((x A y) A z)] A (X V z') for x = O, y = 1, z = O

In Exercises 19-22 construct a truth tablefor the circuit shown.

19. x
y

x

y

21. x
z

y

20. x
y

x

22. x
y

x

y
z

In Exercises 23-28 construct a truth tablefor the given Boolean expression.

23. X A (y V X')

25. (X A y) V (x' A y')'

27. (X V y') V (X A Z')

24. (x v y')' v x

26. x V (X' A y)

28. [(X A y) A z] V [x A (y A z')]

In Exercises 29-36 use truth tables to determine which pairs of circuits are equivalent.

29. x

y | andx

x

y
x

30.

and X

y

31. a
X >and

y

32. x x

x and x

y y
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33. x

v = Xand =
y ---

x
y

34. x x - IN

y xand

y -

35. -

35 x

and

y

36.x
y x

and y I

In Exercises 37-42 use truth tables to determine whether o.- not the Boolean expressions given are equivalent.

37. x v (x Ay) and x

38. x A (x' A y) and x A y

39. [(x V y) A (x' V y)] A (y V z) and (x V y) A (X' V z)

40. (x A (y A z)) v [x'V ((x A y) A z')] and x'V y
41. y' A (y V z') and y' A x'

42. x A [w A (y V z)] and (x A w) A (y V z)

43. A home security alarm is designed to alert the police department if a window signal is heard or if a door is
opened without someone first throwing a safety switch. Draw a circuit for this situation, describing the meaning
of your input variables.

44. The seatbelt buzzer for the driver's side of an autornobilh will sound if the belt is not buckled, the weight sensor
indicates someone is in the seat, and the key is in the ignition. Draw a circuit for this situation, describing the
meaning of your input variables.

45. Prove that equivalence of Boolean expressions using a fixed finite set of Boolean variables is an equivalence
relation as defined in Chapter 2.

46. Define the directed graph associated with a combinatorial circuit. State a condition on this directed graph that
excludes circuits similar to that shown in Figure 9.8.
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47. What is the output of the illegal circuit shown for x = 0 and 1?

X

9.2 + CREATING COMBINATORIAL CIRCUITS

In Section 9.1 we saw how each combinatorial circuit corresponds to a Boolean
expression, and observed that sometimes we could simplify a circuit by finding a
simpler equivalent Boolean expression. One way to simplify Boolean expressions
is by using standard identities, much in the way that the algebraic expression
(a + b)2 - b(b - 3a) can be reduced to a(a + 5b) by using the rules of algebra.
Some of these identities for Boolean expressions are listed in Theorem 9.1.

Theorem 9.1 For any Boolean expressions X, Y, and Z,

(a) XAY =YAXandXvY =YvX
(b) (XAY)AZ=XA(YAZ)and(XvY)vZ=Xv(YvZ)
(c) XA(YvZ)=(XAY)v(XAZ)and

X V (Y A Z) =(X V Y) A (X v -)
(d) XV(XAY)XA(XVY)= X
(e) XVX=XAX=X
(f) XvX'= landXAX'=0
(g) Xv0=XA1I=X
(h) XA0=0andXvl=I
(i) (X')' = X, O' = 1, and l' = 0
(j) (XvY)'=X'AY'and(XAY)'=X'vY'.

Many of these identities have the same form as familiar algebraic rules. For
example, rule (a) says that the operations v and A are commutative, and rule (b)
is an associative law for these operations. In spite of rule (b), x v (y A z) is not
equivalent to (x v y) A z.

Rule (c) gives two distributive laws. For example, if in the first equation of
rule (c) we substitute multiplication for A and addition for v, we get

X(Y + Z) = (XY) + (XZ),

which is the distributive law of ordinary algebra. Making the same substitution
in the second equation, however, produces

Y + (YZ) = (X + Y)(X + Z),

which is not an identity of ordinary algebra. Thus these rules must be used with
care; one should not jump to conclusions about how Boolean expressions may be
manipulated based on rules for other algebraic systems.
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The equations of rule J) a-e known as De Morgan's laws; compare them to
the rules for the complements of set unions and intersections in Theorem 2.2. The
validity of all these identities can be proved by computing the truth tables for the
expressions that are claimed i:c be equivalent.

+ Example 9.5

Prove rule (d) in Theorem 9. ].
We compute truth tables for the expressions X V (X A Y) and X A (X V Y)

as follows.

x

01o

1o

y

0

0
1

XA}

0
(1

X V (X A Y)

0

0

1

.1

XvY

0

l
I

X A (X V Y)

0

0
1

I

Since the first, fourth, and sixth columns of this table are identical, rule (d) is
proved. +

As an example of the use of our rules, we will prove that the expressions
(X V y') V (x A z) and x v y' are equivalent without computing, as we did in Sec-
tion 9.1, the truth table of eacheKpression. We will start with the more complicated
expression and use our rules lo simplify it.

(x V y') V (x ,\ z) = (y' V x) V (x A z) (rule (a))
= y' V (x V (X A z)) (rule (b))

= y' V x (rule (d))

= x v y' (rule (a))

M Example 9.6

Simplify the expression x v (y A (X A Z')'), which corresponds to the circuit
shown in Figure 9.11.

x V (y A (x A;z')') = x V (y A (x' V z")) (rule(j))
= x V (y A (X'V z)) (rule (i))
=(xVy)A(xV(x'Vz)) (rule(c))
= (x V y) A ((X V x') V z) (rule (b))
= (X V y) A (I V z) (rule (f))
= (x V y) A 1 (rule (h))

(rule (g))= x v y
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We see that the complex circuit of Figure 9.11 can be replaced by a circuit having
only one gate. +

Because of rule (b) in Theorem 9. 1, we can use expressions such as X V Y V Z
without ambiguity, since the result is the same no matter whether we calculate
X V Y or Y v Z first. In terms of circuits, this means that the two circuits in
Figure 9.13 are equivalent. Thus we will use the diagram of Figure 9.14 to
represent either of the circuits in Figure 9.13; its output is 1 when any of X, Y,
or Z is 1.

x ~ ~Xvy xxvyz
(XY Z y V Xv(YvZ)

z zr

FIGURE 9.13

X XVYVZ

z
FIGURE 9.14

We use the same convention for more than 3 inputs. For example, the circuit
shown in Figure 9.15 represents any of the equivalent circuits corresponding to a
Boolean expression formed by putting parentheses in W A X A Y A Z; one such
expression is (W A X) A (Y A Z), another is ((W A X) A Y) A Z.

w
X WAXAYAZ

Y
z

FIGURE 9.15

Of course, before we can simplify a circuit we must have a circuit. Thus we
must consider the problem of finding a circuit that will accomplish the particular
job we have in mind. Whether the circuit we find is simple or complicated is of
secondary importance. There is always the possibility of simplifying a compli-
cated circuit by reducing its corresponding Boolean expression.

As an example, we will consider the three-person finance committee of a
state senate. The committee must vote on all revenue bills, and of course 2 or 3
yes votes are necessary for a bill to clear the committee. We will design a circuit
that will take the three senators' votes as inputs and yield whether the bill passes
or not as output. (Ours will be a scaled-down version of the electronic voting

501
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devices used in some legislatures.) If we denote yes votes and the passage of a
bill by 1, we desire a circuit with the following truth table.

x

0

0

0
*0

*1

* I

y

0

0

1
1

0

01

o

z Pass?

0 0

1 0

0 0

1 1

0 0

1 1

0 1

1 1

We have marked the rows which have Is in the output column because these
rows will be used to construct a Boolean expression with this truth table. Consider,
for example, the fourth row of the table. Since there is a I in the output column
in this row, when x is 0 and v and z are 1, our Boolean expression should have a
value 1. But x is O if and only if x' is 1; so this row corresponds to the condition that
x', y, and z all have value 1. This happens exactly when x' A y A z has value 1. The
other marked rows indicate that the output is 1 also when x A y' A z, x A y A z', or
X A y A z have value 1. Thus we want an output of 1 exactly when the expression
(x'A Y A z) V (x A y'A z) V (x A y A z') v (x A y Az) has value 1, and this is
the Boolean expression we seek. The circuit corresponding to this expression is
shown in Figure 9.16.

FIGURE 9.16

Notice that we have designed a crude arithmetic computer, since our circuit
counts the number of yes voles and tells us whether there are 2 or more.

Now we summarize our method of finding a Boolean expression correspond-
ing to a given truth table. Let us suppose the input variables are x1, x2, . . . , X". If
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all outputs are 0, then the desired Boolean expression is 0. Otherwise we proceed
as follows:

Step I Identify the rows of the truth table having output 1. For each such row, form
the Boolean expression

yj AY2 A *. Ayn,

where yi is taken to be xi if there is a 1 in the x, column, and yj is taken to
be xi' if there is a 0 in the xi column. The expressions thus formed are called
minterms.

Step 2 If B, B2 ,...,Bk are the midterms formed in step 1, form the expression

BuvB 2 v ... v Bk-

This Boolean expression has a truth table identical to the one with which we
started.

Example 9.7

A garage light is to be controlled by 3 switches, one inside the kitchen to which
the garage is attached, one at the garage door, and one at a back door to the garage.
It should be possible to turn the light on or off with any of these switches, no
matter what the positions of the other switches are. Design a circuit to make this
possible.

The inputs are the 3 switches, which we will label I or 0 according to whether
they are in an up or down position. We will design a circuit that turns the light on
whenever the number of inputs equal to 1 is odd, since flipping any switch will
change whether this number is odd or even. We want a circuit with the following
truth table.

x Y z Number of Is Output

0 00 0 0

*0 0 1 1 1

*0 1 0 1 1

0 1 1 2 0
*1 0 0 1 1

1 0 1 2 0

1 1 0 2 0

*1 1 1 3 1

The rows having output 1 are marked, and the required Boolean expression is
(X'Ay'Az)V(x'AyAz')V(xAy'Az')V(xAyAz). The corresponding
circuit is shown in Figure 9.17. +
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FIGURE 9.17

The Boolean expressions that our method produces tend to be complicated,
and so correspond to complicated circuits. The circuit shown in Figure 9.17 is
actually more complex than i: appears, since if it were expressed using only our
original three logical gates, each of the gates on the left of the diagram with three
inputs would have to be replaced by two standard 2-input AND-gates, and the gate
on the right with four inputs would have to be replaced by three standard 2-input
OR-gates. Thus, the circuit of Figure 9.17 requires 6 NOT-gates, 8 AND-gates,
and 3 OR-gates, for a total of 17 elementary gates. Although we might simplify
the corresponding Boolean expression using the rules given at the beginning of
this section, it is not clear how to do this. In the next section, we will consider a
method for simplifying Boolean expressions in an organized way.

EXERCISES 9.2

In Exercises 1-8 prove the equivalence using truth tables.

1. X Ay = y Ax

3. xvx =x

5. (x A y)'= xVy'

7. x AX' = 0

2. XA(yVz)=(xAy)V(xAz)

4. (x')' = x

6. X'A y'= (XVY)x

8. XA(yAz)=(XAy)AZ

In Exercises 9-18 establish the validity of the equivalence using Theorem 9.1. List by letter the rules you use, in
order. Start with the expression on the left side.

9. (xAy)V(xAy')=x

11. XA(X'Vy)=XAY

13. (x'V y)'V (x A y') = x A y'

15. (x A y)'V z =x'v (y''V z)

10). X V (x'A y) = X V y

12. [(x A y) V (x A y')] V [(x' A y) V (x' A y')] = 1

14. [(x V y) A (x' V y)] A [(x V y') A (x' V y')] = 0

16. ((x V y) A Z)' = z' V (x' A y')

17. (xAy)A[(xAw)V(yAz)]=(xAy)A(wVz) 18. (xVy)'V(xAy)'=(xAy)'
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In Exercises 19-22 show that the Boolean expressions are not equivalent.

19. xA(yVz)and(xAy)vz 20. (xAy)'andx'Ay'

21. (xAy)V(x'Az)and(xVx')A(yVz) 22. (lvx)vxandx

In Exercises 23-28find a Boolean expression of minterms that has the given truth table. Then draw the corresponding
circuit.

23.
x y Output

0 0 0

0 1 1

10 1

1 1 0

26. -
x

0

0

0

0

1

1

1

1

y z

0 0

0 1

1 0

1 1

0 0

0 1

1 0
1o

24.
x y Output

00 0

0 1 1

1 0 0

1 1 1

27.
Output

I
0

0

1

0

0

o

S

0

0

0

0
1

I

I

1

y

0

0

0

0

o

O

z

0

1
0

0

0

0

0

0

0

0

1

In Exercises 29-34 give the number of AND-, OR-, and NOT-gates with one or two inputs it would take to represent
the given circuits.

z

0

O
0

O0

0

Output

0

0

0

1
0

1

0

25. -
x

0

0

0

0

I

1

1

28.
x

0

0

0

0

1

y

0

0

0

0

y

0

0

0

0

z Output

0 1

1 0

0 0

1 0

0 0

1 1

0 0

1 1

29. 30.
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31. x
y
z

y
z

x
y
z

33. x
y
z

x
w
z

x
V
w

wyW

w

z

32.

34.

35. Suppose a company wishes to manufacture logical devices having inputs x and y and with output equivalent
to the value of the logical statement - (x -> y), whewe 0 corresponds to T and 1 to F. Draw a circuit using
AND-, OR-, and NOT-gates that will do this.

36. A security network for a three-guard patrol at a missile base is set up so that an alarm is sounded if guard
one loses contact and at least one of the other two guards is not in contact, or if guard one and guard two are
in contact but guard three loses contact. Find a Boolean expression that has value 1 exactly when the alarm
sounds. Let the input 1 correspond to losing contact.

37. An inventory control system for a factory recognizes ?di error in an order if it contains part A and part B but not
part C; if it contains parts B or C, but not part D; or if it contains parts A and D. Find a Boolean expression
in the variables a, b, c, and d that is I exactly when an error is recognized. Let a be 1 if part A is present,
etc.

38. Which of the rules in Theorem 9.1 hold if X, Y, and Z stand for real numbers and we make the substitutions
of multiplication for A, addition for v, and -X for )"?

39. Which of the rules in Theorem 9.1 hold if X, Y, and Z stand for subsets of a set U and we make the substitutions
n for A, U for v, A (the complement of A) for A', U fbr 1, and 0 (the empty set) for 0?

We define a Boolean algebra to be a set B satisfying the following conditions:

(i) For each pair of elements a and b in B, there are defined unique elements a v b and a A b in B.

(ii) IfaandbareinB,thenavb=bvaandaAb==bAa.

(iii) If a, b, and care in B, then a v (b v c) = (a V b) 'v and a A (b Ac) = (a A b) Ac.
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(iv) Ifa,b,andcareinB,thenav(bAc)=(avb)A(avc)andaA(bvc)=(aAb)v(aAc).
(v) There exist distinct elements 0 and 1 in B such that if a E B, then a v 0 = a and a A 1 = a.
(vi) If a c B, there is defined a unique element a' E B.

(vii) If a E B, then a V a' = I and a A a' = 0.

In Exercises 40-45 assume that B is a Boolean algebra. Exercises 41-45 show that the rules of Theorem 9.1 hold
in any Boolean algebra.

40. Show that ifa and bare in B and a V b = I and a A b = 0, then b =a'. (Hint: Show that b b A (a v a')=
b A a'= a'A (a V b).)

41. Show that if a E B, then a A 0 = 0 and a v 1 = . (Hint: Compute a A (O V a') and aV(lAa') in two
ways.)

42. Show that if a and b are in B, then a v (a A b) = a A (a V b) = a. (Hint: Compute a A (1 V b) and a V (O A b)
in two ways.)

43. Show that if a E B, then a v a = a A a = a. (Hint: Compute (a Va) A (a Va') and (a A a) V (a Aa') in two
ways.)

44. Show that if a E B, then a" = a, O' = 1, and 1' = 0. (Hint: Use Exercise 40.)
45. Show that if a and b are in B, then (a v b)' = a' A b' and (a A b)' = a' v b'. (Hint: Use Exercise 40.)

9.3 + KARNAUGH MAPS

In the previous section, we saw how to create a Boolean expression, and there-
fore a logical circuit, that corresponds to any given truth table. The circuits we
created, however, were usually quite complicated. We will show how to cre-
ate simpler circuits by, in effect, making a picture of the truth table. Of course,
"simpler" has not been defined precisely, and, in fact, various definitions might
be appropriate. For compactness and economy of manufacture, we might want
to consider one circuit better than another if it contains fewer gates. For speed
of operation, however, we might prefer a circuit such that the maximal number
of gates between any original input and the output is as small as possible. The
method we will describe will lead to circuits that are in general much simpler
than those we learned to create at the end of the previous section, although they
will not necessarily be simplest by either of the criteria just suggested. We will
only treat the cases of 2, 3, or 4 Boolean variables as inputs, although there are
methods for dealing with more than 4 input variables. (See suggested reading
[7].)

We will show how to produce a simple Boolean expression that has a pre-
scribed truth table. A circuit can then be constructed from this expression. The
truth table we start with may represent the desired output of a circuit we are
designing or it may have been computed from an existing circuit or Boolean
expression that we wish to simplify.
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To illustrate the technique, we will start with the following truth table.

x y Output
0 0 1

0 1 0

1 0 1

1 1 1

For this truth table, our previous method yields the Boolean expression
(X' A Y') V (X A y') V (X A~ y) and the circuit of Figure 9.18. To find a simpler
circuit, we will represent our truth table graphically as in Figure 9.19(a). Each
cell in the grid shown corresponds to a row of the truth table, with the rows of the
grid corresponding to x and .~c' and the columns to y and y'. For example, the top
left cell corresponds to the row of the truth table with x = 1 and y =1, and the 1 in
that cell tells us that there is a I in the output column of this row. Since in the grid
each row is labeled either X or x', each column either y or y', and there is either a
O or 1 in each cell, from now cn we will save time by omitting the labels x' and y'
and Os, as in Figure 9.19(b). T.-is is called the Karnaugh map of the truth table.

X XAY' X'AY'X V'(X A Y

Y (x'AY')v- (X AY')v- (X AY)

X X

y

XAY

FIGURE 9.18

tat (b)

FIGURE 9.19

Each cell in the Karnaugh map corresponds to a minterm, as shown in Figure
9.20(a). Thus we can create a B Dolean expression having the truth table we started
with by joining with the symbol v the minterms in cells containing a l, as circled in
Figure 9.20(b). This amounts to the method of the previous section, and produces
the Boolean expression

(X A V) V (x A y') V (x' A y').

Y- Y

X I I

IX 0 1

1 - I



9.3 Karnaugh Maps 509

Y Y

X XA) T AY

A A X Ay

(a) (b)

FIGURE 9.20

The key to our method is to notice that groups of adjacent cells may have
even simpler Boolean expressions. For example, the two cells in the top row of
the grid can be expressed simply as x. This can be confirmed using Theorem 9.1
as follows.

(xAy)V(xAy')=xA(yVy') (rule(c))
= X A 1

= x

(rule (f))

(rule (g))

Other such groups of two cells and the corresponding Boolean expressions are
shown in Figures 9.21(a) and (b), where the ovals outline the cell groups named.

y

(a) (b)

FIGURE 9.21

(c)

In Figure 9.21(c), we see that the three cells with Is can be characterized as
those cells in either the x oval or the y' oval, and so correspond to the Boolean
expression x v y'. This is the simpler expression we have been seeking.

It is easily checked that x V y' has the desired truth table. The corresponding
circuit is shown in Figure 9.22. Comparison with the circuit of Figure 9.18 shows
that it is simpler by any reasonable criterion.

x D ,y 92

FIGURE 9.22
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Since the case of two input variables is fairly straightforward, we shall proceed
to three input variables, say x, y, and z. The grid we will use is shown in Figure
9.23(a). Recall the convention that the unmarked second row corresponds to x'.
Likewise, columns 3 and 4 correspond to y' and columns 1 and 4 to z'. The
minterms for each cell are shown in Figure 9.23(b).

x

y

X AY A ZX AYA XAvA A -AY AA

X AYAZ' AYA Ay'A AyAZ

(a) (b)

FIGURE 9.23

We will make a somewhat technical definition. We define two cells to be
adjacent in case the minterms to which they correspond differ in only a single
variable. A pair of adjacent c.Ils can be described by a Boolean expression with
one variable fewer than a minterm. For example, the two cells in the second row
and third and fourth columns correspond to

(x' A y' A ,) N/ (x' A y' A z') = (x' A y') A (z V z')

= (x' A y') A 1

= X' A y',

where we have used rules (c), (f), and (g) of Theorem 9.1. Any two cells next
to each other in a row or column are adjacent and have a 2-variable Boolean
expression, as shown in Figure 9.24. There are also two pairs of adjacent cells
that wrap around the sides of our grid; these are shown in Figure 9.25, along with
their simplified Boolean expre ssions.

x

Y

x

FIGURE 9.24
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x

y

Ix

xD :

FIGURE 9.25

There are also groups of four cells with single-variable Boolean expressions.
These are shown in Figure 9.26. The student should not try to memorize the
Boolean expression for the groups of cells outlined in Figures 9.24, 9.25, and
9.26, but rather should study them to understand the principles behind them.

x

y

x

FIGURE 9.26

The method for constructing a simple Boolean expression corresponding to
a truth table will be similar to the 2-variable case. We draw the Karnaugh map for
the truth table, then enclose the cells containing Is (and only those cells) in ovals
corresponding to Boolean expressions. Since larger groups of cells have simpler
Boolean expressions, we use them whenever possible, and we try not to use more
groups than necessary. We then join these expressions by v to form a Boolean
expression with the required truth table.

Consider, for example, the two Karnaugh maps shown in Figure 9.27. The
appropriate groups of cells are shown in Figure 9.28. The corresponding Boolean
expressions are

X V (y'A z) and (y A z') V (X A y) V (X'A y'A Z),

y y X n

I 

zY

-_J L_ Cx-
c- I
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respectively. Notice that the ce 1 in the second row and third column of the second
Karnaugh map is adjacent to no other cell with a 1, and so its 3-term minterm
must be used.

x

y

x

Y

I
Id I1

FIGURE 9.27

x

By

I I:jj
x

I Y
9D,

[43

FIGURE 9.28

+ Example 9.8

Simplify the voting-machine c [rcuit shown in Figure 9.16.
Since the machine is to give output 1 when at least two of x, y, and z are 1, the

corresponding Karnaugh maV is shown in Figure 9.29. Using the ovals indicated,
we write the Boolean expression (x A y) V (x A Z) V (y A z). The corresponding
circuit is shown in Figure 9.30. This circuit is considerably simpler than the one
of Figure 9.16. In fact, if only gates with no more than two inputs are used, the
previous circuit contains 17 while our new version has only 5. +

y

x _Ci__I
JEt

2

7

FIGURE 9.29

- - -- - -
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x

y
x

z

y
z

FIGURE 9.30

* Example 9.9

Simplify the expression x V (y A (x A z')') of Example 9.6.
We compute the following truth table.

X y Z Z' X AZ' (X A Z')' y A (X A z')' X V (y A (X A Z')')

0 0 0 1 0 1 0 0

0 0 10 0 1 0 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 01 0 0 1 0 1

1 1 0 1 1 0 0 1

1 1 1 0 0 1 1 1

This leads to the Kamaugh map of Figure 9.31. Using the indicated groups
of cells produces the same Boolean expression x v y that was derived using the
rules of Theorem 9.1 in Example 9.6. +

y
I

x

FIGURE 9.31

Finally, we consider Karnaugh maps for circuits with four inputs w, x, y,
and z. We will use a 4-by-4-grid, labeled as in Figure 9.32(a). For example, the
cell marked (1) corresponds to the minterm w A x' A y A z', and the cells marked
(2) and (3) to the minterms w A x A y' A z and w' A x' A y A z, respectively.

I1 1
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y

(1)

(2)

(3)

y

w

(a) (b)

FIGURE 9.32

Figure 9.32(b) shows various groups of two adjacent cells and their Boolean
expressions. Of course, there are many more such groups. Examples of groups
of four cells and their 2-variable Boolean expressions are shown in Figure 9.33.
Notice that they can wrap around either horizontally or vertically. There are also
8-cell groups whose Boolean expressions have a single variable; some of these
are shown in Figure 9.34.

y

w

Ix

FIGURE 9.33

w.

W .

L
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Y Y
.

Fy y-

FIGURE 9.34

As before, given a truth table, we form its Karnaugh map and then enclose its
Is (and only its Is) in rectangles of 1, 2, 4, or 8 cells that are as large as possible.
The required Boolean expression is formed by joining the expressions for these
rectangles with v.

+ Example 9.10

Find a circuit having the following truth table.

w x y z

00 00
00 01
00 10
0 0 1 1
01 00
0 101
01 10
0 1 1 1
1 000
1 001
1 010
1 01 1
1 100
1 101
1o1 10
1 1 1 1

Output

0

0

0
0
o
o
l

1w
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y

x

FIGURE 9.35

The Karnaugh map for this tabte is shown in Figure 9.35. Using the rectangles of
cells shown yields the expression

FigV (?e 9 .) V (X A ys) V (WcA Xcri y).

Figure 9.36 shows the corresponding circuit. +

z

Xw

x

y

w

I

FIGURE 9.36

+ Example 9.11

Use Karnaugh maps to simplify the circuit of Figure 9.37(a).
We compute the Boolean expression

(W A X A y) V (w G\ x A z') V (w A y A z) V (x' yA A Z)

for the circuit, as shown in Figure 9.37(b). The terms separated by v's in this
expression correspond to the four rectangles marked in Figure 9.38(a). The
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(a) (b)

FIGURE 9.37

same cells can be enclosed by two rectangles, as shown in Figure 9.38(b).
These yield the Boolean expression (w A x) v (x' A y' A z) and the circuit of
Figure 9.39. +

Y

w!-X W.-C
y y.

z z

(a) (b)

FIGURE 9.38

FIGURE 9.39
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EXERCISES 9.3

In Exercises 1-6 find a Boolean expression of minterm.s wh ch has the given truth table.

1. 2. 3.
x y Output x

0 0 1 0

0 1 1 0

1 0 0 0

1 1 1 0

L

I

1

y

0

0

10
0

1

z C'u'put x

0 1 0

1 00

0 10

1 1 0

0 L 1

1 1) I

0 1 1

O 1 1

x y z Output w x y z Output x y
000 0 000o C 0000
001 1 0001 0 0001
0100 001C C 0010
01 1 001 1 0 001 1
100 1 0 10 C 1 0 100
101 1 0 101 0 0 101
1 10 1 01 IC I I 01 10
1 1 1 0 0 1 1 1 0 0 1 1 1

1 00 C 0 1 000

1 00 1 0 1 001
101 C0 1010
1 0 1 1 0 1 0 1 1
1 100 0 1 100
1 1 0 1 1 1 1 0 1
1 1 10 0 1 1 0

1 1 1 1 0 1 1 1 1

In Exercises 7-12 write the Boolean expression corresponding to the ovals in the Karnaugh map.

7. y 8. y

x

y

0

0

O

O0
0

z

0

0

0

0

Output

0

0

0

L
0

Output

0

0

0

0

0

0

0

0

0

0

0
1

0

1

- ---- - -

d- 4; - 6

d
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x

z z

11. y 12.

(7
ELI

71~Ij

=-

I

I D

w{x x

z z

In Exercises 13-18 draw a Karnaugh map for the Boolean expression of the indicated exercise.

13. Exercise 1 14. Exercise 2 15. Exercise 3

16. Exercise 4 17. Exercise 5 18. Exercise 6

In Exercises 19-24 use the Karnaugh map method to simplify the Boolean expression in the indicated exercise.
Then draw a circuit representing the simplified Boolean expression.

19. Exercise 1 20. Exercise 2 21. Exercise 3

22. Exercise 4 23. Exercise 5 24. Exercise 6

In Exercises 25-32 use the Karnaugh map method to simplify the expression.

25. (x'A y'A z) V (x'A y A z) V (x A y'A z)

26. (x' A y' A z) V (x' A y' A z') V (x A y A z) V (x A y' A z')

27. (X' A y' A z) V (x' A y A Z) V (X A y' A z')

28. [(x V y') A (x' A z')] V y

29. [x A (y V z)] V (y' A z')

30. (x A y A z) V (x A y'A z) V (x'A y'A z)

31. (w A x A y) V (w A x A z) V (w A y'A z') V (y'A z')

32. (w' A x' A y') V (W' A y' A z) V (w A y A z) V (W A X A z') V (W A y' A z') V
(w A x'A y A Z) V (w' A X A y A Z')

Y.

X

9.3 Karnaugh Maps 519

W

0
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In Exercises 33 and 34 use Karnaugh maps to simplify the 'iven circuit.

y

z

w

x

y

7-

I

x

y

r-Y

.1 w , 34.

x

z :==LJ

35. How many groups of two adjacent cells are there in a Karnaugh map grid for 4 Boolean variables?

36. How many 4-element square groups of adjacent cells Exre there in a Karnaugh map grid for 4 Boolean variables?

Although rule (b) of Theorem 9.1 suggests that we get equa,' expressions for any two ways we insert parentheses in
xi V x2 V ... V Xn, we have not given a formal proof of tl'i: fact. (We will only treat v; A could be handled in the
same way.) Define the expression xi V x2 v ... v Xn recurisvely as follows:

xlv x2 v vn= | (x v v -) V Xn for n > 1.

37. Prove by induction on n that (xl v x2 v ... v Xm) v (y v Y2 V ... v Yn) = x1 v v xm v yl v ... v y for
any positive integers m and n.

38. Prove that any two expressions formed by inserting parentheses in the expression xi V x2 V ... v xn are equal.

39. Prove by induction that (xl V X2 V ... V XJ) = X' A C' A ... A Xn for all positive integers n, where the defini-
tion of the latter expression is similar to that for V.

40. Denote by qn the number of ways of inserting n - 2 sets of parentheses in xl V x2 v ... V Xn so that the order
in which the v's are applied is unambiguous. For example, q3 = 2 counts the expressions (xi V X2) V X3 and
xI V (X2 V X3 ). Likewise, q4 = 5. Show that

qn = qlqn-1 + q2qn--2 + + qn-Iql for n > 1.

41. Let rn be the number of ways of listing xI, x2, . .Xn joined by v's in any order and with parentheses. For
example, r1 = 1, r2 = 2 counts the two expression, xl v x 2 and x2 v xl, and r3 = 12. Show that r,+i =

(4n - 2)rn for all positive integers n.

-
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42. Show that r,, (
2
n-2)! and q =(2n-I2)! for all positive integers n, where rn and qn are defined as in Exercises(n 1)!a dq n! (n -1)!

40 and 41.

9.4 + FINITE STATE MACHINES

In this section we will study devices, such as computers, that have not only inputs
and outputs, but also a finite number of internal states. What the device does when
presented with a given input will depend not only upon that input, but also upon
the internal state that the device is in at the time. For example, if a person pushes
the "PLAY" button on a CD player, what happens will depend on various things,
such as whether or not the player is turned on, contains a CD, or is already playing.

The devices now considered will differ from those of the preceding sections
in that output will depend not only on the immediate input but also on the past
history of inputs. Thus their action has the ability to change with time. Such
devices are called finite state machines. Various formal definitions of a finite
state machine may be given. We will study two types, one simple and the other
somewhat more complicated. Our main concern will be to understand what such
machines are and how they operate, rather than to construct finite state machines
for specific tasks.

One simple example of a finite state machine is a newspaper vending machine.
Such a vending machine has two states, locked and unlocked, which we will denote
by L and U. We will consider a machine that only accepts quarters, the price of
a paper. Two inputs are possible, to put a quarter into the machine (q), and to
try to open and shut the door to get a paper (d). Putting in a quarter unlocks the
machine, after which opening and shutting the door locks it again. Of course,
putting a quarter into a machine that is already unlocked does not change the state
of the machine, nor does trying to open the door of a locked machine.

There are various ways we can represent this machine. One way is to make
a table showing how each input affects the state the machine is in.

Present state

-L U

q U U
Input

d L L

Here the entries in the body of the table show the next state the machine enters,
depending on the present state (column) and input (row). For example, the colored
entry means that if the machine is in state L and the input is q, it changes to state
U. Since this table gives a state for each ordered pair (i, s) where i is an input and
s is a state, it describes a function with the Cartesian product {q, d) x {U, LI as
its domain and the sets of states I U, L} as its codomain. (The reader may want to
review the concepts of Cartesian product and function in Sections 2.1 and 2.5.)
Such a table is called the state table of the machine.
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We can also represent OUI machine graphically, as in Figure 9.40. Here the
states L and U are shown as circles, and labeled arrows indicate the effect of
each input when the machine is in each state. For example, the colored arrow
indicates that a machine in state L with input q moves to state U. This diagram
is called the transition diagram of the machine. (In the language of Section 3.5,
the transition diagram is a directed multigraph.)

q

d / q

d

FIGURE 9.40

We will generally use the pictorial representation for finite state machines
since our examples will be fairly simple. For a machine with many inputs and
states, the picture may be so complicated that a state table is preferable.

A Par ix ,t y h 'e Ea kif 'i4Wg 4f /} h m i

Before we give a formal definition of a finite state machine, we will give one
more example. Data sent between electronic devices is generally represented as a
sequence of Os and is. Some way of detecting errors in transmission is desirable.
We will describe one simple means of doing this. Before a message is sent, the
number of Is in the message is counted. If this number is odd, a single 1 is added
to the end of the message, and if it is even, a 0 is added. Thus all transmissions
will contain an even number of Is.

After a transmission is received, the I s are counted again to determine whether
there is an even or odd number of them. This is called a parity check. If there
is an odd number of Is, then some error must have occurred in transmission. In
this case, a repeat of the message can be requested. Of course, if there are two or
more errors in transmission, a parity check may not tell the receiver so. But if the
transmission of each digit is reliable and the message is not too long, this may
be far less likely than a single error. If the received transmission passes the parity
check, its last digit is discarded to regain the original message.

Actually it is not necessa ry to count the number of Is in a message to tell if
this number is odd or even. Figure 9.41 represents a device that can be used to do

\ I

FIGURE 9.41



9.4 Finite State Machines 523

this job. Here the states are e (even) and o (odd), and the inputs are 0 and 1. The
corresponding state table is as follows.

State

e a

0 e a
Input

1 a e

We can use this device to determine whether the number of Is in a string of Os
and Is is even or odd by starting in state e and using each successive digit as a
new input. For example, if the message 110100001 is used as input (reading from
left to right), the machine starts in state e and moves to state o because the first
input is 1. The second input is also 1, putting the machine back in state e, where
it stays after the third input, 0. The way the machine moves from state to state is
summarized in the following table.

Input: Start I I 0 1 0 0 0 1

State: e o e e o o o o e

If 11010001 is received, we would presume that no error occurred in transmission
and that the original message was 1101000.

Two new symbolisms appear in Figure 9.41. One is the arrow pointing into
state e. This indicates that we must start in state e for our device to work properly.
The other is the double circle corresponding to state e. This indicates that this
state is a desirable final state; otherwise in our example some error has occurred.

Now we formally define a finite state machine to consist of a finite set of
states S, a finite set of inputs I, and a function f with I x S as its domain and S
as its codomain such that if i E I and s E S, then f (i, s) is the state the machine
moves to when it is in state s and is given input i. We may also, depending upon
the application, specify an initial state so, as well as a subset S' of S. The elements
of S', called accepting states, are the states we would like to end in.

Thus, our parity checking machine is a finite state machine with S = {e, o},
I = {0, 1}, so = e, and S' = {e}. The function f is specified by

f(0, e) = e, f(O, o) = o,

f(l,e)=o, f(l,o)=e,

which corresponds to our previous state table.
A string is a finite sequence of inputs, such as 110100001 in our last example.

Suppose, given the string i1 i2 ... in and the initial state so, we successively com-
pute f (il, so) = sI, then f(i 2 , SI) = S2, etc., finally ending up with state Sn. This
amounts to starting in the initial state, applying the inputs of the string from left
to right, and ending up in state s,. If Sn is in S', the set of accepting states, then
we say that the string is accepted; otherwise it is rejected. In the parity check
example, rejected transmissions contain some error, while accepted transmissions
are presumed to be correct.
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+ Example 9.12

Figure 9.42 shows a finite state machine with input set I = t0, 11 that accepts a
string precisely when it ends with the triple 100. Here S = {A, B, C, D}, so =
A, S' - {D}, and the function f is as indicated by the labeled arrows in the
diagram. For example, if the string 101010 is input, we move through the states
ABC BC BC, and, since C is not in S', the string is rejected. On the other hand,
if 001100 is input, we move [trough the states AAABBCD, and the string is
accepted because D is an accepting state.

0

FIGURE 9.42

To see that the machine of Figure 9.42 does what we claim, the reader should
first check that no matter what state we are in, if the string 100 is input, we are
taken to state D. This shows th at all strings ending in 100 will be accepted by
the machine. It remains to show that an accepted string must end in 100. Since
we start in state A, an accepted string clearly must contain at least three digits.
Since when 1 is input we move to state B no matter what the present state is, the
accepted string must end in 0. Likewise, the reader should check that any string
ending in 10 leaves the machine in state C. Thus our accepted string must end
in two Os. Finally, the reader should check that any string ending in 000 puts the
machine in state A. Thus any accepted string must end in 100. +

One important application of machines that accept certain strings and reject
others is in compilers for computer languages. Before a program is run, each
statement must be checked to see whether it conforms to the syntax of the lan-
guage being used.

Fini3ke St ate M/achinvs t i'vlv Q Ounui:'l i

Now we consider a slightly rrore complicated type of device. We start with an
example more sophisticated than a newspaper vending machine, namely, a gum
machine. Our gum machine accepts only quarters, which is the price of a pack
of gum. Three varieties are available: Doublemint (denoted by D), Juicy Fruit
(J), and Spearmint (S), which can be chosen by pressing buttons d, j, or s,
respectively. The internal states of the machine are locked (denoted by L) and
unlocked (U); and if the machine is unlocked, it will return any extra quarters
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put into it. The inputs are q (quarter), d, j, and s. A diagram showing some of
the action of the machine is given in Figure 9.43(a). Figure 9.43(b) shows a more
compact way of indicating multiple arrows going between the same two states;
here, for example, the three arrows from U and L in Figure 9.43(a) have been
replaced by a single arrow, and the corresponding inputs separated by commas.

q

d q A

(a) (b)

FIGURE 9.43

This diagram does not tell the whole story, however. Nowhere does it show
that if we press the d button on a machine in state U we get a pack of Doublemint.
Neither does it show that excess quarters are returned. We need to introduce the
additional concept of outputs of the machine. In this example the possible outputs
are D, J, S and also Q (an excess quarter returned) and 0, which we will use to
stand for no output, as, for example, when a button is pressed while the machine
is in state L.

Notice that the output may depend upon both the input and the state of
the machine. The inputs d and j produce the distinct outputs D and J when the
machine is in state U. Likewise, the input d produces the outputs 0 or D depending
on whether the machine is in state L or U. Another function is involved here,
having the Cartesian product of the set of inputs and the set of states as its domain
and the set of outputs as its codomain. Since each arrow in our diagram stands for
the result of an input being applied to a particular state, we can also label these
arrows to show the corresponding outputs. This is done in Figure 9.44.

dj,s /0,0,0 q /0 q IQ

FIGURE 9.44

We will use slashes to separate the input and output labels on each arrow.
Thus, in Figure 9.44, the q/0 on the arrow from L to U indicates that there is no
output when we put a quarter in a locked machine; and the d, j, s/D, J, S on
the arrow from U to L indicates the outputs D, J, and S, respectively, when we
push buttons d, j, and s on an unlocked machine.

We define a finite state machine with output to consist of finite sets S of
states, I of inputs, and 0 of outputs, along with a function f: I x S -* S such
that f (i, s) is the state the machine goes to from state s when the input is i, and
another function g: I x S 0 such that g(i, s) is the output corresponding to
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input i when the machine is in state s. Depending on the application, we may
again designate a particular state so as the initial state.

In the gum machine example, we have S = {L, U}, I = {q, d, j, s}, and
0 = {D, J, S, Q, 01. The functions f and g are indicated in Figure 9.44, but
they can also be described, as before, using tables.

State State

L U L U

q U U q 0 Q

d L L d 0 D
Input Input

j L L 1 0 J

s L L s 0 S

The first table, which gives the values of f, is still called the state table of the
machine, while the second, which gives the values of g, is called the output table.

If a string of inputs is fed into a finite state machine with output, a correspond-
ing sequence of outputs is produced, called the output string. This is illustrated
in the next example.

+ Example 9.13

Figure 9.45 shows the transition diagram of a unit delay machine. This is a finite
state machine with output in which I = {0, 1}, S = {A, B, C}, 0 = {O, 1}, and
the initial state is A. Note that the first output is always 0, while any input of
0 puts the machine in state B, from which the next output will be 0. Likewise
any input of 1 puts it in state C, from which the next output will be 1. Thus,
each output after the first is always the same as the input one step previously.
An input string il i2 . .. in produces the output string 0 iI i2 . . 1in- . For example,
the input string 1100111 produces the output string 0 10011. If it is desired to
copy an entire input string, then a 0 must be appended to it before the string is
input. +

0/0

FIGURE 9.45
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+ Example 9.14

Draw the transition diagram for the finite state machine with output that has the
following state and output tables, and describe what the machine does to an input
string of x's and y's. The initial state is A.

State State

A B C D E F A B C D E F

Input x A C C E E F o 0 1 I 2 2 3

y B B D D FF I 1 2 2 3 3

The transition diagram is shown in Figure 9.46. Notice that once an input x
or y puts the machine into one of the states A, B, C, D, or E, the machine stays
in that state until the input changes. The output is 0 or 1 according to whether the
first input is x or y, and increases by one whenever the input changes from x to y.
Thus, the output at any time counts the number of groups of consecutive y's in the
input string, up to three such groups. For example, the input string xxyxxxyyyxx
produces the output string 001 11122222; and the last 2 counts the two groups of
y's (y and yyy) in the input string. +

FIGURE 9.46

EXERCISES 9.4

In Exercises 1-6 draw the transition diagram for the finite state machine with the given state table.

1.
| A B

G A A

IA B

4.
A B

x B A

Y A A

z B B

Initial state A
Accepting state A

2.

BA CA

1 A C B

5.
A B C D

a B A D C

b C C A A

Initial state B

Accepting states C, D

3.
x y z

o y z z

1 x x y

Initial state x

Accepting state z

6.
u V W

o u w V

1 u W W

2 w v u

Accepting states u, v
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In Exercises 7-10 give the state table for the finite state machine with the given transition diagram. List the initial
and accepting states, if any.

7.

9.

S. 0

10.

0

For the finite state machine and input string in Exercises i'1-14, determine the state that the machine ends in if it
starts at the initial state.

11. Input string 1011001, machine of Exercise 3 12. Input string xyyzzx, machine of Exercise 4

13. Input string yxxxy, machine of Exercise 7 14. Input string 0100011, machine of Exercise 8

In Exercises 15-18 tell whether the given input string would be accepted by the indicated finite state machine.

15. Input string xyzxyzx, machine of Exercise 4 16. Input string aabbaba, machine of Exercise 5

17. Input string xyxxyy, machine of Exercise 7 18. Input string 0011010, machine of Exercise 10

In Exercises 19-22 draw the transition diagram for the finite state machine with output whose state and output
tables are given.

19. 2(0.
A B A B 1 2 3 1 2 3

0 BA x y red 2 3 1 A B A

1 A B z x blue 1 1 3 A A B

22.
-A B A B2.

0 A A x y

1 B B w x

2 A B y w

Initial state A

00 01 10 11 00 01 10 11

A 11 10 01 00 1 -1 0 1

B 01 10 11 11 -1 0 1 -1

Initial state 10

21.

A.
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In Exercises 23-26 give the state and output tables of the pictured finite state machine with output. Name the initial
state, if any.

23. 31c 1,2/a,c 1,3/aa 24. 0/0 1/4

0/0 0/1 0/2

25. 26.
O/t IIt

1,3/y,z

In Exercises 27-30 give the output string for the given input string and finite state machine with output.

27. Input string 2101211, machine of Exercise 21 28. Input string BAABBB, machine of Exercise 22

29. Input string 322113, machine of Exercise 25 30. Input string 10100110, machine of Exercise 26

In Exercises 31-34 describe which input strings of Os and Is are accepted by the pictured finite state machine.

31. 0 1,0

33.

32. 1 0

34. 0 1 0
0,1

In Exercises 35-38 assume the set of inputs is {0, }1.

35. Design a finite state machine that accepts a string if and only if it ends with two Is.

36. Design a finite state machine that accepts a string if and only if it does not contain two consecutive Os.
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37. Design a finite state machine with output such that. given an input string, its last output is the remainder when
the number of Is in the input string is divided by 3.

38. Design a finite state machine with output such that it Jutput string contains as many Is as there are pairs of
consecutive Os or Is in the input string.

39. Let F and G be finite state machines. We say that F arid G are equivalent if they have the same set of inputs
and if, whenever a string is accepted by either of the in chines, it is also accepted by the other. Let I and S be
sets. Show that equivalence of finite state machines is an equivalence relation on the set of finite state machines
having input sets and state sets that are subsets of I a-id S, respectively.

- _

HISTORICAL NOTES

Gottfried Wilhelm Leibniz (16461716) was probably the first person to note the rela-
tionships that allowed statements of logic to be represented algebraically. This freeing of
logical symbols from representing specific interpretations allowed mathematicians and
others to think about their forms abstractly. Augustus De Morgan (1806- 1871) and others
contributed to this formal model for deductive logic. George Boole's two texts, The Math-
ematical Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854),
detailed the results of his investigations. The structures developed by Boole were expanded
by Charles Sanders Peirce (183'--1914) and Ernst Schroder (1841-1902) in the final third
of the nineteenth century.

In 1869, the Englishman Wvilliam Stanley Jevons (1835-1882) constructed a rudi-
mentary machine capable of performing simple Boolean operations. His design was sub-
stantially improved by Peirce's student Allan Marquand (1853-1924) during the 1880s.
Marquand's machine involved the use of circuits and electricity and required manually

opening and closing circuits through a keyboard [77].
Despite these advances. Boolean algebra was still used mainly as a model for logical

reasoning and formal algebraic structure. It was in the late 1930s that Claude Shannon
(1916-2001) recognized the application of Boolean algebra to the design of switching
circuitry and other applications. Almost immediately, machines employing two-state

... +AAA... I I I I I .. AI A . . - . - - - I - A+ ..AA AA- AAADAI A A A 1 A A IA - A A
switches were developed, andi other machines employing mem and nooiean aigeora con-

Claude Shannon structs became central compone nts in the emerging field of digital computing.

With this realization of Boolean statements and operations in mechanical form, there
arose a need to minimize the number of switches or circuits for a given set of relations.
Maurice Karnaugh (1924-) provided a method based on creating a map in 1953. Another
method for minimization was the tabular approach developed by Willard Quine (1908-)
during the period from 1952- S155. This procedure was altered and improved in Edward
McCluskey (1929- ) in 1956 [76].

Edward McCluskey Finite state machines first appeared in the literature in the early 1950s with the works
of G. H. Mealy, D. A. Huffman. and E. F. Moore.
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SUPPLEMENTARY EXERCISES

1. Write a Boolean expression corresponding to the following circuit, and construct the corresponding truth
table.

x

z

2. Draw a circuit representing the Boolean expression [y A (x' V z)] V (y A z)', and construct the corresponding
truth table.

3. Determine whether each of the following pairs of Boolean expressions are equivalent.
(a) x A (y A z')' and (x A y') V (x A z)
(b) xA(y'Vz)' and (XAy)V(xAz')

4. The lights on a private tennis court are to be controlled by either of two switches, one (labeled x) at the court
and one (labeled y) at the house. If a third switch z at the house is thrown, however, then the switch at the
court should no longer have any effect. Give the truth table modeling this situation. The output 1 means that
the lights are on.

5. Establish the following equivalences using Theorem 9.1. List by letter the rules you use. Start with the expression
on the left side.
(a) [(x V y) A (x' V y)] V y'= 1
(b) x' A (y A z')' = (x V y)' V (x' A z)

6. Find a Boolean expression in minterms which has the following truth table. Then draw the corresponding
circuit. How many gates with 1 or 2 inputs does the circuit represent?

x

0

0

0

0

1

y

0

0

1

0

01

1

z

0

0

0

0

Output

0

0

0

1

1

7. Find a Boolean expression in minterms and draw the corresponding circuit for the truth table of Exercise 4.
How many gates with 1 or 2 inputs does this circuit represent?
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8. Draw a Karnaugh map corresponding to each of the loLlowing truth tables.

(a)
X y Output

00 0

01 1
1 1 I
1 1 1

(b)
x

0

0

0

0

I

1

1

y

0

0

0

0

1

O

z
0

o
0

0

0

Output

0
0

0

0

O

(c) -
w

0

0

0
0
0

0

0

x

0

0

0

0

0

0

0

0

y

0

0

01

0

0

1
O

0

0
1

z

0

0

0
0

0
o

0
O

00

I

Output

0

I

0

1

00

0

0O

0
0
0

9. Write a Boolean expression corresponding to each Karnaugh map below.

(a) (b) (c)

x{

10. Use the Karnaugh map method to find a simple Boolean expression for each truth table in Exercise 8. Draw
the corresponding circuit.

11. Use the Karnaugh map method to simplify the Boolean expression of Exercise 7, and draw the corresponding
circuit. How many 1- or 2-input gates does the new circuit represent?

12. Use the Kamaugh map method to simplify each of the -ollowing expressions.

(a) (x A y'A z) V (x'A y A z') V (x'A y'A z')
(b) (wAx'Ay'Az)V(w' Ax Ay Az')V(W'A.X /,')V(W' Ax'Ay'Az')V(w'Ay' AZ)

I

I

1

1

1

1
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13. Use the Kamaugh map method to simplify the following circuit.

14. Draw the transition diagram for the finite state machine with the following state table.

A B C

red B B B

green A B C

yellow B C A

Initial state A
Accepting state B

15. What is the final state if the machine of the previous exercise has the input string: green, red, green, red, yellow?

16. Give the state table for the finite state machine with the following transition diagram. List the initial and
accepting states.

3

17. What is the final state if the machine of the previous exercise has the input string 5, 5, 3, 3, 5, 5, 3?

18. Draw the transition diagram for the finite state machine with output with the following state and output tables.

hot cold hot cold

a hot cold 1 -1

b cold hot 0 1

Initial state cold

19. What is the output string if the machine of the previous exercise has input string abaabba?

533
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20. Give the state and output tables for the finite state machine with output pictured below.

0/a

1 x)) /foamn

1/b ider , Ilb, c

21. What is the output string if the machine of the previous. exercise has input string 1001001?

22. Devise a finite state machine with inputs I = {0, 1) that accepts a string al a2 .. a, exactly when n > 2 and
an-, :A an

COMPUTER PROJECTS

Write a computer program having the specified input and output.

1. Given a triple (x, y, z), where each of x, y, and z is 0 or L, output the corresponding value of (x V z) A (y V z').

2. Input a quintuple (A, B, x, y, z), where A and B are 2 Oi 3 and x, y, and z are 0 or 1. Here 2 stands for A and 3
stands for v. Output the corresponding value of (x A yill z.

3. Let a given string of eight Os and 1 s be interpreted as the ri ghtmost column of a truth table with Boolean variables
x, y, and z. Output the corresponding Boolean expression in minterms. For example, the input 11000000 would
produce the output (x' A y' A z') V (x' A y' A z).

Exercises 4-7 refer to exercises in Section 9.4.

4. Given a finite string of Os and Is, find the final state ifi the string is the input of the machine in Exercise 3.

5. Given a finite string of Os and Is, find the final state if the string is the input of the machine in Exercise 8.

6. Given an input string of Os, Is, and 2s, find the output string, using the machine of Exercise 21.

7. Given an input string of is, 2s, and 3s, find the output string, using the machine of Exercise 25.

8. Given a finite state machine with inputs I = (1, 2, 31, states S = {1, 2, 3}, initial state 1, accepting states 1 and
3, and state table the 3 x 3 matrix A, determine whether a given input string is accepted or not.
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Appendix: An Introduction
to Logic and Proof
A.1 Statements and Connectives

A.2 Logical Equivalence
A '2 1k4-fLc f Pn

I is essential that persons in such fields as mathematics, physics, and com-
puter science understand the basic principles of logic so that they are able to
recognize valid and invalid arguments. In Chapter 9 we explored an applica-
tion of logic to the design of circuits such as those found in computers. In this
appendix we present an informal introduction to logic and proof that provides a
sufficient working knowledge of these subjects for students of computer science,
mathematics, and the sciences.

A.1 + STATEMENTS AND CONNECTIVES

One aspect of logic involves determining the truth or falsity of meaningful asser-
tions. By a statement we will mean any sentence that is either true or false, but
not both. For example, each of the following is a statement.

(1) George Washington was the first president of the United States.
(2) Baltimore is the capital of Maryland.
(3) 6+3=9.
(4) Texas has the largest area of any state in the United States.
(5) All dogs are animals.
(6) Some species of birds migrate.
(7) Every even integer greater than 2 is the sum of two primes.

In the sixth statement above, the word "some" appears. In logic, we interpret the
word "some" to mean "at least one." Thus the sixth statement means that at least
one species of birds migrates or that there is a species of birds that migrates.

The first, third, fifth, and sixth of the statements above are true, and the second
and fourth are false. At this time, however, it is not known whether the seventh
statement is true or false. (This statement is a famous unsolved mathematical
problem called Goldbach's conjecture.) Nevertheless, it is a statement because it
must be true or false but not both.

535
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On the other hand, the following sentences are not statements.

(1) Why should we study logic?
(2) Eat at the cafeteria.
(3) Enjoy your birthday!

The reason that these fail to be statements is that none of them can be judged to
be true or false.

It is possible that a sentence is a statement and yet we are unable to ascertain
its truth or falsity because of a ri ambiguity or lack of quantification. The following
sentences are of this type.

(1) Yesterday it was cold.
(2) He thinks New York is a wonderful city.
(3) There is a number x such that x2 = 5.
(4) Lucille is a brunette.

In order to decide whether th- first sentence is true or false, we need to specify
what we mean by the word "ccld." Similarly, in the second sentence we need to
know whose opinion is being considered in order to decide whether this sentence
can be designated as true or false. Whether the third sentence is true or false
depends upon what type of numbers are allowed as possible replacements, and
the assignment of true or false to the last sentence depends upon which Lucille one
might have in mind. Hereafter, we will not consider such ambiguous sentences as
statements, due to their lack of specification, their quantification, or their lack of
antecedents for critical words ar variables needed to determine the truth or falsity
of the sentence.

+ Example A.1

The following sentences are statements.

(a) On December 4, 1985, the temperature dropped below freezing in Miami,
Florida.

(b) In the opinion of some citizens of Kuwait, George H. Bush is a hero.
(c) There is an integer x such that x2 = 5.
(d) Singer Gloria Estefan is -from Cuba. +

We will be interested in studying the truth or falsity of statements formed
from other statements using the expressions below. These expressions are called
connectives.

Conwec, ihe Symbol Name

not - negation

and A conjunction

or V disjunction

if.. then ... conditional

if and ont', if biconditional
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The use of the connective "not" in logic is the same as in standard English;
that is, its use denies the statement to which it applies. It is easy to form the
negation of most simple statements, as we see in the following example.

Example A.2

Consider the following statements.

(a) Today is Friday.
(b) Los Angeles is not the capital of California.
(c) 32 = 9.

(d) It is not true that I went to the movies today.
(e) The temperature is above 60° Fahrenheit.

The negations of the statements above are given below.

(a) Today is not Friday.
(b) Los Angeles is the capital of California.
(c) 32 # 9.
(d) It is true that I went to the movies today.
(e) The temperature is less than or equal to 60° Fahrenheit. a

However, the negation of statements containing words such as "some," "all,"
and "every" requires more care. Consider, for instance, the statement s below.

s: Some bananas are blue.

Since "some" means "at least one," the negation of s is the statement

-s: No bananas are blue.

Likewise, the negation of the statement

t: Every banana is yellow.

is the statement

-t: Some bananas are not yellow.

As these examples suggest, a statement involving the word "some" is negated
by changing "some" to "no," and a sentence involving the words "all," "each," or
"every" is negated by changing these words to "some ... not .... "

Example A.3

Negate each of the following statements.

(a) Some cowboys live in Wyoming.
(b) There are movie stars who are not famous.
(c) No integers are divisible by 5.
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(d) All doctors are rich.
(e) Every college football player weighs at least 200 pounds.

The negations of these statentents are given below.

(a) No cowboys live in Wyoming.
(b) No movie stars are not famous. (Or, all movie stars are famous.)
(c) Some integers are divisible by 5.
(d) Some doctors are not rich.
(e) Some college football players do not weigh at least 200 pounds. o

It is obvious that the negation of a true statement is false, and the negation
of a false statement is true. We can record this information in the following table,
called a truth table.

P ~P

T F

F T

Here p denotes a statement and -p denotes its negation. The letters T and F
signify that the indicated statement is true or false, respectively.

The conjunction of two statements is formed by joining the statements with
the word "and." For example, the conjunction of the statements

p: Today is Mondayy and q: I went to school

is the statement

p A q: Today is Monday, and I went to school.

This statement is true only when both of the original statements p and q are true:
Thus the truth table for the connective "and" is as shown below.

p q pAq

T T T

T F F

F T F

F FF

The disjunction of two statements is formed by joining the statements with
the word "or." For example, the disjunction of the statements p and q above is

p V q: Today is Monday, or I went to school.

This statement is true when at least one of the original statements is true. For
example, the statement p V q is true in each of the following cases:

(1) Today is not Monday and I went to school.
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(2) Today is Monday and I did not go to school.
(3) Today is Monday and I went to school.

Thus the truth table for the connective "or" is as shown below.

p q pvq

T T T

T F T

F T T

F F F

The connectives "if... then. . ." and "if and only if" occur rather infrequently
in ordinary discourse, but they are used very often in mathematics. A statement
containing the connective "if ... then . . ." is called a conditional statement or,
more simply, a conditional. For example, suppose Mary is a student we know,
and p and q are the statements

p: Mary was at the play Thursday night

and

q: Mary doesn't have an 8 o'clock class on Friday morning.

Then the conditional p -) q is the statement

p -) q: If Mary was at the play on Thursday night, then she
doesn't have an 8 o'clock class on Friday morning.

Another way of reading the statement "if p, then q" is "p implies q." In
the conditional statement "if p, then q," statement p is called the premise, and
statement q is called the conclusion.

It is important to note that conditional statements should not be interpreted
in terms of cause and effect. Thus when we say "if p, then q," we do not mean
that the premise p causes the conclusion q, but only that when p is true, q must
be true also.

In Normal, Illinois, there is a city ordinance designed to aid city street crews
in removing snow. The ordinance states: If there is a snowfall of two or more
inches, then cars cannot be parked overnight on city streets. As applied to a par-
ticular day, say December 15, 2000, this regulation is a conditional statement with
premise

p: There is a snowfall of two or more inches on
December 15, 2000

and conclusion

q: Cars are not parked overnight on city streets on
December 15, 2000.
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Let us consider under what Circumstances the conditional statement p -- q is
false, that is, under what circumstances the ordinance has been violated. The
ordinance is clearly violated if there is a snowfall of two or more inches and cars
are parked overnight on city stieets on December 15, 2000, that is, if p is true and
q is false. Moreover, if there is a snowfall of two or more inches and cars are
not parked overnight on the city streets on that day (that is, if both p and q are
true), then the ordinance has been followed. If there is no snowfall of two or more
inches (that is, if p is false), then the ordinance does not apply. Hence, in this
case, the ordinance is not violated whether there are cars parked overnight on city
streets or not. Thus the ordinance is violated only when the premise is true and
the conclusion is false.

It may seem unnatural to regard a conditional statement p -* q as being true
whenever p is false. Indeed, i: seems reasonable to regard a conditional statement
as being not applicable when t e premise is false. But then the conditional p -. q
would be neither true nor false when p is false, so p -* q would no longer be
a statement by our definition. For this reason, logicians consider a conditional
statement to be true if its premise e is false. Therefore the truth table for a conditional
statement is as shown below.

p q xp-q

T T T

T F F

F T T

F F T

The biconditional staterrient p *+ q means p -* q and q -* p. Thus a bi-
conditional statement is the conjunction of two conditional statements. We read
the biconditional statement p +-i q as "p if and only if q" or "p is necessary
and sufficient for q." For instance, the following statements are biconditional
statements:

Mary was at the play Thursday night if and only if she doesn't have a
class at 8:00 on Friday morning.

For John Snodgrass to drive his 1965 Mustang in the parade, it is
necessary and sufficient ihat he buys a new muffler.

We can obtain the truth table for p ++ q from the tables for p -* q and q -+ p.

p

T

T

F

F

q'

7'

F

I

F

T

F

T

T

q-ip

T

T

F

T

(p- q)A(q-p)

T

F

F

T
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Thus we see that the conditional statements p -* q and q -> p are both true only
when p and q are both true or false. Hence the truth table for a biconditional
statement is as shown below.

p q p÷4q

T T T

T F F

F T F

F F T

In the first table of the preceding paragraph, we can see that the conditional
statements p -* q and q -+ p do not always have the same truth values. Unfor-
tunately it is a common mistake to confuse these two conditionals and to assume
that one is true if the other is. Although these two statements are different, they are
obviously related because both involve the same p and q. We call the statement
q -- p the converse of p -> q. There are two other conditional statements that are
related to the conditional p -+ q. The statement -p -+ -q is called the inverse
of p -+ q, and the statement -q - p is called the contrapositive of p -* q.

Example A.4

Form the converse, inverse, and contrapositive of the following statement about
John Snodgrass: If John got a new muffler, then John drove his Mustang in the
parade.

The given conditional statement is of the form p -* q, where p and q are the
statements below:

p: John got a new muffler
and

q: John drove his Mustang in the parade.

The converse, inverse, and contrapositive of the given statement are as follows.

converse: If John drove his Mustang in the parade,
then John got a new muffler.

inverse: If John didn't get a new muffler,
then John didn't drive his Mustang in the parade.

contrapositive: If John didn't drive his Mustang in the parade,
then John didn't get a new muffler. +

+ Example A.5

Form the converse, inverse, and contrapositive of the statement:

If it isn't raining today, then I am going to the beach.
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The desired statements are as follows.

converse: If I am going to the beach today, then it isn't raining.

inverse: If it is raining today, then I am not going to the beach.

contrapositive: If I am not going to the beach today, then it is raining.

In this case, we must be careful not to read more into the given statement than
it says. It is tempting to regard the given statement as a biconditional statement
meaning that I am going to the beach today if it isn't raining and not going if it is.
However, the given statement( does not say that I am not going to the beach if it is
raining. This is the inverse of the given statement. Likewise, one must constantly
guard against assuming the truth or falsity of the converse of a conditional on the
basis of the truth or falsity of the conditional itself. +

It should be noted that th-i term "converse" is also commonly used in mathe-
matics in a more complicated sense than that defined above. For example, consider
the statement:

A: If the 3 sides of air angle are congruent, then the 3 angles of the
triangle are congnient.

Most mathematicians would call the following statement the "converse" of state-
ment A:

A*: If the 3 angles of it triangle are congruent, then the 3 sides of the
triangle are congruent.

Indeed this seems to be consistent with the definition of converse given above if
we consider statement A to have the form p -* q, where p and q are as follow:

p: The 3 sides of a triangle are congruent

and

q: The 3 angles of a triangle are congruent.

The problem with this interpretation is that p and q are not statements. For
example, whether p is true or false depends on what triangle we are talking
about.

Actually, the statement Labeled A is an abbreviated but common way of
expressing the following:

For all triangles T, if three sides of T are congruent, then the 3 angles
of T are congruent.

This statement is of the form

B: For all x in S, p(x) -- q(x).

Here x is a variable, S is some set (the set of all triangles in our example) and
p(x) and q(x) are sentences thar become statements when x is given any particular
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value in S. The conventional "converse" of statement B is thus the statement:

B*: For all x in S, q(x) -* p(x).

In our example with triangles, both statements A and its "converse" A* are
true in Euclidean geometry. On the other hand,

C: For all real numbers x, if x > 3, then x > 2

is true, while

C *: For all real numbers x, if x > 2, then x > 3

is not. Note that both the statements

D: For all integers n, if n is even, then n is the square of an integer

and

D*: For all integers n, if n is the square of an integer, then n is even

are false.

EXERCISESA.1

In Exercises 1-12 determine if each sentence is a statement. If so, determine whether the statement is true orfalse.

1. Georgia is the southernmost state in the United States.

2. E.T., phone home.
3. If x = 3, then x2 = 9

4. Cats can fly.

5. What's the answer?
6. New York is the location of the United Nations building.
7. Five is an odd integer, and seven is an even integer.

8. Six is an even integer, or seven is an even integer.
9. Please be quiet until I am finished, or leave the room.

10. Nine is the largest prime number less than 10, and two is the smallest.

11. Five is a positive integer, or zero is a positive integer.

12. Go home and leave me alone.

Write the negations of the statements in Exercises 13-24.

13. 4+5=9.

15. California is not the largest state in the United
States.

17. All birds can fly.

19. There is a man who weighs 400 pounds.

21. Some students do not pass calculus.

23. Everyone enjoys cherry pie.

14. Christmas is celebrated on December 25.
16. It has never snowed in Chicago.

18. Some people are rich.

20. Every millionaire pays taxes.

22. All residents of Chicago love the Cubs.

24. There are no farmers in South Dakota.
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For each of the given pairs of statements p and q in Exercises 25-32, write: (a) the conjunction and (b) the
disjunction. Then indicate which, if either, of these statements is true.

25. p: One is an even integer.
26. p: Oregon borders Canada.
27. p: The Atlantic is an ocean.
28. p: Cardinals are red.
29. p: Birds have four legs.
30. p: Oranges are fruit.
31. p: Flutes are wind instruments.
32. p: Algebra is an English course.

q: Nine is a positive integer.
q: Egypt is in Asia.
q: The Nile is a river.
q: Robins are blue.
q: Rabbits have wings.
q: Potatoes are vegetables.
q: Timpani ar, string instruments.
q: Accounting is a business course.

For each statement in Exercises 33-36 write: (a) the converse, (b) the inverse, and (c) the contrapositive.

33. If this is Friday, then I will go to the movies.

34. If I complete this assignment, then I will take a break.
35. If Kennedy doesn't run for the Senate, then he will run for President.
36. If I get an A on the final exam, then I'll get a B for the course.

c�e

A.2 + LOGICAL EQUIVALENCE

When analyzing a complicated statement involving connectives, it is often useful
to consider the simpler statements that form it. The truth or falsity of the compli-
cated statement can then be determined by considering the truth or falsity of the
simpler statements. Consider. for instance, the statement

Fred Nitney starts at guard in tonight's game implies that Sam Smith
scores fewer than 10 points if and only if Sam Smith scores fewer than
10 points or Fred Nitney doesn't start at guard.

This statement is formed from the two simpler statements

p: Fred Nitney starts at guard in tonight's game

and

q: Sam Smith scores fewer than 10 points in tonight's game.

We can write the given statement symbolically as (p -* q) * (q v p).
Let us analyze the truth of this statement in terms of the truth of p and q. This

analysis can be conveniently carried out in the truth table shown below, where
each row corresponds to a different pair of truth values for p and q.
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p q p-q -p qv -p (p-q) - (qv -p)

T T T F T T

T F F F F T

F T T T T T

F F T T T T

Thus, we see that the original statement

Fred Nitney starts at guard in tonight's game implies that Sam Smith
scores fewer than 10 points if and only if Sam Smith scores fewer than
10 points or Fred Nitney doesn't start at guard

is always true, regardless of the truth or falsity of the statements Fred Nitney
starts at guard in tonight's game and Sam Smith scores fewer than 10 points in
tonight's game.

+ Example A.6

Assuming that p, q, and r are statements, use a truth table to analyze the compound
statement p V [(p A -q) -+ r].

The truth table below shows that the statement p v [(p A -q) -+ r] is always
true.

p q r -q pA--q [(pA-q)-rj pv[(pA-q)-*rj

T T T F F T T

T T F F F T T

T F T T T T T

T F F T T F T

F T T F F T T

F T F F F T T

F F T T F T T

F F F T F T T
ogo

Compound statements such as the one in Example A.6. that are true no
matter what the truth values of their component statements are of special interest
because of their use in constructing valid arguments. Such a statement is said
to be a tautology. Likewise, it is possible for a compound statement to be false
no matter what the truth values of its component statements; such a statement is
called a contradiction. Obviously the negation of a tautology is a contradiction
and vice versa.

545
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+ Example A.7

As we can see in the truth table below, the statement (p A -q) A (-p V q) is a
contradiction.

p q p of?

T T F F

T F F T

F T T F

F F T T

pAq pVq (p A q) A (-p vq)

F T F

T F F

F T F

F T F

Thus -[(p A - q) A (--) v q)], the negation of the given statement, is a
tautology. +

Two compound statements are called logically equivalent if they have the
same truth values for all possible truth values of their component statement vari-
ables. Thus two statements S and T are logically equivalent if and only if the
biconditional S +- T is a tautology. For example, we saw in the first truth table in
this section that the biconditional (p -. q) - (q V '-p) is a tautology. Therefore
the statements p -* q and q v -p are logically equivalent.

Example A.8

Show that the compound statements -(p V q) and (-p) A (-q) are logically
equivalent. (This fact is calledL De Morgan's law.)

In order to prove that the two statements are logically equivalent, it is sufficient
to show that the columns in a truth table corresponding to these statements are
identical. Since this is the case in the truth table below, we conclude that -(p v q)
and (-p) A (-q) are logically equivalent.

p q pq -(pvq) -p -q (p)A(-q)

T T T F F F F

T F r F F T F

F T ;r F T F F

F F F T T T T
do

In logical arguments, it is often necessary to simplify a complicated statement.
In order for this simplification to result in a valid argument, it is essential that
the replacement statement be logically equivalent to the original statement, for
then the two statements always have the same truth values. Thus, because of
the logical equivalences shown in Example A.8, we can replace either of the
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statements -(p V q) or (-p) A (-q) by the other without affecting the validity
of an argument.

We will close this section by stating a theorem containing several important
logical equivalences that occur frequently in mathematical arguments. The proof
of this theorem will be left to the exercises. Note the similarity between parts (a)
through (h) of this theorem and parts (a) through (c) of Theorem 2.1 and parts (a)
and (b) of Theorem 2.2.

The following pairs of statements are logically equivalent.

(a) p A q and q A p
(b) pvqandqvp
(C) (p Aq)Ar andp A (q Ar)
(d) (p vq)Vr and p v (q vr)
(e) pV(q Ar)and (pVq)A(pVr)
(f) p A (q Vr) and (p A q) V(p Ar)
(g) -(p V q) and -p A-q

(h) -(p A q) and -p V-q
(i) p -+ q and -q p-* -p

(commutative law for conjunction)
(commutative law for disjunction)
(associative law for conjunction)
(associative law for disjunction)
(distributive law)
(distributive law)
(De Morgan's law)
(De Morgan's law)
(law of the contrapositive)

EXERCISES A.2

In Exercises 1 -10 construct a truth table for each compound statement.

1. (p V q) A [-(p A q)]

3. (p V q) - (-p A q)

5. (p-q)-(pvr)

7. (-q Ar) - (-p V q)

9. [(p V q) Ar] - [(p A r) V q]

2. (-p v q) A (-q A p)

4. (-p A q) - (-q V p)

6. p -+ (-q Vr)

8. -[p A (q V r)

10. (r A -q) - (q V p)

In Exercises 11-16 show that the given statements are tautologies.

11. -p vp

13. (-p A q) - -(q -- p)

15. -[((p - q) A (-q V r)) A (-r A p)]

12. (p -> q) V (-q A p)

14. -(-p A q)- (-q V p)

16. [(p A q) - r] - [-r - (-p V -q)]

In Exercises 17-24 show that the given pairs of statements are logically equivalent.

17. p and -(-p)

19. -(p -) q) and -q A (p V q)

21. p -*(q *r) and (p Aq) *r

23. (p v q) -÷ r and (p - r) A (q -* r)

25. Prove Theorem A. I parts (a) and (b).

27. Prove Theorem A. 1 parts (e) and (f).

18. p and p V (p A q)

20. p -* q and (-p v q) A (-q V p)

22. (p -+ q) -* r and (p V r) A (q -* r)

24. p -- (q v r) and (p -) q) v (p -÷ r)

26. Prove Theorem A. I parts (c) and (d).

28. Prove Theorem A. I part (h).

Theorem A.1
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29. Prove Theorem A. 1 part (i).

30. The statement [(p -* q) A -q] -+ -p is called modus tollens. Prove that modus tollens is a tautology.

31. The statement [p A (p -* q)] q is called modus ponens. Prove that modus ponens is a tautology.

32. The statement [(p v q) A "-p] - q is called the law of disjunctive syllogism. Prove that disjunctive syllogism
is a tautology.

33. Define a new connective named "exclusive or" and denoted v by regarding p v q to be true if and only if exactly
one of p or q is true.

(a) Write a truth table for "exclusive or."
(b) Show that p v q is logically equivalent to -(p o *

34. The Sheffer stroke is a connective denoted I and defined by the truth table below.

p q p Iq
T 7. F

T I T

F T T

F F T

The following parts prove that all of the basic connectives can be written using only the Sheffer stroke.

(a) Show that p I p is logically equivalent to -p.
(b) Show that (p I p) I (q I q) is logically equivalent tc p v q.
(c) Show that (p I q) I (p I q) is logically equivalent tc p A q.
(d) Show that p I (q I q) is logically equivalent to p q.

A.3 c METHODS OF PROOF

Mathematics is probably the only human endeavor that places such a central
emphasis on the use of logic and proof. Being able to think logically and to read
proofs certainly increases mathematical understanding, but, more importantly,
these skills enable us to apply mathematical ideas in new situations. In this section
we will discuss basic methods of proof so that the reader will have a better
understanding of the logical framework in which proofs are written.

A theorem is a mathematical statement that is true. Theorems are essentially
conditional statements, although the wording of a theorem may obscure this fact.

For instance, Theorem 1.3 is worded:

A set with n elements has exactly 2' subsets.
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With this wording, the theorem does not seem to be a conditional statement; yet
we can express this theorem as a conditional statement by writing:

If S is a set with n elements, then S has exactly 2n subsets.

When the theorem is expressed as a conditional statement, the premise and con-
clusion of the conditional statement are called the hypothesis and conclusion of
the theorem.

By a proof of a theorem, we mean a logical argument that establishes the
theorem to be true. The most natural form of proof is a direct proof. Suppose
that we wish to prove the theorem p -* q. Since p -* q is true whenever p is
false, we need only show that whenever p is true, so is q. Therefore in a direct
proof we assume that the hypothesis of the theorem, p, is true and demonstrate
that the conclusion, q, is true. It then follows that p -- q is true.

We will illustrate some types of proofs by proving certain elementary facts
about integers that use the following two definitions.

(1) An integer n is called even if it can be written in the form n = 2k for some
integer k.

(2) An integer n is called odd if it can be written in the form n = 2k + 1 for
some integer k.

We will also use the fact that every integer is either even or odd, but not both. The
following theorem is proved using a direct proof.

+ Example A.9

Suppose that we wish to prove the theorem: If n is an even integer, then n2 is an
even integer.

To prove this result by a direct proof, we assume the hypothesis and prove
the conclusion. Accordingly, we assume that n is an even integer and prove that
n2 is even. Since n is even, n = 2k for some integer k. Then

n2 = (2k)2 = 4k2 = 2(2k2).

If k is an integer, then so is 2k2 . Hence n2 can be expressed as 2 times the integer
2k2 , and so n2 is even. +

+ Example A.10

Consider the theorem: If x is a real number and x2 - 1 = 0, then x = -1 or
x = 1.

Since x2 
- 1 = 0, factoring gives (x + 1)(x - 1). But if the product of any

two real numbers is 0, at least one of them must be 0. Consequently, x + 1 = 0
or x - 1 = 0. In the first case, x = -1, and in the second, x = 1. Thus x = -I
orx=1. +
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The argument in Example N.10 uses the law of syllogism, which states

[(p '- q) A (q - r)] - (p - r).

Suppose that x is some f xed real number, and let p, q, r, and s be the
statements

p: I2- =O

r: (x + 1)(x -1) = 0

s: c+ = 0 or x - 1 = O

q: c=-l or x=1

Then the argument in ExampLe A. 10 shows that

(p? -* r) A (r -- >s) A (s -* q).

Hence by two applications of the law of syllogism, we conclude that p -*q,

proving the theorem.
Another type of proof is based on the law of the contrapositive, which states

that the statements p -- q and -q - p are logically equivalent. To prove that
p -+ q by this method, we give a direct proof of the statement -q -* -'p by
assuming -q and proving -p. The law of the contrapositive then allows us to
conclude that p -- q is also trae.

Example A.11

We will prove the theorem: If.3c + y > 100, then x > 50 or y > 50.
Suppose that x and y are some fixed real numbers. Then it suffices to show

that p -* q, where p and q denote the statements below.

p: x + y - 1003 and q: x > 50 or y > 50

We will establish the contrapositive of the desired result, which is -q -~- -'p.
Consequently, we will assume that -q is true and show that -p is true. Using
Example A.8, we see that -q and -p are the statements

-q: x < 50andy < 50 and -p: x+y < 100.

Suppose that x < 50 and v <50. Then

.c+y <50+50= 100.

Hence -p is proved, that i,, -q -p. It now follows from the law of the
contrapositive that p -* q.

Example A.12

We will prove the theorem: if n is an integer and n2 is even, then n is even.
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The contrapositive of this theorem is: if an integer n is not even, then n2 is
not even. This statement can also be expressed in the form:

If n is an odd integer, then n2 is odd.

This statement can be proved by an argument like that in the proof of the theorem
in Example A.9. Assume that n is an odd integer. Then n = 2k + I for some
integer k. Then

n2 = (2k + 1)2 = 4k2 + 4k + I = 2(2k2 + 2k) + 1.

Since k is an integer, so is 2k2 + 2k. Hence n2 can be expressed as 2 times the
integer 2k 2 + 2k plus 1, and so n2 is odd. Thus we have proved that if n is an odd
integer, then n2 is odd. It follows that the contrapositive of this statement, if n is
an integer and n2 is even, then n is even, is also true. +

A very different style of proof is a proof by contradiction. In this method of
proof, we prove the theorem p -- q by assuming p and -q are true and deducing
a false statement r. Since (p A -q) -* r is true but r is false, we can conclude that
the premise p A -q of this conditional statement is false. But then its negation
-(p A -q) is true, which is logically equivalent to the desired statement p -* q.
(See Exercise 1.)

Example A.13

We will prove the theorem: If n is the sum of the squares of two odd integers,
then n is not a perfect square.

Proving this theorem by contradiction seems natural because the theorem
expresses a negative idea (that n is not a perfect square). Thus, when we deny the
conclusion, we obtain the positive statement that n is a perfect square.

Accordingly we will use a proof by contradiction. Therefore we assume the
hypothesis and deny the conclusion, and so we assume both that n is the sum of
the squares of two odd integers and that n is a perfect square. Since n is a perfect
square, we have n = m2 for some integer m. But also n is the sum of the squares
of two odd integers. Since an odd integer is one more than an even integer, we
can express n in the form

n = (2r + 1)2 + (2s + 1)2

for some integers r and s. It follows that

n = (2r + 1)2 + (2s + 1)2 = (4r2 + 4r + 1) + (4s2 +4s + 1)

= 4(r2 + S2 + r + s) + 2,

so that n is even. Thus m2 = n is even. We deduce from Example A.12 that m is
even, and so m = 2p for some integer p. Thus n = m2 = (2 p)2 = 4p2 is divisible
by 4. But we saw above that n = 4(r2 + S2 + r + s) + 2, which is not divisible



552 Appendix A An Introduction to Logic and Proof

by 4. Hence we have derived a f else statement, namely, that n is both divisible by 4
and not divisible by 4. Thus assuming the hypothesis and denying the conclusion
has led to a false statement. It follows that if the hypothesis is true, the conclusion
must be true also. Consequently the theorem has been proved. +

+ Example A.14

Show that there is no rational number r such that r2 = 2. (Recall that a rational
number is one that can be written as the quotient of two integers.)

The theorem to be proved can be written as the conditional statement: If r
is a rational number, then r2 7 2. Again proving this theorem by contradiction
seems natural because the theorem expresses a negative idea (that r2 is not equal
to 2). So if we deny the conclasion, we obtain the positive statement that there is
a rational number r such that r = 2.

Accordingly we will use a proof by contradiction. Thus we assume the hy-
pothesis and deny the conclus en, and so we assume that there is a rational number
r such that r2 = 2. Because r is a rational number, it can be expressed in the form
n, where m and n are integers. Moreover, we may choose mn and n to have no

common factors greater than 1, so that the fraction rn/n is in lowest terms. Then
we have

(in )2

from which it follows that in2 = 2n2. Hence M2 is an even integer. Thus by
Example A. 12, mn must be even, that is, mn = 2p for some integer p. Substituting
this value for m in the equation rn2 = 2n2 yields 4p2 = 2n2

, so that 2p2 = n2
Hence n2 is even, and so it follows as above that n is even. But then both m and
n are even, that is, m and n have a common factor of 2. This fact contradicts our
choice of m and n as having no common factor greater than 1, and so we deduce
that the conclusion to our theorem must be true. Thus the theorem is proved. +

We have discussed three basic methods of proof in this section, the direct
proof, proof of the contrapositive, and proof by contradiction. There are other
types of proofs as well. One method of proof that is quite important in discrete
mathematics is proof by matnermatical induction, which is discussed in Section
2.6. Another type of proof is a proof by cases, in which the theorem to be proved
is subdivided into parts, each of which is proved separately. The next example
demonstrates this technique.

+ Example A.15

Show that if n is an integer, then n3 
- n is even.

Since every integer n is either even or odd, we will consider these two cases.
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Case 1: n is even: Then n = 2m for some integer m. Therefore

n3 -n = (2m) 3 -2m = 8m 3 -2m = 2(4m3 -m),

which is even.

Case 2: a is odd: Then n = 2m + 1 for some integer m. Hence

n3 -n = (2m + 1)
3 -(2m + 1)

=(8m3 +12m 2 +6m+1) -(2m+1)

= 8m3 + 12m2 + 4m

= 2(4m3 + 6m2 + 2m),

which is even.

Because n2 
_ n is even in either case, we conclude that n3 - n is even for all

integers n. +

To close this section, we will briefly consider the problem of disproving
a statement p -* q, that is, of showing that it is false. Because a conditional
statement is false only when its premise is true and its conclusion is false, we
must find an instance in which p is true and q is false. Such an instance is called
a counterexample to the statement.

For example, consider the statement: If an integer n is the sum of the squares
of two even integers, then n is not a perfect square. To disprove this statement,
we must find a counterexample, that is, an integer n that is the sum of the squares
of two even integers and at the same time a perfect square itself. The equality
100 = 62 + 82 shows that 100 is such a number. The existence of a single coun-
terexample is enough to invalidate the statement, even though there are many
values of n for which the statement holds, i.e., 40 = 22 + 62. But, the statement
is false because it is not true for all integers that satisfy the hypothesis.

EXERCISESA.3

1. Prove that -(p A -q) is logically equivalent to p -- q.

2. Prove that the law of syllogism is a tautology.

3. Prove that if m is an integer and m2 is odd, then m is odd. (Hint. Prove the contrapositive.)

4. Prove as in Example A.14 that there is no rational number r such that r2 = 3.

Prove the theorems in Exercises 5-12. Assume that all the symbols used in these exercises represent positive integers.

5. If a divides b, then ac divides bc for any c.

6. If ac divides bc, then a divides b.

7. If a divides b and b divides c, then a divides c.
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8. If a divides b, then a < b.

9. If p and q are primes and p divides q, then p = q.

10. If a divides b and a divides b + 2, then a = 1 or a = 2.

11. If xy is even, then x is even or y is even.

12. For all positive integers n greater than 10, 12(n - 2) - n2 -n.

Prove or disprove the results in Exercises 13-22. Assum' that all the numbers mentioned in these exercises are
integers.

13. The sum of two odd integers is odd.

14. The product of two odd integers is odd.

15. If ac = bc,thena = b.

16. If 3 divides xy, then 3 divides x or 3 divides y.

17. If 6 divides xy, then 6 divides x or 6 divides y.

18. If 3 divides x and 3 divides y, then 3 divides ax + by

19. If a and b are odd, then a2 + b2 is even.

20. If a and b are odd, then a2 + b2 is not divisible by 4.

21. For all integers, n, n is odd if and only if 8 divides n2 - 1.

22. The product of two integers is odd if and only if both of the integers are odd.

23. Prove or disprove: For every positive integer n, n2 
+ r, + 41 is prime.

24. Prove that in any set of three consecutive odd positive ntegers other than 3, 5, and 7, at least one number is not
prime.

25. Prove that for each positive integer n, n' - 2 is not divisible by 3.

26. Prove that for each positive integer n, n4  n2 is divisible by 6.

27. Prove that if p is a prime positive integer, then log, ) p i, not expressible as the quotient of two integers.

28. Prove that there are infinitely many primes.

- o

HISTORICAL NOTES

The study of logic and proof has played a central role in mathematics since the time of
Thales of Miletus (ca. 580-50() B.C.), who is regarded as the first mathematician to offer
deductive arguments. In the fifth century B.C., the Athenian Plato (429-348 B.C.) made
a distinction between arithmetic ithe theory of numbers) and logistic (the techniques of
computation). In drawing this distinction, Plato discussed the differences of theory and
application. He saw the essence of mathematics residing in the analytic method. One begins
with givens, in the form of axioms or postulates, and works, step-by-step, to develop a line
of reasoning resulting in a specific desired statement. Throughout his work, he elevated
the role of theory in comparison to :hat of application. Plato's student Aristotle (384-322
B.C.) was the first to systematize deductive arguments into a system of principles. While he
wrote little about mathematics directly, his development of argument in his philosophical

O
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Augustus le Mvtorgan

U.S. Peirce

writings and his constant use of mathematical concepts in discussing argument forms left
indelible marks on the subject [73, 74].

The German Gottfried Wilhelm Leibniz (1646-1716) presented his view of system-
atic argument forms in his 1666 book De Arte Combinatoria. While many of his scientific
colleagues viewed his work as being "metaphysical," Leibniz worked from 1679 to 1690
developing a system built on undefined terms, axioms and postulates, logical rules, and
derived statements. His goal was to develop a universal algebra for reasoning. It was not
until the work of the English mathematician George Boole (1815-1864) that such a system
of thought became widely accepted. Boole's 1847 work The Mathematical Analysis of
Logic and its 1854 extension An Investigation of the Laws of Thought ushered in a new
focus on the nature of evidence, argument, and proof.

These works were substantiated by Augustus De Morgan's (1806-1871) Formal
Logic; or, the Calculus of Inference, Necessary and Probable. At the same time, the
American Charles Sanders Peirce (1839-1914) argued fora separation of mathematics and
logic and added emphasis on the role of quantifiers in logical arguments. Between 1880 and
1885, Pierce worked to develop a theory involving truth values and semantics for his logic.
Peirce's work with quantification and the algebra of statements moved inference in a new
direction. His algebra of logic was brought to new levels of rigor and formalism in German
Ernst Schroder's (1841-1902) work Vorlesungen liber die Algebra der Logik (1890-1905)
and Alfred North Whitehead's (1861-1947) A Treatise on Universal Algebra (1898) [80].

At the same time, a number of mathematicians began to work to develop a system for
rigorously expressing all of mathematics in terms of this new logical language. Between
the appearances of his books Foundation of Arithmetic in 1879 and The Fundamental Laws
of Arithmetic in 1903, the German Gottlieb Frege (1848-1925) tried to develop a more
rigorous basis for mathematics. The Italian Giuseppe Peano's (1858-1932) seminal 1894
work Formulaire de Mathematiques laid out a view of arithmetic based on the undefined
concepts of zero, number, and successor and the following fundamental axioms.

* Zero is a number.
* For any number n, its successor is a number.
* No number has zero as its successor.
* If two numbers m and n have the same successor, then m = n.
* If T is a set of numbers such that 0 is a member of T and the successor of n is in T

whenever n is in T, then T is the set of all numbers.

In this, order (successor) and induction were tied to the development of number. These
ideas were also used by Julius Wilhelm Richard Dedekind (1831-1916) and others to
formulate a basis for arithmetic and, more generally, mathematics. The best known of these
was the multi-volume work Principia Mathematica (1910-1913) developed by Bertrand
Russell (1872-1970) and Alfred North Whitehead.

The Austrian-born mathematician Kurt Godel's (1906-1978) 1931 paper showed that
the axiomatic method has its limitations. His theorem, called Godel's proof, showed that
any set of axioms broad enough to contain the fundamentals of the positive integers must
also contain a well-defined statement that can neither be proven true or false within the
system [80, 84].
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SUPPLEMENTARY EXERCISES

In Exercises 1-8 determine if each sentence is a statement. If so, tell whether it is true orfalse.

1. All integers are real numbers. 2. Each real number is an integer.

3. Tom is the smartest student in class. 4. The day before Thursday is Friday.

5. n2 > n! for all integers n. 6. Some rectangles are squares.

7. No square of an integer has a unit's digit of 7. .3. n! + I is a prime for all positive integers n.

Write the negation of each statement in Exercises 9-16. Indicate whether each negation is true or false.

9. No squares are triangles. 11). All isosceles triangles are equilateral.

11. Some scientists from the United States have received Nobel prizes.

12. Red is a primary color, and blue is not a primary color.

13. 2 + 2 > 4, or I is a root of x± + I = 0.

14. It is not the case that x2 > I for all integers x.

15. In circling the globe along a line of latitude, one must cross the equator twice, the North Pole, and the
South Pole.

16. There are five complex roots to the equation xA - ] = 0.

For each pair of statements p andq in Exercises 17-20, wriae (a) their conjunction and(b) their disjunction. Indicate
the truth value of each compound statement formed.

17. p: Squares have four sides. q: Triangles have three sides.

18. p: In e = I q: log 10 = 2.718 . .

19. p: If 3 > 2, then 3 x 0 > 2 x 0. q: If 4 =5, then 5 = 9.

20. p: sin(s) - 0.5 q: cos(- ) = 0.5.

For each statement in Exercises 21-24, write (a) the converse, (b) the inverse, and (c) the contrapositive. Indicate
the truth value of each.

21. If 3+3=6,then3 2 =6. 22. If(3+3) 2 
= 18,then(3+3) 2 =332+32.

23. If 32=6,then3 x2=6. 24. If(3+3)2 =6 2 ,then3 2 +2x3 x3+3 2 =6 2
.

In Exercises 25-28 construct a truth table for each compou'd statement.

25. -[(pv q)A -p]A p 26. -[(pv-q)Ap] - (-pAq)

27, [p A(rA (-p Vq))] ~[(p Ar)A (-p Vq)] 28. f(p -r) A(p q)] [p (r Aq)]

In Exercises 29-32 determine if the given statements are tautologies.

29. [p v (p A q)] -(p v q) 30. p -q) -- [(p v q) q]

31. [[(p v q) A -pi A q) (q A -q) 32. -[[(p v q) A (-p v r)] v -(q A r)J

In Exercises 33-36 test whether the given statements are logically equivalent.

33. [-p A (-p A q)] v [p A (p A -q)] and (-p A q) v (p A -q)

34. (p -q) A (p r) and q-- r



Suggested Readings 557

35. (pAqAr)v(pA-qAr)V(-pA-qAr)V(QpAqAr) and r

36. [(pvq)v r]A[pv(qvr)] and pvq

In Exercises 37-44 prove or disprove the statement given. Assume that all the variables in these exercises represent
positive integers.

37. If n > 4, then n can be written as the sum of two distinct primes.

38. If x is even and x does not have zero as a unit's digit, then x is not divisible by 5.

39. If x is even and x is a perfect square, then x is divisible by 4.

40. One or both of 6n + 1 and 6n -1 are prime.

41. 10 divides n5 _ n.

42. If s is the sum of a positive integer n and its square n2, then s is even.

43. If d is the difference of two consecutive cubes, then d is odd.

44. If k is the sum of a positive integer c and its cube c3, then k is even.

SUGGESTED READINGS

1. Kenelly, John W. Informal Logic. Boston: Allyn and Bacon, 1967.

2. Lucas, John. An Introduction to Abstract Mathematics. Belmont, CA: Wadsworth, 1986.

3. Mendelson, Elliott. Introduction to Mathematical Logic. Princeton, NJ: Van Nostrand, 1964.

4. Polya, G. How to Solve It. 2nd ed. Garden City, NY: Doubleday, 1957.

5. Solow, Daniel. How to Read and Do Proofs. New York: Wiley, 1982.



BV Appendix: Matrices

In our study of graph theory, it will sometimes be useful to represent a graph
as an array of Os and 1 s. Arrays of numbers are useful not only in representing
graphs, but also in performing computations. In this appendix, we will discuss
the addition and multiplication of matrices, two operations that will be used in
Chapters 3 and 4.

An m x n matrix is a rectangular array of numbers in which there are m hori-
zontal rows and n vertical columns. For example, if

A= 5 0] and B 3 4 °

then A is a 3 x 2 matrix and B is a 4 x 3 matrix.
The numbers in a matrix are called its entries. More specifically, the number

in row i and column j is called the i, j entry of the matrix. In the matrix B above,
the 3, 2 entry is 9 and the 4, 1 entry is -7.

Two matrices A and B are called equal whenever A and B have the same
number of rows and the same number of columns and the i, j entry of A equals the
i, j entry of B for every possible choice of i and j. In other words, two matrices
are equal when they have the same size and all pairs of corresponding entries are
equal. As with real numbers, if matrices A and B are equal, then we write A = B;
otherwise, we write A :A B.

+ Example B.1

Consider the matrices

C =[1 2], D. = [1 2 0], and E =[ 1 ]3
[ 3 4 ]' [3 4 0 ] [2 4]

Because C and D are of different sizes (C is a 2 x 2 matrix, whereas D is a 2 x 3
matrix), we have C 0 D. Also, C # E because the 1, 2 entry of C, which is 2,

558
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does not equal the 1, 2 entry of E, which is 3. However, if

[(-1)4 '-

FL[(,j 22]

then C =F. +

Matrices are useful for storing information. Moreover, there are operations that
can be performed on matrices that correspond to natural ways to work with the
data stored in them. We will discuss here only the matrix operations used in this
book, namely, matrix addition and multiplication.

Suppose that the Mathematics Department of a university maintains two
computer labs. The lab for upper-level courses contains 25 computers and 3
printers, and the lab for lower-level courses contains 30 computers and 2 printers.
One way to record this information is with the 2 x 2 matrix

Comp. Print.
Upper [25 31 M
Lower [30 2 M

In addition, suppose that the Computer Science Department also maintains two
labs for upper- and lower-level courses, which have 50 computers and 10 printers
and 28 computers and 4 printers, respectively. This information can be recorded
in the 2 x 2 matrix

Comp. Print.
Upper [50 10 C
Lower [28 4]

Then the sum M + C is the matrix

Comp. Print.
M +C [ 25 31 [5+ 0 101 - [25+50 3 + 101 - [75 131 Upper

L30 2] +28 4] [30+28 2+ 4] [58 6] Lower

whose entries give the total number of computers and printers in the Mathematics
and Computer Science labs for each level of course.

In general, suppose that A and B are two m x n matrices. The sum of A and
B, denoted A + B, is the m x n matrix in which the i, j entry equals the sum of
the i, j entry of A and the i, j entry of B. In other words, matrices of the same size
can be added by adding their corresponding entries. Observe that only matrices
of the same size can be added, and the sum is the same size as the matrices being
added.
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Example B.2

Consider the matrices

6 4 -2 6
A= 2 1 and B= 3 0].

Since A and B are both 3 x 2 matrices, they can be added. Their sum is the 3 x 2
matrix

6 4~ ---2 6 6+(-2) 4+61 4 10
A+B=22 1 + 3 0 2 +3 1+0 = 5 1i.

A _[ 7 4 0[ + 7 -5±+44 7  -1 +

Unfortunately, the multiplication of matrices is more complicated than addi-
tion. We will start by considering the product of a 1 x n matrix A and an n x 1
matrix B. If

bi
b2

A = [al ti, ... a,] and B=

LbJ
then the product AB is the 1 > 1 matrix

bi
b2

AB = [a, a2 ... a,] [abi + a2b2 + + anb,],

bn -

in which the single entry is the sum of the products of the corresponding entries
of A and B.

Example B.3

Let
7

A= [I 2 3] and B= 8
-9-

The product of the 1 x 3 matrix A and the 3 x 1 matrix B is

7
AB =[1 2 3][8 = [1(7) +2(8) +3(9)] = [50].

-9- +

More generally, the product of an m x n matrix A and a p x q matrix B is
defined whenever n = p, that is, whenever the number of columns in A equals
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the number of rows in B. In this case, the product AB is the m x q matrix whose
i, j entry equals the sum of the products of the corresponding entries of row i of
A and column j of B. Symbolically, if A is the m x n matrix whose i, j entry is
aij and B is the n x q matrix whose i, j entry is bij, then AB is the m x q matrix
whose i, j entry equals

aijbij + ai2b2j + - + ainbnj-

Note that this value is the same as the entry in the 1 x 1 matrix obtained by
multiplying row i of A by column j of B, as described above.

Example B.4

Let

A 4 5 6 and B= [L8 11f

Here A is a 2 x 3 matrix and B is a 3 x 2 matrix, and so the product AB is defined
and is a 2 x 2 matrix. Its 1, 1 entry is the sum of the products of the corresponding
entries of row 1 of A and column 1 of B (as in Example B.3):

1(7) + 2(8) + 3(9) = 50.

Similarly, the 1, 2 entry of AB is the sum of the products of the corresponding
entries of row 1 of A and column 2 of B:

1(10) + 2(11) + 3(12) = 68;

the 2, 1 entry of AB is the sum of the products of the corresponding entries of
row 2 of A and column 1 of B:

4(7) + 5(8) + 6(9) = 122;

and the 2, 2 entry of AB is the sum of the products of the corresponding entries
of row 2 of A and column 2 of B:

4(10) + 5(11) + 6(12) = 167.

Thus AB is the 2 x 2 matrix

AB 4 5 6 ] 1 12

_ 1(7) + 2(8) + 3(9) 1(10) + 2(11) + 3(12)1
4(7) + 5(8) + 6(9) 4(10) + 5(11) + 6(12)]

[ 50 681
122 1671*
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In this book, we will often encounter the product of two n x n matrices. Note
that such a product is defined and is another n x n matrix. In particular, if A is an
n x n matrix, then the product AA is defined. As with real numbers, we denote this
product as A2. Since A2 is also an n x n matrix, the product A3 = AA 2 is defined
and is another n x n matrix. In a similar fashion, we can define Ak+l = AAk for
every positive integer k, and all of the matrices A, A2, A3 , . . . are n x n matrices.

It is important to note that the multiplication of matrices is not commutative,
that is, AB need not equal B A. In Example B.4, for instance, AB is a 2 x 2 matrix
and BA is a 3 x 3 matrix; so AB :A BA. Moreover, even if both A and B are
n x n matrices, it is possible that AB = BA. (See Exercise 30.)

To conclude this appendix, we return to our example of the computer labs for
an application of matrix multiplication. Suppose that the Mathematics Department
wishes to know the value of the equipment in its two labs. If each of its computers
costs $1000 and each of its printers costs $200, then the value of the equipment
in its lab for upper-level courses is

25($1000) + 3($200) = $25,600,

and the value of the equipment in its lab for lower-level courses is

30($1 300) + 2($200) = $30,400.

Note that if

Value[ 10001 Upper
200] Lower

then the product matrix

Value
F 25 3 I 1000 F25(1000) + 3(200) l F25,6001 Upper

L3 0  2 ]L 20C 0 L30(1000) +2(200) L3 0,4 0 0 j Lower

gives the value of the equipment in each of the Mathematics Department's labs.

EXERCISES B.1

In Exercises 1-8 use the matrices

A = l B = 1[ 3] , and C=[ 3 4

to compute the given matrix if it is defined.

1. A+B 2. B +A

3. C +A 4. A+ C
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5. AB 6. BA

7. AC 8. CA

In Exercises 9-16 use the matrices

A=[ I] and B=[I 2]

to compute the given matrix if it is defined.

9. AB 10. BA 11. A2  12. B2

13. A2B2  14. (AB) 2  15. A3  16. B3

In Exercises 17-24 use the matrices

- -lI 0 0
A = I I I and B = 0 -I 0

to compute the given matrix if it is defined.

17. AB 18. BA 19. A2  20. B2

21. A2B2  22. (AB)2  23. A3  24. B3

25. Show that, for any m x n matrices A and B, A + B = B + A. Thus matrix addition is a commutative operation.

26. Show that, for any m x n matrices A, B, and C, (A + B) + C = A + (B + C). Thus matrix addition is an
associative operation.

The m x n zero matrix is the m x n matrix in which each entry is zero.

27. Show that, for any m x n matrix A, A + 0 = A, where 0 is the m x n zero matrix.

28. Let A be an m x n matrix and 0 be the n x p zero matrix. Show that AO is the m x p zero matrix.

29. Let 0 be the m x n zero matrix and B be any n x p matrix. Show that OB is the m x p zero matrix.

30. Let

A =[I ] and B [=2 1]

(a) Compute AB and BA.
(b) This example illustrates two differences between the multiplication of matrices and the multiplication of

real numbers. What are they?

The n x n matrix whose i, i entry is 1 for i = 1, 2, . . ., n and 0 otherwise is called the n x n identity matrix and
is denoted In.

31. For any n x n matrix A, show that AI, = InA = A.

32. Prove that Inm = In for any positive integers m and n.



564 Appendix B Matrices

33. Let A be an m x n matrix and B and C be n x p matrices. Prove that A(B + C) = AB + AC.

34. Let A and B be m x n matrices and C be an n x 1p matrix. Prove that (A + B)C = AC + BC.

ogo

HISTORICAL NOTES

Girolamo Cardano

The history of matrices traces back to Chinese mathematics in the period around 250
B.C. During that time, an unknown scribe wrote the Chui-chang suan-shu, which trans-
lates as Nine Chapters on the Mathematical Art. Like the Rhind papyrus from Egypt,
the manuscript is a collection of worked problems, probably intended as a textbook for
mathematics students. In considering the solution to the system of equations that would
be written today as

2x+2y+ z=39
lx+3y+ z=34

x+2y-+ 3z =26,

the manuscript contains the boxed array below.

1 2 3
2 3 2
3 1 1

26 34 39

The solution of the system was tl'en obtained by a series of operations on the columns of
this rectangular array.

The usage of such arrays to represent mathematical problems languished for some
time after this. The Italian mathematician Girolamo Cardano (1501-1576) brought the
methods back to Europe in 1545 in his Ars Magna. The Dutch mathematician Jan deWitt
(1629-1672) used arrays in his Elements of Curves to represent transformations, but did
not take the usage beyond that of representation. Gottfried Wilhelm Leibniz (1646-1716)
was perhaps most responsible lor touring the attention of European mathematicians to the
use of arrays for recording informal ion in problems and their solutions. During the period
from 1700 to 1710, Leibniz's notes show that he experimented with more than 50 array
systems.

In the middle of the 1800s matrices moved beyond the writing of numbers in rect-
angular arrays to serve in the solution of equations. In 1848, James Joseph Sylvester
(1814-1897) showed how arrays might be used to attack such problems more efficiently.
In doing so, he called such an array of numbers a "matrix."

In 1858, the English mathematician Arthur Cayley (1821-1895) wrote a treatise on
geometric transformations. In it, Cayley looked for a way to represent the transformation

7 Ix' = ax + by
y' = cx + dy.



Historical Notes 565

To do so, Cayley used a rectangular array reminiscent of that used by the Chinese, but
without the rotation of the array. Cayley wrote his array between two sets of vertical bars:

a b

|| c d |

In working with the arrays of coefficients, Cayley recognized that operations could be
defined on these arrays irrespective of the equations or transformations from which they
were derived. He defined operations of addition and multiplication for these arrays, and
noted that the resulting mathematical system satisfied several of the same properties
that characterized number systems, such as the associative properties and the distributive
property of multiplication over addition. He also noted, however, that while addition
was commutative, multiplication was not. Furthermore, he noted that the product of two
matrices might be zero although neither factor was the zero matrix. His 1858 paper,
Memoir on the Theory of Matrices, provided a framework for the later development of
matrix theory. In it, he stated the famous Cayley-Hamilton theorem and illustrated its
proof with a computational example.

The current bracket notation for matrices was first used by the English mathematician
Cullis in 1913. His work also was the first to make significant use of the aij notation to
represent the matrix entry in the ith row and jth column [73, 74, 75].
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T'he algorithms in this book are written in a form that, while not corresponding
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be easily turned into programs. They are divided into steps, which are executed
in order, subject to certain looping or branching instructions. Loops are begun
by one of three special words: while, repeat, and for, printed in boldface type.

Wh l , end t W I: 3; ~ II g !6 I 4 :: i

This construction has the form below.

while statement
some instructions

endwhile

Here statement is checked. and if it is true, some instructions are executed. This
is repeated until statement is false, at which point the algorithm resumes after the
endwhile. An example follows.

Algorithm 1

Given a positive integer n, this algorithm computes the sum of the first n positive
integers.

StepI SetS=Oandk= 1.
Step 2 while k < n

Replace S with S -- k and k with k + 1.
endwhile

Step 3 Print S.

The following table show s how the values of S and k change as the algorithm
is applied to n = 4. Making such a table is often helpful in understanding a new
algorithm.

566



Appendix C The Algorithms in This Book 567

S

0

0 +1I= 1

1 +2 = 3

3 +3 = 6

6 +4-=10

k

1+-

2 +1=32

23+1=43

4 +I=54

Here Step 2 would be repeated until k = 5, making the statement k < n false.
Then Step 3 would be executed, printing the value S = 10.

Note that the instructions between while and endwhile may not be executed
even once. For example, if Algorithm 1 is applied with n = 0, nothing is ever
done in Step 2 and the value S = 0 is printed.

Another looping structure has the following form.

repeat
some instructions

until statement

Here some instructions are executed, then statement is checked and, if found
false, some instructions are executed again, etc. Only when statement is found
true does the algorithm take up after the line containing until.

The following algorithm has the same effect as Algorithm I if n is any positive
integer.

Algorithm 2

Given a positive integer n, this algorithm computes the sum of the first n positive
integers.

Step]I Set S=O0and k= 1.
Step 2 repeat

Replace S with S + k and k with k + 1.
until k > n

Step 3 Print S.

Unlike a while . .. endwhile loop, the instructions between repeat and until
are always executed at least once. Thus if Algorithm 2 were applied to n = 0, it
would print the value S = 1.



568 Appendix C The Algorithms in This Book

When Algorithm 1 is run with a = 4, the instructions inside Step 2 are executed
for k = 1, 2, 3 and 4. Although writing the algorithm this way is useful when
one wants to count every elementary operation, most computer languages have a
command something like "for k = 1 to 4." In the algorithms in this book, such
loops begin with for and end with endfor. We could rewrite Algorithm I using
this language as follows.

Algorithm 3

Given a positive integer n, this algorithm computes the sum of the first n positive
integers.

Step ] Set S = O.
Step 2 for k = I to n

Replace S with S +- k.
endfor

Step 3 Print S.

In a for ... endfor loop, the variable may be incremented by an amount d
other than 1 by adding the words by d. For example, the following algorithm
computes 1 + 2 + + n by adding the larger numbers first.

Algorithm 4

Given a positive integer n, this algorithm computes the sum of the first n positive
integers.

Step] SetS =O.
Step 2 for k = n to I by --1

Replace S with S 4- k.
endfor

Step 3 Print S.

Branching in algorithms is accomplished by the if ... otherwise ... endif con-
struction. This has the form below.

if statement
some instructions



Appendix C The Algorithms in This Book 569

otherwise
other instructions

endif

Here statement is checked, and if found true, some instructions are executed.
If statement is false, then other instructions are executed instead. In either case,
the algorithm resumes after endif. If there are no other instructions~, then the
branching construction can be shortened to the following form.

if statement
some instructions

endif

Algorithm 5 illustrates the if ... otherwise ... endif construction.

Algorithm 5

Given a real number x, this algorithm computes its absolute value.

Step]I if x >O
Set A = x.

otherwise
Set A = -x.

endif
Step 2 Print A.

In more complicated algorithms, looping and branching constructions are
often nested. The example that follows has an if ... otherwise ... endif nested
within a while ... endwhile. It concerns the Collatz sequence, in which a positive
integer n is replaced by n/2 or 3n + 1 according as it is even or odd, and this is
repeated. It has been conjectured, but never proved, that eventually the number 1 is
reached, no matter what positive integer n we start with. The following algorithm
counts how many steps this takes for a given n.

Algorithm 6

This algorithm counts how many steps the Collatz sequence takes to reach 1 from a
given positive integer n.

Step]I Set k=O0and s-=n.
Step 2 while s > 1

Step 2.1 Replace kwith k+ 1.
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Step 2.2 if s is even
Replace s with s/2.

otherwise
Replace s with 3s + 1.

endif
endwhile

Step 3 Print k.

The following table shows how k and s change when the algorithm is applied
ton = 3.

k

0

2

3

4

5

6

7

5

3

3 3 + 1 = 10

10/2 = 5

3 5+ I = 16

16/2 = 8

8/2 = 4

4/2 = 2

2/2 = 1

Thus, when step 3 is executed., the value k = 7 is printed.

In Section 4.5 are several algorithms that are recursive, in the sense that they call
themselves. Below is a simple e xample of such an algorithm.

Algorithm 7

Givenapositive integer n,this algorithm prints outasequence of integers kl, k2 , . ,
such that n = k2 +2 + + C

Step I Set s = n.
Step 2 while s > 0

Step 2.1 Set k= 1.
Step 2.2 while (k + 1)2 < S

Replace k with k + 1.
endwhile

Step 2.3 Print k.
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Step 2.4 Apply Algorithm 7 with n = s - k2.
endwhile

This algorithm finds the largest integer k such that k2 < n, prints this integer,
then applies the same algorithm to n - k2. The following table shows how s and
k change, and what is printed out, for n = 22. Note that

22 = 42 + 22 + 12 + 12.

S

22

22 - 42 = 6

6 -22 =2

2 - 12 = 1

k

I

2

3

4

2

printed

4

2

1

1
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Answers to Odd-Numbered
Exercises

CHAPTER 1

EXERCISES 1.1 (page 8)

33; A-B-D-F-G or A-C-E-F-G
43; B-D-F-G 5. 20.7; A-D-H-K
23; A-D-F-G

B C

A Gr :

D E

15. 0.29; E-F-C-D-I

A B D

E FI.

7.
11.

2.1; A-C-IH-FI-.[
24; B-C-F-G

A C E

3 4 -6 G

B D \F

5 2 -7

17. 27 minutes 19. 15 days

EXERCISES 1.2 (page 15)

1. 120 3. 6720 5. 28
19. 720 21. 288 23. 210

7. 840 9. 604,800 11. 25.2
25. 60 27. 20,118,1)67,200

13. 720
29. 60

15. 56 17. 362,880

576

1.
3.
9. 13. 15.7; D-I
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EXERCISES 1.3 (page 22)

1. F 3. F 5. F 7. T 9. F 11. F 13. F 15. yes, 28 17. yes, 35
19. 1,4,5,6,7,8,9,11,12;51 21. 128 23. 32 25. n-m+l 27. 31 29. 12.7days

EXERCISES 1.4 (page 33)

1. yes; 2 3. no 5. no
15. k i a, a 2  a3

3 1 0 1
2 1 1 1

3 1 1 0

7. 3, 13; 5, 13 9. -7, 3, 11, 3; -1, 0, 5, 3 11. 110110 13. 001110
17. k j a, a2  a3  a4  19. ai a2 a3 a4 j k

4 1 1 0 1 13 56 87 1 3

3 1 1 1 1 13 56 4 87 2

4 1 1 1 0 ®4256 87 1

13 42 (3 2 3

13 ( 87 2

13 42 (3 3 3

13 42 56 87

al a2 a3 a4  a5 j k

6 33 20 200 9 1 4

6 33 (2 09 200 3

6 33 92 20 200 2

' 9 33 20 200 1

6 9 33 ( a) ( 2 4

6 9 ( ) 200 3

6 & ()33 200 2

6 9 20 () ( 3 4

6 9 (@) 6j) 200 3

6 9 20 () 4 4

6 9 20 33 200

23. 58 minutes; 0.8 seconds 25. 385,517 years; 6.4 seconds 27. 3n + I
29. 4n-2 31. -7, 3, 11, 3

SUPPLEMENTARY EXERCISES (page 36)

1. 18; B-D-G-I 3. 28 minutes 5. 332,640 7. 990 9. F 11. F 13. T 15. T 17. 32
19. 80 21. yes; 100 23. no 25. 3, 9, 31, 88

21.



578 Answers to Odd-Numbered Exercises

27. 29. 39 31, 4n- 3

CHAPTER 2

EXERCISES 2.1 (page 46)

1. (1,2,3,4,5,6,7,8,91;{3,5};12,7,81;{1,4,6,9};{2.7,8)
3. {1,2,3,4,7,8,9};0;t1,2,4,8,9};{3,5,6,71;{1,2,4,5,5,8,91
5. {(1,7), (1, 8), (2,7), (2, 8), (3, 7), (3, 8), (4,7), (4, 8)) 7. {(a, x), (a, y), (a, z), (e, x), (e, y), (e, z)}
9. 11.

13. A={l},B= {2,C={l,2} 15. A={1,21,B=-={:,3J,C=[{2,3} 17. 0
23. A-B 25. mn 27. B CA 39. A =t1},B = {21,C={3},D={4)

19. A-B 21. B-A

EXERCISES 2.2 (page 52)

1. symmetric and transitive 3. reflexive, symmetric, and transitive
5. reflexive and symmetric 7. reflexive, symmetric, and transitive
9. reflexive, symmetric, and transitive 11. reflexive and transitive
13. [z] is the set of odd integers, 2 equivalence classes
15. [z] is the set of integers greater than 1 that are divisible by 5 but no y any prime greater than 5, infinitely many
equivalence classes
17. [z] consists of all ordered pairs (x, y) that satisfy the equation x2 

A y
2 

= 52, infinitely many equivalence classes
19. {(I, 1), (1,5), (5, 1), (5, 5), (2,2), (2,4), (4, 2), (4,4), (3, 3)1
23. There may be no element related to x; that is, x R y may not be true for any y.
25. 2" 27. 2" 1 - 1 29. 15

al a2 a3 a4 a5  j k

44 5 13 cm ( 1 4

44 5 ci- 35 3
44 ( ( "13 35 2

) 11 13 35 1

11 (@ ® 2 4

5 44 (0 (g 35 3
5 (93 13 35 2

5 1 44 ( 3 4

5 11 44 13 35 3

5 11 13/' 44 4 4

5 11 13 35 44
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EXERCISES 2.3 (page 58)

1. q =7,r=4 3. q = 0, r = 25 5. q =-9,r=0 7. q = -9,r = 1 9. p = q (mod m)
11. p # q (mod m) 13. p # q (mod m) 15. p - q (mod m) 17. [2] 19. [4] 21. [6] 23. [1]
25. [21 27. [8] 29. [4] 31. [4] 33. [2] 35. [11] 37. 8 PM. 39. 9 41. 7
43. -10,224 and 29,202 45. No, 10 E A but 10 B. 47. 3 R I Iand 6 R 10 are true, but both 9 R 21 and
18 R 110 are false. 49. The relation is not well defined if m does not divide n.

EXERCISES 2.4 (page 70)

1. not reflexive 3. a partial order
a 11
7. I I.

5. a partial order 7. not transitive

6

5 7

13. ((2, 2), (2, 6), (2, 12), (3, 3), (3, 6), (3, 12), (6, 6), (6, 12), (12, 12)1 15. ((2, 2), (x, x), (x, A), (A, A), (0, 0)}
17. 1 is a minimal element; 4,5, and 6 are maximal elements 19. 2,3, and 4 are minimal elements; 1 and 2 are maximal
elements 21. RU ((1,2), (1, 4)} 23. For Al = 0, A2 = (1}, A3 = (2}, A4 = (31, A5 = (1, 2}, and A6 = (1, 31,
define Ai T A, if and only if i < j. 25. No 27. (1, 2,4,8, 16} 29. S = (2, 3, 4, 5, 6, 9, 15) with x R y if
and only if x divides y 31. 4

37. The lexicographic order is a total order on SI x S2. 41. n!

EXERCISES 2.5 (page 82)

1. function with domain X 3. not a function with domain X 5. function with domain X 7. not a function
1

with domain X 9. not a function with domain X 11. function with domain X 13. 8 15. - 17. 2
4

19. -9 21. 3 23. 0 25. -4 27. -5 29. 5.21 31. -0.22 33. 0.62 35. 9.97
37. 8x + 11; 8x -5 39. 5(2X) + 7; 25x+7 41. Ix1(log2 Ixi); Ix log2 x 43. X

2 - 2x + 1; x 2 
- 1

45. one-to-one; not onto 47. one-to-one; onto 49. onto; not one-to-one 51. neither one-to-one nor onto

53. f -(x)=-

I

I

I0

0

4

4
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55. f -'(x) = -x 57. f -'(x) = x 3  59. doesnotexis. 61. Y = {x E X: x > 0}; 1-'(x) =-1 + log2 (G)
63. n'

EXERCISES 2.6 (page 91)

1. 1, 1,2,3,5,8, 13,21,34,55 3. 3,4,7, 11, 18,29.47, 76

ql n - 1)
2

4.n(n - 3)

5. Let xn denote the nth even positive integer. Then x, = 2 ± 2

established. 9. The proof of the inductive step is faulty because x

I so(r+l- 1) ifr 6 1

27. ri -I1so(n +1) if r-=1

EXERCISES 2.7 (page 99)

1. 21 3. 252 5. 330 7. 462 9. 1

21. 792 23. 20 25. 120 27. 52!
13! 39!

SUPPLEMENTARY EXERCISES (page 103)

1. 131 3. (5, 61 5. {61 7. (2} 9.

13. 37 # 18 (mod 2) 15. -7 = 53 (mod 12) 17. 191 19. [1]
domain X 27. function with domain X 29. one-to-one, not onto

if n > 2. 7. No base for the induction was

- 1 and y - 1 need not be positive integers.

13. 64 15. 128 17. 256 19. 21

47. Mr. and Mrs. Lewis each shook n hands.

11.

21. [3] 23. 10 25. function with
31. onto, not one-to-one 33. does not

exist 35. f -'(x)= -(x + 6) 37. 32 39. 5005 41. 11,51, {2, 6}, 13, 7}, 14, 8}
3

43. the sets {2n - 1, 2nI for every integer n 47. 5 49. R = {(s, s): s E SI 51. antisymmetric and transitive
53. reflexive, antisymmetric, and transitive 55. A, B. C, 1), E, F, G, H, I, J, K 57. R = {(s, s): s E SI
65. f must be one-to-one

CHAPTER 3 Ut

EXERCISES 3.1 (page 115)

1. V=(A,B,C,D};-=({A,BI,{A,CI,{B,C},{B,D),{C,DI) 3. V={F,G,H},0 5. A L D

9. yes 11. no 13. no7- GO OH
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a- For a Female

You

ror a Male

You

Grandfather

Grandmother

nal Grandfather

Grandmother

17. S 19. A: B, C, D, E (degree 4); B: A, C, F (degree 3)

A C D B
T 0

21. (a) (b) I 23. 3,6, 10, C(n, 2) = ~2 25. 10

27. [0 1 0 0 1- VI: V2, V5  29. 0 1 01 VI V2

I 0 1 0 0 V2 : VI,V 3  I 0 0 V2: VI

0 1 0 1 0 V3 : V2, V4  O 0 0 V3 : none
0 0 1 0 1 V4 : V3, V5

-1 0 0 1 0- V5 : VI, V4

31- VI V2 33. VI V2 35. yes

V3 V4 V3; V4

37. No, diagonal entries are nonzero.
39. no 41. no
43. (a) yes (b) No, the first graph has two vertices of degree 2. (c) yes

I C
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45. 6 * * *-O

* * * * *-0

47.

49 - if n is even and if n is odd. 51. The least irteger greater than or equal to I
2 2 2

53. Each shook 3 hands.

EXERCISES 3.2 (page 131)
1. a graph 3. not a graph 5. parallel edges: none; loops: a, c
7. parallel edges: a, b, c, d; loops: none 9. (i) c length ; a, c length 2; a, c, b length 3
(ii) c length 1 (iii) all have c as a simple path (iv) a length 1; b length I
11. (a) (b) (c) 13. yes 15. no

17. yes 19. no 21. yes, d,a,b,c,e,g,k,m,h,i, j, f 23. no 25. no 27. no 29. no 31. no
33. no 35. yes 37. yes 39. c, h, i, d, a and g,. kf b, e, j, nm

41. (a) (b) * (c) A- ? (d) (e) *
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Q

-- i

p ----

Q Q

CYO

sq
,:3Q

583

0

s - .

p.

CY��
.0-C

q

0---*

0 A
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45.

0--

0--

1°
Ei- -

(,)

* p p *

0-O Y *Q-x*;
47. yes 49. yes 51. No, the second graph has a cycle of length 3.
53. m and n are both even.
59. (a) {A, C, G, E}, {B, D, H, F) (b) [I, J, K, L) (c' IM, 0, Q}, {N}, {P, R, S, T}

)

i-

QQ(:cz) Q,>

pp

p1° QQ

* * 0
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EXERCISES 3.3 (page 145)

1. 5;S,D,G,E,F,T 3. 7;S,A,F,G,B,C,O,T
I (S) 2(D) 4(E) °(-) 1(S) 4(G) 5(B)
A B C S A B C

3(G)4 4(E) 5(F)
E F T

°(
0( I 1(S)

G H I
2(D) 3(G) 4(H)

P Q R U
6(L) 5(M) 6(Q) 7(0)

5. A: 8; B:9;C: 3; D:5; E:4; F:6;G:7; H:5; 1:6; shortestpathtoA: S,C,E,F,G,A
7. A: 8; B:6;C:3; D:5; E:2; F:3;G:6; H: l;shortestpathtoA:S,C,D,G,A
9. S, E, F, K, L, G, A, G, L, M, T; Find shortest path from S to A and then from A to T.
11. S, F, A, C, D, E, T; Find shortest path from S to A and then from A to T.
13. From VI to V2: 1, 2, 7, 20; from V2 to V3: 1, 2, 7, 20 15. From VI to VI: 0, 4, 8, 34; from V4 to V3: 0, 2, 4, 18
17. the number of paths from Vi to Vj with length at most 3

EXERCISES 3.4 (page 155)

1. 3 3. 3 5. 3 7. 2 9. There are no edges. 11. (a) (b)

13.

This algorithm uses two colors (red and blue) to color a graph having no cycles
of odd length. In the algorithm, 1 denotes the set of labeled vertices (those that
have been colored).

Step I (initialization)
Let = 0.

Step 2 (color all the vertices in another component)
repeat

Step 2.1 (color some vertex in an uncolored component)
(a) Select a vertex S not in 1L.
(b) Assign S the label 0, and color S red.
(c) Include S in C.
(d) Set k = 0.

Step 2.2 (color the other vertices in this component)
repeat

Step 2.2.1 (increase the label)
Replace k with k + 1.

Step 2.2.2 (enlarge the labeling)
while 1 contains a vertex V with label k - I that

is adjacent to a vertex W not in 1
(a) Assign the label k to W.



586 Answers to Odd-Numbered Exercises

(b) Color W red if k is e xen and blue if k is odd.
(c) Include W in L.

endwhile
until no vertex in £ is adjacent to a vertex not in L

until every vertex is in £

r b r b r

b b brl bi

bIIr II by
biiŽ

17. r b
b o

' r .6

r b b r

- 11--- T -D

Jr bb

b r

19. 5 21. nn 23.

b r r b

25.

27. Three separate meeting times are needed with finance and agriculture meeting at the same time and likewise for
budget and labor. 29. 3

EXERCISES 3.5 (page 169)

1. vertices: A, B, C, D
directed edges: (A, B), (B, D), (C, A), (C, D)

5. X 7. A

11.

13.
15.
17.

I

3. vertices: A, B, C, D
directed edges: (A, B), (A, C), (B, A), (C, D), (D, C)

9. V] i VI

V3

to A: B and C, from A: B and D, indegree 2, outdegree 2
to A: B, C, D, and E, from A: none, indegree 4, outdegrec 0
(i) A, B (); A,C, B (2); A, D, B( A ( 3) ; A, C, D, BA ,(3) (ii)DA, B,A(2);
C, D, C(2); A,C, B, A(3); A,D, B, A(3); A, C, D, B,A(4); A, D,C, B, A(4)

15.

I
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19. -O I 0 1-

1 0 1 0

I I 0 0

-O I 0 0

A: B, D
B: A, C
C: A, B
D: B

La.

21. -0 0 0 0 0] A: none

I 0 0 0 0 B:A
I I 0 0 0 C:A,B
I 1 0 0 0 D:A,B

-1 0 0 0 0- E: A

25. K i *--- *

21.

29. There is a directed edge from each vertex to itself.
31. If there is a directed edge from A to B and one from B to A, then A = B.
33. -,l1 -

(A, B) is a directed edge in the directed
graph of Exercise 32 if and only if (B, A)
is a directed edge in the directed graph of
Exercise 33.

35. yes 37. 39. no 41.

43. Any vertex can be reached from any other along the directed Hamiltonian cycle.
45. Eulercircuit:a,c,g,i,j,k,h,f,e,d,b 47. Euler path: j,g,f,nok,h,i,d,a,b,c,e,m
49. Neither, there is a vertex with indegree 3 and outdegree 1. 53. only 1; d, b, c

z

0 0
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55. Cookies, ice cream, eclairs, pie, pudding is the only ranking.
57. B and C have maximum score of 3. There is a directed path of length 1 from B to A, D, and E and one of length 2
to C. There is a directed path of length I from C to B, D, and E and one of length 2 to A.
59. Bears, Vikings, Packers, Bucs, Lions is the only ranking.
61.

This algorithm determines the distance and a shortest directed path in a directed graph
from vertex S to every other vertex for which such a path exists. In the algorithm L
denotes the set of labeled vertices, and the predecessor o vertex A is a vertex in C that
is used in labeling A.

Step I (label S)
(a) Assign S the label 0, and let S have no predet ssor.
(b) Set L = {S) and k = 0.

Step 2 (label vertices)
repeat

Step 2.1 (increase the label)
Replace k with k + 1.

Step 2.2 (enlarge labeling)
while £ contains a vertex V with label k - ] and with a directed edge
to a vertex W not in C

(a) Assign the label k to W.
(b) Assign V to be the predecessor of W.
(c) Include W in L.

endwhile
until no vertex in L has a directed edge to a lerie_- not in L

Step 3 (construct a directed shortest path to T)
if a vertex T is in L

The length of a directed path from S to T is the I abel on T. A shortest directed
path from S to T is formed by taking in reverse order T, the predecessor of T,
the predecessor of the predecessor of T, and so forth, until S is reached.

otherwise
There is no directed path from S to T.

endif

63. S, B,G, N, H,C, D, I, Q, J, K, T; length 11
65. S,A,F,G,M,N,V,W,O,I,D,T;lengthll
67. 5toA, lOtoB,4toC, 3to D,5toE, 2toF,4toG; S, F, G, A
69. 7toA,lltoB,5toC,6toD,14toE,2toF,5toG,6to H,8tol;S,F,G,H,A
73. from VI to V4: 0, 2, 1, 4; from V4 to VI: 1, 0, 2, 2
75. the number of directed edges; a directed path of length n
77. (a) no (b) no

SUPPLEMENTARY EXERCISES (page 176)

1.

z S W

J. y X R



5. No, the first graph has a vertex of degree 2. 7. V f V 3

V5 4

Yesteardownanybridge andconnecttheothertwolandmassesby anewbridge. 13. yes; a, b, d, h, j, i, g, f, e, c
yes 17. 6;S,D,H,E,F,J,T 19. lltoA,13toB,2toC,7toD,3toE,4toF,6toG,8toH,12to
toJ,9toK, 13toL; S,C,D,H,A; S,C,E, J,K,B 21. from VI to V2 : 0, 1, 1,4; fromVI to V4:0, 1,1,4

27. 4 29. VI

b ~ r~
(r b

11.
15.
1, 5
23.

31.

37. from VI to V4: 1, 0, 2, 4; from V2 to V5: 0, 1, 1, 4 39. It is reflexive when there is a directed loop at each vertex.
It is symmetric if whenever there is a directed edge from A to B, then there is a directed edge from B to A. It is transitive
if whenever there is a directed edge from A to B and a directed edge from B to C, then there is a directed edge from A to C.

CHAPTER 4

EXERCISES 4.1 (page 190)

1. yes 3. no 5. no 7. yes 9. 16 11. Connect Lincoln to each other town, using only 6 lines.
1' F, ISq - - - - - - 17 n-4-1 21. 1 9

Answers to Odd-Numbered Exercises 589

9. no

iiJ. UUIJU0t(JUtIHIU
-- ------- ----

An. . L s -.
* . , . , , , . = . . t ,
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23. butane

H H H H

IC IC IC IC
I t- t- - t- o H

I I I I H.41 -. 1 1 4 ',, 1

.. - I
H

27. 1 2 3 2 1 3 1 3 2
a ****** 0 _

2'1 1
33. 33.

3
6

5

25. noisobutane

H

C
O-*H H

I C
I

H H

29. 2; 1;3 31. 2,2,5,5,5

37. 1 3 6 4
3 4 4 * 4 0

I.
2 5 7 8

6

EXERCISES 4.2 (page 205)

3- B u
0 -

D 8 A 4 F

A H
G F F K |

0 -
L Af N O

9. no

X D;i

5.

D

1. Ii e

1.

I.

K L

II

..

-s

H11

1

I0 W

I

1j.. 15. lies

n
+ntWf | .E



Answers to Odd-Numbered Exercises

17. a,c,g, f;9
25. d, e, b, c; 18

19. c,a,d,e,k, f,i, j;21
27. m, j,g,h,e,n,a,b; 31

21. g, f,c,a;9 23. k,e, f,i, j,d,c,a;21
29. (1,5},{5,61,{6,41,{4,21,{2,7},{6,3]

3 1. 33. b,c,d,e,k, f,i, j 35. 2

4 ~3 '3 4
37. If the package cost 26 cents to mail, the greedy algorithm would use one 22-cent stamp and four 1-cent stamps.
However, two 13-cent stamps would also do the job with fewer stamps. 39. i, m, d, f, g, b, c, n, a
41. k, f, j,c,e,g,b,d,q,i,o 43. b,k,e, f,i,c, j,d

EXERCISES 4.3 (page 220)
1. A,C, F, B, D, E,G, H

7- A C 9
*C

H F

B E

DF&

13.
19.
23.

31.
39.

/

3. A,B,E,C,D,H, J,I,G,F 5. A,C,E,B,F, J,D,G,H,I
A 11. H I E B

DC A

GCC

HD JI
J 6-. I

G

{A, H), IF, E), (B, El, (G, C}, {H, F} 15. (A, E}, {B, F}, {C, HI, IC, I}
There is no bridge. 21. There is a bridge, (B, El.

A r 25. 1 2 7 . A C

H J

B I

D

A G'

H
IC E

F B

2 33. (n-1)!
41. 12131231

17. (A, I}, {FC}

I

K

M

~_O7 1

GNI I
F

H

Ni

591

��4D

l

0k
4 i

F



3. no 5. no 7. no
11. 13. S-expression

atom list

number symbol

fixed point floating-point

A vertex would have indegree greater than 1.

This algorithm directs the edges of a tree with a vertex labeled R to transform it into a
rooted tree with root R.

Step I (label the root)
Label R.

Step 2 (direct the edges)
while there are unlabeled vertices

(a) Find an unlabeled vertex V that is adjacent to a labeled vertex U.
(b) Direct the edge joining U and V from U to V.
(c) Label V.

endwhile

19. There is only one way. 21. (i) A (ii) A, B, C, D, h', I (iii) J, K, L, E, F, G (iv) C (v) D, E, F (vi) H, 1,
J, K, L (vii) A, B, D 23. (i)E(ii)E,A,D,IJ(iii) 1,K,G,F,H,C(iv)D(v)none(vi)G(vii)E,J

W D D L

WW WDWL DW DD DL LW LD LL

(1,2] - (3,4)

I') - {2) III - {2}

{mH (2)L { I}L

{3} - (4}H 3) - I

(4)L {3}L {3}H (4)H

I *J I IJ

I21 I1I

141 {31

33. 0 35. 2 37. 1
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EXERCISES 4.4 (page 229)

1. yes

9.I

15.
17.

25. 4

31.

1 27. �f- 29. M - 111
4

4

4

4

4

4

0

1
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EXERCISES 4.5 (page 244)

1. + 3. *

x)~c -/1 +Ia b cd

a b e f

11.

17.
23.
29.
35.
41.
51.

55.

63.

H

z

xx
B DA C

57.C

B D

EA

3

1 2

D

B A

E F C

5.

59.

+

b *

C

d f
d e

7 . B 9 - E

19. B,C,A 21. F,D,B,G,E,C,A
25. B,A,C 27. D,F,B,A,E,G,C
31. + * abc 33. */-abc + d/ef

39. ab -c/def / + *
13 47. -2 49. 39

61. A
0

F

3
2

EXERCISES 4.6 (page 261)

1. no 3. no 5. no 7. a=1,b=1,c=1
9 1%

0 1

13. A,B,C 15. A,B,D,F,C,E,G

A, B, D, G, L, E, H, M, I, N, C, F, J, 0, P, K, Q
L, G, D, M, H, N,I, E, B, 0, P, J, Q, K, F, C, A
L, G, D, B, M, H, E, N,l, A, C, 0, J, P, F, K, Q
+ * a + *b-*c + *def ghj 37. ab * c+
abcde * f + *g-*h + *j+ 43. 13 45.

* 53. +

11.

00 0110 I11

593
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13. 15.

00

0100 001

19. BATMAN 21.
31. 30

12 18
6

6 8 10
2 4

TONTO
33.

23. GOGO 25. THEHAT!
91 .NS. 277

1 4
R: 0,: I H: 101, V: 100
1: 100, 2: 1111, 3: 1110, 4: 01001, 5: 0101, 6:00, 7: 011)00, 8: 011, 9: 1 10, 1 0: 101

LABEL

BEGIN SET

END

D ,,OR THENDO

GOTO PACKED

ELSE

LABEL

BEGIN SET

END

DOW GOTO THEN

PACKED

FILE
ELSE

OIL.

57.

14

3 17

1 6 i* 20

2 5 16 18

7

$

14

3 17

1 6 15 20

510
2 16 18

47

39.
41.
49.

55.

17.

10z

110z

1110 1111

S 27. DOG 29. QUIET
37. 955

00.



0t. Ito .3.59.

65.

71.

14

10 18

3 1215 20

67. 11

8-15

6 10 14 19

Answers to Odd-Numbered Exercises

LABEL

BEGIN SET

END

DO OR THEN

GOTO

ELSE

69.

*20

73.ORD

CHROM/\^-U

BOOLEAN
S CP GET RSEEKD

/ / i /WRITELN

ABS COPY GET UE

PAGE PUT

SUPPLEMENTARY EXERCISES (page 266)
1.6 3.1 9. ' , L i

NH ZZxxxxE

11. 10 13. no 17. yes

595

$

2

el MA Z1
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19.

39.

41.
45.

23.

E F

E H

*a * bc=* * abc,abc * *=ab * c*

25. yes 27. pq + I

00

CHAPTER 5

EXERCISES 5.1 (page 276)

1. 2 3. 6 5. 0 7. yes 9. no 11. {31 :13. {1, 2,3,4,5)
21. Amy, Burt, Dan, and Edsel like only 3 flavors among them.
25. Timmack, Alfors, Tang, Ramirez, Washington, Jelinek. Rupp 29. 2n

15. {1, 3, 4, 6} 17. n! 19. 0

EXERCISES 5.2 (page 283)

1. VI ={1,3,6,8,9,11,13},V 2 =(2,4,5,7,10,12} 3. no 5. no

7. t{1, 2}, {3, 4), (5, 6), {7, 8), (9, 101, (12, 13)), ((1,4), [3, 5, (6, 7)), {{1, 2), (3, 4)}

9. {2,4,5,7, 10, 12}, {1,3,6,71, (1,2,4}

A D

- G H

E B

A

B

A

%B

43. yes
4'.

can would

l
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11. -I0 0 0 0 O- 13 1 - 0 10 0 I O 15.

1 011 0 010 1 011 010
O 1 1 0 0 1 O 1 1 0 1 0

1 0 0 0 1 0 1 0 1 1
Lo 01 000 LJ 00 10 11 i

-I I 0 0 0 0-
0 0 1 0 0 0
1 1 0 1 0 0
0 O O 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0

17. [* 0 0 0 0 0 F0  0 0 * -main diagonal

O O * O O O * O O O

O * O O O O O * O O

O O O * O O O O O O

O 0 0 0 * O - 000 -
O 00000 LOO

19. row named 5, columns named 2, 6, 8, 10; rows named 3, 5, column named 8; all rows

T N F OG S
A r . * . AA B

B l 1 I I (U )

GO 1* 0 1 0
R I 0 0 1* 0
o0 0 i 0 1*J

E D

W X Y Z

A r 1 1 , A A1

A 0 1 1 00
' C I O O O

D - 0 O O

EXERCISES 5.3 (page 294)

1. 0 l* O I D,1

I* O O I D,1
I I O O

-1 [01 0 DV

2 1 #V/ #,/

3. 3A, 2A, 2D 5. ID,2A,3C,4B 7. 1D,2E,3B,4A 9. ID, 2A, 3B, 5C 11. IB,3A,4D
13. 1, B), (2, Cl, (3, Al 15. (1,A},(2,D),(3,El,(4,BI,{5,Cl 17. B, C, A,D 19. W, Z, Y, X
21. carrot, banana, egg, apple 23. Constantine to 1, Egmont to 2, Fungo to 3, Drury to 4, Arabella to 5

EXERCISES 5.4 (page 303)

1. row 2, columns 2 and 4 3. row 3, columns 1, 3, 4 5. {2, A, C] 7. {B, C, D, El 9. impossible
11. {1,3,5,6) 13. 7hours 15. (1,4,5,6,7,8,B}

Z1.

25.
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EXERCISES 5.5 (page 311)

1. 13 3. 13 5. 18 7. 11
New York, Herriman to Los Angeles

9. 16 11. 28 13. Addams to Chicago, Hart to Las Vegas, Young to
15. The Hungarian algorithm must be applied to a square matrix.

SUPPLEMENTARY EXERCISES (page 313)

1. (a) 60 (b) 36 (c)0
3. (a) no (b) yes; Vl= {1,2, 5,6, 7, 8,11, 12}, V2= {3,4, ,9,10, 13, 14, 15, 16}
5. (a){2,4,6,7,9,11) (b){1,2,5,6,7,8,11,12} 7. '1,21,{3,4),1{6,71,{8,5

-1* 0 0 0 1-
0 0 1 1* 0

9. 0 0 1* 0 0 ; the 1st and 4th rows and 3rd and 4th columns
1 1* 0 1 1

-0 0 1 0 0-
11. w,z,v,x,y 13. hours
15. One way is: Adam, Studebakers; Beth, Hupmobiles; Caj, Packards; Danielle, Hudsons.

CHAPTER 6

EXERCISES 6.1 (page 326)

1. a network with source A and sink E 3. not a network because arc (C, B) has negative capacity
with source D and sink B 7. not a flow because 5 comes into D and 6 comes out of D
9. a flow with value 3 11. not a flow because 2 comes into D and 3 comes out of D 13. not a c
C is not in S or T 15. a cut with capacity 40 17. a cut with capacity 34
19. C 21. B 7 D

D

5. a network

ut because vertex

A 0 2 F

0 6

B 0 D

44

A F

C 6 E

25. {A,B,C,D IEI 27. {A,B,C1,{D,E,F)23.

a > D
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29. {A, C}, {B, D, E, F) 31. Chicago 33. f (U, V) = 15 and f (V, U) = 3

30 40

St. Louis Indianapolis
20 25

20 15 Lexington

Little 15 emphis 5
Rock

Atlanta

35. For the flow in Exercise 10, take U = {D), V1 = {A, B, C}, and V2 = (B, E, Fl.

EXERCISES 6.2 (page 338)

1. 1 3. 2 5. C

A,

7. B 6 D

5
A 2 F

3 4
C 3 E

D

9. Increase the flow by 3 along A, C, E. 11. The given flow is maximal. 13. Increase the flow by 2 along
A, D, B, E, F. 15. Increase the flow by 2 along A, B, D, C, F, E, G. 17. The given flow is maximal.

B 4 E

4

5 4 GAI F

C 1 F

B 15 D

70 65

A F

4 45

C 0 E

ty.

23.

.1.

A

25.
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B 3 E

9 3-

A G

C 4 F

29.

EXERCISES 6.3 (page 345)

1. 21 3. 28 5. (A, B, C, E}, {D, Fl
11. (A,C,F},{B,D,E,G) 13.

7. {A,BD},{C,E,F}

C2

9. {A, B, C, D}, {E}
17. 2` 2

A

I)

19. ((S, A), (F, T)} 23. A 4 D

6 2 7

3

B 3 E

EXERCISES 6.4 (page 352)

1. bipartite; VI = {A, D, El and V2 = (B, C, F}
A B

E F

5. bipartite; VI = IA, D} and V2 = {B, C, E, F}
B

3. not :ipartite

7. {(A, Y), (B, Z), (D, X)}

27. B

1,0.5

E
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9. The given matching is a maximum matching.
11. {(A, 1), (C, 3), (D, 2)} 13. {(a, A), (b, C), (c, B), (d, D)}
15. Andrew and Greta, Bob and Hannah, Dan and Flo, Ed and Iris
17. Craig files, Dianne distributes paychecks, Gale collates, Marilyn types, and Sharon helps students.
19. Create a bipartite graph g with vertices U, that correspond to the sets SI, S2 , . . , S, and vertices Vj that correspond
to the elements in SI U S2 U ... U S,. Join U. and Vj if and only if the element corresponding to Vj belongs to set Si.
Apply the flow augmentation algorithm to the network K associated with S. Then Si, S2 . 5, has a system of distinct
representatives if and only if the value of a maximal flow in AI is n.
21. No system of distinct representatives exists.
23. No acceptable assignment exists.

SUPPLEMENTARY EXERCISES (page 356)
1. A minimal cut is {A), (B, C, D, E, F). A maximal flow is shown below.

B 2 E

76

A F

C

3. A minimal cut is {A, B, C}, {D, E, F, G}. A maximal flow is shown below.

8 4 3 7

6*%A/6 -~6 G

C 2 F
5. A minimal cut is {A, B, C, D, F}, {E, G, H}. A maximal flow is shown below.

B 5 F
62-

A 6 H

D 3 o
7. A minimal cut is {A, D}, (B, C, E, F, G, H, I, J, K}. A maximal flow is shown below.

H 3 E 3 H

9 C 12
A K

9 57
D5 G 9 i
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II I-
II. A 3 D 1 .

B5

C 4 F

17 I.
I1.

A'

I7.

*G" F

25. 1 1 1 0 0 1
11 1 00 1

CHAPTER 7

EXERCISES 7.1 (page 363)

1. 10 3. 56 5. 6 7. -220 9. 3360 11. --262,440
13. 1, 6,15, 20,15,6,1 15. x6 + 6x5y + 15x4y2 + 20x 3y3 + 15x2y4 + 6xy 5 + y 6

17. 81x4 - 108x 3y + 54x 2y2 -12xy 3 + y 4  19. 35 21. 252 23. 15

EXERCISES 7.2 (page 371)

1. 13 3. 5 5. 14 7. 45 9. 32 11. 2" 13. 168 15. 160
17. (a) 720 (b) 144 (c) 36 (d) 48 19. 3219 21. 70 23. 48 25. 36,504
27. (a) 720 (b) 360 (c) 240 (d) 576 29. 112 31. (a) 1296 (b) 360 (c) 60 (d) 240

EXERCISES 7.3 (page 378)

1. 20 3. 10 5. 12 7. 15,120 9. 5040 11. n 13. 24 15. 360 17. 286 19. 210
21. 120 23. 84 25. 200 27. 10,584 29. (a) 495 (b) 5 (c) 72 (d) 54

EXERCISES 7.4 (page 385)

1. 1260 3. 210 5. 45 7. 1820 9. 63,063,000 11. 35 13. 165 15. 10 17. 140
19. 3,864,861 21. 4200 23. 462 25. 1050 27. 165 29. 6062 31. 220 33. 287,134,346

b - EK
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EXERCISES 7.5 (page 391)
5 1 1 5 4 1 63 1

6 32 18 16 33 210 125 105
1 1 10,010 175 3 140 5

17.- 19. 21. 23.- 25. - 27. 29. -
120 4 59,049 2 429 28 2187 12
352 88 969

31. - 33. - 35.
833 4165 2530

EXERCISES 7.6 (page 401)

1. 40 3. 160 5. 55 7. 27 9. - 11. 7 13. k 4 -4k 3 +6k 2 -3k
64

15. 61 17. 231 19. 13,824 21. 685,464 23. 35 27. Dk= k! - !+ + (- )- ]

29. S(n,0)=0,S(n,1)=1,S(n,2)=2 -'-1,S(n,n-2)=C(n,3)+3 C(n,4),S(n,n-1)=C(n,2),and
S(n, n) = 1 31. S(n, 1) + S(n, 2) + * + S(n, n)

EXERCISES 7.7 (page 410)
1. p<q 3. p<q 5. p>q 7. (2,1,4,3,6,5) 9. (2,1,5,3,4,6)
11. (5,6,4,1,2,3) 13. none 15. (5,3,1,2,4,6) 17. (6,4,1,2,3,5)
19. (1,2,3,4); (1,2,4,3); (1,3,2,4); (1,3,4,2); (1,4,2,3); (1,4,3,2); (2, 1,3,4);
(2, 1, 4, 3); (2, 3, 1, 4); (2, 3, 4, 1); (2, 4, 1, 3); (2, 4, 3, 1); (3, 1, 2, 4); (3, 1, 4, 2); (3, 2, 1, 4);
(3,2,4, 1); (3,4, 1,2); (3,4, 2, 1); (4, 1, 2, 3); (4, 1, 3, 2); (4, 2, 1, 3); (4, 2, 3, 1);
(4,3,1,2);(4,3,2,1) 21. 11,3,5,8,91 23. (2,3,6,7,8) 25. (3,4,5,7,91 27. (3,6,7,8,9)
29. {4,6,7, 8, 9} 31. none

SUPPLEMENTARY EXERCISES (page 412)
1. 36 3. 3024 5. x6 

- 6x5 + 15x4 - 20x 3 + 15x 2 
- 6x + 1 7. 32x5 + 240x 4y + 720x3y2 + 1080x 2y3 +

810xy4 + 243y5  9. (8, 2,4, 1, 3, 5, 6, 7) 11. 24310, 19448, 12376, 6188, 2380, 680, 136, 17,1 13. 18,564
29

15. 21 17. 960 19. 240,240 21. - 23. 27,720 25. 43,243,200 27. 1820 29. 14

1 10
31. (a) 2520 (b) - (c) - 33. (a) 657,720 (b) 142,506 35. 63

7 21

37. 10,005 39. 6188 41. .3439 43. 514,594,080 45. 63,063,000
191,216

47. 630,630 49. no 51. 105,293 55. C(n + 1, 3)
3,81 1,606~

CHAPTER 8

EXERCISES 8.1 (page 427)

1. 126 3. 331 5. -63 7. 56 9. 31 11. 3
13. t, = 1.0525t,-] for n > 1, to = 28,000 15. rn = rn- + 6 for n > 1, ro = 24 17. bn= 1.015bn - 25 for
n > 1, bo = 280 19. w, = 0.15w, I + 2.0, wo = 1.7 21. Sn = 2s,-, + 3s,-2 + S,-3 for n > 4, s1 = 2, s 2 = 7,
s3 = 21 23. a, = nan-, Iforn > 2,a, = 1 25. s, = s,,- +(n-I)forn > l,so = 0
27. Sn = S,-l + S-2 + Sn-5 for n > 6, s, = 1, s 2 = 2, S3 = 3, S4 = 5, s 5 = 9; There are 128 sequences for a drink
costing S0q. 29. c, = (2n-I)c,-, for n > 2, cl = 1 31. r = r,-, + 2(n-1) for n > 2, r1= 2
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33- Sn = Sn-l + Sn-2 + Sn-3 for n > 4, s= 2, S2 = 4, 53 =- 7 35. C, = Coen-I + clcC-2 + + c,-ICo for
n > 2, co = 1, cl = 1 37. Sn = 2Sn-I Sn-2 + Sn-3 fol t' > 4, sl = 2, S2 = 4, S3 = 7; S6 = 37

EXERCISES 8.2 (page 439)
2

9. -n(2n + 1)(n + 1) = C(2n + 2, 3) 11. Sn = 9 + 4rz 13. sn = 5(3)n 15. Sn = 6(-I)n
3

17. sn = 1.75(5)n -0.75 19. Sn = 2(n2 
- Sn + 5) 21. sn = a +

23. Sn = n! 2 + + - + - + -I) 25. (a) Sn := 0.95Sn- , so = 1000 (b) Sn 1000(0.95)" (C) 599

r.2 + n +2
27. s =2n2 + 2n 29. Sn=2n- (n+2) 31. rn-- 2 33. mn=2n+ -2

EXERCISES 8.3 (page 451)

1. sn = 2 + 3n 3. Sn = 5(4") 5. Sn = 3 -7(- I)n 7. Sn = 4 - 3' 9. Sn = 10- Sn
11. Sn = 10(-2)n - 3 13. s, = 6(-I)n + 3(2)n 15. Sn = (6 - n)4n 17. Sn = 2(3)- (-3)n
19. Sn = (3n - 4)(-2)' 21. Sn = (4n - 7)5n 23. Sn = 9(-I )n - 6(-4)n
25. (a) dn = 0.80d,,- + 25 for n > 1, do = 0 (b) dg = 104.0284 8 mg (c) 125 mg
27. About $3670.36 29. $1190.30 31. Sn = i--l -- Y-2 for n >3 = I 1,S2 = 2

__ 5 - f'I - /
Sn= 1 j k( 2 ) + 10 2 )

33. Cn = 3 + 3(- 1)n

EXERCISES 8.4 (page 464)

1. 243 3. 4 5. 0 7. 16
9. L1 - I I ] 1. L

D e m am is am = t!

I 100 L = 50 50 No, less

51 100 -151 = 75 75 No, less

76 100 [76L = 88 88 No, greater

76 87 2161 = 81 81 No, less

82 87 = 84 84 No, greater

82 83 L = 82 82 No, less

83 83 83 83 Yes

1,

76

113

132

132

132

134

134

e

300

149

149

149

149

139

134

134

133

m

I30- I= 150
L 2 J

L 2j=75
225 J= 112

262 ]= 131
I 21

[281J =140

L271= 135
266] = 133

134

am

450

225

336

393

420

405

399

402

Is am = t?

No, greater

No, less

No, less

No, less

No, greater

No, greater

No, less

No, greater

Since b > e, the target t is not in the list.

I
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13. (19) (56) (87) (42) 15- (13) (89) (56) (45) (62) (75) (68)

V V V V V I
(19,56) (42, 87) (13, 89) (45, 56) (62, 75) (68)

(19,42, 56, 87) (13, 45, 56, 89) (62, 68, 75)

(13, 45, 56, 62, 68, 75, 89)

17. (95) (87) (15) (42) (56) (54) (16) (23) (73) (39) 19. n > 4

(87, 95) (15, 42) (54, 56) (16, 23) (39, 73)

(15, 42, 87, 95) (16, 23, 54, 56) (39, 73)

(15, 16, 23, 42, 54, 56, 87, 95) (39, 73)

(15, 16, 23, 39 42, 54, 56, 73 87, 95)

25. e,=e,-,+3forn>2,el=1 27. e,=e,-i+4forn>1,eo=1
29. en = 3n-2forn > 1 31. e, =4n+1forn>O

EXERCISES 8.5 (page 472)

1. 2+3x+x2 +4x 4 +x 5  3. 1+3x+3x2 +2x 3 +4x 4 +5x 5 +xX +x7

5. 2+3x+X2 +X 3 +5X4 +2X5 +x 6 +x 7 +...
7. 1+2x+3x2 +3x 3 +3x 4 +3x 5 +3x 6 +3x 7 +_*
9. 1-X2 +x3 +X4-X5 +x6 +x 7 -

11. 1 +x +x 2 +2x 3 +2x 4 +2x 5 +3x 6 +3x 7 +...
13. (1+x+x 2 +x 3 )(1+x+x2 +x 3 ±x 4+x 5 ) 1+2x+3x2 +4x 3 +4x 4 +4x 5+3x 6±+
15. (1+X 2±x 3 )(1+x+x2 +X 3 +x 4)(1+x+X2)=I+3x+6x 2 +9x3 +I1x 4+ +x +9x 6 +-

17. (I + X + X2 + X3 + x 4 )(1 + X + X2 + x 3 )(1 + X2 )(1 + X3 )
= 1+2x+4x2 +7x 3 +9x 4 + 1x 5 + 12x6 +_

19. (I +x+x
2

+x
3
)(1 +x+x

2
+...)= 1 +2x+3X

2
+4X

3
+4X

4
+4X

5
+4X

6
+

21. (X4 + X5 + -. .)(x2 + X3 + . ._.) = X6 +

23. (I +X) 7 (1 +X +X2 +X 3 +x 4 +X5 )
25. (I+x+x2 + .. )(I+x3 +x 6+ .. )(1+x 4 +x 8 +..) 27. a,=r+l
29. ao = I anda, = 2 if r > O 31. ao = I andar = Oifr > O
33. (x2 +X 3 + X5 + X7 + X'1 + . )2 = X4 + 2x5 + x 6 + 2x7 + 2x8 + 2x9 + 3x10 +
35. (1+X+X 4 +X 9 +...)4

= 1+4x+6x2 +4X 3 +5X 4 +12x 5 + 12X 6 +4X 7 +6x 8 + 16x 9+ 18x 10+**

EXERCISES 8.6 (page 481)

1. 1+3x+9x 2 +* - 3. 1-2x 5. 1-x 2 +x 4 -x 6 +.-

7. + X XI + X X22 + 9.1 _3 X+9 2 _ 27 37. 1+(x+x2 )+(x+x2 ) 2 + - 9. 2-----x+x- 3+
2 2 2 2

11. S=2xS+1+x+x2 +-'* 13. S=l+x+2x(S-I)-x2 s

S = (I-2x)-'(1-x)-' S = (1-x)(1-2x + x 2)-l
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15. S =-l-x(S+ 1)+2x2 S
S =-(1 +x)(1-x)- (1+2x)-1

17. S = -2+x+x(S+2)+3x 2 S+2x2 (1 +x+x 2 +.)

S = (-x)- '(-x-3x 2 )-l (-2 + 5x-X 2
)

19. S = 2-x + X2 + x(S -2 + x)-3x 2 (S -2) + x 3 S
S = (2-3x + 8X 2

)(1-x + 3X2 - x
3)

21. a = ,b=-

1 4 1 1
23. a =--, b = 25. a b, 27. sn := 2n + 1

29. Sn =-2n + 4( -5)n 31. s, = 2(3/n2) if n is even and sn = 0 if n is odd

SUPPLEMENTARY EXERCISES (page 484)

1. 829 3. 3840 5. 33
7. s, = 1.04s,-, + 500 for n > 2 and s, = 16,000
9 . cn = c-l + Cn-2 for n > 

3 , c, = 
2 , and C2 = 3

11. en = en-1 - k/n 2 , where k is a constant
17. Sn =6-3n for n > 0 19. sn = (4-n)2n for n > C1
21. 3, 4, 7, 11, 18, 29, 47, 76, 123, 199 27. Sn = 2(4n) F (-3)n - 7(2n) for n > 0
29. Sn = 2n + (3-Sn)(-I)n for n > 0

31. (a)a=-1,b=-2 (b)Sn =3' ->5(-2)nn-2 rn>0
33.-

b e m am Is am = 
6 ?

1 4 [+4)] = 2 4 No; less

3 4 Le3+
4 ]= 3 6 Yes

35. 2 37. 7 39. 1,2,. ,mandm+1,m+2,.rm+n

41. Snl+ 2xS;S=(I-2x)-' 43. S+=I+X_25 2x(S - );S I 3x

45. Sn =5(-2)n 47. Sn = 2n + 2(3n) 49. (1+x + x+x 3
)(1 + X + X2

)(1 + X + X2 + X3 + X4 + X5
)

51. (X2 + X3 + X4 )6  53. (1- X 5 ) (I - X1'2 )-l ( - x2 5
)yI 55. (I- _x)-'(l - x 5)-'(1 -x1)-

CHAPTER 9

EXERCISES 9.1 (page 496)

1. (XAy)vx 3. ((x' v y) A x)Y 5. (X" V y') A x' 7. (x' A (y' A X))
9. x

y

x
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Ii3.

19. -21. -x y Output x

0 0 1 0
0 1 1 0
10 0 0
1 1 1 0

1
I

1

1

25. x Y Output 27 x

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 0

11
1

1

y

0
0
1
1
0
0
I
1

y

0
0
I
1
0
0
1
1

z

0
1
0
1
0
1
0
1

z

0
1
0
1
0
1
0
1

23.-
Output x Y Output

0 0 0 0
0 0 1 0
0 10 0
0 1 1 1
0
0
1
0

Output

1

1
0
0
1
1
1

1

29. equivalent 31. equivalent 33. equivalent 35. not equivalent 37. equivalent 39. not equivalent
41. not equivalent 43. window signal 47. 1, undefined

door open
safety thrown

EXERCISES 9.2 (page 504)

9. (c), (f), (g) 11. (c), (f), (g) 13. (j), (i), (e) 15. (j), (b)
17. (c), (a), (b), (b), (b), (b), (e), (e), (b), (b), (a), (c)
19. When x = y = 0, z = 1, the first is 0 and the second 1.
21. When x = z = O, y = 1, the first is 0 and the second 1.

IL.

15. 0 17. 1
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23. (x' Ay)V(xAy')

x

x

27. (X'AyAz)V(xAy'Az)V(xAyAz)

x

y
z
x

y
z
x

y
z

25. (x',A\yAz)V(xAy'Az)V(xAyAZ')

29. 12 31. 9 33. 14 35. x

y

37. (aAbAc')v((bAc)Ad')v(aAd)

EXERCISES 9.3 (page 518)

1. (X'AY')V(X'Ay)V(XAy) 3. (x'Ay'Az')V(x'Ay'Az)V(x'AyAz')V(x'AyAz)

5. (W'AX'Ay'AZ')V(W'AX'AyAz')V(W'AXAy'AZ')V(W'AXAyAZ')V(WAXAy'AZ)
7. xvy' 9. yVx'V(y'Az') 11. (XAZ)V(W'AXIV(WAX'Ay')V(W'AyAZ')

13. y 15. y 17. y
r _ --

xxX X IX
o1w

z

19. x' v y

y

21. x'

x

23. (W'AZ')V(wAXAy'Az)
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25. (x'Az)V(y'Az) 27. (x'Az)V(xAy'Az') 29. xV(y'Az') 31. (wAx)V(y'Az')
21 tC 12)

EXERCISES 9.4 (page S27)

1. 0,1 1 3. 1 0

0

7.
A B C

x B C C
y C C A

Initial state B
Accepting state A

11. y 13. A 15. yes

19. I/Z

2 Ox /x

O/y

23. 1 2 1 2

1 2 2 a a
2 2 1 c b
3 1 2 c a

9'- 1 2 3

a 2 3 1
b 3 1 2
c 1 2 3

Accepting state 2
17. no

21.

25.

0,21x,y 1,2/x,w

A B C A B C

I B B C x y y
2 C C A z x z
3 C C C y z z

27. ywywwxx 29. yzzyyz 31. All strings containing a 1
33. All strings containing exactly n Is, where n - I (mod 3)

609

5.

-1. 1.
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35.

SUPPLEMENTARY EXERCISES (page 531)

1. (X'Vy)A(ZAX)' x y z (x'vy)A(ZAX)'-

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 00 0
1 0 1 0
1 1 0 1
1 1 1 0

3. (a) yes (b) no

5. (a) [(xvy)A(x'vy)]vy'=[(yvx)A(yvx')]vy' (a'

= [y v (x Ax')] v y' (c,

=(yvO)vy' (f)
= y V y' (gl

= I (f)

(b) x' A (y Az')'= x' A (y' v z") (j)

= x'A (y'Vz) (i)

= (x' A y') V (x' A z) (c)

=(xvy)'V(x'Az) (j)

7. (x'AyA A')V(x'AyAz)V(xAy'Az')V(xAyAz)

x

y

z

x

y

z

x

y

z
x
yz

16 gates

9. (a) x' (b) (x A z') V (y' A z') (c) (x'A y A z') v (y'A z) v (x A y') v (w'A z')

37. 0/() 0/1

1/0 1/2

0,2
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11. (x'Ay)V(yAZ)V(XAy'AZ')

x

y

y
z

611

13. ,
z

zY

x

z

9 gates

15. C 17. y 19. -1, 1, 1, 1, 0, 1, 1 21. b, b, foam, b, a, foam, b

APPENDIX A

EXERCISES A.1 (page 543)

1. false statement 3. true statement 5. not a statement 7. false statement 9. not a statement 11. true
statement 13. 4 + 5 $ 9 15. California is the largest state in the United States. 17. Some birds cannot fly.
19. No man weighs 400 pounds. 21. No students do not pass calculus. (All students pass calculus.) 23. Someone
does not enjoy cherry pie. 25. (a) One is an even integer and nine is a positive integer. (false) (b) One is an even
integer or nine is a positive integer. (true) 27. (a) The Atlantic is an ocean and the Nile is a river. (true)
(b) The Atlantic is an ocean or the Nile is a river. (true) 29. (a) Birds have four legs and rabbits have wings. (false)
(b) Birds have four legs or rabbits have wings. (false) 31. (a) Flutes are wind instruments and timpani are string
instruments. (false) (b) Flutes are wind instruments or timpani are string instruments. (true)
33. (a) If I go to the movies, then this is Friday. (b) If this isn't Friday, then I won't go to the movies. (c) If I
don't go to the movies, then this isn't Friday. 35. (a) If Kennedy runs for President, then he won't run for the Senate.
(b) If Kennedy runs for the Senate, then he won't run for President. (c) If Kennedy doesn't run for President, then he
is running for the Senate.

EXERCISES A.2 (page 547)

Note: only the last columns of truth tables are given.

3.
p q (pvq)A[ -'(pAq)]

T T F

T F T

F T T

F F F

p q (p V q)- (-p A q)

T T F

T F F

F T T

F F T

1.
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5.

9.

7.

p q r I [(pvq)Ar]- [(pAr)vq]

T T T T
T T F T
T F T T
T F F T
F T T T

F T F T
F F T T
F F F T

p q r I (p-q)-(pvr)

T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T T
F F F F

17. p -p (p)

T F T

F T F

19. If the truth table is arranged as in Exercise I above, other, the column corresponding to the given statement is: F, T,
F, F. 21. If the truth table is arranged as in Exercise 5 at,ove, then the column corresponding to the given statements
is: T, F, T, T, T, T, T, T. 23. If the truth table is arranged as in Exercise 5 above, then the column corresponding
to the given statements is: T, F, T, F, T, F, T, T.

25. p q pAq qAp pVq qVp

T T T T T T
T F F F T T
F T F F T T
F F F F F F

27. (e) If the truth table is arranged as in Exercise 5 above, then the column corresponding to both statements is: T, T,
T, T, T, F, F, F. (f) If the truth table is arranged as in Exercise 5 above, then the column corresponding to both
statements is: T, T, T, F, F, F, F, F. 29. If the truth table is arranged as in Exercise 1 above, then the column
corresponding to both statements is T, F, T, T.

33. (a) p q p V q

T T F
T F T
F T T
F F F

(b) If the truth table is arranged as in part (a), then the column corresponding to both statements is F, T, T, F.

p q r (Q-qAr) (+*Q-pVq)

T T T F
T T F F
T F T F
T F F T
F T T F
F T F F
F F T T
F F F F
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EXERCISES A.3 (page 553)

1.
p q -q p A(-q) -[p A(-q)] p -q

T T F F T T

T F T T F F

F T F F T T

F F T F T T

13. The statement is false. For example, 3 + 5 = 8. 15. The statement is false. For example, if a = 3, b = 2, and
c = 0, then ac = bc, but a = b.
17. The statement is false. For example, if x = 4 and y = 9, then 6 divides xy, but 6 does not divide either x or y.
19. The statement is true. 21. The statement is true.
23. The statement is false. For example, if n = 41, then

n' + n + 41 = 412 + 41 + 41 = 41(43).

SUPPLEMENTARY EXERCISES (page 556)

1. true statement 3. not a statement 5. false statement 7. true statement 9. There exists a square which
is a triangle. (false) 11. No scientist from the U.S. has received a Nobel prize. (false) 13. 2 + 2 < 4 and 1 is not a
root of x5 + I = 0. (true) 15. In circling the globe along a line of latitude, one must not cross the equator exactly twice
or not cross the North Pole or not cross the South Pole. (true) 17. (a) Squares have four sides and triangles have three
sides. (true) (b) Squares have four sides or triangles have three sides. (true) 19. (a) If 3 > 2, then 3 x 0 > 2 x 0,
and if 4 = 5, then 5 = 9. (false) (b) If 3 > 2, then 3 x 0 > 2 x 0, or if 4 = 5, then 5 = 9. (true) 21. (a) If 32 = 6,
then 3 + 3 = 6. (true) (b) If 3 + 3 # 6, then 32 #A 6. (true) (c) If 32 #A 6, then 3 + 3 #A 6. (false) 23. (a) If
3 x 2 = 6, then 32 = 6. (false) (b) If 32 54 6, then 3 x 2 # 6. (false) (c) If 3 x 2 :# 6, then 32 7# 6. (true)

25.

27.

p q -[(p V q) A -p] A -p

T T F

T F F

F T F

F F T

p q r [pA(rA(-pVq))]- [(pAr)A(-pVq)]

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F T

29. yes 31. no 33. yes 35. yes 37. 6 cannot
41. The statement is true. 43. The statement is true.

39. The statement is true.

613
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APPENDIX B

EXERCISES B.1 (page 562)

1. not defined 3. ] 5 [ 7 1 ] 7. not defined 9. [_3 2]

1. 14 -5 3 1 1 -1 1

-3 3 3- -3 3 3- -9 9 9

19. 3 3 3 21. 3 3 3 23. 9 9 9

3 3 3 3 3 3 -9 9 9
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Abel, H., 106
Absolute value, 55, 77
Accepted string, 523
Accepting state, 523
Addition principle, 369-371
Adjacency list, 112, 161, 207
Adjacency matrix, 111-112, 143-145,

160
Adjacent cells, 510
Adjacent vertices, 109
Adleman, L., 103
Algorithm, 2, 23-33, 566-571

binary search, 457
binary search tree construction,

257-258
binary search tree search, 259
Bose-Nelson, 465
breadth-first search, 138, 196-198,331
bubble sort, 31
comparison of, 23-25
complexity of, 23-25
depth-first search, 214
Dijkstra's, 140-141, 148
efficiency of, 23-25
Euler circuit, 124-125
flow augmentation, 330
for evaluating n factorial, 33
for evaluating x', 25
for Fibonacci numbers, 34
for P(n, r), 38
greedy, 203
Homer's, 27
Huffman's optimal binary tree,

249-250, 263
Hungarian, 308
independent set, 290
inorder traversal, 242
Kruskal's, 210
lexicographic ordering of

permutations, 407
lexicographic ordering of

r -combinations, 409

merge sort, 461
merging, 460
next subset, 29
of order at most f (n), 27
polynomial evaluation, 26
postorder traversal, 240
preorder traversal, 236
Prim's, 201, 205
Prufer's, 193
revised polynomial evaluation, 35
sequential search, 454
sum of arithmetic progression, 34
sum of geometric progression, 34
topological sorting, 70

Al-Khwarizmi, A., 36
Ancestor, 226
And connective, 536
AND-gate, 490
Antisymmetric relation, 63-66
Appel, K., 154, 176
Arc in a network, 318

capacity of, 318
flow along, 319

Archimedes, 483
Aristotle, 554
Arithmetic progression, 96

common difference of, 96
sum of terms, 96

Arrangements, 374, 379-385
Articulation point, 223, 269
ASCII code, 246
Augmenting path for flow, 321, 328-331
Auxiliary equation, 448

Babbage, C., 36
Back edge, 215
Backtracking, 217
Balanced binary tree, 269
Bernoulli, J., 411
Bhaskara, 411
Biconditional statement, 536-541
Binary digit, see Bit, 367

Binary search algorithm, 457
Binary search tree, 255-261
Binary search tree construction

algorithm, 257-258
Binary search tree search algorithm,

259
Binary tree, 232-244

balanced, 269
expression tree, 232-235
for weights, 248
height of, 269
left child in, 232
left subtree in, 233
optimal, 249
right child in, 232
right subtree in, 233
search tree, 255-261
traversal of, 235-244
visiting a vertex of, 235
weight of, 248

Binomial coefficient, 363
Binomial theorem, 363
Bipartite graph, 135, 278, 347

complete, 135
matching of, 347
matrix of, 280
maximum matching of, 348
network associated with, 348

Birkhoff, G. D., 266
Bit, 367
Boole, G., 106, 530
Boolean algebra, 499, 506
Boolean expression, 494

equivalent, 495
identities for, 499

Boolean variable, 490
Bose, R. C., 465
Bottleneck problem, 302-303
Branching in algorithms, 568-571
Breadth-first search algorithm, 138,

196, 331
Bridge, 163, 216, 229

615
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Bubble sort algorithm, 31, 455
Byron, A., 36

Capacity of a cut, 323, 341-345
Capacity of an arc, 318
Cardano, G., 411, 564
Cartesian product, 45-46
Catalan, E., 425
Catalan numbers, 246, 425
Cauchy, A. L., 176
Cayley, A., 176, 184-185, 190, 265, 564
Child, 226

left, 232
right, 232

Chromatic number, 150
Circuit, combinatorial, 493
Clifford, W. K., 266
Codewords, 246
Codomain of a function, 76
Collatz sequence, 569
Coloring of a graph, 150
Column of a matrix, 558
Combination, 102, 360-363

r-combination, 375
unordered lists, 374-378
with repetition, 379-385

Combinatorial circuit, 493
Common difference, 96
Common ratio, 96
Complement of a graph, 176
Complement of a set, 42
Complete bipartite graph, 135
Complete graph, 110, 418, 431
Complexity, 24-26

non-polynomial, 30
polynomial, 26-27

Component of a graph, 135
Composition of functions, 82
Conclusion

of a conditional statement, 539
of a theorem, 549

Conditional statement, 539-543
conclusion of, 539
premise of, 539

Congruence class modulo m, 57
Congruence modulo m, 55-59
Conjunction, 538
Connected graph, 121, 186, 198

articulation point in, 223
Connectives, 536-541

and, 536
exclusive or, 548
if and only if, 536-541
if ... then . .. , 536-539
not, 536-537
or, 536

Contradiction, 545
proof by, 551

Contrapositive of a statement, 541
Converse of a statement, 541

Counterexample, 553
Counting problem, 1, 12
Covering

in a matrix, 282
of a graph, 281

Critical path, 6
Cryptography, 103
Cut, 323

capacity of a, 323, 341-345
in a network, 323
minimal, 341-345

Cycle, 122
directed, 162
directed Hamilioniaan, 166
Hamiltonian, 126-130

Decision tree, 228
Dedekind, J. W. R.. 55:5
Deficiency of a giapt, 356
Degree of a vertex, 1 1, 120
Deletion of a vertex, 204-265
De Moivre, A., 41 1, 484
De Morgan, A., 36. 106, 107, 530, 555
De Morgan's laws, 44, 500, 547
Depth-first search, 211 -220, 228

algorithm, 214
back edge, 215
backtracking, 217
numbering, 215
tree, 215
tree edge, 215

Derangement, 400, 422 -424, 437
Descendant, 226
deWitt, J., 564
Diagram

Hasse, 68
transition, 522
Venn, 42

Dictionary order, see Lexicographic
order, 405

Difference equation, 411-451
first-order linear. 44 L, 444
linear inhomogeneous, 486
second-order hormog eneous linear,

444-451
Difference of sets, 41-42
Dijkstra, E. W., 1(40
Dijkstra's algorithm, 1 10-141, 148
Direct proof, 549
Directed cycle, 162, 226

Hamiltonian c) cle, J 66
Directed edge, 159

from U to V, 159
Directed Euler circuit, 164
Directed Euler path, 164
Directed graph, 158- 168

adjacency list for, 161
adjacency matrix lor, 160
directed cycle in, l 62, 226
directed edge ill, 15")

directed Euler circuit in, 164
directed Euler path in, 164
directed Hamiltonian cycle in, 166
directed Hamiltonian path in, 166
directed path in, 162
indegree, 160
labeled, 160
multigraph, 161-164
oumdegree, 160
simple directed path in, 162, 226
strongly connected, 162, 215-216
tournament, 167
vertices in, 159

Directed Hamiltonian cycle, 166
Directed Hamiltonian path, 166
Directed loop, 161
Directed multigraph, 161 -164

directed cycle, 162
directed Euler circuit, 164
directed Euler path, 164
directed Hamiltonian cycle, 166
directed Hamiltonian path, 166
directed loop, 161
directed parallel edges, 161
directed path, 162
length of a directed path in, 162
of a relation, 168
simple directed path, 162, 226
strongly connected, 162, 215-216

Directed parallel edges, 161
Directed path, 162

directed Euler, 164
directed Hamiltonian, 166
directed simple, 162
length, 162

Dirichlet, P. G. L., 106
Discrete dynamical system, 427
Disjoint sets, 41, 369, 371
Disjunction, 538
Disjunctive syllogism, 548
Distance between vertices, 136, 140

breadth-first search algorithm for, 138
Dijkstra's algorithm for, 140

Distinct representatives, 272
Distinct trees, 193
Distributions, 383
Divide-and-conquer algorithms, 455-462
Divides, 55, 64
Division algorithm, 55
Domain of a function, 76
Dynamical system, 427

Edge, 109, 119
back, 215
directed, 159
directed parallel, 161
in a tree, 215
incident with a vertex, 109
joining vertices, 109
loop, 119
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parallel, 119
weighted, 139

Edmonds, J., 328, 344
Efficiency of algorithms, 23-25
Elias, P., 344
Empty set, 21
Entry of a matrix, 111, 558
Equality

of functions, 81
of matrices, 558
of sets, 21

Equivalence
of Boolean expressions, 495
of circuits, 495
of finite state machines, 530

Equivalence class, 51-53
Equivalence of logical statements,

546
Equivalence relation, 50-53

and partitions, 52-53
Euclidean plane, 45
Euler, L., 106, 122, 133, 175, 484
Euler circuit, 122-126

directed, 164
Euler circuit algorithm, 124-125
Euler path, 122-126

directed, 164
Euler's formula, 177
Event, 387
Exclusive or, 548
Existence problem, 1, 4
Experiment, 387
Exponential function, 84
Expression tree, 232-235

Factorial, 13
Federal Express, 61
Feinstein, A., 344
Fermat, P., 387
Fibonacci, L., 35, 444, 484
Fibonacci numbers, 94, 444, 449
Fibonacci recurrence, 445
Fibonacci trees, 246
Finite state machines, 521

accepting state of, 523
definition of, 523
initial state of, 523
state table for, 521
transition diagram for, 522
with output, 525

First-order linear difference equation,
441, 444

formula for nth term, 442
Floor, 456, 464
Flow, 317-352

along an arc, 319
augmentation algorithm, 330
augmenting path, 321, 328-331
in a network, 319
integral, 337, 350

maximal, 320
value of, 320, 325, 341-345

Ford, L. R., 291, 313, 328-329, 344, 356
For ... endfor, 568
Formal power series, 470
Four-color theorem, 154
Four-queens problem, 217-219
Frege, G., 555
Fulkerson, D. R., 291, 313, 328-329,

344, 356
Function, 75-85, 88

codomain of, 76
composition of, 82
domain of, 76
exponential, 84
generating, 465-481
identity, 79
image of an element, 76
inverse of, 83
logarithmic, 84
one-to-one, 79-81, 88
one-to-one correspondence, 79
onto, 79-81, 404
range of, 79

Gambler's ruin, 450
Gauss, C. F., 106
Generating function, 465-481

algebra of, 473-481
inverse of, 474-476

Geometric progression, 96
common ratio of, 96
sum of terms, 96

Gbdel K., 555
Goldbach's conjecture, 473, 535
Graph, 108-168, see also Directed

graph, Directed multigraph,
Multigraph, and Tree, 176

adjacency list for, 207
adjacency matrix for, 111 -112,

143-145
adjacent vertices of, 109
bipartite, 135, 278, 347
chromatic number of, 150
coloring of, 150
complement of, 176
complete, 110
complete bipartite, 135
connected, 121, 186, 198
covering of, 281
cycle in, 122
deficiency of, 356
directed, 159
distance in, 136, 140
edge of, 109
Euler circuit, 122-126
Euler circuit algorithm, 124-125
Euler path in, 122-126
Hamiltonian cycle in, 126-130
Hamiltonian path in, 126-130

isomorphism of, 113-115
labeled, 111
length of a path in, 120
matching of, 279
maximum matching of, 279
minimum covering of, 281
path in, 120-130
simple path in, 120, 187-190, 226
vertex of, 109
weighted, 139

Grassmann, H., 106
Gray code, 129-130
Greedy algorithm, 203, 209
Guthrie, F., 176

Haken, W., 154, 176
Hall, P., 274, 313
Hall's condition, 277
Hall's theorem, 274, 277, 300
Hamilton, W., 106
Hamilton, W. R., 126, 134, 176
Hamiltonian cycle, 126-130

directed, 166
Hamiltonian path, 126-130
Hanoi, Tower of, 419, 429, 476
Hasse, H., 68
Hasse diagram, 68
Height of a binary tree, 269
Homer, W. G., 27
Homer's polynomial evaluation

algorithm, 27
Huffman, D. A., 249
Huffman's optimal binary tree algorithm,

249-250,263
Hungarian algorithm, 308
Hungarian method, 305-309
Huygens, C., 411
Hydrocarbons, 184-185, 190
Hypothesis of a theorem, 549

Identity function, 79
If and only if, 536-541
If ... otherwise ... endif, 568
If .. . then ... ,536-539

Image of a function, 76
Implication, see Conditional statement,

539
Inclusion-exclusion, principle of,

395-401
Indegree of vertex, 160
Independent set algorithm, 290
Independent set of entries, 280

maximum, 281
with maximum sum, 311

Induction, 88-95
inductive step, 89
principle of mathematical induction,

88
strong principle of mathematical

induction, 94
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Inductive step, 89
Initial conditions, 418
Initial state, 523, 526
Inorder traversal algorithm, 242
Inorder traversal listing, 242-244, 260
Insertion of a vertex in a binary search

tree, 259
Integers, 55-59

congruence of, 55-59
division of, 55
prime, 50, 103
relatively prime, 403

Integral flow, 337, 350
Internal vertex, 226
International Standard Book

Number, 56
Intersection of sets, 41-44, 393-401
Invariant of a graph isomorphism, 114
Inverse function, 83
Inverse of a statement, 541
ISBN, 56
Isomorphism of graphs, 113-115

of weighted graphs, 148
Iteration, 429-439, 441

Jevons, W. S., 530
Jordan, C., 266

Kamaugh, M., 530
Kamaugh map, 508

adjacent cells in, 510
Karp, R., 328, 344
Kirchhoff, G., 184, 265
Knapsack problem, 16, 22
Kdnig, D., 176, 298, 309, 313
Konig's theorem, 298
Kbnigsberg bridge problem, 133
Kruskal, J. B., 203, 210, 266
Kruskal's algorithm for a minimal

spanning tree, 210
Kuhn, H. W., 309

Labeled graph, 111
directed, 160

Labeling of a network, 331
Labeling of lines, 287
Lagrange, J. L., 106
Laplace, P. S., 387, 484
Latin rectangle, 277
Latin square, 277
Left child, 232
Left subtree, 233
Leibniz, G. W., 106, 530, 555, 564
Length of a directed path, 162
Length of a path, 120, 162
Level of a vertex, 232
Lexicographic order, 65,405
Line of a matrix, 280
Linear order, see Total order, 66
List of adjacent vertices, 112

Lists, searching and suiting of, 31-33,
453-463, 46';

Bose-Nelson algorithm, 465
bubble sort, 31--33. z55
merge sort, 461-463

Liu, C. L., 165
Logarithmic function, 84
Logical equivalence, 5416
Logical gates, 489 -493

AND-, 490
NOT-, 490
OR-, 490

Loop in a multigraph 1 19
directed, 161

Looping in algorithms, 566-568
Loop invariant, 91
Lucas sequence, 485
Lucas, E., 484
Lukasiewicz, J., 237-239

Machines
parity checking, 522
unit delay, 526

Marquand, A., 530
Matching

maximum, 348
of a graph, 279. 347
problem, 10-12, 347

Mathematical induction, principle
of, 88

Matrix, 111, 558-562
adjacency, 111 --112, 143-145
column, 558
covering in a, 282
entry, 558
equality, 558
i, j entry, 111,558
independent entries of, 280
line of, 280
maximum independent set in, 281
of a bipartite graph, 280
product, 144-145, 5(0-562
row, 558
submatrix of, 286
sum,559

Maurocyulus, F., 107
Max-flow min-cut theorem, 345
Maximal element, 66
Maximal flow, 32(0
Maximal spanning tree. 204
Maximum independent set, 281
Maximum matching, 279, 348
Maximum sum of independent sets, 311
McCluskey, E., 530
Merge sort algorithm. 461-463
Merging algorithm, 41('
Merging lists, 96-10, .161-463
Method of iteration. 429-439, 441
Microprocessor, 489
Minimal cut, 341-34'5

Minimal element, 66
Minimal-length path, 136
Minimal spanning tree, 199

Kruskal's algorithm, 210
Prim's algorithm, 201, 205

Minimum covering
in a matrix, 282
of a graph, 281

Minterm, 503
Modus ponens, 548
Modus tollens, 548
Multigraph, 119-130, see also Directed

Multigraph, 168
connected, 121
cycle in, 122
Euler circuit algorithm, 124-125
Euler circuit in, 122-126
Euler path in, 122-126
length of path in, 120
loop in, 119
parallel edges in, 119
path in, 120-130
simple path in, 120

Multinomial theorem, 414
Multiplication of matrices, 144- 145
Multiplication principle, 12, 366-369
Multisource transportation network, 357

n-bit string, 367
Negation of a statement, 537
Nelson, R. J., 465
Network, 317-345

arc in, 318
associated with a bipartite graph, 348
capacity of a cut, 323, 341-345
capacity of an arc, 318
cut in, 323
flow along an arc in, 319
flow augmentation algorithm, 330
flow-augmenting path in, 321, 331
flow in, 319
flows, 317-345
flows and matchings, 347-352
integral flow, 337, 350
labeling of, 331
max-flow min-cut theorem, 345
maximal flow, 320, 350
minimal cut in, 341-345
multisource transportation, 357
scanning of, 331
sink in, 318
source in, 317
transportation, 317-345
value of a flow in, 320
with vertex capacities, 358

Nickel, L., 103
Noll, C., 103
Not connective, 536, 537
NOT-gate, 490
Numbering for depth-first search, 215
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One-to-one correspondence, 79
One-to-one function, 79-81, 88
Onto function, 79-81, 404
Optimal binary tree, 246-255

Huffman's algorithm, 249-250, 263
Optimization problem, 1, 11, 19
Or connective, 536
Order

dictionary, see Order, lexicographic,
405

lexicographic, 65, 405
linear, see Order, total, 66
of an algorithm, 27
partial, 63-72
topological sorting, 69-72
total, 66, 69-72

Ordered pair, 45
OR-gate, 490
Outdegree of a vertex, 160
Output

of a finite state machine, 525
string, 526
table, 526

Parallel edges, 119
directed, 161

Parent of a vertex, 226
Parity-checking machine, 522
Partial order, 63-72
Partition of a set, 52-53, 404
Pascal, B., 107, 361, 387,411
Pascal's triangle, 361
Path, 120-130, 136-145, see also

Directed path, 168
critical, 6
Euler, 122-126
Euler circuit algorithm, 124-125
Hamiltonian, 126-130
length of, 120
minimal-length, 136
number of, 143-145
shortest, 136-143
simple, 120, 187-190
weight of, 139

Peacock, G., 106
Peano, G., 106, 555
Peirce, C. S., 530, 555
Permutation, 13, 374-375, 405-406

algorithm for lexicographic ordering
of, 407

lexicographic ordering of, 405-406
of n objects taken r at a time, 14
ordered lists, 374-378
r-permutation, 374

PERT, 6, 36
Pigeonhole principle, 365-366
Plato, 554
Polish notation, 237-239
Polynomial, 26-28

evaluation algorithm, 26

Homer's algorithm, 27
of degree n in x, 26
revised polynomial evaluation

algorithm, 35
Postfix form, 239
Postorder traversal algorithm, 240
Postorder traversal listing, 240-241

reverse Polish notation, 239
Prefix form, 237
Prefix property for codewords, 247-248
Premise, 539
Preorder listing, 236
Preorder traversal, 236
Preorder traversal algorithm, 236
Prim, R. C., 200, 266
Prime number, 50, 103

relatively, 403
Prim's algorithm for a minimal spanning

tree, 201, 205
Principle of inclusion-exclusion,

395-401
Probability, 387-391

event, 387
experiment, 387
sample space, 387

Product of matrices, 144-145, 560-562
Progression, 96
Proof, 549

by cases, 552
by contradiction, 551
direct, 549
of the contrapositive, 550
syllogistic, 550

Prufer's algorithm, 193

Quantifiers, 536-538
Quine, W., 530
Quotient, 55

recombination, 375, 408
lexicographic ordering of, 408

r-permutation, 374
Range of a function, 79
Recurrence relation, 417-463

initial conditions of, 418
Recursion, 236,417-427
Recursive definition, 93-94
Reflexive relation, 49, 64
Rejected string, 523
Relation, 48-53

antisymmetric, 63-66
congruence, 55-59
directed multigraph of, 168
equivalence, 50-53
function, 75-85
linear, 66
maximal element, 66-67
minimal element, 66-67
on a set, 49
partial order, 63-72

reflexive, 49, 64
root, 224
symmetric, 49
topological sorting, 69-72
total, 66
transitive, 49, 64

Relatively prime integer, 403
Remainder, 55
Rencontre, 403
Repeat ... until, 567
Reverse Polish notation, 239-240
Rhind Papyrus, 35
Right child, 232
Right subtree, 233
Rivest, R. L., 103
Root, 224, 264
Rooted tree, 223-229

ancestor in, 226
binary, 232
child in, 226
descendants in, 226
expression, 232-235
internal vertex in, 226
parent in, 226
root in, 224
terminal vertex of, 226

Row of a matrix, 558
RSA-cryptography, 103
Russell, B., 106, 555

Sample space, 387
Scanning a network, 331
Scanning lines, 287
Schrdder, E., 530, 555
Score in a tournament, 172
Searching, 97-98, 453-463
Second-order homogeneous linear

difference equations, 444-451
auxiliary equation for, 448
formula for nth term, 446, 447

Selections, 374, 379-385
Sentence, 535-542

contradiction, 545
logical equivalence, 546
tautology, 545
variable, 542

Sequence, 417
Sequential search algorithm, 454
Set, 19, 46

Cartesian product, 45-46
complement, 42
containment, 20
De Morgan's laws, 44
difference, 41-42
disjoint, 41
element of, 19
empty, 21
equality, 21
intersection, 41-44
number of elements in, 21, 393-401
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Set (Cont.)
number of subsets, 21-22, 100
operations, 46
partition of, 52-53
subset, 20
union, 40-44
universal, 42
Venn diagram, 42

Shamir, A., 103
Shannon, C., 344, 530
Sheffer stroke, 548
Shortest path, 136-143, 198
Shortest path tree, 198
Sieve of Eratosthenes, 35, 403
Simple directed path, 162, 226
Simple path, 120, 187-190
Sink, 318
Sorting algorithms

Bose-Nelson, 465
bubble sort, 31-33
efficiency of, 454-455, 463
merge sort, 461-463

Source, 317
Spanning tree, 194-205, 215-216

Kruskal's algorithm, 210
maximal, 204
minimal, 199
Prim's algorithm, 201

Stack, 424
Statement, 535-543

contrapositive of, 541
converse of, 541
inverse of, 541
variable, 542

State table, 521
Stirling, J., 404, 411
Stirling numbers of the second kind,

404
Stirling's formula, 411
String, 523

accepted, 523
n-bit, 367
output, 526
rejected, 523

Strong principle of mathematical
induction, 94

Strongly connected digraph, 162,
215-216

bridge in, 163, 215
Submatrix, 286
Subset, 20

next subset algorithm, 29
Sum of matrices, 559
Syllogism

argument by, 550
disjunctive, 548
law of, 550

Sylvester, J. J., 266, 412 564
Symmetric relation, 4S
System of distinct representatives, 272

Table
output, 526
state, 521
truth, 491,538-546

Tartaglia, N., 411
Tautology, 545
Terminal vertex, 226, 264
Terms of a sequence. 4 17
Theorem, 548

conclusion of, 549
hypothesis of, 549
proof of, 549

Topological sorting, 60 72
Topological sorting algorithm, 70
Total order, 66, 69- 72
Tournament, 167

score in, 172
transitive, 181

Tower of Hanoi, 419, L.23, 476
Transition diagram 522
Transitive relation, 49, 64
Transitive tournament, IS3
Traversals, 235-244

inorder, 242-244, 260
postorder, 240
preorder, 236

Tree, 184-261
balanced binary, 269
binary, 232
binary search tree construction

algorithm, 257-258
binary search tree sei ch algorithm,

259
child in, 226, 232
decision, 228
depth-first search algorithm, 214
depth-first search numbering, 215
descendant in, 226
distinct, 193
edges in, 215
expression, 232-235
Fibonacci, 246
Huffman's optimal binary tree

algorithm, 249-250, 263
internal vertex in, 22 6
Kruskal's algorithm. 203, 210
level of vertex in, 232
maximal spanning, 204
minimal spanning, 19')
optimal binary, 246-255
parent in, 226
Prim's algorithm, 2(1 205
Prufer's algorithm, 1 93

rooted, 223-229
shortest path in, 198
spanning, 194-205, 215-216
terminal vertex in, 226, 264
traversal, 235-244
weight of, 199

Tree edge, 215
Truth table, 491, 538-546

for AND connective, 491, 538
for biconditional statements, 540
for Boolean expressions, 491
for conditional statements, 540
for NOT connective, 491, 538
for OR connective, 490, 539

Union of sets, 40-44, 369, 371,
393-401

Unit delay machine, 526
Universal product code, 61
Universal set, 42

Value of a flow, 320
Variables

Boolean, 490
sentence, 542

Veblen, O., 266
Venn, J., 106
Venn diagram, 42
Vertex, 109, 119, 159

adjacent, 109
degree of, 110
incident with an edge, 109
indegree of, 160
insertion of, 259
internal, 226
level of, 232
outdegree of, 160
terminal, 226, 264
visiting, 235

Visiting a vertex, 235
Viete, F., 35
Von Staudt, G. K. C., 265

Weight, 248
of a binary tree, 248
of an edge, 139
of a path, 139
of a tree, 199

Weighted graph, 139
distance in, 140
isomorphism of, 148
shortest path in, 140

Well-ordering principle, 105
While ... endwhile, 566
Whitehead, A. N., 106, 555

Xenocrates, 411
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Algorithm for Evaluating 'n 25
Algorithm for Evaluating n! 34
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Depth-First Search Algorithm 223
Dijkstra's Algorithm 148
Euler Circuit Algorithm 131
Flow Augmentation Algorithm 344
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Hungarian Algorithm 322
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Kruskal's Algorithm 2193
Postorder Traversal Algorithm 250
Preorder Traversal Algorithm 246
Prim's Algorithm 210




