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Preface to the Second Edition

In the nine years since the publication of the first edition, we have received
feedback on the text from a number of users, both teachers and students. Most
have been complimentary about the clarity of our exposition, some have pointed
out errors of detail or historical accuracy and others have suggested ways in which
the text could be improved. In this edition we have attempted to retain the style
of exposition, correct the (known) errors and implement various improvements
suggested by users.

When writing the first edition, we took a conscious decision not to root the
mathematical development in a particular method or language that was current
within the formal methods community. Our priority was to give a thorough
treatment of the mathematics as we felt this was likely to be more stable over
time than particular methodologies. In a discipline like computing which evolves
rapidly and where the future direction is uncertain, a secure grounding in theory
is important. We have continued with this philosophy in the second edition.
Thus, for example, Z made no appearance in the first edition, and the object
constraint language (OCL) or the B method make no appearance in this edition.
Although the discipline of computing has indeed changed considerably since
the publication of the first edition, the core mathematical requirements of the
undergraduate curricula have remained surprisingly constant. For example, in
the UK, the computing benchmark for undergraduate courses, published by the
Quality Assurance Agency for Higher Education (QAA) in April 2000, requires
undergraduate programmes to present ‘coherent underpinning theory’. In the
USA, the joint ACM/IEEE Computer Society Curriculum 2001 project lists
‘Discrete Structures’ (sets, functions, relations, logic, proof, counting, graphs
and trees) as one of the 14 knowledge areas in the computing curriculum ‘to
emphasize the dependency of computing on discrete mathematics’.

iX



Pretace to the Second Edition

In this edition we have included a new section on typed set theory and
subsequently we show how relations and functions fit into the typed world. We
have also introduced a specification approach to mathematical operations, via
signatures, preconditions and postconditions. Computing undergraduates will be
familiar with types from the software design and implementation parts of their
course and we hope our use of types will help tie together the mathematical
underpinnings more closely with software development practice. For the
mathematicians using the text, this work has a payoff in providing a framework
in which Russell’s paradox can be avoided, for example.

The principal shortcoming reported by users of the first edition was the inclusion
of relatively few exercises at a routine level to develop and reinforce the
mathematical concepts introduced in the text. In the second edition, we have
added many new exercises (and solutions) which we hope will enhance the
usefulness of the text to teachers and students alike. Also included are a number
of new examples designed to reinforce the concepts introduced.

We wish to acknowledge, with thanks, our colleagues who have commented
on and thus improved various drafts of additional material included in the
second edition. In particular, we thank Paul Courtney, Gerald Gallacher, John
Howse, Brian Spencer and our reviewers for their knowledgeable and thoughtful
comments. We would also like to thank those—most notably Peter Kirkegaard—
who spotted errors in the first edition or made suggestions for improving the text.
Nevertheless, any remaining shortcomings are ours and we have no one to blame
for them but each other.

RG and JT
April 2001



Preface to the First Edition

This book aims to present in an accessible yet rigorous way the core mathematics
requirement for undergraduate computer science students at British universities
and polytechnics. Selections from the material could also form a one- or two-
semester course at freshman—sophomore level at American colleges. The formal
mathematical prerequisites are covered by the GCSE in the UK and by high-school
algebra in the USA. However, the latter part of the text requires a certain level of
mathematical sophistication which, we hope, will be developed during the reading
of the book.

Over 30 years ago the discipline of computer science hardly existed, except as
a subdiscipline of mathematics. Computers were seen, to a large extent, as
the mathematician’s tool. As a result, the machines spent a large proportion of
their time cranking through approximate numerical solutions to algebraic and
differential equations and the mathematics ‘appropriate’ for the computer scientist
was the theory of equations, calculus, numerical analysis and the like.

Since that time computer science has become a discipline in its own right and has
spawned its own subdisciplines. The nature and sophistication of both hardware
and software has changed dramatically over the same time period. Perhaps less
public, but no less dramatic, has been the parallel development of undergraduate
computer science curricula and the mathematics which underpins it. Indeed, the
whole relationship between mathematics and computer science has changed so
that mathematics is now seen more as the servant of computer science than vice
versa as was the case formerly.

Various communities and study groups on both sides of the Atlantic have studied
and reported upon the core mathematics requirements for computer scientists

educated and trained at various levels. The early emphasis on continuous

X1
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mathematics in general, and numerical methods in particular, has disappeared.
There is now wide agreement that the essential mathematics required for computer
scientists comes from the area of ‘discrete mathematics’. There is, however, less
agreement concerning the detailed content and emphasis of a core mathematics
course.

Discrete mathematics encompasses a very wide range of mathematical topics and
we have necessarily been selective in our choice of material. Our starting point
was a report of the M2 Study Group of the 1986 Undergraduate Mathematics
Teaching Conference held at the University of Nottingham. Their report,
published in 1987, suggested an outline syllabus for a first-year mathematics
course for computer science undergraduates. All the topic areas (with the
exception of probability theory) suggested in the outline are covered in this text.
We have also been influenced in our selection of material by various courses at
the freshman—sophomore level offered by institutions in the USA.

Ultimately the selection, presentation and emphasis of the material in this book
was based on our own judgements. We have attempted to include the essential
mathematical material required by undergraduate computer scientists in a first
course. However, one of our key aims is to develop in students the rigorous
logical thinking which, we believe, is essential if computer science graduates are
to adapt to the demands of their rapidly developing discipline. Our approach is
informal. We have attempted to keep prerequisites to an absolute minimum and
to maintain a level of discussion within the reach of the student. In the process,
we have not sacrificed the mathematical rigour which we believe to be important
if mathematics is to be used in a meaningful way.

Our priority has been to give a sound and thorough treatment of the mathematics.
We also felt that it was important to place the theory in context by including
a selection of the more salient applications. It is our belief that mathematical
applications can be readily assimilated only when a firm mathematical foundation
has been laid. Too frequently, students are exposed to concepts requiring
mathematical background before the background has been adequately provided.
We hope this text will provide such a foundation.

In order to keep the book within manageable proportions and still provide some
applications, we have been forced to omit certain topics such as finite state
machines and formal languages. Although such topics are relevant to computer
scientists and others, we felt that they were not central to the mathematical core
of the text. We believe that the book will provide a sound background for readers
who wish to explore these and other areas.

As our writing of the text progressed and its content was discussed with
colleagues, we became increasingly conscious that we were presenting material
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which lies at the very foundation of mathematics itself. It seems likely that
discrete mathematics will become an increasingly important part of mathematics
curricula at all levels in the coming years. Given our emphasis on a sound and
thorough development of mathematical concepts, this text would be appropriate
for undergraduate mathematicians following a course in discrete mathematics.
The first half of the book could also be recommended reading for the aspiring
mathematics undergraduate in the summer before he or she enters university.

The approximate interdependence of the various parts of the text are shown in
the diagram below. There are various sections which are concerned largely with
applications (or further development) of the theory and which may be omitted
without jeopardizing the understanding of later material. The most notable of
these are §§4.7,5.5,5.6 and 8.7.

Chapter 1
Logic

Chapter 2
Mathematical proof

[ 1

Chapter3
Sets
Chapter 6
Matrix ?
algebra ¢
Chapter4.884.1 - 4.6 -
+ P Relations Chapter4, §4.7
Relational
Chapter 7 f databases
Systems of "
linear Chapter 5, 885.1 - 5.4 *
equations Functions Chapter 5,§5.6
T Functional dependence

Normal forms

Chapter 8

Algebraic Chapter 5. § 5.5
structures Chapter 10 Cardinality

* Graph theory

Chapter9 Y

P{i;)olga'n Chapter 11

dlgeora Applications of

graph theory

Table of interdependence

We wish to acknowledge with thanks our families, friends and colleagues for
their encouragement. In particular we would like to thank Dr Paul Milican, Paul
Douglas and Alice Tomi¢ for their advice and comments on various parts of the
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manuscript. Our reviewers provided many helpful comments and suggestions for
which we are grateful. If the text contains any errors or stylistic misjudgements,
we can only blame each other. The technical services staff at Richmond College
and Jim Revill and Al Troyano at IOP Publishing also deserve our thanks for their
patience with us during the development of this text. Last, but not least, we wish
to thank Pam Taylor for providing (at short notice) the ideas and sketches for the
cartoons.

RG and JT
July 1990
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Chapter 1

Logic

Logic is used to establish the validity of arguments. It is not so much concerned
with what the argument is about but more with providing rules so that the general
form of the argument can be judged as sound or unsound. The rules which logic
provides allow us to assess whether the conclusion drawn from stated premises
is consistent with those premises or whether there is some faulty step in the
deductive process which claims to support the validity of the conclusion.

1.1 Propositions and Truth Values

A proposition is a declarative statement which is either true or false, but not both
simultaneously. (Propositions are sometimes called ‘statements’.) Examples of
propositions are:

1. This rose is white.

2. Triangles have four vertices.
3. 342=4.

4. 6 < 24.

5.

Tomorrow is my birthday.

Note that the same proposition may sometimes be true and sometimes false
depending on where and when it was stated and by whom. Whilst proposition 5 is
true when stated by anyone whose birthday is tomorrow, it is false when stated by
anyone else. Further, if anyone for whom it is a true statement today states it on
any other day, it will then be false. Similarly, the truth or falsity of proposition 1
depends on the context in which the proposition was stated.



2 Logic

Exclamations, questions and demands are not propositions since they cannot be
declared true or false. Thus the following are not propositions:

Keep off the grass.

Long live the Queen!

Did you go to Jane’s party?
Don’t say that.

Y

The truth (T) or falsity (F) of a proposition is called truth value. Proposition 4
has a truth value of true (T) and propositions 2 and 3 have truth values of false (F).
The truth values of propositions 1 and 5 depend on the circumstances in which the
statement was uttered. Sentences 6—9 are not propositions and therefore cannot
be assigned truth values.

Propositions are conventionally symbolized using the letters p, g, r,.... Any
of these may be used to symbolize specific propositions, e.g. p: Manchester is
in Scotland, g: Mammoths are extinct. We also use these letters to stand for
arbitrary propositions, i.e. as variables for which any particular proposition may
be substituted.

1.2 Logical Connectives and Truth Tables

The propositions 1-5 considered in §1.1 are simple propositions since they make
only a single statement. In this section we look at how simple propositions
can be combined to form more complicated propositions called compound
propositions. The devices which are used to link pairs of propositions are
called logical connectives and the truth value of any compound proposition
is completely determined by (a) the truth values of its component simple
propositions, and (b) the particular connective, or connectives, used to link them.

Before we look at the most commonly used connectives we first look at an
operation which can be performed on a single proposition. This operation is called
negation and it has the effect of reversing the truth value of the proposition. We
state the negation of a proposition by prefixing it by ‘It is not the case that. ...
This is not the only way of negating a proposition but what is important is that the
negation is false in all circumstances that the proposition is true, and true in all
circumstances that the proposition is false.

We can summarize this in a table. If p symbolizes a proposition p (or ~p or —p
or —p) symbolizes the negation of p. The following table shows the relationship
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COMPOUND PROPOSITION



4 Logic

between the truth values of p and those of p.

p

T
F

— |

The left-hand column gives all possible truth values for p and the right-hand
column gives the corresponding truth values of p, the negation of p. A table
which summarizes truth values of propositions in this way is called a truth table.

There are several alternative ways of stating the negation of a proposition. If we
consider the proposition ‘All dogs are fierce’, some examples of its negation are:

It is not the case that all dogs are fierce.
Not all dogs are fierce.
Some dogs are not fierce.

Note that the proposition ‘No dogs are fierce’ is not the negation of ‘All dogs are
fierce’. Remember that to be the negation, the second statement must be false in
all circumstances that the first is true and vice versa. This is clearly not the case
since ‘All dogs are fierce’ is false if just one dog is not fierce. However, ‘No dogs
are fierce’ is not true in this case. (See §1.8.)

Whilst negation is an operation which involves only a single proposition, logical
connectives are used to link pairs of propositions. We shall consider five
commonly used logical connectives: conjunction, inclusive disjunction, exclusive
disjunction, the conditional and biconditional.

Conjunction

Two simple propositions can be combined by using the word ‘and’ between
them. The resulting compound proposition is called the conjunction of its two
component simple propositions. If p and g are two propositions p A g (or p.q)
symbolizes the conjunction of p and g. For example:

p : The sun is shining.
q : Pigs eat turnips.
p A q : The sun is shining and pigs eat turnips.

The following truth table gives the truth values of p A g (read as ‘p and ¢’) for
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each possible pair of truth values of p and ¢.

plqg|PNg
T|T T
T|F F
F|T F
F|F F

From the table it can be seen that the conjunction p A g is true only when both p
and ¢q are true. Otherwise the conjunction is false.

Linking two propositions using ‘and’ is not the only way of forming a
conjunction. The following are also conjunctions of p and g even though they
have nuances which are slightly different from when the two propositions are
joined using ‘and’.

The sun shines but pigs eat turnips.
Although the sun shines, pigs eat turnips.
The sun shines whereas pigs eat turnips.

All give the sense that they are true only when each simple component is true.
Otherwise they would be judged as false.

Disjunction

The word ‘or’ can be used to link two simple propositions. The compound
proposition so formed is called the disjunction of its two component simple
propositions. In logic we distinguish two different types of disjunction, the
inclusive and exclusive forms. The word ‘or’ in natural language is ambiguous in
conveying which type of disjunction we mean. We return to this point after we
have considered the two forms.

Given the two propositions p and g, pV¢q symbolizes the inclusive disjunction of
p and g. This compound proposition is true when either or both of its components
are true and is false otherwise. Thus the truth table for p Vv ¢ is given by:

pPlqg|prVyg
T|T T
T|F T
F|T T
F|F F
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The exclusive disjunction of p and ¢ is symbolized by p ¥ ¢. This compound
proposition is true when exactly one (i.e. one or other, but not both) of its
components is true. The truth table for p Y ¢ is given by:

1<

pP=q

oo Be s I B B S
m T 3R
m 4 4™

When two simple propositions are combined using ‘or’, context will often provide
the clue as to whether the inclusive or exclusive sense is intended. For instance,
“Tomorrow I will go swimming or play golf’ seems to suggest that I will not
do both and therefore points to an exclusive interpretation. On the other hand,
‘Applicants for this post must be over 25 or have at least 3 years relevant
experience’ suggests that applicants who satisfy both criteria will be considered,
and that ‘or’ should therefore be interpreted inclusively.

Where context does not resolve the ambiguity surrounding the word ‘or’, the
intended sense can be made clear by affixing ‘or both’ to indicate an inclusive
reading, or by affixing ‘but not both’ to make clear the exclusive sense. Where
there is no clue as to which interpretation is intended and context does not make
this clear, then ‘or’ is conventionally taken in its inclusive sense.

Conditional Propositions

The conditional connective (sometimes called implication) is symbolized by —
(or by D). The linguistic expression of a conditional proposition is normally
accepted as utilizing ‘if ...then ...’ as in the following example:

p : L eat breakfast.
q : I don’t eat lunch.
p — q : If I eat breakfast then I don’t eat lunch.

Alternative expressions for p — ¢ in this example are:

I eat breakfast only if I don’t eat lunch.
Whenever I eat breakfast, I don’t eat lunch.
That I eat breakfast implies that I don’t eat lunch.
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The following is the truth table for p — ¢:

plq|p—>49g
T|T T
T|F F
F|T T
F|F T

Notice that the proposition ‘if p then g’ is false only when p is true and ¢ is
false, i.e. a true statement cannot imply a false one. If p is false, the compound
proposition is true no matter what the truth value of g. To clarify this, consider
the proposition: ‘If I pass my exams then I will get drunk’. This statement says
nothing about what I will do if I don’t pass my exams. I may get drunk or I may
not, but in either case you could not accuse me of having made a false statement.
The only circumstances in which I could be accused of uttering a falsehood is if I
pass my exams and don’t get drunk.

In the conditional proposition p — ¢, the proposition p is sometimes called the
antecedent and g the consequent. The proposition p is said to be a sufficient
condition for ¢ and g a necessary condition for p.

Biconditional Propositions

The biconditional connective is symbolized by <>, and expressed by ‘if and only
if ... then ...’ . Using the previous example:
p : I eat breakfast.
q : Idon’t eat lunch.
p <> q : leat breakfast if and only if I don’t eat lunch (or alternatively, ‘If and
only if I eat breakfast, then I don’t eat lunch’).

The truth table for p <> g is given by:

pla|p<q
T|T| T
T|F| F
F|T| F
F|F| T

Note that for p <> g to be true, p and ¢ must both have the same truth values, i.e.
both must be true or both must be false.
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Examples 1.1

1. Consider the following propositions:
p : Mathematicians are generous.
q : Spiders hate algebra.
Write the compound propositions symbolized by:
®»  pvg
(i) (@APp)
(i) p—q
iv) p<gq.
Solution
(1) Mathematicians are generous or spiders don’t hate algebra (or both).
(ii) It is not the case that spiders hate algebra and mathematicians are
generous.
(iii)  If mathematicians are not generous then spiders hate algebra.
@iv) Mathematicians are not generous if and only if spiders don’t hate algebra.

(As we have seen, these are not unique solutions and there are acceptable
alternatives.)

2. Let p be the proposition ‘Today is Monday’ and ¢ be ‘I’ll go to London’.
Write the following propositions symbolically.
(i)  If today is Monday then I won’t go to London.
(ii)) Today is Monday or I’'ll go to London, but not both.
@iii) I’ll go to London and today is not Monday.
(iv)  If and only if today is not Monday then I'll go to London.
Solution
& p—q
i) pY¥g
(i) gnA
)  peq.
3. Construct truth tables for the following compound propositions.
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) pA
(i) g—p
) pog
Solution
) ——
plq|p|pPVa
T|T|F T
T|F|F F
F|T|T T
F|F|T T
Note that the truth table is built up in stages. The first two columns give
the usual combinations of possible truth values of p and ¢. The third
column gives, for each truth value of p, the truth value of p. When p
is true, p is false and vice versa. The last column combines the truth
values in columns 3 and 2 using the inclusive disjunction connective.
The compound proposition p V ¢ is true when at least one of its two
components is true. This is the case in row 1 (where ¢ is true), row 3 (p
and ¢ are both true) and row 4 (p is true). In the second row, p and g are
both false and hence p V ¢ is false.
(ii)
pla|pla|png
T|T|F|F F
T|F|F|T F
F|T|T|F F
F|F|T|T T

Here we first obtain truth values for p and g by reversing the
corresponding truth values of p and g respectively. Now p A g is only
true when both p and g are true, i.e. in row 4. In all other cases p A g is
false.

(iii)

Plg9|qg|q—>rP
T|T|F T
T|F|T| T
F|T|F T
F|F|T F
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(@iv)
Pig9|P|q9|P<q
T|T|F|F T
T|IF|F|T F
F|T|T|F F
FIF|T|T T

We can construct truth tables for compound propositions involving more than two
simple propositions as in the following example.

Construct truth tables for:

@H  p—>(@Anr)
(i) (pvg <r.

Solution

@

(ii)

~

p— (gAr)

~
(S

ey Biev e o I B s e s e s B B I

e e e B R R R S
e I I T T R T RN
I R T IR
=4 = =477

The first three columns list all possible combinations of truth values for
p, g and r. Since each proposition can take two truth values there are
23 = 8 possible combinations of truth values for the three propositions.
Column 4 gives truth values of ¢ A r by comparing the truth values
of ¢ and r individually in columns 2 and 3. Considering the pairs of
truth values in columns 1 and 4 gives the truth values for p — (g A 7).
Remember that this compound proposition is false only when p is true
and g A r is false, i.e. in rows 2, 3 and 4.

Again we build up the truth table column by column to obtain the
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following:
plg|r|p|r|pVvg|(pVg T
T|{T|T|F|F T F
T|IT|F|F|T T T
T|F|T|F|F F T
T|F|F|F|T F F
F|T|T|T|F T F
F|T|F|T|T T T
F|F|T|T|F T F
FIF|F|T|T T T
Exercises 1.1
1. Consider the propositions:

p : Max is sulking.
q : Today is my birthday.

Write in words the compound propositions given by:

®  pnrg
(i) pvg
(i) p—q
iv) g < p.
2. Consider the propositions:

p : Mary laughs.
q : Sally cries.
r : Jo shouts.

Write in words the following compound propositions:

i p—>(@Yr)

(i) (Ag)<p

(i) (p—=> @A —>q)
@iv) pvi(gvr)

(v) (pVvr)<q.
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If p, g and r denote the following propositions:

p : Bats are blind
q : Gnats eat grass

r : Ants have long teeth

express the following compound propositions symbolically.

@
(ii)

(iii)
(iv)

If bats are blind then gnats don’t eat grass.

If and only if bats are blind or gnats eat grass then ants don’t have
long teeth.

Ants don’t have long teeth and, if bats are blind, then gnats don’t
eat grass.

Bats are blind or gnats eat grass and, if gnats don’t eat grass, then
ants don’t have long teeth.

Draw a truth table and determine for what truth values of p and ¢ the
proposition p V q is false.

Draw the truth table for the propositions:

()
(i)
(iii)
@iv)
™)
(vi)

P—>4q

gnAp

(pvag)—> (prg)
(r—q9 Yq

P (pPAg)
(PA@)Y(pV.

Consider the two propositions:

p : John is rich.
q : John is dishonest.

Under what circumstances is the compound proposition ‘If John is honest
then he is not rich’ false?

Given the three propositions p, g and r, construct truth tables for:

@)
(i)
(iii)
@iv)
™)

(pAng)—>r
(pYryng
pA(GVT)
p—>(q@Vr)
(pVq) < (rvp).
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1.3 Tautologies and Contradictions

There are certain compound propositions which have the surprising property that
they are always true no matter what the truth value of their simple components.
Similarly, there are others which are always false regardless of the truth values of
their components. In both cases, this property is a consequence of the structure of
the compound proposition.

Definition 1.1

A tautology is a compound proposition which is true no matter what the
truth values of its simple components.

A contradiction is a compound proposition which is false no matter what
the truth values of its simple components.

We shall denote a tautology by ¢ and a contradiction by f.

Examples 1.2

1. Show that p Vv p is a tautology.

Solution

Constructing the truth table for p Vv p, we have:

plp|pPVD
T|F
F|T| T

Note that p Vv p is always true (no matter what proposition is substituted
for p) and is therefore a tautology.

2. Show that (p A q) V (p A q) is a tautology.
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Solution

The truth table for (p A g) V (p A q) is given below.

pla|prg|pPAqg|(prgV(pPAQ)
T|T| T F T
T|F| F T T
F|T| F T T
F|F| F T T

The last column of the truth table contains only the truth value T and hence we
can deduce that (p A g) V (p A g) is a tautology.

Note that, in the last example, we could have appealed to the result obtained in
the first one where we showed that the inclusive disjunction of any proposition
and its negation is a tautology. In example 1.2.2 we have a proposition p A g
and its negation (p A g). Hence, by the previous result, the inclusive disjunction
(p A q)V (p Aq)is atautology.

The proposition (p A q) V (p A q) is said to be a substitution instance of the
proposition p vV p. The former proposition is obtained from the latter simply
by substituting p A g for p throughout. Clearly any substitution instance of a
tautology is itself a tautology so that one way of establishing that a proposition
is a tautology is to show that it is a substitution instance of another proposition
which is known to be a tautology.

Example 1.3

Show that (p A g) A (p V gq) is a contradiction.

Solution
pla|lqa|prg|p|pVag|(pADADPYVY)
T|T|F F F T F
T|F|T T F F F
F|T|F F T T F
F|F|T F T T F
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The last column shows that (p A g) A (p V q) is always false, no matter what the
truth values of p and g. Hence (p A g) A (p V q) is a contradiction.

Just as any substitution instance of a tautology is also a tautology, so any
substitution instance of a contradiction is also a contradiction. For instance, using
a truth table, we can show that p A p is a contradiction. Since (p — ¢)A (P — q)
is a substitution instance of p A p, we can deduce that this compound proposition
is also a contradiction.

Exercises 1.2

Determine whether each of the following is a tautology, a contradiction or neither:

L. p—>(pVyq)

2. (p—=a NPV

3. (pVvaq)<(@qVp

4. (png)—>p

5. (A AN(PVQ)

6. (p—q9)— (pAg)

7. (PAg)AN(pV Q)

8. (p—=>q VT —p)

9. [p—> @AnN]l<(p—> g A(p—r)

10. [(pvg)—=>71Y(pVQ.

1.4 Logical Equivalence and Logical Implication

Two propositions are said to be logically equivalent if they have identical truth
values for every set of truth values of their components. Using P and Q to denote



16 Logic

(possibly) compound propositions, we write P = Q if P and Q are logically
equivalent. As with tautologies and contradictions, logical equivalence is a
consequence of the structures of P and Q.

Example 1.4
Show that p v g and p A g are logically equivalent, i.e. that (p vV q) = (p A ¢).
Solution

We draw up the truth table for p Vv g and also for p A ¢q.

pla|pP|q|PVqg|PAG|PAG
T|T|F|F| F T F
T|F|F|T| T F T
F|[T|T|F| T F T
F|F|T|T| T F T

Comparing the columns for p Vv g and for p A g we note that the truth values are
the same. Each is true except in the case where p and ¢ are both true. Hence
pV q and p A g are logically equivalent propositions.

Note that if two compound propositions are logically equivalent, then the
compound proposition formed by joining them using the biconditional connective
must be a tautology, i.e. if P = Q then P < ( is a tautology. This is so because
two logically equivalent propositions are either both true or both false. In either
of these cases the biconditional is true.

The converse is also the case, i.e. if P <> Q is a tautology, then P = Q. This
follows from the fact that the biconditional P <> Q is only true when P and Q
both have the same truth values.

In example 1.4, we showed that p v g and p A ¢ are logically equivalent by
constructing their truth tables and comparing truth values. An alternative method
would have been to show that (p vV q) <> (p A ¢q) is a tautology and to deduce
from this the logical equivalence of p vV g and p A q.

Example 1.5

Show that the following two propositions are logically equivalent.
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@) If it rains tomorrow then, if I get paid, I’ll go to Paris.
(ii) If it rains tomorrow and I get paid then I’ll go to Paris.
Solution

Define the following simple propositions:

p : It rains tomorrow.
q : 1 get paid.
r : I'll go to Paris.

We are required to show the logical equivalence of p — (¢ — r) and (p Ag) —
r. We can do this in one of two ways:

(a) establish that p — (¢ — r) and (p A g) — r have the same truth values,
or
(b) establish that [p — (¢ — r)] < [(p A g) — r] is a tautology.

Using the first method we complete the truth table for p — (g — r) and (p A
q) —>r.

plag|r|q—r|p—=>@—=>r)|pAq|(pAqg) —T
T|T|T| T T T T
T|T|F| F F T F
T|E|T| T T F T
T|EF|F| T T F T
F|T|T| T T F T
F|T|F| F T F T
F|F|T| T T F T
F|F|F| T T F T

Since the truth values of p — (¢ — r) and (p A q) — r are the same for each
set of truth values of p, ¢ and r, we can deduce the logical equivalences of these
compound propositions. Completing one further column of the truth table for
[p = (g = r)] < [(p A q) — r] would show this to be a tautology and would
establish the logical equivalence of the two propositions by the second method.

Another structure-dependent relation which may exist between two propositions
is that of logical implication. A proposition P is said to logically imply a
proposition Q if, whenever P is true, then Q is also true.
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Note that the converse does not apply, i.e. Q may also be true when P is false.
For logical implication all we insist on is that Q is never false when P is true. We
shall symbolize logical implication by I~ so that ‘ P logically implies Q’ is written
P+ Q.

Example 1.6
Show thatg F (p V q).
Solution

We must show that, whenever ¢ is true, then p V g is true. Constructing the truth
table gives:

pla|prVvq
T|T| T
T|F| T
FIT| T
F|F| F

From a comparison of the second and third columns we note that, whenever g is
true (first and third rows), p Vv ¢ is also true. Note that p V g is also true when
q is false (second row) but this has no relevance in establishing that ¢ logically
implies p V q.

We showed that ‘P = Q’ and ‘P <> Q is a tautology’ mean exactly the same. A
similar line of argument can be used to establish that ‘P -+ Q’ and ‘P — Qisa
tautology’ are identical statements. If we have P = Q then Q is never false when
P is true. Since this is the only situa